comparison gcc/tree-ssa-live.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 58ad6c70ea60
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Liveness for SSA trees.
2 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation,
3 Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "diagnostic.h"
28 #include "bitmap.h"
29 #include "tree-flow.h"
30 #include "tree-dump.h"
31 #include "tree-ssa-live.h"
32 #include "toplev.h"
33 #include "debug.h"
34 #include "flags.h"
35
36 #ifdef ENABLE_CHECKING
37 static void verify_live_on_entry (tree_live_info_p);
38 #endif
39
40
41 /* VARMAP maintains a mapping from SSA version number to real variables.
42
43 All SSA_NAMES are divided into partitions. Initially each ssa_name is the
44 only member of it's own partition. Coalescing will attempt to group any
45 ssa_names which occur in a copy or in a PHI node into the same partition.
46
47 At the end of out-of-ssa, each partition becomes a "real" variable and is
48 rewritten as a compiler variable.
49
50 The var_map data structure is used to manage these partitions. It allows
51 partitions to be combined, and determines which partition belongs to what
52 ssa_name or variable, and vice versa. */
53
54
55 /* This routine will initialize the basevar fields of MAP. */
56
57 static void
58 var_map_base_init (var_map map)
59 {
60 int x, num_part, num;
61 tree var;
62 var_ann_t ann;
63
64 num = 0;
65 num_part = num_var_partitions (map);
66
67 /* If a base table already exists, clear it, otherwise create it. */
68 if (map->partition_to_base_index != NULL)
69 {
70 free (map->partition_to_base_index);
71 VEC_truncate (tree, map->basevars, 0);
72 }
73 else
74 map->basevars = VEC_alloc (tree, heap, MAX (40, (num_part / 10)));
75
76 map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
77
78 /* Build the base variable list, and point partitions at their bases. */
79 for (x = 0; x < num_part; x++)
80 {
81 var = partition_to_var (map, x);
82 if (TREE_CODE (var) == SSA_NAME)
83 var = SSA_NAME_VAR (var);
84 ann = var_ann (var);
85 /* If base variable hasn't been seen, set it up. */
86 if (!ann->base_var_processed)
87 {
88 ann->base_var_processed = 1;
89 VAR_ANN_BASE_INDEX (ann) = num++;
90 VEC_safe_push (tree, heap, map->basevars, var);
91 }
92 map->partition_to_base_index[x] = VAR_ANN_BASE_INDEX (ann);
93 }
94
95 map->num_basevars = num;
96
97 /* Now clear the processed bit. */
98 for (x = 0; x < num; x++)
99 {
100 var = VEC_index (tree, map->basevars, x);
101 var_ann (var)->base_var_processed = 0;
102 }
103
104 #ifdef ENABLE_CHECKING
105 for (x = 0; x < num_part; x++)
106 {
107 tree var2;
108 var = SSA_NAME_VAR (partition_to_var (map, x));
109 var2 = VEC_index (tree, map->basevars, basevar_index (map, x));
110 gcc_assert (var == var2);
111 }
112 #endif
113 }
114
115
116 /* Remove the base table in MAP. */
117
118 static void
119 var_map_base_fini (var_map map)
120 {
121 /* Free the basevar info if it is present. */
122 if (map->partition_to_base_index != NULL)
123 {
124 VEC_free (tree, heap, map->basevars);
125 free (map->partition_to_base_index);
126 map->partition_to_base_index = NULL;
127 map->num_basevars = 0;
128 }
129 }
130 /* Create a variable partition map of SIZE, initialize and return it. */
131
132 var_map
133 init_var_map (int size)
134 {
135 var_map map;
136
137 map = (var_map) xmalloc (sizeof (struct _var_map));
138 map->var_partition = partition_new (size);
139 map->partition_to_var
140 = (tree *)xmalloc (size * sizeof (tree));
141 memset (map->partition_to_var, 0, size * sizeof (tree));
142
143 map->partition_to_view = NULL;
144 map->view_to_partition = NULL;
145 map->num_partitions = size;
146 map->partition_size = size;
147 map->num_basevars = 0;
148 map->partition_to_base_index = NULL;
149 map->basevars = NULL;
150 return map;
151 }
152
153
154 /* Free memory associated with MAP. */
155
156 void
157 delete_var_map (var_map map)
158 {
159 var_map_base_fini (map);
160 free (map->partition_to_var);
161 partition_delete (map->var_partition);
162 if (map->partition_to_view)
163 free (map->partition_to_view);
164 if (map->view_to_partition)
165 free (map->view_to_partition);
166 free (map);
167 }
168
169
170 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
171 Returns the partition which represents the new partition. If the two
172 partitions cannot be combined, NO_PARTITION is returned. */
173
174 int
175 var_union (var_map map, tree var1, tree var2)
176 {
177 int p1, p2, p3;
178 tree root_var = NULL_TREE;
179 tree other_var = NULL_TREE;
180
181 /* This is independent of partition_to_view. If partition_to_view is
