comparison gcc/tree-ssa-loop-prefetch.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Array prefetching.
2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "varray.h"
36 #include "expr.h"
37 #include "tree-pass.h"
38 #include "ggc.h"
39 #include "insn-config.h"
40 #include "recog.h"
41 #include "hashtab.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "toplev.h"
45 #include "params.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-data-ref.h"
49 #include "optabs.h"
50
51 /* This pass inserts prefetch instructions to optimize cache usage during
52 accesses to arrays in loops. It processes loops sequentially and:
53
54 1) Gathers all memory references in the single loop.
55 2) For each of the references it decides when it is profitable to prefetch
56 it. To do it, we evaluate the reuse among the accesses, and determines
57 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
58 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
59 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
60 iterations of the loop that are zero modulo PREFETCH_MOD). For example
61 (assuming cache line size is 64 bytes, char has size 1 byte and there
62 is no hardware sequential prefetch):
63
64 char *a;
65 for (i = 0; i < max; i++)
66 {
67 a[255] = ...; (0)
68 a[i] = ...; (1)
69 a[i + 64] = ...; (2)
70 a[16*i] = ...; (3)
71 a[187*i] = ...; (4)
72 a[187*i + 50] = ...; (5)
73 }
74
75 (0) obviously has PREFETCH_BEFORE 1
76 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
77 location 64 iterations before it, and PREFETCH_MOD 64 (since
78 it hits the same cache line otherwise).
79 (2) has PREFETCH_MOD 64
80 (3) has PREFETCH_MOD 4
81 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
82 the cache line accessed by (4) is the same with probability only
83 7/32.
84 (5) has PREFETCH_MOD 1 as well.
85
86 Additionally, we use data dependence analysis to determine for each
87 reference the distance till the first reuse; this information is used
88 to determine the temporality of the issued prefetch instruction.
89
90 3) We determine how much ahead we need to prefetch. The number of
91 iterations needed is time to fetch / time spent in one iteration of
92 the loop. The problem is that we do not know either of these values,
93 so we just make a heuristic guess based on a magic (possibly)
94 target-specific constant and size of the loop.
95
96 4) Determine which of the references we prefetch. We take into account
97 that there is a maximum number of simultaneous prefetches (provided
98 by machine description). We prefetch as many prefetches as possible
99 while still within this bound (starting with those with lowest
100 prefetch_mod, since they are responsible for most of the cache
101 misses).
102
103 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
104 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
105 prefetching nonaccessed memory.
106 TODO -- actually implement peeling.
107
108 6) We actually emit the prefetch instructions. ??? Perhaps emit the
109 prefetch instructions with guards in cases where 5) was not sufficient
110 to satisfy the constraints?
111
112 Some other TODO:
113 -- write and use more general reuse analysis (that could be also used
114 in other cache aimed loop optimizations)
115 -- make it behave sanely together with the prefetches given by user
116 (now we just ignore them; at the very least we should avoid
117 optimizing loops in that user put his own prefetches)
118 -- we assume cache line size alignment of arrays; this could be
119 improved. */
120
121 /* Magic constants follow. These should be replaced by machine specific
122 numbers. */
123
124 /* True if write can be prefetched by a read prefetch. */
125
126 #ifndef WRITE_CAN_USE_READ_PREFETCH
127 #define WRITE_CAN_USE_READ_PREFETCH 1
128 #endif
129
130 /* True if read can be prefetched by a write prefetch. */
131
132 #ifndef READ_CAN_USE_WRITE_PREFETCH
133 #define READ_CAN_USE_WRITE_PREFETCH 0
134 #endif
135
136 /* The size of the block loaded by a single prefetch. Usually, this is
137 the same as cache line size (at the moment, we only consider one level
138 of cache hierarchy). */
139
140 #ifndef PREFETCH_BLOCK
141 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
142 #endif
143
144 /* Do we have a forward hardware sequential prefetching? */
145
146 #ifndef HAVE_FORWARD_PREFETCH
147 #define HAVE_FORWARD_PREFETCH 0
148 #endif
149
150 /* Do we have a backward hardware sequential prefetching? */
151
152 #ifndef HAVE_BACKWARD_PREFETCH
153 #define HAVE_BACKWARD_PREFETCH 0
154 #endif
155
156 /* In some cases we are only able to determine that there is a certain
157 probability that the two accesses hit the same cache line. In this
158 case, we issue the prefetches for both of them if this probability
159 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
160
161 #ifndef ACCEPTABLE_MISS_RATE
162 #define ACCEPTABLE_MISS_RATE 50
163 #endif
164
165 #ifndef HAVE_prefetch
166 #define HAVE_prefetch 0
167 #endif
168
169 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
170 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
171
172 /* We consider a memory access nontemporal if it is not reused sooner than
173 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
174 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
175 so that we use nontemporal prefetches e.g. if single memory location
176 is accessed several times in a single iteration of the loop. */
177 #define NONTEMPORAL_FRACTION 16
178
179 /* In case we have to emit a memory fence instruction after the loop that
180 uses nontemporal stores, this defines the builtin to use. */
181
182 #ifndef FENCE_FOLLOWING_MOVNT
183 #define FENCE_FOLLOWING_MOVNT NULL_TREE
184 #endif
185
186 /* The group of references between that reuse may occur. */
187
188 struct mem_ref_group
189 {
190 tree base; /* Base of the reference. */
191 HOST_WIDE_INT step; /* Step of the reference. */
192 struct mem_ref *refs; /* References in the group. */
193 struct mem_ref_group *next; /* Next group of references. */
194 };
195
196 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
197
198 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
199
200 /* The memory reference. */
201
