comparison gcc/tree-ssa-uncprop.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Routines for discovering and unpropagating edge equivalences.
2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "flags.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "ggc.h"
29 #include "basic-block.h"
30 #include "output.h"
31 #include "expr.h"
32 #include "function.h"
33 #include "diagnostic.h"
34 #include "timevar.h"
35 #include "tree-dump.h"
36 #include "tree-flow.h"
37 #include "domwalk.h"
38 #include "real.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42
43 /* The basic structure describing an equivalency created by traversing
44 an edge. Traversing the edge effectively means that we can assume
45 that we've seen an assignment LHS = RHS. */
46 struct edge_equivalency
47 {
48 tree rhs;
49 tree lhs;
50 };
51
52 /* This routine finds and records edge equivalences for every edge
53 in the CFG.
54
55 When complete, each edge that creates an equivalency will have an
56 EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
57 The caller is responsible for freeing the AUX fields. */
58
59 static void
60 associate_equivalences_with_edges (void)
61 {
62 basic_block bb;
63
64 /* Walk over each block. If the block ends with a control statement,
65 then it might create a useful equivalence. */
66 FOR_EACH_BB (bb)
67 {
68 gimple_stmt_iterator gsi = gsi_last_bb (bb);
69 gimple stmt;
70
71 /* If the block does not end with a COND_EXPR or SWITCH_EXPR
72 then there is nothing to do. */
73 if (gsi_end_p (gsi))
74 continue;
75
76 stmt = gsi_stmt (gsi);
77
78 if (!stmt)
79 continue;
80
81 /* A COND_EXPR may create an equivalency in a variety of different
82 ways. */
83 if (gimple_code (stmt) == GIMPLE_COND)
84 {
85 edge true_edge;
86 edge false_edge;
87 struct edge_equivalency *equivalency;
88 enum tree_code code = gimple_cond_code (stmt);
89
90 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
91
92 /* Equality tests may create one or two equivalences. */
93 if (code == EQ_EXPR || code == NE_EXPR)
94 {
95 tree op0 = gimple_cond_lhs (stmt);
96 tree op1 = gimple_cond_rhs (stmt);
97
98 /* Special case comparing booleans against a constant as we
99 know the value of OP0 on both arms of the branch. i.e., we
100 can record an equivalence for OP0 rather than COND. */
101 if (TREE_CODE (op0) == SSA_NAME
102 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
103 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
104 && is_gimple_min_invariant (op1))
105 {
106 if (code == EQ_EXPR)
107 {
108 equivalency = XNEW (struct edge_equivalency);
109 equivalency->lhs = op0;
110 equivalency->rhs = (integer_zerop (op1)
111 ? boolean_false_node
112 : boolean_true_node);
113 true_edge->aux = equivalency;
114
115 equivalency = XNEW (struct edge_equivalency);
116 equivalency->lhs = op0;
117 equivalency->rhs = (integer_zerop (op1)
118 ? boolean_true_node
119 : boolean_false_node);
120 false_edge->aux = equivalency;
121 }
122 else
123 {
124 equivalency = XNEW (struct edge_equivalency);
125 equivalency->lhs = op0;
126 equivalency->rhs = (integer_zerop (op1)
127 ? boolean_true_node
128 : boolean_false_node);
129 true_edge->aux = equivalency;
130
131 equivalency = XNEW (struct edge_equivalency);
132 equivalency->lhs = op0;
133 equivalency->rhs = (integer_zerop (op1)
134 ? boolean_false_node
135 : boolean_true_node);
136 false_edge->aux = equivalency;
137 }
138 }
139
140 else if (TREE_CODE (op0) == SSA_NAME
141 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
142 && (is_gimple_min_invariant (op1)
143 || (TREE_CODE (op1) == SSA_NAME
144 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
145 {
146 /* For IEEE, -0.0 == 0.0, so we don't necessarily know
147 the sign of a variable compared against zero. If
148 we're honoring signed zeros, then we cannot record
149 this value unless we know that the value is nonzero. */
150 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
151 && (TREE_CODE (op1) != REAL_CST
152 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (op1))))
153 continue;
154
155 equivalency = XNEW (struct edge_equivalency);
156 equivalency->lhs = op0;
157 equivalency->rhs = op1;
158 if (code == EQ_EXPR)
159 true_edge->aux = equivalency;
160 else
161 false_edge->aux = equivalency;
162
163 }
164 }
165
166 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
167 }
168
169 /* For a SWITCH_EXPR, a case label which represents a single
170 value and which is the only case label which reaches the
171 target block creates an equivalence. */
172 else if (gimple_code (stmt) == GIMPLE_SWITCH)
173 {
174 tree cond = gimple_switch_index (stmt);