182 on, then whichever one of these partitions is absorbed will never have a
183 dereference into the partition_to_view array any more. */
184
185 if (TREE_CODE (var1) == SSA_NAME)
186 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
187 else
188 {
189 p1 = var_to_partition (map, var1);
190 if (map->view_to_partition)
191 p1 = map->view_to_partition[p1];
192 root_var = var1;
193 }
194
195 if (TREE_CODE (var2) == SSA_NAME)
196 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
197 else
198 {
199 p2 = var_to_partition (map, var2);
200 if (map->view_to_partition)
201 p2 = map->view_to_partition[p2];
202
203 /* If there is no root_var set, or it's not a user variable, set the
204 root_var to this one. */
205 if (!root_var || (DECL_P (root_var) && DECL_IGNORED_P (root_var)))
206 {
207 other_var = root_var;
208 root_var = var2;
209 }
210 else
211 other_var = var2;
212 }
213
214 gcc_assert (p1 != NO_PARTITION);
215 gcc_assert (p2 != NO_PARTITION);
216
217 if (p1 == p2)
218 p3 = p1;
219 else
220 p3 = partition_union (map->var_partition, p1, p2);
221
222 if (map->partition_to_view)
223 p3 = map->partition_to_view[p3];
224
225 if (root_var)
226 change_partition_var (map, root_var, p3);
227 if (other_var)
228 change_partition_var (map, other_var, p3);
229
230 return p3;
231 }
232
233
234 /* Compress the partition numbers in MAP such that they fall in the range
235 0..(num_partitions-1) instead of wherever they turned out during
236 the partitioning exercise. This removes any references to unused
237 partitions, thereby allowing bitmaps and other vectors to be much
238 denser.
239
240 This is implemented such that compaction doesn't affect partitioning.
241 Ie., once partitions are created and possibly merged, running one
242 or more different kind of compaction will not affect the partitions
243 themselves. Their index might change, but all the same variables will
244 still be members of the same partition group. This allows work on reduced
245 sets, and no loss of information when a larger set is later desired.
246
247 In particular, coalescing can work on partitions which have 2 or more
248 definitions, and then 'recompact' later to include all the single
249 definitions for assignment to program variables. */
250
251
252 /* Set MAP back to the initial state of having no partition view. Return a
253 bitmap which has a bit set for each partition number which is in use in the
254 varmap. */
255
256 static bitmap
257 partition_view_init (var_map map)
258 {
259 bitmap used;
260 int tmp;
261 unsigned int x;
262
263 used = BITMAP_ALLOC (NULL);
264
265 /* Already in a view? Abandon the old one. */
266 if (map->partition_to_view)
267 {
268 free (map->partition_to_view);
269 map->partition_to_view = NULL;
270 }
271 if (map->view_to_partition)
272 {
273 free (map->view_to_partition);
274 map->view_to_partition = NULL;
275 }
276
277 /* Find out which partitions are actually referenced. */
278 for (x = 0; x < map->partition_size; x++)
279 {
280 tmp = partition_find (map->var_partition, x);
281 if (map->partition_to_var[tmp] != NULL_TREE && !bitmap_bit_p (used, tmp))
282 bitmap_set_bit (used, tmp);
283 }
284
285 map->num_partitions = map->partition_size;
286 return used;
287 }
288
289
290 /* This routine will finalize the view data for MAP based on the partitions
291 set in SELECTED. This is either the same bitmap returned from
292 partition_view_init, or a trimmed down version if some of those partitions
293 were not desired in this view. SELECTED is freed before returning. */
294
295 static void
296 partition_view_fini (var_map map, bitmap selected)
297 {
298 bitmap_iterator bi;
299 unsigned count, i, x, limit;
300 tree var;
301
302 gcc_assert (selected);
303
304 count = bitmap_count_bits (selected);
305 limit = map->partition_size;
306
307 /* If its a one-to-one ratio, we don't need any view compaction. */
308 if (count < limit)
309 {
310 map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
311 memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
312 map->view_to_partition = (int *)xmalloc (count * sizeof (int));
313
314 i = 0;
315 /* Give each selected partition an index. */
316 EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
317 {
318 map->partition_to_view[x] = i;
319 map->view_to_partition[i] = x;
320 var = map->partition_to_var[x];
321 /* If any one of the members of a partition is not an SSA_NAME, make
322 sure it is the representative. */
323 if (TREE_CODE (var) != SSA_NAME)
324 change_partition_var (map, var, i);
325 i++;
326 }
327 gcc_assert (i == count);
