comparison gcc/tree-ssa-threadedge.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* SSA Jump Threading
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Jeff Law <law@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "cfgloop.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "domwalk.h"
40 #include "real.h"
41 #include "tree-pass.h"
42 #include "tree-ssa-propagate.h"
43 #include "langhooks.h"
44 #include "params.h"
45
46 /* To avoid code explosion due to jump threading, we limit the
47 number of statements we are going to copy. This variable
48 holds the number of statements currently seen that we'll have
49 to copy as part of the jump threading process. */
50 static int stmt_count;
51
52 /* Return TRUE if we may be able to thread an incoming edge into
53 BB to an outgoing edge from BB. Return FALSE otherwise. */
54
55 bool
56 potentially_threadable_block (basic_block bb)
57 {
58 gimple_stmt_iterator gsi;
59
60 /* If BB has a single successor or a single predecessor, then
61 there is no threading opportunity. */
62 if (single_succ_p (bb) || single_pred_p (bb))
63 return false;
64
65 /* If BB does not end with a conditional, switch or computed goto,
66 then there is no threading opportunity. */
67 gsi = gsi_last_bb (bb);
68 if (gsi_end_p (gsi)
69 || ! gsi_stmt (gsi)
70 || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
71 && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
72 && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
73 return false;
74
75 return true;
76 }
77
78 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
79 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
80 BB. If no such ASSERT_EXPR is found, return OP. */
81
82 static tree
83 lhs_of_dominating_assert (tree op, basic_block bb, gimple stmt)
84 {
85 imm_use_iterator imm_iter;
86 gimple use_stmt;
87 use_operand_p use_p;
88
89 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
90 {
91 use_stmt = USE_STMT (use_p);
92 if (use_stmt != stmt
93 && gimple_assign_single_p (use_stmt)
94 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
95 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
96 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
97 {
98 return gimple_assign_lhs (use_stmt);
99 }
100 }
101 return op;
102 }
103
104 /* We record temporary equivalences created by PHI nodes or
105 statements within the target block. Doing so allows us to
106 identify more jump threading opportunities, even in blocks
107 with side effects.
108
109 We keep track of those temporary equivalences in a stack
110 structure so that we can unwind them when we're done processing
111 a particular edge. This routine handles unwinding the data
112 structures. */
113
114 static void
115 remove_temporary_equivalences (VEC(tree, heap) **stack)
116 {
117 while (VEC_length (tree, *stack) > 0)
118 {
119 tree prev_value, dest;
120
121 dest = VEC_pop (tree, *stack);
122
123 /* A NULL value indicates we should stop unwinding, otherwise
124 pop off the next entry as they're recorded in pairs. */
125 if (dest == NULL)
126 break;
127
128 prev_value = VEC_pop (tree, *stack);
129 SSA_NAME_VALUE (dest) = prev_value;
130 }
131 }
132
133 /* Record a temporary equivalence, saving enough information so that
134 we can restore the state of recorded equivalences when we're
135 done processing the current edge. */
136
137 static void
138 record_temporary_equivalence (tree x, tree y, VEC(tree, heap) **stack)
139 {
140 tree prev_x = SSA_NAME_VALUE (x);
141
142 if (TREE_CODE (y) == SSA_NAME)
143 {
144 tree tmp = SSA_NAME_VALUE (y);
145 y = tmp ? tmp : y;
146 }
147
148 SSA_NAME_VALUE (x) = y;
149 VEC_reserve (tree, heap, *stack, 2);
150 VEC_quick_push (tree, *stack, prev_x);
151 VEC_quick_push (tree, *stack, x);
152 }
153
154 /* Record temporary equivalences created by PHIs at the target of the
155 edge E. Record unwind information for the equivalences onto STACK.
156
157 If a PHI which prevents threading is encountered, then return FALSE
158 indicating we should not thread this edge, else return TRUE. */
159
160 static bool
161 record_temporary_equivalences_from_phis (edge e, VEC(tree, heap) **stack)
162 {
163 gimple_stmt_iterator gsi;
164
165 /* Each PHI creates a temporary equivalence, record them.
