comparison gcc/tree-vrp.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 58ad6c70ea60
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "diagnostic.h"
34 #include "toplev.h"
35 #include "intl.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
40
41
42 /* Set of SSA names found live during the RPO traversal of the function
43 for still active basic-blocks. */
44 static sbitmap *live;
45
46 /* Return true if the SSA name NAME is live on the edge E. */
47
48 static bool
49 live_on_edge (edge e, tree name)
50 {
51 return (live[e->dest->index]
52 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
53 }
54
55 /* Local functions. */
56 static int compare_values (tree val1, tree val2);
57 static int compare_values_warnv (tree val1, tree val2, bool *);
58 static void vrp_meet (value_range_t *, value_range_t *);
59 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
60 tree, tree, bool, bool *,
61 bool *);
62
63 /* Location information for ASSERT_EXPRs. Each instance of this
64 structure describes an ASSERT_EXPR for an SSA name. Since a single
65 SSA name may have more than one assertion associated with it, these
66 locations are kept in a linked list attached to the corresponding
67 SSA name. */
68 struct assert_locus_d
69 {
70 /* Basic block where the assertion would be inserted. */
71 basic_block bb;
72
73 /* Some assertions need to be inserted on an edge (e.g., assertions
74 generated by COND_EXPRs). In those cases, BB will be NULL. */
75 edge e;
76
77 /* Pointer to the statement that generated this assertion. */
78 gimple_stmt_iterator si;
79
80 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
81 enum tree_code comp_code;
82
83 /* Value being compared against. */
84 tree val;
85
86 /* Expression to compare. */
87 tree expr;
88
89 /* Next node in the linked list. */
90 struct assert_locus_d *next;
91 };
92
93 typedef struct assert_locus_d *assert_locus_t;
94
95 /* If bit I is present, it means that SSA name N_i has a list of
96 assertions that should be inserted in the IL. */
97 static bitmap need_assert_for;
98
99 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
100 holds a list of ASSERT_LOCUS_T nodes that describe where
101 ASSERT_EXPRs for SSA name N_I should be inserted. */
102 static assert_locus_t *asserts_for;
103
104 /* Value range array. After propagation, VR_VALUE[I] holds the range
105 of values that SSA name N_I may take. */
106 static value_range_t **vr_value;
107
108 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
109 number of executable edges we saw the last time we visited the
110 node. */
111 static int *vr_phi_edge_counts;
112
113 typedef struct {
114 gimple stmt;
115 tree vec;
116 } switch_update;
117
118 static VEC (edge, heap) *to_remove_edges;
119 DEF_VEC_O(switch_update);
120 DEF_VEC_ALLOC_O(switch_update, heap);
121 static VEC (switch_update, heap) *to_update_switch_stmts;
122
123
124 /* Return the maximum value for TYPEs base type. */
125
126 static inline tree
127 vrp_val_max (const_tree type)
128 {
129 if (!INTEGRAL_TYPE_P (type))
130 return NULL_TREE;
131
132 /* For integer sub-types the values for the base type are relevant. */
133 if (TREE_TYPE (type))
134 type = TREE_TYPE (type);
135
136 return TYPE_MAX_VALUE (type);
137 }
138
139 /* Return the minimum value for TYPEs base type. */
140
141 static inline tree
142 vrp_val_min (const_tree type)
143 {
144 if (!INTEGRAL_TYPE_P (type))
145 return NULL_TREE;
146
147 /* For integer sub-types the values for the base type are relevant. */
148 if (TREE_TYPE (type))
149 type = TREE_TYPE (type);
150
151 return TYPE_MIN_VALUE (type);
152 }
153
154 /* Return whether VAL is equal to the maximum value of its type. This
155 will be true for a positive overflow infinity. We can't do a
156 simple equality comparison with TYPE_MAX_VALUE because C typedefs
157 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
158 to the integer constant with the same value in the type. */
159
160 static inline bool
161 vrp_val_is_max (const_tree val)
162 {
163 tree type_max = vrp_val_max (TREE_TYPE (val));
164 return (val == type_max
165 || (type_max != NULL_TREE
166 && operand_equal_p (val, type_max, 0)));
167 }
168
169 /* Return whether VAL is equal to the minimum value of its type. This
170 will be true for a negative overflow infinity. */
171
172 static inline bool
173 vrp_val_is_min (const_tree val)
174 {
175 tree type_min = vrp_val_min (TREE_TYPE (val));
176 return (val == type_min
177 || (type_min != NULL_TREE
178 && operand_equal_p (val, type_min, 0)));
179 }
180
181
182 /* Return whether TYPE should use an overflow infinity distinct from
183 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
184 represent a signed overflow during VRP computations. An infinity
185 is distinct from a half-range, which will go from some number to
186 TYPE_{MIN,MAX}_VALUE. */
187
188 static inline bool
189 needs_overflow_infinity (const_tree type)
190 {
191 return (INTEGRAL_TYPE_P (type)
192 && !TYPE_OVERFLOW_WRAPS (type)
193 /* Integer sub-types never overflow as they are never
194 operands of arithmetic operators. */
195 && !(TREE_TYPE (type) && TREE_TYPE (type) != type));
196 }
197
198 /* Return whether TYPE can support our overflow infinity
199 representation: we use the TREE_OVERFLOW flag, which only exists
200 for constants. If TYPE doesn't support this, we don't optimize
201 cases which would require signed overflow--we drop them to
202 VARYING. */
203
204 static inline bool
205 supports_overflow_infinity (const_tree type)
206 {
207 tree min = vrp_val_min (type), max = vrp_val_max (type);
208 #ifdef ENABLE_CHECKING
209 gcc_assert (needs_overflow_infinity (type));
210 #endif
211 return (min != NULL_TREE
212 && CONSTANT_CLASS_P (min)
213 && max != NULL_TREE
214 && CONSTANT_CLASS_P (max));
215 }
216
217 /* VAL is the maximum or minimum value of a type. Return a
218 corresponding overflow infinity. */
219
220 static inline tree
221 make_overflow_infinity (tree val)
222 {
223 #ifdef ENABLE_CHECKING
224 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
225 #endif
226 val = copy_node (val);
227 TREE_OVERFLOW (val) = 1;
228 return val;
229 }
230
231 /* Return a negative overflow infinity for TYPE. */
232
233 static inline tree
234 negative_overflow_infinity (tree type)
235 {
236 #ifdef ENABLE_CHECKING
237 gcc_assert (supports_overflow_infinity (type));
238 #endif
239 return make_overflow_infinity (vrp_val_min (type));
240 }
241
242 /* Return a positive overflow infinity for TYPE. */
243
244 static inline tree
245 positive_overflow_infinity (tree type)
246 {
247 #ifdef ENABLE_CHECKING
248 gcc_assert (supports_overflow_infinity (type));
249 #endif
250 return make_overflow_infinity (vrp_val_max (type));
251 }
252
253 /* Return whether VAL is a negative overflow infinity. */
254
255 static inline bool
256 is_negative_overflow_infinity (const_tree val)
257 {
258 return (needs_overflow_infinity (TREE_TYPE (val))
259 && CONSTANT_CLASS_P (val)
260 && TREE_OVERFLOW (val)
261 && vrp_val_is_min (val));
262 }
263
264 /* Return whether VAL is a positive overflow infinity. */
265
266 static inline bool
267 is_positive_overflow_infinity (const_tree val)
268 {
269 return (needs_overflow_infinity (TREE_TYPE (val))
270 && CONSTANT_CLASS_P (val)
271 && TREE_OVERFLOW (val)
272 && vrp_val_is_max (val));
273 }
274
275 /* Return whether VAL is a positive or negative overflow infinity. */
276
277 static inline bool
278 is_overflow_infinity (const_tree val)
279 {
280 return (needs_overflow_infinity (TREE_TYPE (val))
281 && CONSTANT_CLASS_P (val)
282 && TREE_OVERFLOW (val)
283 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
284 }
285
286 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
287
288 static inline bool
289 stmt_overflow_infinity (gimple stmt)
290 {
291 if (is_gimple_assign (stmt)
292 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
293 GIMPLE_SINGLE_RHS)
294 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
295 return false;
296 }
297
298 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
299 the same value with TREE_OVERFLOW clear. This can be used to avoid
300 confusing a regular value with an overflow value. */
301
302 static inline tree
303 avoid_overflow_infinity (tree val)
304 {
305 if (!is_overflow_infinity (val))
306 return val;
307
308 if (vrp_val_is_max (val))
309 return vrp_val_max (TREE_TYPE (val));
310 else
311 {
312 #ifdef ENABLE_CHECKING
313 gcc_assert (vrp_val_is_min (val));
314 #endif
315 return vrp_val_min (TREE_TYPE (val));
316 }
317 }
318
319
320 /* Return true if ARG is marked with the nonnull attribute in the
321 current function signature. */
322
323 static bool
324 nonnull_arg_p (const_tree arg)
325 {
326 tree t, attrs, fntype;
327 unsigned HOST_WIDE_INT arg_num;
328
329 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
330
331 /* The static chain decl is always non null. */
332 if (arg == cfun->static_chain_decl)
333 return true;
334
335 fntype = TREE_TYPE (current_function_decl);
336 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
337
338 /* If "nonnull" wasn't specified, we know nothing about the argument. */
339 if (attrs == NULL_TREE)
340 return false;
341
342 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
343 if (TREE_VALUE (attrs) == NULL_TREE)
344 return true;
345
346 /* Get the position number for ARG in the function signature. */
347 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
348 t;
349 t = TREE_CHAIN (t), arg_num++)
350 {
351 if (t == arg)
352 break;
353 }
354
355 gcc_assert (t == arg);
356
357 /* Now see if ARG_NUM is mentioned in the nonnull list. */
358 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
359 {
360 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
361 return true;
362 }
363
364 return false;
365 }
366
367
368 /* Set value range VR to VR_VARYING. */
369
370 static inline void
371 set_value_range_to_varying (value_range_t *vr)
372 {
373 vr->type = VR_VARYING;
374 vr->min = vr->max = NULL_TREE;
375 if (vr->equiv)
376 bitmap_clear (vr->equiv);
377 }
378
379
380 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
381
382 static void
383 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
384 tree max, bitmap equiv)
385 {
386 #if defined ENABLE_CHECKING
387 /* Check the validity of the range. */
388 if (t == VR_RANGE || t == VR_ANTI_RANGE)
389 {
390 int cmp;
391
392 gcc_assert (min && max);
393
394 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
395 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
396
397 cmp = compare_values (min, max);
398 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
399
400 if (needs_overflow_infinity (TREE_TYPE (min)))
401 gcc_assert (!is_overflow_infinity (min)
402 || !is_overflow_infinity (max));
403 }
404
405 if (t == VR_UNDEFINED || t == VR_VARYING)
406 gcc_assert (min == NULL_TREE && max == NULL_TREE);
407
408 if (t == VR_UNDEFINED || t == VR_VARYING)
409 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
410 #endif
411
412 vr->type = t;
413 vr->min = min;
414 vr->max = max;
415
416 /* Since updating the equivalence set involves deep copying the
417 bitmaps, only do it if absolutely necessary. */
418 if (vr->equiv == NULL
419 && equiv != NULL)
420 vr->equiv = BITMAP_ALLOC (NULL);
421
422 if (equiv != vr->equiv)
423 {
424 if (equiv && !bitmap_empty_p (equiv))
425 bitmap_copy (vr->equiv, equiv);
426 else
427 bitmap_clear (vr->equiv);
428 }
429 }
430
431
432 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
433 This means adjusting T, MIN and MAX representing the case of a
434 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
435 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
436 In corner cases where MAX+1 or MIN-1 wraps this will fall back
437 to varying.
438 This routine exists to ease canonicalization in the case where we
439 extract ranges from var + CST op limit. */
440
441 static void
442 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
443 tree min, tree max, bitmap equiv)
444 {
445 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
446 if ((t != VR_RANGE
447 && t != VR_ANTI_RANGE)
448 || TREE_CODE (min) != INTEGER_CST
449 || TREE_CODE (max) != INTEGER_CST)
450 {
451 set_value_range (vr, t, min, max, equiv);
452 return;
453 }
454
455 /* Wrong order for min and max, to swap them and the VR type we need
456 to adjust them. */
457 if (tree_int_cst_lt (max, min))
458 {
459 tree one = build_int_cst (TREE_TYPE (min), 1);
460 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
461 max = int_const_binop (MINUS_EXPR, min, one, 0);
462 min = tmp;
463
464 /* There's one corner case, if we had [C+1, C] before we now have
465 that again. But this represents an empty value range, so drop
466 to varying in this case. */
467 if (tree_int_cst_lt (max, min))
468 {
469 set_value_range_to_varying (vr);
470 return;
471 }
472
473 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
474 }
475
476 /* Anti-ranges that can be represented as ranges should be so. */
477 if (t == VR_ANTI_RANGE)
478 {
479 bool is_min = vrp_val_is_min (min);
480 bool is_max = vrp_val_is_max (max);
481
482 if (is_min && is_max)
483 {
484 /* We cannot deal with empty ranges, drop to varying. */
485 set_value_range_to_varying (vr);
486 return;
487 }
488 else if (is_min
489 /* As a special exception preserve non-null ranges. */
490 && !(TYPE_UNSIGNED (TREE_TYPE (min))
491 && integer_zerop (max)))
492 {
493 tree one = build_int_cst (TREE_TYPE (max), 1);
494 min = int_const_binop (PLUS_EXPR, max, one, 0);
495 max = vrp_val_max (TREE_TYPE (max));
496 t = VR_RANGE;
497 }
498 else if (is_max)
499 {
500 tree one = build_int_cst (TREE_TYPE (min), 1);
501 max = int_const_binop (MINUS_EXPR, min, one, 0);
502 min = vrp_val_min (TREE_TYPE (min));
503 t = VR_RANGE;
504 }
505 }
506
507 set_value_range (vr, t, min, max, equiv);
508 }
509
510 /* Copy value range FROM into value range TO. */
511
512 static inline void
513 copy_value_range (value_range_t *to, value_range_t *from)
514 {
515 set_value_range (to, from->type, from->min, from->max, from->equiv);
516 }
517
518 /* Set value range VR to a single value. This function is only called
519 with values we get from statements, and exists to clear the
520 TREE_OVERFLOW flag so that we don't think we have an overflow
521 infinity when we shouldn't. */
522
523 static inline void
524 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
525 {
526 gcc_assert (is_gimple_min_invariant (val));
527 val = avoid_overflow_infinity (val);
528 set_value_range (vr, VR_RANGE, val, val, equiv);
529 }
530
531 /* Set value range VR to a non-negative range of type TYPE.
532 OVERFLOW_INFINITY indicates whether to use an overflow infinity
533 rather than TYPE_MAX_VALUE; this should be true if we determine
534 that the range is nonnegative based on the assumption that signed
535 overflow does not occur. */
536
537 static inline void
538 set_value_range_to_nonnegative (value_range_t *vr, tree type,
539 bool overflow_infinity)
540 {
541 tree zero;
542
543 if (overflow_infinity && !supports_overflow_infinity (type))
544 {
545 set_value_range_to_varying (vr);
546 return;
547 }
548
549 zero = build_int_cst (type, 0);
550 set_value_range (vr, VR_RANGE, zero,
551 (overflow_infinity
552 ? positive_overflow_infinity (type)
553 : TYPE_MAX_VALUE (type)),
554 vr->equiv);
555 }
556
557 /* Set value range VR to a non-NULL range of type TYPE. */
558
559 static inline void
560 set_value_range_to_nonnull (value_range_t *vr, tree type)
561 {
562 tree zero = build_int_cst (type, 0);
563 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
564 }
565
566
567 /* Set value range VR to a NULL range of type TYPE. */
568
569 static inline void
570 set_value_range_to_null (value_range_t *vr, tree type)
571 {
572 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
573 }
574
575
576 /* Set value range VR to a range of a truthvalue of type TYPE. */
577
578 static inline void
579 set_value_range_to_truthvalue (value_range_t *vr, tree type)
580 {
581 if (TYPE_PRECISION (type) == 1)
582 set_value_range_to_varying (vr);
583 else
584 set_value_range (vr, VR_RANGE,
585 build_int_cst (type, 0), build_int_cst (type, 1),
586 vr->equiv);
587 }
588
589
590 /* Set value range VR to VR_UNDEFINED. */
591
592 static inline void
593 set_value_range_to_undefined (value_range_t *vr)
594 {
595 vr->type = VR_UNDEFINED;
596 vr->min = vr->max = NULL_TREE;
597 if (vr->equiv)
598 bitmap_clear (vr->equiv);
599 }
600
601
602 /* If abs (min) < abs (max), set VR to [-max, max], if
603 abs (min) >= abs (max), set VR to [-min, min]. */
604
605 static void
606 abs_extent_range (value_range_t *vr, tree min, tree max)
607 {
608 int cmp;
609
610 gcc_assert (TREE_CODE (min) == INTEGER_CST);
611 gcc_assert (TREE_CODE (max) == INTEGER_CST);
612 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
613 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
614 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
615 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
616 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
617 {
618 set_value_range_to_varying (vr);
619 return;
620 }
621 cmp = compare_values (min, max);
622 if (cmp == -1)
623 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
624 else if (cmp == 0 || cmp == 1)
625 {
626 max = min;
627 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
628 }
629 else
630 {
631 set_value_range_to_varying (vr);
632 return;
633 }
634 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
635 }
636
637
638 /* Return value range information for VAR.
639
640 If we have no values ranges recorded (ie, VRP is not running), then
641 return NULL. Otherwise create an empty range if none existed for VAR. */
642
643 static value_range_t *
644 get_value_range (const_tree var)
645 {
646 value_range_t *vr;
647 tree sym;
648 unsigned ver = SSA_NAME_VERSION (var);
649
650 /* If we have no recorded ranges, then return NULL. */
651 if (! vr_value)
652 return NULL;
653
654 vr = vr_value[ver];
655 if (vr)
656 return vr;
657
658 /* Create a default value range. */
659 vr_value[ver] = vr = XCNEW (value_range_t);
660
661 /* Defer allocating the equivalence set. */
662 vr->equiv = NULL;
663
664 /* If VAR is a default definition, the variable can take any value
665 in VAR's type. */
666 sym = SSA_NAME_VAR (var);
667 if (SSA_NAME_IS_DEFAULT_DEF (var))
668 {
669 /* Try to use the "nonnull" attribute to create ~[0, 0]
670 anti-ranges for pointers. Note that this is only valid with
671 default definitions of PARM_DECLs. */
672 if (TREE_CODE (sym) == PARM_DECL
673 && POINTER_TYPE_P (TREE_TYPE (sym))
674 && nonnull_arg_p (sym))
675 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
676 else
677 set_value_range_to_varying (vr);
678 }
679
680 return vr;
681 }
682
683 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
684
685 static inline bool
686 vrp_operand_equal_p (const_tree val1, const_tree val2)
687 {
688 if (val1 == val2)
689 return true;
690 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
691 return false;
692 if (is_overflow_infinity (val1))
693 return is_overflow_infinity (val2);
694 return true;
695 }
696
697 /* Return true, if the bitmaps B1 and B2 are equal. */
698
699 static inline bool
700 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
701 {
702 return (b1 == b2
703 || (b1 && b2
704 && bitmap_equal_p (b1, b2)));
705 }
706
707 /* Update the value range and equivalence set for variable VAR to
708 NEW_VR. Return true if NEW_VR is different from VAR's previous
709 value.
710
711 NOTE: This function assumes that NEW_VR is a temporary value range
712 object created for the sole purpose of updating VAR's range. The
713 storage used by the equivalence set from NEW_VR will be freed by
714 this function. Do not call update_value_range when NEW_VR
715 is the range object associated with another SSA name. */
716
717 static inline bool
718 update_value_range (const_tree var, value_range_t *new_vr)
719 {
720 value_range_t *old_vr;
721 bool is_new;
722
723 /* Update the value range, if necessary. */
724 old_vr = get_value_range (var);
725 is_new = old_vr->type != new_vr->type
726 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
727 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
728 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
729
730 if (is_new)
731 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
732 new_vr->equiv);
733
734 BITMAP_FREE (new_vr->equiv);
735
736 return is_new;
737 }
738
739
740 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
741 point where equivalence processing can be turned on/off. */
742
743 static void
744 add_equivalence (bitmap *equiv, const_tree var)
745 {
746 unsigned ver = SSA_NAME_VERSION (var);
747 value_range_t *vr = vr_value[ver];
748
749 if (*equiv == NULL)
750 *equiv = BITMAP_ALLOC (NULL);
751 bitmap_set_bit (*equiv, ver);
752 if (vr && vr->equiv)
753 bitmap_ior_into (*equiv, vr->equiv);
754 }
755
756
757 /* Return true if VR is ~[0, 0]. */
758
759 static inline bool
760 range_is_nonnull (value_range_t *vr)
761 {
762 return vr->type == VR_ANTI_RANGE
763 && integer_zerop (vr->min)
764 && integer_zerop (vr->max);
765 }
766
767
768 /* Return true if VR is [0, 0]. */
769
770 static inline bool
771 range_is_null (value_range_t *vr)
772 {
773 return vr->type == VR_RANGE
774 && integer_zerop (vr->min)
775 && integer_zerop (vr->max);
776 }
777
778
779 /* Return true if value range VR involves at least one symbol. */
780
781 static inline bool
782 symbolic_range_p (value_range_t *vr)
783 {
784 return (!is_gimple_min_invariant (vr->min)
785 || !is_gimple_min_invariant (vr->max));
786 }
787
788 /* Return true if value range VR uses an overflow infinity. */
789
790 static inline bool
791 overflow_infinity_range_p (value_range_t *vr)
792 {
793 return (vr->type == VR_RANGE
794 && (is_overflow_infinity (vr->min)
795 || is_overflow_infinity (vr->max)));
796 }
797
798 /* Return false if we can not make a valid comparison based on VR;
799 this will be the case if it uses an overflow infinity and overflow
800 is not undefined (i.e., -fno-strict-overflow is in effect).
801 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
802 uses an overflow infinity. */
803
804 static bool
805 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
806 {
807 gcc_assert (vr->type == VR_RANGE);
808 if (is_overflow_infinity (vr->min))
809 {
810 *strict_overflow_p = true;
811 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
812 return false;
813 }
814 if (is_overflow_infinity (vr->max))
815 {
816 *strict_overflow_p = true;
817 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
818 return false;
819 }
820 return true;
821 }
822
823
824 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
825 ranges obtained so far. */
826
827 static bool
828 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
829 {
830 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
831 || (TREE_CODE (expr) == SSA_NAME
832 && ssa_name_nonnegative_p (expr)));
833 }
834
835 /* Return true if the result of assignment STMT is know to be non-negative.
836 If the return value is based on the assumption that signed overflow is
837 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
838 *STRICT_OVERFLOW_P.*/
839
840 static bool
841 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
842 {
843 enum tree_code code = gimple_assign_rhs_code (stmt);
844 switch (get_gimple_rhs_class (code))
845 {
846 case GIMPLE_UNARY_RHS:
847 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
848 gimple_expr_type (stmt),
849 gimple_assign_rhs1 (stmt),
850 strict_overflow_p);
851 case GIMPLE_BINARY_RHS:
852 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
853 gimple_expr_type (stmt),
854 gimple_assign_rhs1 (stmt),
855 gimple_assign_rhs2 (stmt),
856 strict_overflow_p);
857 case GIMPLE_SINGLE_RHS:
858 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
859 strict_overflow_p);
860 case GIMPLE_INVALID_RHS:
861 gcc_unreachable ();
862 default:
863 gcc_unreachable ();
864 }
865 }
866
867 /* Return true if return value of call STMT is know to be non-negative.