328 map->num_partitions = i;
329 }
330
331 BITMAP_FREE (selected);
332 }
333
334
335 /* Create a partition view which includes all the used partitions in MAP. If
336 WANT_BASES is true, create the base variable map as well. */
337
338 extern void
339 partition_view_normal (var_map map, bool want_bases)
340 {
341 bitmap used;
342
343 used = partition_view_init (map);
344 partition_view_fini (map, used);
345
346 if (want_bases)
347 var_map_base_init (map);
348 else
349 var_map_base_fini (map);
350 }
351
352
353 /* Create a partition view in MAP which includes just partitions which occur in
354 the bitmap ONLY. If WANT_BASES is true, create the base variable map
355 as well. */
356
357 extern void
358 partition_view_bitmap (var_map map, bitmap only, bool want_bases)
359 {
360 bitmap used;
361 bitmap new_partitions = BITMAP_ALLOC (NULL);
362 unsigned x, p;
363 bitmap_iterator bi;
364
365 used = partition_view_init (map);
366 EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
367 {
368 p = partition_find (map->var_partition, x);
369 gcc_assert (bitmap_bit_p (used, p));
370 bitmap_set_bit (new_partitions, p);
371 }
372 partition_view_fini (map, new_partitions);
373
374 BITMAP_FREE (used);
375 if (want_bases)
376 var_map_base_init (map);
377 else
378 var_map_base_fini (map);
379 }
380
381
382 /* This function is used to change the representative variable in MAP for VAR's
383 partition to a regular non-ssa variable. This allows partitions to be
384 mapped back to real variables. */
385
386 void
387 change_partition_var (var_map map, tree var, int part)
388 {
389 var_ann_t ann;
390
391 gcc_assert (TREE_CODE (var) != SSA_NAME);
392
393 ann = var_ann (var);
394 ann->out_of_ssa_tag = 1;
395 VAR_ANN_PARTITION (ann) = part;
396 if (map->view_to_partition)
397 map->partition_to_var[map->view_to_partition[part]] = var;
398 }
399
400
401 static inline void mark_all_vars_used (tree *, void *data);
402
403 /* Helper function for mark_all_vars_used, called via walk_tree. */
404
405 static tree
406 mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data)
407 {
408 tree t = *tp;
409 enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
410 tree b;
411
412 if (TREE_CODE (t) == SSA_NAME)
413 t = SSA_NAME_VAR (t);
414
415 if (IS_EXPR_CODE_CLASS (c)
416 && (b = TREE_BLOCK (t)) != NULL)
417 TREE_USED (b) = true;
418
419 /* Ignore TREE_ORIGINAL for TARGET_MEM_REFS, as well as other
420 fields that do not contain vars. */
421 if (TREE_CODE (t) == TARGET_MEM_REF)
422 {
423 mark_all_vars_used (&TMR_SYMBOL (t), data);
424 mark_all_vars_used (&TMR_BASE (t), data);
425 mark_all_vars_used (&TMR_INDEX (t), data);
426 *walk_subtrees = 0;
427 return NULL;
428 }
429
430 /* Only need to mark VAR_DECLS; parameters and return results are not
431 eliminated as unused. */
432 if (TREE_CODE (t) == VAR_DECL)
433 {
434 if (data != NULL && bitmap_bit_p ((bitmap) data, DECL_UID (t)))
435 {
436 bitmap_clear_bit ((bitmap) data, DECL_UID (t));
437 mark_all_vars_used (&DECL_INITIAL (t), data);
438 }
439 set_is_used (t);
440 }
441
442 if (IS_TYPE_OR_DECL_P (t))
443 *walk_subtrees = 0;
444
445 return NULL;
446 }
447
448 /* Mark the scope block SCOPE and its subblocks unused when they can be
449 possibly eliminated if dead. */
450
451 static void
452 mark_scope_block_unused (tree scope)
453 {
454 tree t;
455 TREE_USED (scope) = false;
456 if (!(*debug_hooks->ignore_block) (scope))
457 TREE_USED (scope) = true;
458 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
459 mark_scope_block_unused (t);
460 }
461
462 /* Look if the block is dead (by possibly eliminating its dead subblocks)
463 and return true if so.
464 Block is declared dead if:
465 1) No statements are associated with it.
466 2) Declares no live variables
467 3) All subblocks are dead
468 or there is precisely one subblocks and the block
469 has same abstract origin as outer block and declares
470 no variables, so it is pure wrapper.
471 When we are not outputting full debug info, we also eliminate dead variables
472 out of scope blocks to let them to be recycled by GGC and to save copying work
473 done by the inliner. */
474
475 static bool
476 remove_unused_scope_block_p (tree scope)
477 {
478 tree *t, *next;
479 bool unused = !TREE_USED (scope);
480 var_ann_t ann;
481 int nsubblocks = 0;
482
483 for (t = &BLOCK_VARS (scope); *t; t = next)
484 {
485 next = &TREE_CHAIN (*t);
486
487 /* Debug info of nested function refers to the block of the
488 function. We might stil call it even if all statements
489 of function it was nested into was elliminated.