166 These are context sensitive equivalences and will be removed
167 later. */
168 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
169 {
170 gimple phi = gsi_stmt (gsi);
171 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
172 tree dst = gimple_phi_result (phi);
173
174 /* If the desired argument is not the same as this PHI's result
175 and it is set by a PHI in E->dest, then we can not thread
176 through E->dest. */
177 if (src != dst
178 && TREE_CODE (src) == SSA_NAME
179 && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
180 && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
181 return false;
182
183 /* We consider any non-virtual PHI as a statement since it
184 count result in a constant assignment or copy operation. */
185 if (is_gimple_reg (dst))
186 stmt_count++;
187
188 record_temporary_equivalence (dst, src, stack);
189 }
190 return true;
191 }
192
193 /* Fold the RHS of an assignment statement and return it as a tree.
194 May return NULL_TREE if no simplification is possible. */
195
196 static tree
197 fold_assignment_stmt (gimple stmt)
198 {
199 enum tree_code subcode = gimple_assign_rhs_code (stmt);
200
201 switch (get_gimple_rhs_class (subcode))
202 {
203 case GIMPLE_SINGLE_RHS:
204 {
205 tree rhs = gimple_assign_rhs1 (stmt);
206
207 if (TREE_CODE (rhs) == COND_EXPR)
208 {
209 /* Sadly, we have to handle conditional assignments specially
210 here, because fold expects all the operands of an expression
211 to be folded before the expression itself is folded, but we
212 can't just substitute the folded condition here. */
213 tree cond = fold (COND_EXPR_COND (rhs));
214 if (cond == boolean_true_node)
215 rhs = COND_EXPR_THEN (rhs);
216 else if (cond == boolean_false_node)
217 rhs = COND_EXPR_ELSE (rhs);
218 }
219
220 return fold (rhs);
221 }
222 break;
223 case GIMPLE_UNARY_RHS:
224 {
225 tree lhs = gimple_assign_lhs (stmt);
226 tree op0 = gimple_assign_rhs1 (stmt);
227 return fold_unary (subcode, TREE_TYPE (lhs), op0);
228 }
229 break;
230 case GIMPLE_BINARY_RHS:
231 {
232 tree lhs = gimple_assign_lhs (stmt);
233 tree op0 = gimple_assign_rhs1 (stmt);
234 tree op1 = gimple_assign_rhs2 (stmt);
235 return fold_binary (subcode, TREE_TYPE (lhs), op0, op1);
236 }
237 break;
238 default:
239 gcc_unreachable ();
240 }
241 }
242
243 /* Try to simplify each statement in E->dest, ultimately leading to
244 a simplification of the COND_EXPR at the end of E->dest.
245
246 Record unwind information for temporary equivalences onto STACK.
247
248 Use SIMPLIFY (a pointer to a callback function) to further simplify
249 statements using pass specific information.
250
251 We might consider marking just those statements which ultimately
252 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
253 would be recovered by trying to simplify fewer statements.
254
255 If we are able to simplify a statement into the form
256 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
257 a context sensitive equivalence which may help us simplify
258 later statements in E->dest. */
259
260 static gimple
261 record_temporary_equivalences_from_stmts_at_dest (edge e,
262 VEC(tree, heap) **stack,
263 tree (*simplify) (gimple,
264 gimple))
265 {
266 gimple stmt = NULL;
267 gimple_stmt_iterator gsi;
268 int max_stmt_count;
269
270 max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
271
272 /* Walk through each statement in the block recording equivalences
273 we discover. Note any equivalences we discover are context
274 sensitive (ie, are dependent on traversing E) and must be unwound
275 when we're finished processing E. */
276 for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
277 {
278 tree cached_lhs = NULL;
279
280 stmt = gsi_stmt (gsi);
281
282 /* Ignore empty statements and labels. */
283 if (gimple_code (stmt) == GIMPLE_NOP || gimple_code (stmt) == GIMPLE_LABEL)
284 continue;
285
286 /* If the statement has volatile operands, then we assume we
287 can not thread through this block. This is overly
288 conservative in some ways. */
289 if (gimple_code (stmt) == GIMPLE_ASM && gimple_asm_volatile_p (stmt))
290 return NULL;
291
292 /* If duplicating this block is going to cause too much code
293 expansion, then do not thread through this block. */
294 stmt_count++;
295 if (stmt_count > max_stmt_count)
296 return NULL;
297
298 /* If this is not a statement that sets an SSA_NAME to a new
299 value, then do not try to simplify this statement as it will
300 not simplify in any way that is helpful for jump threading. */
301 if ((gimple_code (stmt) != GIMPLE_ASSIGN
302 || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
303 && (gimple_code (stmt) != GIMPLE_CALL
304 || gimple_call_lhs (stmt) == NULL_TREE
305 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
306 continue;
307
308 /* The result of __builtin_object_size depends on all the arguments
309 of a phi node. Temporarily using only one edge produces invalid
310 results. For example
311
312 if (x < 6)
313 goto l;
314 else
315 goto l;
316
317 l:
318 r = PHI <&w[2].a[1](2), &a.a[6](3)>
319 __builtin_object_size (r, 0)
320
321 The result of __builtin_object_size is defined to be the maximum of
322 remaining bytes. If we use only one edge on the phi, the result will
323 change to be the remaining bytes for the corresponding phi argument.