868 If the return value is based on the assumption that signed overflow is
869 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
870 *STRICT_OVERFLOW_P.*/
871
872 static bool
873 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
874 {
875 tree arg0 = gimple_call_num_args (stmt) > 0 ?
876 gimple_call_arg (stmt, 0) : NULL_TREE;
877 tree arg1 = gimple_call_num_args (stmt) > 1 ?
878 gimple_call_arg (stmt, 1) : NULL_TREE;
879
880 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
881 gimple_call_fndecl (stmt),
882 arg0,
883 arg1,
884 strict_overflow_p);
885 }
886
887 /* Return true if STMT is know to to compute a non-negative value.
888 If the return value is based on the assumption that signed overflow is
889 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
890 *STRICT_OVERFLOW_P.*/
891
892 static bool
893 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
894 {
895 switch (gimple_code (stmt))
896 {
897 case GIMPLE_ASSIGN:
898 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
899 case GIMPLE_CALL:
900 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
901 default:
902 gcc_unreachable ();
903 }
904 }
905
906 /* Return true if the result of assignment STMT is know to be non-zero.
907 If the return value is based on the assumption that signed overflow is
908 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
909 *STRICT_OVERFLOW_P.*/
910
911 static bool
912 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
913 {
914 enum tree_code code = gimple_assign_rhs_code (stmt);
915 switch (get_gimple_rhs_class (code))
916 {
917 case GIMPLE_UNARY_RHS:
918 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
919 gimple_expr_type (stmt),
920 gimple_assign_rhs1 (stmt),
921 strict_overflow_p);
922 case GIMPLE_BINARY_RHS:
923 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
924 gimple_expr_type (stmt),
925 gimple_assign_rhs1 (stmt),
926 gimple_assign_rhs2 (stmt),
927 strict_overflow_p);
928 case GIMPLE_SINGLE_RHS:
929 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
930 strict_overflow_p);
931 case GIMPLE_INVALID_RHS:
932 gcc_unreachable ();
933 default:
934 gcc_unreachable ();
935 }
936 }
937
938 /* Return true if STMT is know to to compute a non-zero value.
939 If the return value is based on the assumption that signed overflow is
940 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
941 *STRICT_OVERFLOW_P.*/
942
943 static bool
944 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
945 {
946 switch (gimple_code (stmt))
947 {
948 case GIMPLE_ASSIGN:
949 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
950 case GIMPLE_CALL:
951 return gimple_alloca_call_p (stmt);
952 default:
953 gcc_unreachable ();
954 }
955 }
956
957 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
958 obtained so far. */
959
960 static bool
961 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
962 {
963 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
964 return true;
965
966 /* If we have an expression of the form &X->a, then the expression
967 is nonnull if X is nonnull. */
968 if (is_gimple_assign (stmt)
969 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
970 {
971 tree expr = gimple_assign_rhs1 (stmt);
972 tree base = get_base_address (TREE_OPERAND (expr, 0));
973
974 if (base != NULL_TREE
975 && TREE_CODE (base) == INDIRECT_REF
976 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
977 {
978 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
979 if (range_is_nonnull (vr))
980 return true;
981 }
982 }
983
984 return false;
985 }
986
987 /* Returns true if EXPR is a valid value (as expected by compare_values) --
988 a gimple invariant, or SSA_NAME +- CST. */
989
990 static bool
991 valid_value_p (tree expr)
992 {
993 if (TREE_CODE (expr) == SSA_NAME)
994 return true;
995
996 if (TREE_CODE (expr) == PLUS_EXPR
997 || TREE_CODE (expr) == MINUS_EXPR)
998 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
999 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1000
1001 return is_gimple_min_invariant (expr);
1002 }
1003
1004 /* Return
1005 1 if VAL < VAL2
1006 0 if !(VAL < VAL2)
1007 -2 if those are incomparable. */
1008 static inline int
1009 operand_less_p (tree val, tree val2)
1010 {
1011 /* LT is folded faster than GE and others. Inline the common case. */
1012 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1013 {
1014 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1015 return INT_CST_LT_UNSIGNED (val, val2);
1016 else
1017 {
1018 if (INT_CST_LT (val, val2))
1019 return 1;
1020 }
1021 }
1022 else
1023 {
1024 tree tcmp;
1025
1026 fold_defer_overflow_warnings ();
1027
1028 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1029
1030 fold_undefer_and_ignore_overflow_warnings ();
1031
1032 if (!tcmp
1033 || TREE_CODE (tcmp) != INTEGER_CST)
1034 return -2;
1035
1036 if (!integer_zerop (tcmp))
1037 return 1;
1038 }
1039
1040 /* val >= val2, not considering overflow infinity. */
1041 if (is_negative_overflow_infinity (val))
1042 return is_negative_overflow_infinity (val2) ? 0 : 1;
1043 else if (is_positive_overflow_infinity (val2))
1044 return is_positive_overflow_infinity (val) ? 0 : 1;
1045
1046 return 0;
1047 }
1048
1049 /* Compare two values VAL1 and VAL2. Return
1050
1051 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1052 -1 if VAL1 < VAL2,
1053 0 if VAL1 == VAL2,
1054 +1 if VAL1 > VAL2, and
1055 +2 if VAL1 != VAL2
1056
1057 This is similar to tree_int_cst_compare but supports pointer values
1058 and values that cannot be compared at compile time.
1059
1060 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1061 true if the return value is only valid if we assume that signed
1062 overflow is undefined. */
1063
1064 static int
1065 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1066 {
1067 if (val1 == val2)
1068 return 0;
1069
1070 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1071 both integers. */
1072 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1073 == POINTER_TYPE_P (TREE_TYPE (val2)));
1074 /* Convert the two values into the same type. This is needed because
1075 sizetype causes sign extension even for unsigned types. */
1076 val2 = fold_convert (TREE_TYPE (val1), val2);
1077 STRIP_USELESS_TYPE_CONVERSION (val2);
1078
1079 if ((TREE_CODE (val1) == SSA_NAME
1080 || TREE_CODE (val1) == PLUS_EXPR
1081 || TREE_CODE (val1) == MINUS_EXPR)
1082 && (TREE_CODE (val2) == SSA_NAME
1083 || TREE_CODE (val2) == PLUS_EXPR
1084 || TREE_CODE (val2) == MINUS_EXPR))
1085 {
1086 tree n1, c1, n2, c2;
1087 enum tree_code code1, code2;
1088
1089 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1090 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1091 same name, return -2. */
1092 if (TREE_CODE (val1) == SSA_NAME)
1093 {
1094 code1 = SSA_NAME;
1095 n1 = val1;
1096 c1 = NULL_TREE;
1097 }
1098 else
1099 {
1100 code1 = TREE_CODE (val1);
1101 n1 = TREE_OPERAND (val1, 0);
1102 c1 = TREE_OPERAND (val1, 1);
1103 if (tree_int_cst_sgn (c1) == -1)
1104 {
1105 if (is_negative_overflow_infinity (c1))
1106 return -2;
1107 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1108 if (!c1)
1109 return -2;
1110 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1111 }
1112 }
1113
1114 if (TREE_CODE (val2) == SSA_NAME)
1115 {
1116 code2 = SSA_NAME;
1117 n2 = val2;
1118 c2 = NULL_TREE;
1119 }
1120 else
1121 {
1122 code2 = TREE_CODE (val2);
1123 n2 = TREE_OPERAND (val2, 0);
1124 c2 = TREE_OPERAND (val2, 1);
1125 if (tree_int_cst_sgn (c2) == -1)
1126 {
1127 if (is_negative_overflow_infinity (c2))
1128 return -2;
1129 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1130 if (!c2)
1131 return -2;
1132 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1133 }
1134 }
1135
1136 /* Both values must use the same name. */
1137 if (n1 != n2)
1138 return -2;
1139
1140 if (code1 == SSA_NAME
1141 && code2 == SSA_NAME)
1142 /* NAME == NAME */
1143 return 0;
1144
1145 /* If overflow is defined we cannot simplify more. */
1146 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1147 return -2;
1148
1149 if (strict_overflow_p != NULL
1150 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1151 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1152 *strict_overflow_p = true;
1153
1154 if (code1 == SSA_NAME)
1155 {
1156 if (code2 == PLUS_EXPR)
1157 /* NAME < NAME + CST */
1158 return -1;
1159 else if (code2 == MINUS_EXPR)
1160 /* NAME > NAME - CST */
1161 return 1;
1162 }
1163 else if (code1 == PLUS_EXPR)
1164 {
1165 if (code2 == SSA_NAME)
1166 /* NAME + CST > NAME */
1167 return 1;
1168 else if (code2 == PLUS_EXPR)
1169 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1170 return compare_values_warnv (c1, c2, strict_overflow_p);
1171 else if (code2 == MINUS_EXPR)
1172 /* NAME + CST1 > NAME - CST2 */
1173 return 1;
1174 }
1175 else if (code1 == MINUS_EXPR)
1176 {
1177 if (code2 == SSA_NAME)
1178 /* NAME - CST < NAME */
1179 return -1;
1180 else if (code2 == PLUS_EXPR)
1181 /* NAME - CST1 < NAME + CST2 */
1182 return -1;
1183 else if (code2 == MINUS_EXPR)
1184 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1185 C1 and C2 are swapped in the call to compare_values. */
1186 return compare_values_warnv (c2, c1, strict_overflow_p);
1187 }
1188
1189 gcc_unreachable ();
1190 }
1191
1192 /* We cannot compare non-constants. */
1193 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1194 return -2;
1195
1196 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1197 {
1198 /* We cannot compare overflowed values, except for overflow
1199 infinities. */
1200 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1201 {
1202 if (strict_overflow_p != NULL)
1203 *strict_overflow_p = true;
1204 if (is_negative_overflow_infinity (val1))
1205 return is_negative_overflow_infinity (val2) ? 0 : -1;
1206 else if (is_negative_overflow_infinity (val2))
1207 return 1;
1208 else if (is_positive_overflow_infinity (val1))
1209 return is_positive_overflow_infinity (val2) ? 0 : 1;
1210 else if (is_positive_overflow_infinity (val2))
1211 return -1;
1212 return -2;
1213 }
1214
1215 return tree_int_cst_compare (val1, val2);
1216 }
1217 else
1218 {
1219 tree t;
1220
1221 /* First see if VAL1 and VAL2 are not the same. */
1222 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1223 return 0;
1224
1225 /* If VAL1 is a lower address than VAL2, return -1. */
1226 if (operand_less_p (val1, val2) == 1)
1227 return -1;
1228
1229 /* If VAL1 is a higher address than VAL2, return +1. */
1230 if (operand_less_p (val2, val1) == 1)
1231 return 1;
1232
1233 /* If VAL1 is different than VAL2, return +2.
1234 For integer constants we either have already returned -1 or 1
1235 or they are equivalent. We still might succeed in proving
1236 something about non-trivial operands. */
1237 if (TREE_CODE (val1) != INTEGER_CST
1238 || TREE_CODE (val2) != INTEGER_CST)
1239 {
1240 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1241 if (t && integer_onep (t))
1242 return 2;
1243 }
1244
1245 return -2;
1246 }
1247 }
1248
1249 /* Compare values like compare_values_warnv, but treat comparisons of
1250 nonconstants which rely on undefined overflow as incomparable. */
1251
1252 static int
1253 compare_values (tree val1, tree val2)
1254 {
1255 bool sop;
1256 int ret;
1257
1258 sop = false;
1259 ret = compare_values_warnv (val1, val2, &sop);
1260 if (sop
1261 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1262 ret = -2;
1263 return ret;
1264 }
1265
1266
1267 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1268 0 if VAL is not inside VR,
1269 -2 if we cannot tell either way.
1270
1271 FIXME, the current semantics of this functions are a bit quirky
1272 when taken in the context of VRP. In here we do not care
1273 about VR's type. If VR is the anti-range ~[3, 5] the call
1274 value_inside_range (4, VR) will return 1.
1275
1276 This is counter-intuitive in a strict sense, but the callers
1277 currently expect this. They are calling the function
1278 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1279 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1280 themselves.
1281
1282 This also applies to value_ranges_intersect_p and
1283 range_includes_zero_p. The semantics of VR_RANGE and
1284 VR_ANTI_RANGE should be encoded here, but that also means
1285 adapting the users of these functions to the new semantics.
1286
1287 Benchmark compile/20001226-1.c compilation time after changing this
1288 function. */
1289
1290 static inline int
1291 value_inside_range (tree val, value_range_t * vr)
1292 {
1293 int cmp1, cmp2;
1294
1295 cmp1 = operand_less_p (val, vr->min);
1296 if (cmp1 == -2)
1297 return -2;
1298 if (cmp1 == 1)
1299 return 0;
1300
1301 cmp2 = operand_less_p (vr->max, val);
1302 if (cmp2 == -2)
1303 return -2;
1304
1305 return !cmp2;
1306 }
1307
1308
1309 /* Return true if value ranges VR0 and VR1 have a non-empty
1310 intersection.
1311
1312 Benchmark compile/20001226-1.c compilation time after changing this
1313 function.
1314 */
1315
1316 static inline bool
1317 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1318 {
1319 /* The value ranges do not intersect if the maximum of the first range is
1320 less than the minimum of the second range or vice versa.
1321 When those relations are unknown, we can't do any better. */
1322 if (operand_less_p (vr0->max, vr1->min) != 0)
1323 return false;
1324 if (operand_less_p (vr1->max, vr0->min) != 0)
1325 return false;
1326 return true;
1327 }
1328
1329
1330 /* Return true if VR includes the value zero, false otherwise. FIXME,
1331 currently this will return false for an anti-range like ~[-4, 3].
1332 This will be wrong when the semantics of value_inside_range are
1333 modified (currently the users of this function expect these
1334 semantics). */
1335
1336 static inline bool
1337 range_includes_zero_p (value_range_t *vr)
1338 {
1339 tree zero;
1340
1341 gcc_assert (vr->type != VR_UNDEFINED
1342 && vr->type != VR_VARYING
1343 && !symbolic_range_p (vr));
1344
1345 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1346 return (value_inside_range (zero, vr) == 1);
1347 }
1348
1349 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1350 false otherwise or if no value range information is available. */
1351
1352 bool
1353 ssa_name_nonnegative_p (const_tree t)
1354 {
1355 value_range_t *vr = get_value_range (t);
1356
1357 if (!vr)
1358 return false;
1359
1360 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1361 which would return a useful value should be encoded as a VR_RANGE. */
1362 if (vr->type == VR_RANGE)
1363 {
1364 int result = compare_values (vr->min, integer_zero_node);
1365
1366 return (result == 0 || result == 1);
1367 }
1368 return false;
1369 }
1370
1371 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
1372 false otherwise or if no value range information is available. */
1373
1374 bool
1375 ssa_name_nonzero_p (const_tree t)
1376 {
1377 value_range_t *vr = get_value_range (t);
1378
1379 if (!vr)
1380 return false;
1381
1382 /* A VR_RANGE which does not include zero is a nonzero value. */
1383 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1384 return ! range_includes_zero_p (vr);
1385
1386 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1387 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1388 return range_includes_zero_p (vr);
1389
1390 return false;
1391 }
1392
1393 /* If OP has a value range with a single constant value return that,
1394 otherwise return NULL_TREE. This returns OP itself if OP is a
1395 constant. */
1396
1397 static tree
1398 op_with_constant_singleton_value_range (tree op)
1399 {
1400 value_range_t *vr;
1401
1402 if (is_gimple_min_invariant (op))
1403 return op;
1404
1405 if (TREE_CODE (op) != SSA_NAME)
1406 return NULL_TREE;
1407
1408 vr = get_value_range (op);
1409 if (vr->type == VR_RANGE
1410 && operand_equal_p (vr->min, vr->max, 0)
1411 && is_gimple_min_invariant (vr->min))
1412 return vr->min;
1413
1414 return NULL_TREE;
1415 }
1416
1417
1418 /* Extract value range information from an ASSERT_EXPR EXPR and store
1419 it in *VR_P. */
1420
1421 static void
1422 extract_range_from_assert (value_range_t *vr_p, tree expr)
1423 {
1424 tree var, cond, limit, min, max, type;
1425 value_range_t *var_vr, *limit_vr;
1426 enum tree_code cond_code;
1427
1428 var = ASSERT_EXPR_VAR (expr);
1429 cond = ASSERT_EXPR_COND (expr);
1430
1431 gcc_assert (COMPARISON_CLASS_P (cond));
1432
1433 /* Find VAR in the ASSERT_EXPR conditional. */
1434 if (var == TREE_OPERAND (cond, 0)
1435 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1436 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1437 {
1438 /* If the predicate is of the form VAR COMP LIMIT, then we just
1439 take LIMIT from the RHS and use the same comparison code. */
1440 cond_code = TREE_CODE (cond);
1441 limit = TREE_OPERAND (cond, 1);
1442 cond = TREE_OPERAND (cond, 0);
1443 }
1444 else
1445 {
1446 /* If the predicate is of the form LIMIT COMP VAR, then we need
1447 to flip around the comparison code to create the proper range
1448 for VAR. */
1449 cond_code = swap_tree_comparison (TREE_CODE (cond));
1450 limit = TREE_OPERAND (cond, 0);
1451 cond = TREE_OPERAND (cond, 1);
1452 }
1453
1454 limit = avoid_overflow_infinity (limit);
1455
1456 type = TREE_TYPE (limit);
1457 gcc_assert (limit != var);
1458
1459 /* For pointer arithmetic, we only keep track of pointer equality
1460 and inequality. */
1461 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1462 {
1463 set_value_range_to_varying (vr_p);
1464 return;
1465 }
1466
1467 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1468 try to use LIMIT's range to avoid creating symbolic ranges
1469 unnecessarily. */
1470 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1471
1472 /* LIMIT's range is only interesting if it has any useful information. */
1473 if (limit_vr
1474 && (limit_vr->type == VR_UNDEFINED
1475 || limit_vr->type == VR_VARYING
1476 || symbolic_range_p (limit_vr)))
1477 limit_vr = NULL;
1478
1479 /* Initially, the new range has the same set of equivalences of
1480 VAR's range. This will be revised before returning the final
1481 value. Since assertions may be chained via mutually exclusive
1482 predicates, we will need to trim the set of equivalences before
1483 we are done. */
1484 gcc_assert (vr_p->equiv == NULL);
1485 add_equivalence (&vr_p->equiv, var);
1486
1487 /* Extract a new range based on the asserted comparison for VAR and
1488 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1489 will only use it for equality comparisons (EQ_EXPR). For any
1490 other kind of assertion, we cannot derive a range from LIMIT's
1491 anti-range that can be used to describe the new range. For
1492 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1493 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1494 no single range for x_2 that could describe LE_EXPR, so we might
1495 as well build the range [b_4, +INF] for it.
1496 One special case we handle is extracting a range from a
1497 range test encoded as (unsigned)var + CST <= limit. */
1498 if (TREE_CODE (cond) == NOP_EXPR
1499 || TREE_CODE (cond) == PLUS_EXPR)
1500 {
1501 if (TREE_CODE (cond) == PLUS_EXPR)
1502 {
1503 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1504 TREE_OPERAND (cond, 1));
1505 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1506 cond = TREE_OPERAND (cond, 0);
1507 }
1508 else
1509 {
1510 min = build_int_cst (TREE_TYPE (var), 0);
1511 max = limit;
1512 }
1513
1514 /* Make sure to not set TREE_OVERFLOW on the final type
1515 conversion. We are willingly interpreting large positive
1516 unsigned values as negative singed values here. */
1517 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1518 TREE_INT_CST_HIGH (min), 0, false);
1519 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1520 TREE_INT_CST_HIGH (max), 0, false);
1521
1522 /* We can transform a max, min range to an anti-range or
1523 vice-versa. Use set_and_canonicalize_value_range which does
1524 this for us. */
1525 if (cond_code == LE_EXPR)
1526 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1527 min, max, vr_p->equiv);
1528 else if (cond_code == GT_EXPR)
1529 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1530 min, max, vr_p->equiv);
1531 else
1532 gcc_unreachable ();
1533 }
1534 else if (cond_code == EQ_EXPR)
1535 {
1536 enum value_range_type range_type;
1537
1538 if (limit_vr)
1539 {
1540 range_type = limit_vr->type;
1541 min = limit_vr->min;
1542 max = limit_vr->max;
1543 }
1544 else
1545 {
1546 range_type = VR_RANGE;
1547 min = limit;
1548 max = limit;
1549 }
1550
1551 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1552
1553 /* When asserting the equality VAR == LIMIT and LIMIT is another
1554 SSA name, the new range will also inherit the equivalence set
1555 from LIMIT. */
1556 if (TREE_CODE (limit) == SSA_NAME)
1557 add_equivalence (&vr_p->equiv, limit);
1558 }
1559 else if (cond_code == NE_EXPR)
1560 {
1561 /* As described above, when LIMIT's range is an anti-range and
1562 this assertion is an inequality (NE_EXPR), then we cannot
1563 derive anything from the anti-range. For instance, if
1564 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1565 not imply that VAR's range is [0, 0]. So, in the case of
1566 anti-ranges, we just assert the inequality using LIMIT and
1567 not its anti-range.
1568
1569 If LIMIT_VR is a range, we can only use it to build a new
1570 anti-range if LIMIT_VR is a single-valued range. For
1571 instance, if LIMIT_VR is [0, 1], the predicate
1572 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1573 Rather, it means that for value 0 VAR should be ~[0, 0]
1574 and for value 1, VAR should be ~[1, 1]. We cannot
1575 represent these ranges.
1576
1577 The only situation in which we can build a valid
1578 anti-range is when LIMIT_VR is a single-valued range
1579 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1580 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1581 if (limit_vr
1582 && limit_vr->type == VR_RANGE
1583 && compare_values (limit_vr->min, limit_vr->max) == 0)
1584 {
1585 min = limit_vr->min;
1586 max = limit_vr->max;
1587 }
1588 else
1589 {
1590 /* In any other case, we cannot use LIMIT's range to build a
1591 valid anti-range. */
1592 min = max = limit;
1593 }
1594
1595 /* If MIN and MAX cover the whole range for their type, then
1596 just use the original LIMIT. */
1597 if (INTEGRAL_TYPE_P (type)
1598 && vrp_val_is_min (min)
1599 && vrp_val_is_max (max))
1600 min = max = limit;
1601
1602 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1603 }
1604 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1605 {
1606 min = TYPE_MIN_VALUE (type);
1607
1608 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1609 max = limit;
1610 else
1611 {
1612 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1613 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1614 LT_EXPR. */
1615 max = limit_vr->max;
1616 }
1617
1618 /* If the maximum value forces us to be out of bounds, simply punt.
1619 It would be pointless to try and do anything more since this
1620 all should be optimized away above us. */
1621 if ((cond_code == LT_EXPR
1622 && compare_values (max, min) == 0)
1623 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1624 set_value_range_to_varying (vr_p);
1625 else
1626 {
1627 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1628 if (cond_code == LT_EXPR)
1629 {
1630 tree one = build_int_cst (type, 1);
1631 max = fold_build2 (MINUS_EXPR, type, max, one);
1632 if (EXPR_P (max))
1633 TREE_NO_WARNING (max) = 1;
1634 }
1635
1636 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1637 }
1638 }
1639 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1640 {
1641 max = TYPE_MAX_VALUE (type);
1642
1643 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1644 min = limit;
1645 else
1646 {
1647 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1648 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1649 GT_EXPR. */
1650 min = limit_vr->min;
1651 }
1652
1653 /* If the minimum value forces us to be out of bounds, simply punt.