490
491 TODO: We can actually look into cgraph to see if function
492 will be output to file. */
493 if (TREE_CODE (*t) == FUNCTION_DECL)
494 unused = false;
495 /* Remove everything we don't generate debug info for. */
496 else if (DECL_IGNORED_P (*t))
497 {
498 *t = TREE_CHAIN (*t);
499 next = t;
500 }
501
502 /* When we are outputting debug info, we usually want to output
503 info about optimized-out variables in the scope blocks.
504 Exception are the scope blocks not containing any instructions
505 at all so user can't get into the scopes at first place. */
506 else if ((ann = var_ann (*t)) != NULL
507 && ann->used)
508 unused = false;
509
510 /* When we are not doing full debug info, we however can keep around
511 only the used variables for cfgexpand's memory packing saving quite
512 a lot of memory.
513
514 For sake of -g3, we keep around those vars but we don't count this as
515 use of block, so innermost block with no used vars and no instructions
516 can be considered dead. We only want to keep around blocks user can
517 breakpoint into and ask about value of optimized out variables.
518
519 Similarly we need to keep around types at least until all variables of
520 all nested blocks are gone. We track no information on whether given
521 type is used or not. */
522
523 else if (debug_info_level == DINFO_LEVEL_NORMAL
524 || debug_info_level == DINFO_LEVEL_VERBOSE
525 /* Removing declarations before inlining is going to affect
526 DECL_UID that in turn is going to affect hashtables and
527 code generation. */
528 || !cfun->after_inlining)
529 ;
530 else
531 {
532 *t = TREE_CHAIN (*t);
533 next = t;
534 }
535 }
536
537 for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
538 if (remove_unused_scope_block_p (*t))
539 {
540 if (BLOCK_SUBBLOCKS (*t))
541 {
542 tree next = BLOCK_CHAIN (*t);
543 tree supercontext = BLOCK_SUPERCONTEXT (*t);
544
545 *t = BLOCK_SUBBLOCKS (*t);
546 while (BLOCK_CHAIN (*t))
547 {
548 BLOCK_SUPERCONTEXT (*t) = supercontext;
549 t = &BLOCK_CHAIN (*t);
550 }
551 BLOCK_CHAIN (*t) = next;
552 BLOCK_SUPERCONTEXT (*t) = supercontext;
553 t = &BLOCK_CHAIN (*t);
554 nsubblocks ++;
555 }
556 else
557 *t = BLOCK_CHAIN (*t);
558 }
559 else
560 {
561 t = &BLOCK_CHAIN (*t);
562 nsubblocks ++;
563 }
564
565
566 if (!unused)
567 ;
568 /* Outer scope is always used. */
569 else if (!BLOCK_SUPERCONTEXT (scope)
570 || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
571 unused = false;
572 /* Innermost blocks with no live variables nor statements can be always
573 eliminated. */
574 else if (!nsubblocks)
575 ;
576 /* If there are live subblocks and we still have some unused variables
577 or types declared, we must keep them.
578 Before inliing we must not depend on debug info verbosity to keep
579 DECL_UIDs stable. */
580 else if (!cfun->after_inlining && BLOCK_VARS (scope))
581 unused = false;
582 /* For terse debug info we can eliminate info on unused variables. */
583 else if (debug_info_level == DINFO_LEVEL_NONE
584 || debug_info_level == DINFO_LEVEL_TERSE)
585 ;
586 else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
587 unused = false;
588 /* See if this block is important for representation of inlined function.
589 Inlined functions are always represented by block with
590 block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
591 set... */
592 else if (inlined_function_outer_scope_p (scope))
593 unused = false;
594 else
595 /* Verfify that only blocks with source location set
596 are entry points to the inlined functions. */
597 gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION);
598 return unused;
599 }
600
601 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
602 eliminated during the tree->rtl conversion process. */
603
604 static inline void
605 mark_all_vars_used (tree *expr_p, void *data)
606 {
607 walk_tree (expr_p, mark_all_vars_used_1, data, NULL);
608 }
609
610 /* Dump scope blocks. */
611
612 static void
613 dump_scope_block (FILE *file, int indent, tree scope, int flags)
614 {
615 tree var, t;
616 unsigned int i;
617
618 fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
619 TREE_USED (scope) ? "" : " (unused)",
620 BLOCK_ABSTRACT (scope) ? " (abstract)": "");
621 if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION)
622 {
623 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
624 fprintf (file, " %s:%i", s.file, s.line);