324
325 Similarly for __builtin_constant_p:
326
327 r = PHI <1(2), 2(3)>
328 __builtin_constant_p (r)
329
330 Both PHI arguments are constant, but x ? 1 : 2 is still not
331 constant. */
332
333 if (is_gimple_call (stmt))
334 {
335 tree fndecl = gimple_call_fndecl (stmt);
336 if (fndecl
337 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
338 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
339 continue;
340 }
341
342 /* At this point we have a statement which assigns an RHS to an
343 SSA_VAR on the LHS. We want to try and simplify this statement
344 to expose more context sensitive equivalences which in turn may
345 allow us to simplify the condition at the end of the loop.
346
347 Handle simple copy operations as well as implied copies from
348 ASSERT_EXPRs. */
349 if (gimple_assign_single_p (stmt)
350 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
351 cached_lhs = gimple_assign_rhs1 (stmt);
352 else if (gimple_assign_single_p (stmt)
353 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
354 cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
355 else
356 {
357 /* A statement that is not a trivial copy or ASSERT_EXPR.
358 We're going to temporarily copy propagate the operands
359 and see if that allows us to simplify this statement. */
360 tree *copy;
361 ssa_op_iter iter;
362 use_operand_p use_p;
363 unsigned int num, i = 0;
364
365 num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
366 copy = XCNEWVEC (tree, num);
367
368 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
369 the operands. */
370 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
371 {
372 tree tmp = NULL;
373 tree use = USE_FROM_PTR (use_p);
374
375 copy[i++] = use;
376 if (TREE_CODE (use) == SSA_NAME)
377 tmp = SSA_NAME_VALUE (use);
378 if (tmp)
379 SET_USE (use_p, tmp);
380 }
381
382 /* Try to fold/lookup the new expression. Inserting the
383 expression into the hash table is unlikely to help. */
384 if (is_gimple_call (stmt))
385 cached_lhs = fold_call_stmt (stmt, false);
386 else
387 cached_lhs = fold_assignment_stmt (stmt);
388
389 if (!cached_lhs
390 || (TREE_CODE (cached_lhs) != SSA_NAME
391 && !is_gimple_min_invariant (cached_lhs)))
392 cached_lhs = (*simplify) (stmt, stmt);
393
394 /* Restore the statement's original uses/defs. */
395 i = 0;
396 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
397 SET_USE (use_p, copy[i++]);
398
399 free (copy);
400 }
401
402 /* Record the context sensitive equivalence if we were able
403 to simplify this statement. */
404 if (cached_lhs
405 && (TREE_CODE (cached_lhs) == SSA_NAME
406 || is_gimple_min_invariant (cached_lhs)))
407 record_temporary_equivalence (gimple_get_lhs (stmt), cached_lhs, stack);
408 }
409 return stmt;
410 }
411
412 /* Simplify the control statement at the end of the block E->dest.
413
414 To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
415 is available to use/clobber in DUMMY_COND.
416
417 Use SIMPLIFY (a pointer to a callback function) to further simplify
418 a condition using pass specific information.