1654 It would be pointless to try and do anything more since this
1655 all should be optimized away above us. */
1656 if ((cond_code == GT_EXPR
1657 && compare_values (min, max) == 0)
1658 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1659 set_value_range_to_varying (vr_p);
1660 else
1661 {
1662 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1663 if (cond_code == GT_EXPR)
1664 {
1665 tree one = build_int_cst (type, 1);
1666 min = fold_build2 (PLUS_EXPR, type, min, one);
1667 if (EXPR_P (min))
1668 TREE_NO_WARNING (min) = 1;
1669 }
1670
1671 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1672 }
1673 }
1674 else
1675 gcc_unreachable ();
1676
1677 /* If VAR already had a known range, it may happen that the new
1678 range we have computed and VAR's range are not compatible. For
1679 instance,
1680
1681 if (p_5 == NULL)
1682 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1683 x_7 = p_6->fld;
1684 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1685
1686 While the above comes from a faulty program, it will cause an ICE
1687 later because p_8 and p_6 will have incompatible ranges and at
1688 the same time will be considered equivalent. A similar situation
1689 would arise from
1690
1691 if (i_5 > 10)
1692 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1693 if (i_5 < 5)
1694 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1695
1696 Again i_6 and i_7 will have incompatible ranges. It would be
1697 pointless to try and do anything with i_7's range because
1698 anything dominated by 'if (i_5 < 5)' will be optimized away.
1699 Note, due to the wa in which simulation proceeds, the statement
1700 i_7 = ASSERT_EXPR <...> we would never be visited because the
1701 conditional 'if (i_5 < 5)' always evaluates to false. However,
1702 this extra check does not hurt and may protect against future
1703 changes to VRP that may get into a situation similar to the
1704 NULL pointer dereference example.
1705
1706 Note that these compatibility tests are only needed when dealing
1707 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1708 are both anti-ranges, they will always be compatible, because two
1709 anti-ranges will always have a non-empty intersection. */
1710
1711 var_vr = get_value_range (var);
1712
1713 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1714 ranges or anti-ranges. */
1715 if (vr_p->type == VR_VARYING
1716 || vr_p->type == VR_UNDEFINED
1717 || var_vr->type == VR_VARYING
1718 || var_vr->type == VR_UNDEFINED
1719 || symbolic_range_p (vr_p)
1720 || symbolic_range_p (var_vr))
1721 return;
1722
1723 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1724 {
1725 /* If the two ranges have a non-empty intersection, we can
1726 refine the resulting range. Since the assert expression
1727 creates an equivalency and at the same time it asserts a
1728 predicate, we can take the intersection of the two ranges to
1729 get better precision. */
1730 if (value_ranges_intersect_p (var_vr, vr_p))
1731 {
1732 /* Use the larger of the two minimums. */
1733 if (compare_values (vr_p->min, var_vr->min) == -1)
1734 min = var_vr->min;
1735 else
1736 min = vr_p->min;
1737
1738 /* Use the smaller of the two maximums. */
1739 if (compare_values (vr_p->max, var_vr->max) == 1)
1740 max = var_vr->max;
1741 else
1742 max = vr_p->max;
1743
1744 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1745 }
1746 else
1747 {
1748 /* The two ranges do not intersect, set the new range to
1749 VARYING, because we will not be able to do anything
1750 meaningful with it. */
1751 set_value_range_to_varying (vr_p);
1752 }
1753 }
1754 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1755 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1756 {
1757 /* A range and an anti-range will cancel each other only if
1758 their ends are the same. For instance, in the example above,
1759 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1760 so VR_P should be set to VR_VARYING. */
1761 if (compare_values (var_vr->min, vr_p->min) == 0
1762 && compare_values (var_vr->max, vr_p->max) == 0)
1763 set_value_range_to_varying (vr_p);
1764 else
1765 {
1766 tree min, max, anti_min, anti_max, real_min, real_max;
1767 int cmp;
1768
1769 /* We want to compute the logical AND of the two ranges;
1770 there are three cases to consider.
1771
1772
1773 1. The VR_ANTI_RANGE range is completely within the
1774 VR_RANGE and the endpoints of the ranges are
1775 different. In that case the resulting range
1776 should be whichever range is more precise.
1777 Typically that will be the VR_RANGE.
1778
1779 2. The VR_ANTI_RANGE is completely disjoint from
1780 the VR_RANGE. In this case the resulting range
1781 should be the VR_RANGE.
1782
1783 3. There is some overlap between the VR_ANTI_RANGE
1784 and the VR_RANGE.
1785
1786 3a. If the high limit of the VR_ANTI_RANGE resides
1787 within the VR_RANGE, then the result is a new
1788 VR_RANGE starting at the high limit of the
1789 VR_ANTI_RANGE + 1 and extending to the
1790 high limit of the original VR_RANGE.
1791
1792 3b. If the low limit of the VR_ANTI_RANGE resides
1793 within the VR_RANGE, then the result is a new
1794 VR_RANGE starting at the low limit of the original
1795 VR_RANGE and extending to the low limit of the
1796 VR_ANTI_RANGE - 1. */
1797 if (vr_p->type == VR_ANTI_RANGE)
1798 {
1799 anti_min = vr_p->min;
1800 anti_max = vr_p->max;
1801 real_min = var_vr->min;
1802 real_max = var_vr->max;
1803 }
1804 else
1805 {
1806 anti_min = var_vr->min;
1807 anti_max = var_vr->max;
1808 real_min = vr_p->min;
1809 real_max = vr_p->max;
1810 }
1811
1812
1813 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1814 not including any endpoints. */
1815 if (compare_values (anti_max, real_max) == -1
1816 && compare_values (anti_min, real_min) == 1)
1817 {
1818 /* If the range is covering the whole valid range of
1819 the type keep the anti-range. */
1820 if (!vrp_val_is_min (real_min)
1821 || !vrp_val_is_max (real_max))
1822 set_value_range (vr_p, VR_RANGE, real_min,
1823 real_max, vr_p->equiv);
1824 }
1825 /* Case 2, VR_ANTI_RANGE completely disjoint from
1826 VR_RANGE. */
1827 else if (compare_values (anti_min, real_max) == 1
1828 || compare_values (anti_max, real_min) == -1)
1829 {
1830 set_value_range (vr_p, VR_RANGE, real_min,
1831 real_max, vr_p->equiv);
1832 }
1833 /* Case 3a, the anti-range extends into the low
1834 part of the real range. Thus creating a new
1835 low for the real range. */
1836 else if (((cmp = compare_values (anti_max, real_min)) == 1
1837 || cmp == 0)
1838 && compare_values (anti_max, real_max) == -1)
1839 {
1840 gcc_assert (!is_positive_overflow_infinity (anti_max));
1841 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1842 && vrp_val_is_max (anti_max))
1843 {
1844 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1845 {
1846 set_value_range_to_varying (vr_p);
1847 return;
1848 }
1849 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1850 }
1851 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1852 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1853 anti_max,
1854 build_int_cst (TREE_TYPE (var_vr->min), 1));
1855 else
1856 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1857 anti_max, size_int (1));
1858 max = real_max;
1859 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1860 }
1861 /* Case 3b, the anti-range extends into the high
1862 part of the real range. Thus creating a new
1863 higher for the real range. */
1864 else if (compare_values (anti_min, real_min) == 1
1865 && ((cmp = compare_values (anti_min, real_max)) == -1
1866 || cmp == 0))
1867 {
1868 gcc_assert (!is_negative_overflow_infinity (anti_min));
1869 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1870 && vrp_val_is_min (anti_min))
1871 {
1872 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1873 {
1874 set_value_range_to_varying (vr_p);
1875 return;
1876 }
1877 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1878 }
1879 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1880 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1881 anti_min,
1882 build_int_cst (TREE_TYPE (var_vr->min), 1));
1883 else
1884 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1885 anti_min,
1886 size_int (-1));
1887 min = real_min;
1888 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1889 }
1890 }
1891 }
1892 }
1893
1894
1895 /* Extract range information from SSA name VAR and store it in VR. If
1896 VAR has an interesting range, use it. Otherwise, create the
1897 range [VAR, VAR] and return it. This is useful in situations where
1898 we may have conditionals testing values of VARYING names. For
1899 instance,
1900
1901 x_3 = y_5;
1902 if (x_3 > y_5)
1903 ...
1904
1905 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1906 always false. */
1907
1908 static void
1909 extract_range_from_ssa_name (value_range_t *vr, tree var)
1910 {
1911 value_range_t *var_vr = get_value_range (var);
1912
1913 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1914 copy_value_range (vr, var_vr);
1915 else
1916 set_value_range (vr, VR_RANGE, var, var, NULL);
1917
1918 add_equivalence (&vr->equiv, var);
1919 }
1920
1921
1922 /* Wrapper around int_const_binop. If the operation overflows and we
1923 are not using wrapping arithmetic, then adjust the result to be
1924 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1925 NULL_TREE if we need to use an overflow infinity representation but
1926 the type does not support it. */
1927
1928 static tree
1929 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1930 {
1931 tree res;
1932
1933 res = int_const_binop (code, val1, val2, 0);
1934
1935 /* If we are not using wrapping arithmetic, operate symbolically
1936 on -INF and +INF. */
1937 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1938 {
1939 int checkz = compare_values (res, val1);
1940 bool overflow = false;
1941
1942 /* Ensure that res = val1 [+*] val2 >= val1
1943 or that res = val1 - val2 <= val1. */
1944 if ((code == PLUS_EXPR
1945 && !(checkz == 1 || checkz == 0))
1946 || (code == MINUS_EXPR
1947 && !(checkz == 0 || checkz == -1)))
1948 {
1949 overflow = true;
1950 }
1951 /* Checking for multiplication overflow is done by dividing the
1952 output of the multiplication by the first input of the
1953 multiplication. If the result of that division operation is
1954 not equal to the second input of the multiplication, then the
1955 multiplication overflowed. */
1956 else if (code == MULT_EXPR && !integer_zerop (val1))
1957 {
1958 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1959 res,
1960 val1, 0);
1961 int check = compare_values (tmp, val2);
1962
1963 if (check != 0)
1964 overflow = true;
1965 }
1966
1967 if (overflow)
1968 {
1969 res = copy_node (res);
1970 TREE_OVERFLOW (res) = 1;
1971 }
1972
1973 }
1974 else if ((TREE_OVERFLOW (res)
1975 && !TREE_OVERFLOW (val1)
1976 && !TREE_OVERFLOW (val2))
1977 || is_overflow_infinity (val1)
1978 || is_overflow_infinity (val2))
1979 {
1980 /* If the operation overflowed but neither VAL1 nor VAL2 are
1981 overflown, return -INF or +INF depending on the operation
1982 and the combination of signs of the operands. */
1983 int sgn1 = tree_int_cst_sgn (val1);
1984 int sgn2 = tree_int_cst_sgn (val2);
1985
1986 if (needs_overflow_infinity (TREE_TYPE (res))
1987 && !supports_overflow_infinity (TREE_TYPE (res)))
1988 return NULL_TREE;
1989
1990 /* We have to punt on adding infinities of different signs,
1991 since we can't tell what the sign of the result should be.
1992 Likewise for subtracting infinities of the same sign. */
1993 if (((code == PLUS_EXPR && sgn1 != sgn2)
1994 || (code == MINUS_EXPR && sgn1 == sgn2))
1995 && is_overflow_infinity (val1)
1996 && is_overflow_infinity (val2))
1997 return NULL_TREE;
1998
1999 /* Don't try to handle division or shifting of infinities. */
2000 if ((code == TRUNC_DIV_EXPR
2001 || code == FLOOR_DIV_EXPR
2002 || code == CEIL_DIV_EXPR
2003 || code == EXACT_DIV_EXPR
2004 || code == ROUND_DIV_EXPR
2005 || code == RSHIFT_EXPR)
2006 && (is_overflow_infinity (val1)
2007 || is_overflow_infinity (val2)))
2008 return NULL_TREE;
2009
2010 /* Notice that we only need to handle the restricted set of
2011 operations handled by extract_range_from_binary_expr.
2012 Among them, only multiplication, addition and subtraction
2013 can yield overflow without overflown operands because we
2014 are working with integral types only... except in the
2015 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2016 for division too. */
2017
2018 /* For multiplication, the sign of the overflow is given
2019 by the comparison of the signs of the operands. */
2020 if ((code == MULT_EXPR && sgn1 == sgn2)
2021 /* For addition, the operands must be of the same sign
2022 to yield an overflow. Its sign is therefore that
2023 of one of the operands, for example the first. For
2024 infinite operands X + -INF is negative, not positive. */
2025 || (code == PLUS_EXPR
2026 && (sgn1 >= 0
2027 ? !is_negative_overflow_infinity (val2)
2028 : is_positive_overflow_infinity (val2)))
2029 /* For subtraction, non-infinite operands must be of
2030 different signs to yield an overflow. Its sign is
2031 therefore that of the first operand or the opposite of
2032 that of the second operand. A first operand of 0 counts
2033 as positive here, for the corner case 0 - (-INF), which
2034 overflows, but must yield +INF. For infinite operands 0
2035 - INF is negative, not positive. */
2036 || (code == MINUS_EXPR
2037 && (sgn1 >= 0
2038 ? !is_positive_overflow_infinity (val2)
2039 : is_negative_overflow_infinity (val2)))
2040 /* We only get in here with positive shift count, so the
2041 overflow direction is the same as the sign of val1.
2042 Actually rshift does not overflow at all, but we only
2043 handle the case of shifting overflowed -INF and +INF. */
2044 || (code == RSHIFT_EXPR
2045 && sgn1 >= 0)
2046 /* For division, the only case is -INF / -1 = +INF. */
2047 || code == TRUNC_DIV_EXPR
2048 || code == FLOOR_DIV_EXPR
2049 || code == CEIL_DIV_EXPR
2050 || code == EXACT_DIV_EXPR
2051 || code == ROUND_DIV_EXPR)
2052 return (needs_overflow_infinity (TREE_TYPE (res))
2053 ? positive_overflow_infinity (TREE_TYPE (res))
2054 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2055 else
2056 return (needs_overflow_infinity (TREE_TYPE (res))
2057 ? negative_overflow_infinity (TREE_TYPE (res))
2058 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2059 }
2060
2061 return res;
2062 }
2063
2064
2065 /* Extract range information from a binary expression EXPR based on
2066 the ranges of each of its operands and the expression code. */
2067
2068 static void
2069 extract_range_from_binary_expr (value_range_t *vr,
2070 enum tree_code code,
2071 tree expr_type, tree op0, tree op1)
2072 {
2073 enum value_range_type type;
2074 tree min, max;
2075 int cmp;
2076 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2077 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2078
2079 /* Not all binary expressions can be applied to ranges in a
2080 meaningful way. Handle only arithmetic operations. */
2081 if (code != PLUS_EXPR
2082 && code != MINUS_EXPR
2083 && code != POINTER_PLUS_EXPR
2084 && code != MULT_EXPR
2085 && code != TRUNC_DIV_EXPR
2086 && code != FLOOR_DIV_EXPR
2087 && code != CEIL_DIV_EXPR
2088 && code != EXACT_DIV_EXPR
2089 && code != ROUND_DIV_EXPR
2090 && code != RSHIFT_EXPR
2091 && code != MIN_EXPR
2092 && code != MAX_EXPR
2093 && code != BIT_AND_EXPR
2094 && code != BIT_IOR_EXPR
2095 && code != TRUTH_AND_EXPR
2096 && code != TRUTH_OR_EXPR)
2097 {
2098 /* We can still do constant propagation here. */
2099 tree const_op0 = op_with_constant_singleton_value_range (op0);
2100 tree const_op1 = op_with_constant_singleton_value_range (op1);
2101 if (const_op0 || const_op1)
2102 {
2103 tree tem = fold_binary (code, expr_type,
2104 const_op0 ? const_op0 : op0,
2105 const_op1 ? const_op1 : op1);
2106 if (tem
2107 && is_gimple_min_invariant (tem)
2108 && !is_overflow_infinity (tem))
2109 {
2110 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2111 return;
2112 }
2113 }
2114 set_value_range_to_varying (vr);
2115 return;
2116 }
2117
2118 /* Get value ranges for each operand. For constant operands, create
2119 a new value range with the operand to simplify processing. */
2120 if (TREE_CODE (op0) == SSA_NAME)
2121 vr0 = *(get_value_range (op0));
2122 else if (is_gimple_min_invariant (op0))
2123 set_value_range_to_value (&vr0, op0, NULL);
2124 else
2125 set_value_range_to_varying (&vr0);
2126
2127 if (TREE_CODE (op1) == SSA_NAME)
2128 vr1 = *(get_value_range (op1));
2129 else if (is_gimple_min_invariant (op1))
2130 set_value_range_to_value (&vr1, op1, NULL);
2131 else
2132 set_value_range_to_varying (&vr1);
2133
2134 /* If either range is UNDEFINED, so is the result. */
2135 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2136 {
2137 set_value_range_to_undefined (vr);
2138 return;
2139 }
2140
2141 /* The type of the resulting value range defaults to VR0.TYPE. */
2142 type = vr0.type;
2143
2144 /* Refuse to operate on VARYING ranges, ranges of different kinds
2145 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2146 because we may be able to derive a useful range even if one of
2147 the operands is VR_VARYING or symbolic range. Similarly for
2148 divisions. TODO, we may be able to derive anti-ranges in
2149 some cases. */
2150 if (code != BIT_AND_EXPR
2151 && code != TRUTH_AND_EXPR
2152 && code != TRUTH_OR_EXPR
2153 && code != TRUNC_DIV_EXPR
2154 && code != FLOOR_DIV_EXPR
2155 && code != CEIL_DIV_EXPR
2156 && code != EXACT_DIV_EXPR
2157 && code != ROUND_DIV_EXPR
2158 && (vr0.type == VR_VARYING
2159 || vr1.type == VR_VARYING
2160 || vr0.type != vr1.type
2161 || symbolic_range_p (&vr0)
2162 || symbolic_range_p (&vr1)))
2163 {
2164 set_value_range_to_varying (vr);
2165 return;
2166 }
2167
2168 /* Now evaluate the expression to determine the new range. */
2169 if (POINTER_TYPE_P (expr_type)
2170 || POINTER_TYPE_P (TREE_TYPE (op0))
2171 || POINTER_TYPE_P (TREE_TYPE (op1)))
2172 {
2173 if (code == MIN_EXPR || code == MAX_EXPR)
2174 {
2175 /* For MIN/MAX expressions with pointers, we only care about
2176 nullness, if both are non null, then the result is nonnull.
2177 If both are null, then the result is null. Otherwise they
2178 are varying. */
2179 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2180 set_value_range_to_nonnull (vr, expr_type);
2181 else if (range_is_null (&vr0) && range_is_null (&vr1))
2182 set_value_range_to_null (vr, expr_type);
2183 else
2184 set_value_range_to_varying (vr);
2185
2186 return;
2187 }
2188 gcc_assert (code == POINTER_PLUS_EXPR);
2189 /* For pointer types, we are really only interested in asserting
2190 whether the expression evaluates to non-NULL. */
2191 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2192 set_value_range_to_nonnull (vr, expr_type);
2193 else if (range_is_null (&vr0) && range_is_null (&vr1))
2194 set_value_range_to_null (vr, expr_type);
2195 else
2196 set_value_range_to_varying (vr);
2197
2198 return;
2199 }
2200
2201 /* For integer ranges, apply the operation to each end of the
2202 range and see what we end up with. */
2203 if (code == TRUTH_AND_EXPR
2204 || code == TRUTH_OR_EXPR)
2205 {
2206 /* If one of the operands is zero, we know that the whole
2207 expression evaluates zero. */
2208 if (code == TRUTH_AND_EXPR
2209 && ((vr0.type == VR_RANGE
2210 && integer_zerop (vr0.min)
2211 && integer_zerop (vr0.max))
2212 || (vr1.type == VR_RANGE
2213 && integer_zerop (vr1.min)
2214 && integer_zerop (vr1.max))))
2215 {
2216 type = VR_RANGE;
2217 min = max = build_int_cst (expr_type, 0);
2218 }
2219 /* If one of the operands is one, we know that the whole
2220 expression evaluates one. */
2221 else if (code == TRUTH_OR_EXPR
2222 && ((vr0.type == VR_RANGE
2223 && integer_onep (vr0.min)
2224 && integer_onep (vr0.max))
2225 || (vr1.type == VR_RANGE
2226 && integer_onep (vr1.min)
2227 && integer_onep (vr1.max))))
2228 {
2229 type = VR_RANGE;
2230 min = max = build_int_cst (expr_type, 1);
2231 }
2232 else if (vr0.type != VR_VARYING
2233 && vr1.type != VR_VARYING
2234 && vr0.type == vr1.type
2235 && !symbolic_range_p (&vr0)
2236 && !overflow_infinity_range_p (&vr0)
2237 && !symbolic_range_p (&vr1)
2238 && !overflow_infinity_range_p (&vr1))
2239 {
2240 /* Boolean expressions cannot be folded with int_const_binop. */
2241 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2242 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2243 }
2244 else
2245 {
2246 /* The result of a TRUTH_*_EXPR is always true or false. */
2247 set_value_range_to_truthvalue (vr, expr_type);
2248 return;
2249 }
2250 }
2251 else if (code == PLUS_EXPR
2252 || code == MIN_EXPR
2253 || code == MAX_EXPR)
2254 {
2255 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2256 VR_VARYING. It would take more effort to compute a precise
2257 range for such a case. For example, if we have op0 == 1 and
2258 op1 == -1 with their ranges both being ~[0,0], we would have
2259 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2260 Note that we are guaranteed to have vr0.type == vr1.type at
2261 this point. */
2262 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2263 {
2264 set_value_range_to_varying (vr);
2265 return;
2266 }
2267
2268 /* For operations that make the resulting range directly
2269 proportional to the original ranges, apply the operation to
2270 the same end of each range. */
2271 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2272 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2273 }
2274 else if (code == MULT_EXPR
2275 || code == TRUNC_DIV_EXPR
2276 || code == FLOOR_DIV_EXPR
2277 || code == CEIL_DIV_EXPR
2278 || code == EXACT_DIV_EXPR
2279 || code == ROUND_DIV_EXPR
2280 || code == RSHIFT_EXPR)
2281 {
2282 tree val[4];
2283 size_t i;
2284 bool sop;
2285
2286 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2287 drop to VR_VARYING. It would take more effort to compute a
2288 precise range for such a case. For example, if we have
2289 op0 == 65536 and op1 == 65536 with their ranges both being
2290 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2291 we cannot claim that the product is in ~[0,0]. Note that we
2292 are guaranteed to have vr0.type == vr1.type at this
2293 point. */
2294 if (code == MULT_EXPR
2295 && vr0.type == VR_ANTI_RANGE
2296 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2297 {
2298 set_value_range_to_varying (vr);
2299 return;
2300 }
2301
2302 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2303 then drop to VR_VARYING. Outside of this range we get undefined
2304 behavior from the shift operation. We cannot even trust
2305 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2306 shifts, and the operation at the tree level may be widened. */
2307 if (code == RSHIFT_EXPR)
2308 {
2309 if (vr1.type == VR_ANTI_RANGE
2310 || !vrp_expr_computes_nonnegative (op1, &sop)
2311 || (operand_less_p
2312 (build_int_cst (TREE_TYPE (vr1.max),
2313 TYPE_PRECISION (expr_type) - 1),
2314 vr1.max) != 0))
2315 {
2316 set_value_range_to_varying (vr);
2317 return;
2318 }
2319 }
2320
2321 else if ((code == TRUNC_DIV_EXPR
2322 || code == FLOOR_DIV_EXPR
2323 || code == CEIL_DIV_EXPR
2324 || code == EXACT_DIV_EXPR
2325 || code == ROUND_DIV_EXPR)
2326 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2327 {
2328 /* For division, if op1 has VR_RANGE but op0 does not, something
2329 can be deduced just from that range. Say [min, max] / [4, max]
2330 gives [min / 4, max / 4] range. */
2331 if (vr1.type == VR_RANGE
2332 && !symbolic_range_p (&vr1)
2333 && !range_includes_zero_p (&vr1))
2334 {
2335 vr0.type = type = VR_RANGE;
2336 vr0.min = vrp_val_min (TREE_TYPE (op0));
2337 vr0.max = vrp_val_max (TREE_TYPE (op1));
2338 }
2339 else
2340 {
2341 set_value_range_to_varying (vr);
2342 return;
2343 }
2344 }
2345
2346 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2347 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2348 include 0. */
2349 if ((code == TRUNC_DIV_EXPR
2350 || code == FLOOR_DIV_EXPR
2351 || code == CEIL_DIV_EXPR
2352 || code == EXACT_DIV_EXPR
2353 || code == ROUND_DIV_EXPR)
2354 && vr0.type == VR_RANGE
2355 && (vr1.type != VR_RANGE
2356 || symbolic_range_p (&vr1)
2357 || range_includes_zero_p (&vr1)))
2358 {
2359 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2360 int cmp;
2361
2362 sop = false;
2363 min = NULL_TREE;
2364 max = NULL_TREE;
2365 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2366 {
2367 /* For unsigned division or when divisor is known
2368 to be non-negative, the range has to cover
2369 all numbers from 0 to max for positive max
2370 and all numbers from min to 0 for negative min. */
2371 cmp = compare_values (vr0.max, zero);
2372 if (cmp == -1)
2373 max = zero;
2374 else if (cmp == 0 || cmp == 1)
2375 max = vr0.max;
2376 else
2377 type = VR_VARYING;
2378 cmp = compare_values (vr0.min, zero);
2379 if (cmp == 1)
2380 min = zero;
2381 else if (cmp == 0 || cmp == -1)
2382 min = vr0.min;
2383 else
2384 type = VR_VARYING;
2385 }
2386 else
2387 {
2388 /* Otherwise the range is -max .. max or min .. -min
2389 depending on which bound is bigger in absolute value,
2390 as the division can change the sign. */
2391 abs_extent_range (vr, vr0.min, vr0.max);
2392 return;
2393 }
2394 if (type == VR_VARYING)
2395 {
2396 set_value_range_to_varying (vr);
2397 return;
2398 }
2399 }
2400
2401 /* Multiplications and divisions are a bit tricky to handle,
2402 depending on the mix of signs we have in the two ranges, we
2403 need to operate on different values to get the minimum and
2404 maximum values for the new range. One approach is to figure
2405 out all the variations of range combinations and do the
2406 operations.