202 struct mem_ref
203 {
204 gimple stmt; /* Statement in that the reference appears. */
205 tree mem; /* The reference. */
206 HOST_WIDE_INT delta; /* Constant offset of the reference. */
207 struct mem_ref_group *group; /* The group of references it belongs to. */
208 unsigned HOST_WIDE_INT prefetch_mod;
209 /* Prefetch only each PREFETCH_MOD-th
210 iteration. */
211 unsigned HOST_WIDE_INT prefetch_before;
212 /* Prefetch only first PREFETCH_BEFORE
213 iterations. */
214 unsigned reuse_distance; /* The amount of data accessed before the first
215 reuse of this value. */
216 struct mem_ref *next; /* The next reference in the group. */
217 unsigned write_p : 1; /* Is it a write? */
218 unsigned independent_p : 1; /* True if the reference is independent on
219 all other references inside the loop. */
220 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
221 unsigned storent_p : 1; /* True if we changed the store to a
222 nontemporal one. */
223 };
224
225 /* Dumps information about reference REF to FILE. */
226
227 static void
228 dump_mem_ref (FILE *file, struct mem_ref *ref)
229 {
230 fprintf (file, "Reference %p:\n", (void *) ref);
231
232 fprintf (file, " group %p (base ", (void *) ref->group);
233 print_generic_expr (file, ref->group->base, TDF_SLIM);
234 fprintf (file, ", step ");
235 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
236 fprintf (file, ")\n");
237
238 fprintf (file, " delta ");
239 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
240 fprintf (file, "\n");
241
242 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
243
244 fprintf (file, "\n");
245 }
246
247 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
248 exist. */
249
250 static struct mem_ref_group *
251 find_or_create_group (struct mem_ref_group **groups, tree base,
252 HOST_WIDE_INT step)
253 {
254 struct mem_ref_group *group;
255
256 for (; *groups; groups = &(*groups)->next)
257 {
258 if ((*groups)->step == step
259 && operand_equal_p ((*groups)->base, base, 0))
260 return *groups;
261
262 /* Keep the list of groups sorted by decreasing step. */
263 if ((*groups)->step < step)
264 break;
265 }
266
267 group = XNEW (struct mem_ref_group);
268 group->base = base;
269 group->step = step;
270 group->refs = NULL;
271 group->next = *groups;
272 *groups = group;
273
274 return group;
275 }
276
277 /* Records a memory reference MEM in GROUP with offset DELTA and write status
278 WRITE_P. The reference occurs in statement STMT. */
279
280 static void
281 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
282 HOST_WIDE_INT delta, bool write_p)
283 {
284 struct mem_ref **aref;
285
286 /* Do not record the same address twice. */
287 for (aref = &group->refs; *aref; aref = &(*aref)->next)
288 {
289 /* It does not have to be possible for write reference to reuse the read
290 prefetch, or vice versa. */
291 if (!WRITE_CAN_USE_READ_PREFETCH
292 && write_p
293 && !(*aref)->write_p)
294 continue;
295 if (!READ_CAN_USE_WRITE_PREFETCH
296 && !write_p
297 && (*aref)->write_p)
298 continue;
299
300 if ((*aref)->delta == delta)
301 return;
302 }
303
304 (*aref) = XNEW (struct mem_ref);
305 (*aref)->stmt = stmt;
306 (*aref)->mem = mem;
307 (*aref)->delta = delta;
308 (*aref)->write_p = write_p;
309 (*aref)->prefetch_before = PREFETCH_ALL;
310 (*aref)->prefetch_mod = 1;
311 (*aref)->reuse_distance = 0;
312 (*aref)->issue_prefetch_p = false;
313 (*aref)->group = group;
314 (*aref)->next = NULL;
315 (*aref)->independent_p = false;
316 (*aref)->storent_p = false;
317
318 if (dump_file && (dump_flags & TDF_DETAILS))
319 dump_mem_ref (dump_file, *aref);
320 }
321
322 /* Release memory references in GROUPS. */
323
324 static void
325 release_mem_refs (struct mem_ref_group *groups)
326 {
327 struct mem_ref_group *next_g;
328 struct mem_ref *ref, *next_r;
329
330 for (; groups; groups = next_g)
331 {
332 next_g = groups->next;
333 for (ref = groups->refs; ref; ref = next_r)
334 {
335 next_r = ref->next;
336 free (ref);
337 }
338 free (groups);
339 }
340 }
341
342 /* A structure used to pass arguments to idx_analyze_ref. */
343
344 struct ar_data
345 {
346 struct loop *loop; /* Loop of the reference. */
347 gimple stmt; /* Statement of the reference. */
348 HOST_WIDE_INT *step; /* Step of the memory reference. */
349 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
350 };
351
352 /* Analyzes a single INDEX of a memory reference to obtain information
353 described at analyze_ref. Callback for for_each_index. */
354
355 static bool
356 idx_analyze_ref (tree base, tree *index, void *data)
357 {
358 struct ar_data *ar_data = (struct ar_data *) data;
359 tree ibase, step, stepsize;
360 HOST_WIDE_INT istep, idelta = 0, imult = 1;
361 affine_iv iv;
362
363 if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
364 || TREE_CODE (base) == ALIGN_INDIRECT_REF)
365 return false;
366
367 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
368 *index, &iv, false))
369 return false;
370 ibase = iv.base;
371 step = iv.step;
372
373 if (!cst_and_fits_in_hwi (step))
374 return false;
375 istep = int_cst_value (step);
376
377 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
378 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
379 {
380 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
381 ibase = TREE_OPERAND (ibase, 0);
382 }
383 if (cst_and_fits_in_hwi (ibase))
384 {
385 idelta += int_cst_value (ibase);
386 ibase = build_int_cst (TREE_TYPE (ibase), 0);
387 }
388
389 if (TREE_CODE (base) == ARRAY_REF)
390 {
391 stepsize = array_ref_element_size (base);
392 if (!cst_and_fits_in_hwi (stepsize))
393 return false;
394 imult = int_cst_value (stepsize);
395
396 istep *= imult;
397 idelta *= imult;
398 }
399
400 *ar_data->step += istep;
401 *ar_data->delta += idelta;
402 *index = ibase;
403
404 return true;
405 }
406
407 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
408 STEP are integer constants and iter is number of iterations of LOOP. The
409 reference occurs in statement STMT. Strips nonaddressable component
410 references from REF_P. */
411
412 static bool
413 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
414 HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
415 gimple stmt)
416 {
417 struct ar_data ar_data;