419
420 Return the simplified condition or NULL if simplification could
421 not be performed. */
422
423 static tree
424 simplify_control_stmt_condition (edge e,
425 gimple stmt,
426 gimple dummy_cond,
427 tree (*simplify) (gimple, gimple),
428 bool handle_dominating_asserts)
429 {
430 tree cond, cached_lhs;
431 enum gimple_code code = gimple_code (stmt);
432
433 /* For comparisons, we have to update both operands, then try
434 to simplify the comparison. */
435 if (code == GIMPLE_COND)
436 {
437 tree op0, op1;
438 enum tree_code cond_code;
439
440 op0 = gimple_cond_lhs (stmt);
441 op1 = gimple_cond_rhs (stmt);
442 cond_code = gimple_cond_code (stmt);
443
444 /* Get the current value of both operands. */
445 if (TREE_CODE (op0) == SSA_NAME)
446 {
447 tree tmp = SSA_NAME_VALUE (op0);
448 if (tmp)
449 op0 = tmp;
450 }
451
452 if (TREE_CODE (op1) == SSA_NAME)
453 {
454 tree tmp = SSA_NAME_VALUE (op1);
455 if (tmp)
456 op1 = tmp;
457 }
458
459 if (handle_dominating_asserts)
460 {
461 /* Now see if the operand was consumed by an ASSERT_EXPR
462 which dominates E->src. If so, we want to replace the
463 operand with the LHS of the ASSERT_EXPR. */
464 if (TREE_CODE (op0) == SSA_NAME)
465 op0 = lhs_of_dominating_assert (op0, e->src, stmt);
466
467 if (TREE_CODE (op1) == SSA_NAME)
468 op1 = lhs_of_dominating_assert (op1, e->src, stmt);
469 }
470
471 /* We may need to canonicalize the comparison. For
472 example, op0 might be a constant while op1 is an
473 SSA_NAME. Failure to canonicalize will cause us to
474 miss threading opportunities. */
475 if (tree_swap_operands_p (op0, op1, false))
476 {
477 tree tmp;
478 cond_code = swap_tree_comparison (cond_code);
479 tmp = op0;
480 op0 = op1;
481 op1 = tmp;
482 }
483
484 /* Stuff the operator and operands into our dummy conditional
485 expression. */
486 gimple_cond_set_code (dummy_cond, cond_code);
487 gimple_cond_set_lhs (dummy_cond, op0);
488 gimple_cond_set_rhs (dummy_cond, op1);
489
490 /* We absolutely do not care about any type conversions
491 we only care about a zero/nonzero value. */
492 fold_defer_overflow_warnings ();
493
494 cached_lhs = fold_binary (cond_code, boolean_type_node, op0, op1);
495 if (cached_lhs)
496 while (CONVERT_EXPR_P (cached_lhs))
497 cached_lhs = TREE_OPERAND (cached_lhs, 0);
498
499 fold_undefer_overflow_warnings ((cached_lhs
500 && is_gimple_min_invariant (cached_lhs)),
501 stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
502
503 /* If we have not simplified the condition down to an invariant,
504 then use the pass specific callback to simplify the condition. */
505 if (!cached_lhs
506 || !is_gimple_min_invariant (cached_lhs))
507 cached_lhs = (*simplify) (dummy_cond, stmt);
508
509 return cached_lhs;
510 }
511
512 if (code == GIMPLE_SWITCH)
513 cond = gimple_switch_index (stmt);
514 else if (code == GIMPLE_GOTO)
515 cond = gimple_goto_dest (stmt);
516 else
517 gcc_unreachable ();
518
519 /* We can have conditionals which just test the state of a variable
520 rather than use a relational operator. These are simpler to handle. */
521 if (TREE_CODE (cond) == SSA_NAME)
522 {
523 cached_lhs = cond;
524
525 /* Get the variable's current value from the equivalence chains.