2407
2408 However, this involves several calls to compare_values and it
2409 is pretty convoluted. It's simpler to do the 4 operations
2410 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2411 MAX1) and then figure the smallest and largest values to form
2412 the new range. */
2413 else
2414 {
2415 gcc_assert ((vr0.type == VR_RANGE
2416 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2417 && vr0.type == vr1.type);
2418
2419 /* Compute the 4 cross operations. */
2420 sop = false;
2421 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2422 if (val[0] == NULL_TREE)
2423 sop = true;
2424
2425 if (vr1.max == vr1.min)
2426 val[1] = NULL_TREE;
2427 else
2428 {
2429 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2430 if (val[1] == NULL_TREE)
2431 sop = true;
2432 }
2433
2434 if (vr0.max == vr0.min)
2435 val[2] = NULL_TREE;
2436 else
2437 {
2438 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2439 if (val[2] == NULL_TREE)
2440 sop = true;
2441 }
2442
2443 if (vr0.min == vr0.max || vr1.min == vr1.max)
2444 val[3] = NULL_TREE;
2445 else
2446 {
2447 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2448 if (val[3] == NULL_TREE)
2449 sop = true;
2450 }
2451
2452 if (sop)
2453 {
2454 set_value_range_to_varying (vr);
2455 return;
2456 }
2457
2458 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2459 of VAL[i]. */
2460 min = val[0];
2461 max = val[0];
2462 for (i = 1; i < 4; i++)
2463 {
2464 if (!is_gimple_min_invariant (min)
2465 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2466 || !is_gimple_min_invariant (max)
2467 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2468 break;
2469
2470 if (val[i])
2471 {
2472 if (!is_gimple_min_invariant (val[i])
2473 || (TREE_OVERFLOW (val[i])
2474 && !is_overflow_infinity (val[i])))
2475 {
2476 /* If we found an overflowed value, set MIN and MAX
2477 to it so that we set the resulting range to
2478 VARYING. */
2479 min = max = val[i];
2480 break;
2481 }
2482
2483 if (compare_values (val[i], min) == -1)
2484 min = val[i];
2485
2486 if (compare_values (val[i], max) == 1)
2487 max = val[i];
2488 }
2489 }
2490 }
2491 }
2492 else if (code == MINUS_EXPR)
2493 {
2494 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2495 VR_VARYING. It would take more effort to compute a precise
2496 range for such a case. For example, if we have op0 == 1 and
2497 op1 == 1 with their ranges both being ~[0,0], we would have
2498 op0 - op1 == 0, so we cannot claim that the difference is in
2499 ~[0,0]. Note that we are guaranteed to have
2500 vr0.type == vr1.type at this point. */
2501 if (vr0.type == VR_ANTI_RANGE)
2502 {
2503 set_value_range_to_varying (vr);
2504 return;
2505 }
2506
2507 /* For MINUS_EXPR, apply the operation to the opposite ends of
2508 each range. */
2509 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2510 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2511 }
2512 else if (code == BIT_AND_EXPR)
2513 {
2514 if (vr0.type == VR_RANGE
2515 && vr0.min == vr0.max
2516 && TREE_CODE (vr0.max) == INTEGER_CST
2517 && !TREE_OVERFLOW (vr0.max)
2518 && tree_int_cst_sgn (vr0.max) >= 0)
2519 {
2520 min = build_int_cst (expr_type, 0);
2521 max = vr0.max;
2522 }
2523 else if (vr1.type == VR_RANGE
2524 && vr1.min == vr1.max
2525 && TREE_CODE (vr1.max) == INTEGER_CST
2526 && !TREE_OVERFLOW (vr1.max)
2527 && tree_int_cst_sgn (vr1.max) >= 0)
2528 {
2529 type = VR_RANGE;
2530 min = build_int_cst (expr_type, 0);
2531 max = vr1.max;
2532 }
2533 else
2534 {
2535 set_value_range_to_varying (vr);
2536 return;
2537 }
2538 }
2539 else if (code == BIT_IOR_EXPR)
2540 {
2541 if (vr0.type == VR_RANGE
2542 && vr1.type == VR_RANGE
2543 && TREE_CODE (vr0.min) == INTEGER_CST
2544 && TREE_CODE (vr1.min) == INTEGER_CST
2545 && TREE_CODE (vr0.max) == INTEGER_CST
2546 && TREE_CODE (vr1.max) == INTEGER_CST
2547 && tree_int_cst_sgn (vr0.min) >= 0
2548 && tree_int_cst_sgn (vr1.min) >= 0)
2549 {
2550 double_int vr0_max = tree_to_double_int (vr0.max);
2551 double_int vr1_max = tree_to_double_int (vr1.max);
2552 double_int ior_max;
2553
2554 /* Set all bits to the right of the most significant one to 1.
2555 For example, [0, 4] | [4, 4] = [4, 7]. */
2556 ior_max.low = vr0_max.low | vr1_max.low;
2557 ior_max.high = vr0_max.high | vr1_max.high;
2558 if (ior_max.high != 0)
2559 {
2560 ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
2561 ior_max.high |= ((HOST_WIDE_INT) 1
2562 << floor_log2 (ior_max.high)) - 1;
2563 }
2564 else if (ior_max.low != 0)
2565 ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
2566 << floor_log2 (ior_max.low)) - 1;
2567
2568 /* Both of these endpoints are conservative. */
2569 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2570 max = double_int_to_tree (expr_type, ior_max);
2571 }
2572 else
2573 {
2574 set_value_range_to_varying (vr);
2575 return;
2576 }
2577 }
2578 else
2579 gcc_unreachable ();
2580
2581 /* If either MIN or MAX overflowed, then set the resulting range to
2582 VARYING. But we do accept an overflow infinity
2583 representation. */
2584 if (min == NULL_TREE
2585 || !is_gimple_min_invariant (min)
2586 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2587 || max == NULL_TREE
2588 || !is_gimple_min_invariant (max)
2589 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2590 {
2591 set_value_range_to_varying (vr);
2592 return;
2593 }
2594
2595 /* We punt if:
2596 1) [-INF, +INF]
2597 2) [-INF, +-INF(OVF)]
2598 3) [+-INF(OVF), +INF]
2599 4) [+-INF(OVF), +-INF(OVF)]
2600 We learn nothing when we have INF and INF(OVF) on both sides.
2601 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2602 overflow. */
2603 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2604 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2605 {
2606 set_value_range_to_varying (vr);
2607 return;
2608 }
2609
2610 cmp = compare_values (min, max);
2611 if (cmp == -2 || cmp == 1)
2612 {
2613 /* If the new range has its limits swapped around (MIN > MAX),
2614 then the operation caused one of them to wrap around, mark
2615 the new range VARYING. */
2616 set_value_range_to_varying (vr);
2617 }
2618 else
2619 set_value_range (vr, type, min, max, NULL);
2620 }
2621
2622
2623 /* Extract range information from a unary expression EXPR based on
2624 the range of its operand and the expression code. */
2625
2626 static void
2627 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2628 tree type, tree op0)
2629 {
2630 tree min, max;
2631 int cmp;
2632 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2633
2634 /* Refuse to operate on certain unary expressions for which we
2635 cannot easily determine a resulting range. */
2636 if (code == FIX_TRUNC_EXPR
2637 || code == FLOAT_EXPR
2638 || code == BIT_NOT_EXPR
2639 || code == CONJ_EXPR)
2640 {
2641 /* We can still do constant propagation here. */
2642 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2643 {
2644 tree tem = fold_unary (code, type, op0);
2645 if (tem
2646 && is_gimple_min_invariant (tem)
2647 && !is_overflow_infinity (tem))
2648 {
2649 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2650 return;
2651 }
2652 }
2653 set_value_range_to_varying (vr);
2654 return;
2655 }
2656
2657 /* Get value ranges for the operand. For constant operands, create
2658 a new value range with the operand to simplify processing. */
2659 if (TREE_CODE (op0) == SSA_NAME)
2660 vr0 = *(get_value_range (op0));
2661 else if (is_gimple_min_invariant (op0))
2662 set_value_range_to_value (&vr0, op0, NULL);
2663 else
2664 set_value_range_to_varying (&vr0);
2665
2666 /* If VR0 is UNDEFINED, so is the result. */
2667 if (vr0.type == VR_UNDEFINED)
2668 {
2669 set_value_range_to_undefined (vr);
2670 return;
2671 }
2672
2673 /* Refuse to operate on symbolic ranges, or if neither operand is
2674 a pointer or integral type. */
2675 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2676 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2677 || (vr0.type != VR_VARYING
2678 && symbolic_range_p (&vr0)))
2679 {
2680 set_value_range_to_varying (vr);
2681 return;
2682 }
2683
2684 /* If the expression involves pointers, we are only interested in
2685 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2686 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2687 {
2688 bool sop;
2689
2690 sop = false;
2691 if (range_is_nonnull (&vr0)
2692 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2693 && !sop))
2694 set_value_range_to_nonnull (vr, type);
2695 else if (range_is_null (&vr0))
2696 set_value_range_to_null (vr, type);
2697 else
2698 set_value_range_to_varying (vr);
2699
2700 return;
2701 }
2702
2703 /* Handle unary expressions on integer ranges. */
2704 if (CONVERT_EXPR_CODE_P (code)
2705 && INTEGRAL_TYPE_P (type)
2706 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2707 {
2708 tree inner_type = TREE_TYPE (op0);
2709 tree outer_type = type;
2710
2711 /* Always use base-types here. This is important for the
2712 correct signedness. */
2713 if (TREE_TYPE (inner_type))
2714 inner_type = TREE_TYPE (inner_type);
2715 if (TREE_TYPE (outer_type))
2716 outer_type = TREE_TYPE (outer_type);
2717
2718 /* If VR0 is varying and we increase the type precision, assume
2719 a full range for the following transformation. */
2720 if (vr0.type == VR_VARYING
2721 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2722 {
2723 vr0.type = VR_RANGE;
2724 vr0.min = TYPE_MIN_VALUE (inner_type);
2725 vr0.max = TYPE_MAX_VALUE (inner_type);
2726 }
2727
2728 /* If VR0 is a constant range or anti-range and the conversion is
2729 not truncating we can convert the min and max values and
2730 canonicalize the resulting range. Otherwise we can do the
2731 conversion if the size of the range is less than what the
2732 precision of the target type can represent and the range is
2733 not an anti-range. */
2734 if ((vr0.type == VR_RANGE
2735 || vr0.type == VR_ANTI_RANGE)
2736 && TREE_CODE (vr0.min) == INTEGER_CST
2737 && TREE_CODE (vr0.max) == INTEGER_CST
2738 && !is_overflow_infinity (vr0.min)
2739 && !is_overflow_infinity (vr0.max)
2740 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2741 || (vr0.type == VR_RANGE
2742 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2743 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2744 size_int (TYPE_PRECISION (outer_type)), 0)))))
2745 {
2746 tree new_min, new_max;
2747 new_min = force_fit_type_double (outer_type,
2748 TREE_INT_CST_LOW (vr0.min),
2749 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2750 new_max = force_fit_type_double (outer_type,
2751 TREE_INT_CST_LOW (vr0.max),
2752 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2753 set_and_canonicalize_value_range (vr, vr0.type,
2754 new_min, new_max, NULL);
2755 return;
2756 }
2757
2758 set_value_range_to_varying (vr);
2759 return;
2760 }
2761
2762 /* Conversion of a VR_VARYING value to a wider type can result
2763 in a usable range. So wait until after we've handled conversions
2764 before dropping the result to VR_VARYING if we had a source
2765 operand that is VR_VARYING. */
2766 if (vr0.type == VR_VARYING)
2767 {
2768 set_value_range_to_varying (vr);
2769 return;
2770 }
2771
2772 /* Apply the operation to each end of the range and see what we end
2773 up with. */
2774 if (code == NEGATE_EXPR
2775 && !TYPE_UNSIGNED (type))
2776 {
2777 /* NEGATE_EXPR flips the range around. We need to treat
2778 TYPE_MIN_VALUE specially. */
2779 if (is_positive_overflow_infinity (vr0.max))
2780 min = negative_overflow_infinity (type);
2781 else if (is_negative_overflow_infinity (vr0.max))
2782 min = positive_overflow_infinity (type);
2783 else if (!vrp_val_is_min (vr0.max))
2784 min = fold_unary_to_constant (code, type, vr0.max);
2785 else if (needs_overflow_infinity (type))
2786 {
2787 if (supports_overflow_infinity (type)
2788 && !is_overflow_infinity (vr0.min)
2789 && !vrp_val_is_min (vr0.min))
2790 min = positive_overflow_infinity (type);
2791 else
2792 {
2793 set_value_range_to_varying (vr);
2794 return;
2795 }
2796 }
2797 else
2798 min = TYPE_MIN_VALUE (type);
2799
2800 if (is_positive_overflow_infinity (vr0.min))
2801 max = negative_overflow_infinity (type);
2802 else if (is_negative_overflow_infinity (vr0.min))
2803 max = positive_overflow_infinity (type);
2804 else if (!vrp_val_is_min (vr0.min))
2805 max = fold_unary_to_constant (code, type, vr0.min);
2806 else if (needs_overflow_infinity (type))
2807 {
2808 if (supports_overflow_infinity (type))
2809 max = positive_overflow_infinity (type);
2810 else
2811 {
2812 set_value_range_to_varying (vr);
2813 return;
2814 }
2815 }
2816 else
2817 max = TYPE_MIN_VALUE (type);
2818 }
2819 else if (code == NEGATE_EXPR
2820 && TYPE_UNSIGNED (type))
2821 {
2822 if (!range_includes_zero_p (&vr0))
2823 {
2824 max = fold_unary_to_constant (code, type, vr0.min);
2825 min = fold_unary_to_constant (code, type, vr0.max);
2826 }
2827 else
2828 {
2829 if (range_is_null (&vr0))
2830 set_value_range_to_null (vr, type);
2831 else
2832 set_value_range_to_varying (vr);
2833 return;
2834 }
2835 }
2836 else if (code == ABS_EXPR
2837 && !TYPE_UNSIGNED (type))
2838 {
2839 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2840 useful range. */
2841 if (!TYPE_OVERFLOW_UNDEFINED (type)
2842 && ((vr0.type == VR_RANGE
2843 && vrp_val_is_min (vr0.min))
2844 || (vr0.type == VR_ANTI_RANGE
2845 && !vrp_val_is_min (vr0.min)
2846 && !range_includes_zero_p (&vr0))))
2847 {
2848 set_value_range_to_varying (vr);
2849 return;
2850 }
2851
2852 /* ABS_EXPR may flip the range around, if the original range
2853 included negative values. */
2854 if (is_overflow_infinity (vr0.min))
2855 min = positive_overflow_infinity (type);
2856 else if (!vrp_val_is_min (vr0.min))
2857 min = fold_unary_to_constant (code, type, vr0.min);
2858 else if (!needs_overflow_infinity (type))
2859 min = TYPE_MAX_VALUE (type);
2860 else if (supports_overflow_infinity (type))
2861 min = positive_overflow_infinity (type);
2862 else
2863 {
2864 set_value_range_to_varying (vr);
2865 return;
2866 }
2867
2868 if (is_overflow_infinity (vr0.max))
2869 max = positive_overflow_infinity (type);
2870 else if (!vrp_val_is_min (vr0.max))
2871 max = fold_unary_to_constant (code, type, vr0.max);
2872 else if (!needs_overflow_infinity (type))
2873 max = TYPE_MAX_VALUE (type);
2874 else if (supports_overflow_infinity (type)
2875 /* We shouldn't generate [+INF, +INF] as set_value_range
2876 doesn't like this and ICEs. */
2877 && !is_positive_overflow_infinity (min))
2878 max = positive_overflow_infinity (type);
2879 else
2880 {
2881 set_value_range_to_varying (vr);
2882 return;
2883 }
2884
2885 cmp = compare_values (min, max);
2886
2887 /* If a VR_ANTI_RANGEs contains zero, then we have
2888 ~[-INF, min(MIN, MAX)]. */
2889 if (vr0.type == VR_ANTI_RANGE)
2890 {
2891 if (range_includes_zero_p (&vr0))
2892 {
2893 /* Take the lower of the two values. */
2894 if (cmp != 1)
2895 max = min;
2896
2897 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2898 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2899 flag_wrapv is set and the original anti-range doesn't include
2900 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2901 if (TYPE_OVERFLOW_WRAPS (type))
2902 {
2903 tree type_min_value = TYPE_MIN_VALUE (type);
2904
2905 min = (vr0.min != type_min_value
2906 ? int_const_binop (PLUS_EXPR, type_min_value,
2907 integer_one_node, 0)
2908 : type_min_value);
2909 }
2910 else
2911 {
2912 if (overflow_infinity_range_p (&vr0))
2913 min = negative_overflow_infinity (type);
2914 else
2915 min = TYPE_MIN_VALUE (type);
2916 }
2917 }
2918 else
2919 {
2920 /* All else has failed, so create the range [0, INF], even for
2921 flag_wrapv since TYPE_MIN_VALUE is in the original
2922 anti-range. */
2923 vr0.type = VR_RANGE;
2924 min = build_int_cst (type, 0);
2925 if (needs_overflow_infinity (type))
2926 {
2927 if (supports_overflow_infinity (type))
2928 max = positive_overflow_infinity (type);
2929 else
2930 {
2931 set_value_range_to_varying (vr);
2932 return;
2933 }
2934 }
2935 else
2936 max = TYPE_MAX_VALUE (type);
2937 }
2938 }
2939
2940 /* If the range contains zero then we know that the minimum value in the
2941 range will be zero. */
2942 else if (range_includes_zero_p (&vr0))
2943 {
2944 if (cmp == 1)
2945 max = min;
2946 min = build_int_cst (type, 0);
2947 }
2948 else
2949 {
2950 /* If the range was reversed, swap MIN and MAX. */
2951 if (cmp == 1)
2952 {
2953 tree t = min;
2954 min = max;
2955 max = t;
2956 }
2957 }
2958 }
2959 else
2960 {
2961 /* Otherwise, operate on each end of the range. */
2962 min = fold_unary_to_constant (code, type, vr0.min);
2963 max = fold_unary_to_constant (code, type, vr0.max);
2964
2965 if (needs_overflow_infinity (type))
2966 {
2967 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2968
2969 /* If both sides have overflowed, we don't know
2970 anything. */
2971 if ((is_overflow_infinity (vr0.min)
2972 || TREE_OVERFLOW (min))
2973 && (is_overflow_infinity (vr0.max)
2974 || TREE_OVERFLOW (max)))
2975 {
2976 set_value_range_to_varying (vr);
2977 return;
2978 }
2979
2980 if (is_overflow_infinity (vr0.min))
2981 min = vr0.min;
2982 else if (TREE_OVERFLOW (min))
2983 {
2984 if (supports_overflow_infinity (type))
2985 min = (tree_int_cst_sgn (min) >= 0
2986 ? positive_overflow_infinity (TREE_TYPE (min))
2987 : negative_overflow_infinity (TREE_TYPE (min)));
2988 else
2989 {
2990 set_value_range_to_varying (vr);
2991 return;
2992 }
2993 }
2994
2995 if (is_overflow_infinity (vr0.max))
2996 max = vr0.max;
2997 else if (TREE_OVERFLOW (max))
2998 {
2999 if (supports_overflow_infinity (type))
3000 max = (tree_int_cst_sgn (max) >= 0
3001 ? positive_overflow_infinity (TREE_TYPE (max))
3002 : negative_overflow_infinity (TREE_TYPE (max)));
3003 else
3004 {
3005 set_value_range_to_varying (vr);
3006 return;
3007 }
3008 }
3009 }
3010 }
3011
3012 cmp = compare_values (min, max);
3013 if (cmp == -2 || cmp == 1)
3014 {
3015 /* If the new range has its limits swapped around (MIN > MAX),
3016 then the operation caused one of them to wrap around, mark
3017 the new range VARYING. */
3018 set_value_range_to_varying (vr);
3019 }
3020 else
3021 set_value_range (vr, vr0.type, min, max, NULL);
3022 }
3023
3024
3025 /* Extract range information from a conditional expression EXPR based on
3026 the ranges of each of its operands and the expression code. */
3027
3028 static void
3029 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3030 {
3031 tree op0, op1;
3032 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3033 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3034
3035 /* Get value ranges for each operand. For constant operands, create
3036 a new value range with the operand to simplify processing. */
3037 op0 = COND_EXPR_THEN (expr);
3038 if (TREE_CODE (op0) == SSA_NAME)
3039 vr0 = *(get_value_range (op0));
3040 else if (is_gimple_min_invariant (op0))
3041 set_value_range_to_value (&vr0, op0, NULL);
3042 else
3043 set_value_range_to_varying (&vr0);
3044
3045 op1 = COND_EXPR_ELSE (expr);
3046 if (TREE_CODE (op1) == SSA_NAME)
3047 vr1 = *(get_value_range (op1));
3048 else if (is_gimple_min_invariant (op1))
3049 set_value_range_to_value (&vr1, op1, NULL);
3050 else
3051 set_value_range_to_varying (&vr1);
3052
3053 /* The resulting value range is the union of the operand ranges */
3054 vrp_meet (&vr0, &vr1);
3055 copy_value_range (vr, &vr0);
3056 }
3057
3058
3059 /* Extract range information from a comparison expression EXPR based
3060 on the range of its operand and the expression code. */
3061
3062 static void
3063 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3064 tree type, tree op0, tree op1)
3065 {
3066 bool sop = false;
3067 tree val;
3068
3069 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3070 NULL);
3071
3072 /* A disadvantage of using a special infinity as an overflow
3073 representation is that we lose the ability to record overflow
3074 when we don't have an infinity. So we have to ignore a result
3075 which relies on overflow. */
3076
3077 if (val && !is_overflow_infinity (val) && !sop)
3078 {
3079 /* Since this expression was found on the RHS of an assignment,
3080 its type may be different from _Bool. Convert VAL to EXPR's
3081 type. */
3082 val = fold_convert (type, val);
3083 if (is_gimple_min_invariant (val))
3084 set_value_range_to_value (vr, val, vr->equiv);
3085 else
3086 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3087 }
3088 else
3089 /* The result of a comparison is always true or false. */
3090 set_value_range_to_truthvalue (vr, type);
3091 }
3092
3093 /* Try to derive a nonnegative or nonzero range out of STMT relying
3094 primarily on generic routines in fold in conjunction with range data.