418 tree off;
419 HOST_WIDE_INT bit_offset;
420 tree ref = *ref_p;
421
422 *step = 0;
423 *delta = 0;
424
425 /* First strip off the component references. Ignore bitfields. */
426 if (TREE_CODE (ref) == COMPONENT_REF
427 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
428 ref = TREE_OPERAND (ref, 0);
429
430 *ref_p = ref;
431
432 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
433 {
434 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
435 bit_offset = TREE_INT_CST_LOW (off);
436 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
437
438 *delta += bit_offset / BITS_PER_UNIT;
439 }
440
441 *base = unshare_expr (ref);
442 ar_data.loop = loop;
443 ar_data.stmt = stmt;
444 ar_data.step = step;
445 ar_data.delta = delta;
446 return for_each_index (base, idx_analyze_ref, &ar_data);
447 }
448
449 /* Record a memory reference REF to the list REFS. The reference occurs in
450 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
451 reference was recorded, false otherwise. */
452
453 static bool
454 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
455 tree ref, bool write_p, gimple stmt)
456 {
457 tree base;
458 HOST_WIDE_INT step, delta;
459 struct mem_ref_group *agrp;
460
461 if (get_base_address (ref) == NULL)
462 return false;
463
464 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
465 return false;
466
467 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
468 are integer constants. */
469 agrp = find_or_create_group (refs, base, step);
470 record_ref (agrp, stmt, ref, delta, write_p);
471
472 return true;
473 }
474
475 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
476 true if there are no other memory references inside the loop. */
477
478 static struct mem_ref_group *
479 gather_memory_references (struct loop *loop, bool *no_other_refs)
480 {
481 basic_block *body = get_loop_body_in_dom_order (loop);
482 basic_block bb;
483 unsigned i;
484 gimple_stmt_iterator bsi;
485 gimple stmt;
486 tree lhs, rhs;
487 struct mem_ref_group *refs = NULL;
488
489 *no_other_refs = true;
490
491 /* Scan the loop body in order, so that the former references precede the
492 later ones. */
493 for (i = 0; i < loop->num_nodes; i++)
494 {
495 bb = body[i];
496 if (bb->loop_father != loop)
497 continue;
498
499 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
500 {
501 stmt = gsi_stmt (bsi);
502
503 if (gimple_code (stmt) != GIMPLE_ASSIGN)
504 {
505 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
506 || (is_gimple_call (stmt)
507 && !(gimple_call_flags (stmt) & ECF_CONST)))
508 *no_other_refs = false;
509 continue;
510 }
511
512 lhs = gimple_assign_lhs (stmt);
513 rhs = gimple_assign_rhs1 (stmt);
514
515 if (REFERENCE_CLASS_P (rhs))
516 *no_other_refs &= gather_memory_references_ref (loop, &refs,
517 rhs, false, stmt);
518 if (REFERENCE_CLASS_P (lhs))
519 *no_other_refs &= gather_memory_references_ref (loop, &refs,
520 lhs, true, stmt);
521 }
522 }
523 free (body);
524
525 return refs;
526 }
527
528 /* Prune the prefetch candidate REF using the self-reuse. */
529
530 static void
531 prune_ref_by_self_reuse (struct mem_ref *ref)
532 {
533 HOST_WIDE_INT step = ref->group->step;
534 bool backward = step < 0;
535
536 if (step == 0)
537 {
538 /* Prefetch references to invariant address just once. */
539 ref->prefetch_before = 1;
540 return;
541 }
542
543 if (backward)
544 step = -step;
545
546 if (step > PREFETCH_BLOCK)
547 return;
548
549 if ((backward && HAVE_BACKWARD_PREFETCH)
550 || (!backward && HAVE_FORWARD_PREFETCH))
551 {
552 ref->prefetch_before = 1;
553 return;
554 }
555
556 ref->prefetch_mod = PREFETCH_BLOCK / step;
557 }
558
559 /* Divides X by BY, rounding down. */
560
561 static HOST_WIDE_INT
562 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
563 {
564 gcc_assert (by > 0);
565
566 if (x >= 0)
567 return x / by;
568 else
569 return (x + by - 1) / by;
570 }
571
572 /* Prune the prefetch candidate REF using the reuse with BY.
573 If BY_IS_BEFORE is true, BY is before REF in the loop. */
574
575 static void
576 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
577 bool by_is_before)
578 {
579 HOST_WIDE_INT step = ref->group->step;
580 bool backward = step < 0;
581 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
582 HOST_WIDE_INT delta = delta_b - delta_r;
583 HOST_WIDE_INT hit_from;
584 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
585
586 if (delta == 0)
587 {
588 /* If the references has the same address, only prefetch the
589 former. */
590 if (by_is_before)
591 ref->prefetch_before = 0;
592
593 return;
594 }
595
596 if (!step)
597 {
598 /* If the reference addresses are invariant and fall into the
599 same cache line, prefetch just the first one. */
600 if (!by_is_before)
601 return;
602
603 if (ddown (ref->delta, PREFETCH_BLOCK)
604 != ddown (by->delta, PREFETCH_BLOCK))
605 return;
606
607 ref->prefetch_before = 0;
608 return;
609 }
610
611 /* Only prune the reference that is behind in the array. */
612 if (backward)
613 {
614 if (delta > 0)
615 return;
616
617 /* Transform the data so that we may assume that the accesses
618 are forward. */
619 delta = - delta;
620 step = -step;
621 delta_r = PREFETCH_BLOCK - 1 - delta_r;
622 delta_b = PREFETCH_BLOCK - 1 - delta_b;
623 }
624 else
625 {
626 if (delta < 0)
627 return;
628 }
629
630 /* Check whether the two references are likely to hit the same cache
631 line, and how distant the iterations in that it occurs are from
632 each other. */
633
634 if (step <= PREFETCH_BLOCK)
635 {
636 /* The accesses are sure to meet. Let us check when. */
637 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
638 prefetch_before = (hit_from - delta_r + step - 1) / step;
639
640 if (prefetch_before < ref->prefetch_before)
641 ref->prefetch_before = prefetch_before;
642
643 return;
644 }
645
646 /* A more complicated case. First let us ensure that size of cache line
647 and step are coprime (here we assume that PREFETCH_BLOCK is a power
648 of two. */
649 prefetch_block = PREFETCH_BLOCK;
650 while ((step & 1) == 0
651 && prefetch_block > 1)
652 {
653 step >>= 1;
654 prefetch_block >>= 1;
655 delta >>= 1;
656 }
657
658 /* Now step > prefetch_block, and step and prefetch_block are coprime.