625 }
626 if (BLOCK_ABSTRACT_ORIGIN (scope))
627 {
628 tree origin = block_ultimate_origin (scope);
629 if (origin)
630 {
631 fprintf (file, " Originating from :");
632 if (DECL_P (origin))
633 print_generic_decl (file, origin, flags);
634 else
635 fprintf (file, "#%i", BLOCK_NUMBER (origin));
636 }
637 }
638 fprintf (file, " \n");
639 for (var = BLOCK_VARS (scope); var; var = TREE_CHAIN (var))
640 {
641 bool used = false;
642 var_ann_t ann;
643
644 if ((ann = var_ann (var))
645 && ann->used)
646 used = true;
647
648 fprintf (file, "%*s",indent, "");
649 print_generic_decl (file, var, flags);
650 fprintf (file, "%s\n", used ? "" : " (unused)");
651 }
652 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
653 {
654 fprintf (file, "%*s",indent, "");
655 print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
656 flags);
657 fprintf (file, " (nonlocalized)\n");
658 }
659 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
660 dump_scope_block (file, indent + 2, t, flags);
661 fprintf (file, "\n%*s}\n",indent, "");
662 }
663
664 void
665 dump_scope_blocks (FILE *file, int flags)
666 {
667 dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
668 }
669
670 /* Remove local variables that are not referenced in the IL. */
671
672 void
673 remove_unused_locals (void)
674 {
675 basic_block bb;
676 tree t, *cell;
677 referenced_var_iterator rvi;
678 var_ann_t ann;
679 bitmap global_unused_vars = NULL;
680
681 mark_scope_block_unused (DECL_INITIAL (current_function_decl));
682
683 /* Assume all locals are unused. */
684 FOR_EACH_REFERENCED_VAR (t, rvi)
685 var_ann (t)->used = false;
686
687 /* Walk the CFG marking all referenced symbols. */
688 FOR_EACH_BB (bb)
689 {
690 gimple_stmt_iterator gsi;
691 size_t i;
692 edge_iterator ei;
693 edge e;
694
695 /* Walk the statements. */
696 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
697 {
698 gimple stmt = gsi_stmt (gsi);
699 tree b = gimple_block (stmt);
700
701 if (b)
702 TREE_USED (b) = true;
703
704 for (i = 0; i < gimple_num_ops (stmt); i++)
705 mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i), NULL);
706 }
707
708 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
709 {
710 use_operand_p arg_p;
711 ssa_op_iter i;
712 tree def;
713 gimple phi = gsi_stmt (gsi);
714
715 /* No point processing globals. */
716 if (is_global_var (SSA_NAME_VAR (gimple_phi_result (phi))))
717 continue;
718
719 def = gimple_phi_result (phi);
720 mark_all_vars_used (&def, NULL);
721
722 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
723 {
724 tree arg = USE_FROM_PTR (arg_p);
725 mark_all_vars_used (&arg, NULL);
726 }
727 }
728
729 FOR_EACH_EDGE (e, ei, bb->succs)
730 if (e->goto_locus)
731 TREE_USED (e->goto_block) = true;
732 }
733
734 cfun->has_local_explicit_reg_vars = false;
735
736 /* Remove unmarked local vars from local_decls. */
737 for (cell = &cfun->local_decls; *cell; )
738 {
739 tree var = TREE_VALUE (*cell);
740
741 if (TREE_CODE (var) != FUNCTION_DECL
742 && (!(ann = var_ann (var))
743 || !ann->used)
744 && (optimize || DECL_ARTIFICIAL (var)))
745 {
746 if (is_global_var (var))
747 {
748 if (global_unused_vars == NULL)
749 global_unused_vars = BITMAP_ALLOC (NULL);
750 bitmap_set_bit (global_unused_vars, DECL_UID (var));
751 }
752 else
753 {
754 *cell = TREE_CHAIN (*cell);
755 continue;
756 }
757 }
758 else if (TREE_CODE (var) == VAR_DECL
759 && DECL_HARD_REGISTER (var)
760 && !is_global_var (var))
761 cfun->has_local_explicit_reg_vars = true;
762 cell = &TREE_CHAIN (*cell);
763 }
764
765 /* Remove unmarked global vars from local_decls. */
766 if (global_unused_vars != NULL)
767 {
768 for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
769 {
770 tree var = TREE_VALUE (t);
771
772 if (TREE_CODE (var) == VAR_DECL
773 && is_global_var (var)
774 && (ann = var_ann (var)) != NULL
775 && ann->used)
776 mark_all_vars_used (&DECL_INITIAL (var), global_unused_vars);
777 }
778
779 for (cell = &cfun->local_decls; *cell; )
780 {
781 tree var = TREE_VALUE (*cell);
782
783 if (TREE_CODE (var) == VAR_DECL
784 && is_global_var (var)
785 && bitmap_bit_p (global_unused_vars, DECL_UID (var)))
786 *cell = TREE_CHAIN (*cell);
787 else
788 cell = &TREE_CHAIN (*cell);
789 }
790 BITMAP_FREE (global_unused_vars);
791 }
792
793 /* Remove unused variables from REFERENCED_VARs. As a special
794 exception keep the variables that are believed to be aliased.