3095 Store the result in *VR */
3096
3097 static void
3098 extract_range_basic (value_range_t *vr, gimple stmt)
3099 {
3100 bool sop = false;
3101 tree type = gimple_expr_type (stmt);
3102
3103 if (INTEGRAL_TYPE_P (type)
3104 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3105 set_value_range_to_nonnegative (vr, type,
3106 sop || stmt_overflow_infinity (stmt));
3107 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3108 && !sop)
3109 set_value_range_to_nonnull (vr, type);
3110 else
3111 set_value_range_to_varying (vr);
3112 }
3113
3114
3115 /* Try to compute a useful range out of assignment STMT and store it
3116 in *VR. */
3117
3118 static void
3119 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3120 {
3121 enum tree_code code = gimple_assign_rhs_code (stmt);
3122
3123 if (code == ASSERT_EXPR)
3124 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3125 else if (code == SSA_NAME)
3126 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3127 else if (TREE_CODE_CLASS (code) == tcc_binary
3128 || code == TRUTH_AND_EXPR
3129 || code == TRUTH_OR_EXPR
3130 || code == TRUTH_XOR_EXPR)
3131 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3132 gimple_expr_type (stmt),
3133 gimple_assign_rhs1 (stmt),
3134 gimple_assign_rhs2 (stmt));
3135 else if (TREE_CODE_CLASS (code) == tcc_unary)
3136 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3137 gimple_expr_type (stmt),
3138 gimple_assign_rhs1 (stmt));
3139 else if (code == COND_EXPR)
3140 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3141 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3142 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3143 gimple_expr_type (stmt),
3144 gimple_assign_rhs1 (stmt),
3145 gimple_assign_rhs2 (stmt));
3146 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3147 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3148 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3149 else
3150 set_value_range_to_varying (vr);
3151
3152 if (vr->type == VR_VARYING)
3153 extract_range_basic (vr, stmt);
3154 }
3155
3156 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3157 would be profitable to adjust VR using scalar evolution information
3158 for VAR. If so, update VR with the new limits. */
3159
3160 static void
3161 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3162 gimple stmt, tree var)
3163 {
3164 tree init, step, chrec, tmin, tmax, min, max, type;
3165 enum ev_direction dir;
3166
3167 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3168 better opportunities than a regular range, but I'm not sure. */
3169 if (vr->type == VR_ANTI_RANGE)
3170 return;
3171
3172 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3173
3174 /* Like in PR19590, scev can return a constant function. */
3175 if (is_gimple_min_invariant (chrec))
3176 {
3177 set_value_range_to_value (vr, chrec, vr->equiv);
3178 return;
3179 }
3180
3181 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3182 return;
3183
3184 init = initial_condition_in_loop_num (chrec, loop->num);
3185 step = evolution_part_in_loop_num (chrec, loop->num);
3186
3187 /* If STEP is symbolic, we can't know whether INIT will be the
3188 minimum or maximum value in the range. Also, unless INIT is
3189 a simple expression, compare_values and possibly other functions
3190 in tree-vrp won't be able to handle it. */
3191 if (step == NULL_TREE
3192 || !is_gimple_min_invariant (step)
3193 || !valid_value_p (init))
3194 return;
3195
3196 dir = scev_direction (chrec);
3197 if (/* Do not adjust ranges if we do not know whether the iv increases
3198 or decreases, ... */
3199 dir == EV_DIR_UNKNOWN
3200 /* ... or if it may wrap. */
3201 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3202 true))
3203 return;
3204
3205 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3206 negative_overflow_infinity and positive_overflow_infinity,
3207 because we have concluded that the loop probably does not
3208 wrap. */
3209
3210 type = TREE_TYPE (var);
3211 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3212 tmin = lower_bound_in_type (type, type);
3213 else
3214 tmin = TYPE_MIN_VALUE (type);
3215 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3216 tmax = upper_bound_in_type (type, type);
3217 else
3218 tmax = TYPE_MAX_VALUE (type);
3219
3220 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3221 {
3222 min = tmin;
3223 max = tmax;
3224
3225 /* For VARYING or UNDEFINED ranges, just about anything we get
3226 from scalar evolutions should be better. */
3227
3228 if (dir == EV_DIR_DECREASES)
3229 max = init;
3230 else
3231 min = init;
3232
3233 /* If we would create an invalid range, then just assume we
3234 know absolutely nothing. This may be over-conservative,
3235 but it's clearly safe, and should happen only in unreachable
3236 parts of code, or for invalid programs. */
3237 if (compare_values (min, max) == 1)
3238 return;
3239
3240 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3241 }
3242 else if (vr->type == VR_RANGE)
3243 {
3244 min = vr->min;
3245 max = vr->max;
3246
3247 if (dir == EV_DIR_DECREASES)
3248 {
3249 /* INIT is the maximum value. If INIT is lower than VR->MAX
3250 but no smaller than VR->MIN, set VR->MAX to INIT. */
3251 if (compare_values (init, max) == -1)
3252 {
3253 max = init;
3254
3255 /* If we just created an invalid range with the minimum
3256 greater than the maximum, we fail conservatively.
3257 This should happen only in unreachable
3258 parts of code, or for invalid programs. */
3259 if (compare_values (min, max) == 1)
3260 return;
3261 }
3262
3263 /* According to the loop information, the variable does not
3264 overflow. If we think it does, probably because of an
3265 overflow due to arithmetic on a different INF value,
3266 reset now. */
3267 if (is_negative_overflow_infinity (min))
3268 min = tmin;
3269 }
3270 else
3271 {
3272 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3273 if (compare_values (init, min) == 1)
3274 {
3275 min = init;
3276
3277 /* Again, avoid creating invalid range by failing. */
3278 if (compare_values (min, max) == 1)
3279 return;
3280 }
3281
3282 if (is_positive_overflow_infinity (max))
3283 max = tmax;
3284 }
3285
3286 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3287 }
3288 }
3289
3290 /* Return true if VAR may overflow at STMT. This checks any available
3291 loop information to see if we can determine that VAR does not
3292 overflow. */
3293
3294 static bool
3295 vrp_var_may_overflow (tree var, gimple stmt)
3296 {
3297 struct loop *l;
3298 tree chrec, init, step;
3299
3300 if (current_loops == NULL)
3301 return true;
3302
3303 l = loop_containing_stmt (stmt);
3304 if (l == NULL)
3305 return true;
3306
3307 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3308 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3309 return true;
3310
3311 init = initial_condition_in_loop_num (chrec, l->num);
3312 step = evolution_part_in_loop_num (chrec, l->num);
3313
3314 if (step == NULL_TREE
3315 || !is_gimple_min_invariant (step)
3316 || !valid_value_p (init))
3317 return true;
3318
3319 /* If we get here, we know something useful about VAR based on the
3320 loop information. If it wraps, it may overflow. */
3321
3322 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3323 true))
3324 return true;
3325
3326 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3327 {
3328 print_generic_expr (dump_file, var, 0);
3329 fprintf (dump_file, ": loop information indicates does not overflow\n");
3330 }
3331
3332 return false;
3333 }
3334
3335
3336 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3337
3338 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3339 all the values in the ranges.
3340
3341 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3342
3343 - Return NULL_TREE if it is not always possible to determine the
3344 value of the comparison.
3345
3346 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3347 overflow infinity was used in the test. */
3348
3349
3350 static tree
3351 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3352 bool *strict_overflow_p)
3353 {
3354 /* VARYING or UNDEFINED ranges cannot be compared. */
3355 if (vr0->type == VR_VARYING
3356 || vr0->type == VR_UNDEFINED
3357 || vr1->type == VR_VARYING
3358 || vr1->type == VR_UNDEFINED)
3359 return NULL_TREE;
3360
3361 /* Anti-ranges need to be handled separately. */
3362 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3363 {
3364 /* If both are anti-ranges, then we cannot compute any
3365 comparison. */
3366 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3367 return NULL_TREE;
3368
3369 /* These comparisons are never statically computable. */
3370 if (comp == GT_EXPR
3371 || comp == GE_EXPR
3372 || comp == LT_EXPR
3373 || comp == LE_EXPR)
3374 return NULL_TREE;
3375
3376 /* Equality can be computed only between a range and an
3377 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3378 if (vr0->type == VR_RANGE)
3379 {
3380 /* To simplify processing, make VR0 the anti-range. */
3381 value_range_t *tmp = vr0;
3382 vr0 = vr1;
3383 vr1 = tmp;
3384 }
3385
3386 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3387
3388 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3389 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3390 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3391
3392 return NULL_TREE;
3393 }
3394
3395 if (!usable_range_p (vr0, strict_overflow_p)
3396 || !usable_range_p (vr1, strict_overflow_p))
3397 return NULL_TREE;
3398
3399 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3400 operands around and change the comparison code. */
3401 if (comp == GT_EXPR || comp == GE_EXPR)
3402 {
3403 value_range_t *tmp;
3404 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3405 tmp = vr0;
3406 vr0 = vr1;
3407 vr1 = tmp;
3408 }
3409
3410 if (comp == EQ_EXPR)
3411 {
3412 /* Equality may only be computed if both ranges represent
3413 exactly one value. */
3414 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3415 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3416 {
3417 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3418 strict_overflow_p);
3419 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3420 strict_overflow_p);
3421 if (cmp_min == 0 && cmp_max == 0)
3422 return boolean_true_node;
3423 else if (cmp_min != -2 && cmp_max != -2)
3424 return boolean_false_node;
3425 }
3426 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3427 else if (compare_values_warnv (vr0->min, vr1->max,
3428 strict_overflow_p) == 1
3429 || compare_values_warnv (vr1->min, vr0->max,
3430 strict_overflow_p) == 1)
3431 return boolean_false_node;
3432
3433 return NULL_TREE;
3434 }
3435 else if (comp == NE_EXPR)
3436 {
3437 int cmp1, cmp2;
3438
3439 /* If VR0 is completely to the left or completely to the right
3440 of VR1, they are always different. Notice that we need to
3441 make sure that both comparisons yield similar results to
3442 avoid comparing values that cannot be compared at
3443 compile-time. */
3444 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3445 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3446 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3447 return boolean_true_node;
3448
3449 /* If VR0 and VR1 represent a single value and are identical,
3450 return false. */
3451 else if (compare_values_warnv (vr0->min, vr0->max,
3452 strict_overflow_p) == 0
3453 && compare_values_warnv (vr1->min, vr1->max,
3454 strict_overflow_p) == 0
3455 && compare_values_warnv (vr0->min, vr1->min,
3456 strict_overflow_p) == 0
3457 && compare_values_warnv (vr0->max, vr1->max,
3458 strict_overflow_p) == 0)
3459 return boolean_false_node;
3460
3461 /* Otherwise, they may or may not be different. */
3462 else
3463 return NULL_TREE;
3464 }
3465 else if (comp == LT_EXPR || comp == LE_EXPR)
3466 {
3467 int tst;
3468
3469 /* If VR0 is to the left of VR1, return true. */
3470 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3471 if ((comp == LT_EXPR && tst == -1)
3472 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3473 {
3474 if (overflow_infinity_range_p (vr0)
3475 || overflow_infinity_range_p (vr1))
3476 *strict_overflow_p = true;
3477 return boolean_true_node;
3478 }
3479
3480 /* If VR0 is to the right of VR1, return false. */
3481 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3482 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3483 || (comp == LE_EXPR && tst == 1))
3484 {
3485 if (overflow_infinity_range_p (vr0)
3486 || overflow_infinity_range_p (vr1))
3487 *strict_overflow_p = true;
3488 return boolean_false_node;
3489 }
3490
3491 /* Otherwise, we don't know. */
3492 return NULL_TREE;
3493 }
3494
3495 gcc_unreachable ();
3496 }
3497
3498
3499 /* Given a value range VR, a value VAL and a comparison code COMP, return
3500 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3501 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3502 always returns false. Return NULL_TREE if it is not always
3503 possible to determine the value of the comparison. Also set
3504 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3505 infinity was used in the test. */
3506
3507 static tree
3508 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3509 bool *strict_overflow_p)
3510 {
3511 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3512 return NULL_TREE;
3513
3514 /* Anti-ranges need to be handled separately. */
3515 if (vr->type == VR_ANTI_RANGE)
3516 {
3517 /* For anti-ranges, the only predicates that we can compute at
3518 compile time are equality and inequality. */
3519 if (comp == GT_EXPR
3520 || comp == GE_EXPR
3521 || comp == LT_EXPR
3522 || comp == LE_EXPR)
3523 return NULL_TREE;
3524
3525 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3526 if (value_inside_range (val, vr) == 1)
3527 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3528
3529 return NULL_TREE;
3530 }
3531
3532 if (!usable_range_p (vr, strict_overflow_p))
3533 return NULL_TREE;
3534
3535 if (comp == EQ_EXPR)
3536 {
3537 /* EQ_EXPR may only be computed if VR represents exactly
3538 one value. */
3539 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3540 {
3541 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3542 if (cmp == 0)
3543 return boolean_true_node;
3544 else if (cmp == -1 || cmp == 1 || cmp == 2)
3545 return boolean_false_node;
3546 }
3547 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3548 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3549 return boolean_false_node;
3550
3551 return NULL_TREE;
3552 }
3553 else if (comp == NE_EXPR)
3554 {
3555 /* If VAL is not inside VR, then they are always different. */
3556 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3557 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3558 return boolean_true_node;
3559
3560 /* If VR represents exactly one value equal to VAL, then return
3561 false. */
3562 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3563 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3564 return boolean_false_node;
3565
3566 /* Otherwise, they may or may not be different. */
3567 return NULL_TREE;
3568 }
3569 else if (comp == LT_EXPR || comp == LE_EXPR)
3570 {
3571 int tst;
3572
3573 /* If VR is to the left of VAL, return true. */
3574 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3575 if ((comp == LT_EXPR && tst == -1)
3576 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3577 {
3578 if (overflow_infinity_range_p (vr))
3579 *strict_overflow_p = true;
3580 return boolean_true_node;
3581 }
3582
3583 /* If VR is to the right of VAL, return false. */
3584 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3585 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3586 || (comp == LE_EXPR && tst == 1))
3587 {
3588 if (overflow_infinity_range_p (vr))
3589 *strict_overflow_p = true;
3590 return boolean_false_node;
3591 }
3592
3593 /* Otherwise, we don't know. */
3594 return NULL_TREE;
3595 }
3596 else if (comp == GT_EXPR || comp == GE_EXPR)
3597 {
3598 int tst;
3599
3600 /* If VR is to the right of VAL, return true. */
3601 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3602 if ((comp == GT_EXPR && tst == 1)
3603 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3604 {
3605 if (overflow_infinity_range_p (vr))
3606 *strict_overflow_p = true;
3607 return boolean_true_node;
3608 }
3609
3610 /* If VR is to the left of VAL, return false. */
3611 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3612 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3613 || (comp == GE_EXPR && tst == -1))
3614 {
3615 if (overflow_infinity_range_p (vr))
3616 *strict_overflow_p = true;
3617 return boolean_false_node;
3618 }
3619
3620 /* Otherwise, we don't know. */
3621 return NULL_TREE;
3622 }
3623
3624 gcc_unreachable ();
3625 }
3626
3627
3628 /* Debugging dumps. */
3629
3630 void dump_value_range (FILE *, value_range_t *);
3631 void debug_value_range (value_range_t *);
3632 void dump_all_value_ranges (FILE *);
3633 void debug_all_value_ranges (void);
3634 void dump_vr_equiv (FILE *, bitmap);
3635 void debug_vr_equiv (bitmap);
3636
3637
3638 /* Dump value range VR to FILE. */
3639
3640 void
3641 dump_value_range (FILE *file, value_range_t *vr)
3642 {
3643 if (vr == NULL)
3644 fprintf (file, "[]");
3645 else if (vr->type == VR_UNDEFINED)
3646 fprintf (file, "UNDEFINED");
3647 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3648 {
3649 tree type = TREE_TYPE (vr->min);
3650
3651 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3652
3653 if (is_negative_overflow_infinity (vr->min))
3654 fprintf (file, "-INF(OVF)");
3655 else if (INTEGRAL_TYPE_P (type)
3656 && !TYPE_UNSIGNED (type)
3657 && vrp_val_is_min (vr->min))
3658 fprintf (file, "-INF");
3659 else
3660 print_generic_expr (file, vr->min, 0);
3661
3662 fprintf (file, ", ");
3663
3664 if (is_positive_overflow_infinity (vr->max))
3665 fprintf (file, "+INF(OVF)");
3666 else if (INTEGRAL_TYPE_P (type)
3667 && vrp_val_is_max (vr->max))
3668 fprintf (file, "+INF");
3669 else
3670 print_generic_expr (file, vr->max, 0);
3671
3672 fprintf (file, "]");
3673
3674 if (vr->equiv)
3675 {
3676 bitmap_iterator bi;
3677 unsigned i, c = 0;
3678
3679 fprintf (file, " EQUIVALENCES: { ");
3680
3681 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3682 {
3683 print_generic_expr (file, ssa_name (i), 0);
3684 fprintf (file, " ");
3685 c++;
3686 }
3687
3688 fprintf (file, "} (%u elements)", c);
3689 }
3690 }
3691 else if (vr->type == VR_VARYING)
3692 fprintf (file, "VARYING");
3693 else
3694 fprintf (file, "INVALID RANGE");
3695 }
3696
3697
3698 /* Dump value range VR to stderr. */
3699
3700 void
3701 debug_value_range (value_range_t *vr)
3702 {
3703 dump_value_range (stderr, vr);
3704 fprintf (stderr, "\n");
3705 }
3706
3707
3708 /* Dump value ranges of all SSA_NAMEs to FILE. */
3709
3710 void
3711 dump_all_value_ranges (FILE *file)
3712 {
3713 size_t i;
3714
3715 for (i = 0; i < num_ssa_names; i++)
3716 {
3717 if (vr_value[i])
3718 {
3719 print_generic_expr (file, ssa_name (i), 0);
3720 fprintf (file, ": ");
3721 dump_value_range (file, vr_value[i]);
3722 fprintf (file, "\n");
3723 }
3724 }
3725
3726 fprintf (file, "\n");
3727 }
3728
3729
3730 /* Dump all value ranges to stderr. */
3731
3732 void
3733 debug_all_value_ranges (void)
3734 {
3735 dump_all_value_ranges (stderr);
3736 }
3737
3738
3739 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3740 create a new SSA name N and return the assertion assignment
3741 'V = ASSERT_EXPR <V, V OP W>'. */
3742
3743 static gimple
3744 build_assert_expr_for (tree cond, tree v)
3745 {
3746 tree n;
3747 gimple assertion;
3748
3749 gcc_assert (TREE_CODE (v) == SSA_NAME);
3750 n = duplicate_ssa_name (v, NULL);
3751
3752 if (COMPARISON_CLASS_P (cond))
3753 {
3754 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3755 assertion = gimple_build_assign (n, a);
3756 }
3757 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3758 {
3759 /* Given !V, build the assignment N = false. */
3760 tree op0 = TREE_OPERAND (cond, 0);
3761 gcc_assert (op0 == v);
3762 assertion = gimple_build_assign (n, boolean_false_node);
3763 }
3764 else if (TREE_CODE (cond) == SSA_NAME)
3765 {
3766 /* Given V, build the assignment N = true. */
3767 gcc_assert (v == cond);
3768 assertion = gimple_build_assign (n, boolean_true_node);
3769 }
3770 else
3771 gcc_unreachable ();
3772
3773 SSA_NAME_DEF_STMT (n) = assertion;
3774
3775 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3776 operand of the ASSERT_EXPR. Register the new name and the old one
3777 in the replacement table so that we can fix the SSA web after
3778 adding all the ASSERT_EXPRs. */
3779 register_new_name_mapping (n, v);
3780
3781 return assertion;
3782 }
3783
3784
3785 /* Return false if EXPR is a predicate expression involving floating
3786 point values. */
3787
3788 static inline bool
3789 fp_predicate (gimple stmt)
3790 {
3791 GIMPLE_CHECK (stmt, GIMPLE_COND);
3792
3793 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
3794 }
3795
3796
3797 /* If the range of values taken by OP can be inferred after STMT executes,
3798 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3799 describes the inferred range. Return true if a range could be
3800 inferred. */
3801
3802 static bool
3803 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3804 {
3805 *val_p = NULL_TREE;
3806 *comp_code_p = ERROR_MARK;
3807
3808 /* Do not attempt to infer anything in names that flow through
3809 abnormal edges. */
3810 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3811 return false;
3812
3813 /* Similarly, don't infer anything from statements that may throw
3814 exceptions. */
3815 if (stmt_could_throw_p (stmt))
3816 return false;
3817
3818 /* If STMT is the last statement of a basic block with no
3819 successors, there is no point inferring anything about any of its
3820 operands. We would not be able to find a proper insertion point
3821 for the assertion, anyway. */
3822 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
3823 return false;
3824
3825 /* We can only assume that a pointer dereference will yield
3826 non-NULL if -fdelete-null-pointer-checks is enabled. */
3827 if (flag_delete_null_pointer_checks
3828 && POINTER_TYPE_P (TREE_TYPE (op))
3829 && gimple_code (stmt) != GIMPLE_ASM)
3830 {
3831 unsigned num_uses, num_loads, num_stores;
3832
3833 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3834 if (num_loads + num_stores > 0)
3835 {
3836 *val_p = build_int_cst (TREE_TYPE (op), 0);
3837 *comp_code_p = NE_EXPR;
3838 return true;
3839 }
3840 }
3841
3842 return false;
3843 }
3844
3845
3846 void dump_asserts_for (FILE *, tree);
3847 void debug_asserts_for (tree);
3848 void dump_all_asserts (FILE *);
3849 void debug_all_asserts (void);
3850
3851 /* Dump all the registered assertions for NAME to FILE. */
3852
3853 void
3854 dump_asserts_for (FILE *file, tree name)
3855 {
3856 assert_locus_t loc;
3857
3858 fprintf (file, "Assertions to be inserted for ");
3859 print_generic_expr (file, name, 0);
3860 fprintf (file, "\n");
3861
3862 loc = asserts_for[SSA_NAME_VERSION (name)];
3863 while (loc)
3864 {
3865 fprintf (file, "\t");
3866 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
3867 fprintf (file, "\n\tBB #%d", loc->bb->index);
3868 if (loc->e)
3869 {
3870 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3871 loc->e->dest->index);
3872 dump_edge_info (file, loc->e, 0);
3873 }
3874 fprintf (file, "\n\tPREDICATE: ");
3875 print_generic_expr (file, name, 0);
3876 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3877 print_generic_expr (file, loc->val, 0);
3878 fprintf (file, "\n\n");
3879 loc = loc->next;
3880 }
3881
3882 fprintf (file, "\n");
3883 }
3884
3885
3886 /* Dump all the registered assertions for NAME to stderr. */
3887
3888 void
3889 debug_asserts_for (tree name)
3890 {
3891 dump_asserts_for (stderr, name);
3892 }
3893
3894
3895 /* Dump all the registered assertions for all the names to FILE. */
3896
3897 void
3898 dump_all_asserts (FILE *file)
3899 {
3900 unsigned i;
3901 bitmap_iterator bi;
3902
3903 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3904 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3905 dump_asserts_for (file, ssa_name (i));
3906 fprintf (file, "\n");
3907 }
3908
3909
3910 /* Dump all the registered assertions for all the names to stderr. */
3911
3912 void
3913 debug_all_asserts (void)
3914 {
3915 dump_all_asserts (stderr);
3916 }
3917
3918
3919 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3920 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3921 E->DEST, then register this location as a possible insertion point
3922 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3923
3924 BB, E and SI provide the exact insertion point for the new
3925 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3926 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3927 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3928 must not be NULL. */
3929
3930 static void
3931 register_new_assert_for (tree name, tree expr,
3932 enum tree_code comp_code,
3933 tree val,
3934 basic_block bb,
3935 edge e,
3936 gimple_stmt_iterator si)
3937 {
3938 assert_locus_t n, loc, last_loc;
3939 bool found;
3940 basic_block dest_bb;
3941
3942 #if defined ENABLE_CHECKING
3943 gcc_assert (bb == NULL || e == NULL);
3944
3945 if (e == NULL)
3946 gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
3947 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
3948 #endif
3949
3950 /* Never build an assert comparing against an integer constant with
3951 TREE_OVERFLOW set. This confuses our undefined overflow warning
3952 machinery. */
3953 if (TREE_CODE (val) == INTEGER_CST
3954 && TREE_OVERFLOW (val))
3955 val = build_int_cst_wide (TREE_TYPE (val),
3956 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
3957
3958 /* The new assertion A will be inserted at BB or E. We need to
3959 determine if the new location is dominated by a previously
3960 registered location for A. If we are doing an edge insertion,
3961 assume that A will be inserted at E->DEST. Note that this is not
3962 necessarily true.