659 Determine the probability that the accesses hit the same cache line. */
660
661 prefetch_before = delta / step;
662 delta %= step;
663 if ((unsigned HOST_WIDE_INT) delta
664 <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
665 {
666 if (prefetch_before < ref->prefetch_before)
667 ref->prefetch_before = prefetch_before;
668
669 return;
670 }
671
672 /* Try also the following iteration. */
673 prefetch_before++;
674 delta = step - delta;
675 if ((unsigned HOST_WIDE_INT) delta
676 <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
677 {
678 if (prefetch_before < ref->prefetch_before)
679 ref->prefetch_before = prefetch_before;
680
681 return;
682 }
683
684 /* The ref probably does not reuse by. */
685 return;
686 }
687
688 /* Prune the prefetch candidate REF using the reuses with other references
689 in REFS. */
690
691 static void
692 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
693 {
694 struct mem_ref *prune_by;
695 bool before = true;
696
697 prune_ref_by_self_reuse (ref);
698
699 for (prune_by = refs; prune_by; prune_by = prune_by->next)
700 {
701 if (prune_by == ref)
702 {
703 before = false;
704 continue;
705 }
706
707 if (!WRITE_CAN_USE_READ_PREFETCH
708 && ref->write_p
709 && !prune_by->write_p)
710 continue;
711 if (!READ_CAN_USE_WRITE_PREFETCH
712 && !ref->write_p
713 && prune_by->write_p)
714 continue;
715
716 prune_ref_by_group_reuse (ref, prune_by, before);
717 }
718 }
719
720 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
721
722 static void
723 prune_group_by_reuse (struct mem_ref_group *group)
724 {
725 struct mem_ref *ref_pruned;
726
727 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
728 {
729 prune_ref_by_reuse (ref_pruned, group->refs);
730
731 if (dump_file && (dump_flags & TDF_DETAILS))
732 {
733 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
734
735 if (ref_pruned->prefetch_before == PREFETCH_ALL
736 && ref_pruned->prefetch_mod == 1)
737 fprintf (dump_file, " no restrictions");
738 else if (ref_pruned->prefetch_before == 0)
739 fprintf (dump_file, " do not prefetch");
740 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
741 fprintf (dump_file, " prefetch once");
742 else
743 {
744 if (ref_pruned->prefetch_before != PREFETCH_ALL)
745 {
746 fprintf (dump_file, " prefetch before ");
747 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
748 ref_pruned->prefetch_before);
749 }
750 if (ref_pruned->prefetch_mod != 1)
751 {
752 fprintf (dump_file, " prefetch mod ");
753 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
754 ref_pruned->prefetch_mod);
755 }
756 }
757 fprintf (dump_file, "\n");
758 }
759 }
760 }
761
762 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
763
764 static void
765 prune_by_reuse (struct mem_ref_group *groups)
766 {
767 for (; groups; groups = groups->next)
768 prune_group_by_reuse (groups);
769 }
770
771 /* Returns true if we should issue prefetch for REF. */
772
773 static bool
774 should_issue_prefetch_p (struct mem_ref *ref)
775 {
776 /* For now do not issue prefetches for only first few of the
777 iterations. */
778 if (ref->prefetch_before != PREFETCH_ALL)
779 return false;
780
781 /* Do not prefetch nontemporal stores. */
782 if (ref->storent_p)
783 return false;
784
785 return true;
786 }
787
788 /* Decide which of the prefetch candidates in GROUPS to prefetch.
789 AHEAD is the number of iterations to prefetch ahead (which corresponds
790 to the number of simultaneous instances of one prefetch running at a
791 time). UNROLL_FACTOR is the factor by that the loop is going to be
792 unrolled. Returns true if there is anything to prefetch. */
793
794 static bool
795 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
796 unsigned ahead)
797 {
798 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
799 unsigned slots_per_prefetch;
800 struct mem_ref *ref;
801 bool any = false;
802
803 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
804 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
805
806 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
807 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
808 it will need a prefetch slot. */
809 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
810 if (dump_file && (dump_flags & TDF_DETAILS))
811 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
812 slots_per_prefetch);
813
814 /* For now we just take memory references one by one and issue
815 prefetches for as many as possible. The groups are sorted
816 starting with the largest step, since the references with
817 large step are more likely to cause many cache misses. */
818
819 for (; groups; groups = groups->next)
820 for (ref = groups->refs; ref; ref = ref->next)
821 {
822 if (!should_issue_prefetch_p (ref))
823 continue;
824
825 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
826 and we unroll the loop UNROLL_FACTOR times, we need to insert
827 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
828 iteration. */
829 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
830 / ref->prefetch_mod);
831 prefetch_slots = n_prefetches * slots_per_prefetch;
832
833 /* If more than half of the prefetches would be lost anyway, do not
834 issue the prefetch. */
835 if (2 * remaining_prefetch_slots < prefetch_slots)
836 continue;
837
838 ref->issue_prefetch_p = true;
839
840 if (remaining_prefetch_slots <= prefetch_slots)
841 return true;
842 remaining_prefetch_slots -= prefetch_slots;
843 any = true;
844 }
845
846 return any;
847 }
848
849 /* Determine whether there is any reference suitable for prefetching
850 in GROUPS. */
851
852 static bool
853 anything_to_prefetch_p (struct mem_ref_group *groups)
854 {
855 struct mem_ref *ref;
856
857 for (; groups; groups = groups->next)
858 for (ref = groups->refs; ref; ref = ref->next)
859 if (should_issue_prefetch_p (ref))
860 return true;
861
862 return false;
863 }
864
865 /* Issue prefetches for the reference REF into loop as decided before.