175
176 if (TREE_CODE (cond) == SSA_NAME
177 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
178 {
179 int i, n_labels = gimple_switch_num_labels (stmt);
180 tree *info = XCNEWVEC (tree, n_basic_blocks);
181
182 /* Walk over the case label vector. Record blocks
183 which are reached by a single case label which represents
184 a single value. */
185 for (i = 0; i < n_labels; i++)
186 {
187 tree label = gimple_switch_label (stmt, i);
188 basic_block bb = label_to_block (CASE_LABEL (label));
189
190 if (CASE_HIGH (label)
191 || !CASE_LOW (label)
192 || info[bb->index])
193 info[bb->index] = error_mark_node;
194 else
195 info[bb->index] = label;
196 }
197
198 /* Now walk over the blocks to determine which ones were
199 marked as being reached by a useful case label. */
200 for (i = 0; i < n_basic_blocks; i++)
201 {
202 tree node = info[i];
203
204 if (node != NULL
205 && node != error_mark_node)
206 {
207 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
208 struct edge_equivalency *equivalency;
209
210 /* Record an equivalency on the edge from BB to basic
211 block I. */
212 equivalency = XNEW (struct edge_equivalency);
213 equivalency->rhs = x;
214 equivalency->lhs = cond;
215 find_edge (bb, BASIC_BLOCK (i))->aux = equivalency;
216 }
217 }
218 free (info);
219 }
220 }
221
222 }
223 }
224
225
226 /* Translating out of SSA sometimes requires inserting copies and
227 constant initializations on edges to eliminate PHI nodes.
228
229 In some cases those copies and constant initializations are
230 redundant because the target already has the value on the
231 RHS of the assignment.
232
233 We previously tried to catch these cases after translating
234 out of SSA form. However, that code often missed cases. Worse
235 yet, the cases it missed were also often missed by the RTL
236 optimizers. Thus the resulting code had redundant instructions.
237
238 This pass attempts to detect these situations before translating
239 out of SSA form.
240
241 The key concept that this pass is built upon is that these
242 redundant copies and constant initializations often occur
243 due to constant/copy propagating equivalences resulting from
244 COND_EXPRs and SWITCH_EXPRs.
245
246 We want to do those propagations as they can sometimes allow
247 the SSA optimizers to do a better job. However, in the cases
248 where such propagations do not result in further optimization,
249 we would like to "undo" the propagation to avoid the redundant
250 copies and constant initializations.
251
252 This pass works by first associating equivalences with edges in
253 the CFG. For example, the edge leading from a SWITCH_EXPR to
254 its associated CASE_LABEL will have an equivalency between
255 SWITCH_COND and the value in the case label.
256
257 Once we have found the edge equivalences, we proceed to walk
258 the CFG in dominator order. As we traverse edges we record
259 equivalences associated with those edges we traverse.
260
261 When we encounter a PHI node, we walk its arguments to see if we
262 have an equivalence for the PHI argument. If so, then we replace
263 the argument.
264
265 Equivalences are looked up based on their value (think of it as
266 the RHS of an assignment). A value may be an SSA_NAME or an
267 invariant. We may have several SSA_NAMEs with the same value,
268 so with each value we have a list of SSA_NAMEs that have the
269 same value. */
270
271 /* As we enter each block we record the value for any edge equivalency
272 leading to this block. If no such edge equivalency exists, then we
273 record NULL. These equivalences are live until we leave the dominator
274 subtree rooted at the block where we record the equivalency. */
275 static VEC(tree,heap) *equiv_stack;
276
277 /* Global hash table implementing a mapping from invariant values
278 to a list of SSA_NAMEs which have the same value. We might be
279 able to reuse tree-vn for this code. */
280 static htab_t equiv;
281
282 /* Main structure for recording equivalences into our hash table. */
283 struct equiv_hash_elt
284 {
285 /* The value/key of this entry. */
286 tree value;
287
288 /* List of SSA_NAMEs which have the same value/key. */
289 VEC(tree,heap) *equivalences;
290 };
291
292 static void uncprop_initialize_block (struct dom_walk_data *, basic_block);
293 static void uncprop_finalize_block (struct dom_walk_data *, basic_block);
294 static void uncprop_into_successor_phis (struct dom_walk_data *, basic_block);
295
296 /* Hashing and equality routines for the hash table. */
297
298 static hashval_t
299 equiv_hash (const void *p)
300 {