3963
3964 If E is a critical edge, it will be split. But even if E is
3965 split, the new block will dominate the same set of blocks that
3966 E->DEST dominates.
3967
3968 The reverse, however, is not true, blocks dominated by E->DEST
3969 will not be dominated by the new block created to split E. So,
3970 if the insertion location is on a critical edge, we will not use
3971 the new location to move another assertion previously registered
3972 at a block dominated by E->DEST. */
3973 dest_bb = (bb) ? bb : e->dest;
3974
3975 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3976 VAL at a block dominating DEST_BB, then we don't need to insert a new
3977 one. Similarly, if the same assertion already exists at a block
3978 dominated by DEST_BB and the new location is not on a critical
3979 edge, then update the existing location for the assertion (i.e.,
3980 move the assertion up in the dominance tree).
3981
3982 Note, this is implemented as a simple linked list because there
3983 should not be more than a handful of assertions registered per
3984 name. If this becomes a performance problem, a table hashed by
3985 COMP_CODE and VAL could be implemented. */
3986 loc = asserts_for[SSA_NAME_VERSION (name)];
3987 last_loc = loc;
3988 found = false;
3989 while (loc)
3990 {
3991 if (loc->comp_code == comp_code
3992 && (loc->val == val
3993 || operand_equal_p (loc->val, val, 0))
3994 && (loc->expr == expr
3995 || operand_equal_p (loc->expr, expr, 0)))
3996 {
3997 /* If the assertion NAME COMP_CODE VAL has already been
3998 registered at a basic block that dominates DEST_BB, then
3999 we don't need to insert the same assertion again. Note
4000 that we don't check strict dominance here to avoid
4001 replicating the same assertion inside the same basic
4002 block more than once (e.g., when a pointer is
4003 dereferenced several times inside a block).
4004
4005 An exception to this rule are edge insertions. If the
4006 new assertion is to be inserted on edge E, then it will
4007 dominate all the other insertions that we may want to
4008 insert in DEST_BB. So, if we are doing an edge
4009 insertion, don't do this dominance check. */
4010 if (e == NULL
4011 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4012 return;
4013
4014 /* Otherwise, if E is not a critical edge and DEST_BB
4015 dominates the existing location for the assertion, move
4016 the assertion up in the dominance tree by updating its
4017 location information. */
4018 if ((e == NULL || !EDGE_CRITICAL_P (e))
4019 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4020 {
4021 loc->bb = dest_bb;
4022 loc->e = e;
4023 loc->si = si;
4024 return;
4025 }
4026 }
4027
4028 /* Update the last node of the list and move to the next one. */
4029 last_loc = loc;
4030 loc = loc->next;
4031 }
4032
4033 /* If we didn't find an assertion already registered for
4034 NAME COMP_CODE VAL, add a new one at the end of the list of
4035 assertions associated with NAME. */
4036 n = XNEW (struct assert_locus_d);
4037 n->bb = dest_bb;
4038 n->e = e;
4039 n->si = si;
4040 n->comp_code = comp_code;
4041 n->val = val;
4042 n->expr = expr;
4043 n->next = NULL;
4044
4045 if (last_loc)
4046 last_loc->next = n;
4047 else
4048 asserts_for[SSA_NAME_VERSION (name)] = n;
4049
4050 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4051 }
4052
4053 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4054 Extract a suitable test code and value and store them into *CODE_P and
4055 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4056
4057 If no extraction was possible, return FALSE, otherwise return TRUE.
4058
4059 If INVERT is true, then we invert the result stored into *CODE_P. */
4060
4061 static bool
4062 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4063 tree cond_op0, tree cond_op1,
4064 bool invert, enum tree_code *code_p,
4065 tree *val_p)
4066 {
4067 enum tree_code comp_code;
4068 tree val;
4069
4070 /* Otherwise, we have a comparison of the form NAME COMP VAL
4071 or VAL COMP NAME. */
4072 if (name == cond_op1)
4073 {
4074 /* If the predicate is of the form VAL COMP NAME, flip
4075 COMP around because we need to register NAME as the
4076 first operand in the predicate. */
4077 comp_code = swap_tree_comparison (cond_code);
4078 val = cond_op0;
4079 }
4080 else
4081 {
4082 /* The comparison is of the form NAME COMP VAL, so the
4083 comparison code remains unchanged. */
4084 comp_code = cond_code;
4085 val = cond_op1;
4086 }
4087
4088 /* Invert the comparison code as necessary. */
4089 if (invert)
4090 comp_code = invert_tree_comparison (comp_code, 0);
4091
4092 /* VRP does not handle float types. */
4093 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4094 return false;
4095
4096 /* Do not register always-false predicates.
4097 FIXME: this works around a limitation in fold() when dealing with
4098 enumerations. Given 'enum { N1, N2 } x;', fold will not
4099 fold 'if (x > N2)' to 'if (0)'. */
4100 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4101 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4102 {
4103 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4104 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4105
4106 if (comp_code == GT_EXPR
4107 && (!max
4108 || compare_values (val, max) == 0))
4109 return false;
4110
4111 if (comp_code == LT_EXPR
4112 && (!min
4113 || compare_values (val, min) == 0))
4114 return false;
4115 }
4116 *code_p = comp_code;
4117 *val_p = val;
4118 return true;
4119 }
4120
4121 /* Try to register an edge assertion for SSA name NAME on edge E for
4122 the condition COND contributing to the conditional jump pointed to by BSI.
4123 Invert the condition COND if INVERT is true.
4124 Return true if an assertion for NAME could be registered. */
4125
4126 static bool
4127 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4128 enum tree_code cond_code,
4129 tree cond_op0, tree cond_op1, bool invert)
4130 {
4131 tree val;
4132 enum tree_code comp_code;
4133 bool retval = false;
4134
4135 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4136 cond_op0,
4137 cond_op1,
4138 invert, &comp_code, &val))
4139 return false;
4140
4141 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4142 reachable from E. */
4143 if (live_on_edge (e, name)
4144 && !has_single_use (name))
4145 {
4146 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4147 retval = true;
4148 }
4149
4150 /* In the case of NAME <= CST and NAME being defined as
4151 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4152 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4153 This catches range and anti-range tests. */
4154 if ((comp_code == LE_EXPR
4155 || comp_code == GT_EXPR)
4156 && TREE_CODE (val) == INTEGER_CST
4157 && TYPE_UNSIGNED (TREE_TYPE (val)))
4158 {
4159 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4160 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4161
4162 /* Extract CST2 from the (optional) addition. */
4163 if (is_gimple_assign (def_stmt)
4164 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4165 {
4166 name2 = gimple_assign_rhs1 (def_stmt);
4167 cst2 = gimple_assign_rhs2 (def_stmt);
4168 if (TREE_CODE (name2) == SSA_NAME
4169 && TREE_CODE (cst2) == INTEGER_CST)
4170 def_stmt = SSA_NAME_DEF_STMT (name2);
4171 }
4172
4173 /* Extract NAME2 from the (optional) sign-changing cast. */
4174 if (gimple_assign_cast_p (def_stmt))
4175 {
4176 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4177 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4178 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4179 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4180 name3 = gimple_assign_rhs1 (def_stmt);
4181 }
4182
4183 /* If name3 is used later, create an ASSERT_EXPR for it. */
4184 if (name3 != NULL_TREE
4185 && TREE_CODE (name3) == SSA_NAME
4186 && (cst2 == NULL_TREE
4187 || TREE_CODE (cst2) == INTEGER_CST)
4188 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4189 && live_on_edge (e, name3)
4190 && !has_single_use (name3))
4191 {
4192 tree tmp;
4193
4194 /* Build an expression for the range test. */
4195 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4196 if (cst2 != NULL_TREE)
4197 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4198
4199 if (dump_file)
4200 {
4201 fprintf (dump_file, "Adding assert for ");
4202 print_generic_expr (dump_file, name3, 0);
4203 fprintf (dump_file, " from ");
4204 print_generic_expr (dump_file, tmp, 0);
4205 fprintf (dump_file, "\n");
4206 }
4207
4208 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4209
4210 retval = true;
4211 }
4212
4213 /* If name2 is used later, create an ASSERT_EXPR for it. */
4214 if (name2 != NULL_TREE
4215 && TREE_CODE (name2) == SSA_NAME
4216 && TREE_CODE (cst2) == INTEGER_CST
4217 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4218 && live_on_edge (e, name2)
4219 && !has_single_use (name2))
4220 {
4221 tree tmp;
4222
4223 /* Build an expression for the range test. */
4224 tmp = name2;
4225 if (TREE_TYPE (name) != TREE_TYPE (name2))
4226 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4227 if (cst2 != NULL_TREE)
4228 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4229
4230 if (dump_file)
4231 {
4232 fprintf (dump_file, "Adding assert for ");
4233 print_generic_expr (dump_file, name2, 0);
4234 fprintf (dump_file, " from ");
4235 print_generic_expr (dump_file, tmp, 0);
4236 fprintf (dump_file, "\n");
4237 }
4238
4239 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4240
4241 retval = true;
4242 }
4243 }
4244
4245 return retval;
4246 }
4247
4248 /* OP is an operand of a truth value expression which is known to have
4249 a particular value. Register any asserts for OP and for any
4250 operands in OP's defining statement.
4251
4252 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4253 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4254
4255 static bool
4256 register_edge_assert_for_1 (tree op, enum tree_code code,
4257 edge e, gimple_stmt_iterator bsi)
4258 {
4259 bool retval = false;
4260 gimple op_def;
4261 tree val;
4262 enum tree_code rhs_code;
4263
4264 /* We only care about SSA_NAMEs. */
4265 if (TREE_CODE (op) != SSA_NAME)
4266 return false;
4267
4268 /* We know that OP will have a zero or nonzero value. If OP is used
4269 more than once go ahead and register an assert for OP.
4270
4271 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4272 it will always be set for OP (because OP is used in a COND_EXPR in
4273 the subgraph). */
4274 if (!has_single_use (op))
4275 {
4276 val = build_int_cst (TREE_TYPE (op), 0);
4277 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4278 retval = true;
4279 }
4280
4281 /* Now look at how OP is set. If it's set from a comparison,
4282 a truth operation or some bit operations, then we may be able
4283 to register information about the operands of that assignment. */
4284 op_def = SSA_NAME_DEF_STMT (op);
4285 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4286 return retval;
4287
4288 rhs_code = gimple_assign_rhs_code (op_def);
4289
4290 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4291 {
4292 bool invert = (code == EQ_EXPR ? true : false);
4293 tree op0 = gimple_assign_rhs1 (op_def);
4294 tree op1 = gimple_assign_rhs2 (op_def);
4295
4296 if (TREE_CODE (op0) == SSA_NAME)
4297 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4298 invert);
4299 if (TREE_CODE (op1) == SSA_NAME)
4300 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4301 invert);
4302 }
4303 else if ((code == NE_EXPR
4304 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4305 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
4306 || (code == EQ_EXPR
4307 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4308 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
4309 {
4310 /* Recurse on each operand. */
4311 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4312 code, e, bsi);
4313 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4314 code, e, bsi);
4315 }
4316 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
4317 {
4318 /* Recurse, flipping CODE. */
4319 code = invert_tree_comparison (code, false);
4320 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4321 code, e, bsi);
4322 }
4323 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4324 {
4325 /* Recurse through the copy. */
4326 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4327 code, e, bsi);
4328 }
4329 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4330 {
4331 /* Recurse through the type conversion. */
4332 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4333 code, e, bsi);
4334 }
4335
4336 return retval;
4337 }
4338
4339 /* Try to register an edge assertion for SSA name NAME on edge E for
4340 the condition COND contributing to the conditional jump pointed to by SI.
4341 Return true if an assertion for NAME could be registered. */
4342
4343 static bool
4344 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4345 enum tree_code cond_code, tree cond_op0,
4346 tree cond_op1)
4347 {
4348 tree val;
4349 enum tree_code comp_code;
4350 bool retval = false;
4351 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4352
4353 /* Do not attempt to infer anything in names that flow through
4354 abnormal edges. */
4355 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4356 return false;
4357
4358 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4359 cond_op0, cond_op1,
4360 is_else_edge,
4361 &comp_code, &val))
4362 return false;
4363
4364 /* Register ASSERT_EXPRs for name. */
4365 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4366 cond_op1, is_else_edge);
4367
4368
4369 /* If COND is effectively an equality test of an SSA_NAME against
4370 the value zero or one, then we may be able to assert values
4371 for SSA_NAMEs which flow into COND. */
4372
4373 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4374 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4375 have nonzero value. */
4376 if (((comp_code == EQ_EXPR && integer_onep (val))
4377 || (comp_code == NE_EXPR && integer_zerop (val))))
4378 {
4379 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4380
4381 if (is_gimple_assign (def_stmt)
4382 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4383 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
4384 {
4385 tree op0 = gimple_assign_rhs1 (def_stmt);
4386 tree op1 = gimple_assign_rhs2 (def_stmt);
4387 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4388 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4389 }
4390 }
4391
4392 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4393 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4394 have zero value. */
4395 if (((comp_code == EQ_EXPR && integer_zerop (val))
4396 || (comp_code == NE_EXPR && integer_onep (val))))
4397 {
4398 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4399
4400 if (is_gimple_assign (def_stmt)
4401 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
4402 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4403 necessarily zero value. */
4404 || (comp_code == EQ_EXPR
4405 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
4406 {
4407 tree op0 = gimple_assign_rhs1 (def_stmt);
4408 tree op1 = gimple_assign_rhs2 (def_stmt);
4409 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4410 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4411 }
4412 }
4413
4414 return retval;
4415 }
4416
4417
4418 /* Determine whether the outgoing edges of BB should receive an
4419 ASSERT_EXPR for each of the operands of BB's LAST statement.
4420 The last statement of BB must be a COND_EXPR.
4421
4422 If any of the sub-graphs rooted at BB have an interesting use of
4423 the predicate operands, an assert location node is added to the
4424 list of assertions for the corresponding operands. */
4425
4426 static bool
4427 find_conditional_asserts (basic_block bb, gimple last)
4428 {
4429 bool need_assert;
4430 gimple_stmt_iterator bsi;
4431 tree op;
4432 edge_iterator ei;
4433 edge e;
4434 ssa_op_iter iter;
4435
4436 need_assert = false;
4437 bsi = gsi_for_stmt (last);
4438
4439 /* Look for uses of the operands in each of the sub-graphs
4440 rooted at BB. We need to check each of the outgoing edges
4441 separately, so that we know what kind of ASSERT_EXPR to
4442 insert. */
4443 FOR_EACH_EDGE (e, ei, bb->succs)
4444 {
4445 if (e->dest == bb)
4446 continue;
4447
4448 /* Register the necessary assertions for each operand in the
4449 conditional predicate. */
4450 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4451 {
4452 need_assert |= register_edge_assert_for (op, e, bsi,
4453 gimple_cond_code (last),
4454 gimple_cond_lhs (last),
4455 gimple_cond_rhs (last));
4456 }
4457 }
4458
4459 return need_assert;
4460 }
4461
4462 /* Compare two case labels sorting first by the destination label uid
4463 and then by the case value. */
4464
4465 static int
4466 compare_case_labels (const void *p1, const void *p2)
4467 {
4468 const_tree const case1 = *(const_tree const*)p1;
4469 const_tree const case2 = *(const_tree const*)p2;
4470 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4471 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4472
4473 if (uid1 < uid2)
4474 return -1;
4475 else if (uid1 == uid2)
4476 {
4477 /* Make sure the default label is first in a group. */
4478 if (!CASE_LOW (case1))
4479 return -1;
4480 else if (!CASE_LOW (case2))
4481 return 1;
4482 else
4483 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4484 }
4485 else
4486 return 1;
4487 }
4488
4489 /* Determine whether the outgoing edges of BB should receive an
4490 ASSERT_EXPR for each of the operands of BB's LAST statement.
4491 The last statement of BB must be a SWITCH_EXPR.
4492
4493 If any of the sub-graphs rooted at BB have an interesting use of
4494 the predicate operands, an assert location node is added to the
4495 list of assertions for the corresponding operands. */
4496
4497 static bool
4498 find_switch_asserts (basic_block bb, gimple last)
4499 {
4500 bool need_assert;
4501 gimple_stmt_iterator bsi;
4502 tree op;
4503 edge e;
4504 tree vec2;
4505 size_t n = gimple_switch_num_labels(last);
4506 #if GCC_VERSION >= 4000
4507 unsigned int idx;
4508 #else
4509 /* Work around GCC 3.4 bug (PR 37086). */
4510 volatile unsigned int idx;
4511 #endif
4512
4513 need_assert = false;
4514 bsi = gsi_for_stmt (last);
4515 op = gimple_switch_index (last);
4516 if (TREE_CODE (op) != SSA_NAME)
4517 return false;
4518
4519 /* Build a vector of case labels sorted by destination label. */
4520 vec2 = make_tree_vec (n);
4521 for (idx = 0; idx < n; ++idx)
4522 TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
4523 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4524
4525 for (idx = 0; idx < n; ++idx)
4526 {
4527 tree min, max;
4528 tree cl = TREE_VEC_ELT (vec2, idx);
4529
4530 min = CASE_LOW (cl);
4531 max = CASE_HIGH (cl);
4532
4533 /* If there are multiple case labels with the same destination
4534 we need to combine them to a single value range for the edge. */
4535 if (idx + 1 < n
4536 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4537 {
4538 /* Skip labels until the last of the group. */
4539 do {
4540 ++idx;
4541 } while (idx < n
4542 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4543 --idx;
4544
4545 /* Pick up the maximum of the case label range. */
4546 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4547 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4548 else
4549 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4550 }
4551
4552 /* Nothing to do if the range includes the default label until we
4553 can register anti-ranges. */
4554 if (min == NULL_TREE)
4555 continue;
4556
4557 /* Find the edge to register the assert expr on. */
4558 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4559
4560 /* Register the necessary assertions for the operand in the
4561 SWITCH_EXPR. */
4562 need_assert |= register_edge_assert_for (op, e, bsi,
4563 max ? GE_EXPR : EQ_EXPR,
4564 op,
4565 fold_convert (TREE_TYPE (op),
4566 min));
4567 if (max)
4568 {
4569 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4570 op,
4571 fold_convert (TREE_TYPE (op),
4572 max));
4573 }
4574 }
4575
4576 return need_assert;
4577 }
4578
4579
4580 /* Traverse all the statements in block BB looking for statements that
4581 may generate useful assertions for the SSA names in their operand.
4582 If a statement produces a useful assertion A for name N_i, then the
4583 list of assertions already generated for N_i is scanned to
4584 determine if A is actually needed.
4585
4586 If N_i already had the assertion A at a location dominating the
4587 current location, then nothing needs to be done. Otherwise, the
4588 new location for A is recorded instead.
4589
4590 1- For every statement S in BB, all the variables used by S are
4591 added to bitmap FOUND_IN_SUBGRAPH.
4592
4593 2- If statement S uses an operand N in a way that exposes a known
4594 value range for N, then if N was not already generated by an
4595 ASSERT_EXPR, create a new assert location for N. For instance,
4596 if N is a pointer and the statement dereferences it, we can
4597 assume that N is not NULL.
4598
4599 3- COND_EXPRs are a special case of #2. We can derive range
4600 information from the predicate but need to insert different
4601 ASSERT_EXPRs for each of the sub-graphs rooted at the
4602 conditional block. If the last statement of BB is a conditional
4603 expression of the form 'X op Y', then
4604
4605 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4606
4607 b) If the conditional is the only entry point to the sub-graph
4608 corresponding to the THEN_CLAUSE, recurse into it. On
4609 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4610 an ASSERT_EXPR is added for the corresponding variable.
4611
4612 c) Repeat step (b) on the ELSE_CLAUSE.
4613
4614 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4615
4616 For instance,
4617
4618 if (a == 9)
4619 b = a;
4620 else
4621 b = c + 1;
4622
4623 In this case, an assertion on the THEN clause is useful to
4624 determine that 'a' is always 9 on that edge. However, an assertion
4625 on the ELSE clause would be unnecessary.
4626
4627 4- If BB does not end in a conditional expression, then we recurse
4628 into BB's dominator children.
4629
4630 At the end of the recursive traversal, every SSA name will have a
4631 list of locations where ASSERT_EXPRs should be added. When a new
4632 location for name N is found, it is registered by calling
4633 register_new_assert_for. That function keeps track of all the
4634 registered assertions to prevent adding unnecessary assertions.
4635 For instance, if a pointer P_4 is dereferenced more than once in a
4636 dominator tree, only the location dominating all the dereference of
4637 P_4 will receive an ASSERT_EXPR.
4638
4639 If this function returns true, then it means that there are names
4640 for which we need to generate ASSERT_EXPRs. Those assertions are
4641 inserted by process_assert_insertions. */
4642
4643 static bool
4644 find_assert_locations_1 (basic_block bb, sbitmap live)
4645 {
4646 gimple_stmt_iterator si;
4647 gimple last;
4648 gimple phi;
4649 bool need_assert;
4650
4651 need_assert = false;
4652 last = last_stmt (bb);
4653
4654 /* If BB's last statement is a conditional statement involving integer
4655 operands, determine if we need to add ASSERT_EXPRs. */
4656 if (last
4657 && gimple_code (last) == GIMPLE_COND
4658 && !fp_predicate (last)
4659 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4660 need_assert |= find_conditional_asserts (bb, last);
4661
4662 /* If BB's last statement is a switch statement involving integer
4663 operands, determine if we need to add ASSERT_EXPRs. */
4664 if (last
4665 && gimple_code (last) == GIMPLE_SWITCH
4666 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4667 need_assert |= find_switch_asserts (bb, last);
4668
4669 /* Traverse all the statements in BB marking used names and looking
4670 for statements that may infer assertions for their used operands. */
4671 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4672 {
4673 gimple stmt;
4674 tree op;
4675 ssa_op_iter i;
4676
4677 stmt = gsi_stmt (si);
4678
4679 /* See if we can derive an assertion for any of STMT's operands. */
4680 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4681 {
4682 tree value;
4683 enum tree_code comp_code;
4684
4685 /* Mark OP in our live bitmap. */
4686 SET_BIT (live, SSA_NAME_VERSION (op));
4687
4688 /* If OP is used in such a way that we can infer a value
4689 range for it, and we don't find a previous assertion for
4690 it, create a new assertion location node for OP. */
4691 if (infer_value_range (stmt, op, &comp_code, &value))
4692 {
4693 /* If we are able to infer a nonzero value range for OP,
4694 then walk backwards through the use-def chain to see if OP
4695 was set via a typecast.