866 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
867 is the factor by which LOOP was unrolled. */
868
869 static void
870 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
871 {
872 HOST_WIDE_INT delta;
873 tree addr, addr_base, write_p, local;
874 gimple prefetch;
875 gimple_stmt_iterator bsi;
876 unsigned n_prefetches, ap;
877 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
878
879 if (dump_file && (dump_flags & TDF_DETAILS))
880 fprintf (dump_file, "Issued%s prefetch for %p.\n",
881 nontemporal ? " nontemporal" : "",
882 (void *) ref);
883
884 bsi = gsi_for_stmt (ref->stmt);
885
886 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
887 / ref->prefetch_mod);
888 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
889 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
890 true, NULL, true, GSI_SAME_STMT);
891 write_p = ref->write_p ? integer_one_node : integer_zero_node;
892 local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
893
894 for (ap = 0; ap < n_prefetches; ap++)
895 {
896 /* Determine the address to prefetch. */
897 delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
898 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
899 addr_base, size_int (delta));
900 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
901 true, GSI_SAME_STMT);
902
903 /* Create the prefetch instruction. */
904 prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
905 3, addr, write_p, local);
906 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
907 }
908 }
909
910 /* Issue prefetches for the references in GROUPS into loop as decided before.
911 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
912 factor by that LOOP was unrolled. */
913
914 static void
915 issue_prefetches (struct mem_ref_group *groups,
916 unsigned unroll_factor, unsigned ahead)
917 {
918 struct mem_ref *ref;
919
920 for (; groups; groups = groups->next)
921 for (ref = groups->refs; ref; ref = ref->next)
922 if (ref->issue_prefetch_p)
923 issue_prefetch_ref (ref, unroll_factor, ahead);
924 }
925
926 /* Returns true if REF is a memory write for that a nontemporal store insn
927 can be used. */
928
929 static bool
930 nontemporal_store_p (struct mem_ref *ref)
931 {
932 enum machine_mode mode;
933 enum insn_code code;
934
935 /* REF must be a write that is not reused. We require it to be independent
936 on all other memory references in the loop, as the nontemporal stores may
937 be reordered with respect to other memory references. */
938 if (!ref->write_p
939 || !ref->independent_p
940 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
941 return false;
942
943 /* Check that we have the storent instruction for the mode. */
944 mode = TYPE_MODE (TREE_TYPE (ref->mem));
945 if (mode == BLKmode)
946 return false;
947
948 code = optab_handler (storent_optab, mode)->insn_code;
949 return code != CODE_FOR_nothing;
950 }
951
952 /* If REF is a nontemporal store, we mark the corresponding modify statement
953 and return true. Otherwise, we return false. */
954
955 static bool
956 mark_nontemporal_store (struct mem_ref *ref)
957 {
958 if (!nontemporal_store_p (ref))
959 return false;
960
961 if (dump_file && (dump_flags & TDF_DETAILS))
962 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
963 (void *) ref);
964
965 gimple_assign_set_nontemporal_move (ref->stmt, true);
966 ref->storent_p = true;
967
968 return true;
969 }
970
971 /* Issue a memory fence instruction after LOOP. */
972
973 static void
974 emit_mfence_after_loop (struct loop *loop)
975 {
976 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
977 edge exit;
978 gimple call;
979 gimple_stmt_iterator bsi;
980 unsigned i;
981
982 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
983 {
984 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
985
986 if (!single_pred_p (exit->dest)
987 /* If possible, we prefer not to insert the fence on other paths
988 in cfg. */
989 && !(exit->flags & EDGE_ABNORMAL))
990 split_loop_exit_edge (exit);
991 bsi = gsi_after_labels (exit->dest);
992
993 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
994 mark_virtual_ops_for_renaming (call);
995 }
996
997 VEC_free (edge, heap, exits);
998 update_ssa (TODO_update_ssa_only_virtuals);
999 }
1000
1001 /* Returns true if we can use storent in loop, false otherwise. */
1002
1003 static bool
1004 may_use_storent_in_loop_p (struct loop *loop)
1005 {
1006 bool ret = true;
1007
1008 if (loop->inner != NULL)
1009 return false;
1010
1011 /* If we must issue a mfence insn after using storent, check that there
1012 is a suitable place for it at each of the loop exits. */
1013 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1014 {
1015 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1016 unsigned i;
1017 edge exit;
1018
1019 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1020 if ((exit->flags & EDGE_ABNORMAL)
1021 && exit->dest == EXIT_BLOCK_PTR)
1022 ret = false;
1023
1024 VEC_free (edge, heap, exits);
1025 }
1026
1027 return ret;
1028 }
1029
1030 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1031 references in the loop. */
1032
1033 static void
1034 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1035 {
1036 struct mem_ref *ref;
1037 bool any = false;
1038
1039 if (!may_use_storent_in_loop_p (loop))
1040 return;
1041
1042 for (; groups; groups = groups->next)
1043 for (ref = groups->refs; ref; ref = ref->next)
1044 any |= mark_nontemporal_store (ref);
1045
1046 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1047 emit_mfence_after_loop (loop);
1048 }
1049
1050 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1051 this is the case, fill in DESC by the description of number of
1052 iterations. */
1053
1054 static bool
1055 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1056 unsigned factor)
1057 {
1058 if (!can_unroll_loop_p (loop, factor, desc))
1059 return false;
1060