526
527 It is possible to get loops in the SSA_NAME_VALUE chains
528 (consider threading the backedge of a loop where we have
529 a loop invariant SSA_NAME used in the condition. */
530 if (cached_lhs
531 && TREE_CODE (cached_lhs) == SSA_NAME
532 && SSA_NAME_VALUE (cached_lhs))
533 cached_lhs = SSA_NAME_VALUE (cached_lhs);
534
535 /* If we're dominated by a suitable ASSERT_EXPR, then
536 update CACHED_LHS appropriately. */
537 if (handle_dominating_asserts && TREE_CODE (cached_lhs) == SSA_NAME)
538 cached_lhs = lhs_of_dominating_assert (cached_lhs, e->src, stmt);
539
540 /* If we haven't simplified to an invariant yet, then use the
541 pass specific callback to try and simplify it further. */
542 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
543 cached_lhs = (*simplify) (stmt, stmt);
544 }
545 else
546 cached_lhs = NULL;
547
548 return cached_lhs;
549 }
550
551 /* We are exiting E->src, see if E->dest ends with a conditional
552 jump which has a known value when reached via E.
553
554 Special care is necessary if E is a back edge in the CFG as we
555 may have already recorded equivalences for E->dest into our
556 various tables, including the result of the conditional at
557 the end of E->dest. Threading opportunities are severely
558 limited in that case to avoid short-circuiting the loop
559 incorrectly.
560
561 Note it is quite common for the first block inside a loop to
562 end with a conditional which is either always true or always
563 false when reached via the loop backedge. Thus we do not want
564 to blindly disable threading across a loop backedge.
565
566 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
567 to avoid allocating memory.
568
569 HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
570 the simplified condition with left-hand sides of ASSERT_EXPRs they are
571 used in.
572
573 STACK is used to undo temporary equivalences created during the walk of
574 E->dest.
575
576 SIMPLIFY is a pass-specific function used to simplify statements. */
577
578 void
579 thread_across_edge (gimple dummy_cond,
580 edge e,
581 bool handle_dominating_asserts,
582 VEC(tree, heap) **stack,
583 tree (*simplify) (gimple, gimple))
584 {
585 gimple stmt;
586
587 /* If E is a backedge, then we want to verify that the COND_EXPR,
588 SWITCH_EXPR or GOTO_EXPR at the end of e->dest is not affected
589 by any statements in e->dest. If it is affected, then it is not
590 safe to thread this edge. */
591 if (e->flags & EDGE_DFS_BACK)
592 {
593 ssa_op_iter iter;
594 use_operand_p use_p;
595 gimple last = gsi_stmt (gsi_last_bb (e->dest));
596
597 FOR_EACH_SSA_USE_OPERAND (use_p, last, iter, SSA_OP_USE | SSA_OP_VUSE)
598 {
599 tree use = USE_FROM_PTR (use_p);
600
601 if (TREE_CODE (use) == SSA_NAME
602 && gimple_code (SSA_NAME_DEF_STMT (use)) != GIMPLE_PHI
603 && gimple_bb (SSA_NAME_DEF_STMT (use)) == e->dest)
604 goto fail;
605 }
606 }
607
608 stmt_count = 0;
609
610 /* PHIs create temporary equivalences. */
611 if (!record_temporary_equivalences_from_phis (e, stack))
612 goto fail;
613
614 /* Now walk each statement recording any context sensitive
615 temporary equivalences we can detect. */
616 stmt = record_temporary_equivalences_from_stmts_at_dest (e, stack, simplify);
617 if (!stmt)
618 goto fail;
619
620 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
621 will be taken. */
622 if (gimple_code (stmt) == GIMPLE_COND
623 || gimple_code (stmt) == GIMPLE_GOTO
624 || gimple_code (stmt) == GIMPLE_SWITCH)
625 {
626 tree cond;
627
628 /* Extract and simplify the condition. */
629 cond = simplify_control_stmt_condition (e, stmt, dummy_cond, simplify, handle_dominating_asserts);
630
631 if (cond && is_gimple_min_invariant (cond))
632 {
633 edge taken_edge = find_taken_edge (e->dest, cond);
634 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
635
636 if (dest == e->dest)
637 goto fail;
638
639 remove_temporary_equivalences (stack);
640 register_jump_thread (e, taken_edge);
641 }
642 }
643
644 fail:
645 remove_temporary_equivalences (stack);
646 }