4696
4697 If so, then we can also infer a nonzero value range
4698 for the operand of the NOP_EXPR. */
4699 if (comp_code == NE_EXPR && integer_zerop (value))
4700 {
4701 tree t = op;
4702 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4703
4704 while (is_gimple_assign (def_stmt)
4705 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4706 && TREE_CODE
4707 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4708 && POINTER_TYPE_P
4709 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4710 {
4711 t = gimple_assign_rhs1 (def_stmt);
4712 def_stmt = SSA_NAME_DEF_STMT (t);
4713
4714 /* Note we want to register the assert for the
4715 operand of the NOP_EXPR after SI, not after the
4716 conversion. */
4717 if (! has_single_use (t))
4718 {
4719 register_new_assert_for (t, t, comp_code, value,
4720 bb, NULL, si);
4721 need_assert = true;
4722 }
4723 }
4724 }
4725
4726 /* If OP is used only once, namely in this STMT, don't
4727 bother creating an ASSERT_EXPR for it. Such an
4728 ASSERT_EXPR would do nothing but increase compile time. */
4729 if (!has_single_use (op))
4730 {
4731 register_new_assert_for (op, op, comp_code, value,
4732 bb, NULL, si);
4733 need_assert = true;
4734 }
4735 }
4736 }
4737 }
4738
4739 /* Traverse all PHI nodes in BB marking used operands. */
4740 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4741 {
4742 use_operand_p arg_p;
4743 ssa_op_iter i;
4744 phi = gsi_stmt (si);
4745
4746 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4747 {
4748 tree arg = USE_FROM_PTR (arg_p);
4749 if (TREE_CODE (arg) == SSA_NAME)
4750 SET_BIT (live, SSA_NAME_VERSION (arg));
4751 }
4752 }
4753
4754 return need_assert;
4755 }
4756
4757 /* Do an RPO walk over the function computing SSA name liveness
4758 on-the-fly and deciding on assert expressions to insert.
4759 Returns true if there are assert expressions to be inserted. */
4760
4761 static bool
4762 find_assert_locations (void)
4763 {
4764 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4765 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4766 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4767 int rpo_cnt, i;
4768 bool need_asserts;
4769
4770 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4771 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4772 for (i = 0; i < rpo_cnt; ++i)
4773 bb_rpo[rpo[i]] = i;
4774
4775 need_asserts = false;
4776 for (i = rpo_cnt-1; i >= 0; --i)
4777 {
4778 basic_block bb = BASIC_BLOCK (rpo[i]);
4779 edge e;
4780 edge_iterator ei;
4781
4782 if (!live[rpo[i]])
4783 {
4784 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4785 sbitmap_zero (live[rpo[i]]);
4786 }
4787
4788 /* Process BB and update the live information with uses in
4789 this block. */
4790 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
4791
4792 /* Merge liveness into the predecessor blocks and free it. */
4793 if (!sbitmap_empty_p (live[rpo[i]]))
4794 {
4795 int pred_rpo = i;
4796 FOR_EACH_EDGE (e, ei, bb->preds)
4797 {
4798 int pred = e->src->index;
4799 if (e->flags & EDGE_DFS_BACK)
4800 continue;
4801
4802 if (!live[pred])
4803 {
4804 live[pred] = sbitmap_alloc (num_ssa_names);
4805 sbitmap_zero (live[pred]);
4806 }
4807 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
4808
4809 if (bb_rpo[pred] < pred_rpo)
4810 pred_rpo = bb_rpo[pred];
4811 }
4812
4813 /* Record the RPO number of the last visited block that needs
4814 live information from this block. */
4815 last_rpo[rpo[i]] = pred_rpo;
4816 }
4817 else
4818 {
4819 sbitmap_free (live[rpo[i]]);
4820 live[rpo[i]] = NULL;
4821 }
4822
4823 /* We can free all successors live bitmaps if all their
4824 predecessors have been visited already. */
4825 FOR_EACH_EDGE (e, ei, bb->succs)
4826 if (last_rpo[e->dest->index] == i
4827 && live[e->dest->index])
4828 {
4829 sbitmap_free (live[e->dest->index]);
4830 live[e->dest->index] = NULL;
4831 }
4832 }
4833
4834 XDELETEVEC (rpo);
4835 XDELETEVEC (bb_rpo);
4836 XDELETEVEC (last_rpo);
4837 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
4838 if (live[i])
4839 sbitmap_free (live[i]);
4840 XDELETEVEC (live);
4841
4842 return need_asserts;
4843 }
4844
4845 /* Create an ASSERT_EXPR for NAME and insert it in the location
4846 indicated by LOC. Return true if we made any edge insertions. */
4847
4848 static bool
4849 process_assert_insertions_for (tree name, assert_locus_t loc)
4850 {
4851 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4852 gimple stmt;
4853 tree cond;
4854 gimple assert_stmt;
4855 edge_iterator ei;
4856 edge e;
4857
4858 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4859 assert_stmt = build_assert_expr_for (cond, name);
4860 if (loc->e)
4861 {
4862 /* We have been asked to insert the assertion on an edge. This
4863 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4864 #if defined ENABLE_CHECKING
4865 gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4866 || gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
4867 #endif
4868
4869 gsi_insert_on_edge (loc->e, assert_stmt);
4870 return true;
4871 }
4872
4873 /* Otherwise, we can insert right after LOC->SI iff the
4874 statement must not be the last statement in the block. */
4875 stmt = gsi_stmt (loc->si);
4876 if (!stmt_ends_bb_p (stmt))
4877 {
4878 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
4879 return false;
4880 }
4881
4882 /* If STMT must be the last statement in BB, we can only insert new
4883 assertions on the non-abnormal edge out of BB. Note that since
4884 STMT is not control flow, there may only be one non-abnormal edge
4885 out of BB. */
4886 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4887 if (!(e->flags & EDGE_ABNORMAL))
4888 {
4889 gsi_insert_on_edge (e, assert_stmt);
4890 return true;
4891 }
4892
4893 gcc_unreachable ();
4894 }
4895
4896
4897 /* Process all the insertions registered for every name N_i registered
4898 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4899 found in ASSERTS_FOR[i]. */
4900
4901 static void
4902 process_assert_insertions (void)
4903 {
4904 unsigned i;
4905 bitmap_iterator bi;
4906 bool update_edges_p = false;
4907 int num_asserts = 0;
4908
4909 if (dump_file && (dump_flags & TDF_DETAILS))
4910 dump_all_asserts (dump_file);
4911
4912 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4913 {
4914 assert_locus_t loc = asserts_for[i];
4915 gcc_assert (loc);
4916
4917 while (loc)
4918 {
4919 assert_locus_t next = loc->next;
4920 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4921 free (loc);
4922 loc = next;
4923 num_asserts++;
4924 }
4925 }
4926
4927 if (update_edges_p)
4928 gsi_commit_edge_inserts ();
4929
4930 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4931 num_asserts);
4932 }
4933
4934
4935 /* Traverse the flowgraph looking for conditional jumps to insert range
4936 expressions. These range expressions are meant to provide information
4937 to optimizations that need to reason in terms of value ranges. They
4938 will not be expanded into RTL. For instance, given:
4939
4940 x = ...
4941 y = ...
4942 if (x < y)
4943 y = x - 2;
4944 else
4945 x = y + 3;
4946
4947 this pass will transform the code into:
4948
4949 x = ...
4950 y = ...
4951 if (x < y)
4952 {
4953 x = ASSERT_EXPR <x, x < y>
4954 y = x - 2
4955 }
4956 else
4957 {
4958 y = ASSERT_EXPR <y, x <= y>
4959 x = y + 3
4960 }
4961
4962 The idea is that once copy and constant propagation have run, other
4963 optimizations will be able to determine what ranges of values can 'x'
4964 take in different paths of the code, simply by checking the reaching
4965 definition of 'x'. */
4966
4967 static void
4968 insert_range_assertions (void)
4969 {
4970 need_assert_for = BITMAP_ALLOC (NULL);
4971 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4972
4973 calculate_dominance_info (CDI_DOMINATORS);
4974
4975 if (find_assert_locations ())
4976 {
4977 process_assert_insertions ();
4978 update_ssa (TODO_update_ssa_no_phi);
4979 }
4980
4981 if (dump_file && (dump_flags & TDF_DETAILS))
4982 {
4983 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4984 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4985 }
4986
4987 free (asserts_for);
4988 BITMAP_FREE (need_assert_for);
4989 }
4990
4991 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4992 and "struct" hacks. If VRP can determine that the
4993 array subscript is a constant, check if it is outside valid
4994 range. If the array subscript is a RANGE, warn if it is
4995 non-overlapping with valid range.
4996 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4997
4998 static void
4999 check_array_ref (tree ref, const location_t *location, bool ignore_off_by_one)
5000 {
5001 value_range_t* vr = NULL;
5002 tree low_sub, up_sub;
5003 tree low_bound, up_bound = array_ref_up_bound (ref);
5004
5005 low_sub = up_sub = TREE_OPERAND (ref, 1);
5006
5007 if (!up_bound || TREE_NO_WARNING (ref)
5008 || TREE_CODE (up_bound) != INTEGER_CST
5009 /* Can not check flexible arrays. */
5010 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
5011 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
5012 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
5013 /* Accesses after the end of arrays of size 0 (gcc
5014 extension) and 1 are likely intentional ("struct
5015 hack"). */
5016 || compare_tree_int (up_bound, 1) <= 0)
5017 return;
5018
5019 low_bound = array_ref_low_bound (ref);
5020
5021 if (TREE_CODE (low_sub) == SSA_NAME)
5022 {
5023 vr = get_value_range (low_sub);
5024 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5025 {
5026 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5027 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5028 }
5029 }
5030
5031 if (vr && vr->type == VR_ANTI_RANGE)
5032 {
5033 if (TREE_CODE (up_sub) == INTEGER_CST
5034 && tree_int_cst_lt (up_bound, up_sub)
5035 && TREE_CODE (low_sub) == INTEGER_CST
5036 && tree_int_cst_lt (low_sub, low_bound))
5037 {
5038 warning (OPT_Warray_bounds,
5039 "%Harray subscript is outside array bounds", location);
5040 TREE_NO_WARNING (ref) = 1;
5041 }
5042 }
5043 else if (TREE_CODE (up_sub) == INTEGER_CST
5044 && tree_int_cst_lt (up_bound, up_sub)
5045 && !tree_int_cst_equal (up_bound, up_sub)
5046 && (!ignore_off_by_one
5047 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
5048 up_bound,
5049 integer_one_node,
5050 0),
5051 up_sub)))
5052 {
5053 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
5054 location);
5055 TREE_NO_WARNING (ref) = 1;
5056 }
5057 else if (TREE_CODE (low_sub) == INTEGER_CST
5058 && tree_int_cst_lt (low_sub, low_bound))
5059 {
5060 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
5061 location);
5062 TREE_NO_WARNING (ref) = 1;
5063 }
5064 }
5065
5066 /* Searches if the expr T, located at LOCATION computes
5067 address of an ARRAY_REF, and call check_array_ref on it. */
5068
5069 static void
5070 search_for_addr_array (tree t, const location_t *location)
5071 {
5072 while (TREE_CODE (t) == SSA_NAME)
5073 {
5074 gimple g = SSA_NAME_DEF_STMT (t);
5075
5076 if (gimple_code (g) != GIMPLE_ASSIGN)
5077 return;
5078
5079 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5080 != GIMPLE_SINGLE_RHS)
5081 return;
5082
5083 t = gimple_assign_rhs1 (g);
5084 }
5085
5086
5087 /* We are only interested in addresses of ARRAY_REF's. */
5088 if (TREE_CODE (t) != ADDR_EXPR)
5089 return;
5090
5091 /* Check each ARRAY_REFs in the reference chain. */
5092 do
5093 {
5094 if (TREE_CODE (t) == ARRAY_REF)
5095 check_array_ref (t, location, true /*ignore_off_by_one*/);
5096
5097 t = TREE_OPERAND (t, 0);
5098 }
5099 while (handled_component_p (t));
5100 }
5101
5102 /* walk_tree() callback that checks if *TP is
5103 an ARRAY_REF inside an ADDR_EXPR (in which an array
5104 subscript one outside the valid range is allowed). Call
5105 check_array_ref for each ARRAY_REF found. The location is
5106 passed in DATA. */
5107
5108 static tree
5109 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5110 {
5111 tree t = *tp;
5112 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5113 const location_t *location = (const location_t *) wi->info;
5114
5115 *walk_subtree = TRUE;
5116
5117 if (TREE_CODE (t) == ARRAY_REF)
5118 check_array_ref (t, location, false /*ignore_off_by_one*/);
5119
5120 if (TREE_CODE (t) == INDIRECT_REF
5121 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5122 search_for_addr_array (TREE_OPERAND (t, 0), location);
5123
5124 if (TREE_CODE (t) == ADDR_EXPR)
5125 *walk_subtree = FALSE;
5126
5127 return NULL_TREE;
5128 }
5129
5130 /* Walk over all statements of all reachable BBs and call check_array_bounds
5131 on them. */
5132
5133 static void
5134 check_all_array_refs (void)
5135 {
5136 basic_block bb;
5137 gimple_stmt_iterator si;
5138
5139 FOR_EACH_BB (bb)
5140 {
5141 /* Skip bb's that are clearly unreachable. */
5142 if (single_pred_p (bb))
5143 {
5144 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
5145 gimple ls = NULL;
5146
5147 if (!gsi_end_p (gsi_last_bb (pred_bb)))
5148 ls = gsi_stmt (gsi_last_bb (pred_bb));
5149
5150 if (ls && gimple_code (ls) == GIMPLE_COND
5151 && ((gimple_cond_false_p (ls)
5152 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
5153 || (gimple_cond_true_p (ls)
5154 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
5155 continue;
5156 }
5157 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5158 {
5159 gimple stmt = gsi_stmt (si);
5160 const location_t *location = gimple_location_ptr (stmt);
5161 struct walk_stmt_info wi;
5162 if (!gimple_has_location (stmt))
5163 continue;
5164
5165 if (is_gimple_call (stmt))
5166 {
5167 size_t i;
5168 size_t n = gimple_call_num_args (stmt);
5169 for (i = 0; i < n; i++)
5170 {
5171 tree arg = gimple_call_arg (stmt, i);
5172 search_for_addr_array (arg, location);
5173 }
5174 }
5175 else
5176 {
5177 memset (&wi, 0, sizeof (wi));
5178 wi.info = CONST_CAST (void *, (const void *) location);
5179
5180 walk_gimple_op (gsi_stmt (si),
5181 check_array_bounds,
5182 &wi);
5183 }
5184 }
5185 }
5186 }
5187
5188 /* Convert range assertion expressions into the implied copies and
5189 copy propagate away the copies. Doing the trivial copy propagation
5190 here avoids the need to run the full copy propagation pass after
5191 VRP.
5192
5193 FIXME, this will eventually lead to copy propagation removing the
5194 names that had useful range information attached to them. For
5195 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5196 then N_i will have the range [3, +INF].
5197
5198 However, by converting the assertion into the implied copy
5199 operation N_i = N_j, we will then copy-propagate N_j into the uses
5200 of N_i and lose the range information. We may want to hold on to
5201 ASSERT_EXPRs a little while longer as the ranges could be used in
5202 things like jump threading.
5203
5204 The problem with keeping ASSERT_EXPRs around is that passes after
5205 VRP need to handle them appropriately.
5206
5207 Another approach would be to make the range information a first
5208 class property of the SSA_NAME so that it can be queried from
5209 any pass. This is made somewhat more complex by the need for
5210 multiple ranges to be associated with one SSA_NAME. */
5211
5212 static void
5213 remove_range_assertions (void)
5214 {
5215 basic_block bb;
5216 gimple_stmt_iterator si;
5217
5218 /* Note that the BSI iterator bump happens at the bottom of the
5219 loop and no bump is necessary if we're removing the statement
5220 referenced by the current BSI. */
5221 FOR_EACH_BB (bb)
5222 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5223 {
5224 gimple stmt = gsi_stmt (si);
5225 gimple use_stmt;
5226
5227 if (is_gimple_assign (stmt)
5228 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5229 {
5230 tree rhs = gimple_assign_rhs1 (stmt);
5231 tree var;
5232 tree cond = fold (ASSERT_EXPR_COND (rhs));
5233 use_operand_p use_p;
5234 imm_use_iterator iter;
5235
5236 gcc_assert (cond != boolean_false_node);
5237
5238 /* Propagate the RHS into every use of the LHS. */
5239 var = ASSERT_EXPR_VAR (rhs);
5240 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5241 gimple_assign_lhs (stmt))
5242 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5243 {
5244 SET_USE (use_p, var);
5245 gcc_assert (TREE_CODE (var) == SSA_NAME);
5246 }
5247
5248 /* And finally, remove the copy, it is not needed. */
5249 gsi_remove (&si, true);
5250 release_defs (stmt);
5251 }
5252 else
5253 gsi_next (&si);
5254 }
5255 }
5256
5257
5258 /* Return true if STMT is interesting for VRP. */
5259
5260 static bool
5261 stmt_interesting_for_vrp (gimple stmt)
5262 {
5263 if (gimple_code (stmt) == GIMPLE_PHI
5264 && is_gimple_reg (gimple_phi_result (stmt))
5265 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5266 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5267 return true;
5268 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5269 {
5270 tree lhs = gimple_get_lhs (stmt);
5271
5272 /* In general, assignments with virtual operands are not useful
5273 for deriving ranges, with the obvious exception of calls to
5274 builtin functions. */
5275 if (lhs && TREE_CODE (lhs) == SSA_NAME
5276 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5277 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5278 && ((is_gimple_call (stmt)
5279 && gimple_call_fndecl (stmt) != NULL_TREE
5280 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5281 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
5282 return true;
5283 }
5284 else if (gimple_code (stmt) == GIMPLE_COND
5285 || gimple_code (stmt) == GIMPLE_SWITCH)
5286 return true;
5287
5288 return false;
5289 }
5290
5291
5292 /* Initialize local data structures for VRP. */
5293
5294 static void
5295 vrp_initialize (void)
5296 {
5297 basic_block bb;
5298
5299 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
5300 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5301
5302 FOR_EACH_BB (bb)
5303 {
5304 gimple_stmt_iterator si;
5305
5306 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5307 {
5308 gimple phi = gsi_stmt (si);
5309 if (!stmt_interesting_for_vrp (phi))
5310 {
5311 tree lhs = PHI_RESULT (phi);
5312 set_value_range_to_varying (get_value_range (lhs));
5313 prop_set_simulate_again (phi, false);
5314 }
5315 else
5316 prop_set_simulate_again (phi, true);
5317 }
5318
5319 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5320 {
5321 gimple stmt = gsi_stmt (si);
5322
5323 if (!stmt_interesting_for_vrp (stmt))
5324 {
5325 ssa_op_iter i;
5326 tree def;
5327 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5328 set_value_range_to_varying (get_value_range (def));
5329 prop_set_simulate_again (stmt, false);
5330 }
5331 else
5332 {
5333 prop_set_simulate_again (stmt, true);
5334 }
5335 }
5336 }
5337 }
5338
5339
5340 /* Visit assignment STMT. If it produces an interesting range, record
5341 the SSA name in *OUTPUT_P. */
5342
5343 static enum ssa_prop_result
5344 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5345 {
5346 tree def, lhs;
5347 ssa_op_iter iter;
5348 enum gimple_code code = gimple_code (stmt);
5349 lhs = gimple_get_lhs (stmt);
5350
5351 /* We only keep track of ranges in integral and pointer types. */
5352 if (TREE_CODE (lhs) == SSA_NAME
5353 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5354 /* It is valid to have NULL MIN/MAX values on a type. See
5355 build_range_type. */
5356 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5357 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5358 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5359 {
5360 struct loop *l;
5361 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5362
5363 if (code == GIMPLE_CALL)
5364 extract_range_basic (&new_vr, stmt);
5365 else
5366 extract_range_from_assignment (&new_vr, stmt);
5367
5368 /* If STMT is inside a loop, we may be able to know something
5369 else about the range of LHS by examining scalar evolution
5370 information. */
5371 if (current_loops && (l = loop_containing_stmt (stmt)))
5372 adjust_range_with_scev (&new_vr, l, stmt, lhs);
5373
5374 if (update_value_range (lhs, &new_vr))
5375 {
5376 *output_p = lhs;
5377
5378 if (dump_file && (dump_flags & TDF_DETAILS))
5379 {
5380 fprintf (dump_file, "Found new range for ");
5381 print_generic_expr (dump_file, lhs, 0);
5382 fprintf (dump_file, ": ");
5383 dump_value_range (dump_file, &new_vr);
5384 fprintf (dump_file, "\n\n");
5385 }
5386
5387 if (new_vr.type == VR_VARYING)
5388 return SSA_PROP_VARYING;
5389
5390 return SSA_PROP_INTERESTING;
5391 }
5392
5393 return SSA_PROP_NOT_INTERESTING;
5394 }
5395
5396 /* Every other statement produces no useful ranges. */
5397 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5398 set_value_range_to_varying (get_value_range (def));
5399
5400 return SSA_PROP_VARYING;
5401 }
5402
5403 /* Helper that gets the value range of the SSA_NAME with version I
5404 or a symbolic range containing the SSA_NAME only if the value range
5405 is varying or undefined. */
5406
5407 static inline value_range_t
5408 get_vr_for_comparison (int i)
5409 {
5410 value_range_t vr = *(vr_value[i]);
5411
5412 /* If name N_i does not have a valid range, use N_i as its own
5413 range. This allows us to compare against names that may
5414 have N_i in their ranges. */
5415 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5416 {
5417 vr.type = VR_RANGE;
5418 vr.min = ssa_name (i);
5419 vr.max = ssa_name (i);
5420 }
5421
5422 return vr;
5423 }
5424
5425 /* Compare all the value ranges for names equivalent to VAR with VAL
5426 using comparison code COMP. Return the same value returned by
5427 compare_range_with_value, including the setting of
5428 *STRICT_OVERFLOW_P. */
5429
5430 static tree
5431 compare_name_with_value (enum tree_code comp, tree var, tree val,
5432 bool *strict_overflow_p)
5433 {
5434 bitmap_iterator bi;
5435 unsigned i;
5436 bitmap e;
5437 tree retval, t;
5438 int used_strict_overflow;
5439 bool sop;
5440 value_range_t equiv_vr;
5441
5442 /* Get the set of equivalences for VAR. */
5443 e = get_value_range (var)->equiv;
5444
5445 /* Start at -1. Set it to 0 if we do a comparison without relying
5446 on overflow, or 1 if all comparisons rely on overflow. */
5447 used_strict_overflow = -1;
5448
5449 /* Compare vars' value range with val. */
5450 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5451 sop = false;
5452 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5453 if (retval)
5454 used_strict_overflow = sop ? 1 : 0;
5455
5456 /* If the equiv set is empty we have done all work we need to do. */
5457 if (e == NULL)
5458 {
5459 if (retval
5460 && used_strict_overflow > 0)
5461 *strict_overflow_p = true;
5462 return retval;
5463 }
5464
5465 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5466 {
5467 equiv_vr = get_vr_for_comparison (i);
5468 sop = false;
5469 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5470 if (t)
5471 {
5472 /* If we get different answers from different members
5473 of the equivalence set this check must be in a dead
5474 code region. Folding it to a trap representation
5475 would be correct here. For now just return don't-know. */
5476 if (retval != NULL
5477 && t != retval)
5478 {
5479 retval = NULL_TREE;
5480 break;
5481 }
5482 retval = t;
5483
5484 if (!sop)
5485 used_strict_overflow = 0;
5486 else if (used_strict_overflow < 0)
5487 used_strict_overflow = 1;
5488 }
5489 }
5490
5491 if (retval
5492 && used_strict_overflow > 0)
5493 *strict_overflow_p = true;
5494
5495 return retval;
5496 }
5497
5498
5499 /* Given a comparison code COMP and names N1 and N2, compare all the
5500 ranges equivalent to N1 against all the ranges equivalent to N2
5501 to determine the value of N1 COMP N2. Return the same value
5502 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5503 whether we relied on an overflow infinity in the comparison. */
5504
5505
5506 static tree
5507 compare_names (enum tree_code comp, tree n1, tree n2,
5508 bool *strict_overflow_p)
5509 {
5510 tree t, retval;
5511 bitmap e1, e2;
5512 bitmap_iterator bi1, bi2;
5513 unsigned i1, i2;
5514 int used_strict_overflow;
5515 static bitmap_obstack *s_obstack = NULL;
5516 static bitmap s_e1 = NULL, s_e2 = NULL;
5517
5518 /* Compare the ranges of every name equivalent to N1 against the
5519 ranges of every name equivalent to N2. */
5520 e1 = get_value_range (n1)->equiv;
5521 e2 = get_value_range (n2)->equiv;
5522
5523 /* Use the fake bitmaps if e1 or e2 are not available. */
5524 if (s_obstack == NULL)
5525 {
5526 s_obstack = XNEW (bitmap_obstack);
5527 bitmap_obstack_initialize (s_obstack);
5528 s_e1 = BITMAP_ALLOC (s_obstack);
5529 s_e2 = BITMAP_ALLOC (s_obstack);
5530 }
5531 if (e1 == NULL)
5532 e1 = s_e1;
5533 if (e2 == NULL)
5534 e2 = s_e2;
5535
5536 /* Add N1 and N2 to their own set of equivalences to avoid
5537 duplicating the body of the loop just to check N1 and N2
5538 ranges. */
5539 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5540 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5541
5542 /* If the equivalence sets have a common intersection, then the two
5543 names can be compared without checking their ranges. */
5544 if (bitmap_intersect_p (e1, e2))
5545 {
5546 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5547 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5548
5549 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5550 ? boolean_true_node
5551 : boolean_false_node;
5552 }
5553
5554 /* Start at -1. Set it to 0 if we do a comparison without relying
5555 on overflow, or 1 if all comparisons rely on overflow. */
5556 used_strict_overflow = -1;
5557
5558 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5559 N2 to their own set of equivalences to avoid duplicating the body
5560 of the loop just to check N1 and N2 ranges. */
5561 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5562 {
5563 value_range_t vr1 = get_vr_for_comparison (i1);
5564
5565 t = retval = NULL_TREE;
5566 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5567 {
5568 bool sop = false;
5569
5570 value_range_t vr2 = get_vr_for_comparison (i2);
5571
5572 t = compare_ranges (comp, &vr1, &vr2, &sop);
5573 if (t)
5574 {
5575 /* If we get different answers from different members
5576 of the equivalence set this check must be in a dead
5577 code region. Folding it to a trap representation
5578 would be correct here. For now just return don't-know. */
5579 if (retval != NULL
5580 && t != retval)
5581 {
5582 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5583 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5584 return NULL_TREE;
5585 }
5586 retval = t;
5587
5588 if (!sop)
5589 used_strict_overflow = 0;
5590 else if (used_strict_overflow < 0)
5591 used_strict_overflow = 1;
5592 }
5593 }
5594
5595 if (retval)
5596 {
5597 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5598 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5599 if (used_strict_overflow > 0)
5600 *strict_overflow_p = true;
5601 return retval;
5602 }
5603 }
5604
5605 /* None of the equivalent ranges are useful in computing this
5606 comparison. */
5607 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5608 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5609 return NULL_TREE;
5610 }
5611
5612 /* Helper function for vrp_evaluate_conditional_warnv. */
5613
5614 static tree
5615 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5616 tree op0, tree op1,
5617 bool * strict_overflow_p)
5618 {
5619 value_range_t *vr0, *vr1;
5620
5621 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5622 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5623
5624 if (vr0 && vr1)
5625 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5626 else if (vr0 && vr1 == NULL)
5627 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5628 else if (vr0 == NULL && vr1)
5629 return (compare_range_with_value
5630 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5631 return NULL;
5632 }
5633
5634 /* Helper function for vrp_evaluate_conditional_warnv. */
5635
5636 static tree
5637 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5638 tree op1, bool use_equiv_p,
5639 bool *strict_overflow_p, bool *only_ranges)
5640 {
5641 tree ret;
5642 if (only_ranges)
5643 *only_ranges = true;
5644
5645 /* We only deal with integral and pointer types. */
5646 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5647 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5648 return NULL_TREE;
5649
5650 if (use_equiv_p)
5651 {
5652 if (only_ranges
5653 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5654 (code, op0, op1, strict_overflow_p)))
5655 return ret;
5656 *only_ranges = false;
5657 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5658 return compare_names (code, op0, op1, strict_overflow_p);
5659 else if (TREE_CODE (op0) == SSA_NAME)
5660 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5661 else if (TREE_CODE (op1) == SSA_NAME)
5662 return (compare_name_with_value
5663 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5664 }
5665 else
5666 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5667 strict_overflow_p);
5668 return NULL_TREE;
5669 }
5670
5671 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5672 information. Return NULL if the conditional can not be evaluated.