795 Those can't be easily removed from the alias sets and operand
796 caches. They will be removed shortly after the next may_alias
797 pass is performed. */
798 FOR_EACH_REFERENCED_VAR (t, rvi)
799 if (!is_global_var (t)
800 && !MTAG_P (t)
801 && TREE_CODE (t) != PARM_DECL
802 && TREE_CODE (t) != RESULT_DECL
803 && !(ann = var_ann (t))->used
804 && !ann->symbol_mem_tag
805 && !TREE_ADDRESSABLE (t)
806 && (optimize || DECL_ARTIFICIAL (t)))
807 remove_referenced_var (t);
808 remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
809 if (dump_file && (dump_flags & TDF_DETAILS))
810 {
811 fprintf (dump_file, "Scope blocks after cleanups:\n");
812 dump_scope_blocks (dump_file, dump_flags);
813 }
814 }
815
816
817 /* Allocate and return a new live range information object base on MAP. */
818
819 static tree_live_info_p
820 new_tree_live_info (var_map map)
821 {
822 tree_live_info_p live;
823 unsigned x;
824
825 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
826 live->map = map;
827 live->num_blocks = last_basic_block;
828
829 live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
830 for (x = 0; x < (unsigned)last_basic_block; x++)
831 live->livein[x] = BITMAP_ALLOC (NULL);
832
833 live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
834 for (x = 0; x < (unsigned)last_basic_block; x++)
835 live->liveout[x] = BITMAP_ALLOC (NULL);
836
837 live->work_stack = XNEWVEC (int, last_basic_block);
838 live->stack_top = live->work_stack;
839
840 live->global = BITMAP_ALLOC (NULL);
841 return live;
842 }
843
844
845 /* Free storage for live range info object LIVE. */
846
847 void
848 delete_tree_live_info (tree_live_info_p live)
849 {
850 int x;
851
852 BITMAP_FREE (live->global);
853 free (live->work_stack);
854
855 for (x = live->num_blocks - 1; x >= 0; x--)
856 BITMAP_FREE (live->liveout[x]);
857 free (live->liveout);
858
859 for (x = live->num_blocks - 1; x >= 0; x--)
860 BITMAP_FREE (live->livein[x]);
861 free (live->livein);
862
863 free (live);
864 }
865
866
867 /* Visit basic block BB and propagate any required live on entry bits from
868 LIVE into the predecessors. VISITED is the bitmap of visited blocks.
869 TMP is a temporary work bitmap which is passed in to avoid reallocating
870 it each time. */
871
872 static void
873 loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
874 bitmap tmp)
875 {
876 edge e;
877 bool change;
878 edge_iterator ei;
879 basic_block pred_bb;
880 bitmap loe;
881 gcc_assert (!TEST_BIT (visited, bb->index));
882
883 SET_BIT (visited, bb->index);
884 loe = live_on_entry (live, bb);
885
886 FOR_EACH_EDGE (e, ei, bb->preds)
887 {
888 pred_bb = e->src;
889 if (pred_bb == ENTRY_BLOCK_PTR)
890 continue;
891 /* TMP is variables live-on-entry from BB that aren't defined in the
892 predecessor block. This should be the live on entry vars to pred.
893 Note that liveout is the DEFs in a block while live on entry is
894 being calculated. */
895 bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);
896
897 /* Add these bits to live-on-entry for the pred. if there are any
898 changes, and pred_bb has been visited already, add it to the
899 revisit stack. */
900 change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
901 if (TEST_BIT (visited, pred_bb->index) && change)
902 {
903 RESET_BIT (visited, pred_bb->index);
904 *(live->stack_top)++ = pred_bb->index;
905 }
906 }
907 }
908
909
910 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
911 of all the variables. */
912
913 static void
914 live_worklist (tree_live_info_p live)
915 {
916 unsigned b;
917 basic_block bb;
918 sbitmap visited = sbitmap_alloc (last_basic_block + 1);
919 bitmap tmp = BITMAP_ALLOC (NULL);
920
921 sbitmap_zero (visited);
922
923 /* Visit all the blocks in reverse order and propagate live on entry values
924 into the predecessors blocks. */
925 FOR_EACH_BB_REVERSE (bb)
926 loe_visit_block (live, bb, visited, tmp);
927
928 /* Process any blocks which require further iteration. */
929 while (live->stack_top != live->work_stack)
930 {
931 b = *--(live->stack_top);
932 loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
933 }
934
935 BITMAP_FREE (tmp);
936 sbitmap_free (visited);
937 }
938
939
940 /* Calculate the initial live on entry vector for SSA_NAME using immediate_use
941 links. Set the live on entry fields in LIVE. Def's are marked temporarily
942 in the liveout vector. */
943
944 static void
945 set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