301 tree const value = ((const struct equiv_hash_elt *)p)->value;
302 return iterative_hash_expr (value, 0);
303 }
304
305 static int
306 equiv_eq (const void *p1, const void *p2)
307 {
308 tree value1 = ((const struct equiv_hash_elt *)p1)->value;
309 tree value2 = ((const struct equiv_hash_elt *)p2)->value;
310
311 return operand_equal_p (value1, value2, 0);
312 }
313
314 /* Free an instance of equiv_hash_elt. */
315
316 static void
317 equiv_free (void *p)
318 {
319 struct equiv_hash_elt *elt = (struct equiv_hash_elt *) p;
320 VEC_free (tree, heap, elt->equivalences);
321 free (elt);
322 }
323
324 /* Remove the most recently recorded equivalency for VALUE. */
325
326 static void
327 remove_equivalence (tree value)
328 {
329 struct equiv_hash_elt equiv_hash_elt, *equiv_hash_elt_p;
330 void **slot;
331
332 equiv_hash_elt.value = value;
333 equiv_hash_elt.equivalences = NULL;
334
335 slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
336
337 equiv_hash_elt_p = (struct equiv_hash_elt *) *slot;
338 VEC_pop (tree, equiv_hash_elt_p->equivalences);
339 }
340
341 /* Record EQUIVALENCE = VALUE into our hash table. */
342
343 static void
344 record_equiv (tree value, tree equivalence)
345 {
346 struct equiv_hash_elt *equiv_hash_elt;
347 void **slot;
348
349 equiv_hash_elt = XNEW (struct equiv_hash_elt);
350 equiv_hash_elt->value = value;
351 equiv_hash_elt->equivalences = NULL;
352
353 slot = htab_find_slot (equiv, equiv_hash_elt, INSERT);
354
355 if (*slot == NULL)
356 *slot = (void *) equiv_hash_elt;
357 else
358 free (equiv_hash_elt);
359
360 equiv_hash_elt = (struct equiv_hash_elt *) *slot;
361
362 VEC_safe_push (tree, heap, equiv_hash_elt->equivalences, equivalence);
363 }
364
365 /* Main driver for un-cprop. */
366
367 static unsigned int
368 tree_ssa_uncprop (void)
369 {
370 struct dom_walk_data walk_data;
371 basic_block bb;
372
373 associate_equivalences_with_edges ();
374
375 /* Create our global data structures. */
376 equiv = htab_create (1024, equiv_hash, equiv_eq, equiv_free);
377 equiv_stack = VEC_alloc (tree, heap, 2);
378
379 /* We're going to do a dominator walk, so ensure that we have
380 dominance information. */
381 calculate_dominance_info (CDI_DOMINATORS);
382
383 /* Setup callbacks for the generic dominator tree walker. */
384 walk_data.walk_stmts_backward = false;
385 walk_data.dom_direction = CDI_DOMINATORS;
386 walk_data.initialize_block_local_data = NULL;
387 walk_data.before_dom_children_before_stmts = uncprop_initialize_block;
388 walk_data.before_dom_children_walk_stmts = NULL;
389 walk_data.before_dom_children_after_stmts = uncprop_into_successor_phis;
390 walk_data.after_dom_children_before_stmts = NULL;
391 walk_data.after_dom_children_walk_stmts = NULL;
392 walk_data.after_dom_children_after_stmts = uncprop_finalize_block;
393 walk_data.global_data = NULL;
394 walk_data.block_local_data_size = 0;
395 walk_data.interesting_blocks = NULL;
396
397 /* Now initialize the dominator walker. */
398 init_walk_dominator_tree (&walk_data);
399
400 /* Recursively walk the dominator tree undoing unprofitable
401 constant/copy propagations. */
402 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
403
404 /* Finalize and clean up. */
405 fini_walk_dominator_tree (&walk_data);
406
407 /* EQUIV_STACK should already be empty at this point, so we just
408 need to empty elements out of the hash table, free EQUIV_STACK,
409 and cleanup the AUX field on the edges. */
410 htab_delete (equiv);
411 VEC_free (tree, heap, equiv_stack);
412 FOR_EACH_BB (bb)
413 {
414 edge e;
415 edge_iterator ei;
416
417 FOR_EACH_EDGE (e, ei, bb->succs)
418 {
419 if (e->aux)
420 {
421 free (e->aux);
422 e->aux = NULL;
423 }
424 }
425 }
426 return 0;
427 }
428
429
430 /* We have finished processing the dominator children of BB, perform
431 any finalization actions in preparation for leaving this node in
432 the dominator tree. */
433
434 static void
435 uncprop_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
436 basic_block bb ATTRIBUTE_UNUSED)
437 {
438 /* Pop the topmost value off the equiv stack. */
439 tree value = VEC_pop (tree, equiv_stack);
440
441 /* If that value was non-null, then pop the topmost equivalency off
442 its equivalency stack. */
443 if (value != NULL)
444 remove_equivalence (value);
445 }
446
447 /* Unpropagate values from PHI nodes in successor blocks of BB. */
448
449 static void
450 uncprop_into_successor_phis (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
451 basic_block bb)
452 {
453 edge e;
454 edge_iterator ei;
455
456 /* For each successor edge, first temporarily record any equivalence