1061 /* We only consider loops without control flow for unrolling. This is not
1062 a hard restriction -- tree_unroll_loop works with arbitrary loops
1063 as well; but the unrolling/prefetching is usually more profitable for
1064 loops consisting of a single basic block, and we want to limit the
1065 code growth. */
1066 if (loop->num_nodes > 2)
1067 return false;
1068
1069 return true;
1070 }
1071
1072 /* Determine the coefficient by that unroll LOOP, from the information
1073 contained in the list of memory references REFS. Description of
1074 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1075 insns of the LOOP. EST_NITER is the estimated number of iterations of
1076 the loop, or -1 if no estimate is available. */
1077
1078 static unsigned
1079 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1080 unsigned ninsns, struct tree_niter_desc *desc,
1081 HOST_WIDE_INT est_niter)
1082 {
1083 unsigned upper_bound;
1084 unsigned nfactor, factor, mod_constraint;
1085 struct mem_ref_group *agp;
1086 struct mem_ref *ref;
1087
1088 /* First check whether the loop is not too large to unroll. We ignore
1089 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1090 from unrolling them enough to make exactly one cache line covered by each
1091 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1092 us from unrolling the loops too many times in cases where we only expect
1093 gains from better scheduling and decreasing loop overhead, which is not
1094 the case here. */
1095 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1096
1097 /* If we unrolled the loop more times than it iterates, the unrolled version
1098 of the loop would be never entered. */
1099 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1100 upper_bound = est_niter;
1101
1102 if (upper_bound <= 1)
1103 return 1;
1104
1105 /* Choose the factor so that we may prefetch each cache just once,
1106 but bound the unrolling by UPPER_BOUND. */
1107 factor = 1;
1108 for (agp = refs; agp; agp = agp->next)
1109 for (ref = agp->refs; ref; ref = ref->next)
1110 if (should_issue_prefetch_p (ref))
1111 {
1112 mod_constraint = ref->prefetch_mod;
1113 nfactor = least_common_multiple (mod_constraint, factor);
1114 if (nfactor <= upper_bound)
1115 factor = nfactor;
1116 }
1117
1118 if (!should_unroll_loop_p (loop, desc, factor))
1119 return 1;
1120
1121 return factor;
1122 }
1123
1124 /* Returns the total volume of the memory references REFS, taking into account
1125 reuses in the innermost loop and cache line size. TODO -- we should also
1126 take into account reuses across the iterations of the loops in the loop
1127 nest. */
1128
1129 static unsigned
1130 volume_of_references (struct mem_ref_group *refs)
1131 {
1132 unsigned volume = 0;
1133 struct mem_ref_group *gr;
1134 struct mem_ref *ref;
1135
1136 for (gr = refs; gr; gr = gr->next)
1137 for (ref = gr->refs; ref; ref = ref->next)
1138 {
1139 /* Almost always reuses another value? */
1140 if (ref->prefetch_before != PREFETCH_ALL)
1141 continue;
1142
1143 /* If several iterations access the same cache line, use the size of
1144 the line divided by this number. Otherwise, a cache line is
1145 accessed in each iteration. TODO -- in the latter case, we should
1146 take the size of the reference into account, rounding it up on cache
1147 line size multiple. */
1148 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1149 }
1150 return volume;
1151 }
1152
1153 /* Returns the volume of memory references accessed across VEC iterations of
1154 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1155 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1156
1157 static unsigned
1158 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1159 {
1160 unsigned i;
1161
1162 for (i = 0; i < n; i++)
1163 if (vec[i] != 0)
1164 break;
1165
1166 if (i == n)
1167 return 0;
1168
1169 gcc_assert (vec[i] > 0);
1170
1171 /* We ignore the parts of the distance vector in subloops, since usually
1172 the numbers of iterations are much smaller. */
1173 return loop_sizes[i] * vec[i];
1174 }
1175
1176 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1177 at the position corresponding to the loop of the step. N is the depth
1178 of the considered loop nest, and, LOOP is its innermost loop. */
1179
1180 static void
1181 add_subscript_strides (tree access_fn, unsigned stride,
1182 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1183 {
1184 struct loop *aloop;
1185 tree step;
1186 HOST_WIDE_INT astep;
1187 unsigned min_depth = loop_depth (loop) - n;
1188
1189 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1190 {
1191 aloop = get_chrec_loop (access_fn);
1192 step = CHREC_RIGHT (access_fn);
1193 access_fn = CHREC_LEFT (access_fn);
1194
1195 if ((unsigned) loop_depth (aloop) <= min_depth)
1196 continue;
1197
1198 if (host_integerp (step, 0))
1199 astep = tree_low_cst (step, 0);
1200 else
1201 astep = L1_CACHE_LINE_SIZE;
1202
1203 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1204
1205 }
1206 }
1207
1208 /* Returns the volume of memory references accessed between two consecutive
1209 self-reuses of the reference DR. We consider the subscripts of DR in N
1210 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1211 loops. LOOP is the innermost loop of the current loop nest. */
1212
1213 static unsigned
1214 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1215 struct loop *loop)
1216 {
1217 tree stride, access_fn;
1218 HOST_WIDE_INT *strides, astride;
1219 VEC (tree, heap) *access_fns;
1220 tree ref = DR_REF (dr);
1221 unsigned i, ret = ~0u;
1222
1223 /* In the following example:
1224
1225 for (i = 0; i < N; i++)
1226 for (j = 0; j < N; j++)
1227 use (a[j][i]);
1228 the same cache line is accessed each N steps (except if the change from
1229 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1230 we cannot rely purely on the results of the data dependence analysis.