946 {
947 int p;
948 gimple stmt;
949 use_operand_p use;
950 basic_block def_bb = NULL;
951 imm_use_iterator imm_iter;
952 bool global = false;
953
954 p = var_to_partition (live->map, ssa_name);
955 if (p == NO_PARTITION)
956 return;
957
958 stmt = SSA_NAME_DEF_STMT (ssa_name);
959 if (stmt)
960 {
961 def_bb = gimple_bb (stmt);
962 /* Mark defs in liveout bitmap temporarily. */
963 if (def_bb)
964 bitmap_set_bit (live->liveout[def_bb->index], p);
965 }
966 else
967 def_bb = ENTRY_BLOCK_PTR;
968
969 /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
970 add it to the list of live on entry blocks. */
971 FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
972 {
973 gimple use_stmt = USE_STMT (use);
974 basic_block add_block = NULL;
975
976 if (gimple_code (use_stmt) == GIMPLE_PHI)
977 {
978 /* Uses in PHI's are considered to be live at exit of the SRC block
979 as this is where a copy would be inserted. Check to see if it is
980 defined in that block, or whether its live on entry. */
981 int index = PHI_ARG_INDEX_FROM_USE (use);
982 edge e = gimple_phi_arg_edge (use_stmt, index);
983 if (e->src != ENTRY_BLOCK_PTR)
984 {
985 if (e->src != def_bb)
986 add_block = e->src;
987 }
988 }
989 else
990 {
991 /* If its not defined in this block, its live on entry. */
992 basic_block use_bb = gimple_bb (use_stmt);
993 if (use_bb != def_bb)
994 add_block = use_bb;
995 }
996
997 /* If there was a live on entry use, set the bit. */
998 if (add_block)
999 {
1000 global = true;
1001 bitmap_set_bit (live->livein[add_block->index], p);
1002 }
1003 }
1004
1005 /* If SSA_NAME is live on entry to at least one block, fill in all the live
1006 on entry blocks between the def and all the uses. */
1007 if (global)
1008 bitmap_set_bit (live->global, p);
1009 }
1010
1011
1012 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
1013
1014 void
1015 calculate_live_on_exit (tree_live_info_p liveinfo)
1016 {
1017 basic_block bb;
1018 edge e;
1019 edge_iterator ei;
1020
1021 /* live on entry calculations used liveout vectors for defs, clear them. */
1022 FOR_EACH_BB (bb)
1023 bitmap_clear (liveinfo->liveout[bb->index]);
1024
1025 /* Set all the live-on-exit bits for uses in PHIs. */
1026 FOR_EACH_BB (bb)
1027 {
1028 gimple_stmt_iterator gsi;
1029 size_t i;
1030
1031 /* Mark the PHI arguments which are live on exit to the pred block. */
1032 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1033 {
1034 gimple phi = gsi_stmt (gsi);
1035 for (i = 0; i < gimple_phi_num_args (phi); i++)
1036 {
1037 tree t = PHI_ARG_DEF (phi, i);
1038 int p;
1039
1040 if (TREE_CODE (t) != SSA_NAME)
1041 continue;
1042
1043 p = var_to_partition (liveinfo->map, t);
1044 if (p == NO_PARTITION)
1045 continue;
1046 e = gimple_phi_arg_edge (phi, i);
1047 if (e->src != ENTRY_BLOCK_PTR)
1048 bitmap_set_bit (liveinfo->liveout[e->src->index], p);
1049 }
1050 }
1051
1052 /* Add each successors live on entry to this bock live on exit. */
1053 FOR_EACH_EDGE (e, ei, bb->succs)
1054 if (e->dest != EXIT_BLOCK_PTR)
1055 bitmap_ior_into (liveinfo->liveout[bb->index],
1056 live_on_entry (liveinfo, e->dest));
1057 }
1058 }
1059
1060
1061 /* Given partition map MAP, calculate all the live on entry bitmaps for
1062 each partition. Return a new live info object. */
1063
1064 tree_live_info_p
1065 calculate_live_ranges (var_map map)
1066 {
1067 tree var;
1068 unsigned i;
1069 tree_live_info_p live;
1070
1071 live = new_tree_live_info (map);
1072 for (i = 0; i < num_var_partitions (map); i++)
1073 {
1074 var = partition_to_var (map, i);
1075 if (var != NULL_TREE)
1076 set_var_live_on_entry (var, live);
1077 }
1078
1079 live_worklist (live);
1080
1081 #ifdef ENABLE_CHECKING
1082 verify_live_on_entry (live);
1083 #endif
1084
1085 calculate_live_on_exit (live);
1086 return live;
1087 }
1088
1089
1090 /* Output partition map MAP to file F. */
1091
1092 void
1093 dump_var_map (FILE *f, var_map map)
1094 {
1095 int t;
1096 unsigned x, y;
1097 int p;
1098
1099 fprintf (f, "\nPartition map \n\n");
1100
1101 for (x = 0; x < map->num_partitions; x++)
1102 {
1103 if (map->view_to_partition != NULL)
1104 p = map->view_to_partition[x];
1105 else
1106 p = x;
1107
1108 if (map->partition_to_var[p] == NULL_TREE)
1109 continue;
1110
1111 t = 0;
1112 for (y = 1; y < num_ssa_names; y++)
1113 {
1114 p = partition_find (map->var_partition, y);
1115 if (map->partition_to_view)
1116 p = map->partition_to_view[p];
1117 if (p == (int)x)
1118 {
1119 if (t++ == 0)