457 on that edge. Then unpropagate values in any PHI nodes at the
458 destination of the edge. Then remove the temporary equivalence. */
459 FOR_EACH_EDGE (e, ei, bb->succs)
460 {
461 gimple_seq phis = phi_nodes (e->dest);
462 gimple_stmt_iterator gsi;
463
464 /* If there are no PHI nodes in this destination, then there is
465 no sense in recording any equivalences. */
466 if (!phis)
467 continue;
468
469 /* Record any equivalency associated with E. */
470 if (e->aux)
471 {
472 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
473 record_equiv (equiv->rhs, equiv->lhs);
474 }
475
476 /* Walk over the PHI nodes, unpropagating values. */
477 for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi))
478 {
479 /* Sigh. We'll have more efficient access to this one day. */
480 gimple phi = gsi_stmt (gsi);
481 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
482 struct equiv_hash_elt equiv_hash_elt;
483 void **slot;
484
485 /* If the argument is not an invariant, or refers to the same
486 underlying variable as the PHI result, then there's no
487 point in un-propagating the argument. */
488 if (!is_gimple_min_invariant (arg)
489 && SSA_NAME_VAR (arg) != SSA_NAME_VAR (PHI_RESULT (phi)))
490 continue;
491
492 /* Lookup this argument's value in the hash table. */
493 equiv_hash_elt.value = arg;
494 equiv_hash_elt.equivalences = NULL;
495 slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
496
497 if (slot)
498 {
499 struct equiv_hash_elt *elt = (struct equiv_hash_elt *) *slot;
500 int j;
501
502 /* Walk every equivalence with the same value. If we find
503 one with the same underlying variable as the PHI result,
504 then replace the value in the argument with its equivalent
505 SSA_NAME. Use the most recent equivalence as hopefully
506 that results in shortest lifetimes. */
507 for (j = VEC_length (tree, elt->equivalences) - 1; j >= 0; j--)
508 {
509 tree equiv = VEC_index (tree, elt->equivalences, j);
510
511 if (SSA_NAME_VAR (equiv) == SSA_NAME_VAR (PHI_RESULT (phi)))
512 {
513 SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
514 break;
515 }
516 }
517 }
518 }
519
520 /* If we had an equivalence associated with this edge, remove it. */
521 if (e->aux)
522 {
523 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
524 remove_equivalence (equiv->rhs);
525 }
526 }
527 }
528
529 /* Ignoring loop backedges, if BB has precisely one incoming edge then
530 return that edge. Otherwise return NULL. */
531 static edge
532 single_incoming_edge_ignoring_loop_edges (basic_block bb)
533 {
534 edge retval = NULL;
535 edge e;
536 edge_iterator ei;
537
538 FOR_EACH_EDGE (e, ei, bb->preds)
539 {
540 /* A loop back edge can be identified by the destination of
541 the edge dominating the source of the edge. */
542 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
543 continue;
544
545 /* If we have already seen a non-loop edge, then we must have
546 multiple incoming non-loop edges and thus we return NULL. */
547 if (retval)
548 return NULL;
549
550 /* This is the first non-loop incoming edge we have found. Record
551 it. */
552 retval = e;
553 }
554
555 return retval;
556 }
557
558 static void
559 uncprop_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
560 basic_block bb)
561 {
562 basic_block parent;
563 edge e;
564 bool recorded = false;
565
566 /* If this block is dominated by a single incoming edge and that edge
567 has an equivalency, then record the equivalency and push the
568 VALUE onto EQUIV_STACK. Else push a NULL entry on EQUIV_STACK. */
569 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
570 if (parent)
571 {
572 e = single_incoming_edge_ignoring_loop_edges (bb);
573
574 if (e && e->src == parent && e->aux)
575 {
576 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
577
578 record_equiv (equiv->rhs, equiv->lhs);
579 VEC_safe_push (tree, heap, equiv_stack, equiv->rhs);
580 recorded = true;
581 }
582 }
583
584 if (!recorded)
585 VEC_safe_push (tree, heap, equiv_stack, NULL_TREE);
586 }
587
588 static bool
589 gate_uncprop (void)
590 {
591 return flag_tree_dom != 0;
592 }
593
594 struct gimple_opt_pass pass_uncprop =
595 {
596 {
597 GIMPLE_PASS,
598 "uncprop", /* name */
599 gate_uncprop, /* gate */
600 tree_ssa_uncprop, /* execute */
601 NULL, /* sub */
602 NULL, /* next */
603 0, /* static_pass_number */
604 TV_TREE_SSA_UNCPROP, /* tv_id */
605 PROP_cfg | PROP_ssa, /* properties_required */
606 0, /* properties_provided */
607 0, /* properties_destroyed */
608 0, /* todo_flags_start */
609 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
610 }
611 };
612