1231
1232 Instead, we compute the stride of the reference in each loop, and consider
1233 the innermost loop in that the stride is less than cache size. */
1234
1235 strides = XCNEWVEC (HOST_WIDE_INT, n);
1236 access_fns = DR_ACCESS_FNS (dr);
1237
1238 for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
1239 {
1240 /* Keep track of the reference corresponding to the subscript, so that we
1241 know its stride. */
1242 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1243 ref = TREE_OPERAND (ref, 0);
1244
1245 if (TREE_CODE (ref) == ARRAY_REF)
1246 {
1247 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1248 if (host_integerp (stride, 1))
1249 astride = tree_low_cst (stride, 1);
1250 else
1251 astride = L1_CACHE_LINE_SIZE;
1252
1253 ref = TREE_OPERAND (ref, 0);
1254 }
1255 else
1256 astride = 1;
1257
1258 add_subscript_strides (access_fn, astride, strides, n, loop);
1259 }
1260
1261 for (i = n; i-- > 0; )
1262 {
1263 unsigned HOST_WIDE_INT s;
1264
1265 s = strides[i] < 0 ? -strides[i] : strides[i];
1266
1267 if (s < (unsigned) L1_CACHE_LINE_SIZE
1268 && (loop_sizes[i]
1269 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1270 {
1271 ret = loop_sizes[i];
1272 break;
1273 }
1274 }
1275
1276 free (strides);
1277 return ret;
1278 }
1279
1280 /* Determines the distance till the first reuse of each reference in REFS
1281 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1282 memory references in the loop. */
1283
1284 static void
1285 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1286 bool no_other_refs)
1287 {
1288 struct loop *nest, *aloop;
1289 VEC (data_reference_p, heap) *datarefs = NULL;
1290 VEC (ddr_p, heap) *dependences = NULL;
1291 struct mem_ref_group *gr;
1292 struct mem_ref *ref, *refb;
1293 VEC (loop_p, heap) *vloops = NULL;
1294 unsigned *loop_data_size;
1295 unsigned i, j, n;
1296 unsigned volume, dist, adist;
1297 HOST_WIDE_INT vol;
1298 data_reference_p dr;
1299 ddr_p dep;
1300
1301 if (loop->inner)
1302 return;
1303
1304 /* Find the outermost loop of the loop nest of loop (we require that
1305 there are no sibling loops inside the nest). */
1306 nest = loop;
1307 while (1)
1308 {
1309 aloop = loop_outer (nest);
1310
1311 if (aloop == current_loops->tree_root
1312 || aloop->inner->next)
1313 break;
1314
1315 nest = aloop;
1316 }
1317
1318 /* For each loop, determine the amount of data accessed in each iteration.
1319 We use this to estimate whether the reference is evicted from the
1320 cache before its reuse. */
1321 find_loop_nest (nest, &vloops);
1322 n = VEC_length (loop_p, vloops);
1323 loop_data_size = XNEWVEC (unsigned, n);
1324 volume = volume_of_references (refs);
1325 i = n;
1326 while (i-- != 0)
1327 {
1328 loop_data_size[i] = volume;
1329 /* Bound the volume by the L2 cache size, since above this bound,
1330 all dependence distances are equivalent. */
1331 if (volume > L2_CACHE_SIZE_BYTES)
1332 continue;
1333
1334 aloop = VEC_index (loop_p, vloops, i);
1335 vol = estimated_loop_iterations_int (aloop, false);
1336 if (vol < 0)
1337 vol = expected_loop_iterations (aloop);
1338 volume *= vol;
1339 }
1340
1341 /* Prepare the references in the form suitable for data dependence
1342 analysis. We ignore unanalyzable data references (the results
1343 are used just as a heuristics to estimate temporality of the
1344 references, hence we do not need to worry about correctness). */
1345 for (gr = refs; gr; gr = gr->next)
1346 for (ref = gr->refs; ref; ref = ref->next)
1347 {
1348 dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
1349
1350 if (dr)
1351 {
1352 ref->reuse_distance = volume;
1353 dr->aux = ref;
1354 VEC_safe_push (data_reference_p, heap, datarefs, dr);
1355 }
1356 else
1357 no_other_refs = false;
1358 }
1359
1360 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1361 {
1362 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1363 ref = (struct mem_ref *) dr->aux;
1364 if (ref->reuse_distance > dist)
1365 ref->reuse_distance = dist;
1366
1367 if (no_other_refs)
1368 ref->independent_p = true;
1369 }
1370
1371 compute_all_dependences (datarefs, &dependences, vloops, true);
1372
1373 for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
1374 {
1375 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1376 continue;
1377
1378 ref = (struct mem_ref *) DDR_A (dep)->aux;
1379 refb = (struct mem_ref *) DDR_B (dep)->aux;
1380
1381 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1382 || DDR_NUM_DIST_VECTS (dep) == 0)
1383 {
1384 /* If the dependence cannot be analyzed, assume that there might be
1385 a reuse. */
1386 dist = 0;
1387
1388 ref->independent_p = false;
1389 refb->independent_p = false;
1390 }
1391 else
1392 {
1393 /* The distance vectors are normalized to be always lexicographically
1394 positive, hence we cannot tell just from them whether DDR_A comes
1395 before DDR_B or vice versa. However, it is not important,
1396 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1397 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1398 in cache (and marking it as nontemporal would not affect
1399 anything). */
1400
1401 dist = volume;
1402 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1403 {
1404 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1405 loop_data_size, n);
1406
1407 /* If this is a dependence in the innermost loop (i.e., the
1408 distances in all superloops are zero) and it is not
1409 the trivial self-dependence with distance zero, record that
1410 the references are not completely independent. */
1411 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1412 && (ref != refb
1413 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1414 {
1415 ref->independent_p = false;
1416 refb->independent_p = false;
1417 }
1418
1419 /* Ignore accesses closer than