1120 {
1121 fprintf(f, "Partition %d (", x);
1122 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1123 fprintf (f, " - ");
1124 }
1125 fprintf (f, "%d ", y);
1126 }
1127 }
1128 if (t != 0)
1129 fprintf (f, ")\n");
1130 }
1131 fprintf (f, "\n");
1132 }
1133
1134
1135 /* Output live range info LIVE to file F, controlled by FLAG. */
1136
1137 void
1138 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1139 {
1140 basic_block bb;
1141 unsigned i;
1142 var_map map = live->map;
1143 bitmap_iterator bi;
1144
1145 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1146 {
1147 FOR_EACH_BB (bb)
1148 {
1149 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1150 EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
1151 {
1152 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1153 fprintf (f, " ");
1154 }
1155 fprintf (f, "\n");
1156 }
1157 }
1158
1159 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1160 {
1161 FOR_EACH_BB (bb)
1162 {
1163 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1164 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
1165 {
1166 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1167 fprintf (f, " ");
1168 }
1169 fprintf (f, "\n");
1170 }
1171 }
1172 }
1173
1174
1175 #ifdef ENABLE_CHECKING
1176 /* Verify that SSA_VAR is a non-virtual SSA_NAME. */
1177
1178 void
1179 register_ssa_partition_check (tree ssa_var)
1180 {
1181 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1182 if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
1183 {
1184 fprintf (stderr, "Illegally registering a virtual SSA name :");
1185 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1186 fprintf (stderr, " in the SSA->Normal phase.\n");
1187 internal_error ("SSA corruption");
1188 }
1189 }
1190
1191
1192 /* Verify that the info in LIVE matches the current cfg. */
1193
1194 static void
1195 verify_live_on_entry (tree_live_info_p live)
1196 {
1197 unsigned i;
1198 tree var;
1199 gimple stmt;
1200 basic_block bb;
1201 edge e;
1202 int num;
1203 edge_iterator ei;
1204 var_map map = live->map;
1205
1206 /* Check for live on entry partitions and report those with a DEF in
1207 the program. This will typically mean an optimization has done
1208 something wrong. */
1209 bb = ENTRY_BLOCK_PTR;
1210 num = 0;
1211 FOR_EACH_EDGE (e, ei, bb->succs)
1212 {
1213 int entry_block = e->dest->index;
1214 if (e->dest == EXIT_BLOCK_PTR)
1215 continue;
1216 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
1217 {
1218 basic_block tmp;
1219 tree d;
1220 bitmap loe;
1221 var = partition_to_var (map, i);
1222 stmt = SSA_NAME_DEF_STMT (var);
1223 tmp = gimple_bb (stmt);
1224 d = gimple_default_def (cfun, SSA_NAME_VAR (var));
1225
1226 loe = live_on_entry (live, e->dest);
1227 if (loe && bitmap_bit_p (loe, i))
1228 {
1229 if (!gimple_nop_p (stmt))
1230 {
1231 num++;
1232 print_generic_expr (stderr, var, TDF_SLIM);
1233 fprintf (stderr, " is defined ");
1234 if (tmp)
1235 fprintf (stderr, " in BB%d, ", tmp->index);
1236 fprintf (stderr, "by:\n");
1237 print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
1238 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
1239 entry_block);
1240 fprintf (stderr, " So it appears to have multiple defs.\n");
1241 }
1242 else
1243 {
1244 if (d != var)
1245 {
1246 num++;
1247 print_generic_expr (stderr, var, TDF_SLIM);
1248 fprintf (stderr, " is live-on-entry to BB%d ",
1249 entry_block);
1250 if (d)
1251 {
1252 fprintf (stderr, " but is not the default def of ");
1253 print_generic_expr (stderr, d, TDF_SLIM);
1254 fprintf (stderr, "\n");
1255 }
1256 else
1257 fprintf (stderr, " and there is no default def.\n");
1258 }
1259 }
1260 }
1261 else
1262 if (d == var)
1263 {
1264 /* The only way this var shouldn't be marked live on entry is
1265 if it occurs in a PHI argument of the block. */
1266 size_t z;
1267 bool ok = false;
1268 gimple_stmt_iterator gsi;
1269 for (gsi = gsi_start_phis (e->dest);
1270 !gsi_end_p (gsi) && !ok;
1271 gsi_next (&gsi))
1272 {
1273 gimple phi = gsi_stmt (gsi);
1274 for (z = 0; z < gimple_phi_num_args (phi); z++)
1275 if (var == gimple_phi_arg_def (phi, z))
1276 {
1277 ok = true;
1278 break;
1279 }
1280 }
1281 if (ok)
1282 continue;
1283 num++;
1284 print_generic_expr (stderr, var, TDF_SLIM);
1285 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
1286 entry_block);
1287 fprintf (stderr, "but it is a default def so it should be.\n");
1288 }
1289 }
1290 }
1291 gcc_assert (num <= 0);
1292 }
1293 #endif