1420 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1421 so that we use nontemporal prefetches e.g. if single memory
1422 location is accessed several times in a single iteration of
1423 the loop. */
1424 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1425 continue;
1426
1427 if (adist < dist)
1428 dist = adist;
1429 }
1430 }
1431
1432 if (ref->reuse_distance > dist)
1433 ref->reuse_distance = dist;
1434 if (refb->reuse_distance > dist)
1435 refb->reuse_distance = dist;
1436 }
1437
1438 free_dependence_relations (dependences);
1439 free_data_refs (datarefs);
1440 free (loop_data_size);
1441
1442 if (dump_file && (dump_flags & TDF_DETAILS))
1443 {
1444 fprintf (dump_file, "Reuse distances:\n");
1445 for (gr = refs; gr; gr = gr->next)
1446 for (ref = gr->refs; ref; ref = ref->next)
1447 fprintf (dump_file, " ref %p distance %u\n",
1448 (void *) ref, ref->reuse_distance);
1449 }
1450 }
1451
1452 /* Issue prefetch instructions for array references in LOOP. Returns
1453 true if the LOOP was unrolled. */
1454
1455 static bool
1456 loop_prefetch_arrays (struct loop *loop)
1457 {
1458 struct mem_ref_group *refs;
1459 unsigned ahead, ninsns, time, unroll_factor;
1460 HOST_WIDE_INT est_niter;
1461 struct tree_niter_desc desc;
1462 bool unrolled = false, no_other_refs;
1463
1464 if (optimize_loop_nest_for_size_p (loop))
1465 {
1466 if (dump_file && (dump_flags & TDF_DETAILS))
1467 fprintf (dump_file, " ignored (cold area)\n");
1468 return false;
1469 }
1470
1471 /* Step 1: gather the memory references. */
1472 refs = gather_memory_references (loop, &no_other_refs);
1473
1474 /* Step 2: estimate the reuse effects. */
1475 prune_by_reuse (refs);
1476
1477 if (!anything_to_prefetch_p (refs))
1478 goto fail;
1479
1480 determine_loop_nest_reuse (loop, refs, no_other_refs);
1481
1482 /* Step 3: determine the ahead and unroll factor. */
1483
1484 /* FIXME: the time should be weighted by the probabilities of the blocks in
1485 the loop body. */
1486 time = tree_num_loop_insns (loop, &eni_time_weights);
1487 ahead = (PREFETCH_LATENCY + time - 1) / time;
1488 est_niter = estimated_loop_iterations_int (loop, false);
1489
1490 /* The prefetches will run for AHEAD iterations of the original loop. Unless
1491 the loop rolls at least AHEAD times, prefetching the references does not
1492 make sense. */
1493 if (est_niter >= 0 && est_niter <= (HOST_WIDE_INT) ahead)
1494 {
1495 if (dump_file && (dump_flags & TDF_DETAILS))
1496 fprintf (dump_file,
1497 "Not prefetching -- loop estimated to roll only %d times\n",
1498 (int) est_niter);
1499 goto fail;
1500 }
1501
1502 mark_nontemporal_stores (loop, refs);
1503
1504 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1505 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1506 est_niter);
1507 if (dump_file && (dump_flags & TDF_DETAILS))
1508 fprintf (dump_file, "Ahead %d, unroll factor %d\n", ahead, unroll_factor);
1509
1510 /* Step 4: what to prefetch? */
1511 if (!schedule_prefetches (refs, unroll_factor, ahead))
1512 goto fail;
1513
1514 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1515 iterations so that we do not issue superfluous prefetches. */
1516 if (unroll_factor != 1)
1517 {
1518 tree_unroll_loop (loop, unroll_factor,
1519 single_dom_exit (loop), &desc);
1520 unrolled = true;
1521 }
1522
1523 /* Step 6: issue the prefetches. */
1524 issue_prefetches (refs, unroll_factor, ahead);
1525
1526 fail:
1527 release_mem_refs (refs);
1528 return unrolled;
1529 }
1530
1531 /* Issue prefetch instructions for array references in loops. */
1532
1533 unsigned int
1534 tree_ssa_prefetch_arrays (void)
1535 {
1536 loop_iterator li;
1537 struct loop *loop;
1538 bool unrolled = false;
1539 int todo_flags = 0;
1540
1541 if (!HAVE_prefetch
1542 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1543 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1544 of processor costs and i486 does not have prefetch, but
1545 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1546 || PREFETCH_BLOCK == 0)
1547 return 0;
1548
1549 if (dump_file && (dump_flags & TDF_DETAILS))
1550 {
1551 fprintf (dump_file, "Prefetching parameters:\n");
1552 fprintf (dump_file, " simultaneous prefetches: %d\n",
1553 SIMULTANEOUS_PREFETCHES);
1554 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1555 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1556 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1557 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1558 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1559 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1560 fprintf (dump_file, "\n");
1561 }
1562
1563 initialize_original_copy_tables ();
1564
1565 if (!built_in_decls[BUILT_IN_PREFETCH])
1566 {
1567 tree type = build_function_type (void_type_node,
1568 tree_cons (NULL_TREE,
1569 const_ptr_type_node,
1570 NULL_TREE));
1571 tree decl = add_builtin_function ("__builtin_prefetch", type,
1572 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1573 NULL, NULL_TREE);
1574 DECL_IS_NOVOPS (decl) = true;
1575 built_in_decls[BUILT_IN_PREFETCH] = decl;
1576 }
1577
1578 /* We assume that size of cache line is a power of two, so verify this
1579 here. */
1580 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1581
1582 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1583 {
1584 if (dump_file && (dump_flags & TDF_DETAILS))
1585 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1586
1587 unrolled |= loop_prefetch_arrays (loop);
1588
1589 if (dump_file && (dump_flags & TDF_DETAILS))
1590 fprintf (dump_file, "\n\n");
1591 }
1592
1593 if (unrolled)
1594 {
1595 scev_reset ();
1596 todo_flags |= TODO_cleanup_cfg;
1597 }
1598
1599 free_original_copy_tables ();
1600 return todo_flags;
1601 }