5673 The ranges of all the names equivalent with the operands in COND
5674 will be used when trying to compute the value. If the result is
5675 based on undefined signed overflow, issue a warning if
5676 appropriate. */
5677
5678 tree
5679 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5680 {
5681 bool sop;
5682 tree ret;
5683 bool only_ranges;
5684
5685 sop = false;
5686 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5687 &only_ranges);
5688
5689 if (ret && sop)
5690 {
5691 enum warn_strict_overflow_code wc;
5692 const char* warnmsg;
5693
5694 if (is_gimple_min_invariant (ret))
5695 {
5696 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5697 warnmsg = G_("assuming signed overflow does not occur when "
5698 "simplifying conditional to constant");
5699 }
5700 else
5701 {
5702 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5703 warnmsg = G_("assuming signed overflow does not occur when "
5704 "simplifying conditional");
5705 }
5706
5707 if (issue_strict_overflow_warning (wc))
5708 {
5709 location_t location;
5710
5711 if (!gimple_has_location (stmt))
5712 location = input_location;
5713 else
5714 location = gimple_location (stmt);
5715 warning (OPT_Wstrict_overflow, "%H%s", &location, warnmsg);
5716 }
5717 }
5718
5719 if (warn_type_limits
5720 && ret && only_ranges
5721 && TREE_CODE_CLASS (code) == tcc_comparison
5722 && TREE_CODE (op0) == SSA_NAME)
5723 {
5724 /* If the comparison is being folded and the operand on the LHS
5725 is being compared against a constant value that is outside of
5726 the natural range of OP0's type, then the predicate will
5727 always fold regardless of the value of OP0. If -Wtype-limits
5728 was specified, emit a warning. */
5729 const char *warnmsg = NULL;
5730 tree type = TREE_TYPE (op0);
5731 value_range_t *vr0 = get_value_range (op0);
5732
5733 if (vr0->type != VR_VARYING
5734 && INTEGRAL_TYPE_P (type)
5735 && vrp_val_is_min (vr0->min)
5736 && vrp_val_is_max (vr0->max)
5737 && is_gimple_min_invariant (op1))
5738 {
5739 if (integer_zerop (ret))
5740 warnmsg = G_("comparison always false due to limited range of "
5741 "data type");
5742 else
5743 warnmsg = G_("comparison always true due to limited range of "
5744 "data type");
5745 }
5746
5747 if (warnmsg)
5748 {
5749 location_t location;
5750
5751 if (!gimple_has_location (stmt))
5752 location = input_location;
5753 else
5754 location = gimple_location (stmt);
5755
5756 warning (OPT_Wtype_limits, "%H%s", &location, warnmsg);
5757 }
5758 }
5759
5760 return ret;
5761 }
5762
5763
5764 /* Visit conditional statement STMT. If we can determine which edge
5765 will be taken out of STMT's basic block, record it in
5766 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5767 SSA_PROP_VARYING. */
5768
5769 static enum ssa_prop_result
5770 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
5771 {
5772 tree val;
5773 bool sop;
5774
5775 *taken_edge_p = NULL;
5776
5777 if (dump_file && (dump_flags & TDF_DETAILS))
5778 {
5779 tree use;
5780 ssa_op_iter i;
5781
5782 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5783 print_gimple_stmt (dump_file, stmt, 0, 0);
5784 fprintf (dump_file, "\nWith known ranges\n");
5785
5786 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5787 {
5788 fprintf (dump_file, "\t");
5789 print_generic_expr (dump_file, use, 0);
5790 fprintf (dump_file, ": ");
5791 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5792 }
5793
5794 fprintf (dump_file, "\n");
5795 }
5796
5797 /* Compute the value of the predicate COND by checking the known
5798 ranges of each of its operands.
5799
5800 Note that we cannot evaluate all the equivalent ranges here
5801 because those ranges may not yet be final and with the current
5802 propagation strategy, we cannot determine when the value ranges
5803 of the names in the equivalence set have changed.
5804
5805 For instance, given the following code fragment
5806
5807 i_5 = PHI <8, i_13>
5808 ...
5809 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5810 if (i_14 == 1)
5811 ...
5812
5813 Assume that on the first visit to i_14, i_5 has the temporary
5814 range [8, 8] because the second argument to the PHI function is
5815 not yet executable. We derive the range ~[0, 0] for i_14 and the
5816 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5817 the first time, since i_14 is equivalent to the range [8, 8], we
5818 determine that the predicate is always false.
5819
5820 On the next round of propagation, i_13 is determined to be
5821 VARYING, which causes i_5 to drop down to VARYING. So, another
5822 visit to i_14 is scheduled. In this second visit, we compute the
5823 exact same range and equivalence set for i_14, namely ~[0, 0] and
5824 { i_5 }. But we did not have the previous range for i_5
5825 registered, so vrp_visit_assignment thinks that the range for
5826 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5827 is not visited again, which stops propagation from visiting
5828 statements in the THEN clause of that if().
5829
5830 To properly fix this we would need to keep the previous range
5831 value for the names in the equivalence set. This way we would've
5832 discovered that from one visit to the other i_5 changed from
5833 range [8, 8] to VR_VARYING.
5834
5835 However, fixing this apparent limitation may not be worth the
5836 additional checking. Testing on several code bases (GCC, DLV,
5837 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5838 4 more predicates folded in SPEC. */
5839 sop = false;
5840
5841 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
5842 gimple_cond_lhs (stmt),
5843 gimple_cond_rhs (stmt),
5844 false, &sop, NULL);
5845 if (val)
5846 {
5847 if (!sop)
5848 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
5849 else
5850 {
5851 if (dump_file && (dump_flags & TDF_DETAILS))
5852 fprintf (dump_file,
5853 "\nIgnoring predicate evaluation because "
5854 "it assumes that signed overflow is undefined");
5855 val = NULL_TREE;
5856 }
5857 }
5858
5859 if (dump_file && (dump_flags & TDF_DETAILS))
5860 {
5861 fprintf (dump_file, "\nPredicate evaluates to: ");
5862 if (val == NULL_TREE)
5863 fprintf (dump_file, "DON'T KNOW\n");
5864 else
5865 print_generic_stmt (dump_file, val, 0);
5866 }
5867
5868 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5869 }
5870
5871 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5872 that includes the value VAL. The search is restricted to the range
5873 [START_IDX, n - 1] where n is the size of VEC.
5874
5875 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5876 returned.
5877
5878 If there is no CASE_LABEL for VAL and the is one that is larger than VAL,
5879 it is placed in IDX and false is returned.
5880
5881 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5882 returned. */
5883
5884 static bool
5885 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
5886 {
5887 size_t n = gimple_switch_num_labels (stmt);
5888 size_t low, high;
5889
5890 /* Find case label for minimum of the value range or the next one.
5891 At each iteration we are searching in [low, high - 1]. */
5892
5893 for (low = start_idx, high = n; high != low; )
5894 {
5895 tree t;
5896 int cmp;
5897 /* Note that i != high, so we never ask for n. */
5898 size_t i = (high + low) / 2;
5899 t = gimple_switch_label (stmt, i);
5900
5901 /* Cache the result of comparing CASE_LOW and val. */
5902 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5903
5904 if (cmp == 0)
5905 {
5906 /* Ranges cannot be empty. */
5907 *idx = i;
5908 return true;
5909 }
5910 else if (cmp > 0)
5911 high = i;
5912 else
5913 {
5914 low = i + 1;
5915 if (CASE_HIGH (t) != NULL
5916 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5917 {
5918 *idx = i;
5919 return true;
5920 }
5921 }
5922 }
5923
5924 *idx = high;
5925 return false;
5926 }
5927
5928 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5929 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5930 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5931 then MAX_IDX < MIN_IDX.
5932 Returns true if the default label is not needed. */
5933
5934 static bool
5935 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
5936 size_t *max_idx)
5937 {
5938 size_t i, j;
5939 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5940 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5941
5942 if (i == j
5943 && min_take_default
5944 && max_take_default)
5945 {
5946 /* Only the default case label reached.
5947 Return an empty range. */
5948 *min_idx = 1;
5949 *max_idx = 0;
5950 return false;
5951 }
5952 else
5953 {
5954 bool take_default = min_take_default || max_take_default;
5955 tree low, high;
5956 size_t k;
5957
5958 if (max_take_default)
5959 j--;
5960
5961 /* If the case label range is continuous, we do not need
5962 the default case label. Verify that. */
5963 high = CASE_LOW (gimple_switch_label (stmt, i));
5964 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5965 high = CASE_HIGH (gimple_switch_label (stmt, i));
5966 for (k = i + 1; k <= j; ++k)
5967 {
5968 low = CASE_LOW (gimple_switch_label (stmt, k));
5969 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
5970 {
5971 take_default = true;
5972 break;
5973 }
5974 high = low;
5975 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5976 high = CASE_HIGH (gimple_switch_label (stmt, k));
5977 }
5978
5979 *min_idx = i;
5980 *max_idx = j;
5981 return !take_default;
5982 }
5983 }
5984
5985 /* Visit switch statement STMT. If we can determine which edge
5986 will be taken out of STMT's basic block, record it in
5987 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5988 SSA_PROP_VARYING. */
5989
5990 static enum ssa_prop_result
5991 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
5992 {
5993 tree op, val;
5994 value_range_t *vr;
5995 size_t i = 0, j = 0, n;
5996 bool take_default;
5997
5998 *taken_edge_p = NULL;
5999 op = gimple_switch_index (stmt);
6000 if (TREE_CODE (op) != SSA_NAME)
6001 return SSA_PROP_VARYING;
6002
6003 vr = get_value_range (op);
6004 if (dump_file && (dump_flags & TDF_DETAILS))
6005 {
6006 fprintf (dump_file, "\nVisiting switch expression with operand ");
6007 print_generic_expr (dump_file, op, 0);
6008 fprintf (dump_file, " with known range ");
6009 dump_value_range (dump_file, vr);
6010 fprintf (dump_file, "\n");
6011 }
6012
6013 if (vr->type != VR_RANGE
6014 || symbolic_range_p (vr))
6015 return SSA_PROP_VARYING;
6016
6017 /* Find the single edge that is taken from the switch expression. */
6018 n = gimple_switch_num_labels (stmt);
6019
6020 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6021
6022 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6023 label */
6024 if (j < i)
6025 {
6026 gcc_assert (take_default);
6027 val = gimple_switch_default_label (stmt);
6028 }
6029 else
6030 {
6031 /* Check if labels with index i to j and maybe the default label
6032 are all reaching the same label. */
6033
6034 val = gimple_switch_label (stmt, i);
6035 if (take_default
6036 && CASE_LABEL (gimple_switch_default_label (stmt))
6037 != CASE_LABEL (val))
6038 {
6039 if (dump_file && (dump_flags & TDF_DETAILS))
6040 fprintf (dump_file, " not a single destination for this "
6041 "range\n");
6042 return SSA_PROP_VARYING;
6043 }
6044 for (++i; i <= j; ++i)
6045 {
6046 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6047 {
6048 if (dump_file && (dump_flags & TDF_DETAILS))
6049 fprintf (dump_file, " not a single destination for this "
6050 "range\n");
6051 return SSA_PROP_VARYING;
6052 }
6053 }
6054 }
6055
6056 *taken_edge_p = find_edge (gimple_bb (stmt),
6057 label_to_block (CASE_LABEL (val)));
6058
6059 if (dump_file && (dump_flags & TDF_DETAILS))
6060 {
6061 fprintf (dump_file, " will take edge to ");
6062 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6063 }
6064
6065 return SSA_PROP_INTERESTING;
6066 }
6067
6068
6069 /* Evaluate statement STMT. If the statement produces a useful range,
6070 return SSA_PROP_INTERESTING and record the SSA name with the
6071 interesting range into *OUTPUT_P.
6072
6073 If STMT is a conditional branch and we can determine its truth
6074 value, the taken edge is recorded in *TAKEN_EDGE_P.
6075
6076 If STMT produces a varying value, return SSA_PROP_VARYING. */
6077
6078 static enum ssa_prop_result
6079 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6080 {
6081 tree def;
6082 ssa_op_iter iter;
6083
6084 if (dump_file && (dump_flags & TDF_DETAILS))
6085 {
6086 fprintf (dump_file, "\nVisiting statement:\n");
6087 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6088 fprintf (dump_file, "\n");
6089 }
6090
6091 if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6092 {
6093 /* In general, assignments with virtual operands are not useful
6094 for deriving ranges, with the obvious exception of calls to
6095 builtin functions. */
6096
6097 if ((is_gimple_call (stmt)
6098 && gimple_call_fndecl (stmt) != NULL_TREE
6099 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6100 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
6101 return vrp_visit_assignment_or_call (stmt, output_p);
6102 }
6103 else if (gimple_code (stmt) == GIMPLE_COND)
6104 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6105 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6106 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6107
6108 /* All other statements produce nothing of interest for VRP, so mark
6109 their outputs varying and prevent further simulation. */
6110 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6111 set_value_range_to_varying (get_value_range (def));
6112
6113 return SSA_PROP_VARYING;
6114 }
6115
6116
6117 /* Meet operation for value ranges. Given two value ranges VR0 and
6118 VR1, store in VR0 a range that contains both VR0 and VR1. This
6119 may not be the smallest possible such range. */
6120
6121 static void
6122 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6123 {
6124 if (vr0->type == VR_UNDEFINED)
6125 {
6126 copy_value_range (vr0, vr1);
6127 return;
6128 }
6129
6130 if (vr1->type == VR_UNDEFINED)
6131 {
6132 /* Nothing to do. VR0 already has the resulting range. */
6133 return;
6134 }
6135
6136 if (vr0->type == VR_VARYING)
6137 {
6138 /* Nothing to do. VR0 already has the resulting range. */
6139 return;
6140 }
6141
6142 if (vr1->type == VR_VARYING)
6143 {
6144 set_value_range_to_varying (vr0);
6145 return;
6146 }
6147
6148 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6149 {
6150 int cmp;
6151 tree min, max;
6152
6153 /* Compute the convex hull of the ranges. The lower limit of
6154 the new range is the minimum of the two ranges. If they
6155 cannot be compared, then give up. */
6156 cmp = compare_values (vr0->min, vr1->min);
6157 if (cmp == 0 || cmp == 1)
6158 min = vr1->min;
6159 else if (cmp == -1)
6160 min = vr0->min;
6161 else
6162 goto give_up;
6163
6164 /* Similarly, the upper limit of the new range is the maximum
6165 of the two ranges. If they cannot be compared, then
6166 give up. */
6167 cmp = compare_values (vr0->max, vr1->max);
6168 if (cmp == 0 || cmp == -1)
6169 max = vr1->max;
6170 else if (cmp == 1)
6171 max = vr0->max;
6172 else
6173 goto give_up;
6174
6175 /* Check for useless ranges. */
6176 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6177 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6178 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6179 goto give_up;
6180
6181 /* The resulting set of equivalences is the intersection of
6182 the two sets. */
6183 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6184 bitmap_and_into (vr0->equiv, vr1->equiv);
6185 else if (vr0->equiv && !vr1->equiv)
6186 bitmap_clear (vr0->equiv);
6187
6188 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6189 }
6190 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6191 {
6192 /* Two anti-ranges meet only if their complements intersect.
6193 Only handle the case of identical ranges. */
6194 if (compare_values (vr0->min, vr1->min) == 0
6195 && compare_values (vr0->max, vr1->max) == 0
6196 && compare_values (vr0->min, vr0->max) == 0)
6197 {
6198 /* The resulting set of equivalences is the intersection of
6199 the two sets. */
6200 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6201 bitmap_and_into (vr0->equiv, vr1->equiv);
6202 else if (vr0->equiv && !vr1->equiv)
6203 bitmap_clear (vr0->equiv);
6204 }
6205 else
6206 goto give_up;
6207 }
6208 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6209 {
6210 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6211 only handle the case where the ranges have an empty intersection.
6212 The result of the meet operation is the anti-range. */
6213 if (!symbolic_range_p (vr0)
6214 && !symbolic_range_p (vr1)
6215 && !value_ranges_intersect_p (vr0, vr1))
6216 {
6217 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6218 set. We need to compute the intersection of the two
6219 equivalence sets. */
6220 if (vr1->type == VR_ANTI_RANGE)
6221 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6222
6223 /* The resulting set of equivalences is the intersection of
6224 the two sets. */
6225 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6226 bitmap_and_into (vr0->equiv, vr1->equiv);
6227 else if (vr0->equiv && !vr1->equiv)
6228 bitmap_clear (vr0->equiv);
6229 }
6230 else
6231 goto give_up;
6232 }
6233 else
6234 gcc_unreachable ();
6235
6236 return;
6237
6238 give_up:
6239 /* Failed to find an efficient meet. Before giving up and setting
6240 the result to VARYING, see if we can at least derive a useful
6241 anti-range. FIXME, all this nonsense about distinguishing
6242 anti-ranges from ranges is necessary because of the odd
6243 semantics of range_includes_zero_p and friends. */
6244 if (!symbolic_range_p (vr0)
6245 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6246 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6247 && !symbolic_range_p (vr1)
6248 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6249 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6250 {
6251 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6252
6253 /* Since this meet operation did not result from the meeting of
6254 two equivalent names, VR0 cannot have any equivalences. */
6255 if (vr0->equiv)
6256 bitmap_clear (vr0->equiv);
6257 }
6258 else
6259 set_value_range_to_varying (vr0);
6260 }
6261
6262
6263 /* Visit all arguments for PHI node PHI that flow through executable
6264 edges. If a valid value range can be derived from all the incoming
6265 value ranges, set a new range for the LHS of PHI. */
6266
6267 static enum ssa_prop_result
6268 vrp_visit_phi_node (gimple phi)
6269 {
6270 size_t i;
6271 tree lhs = PHI_RESULT (phi);
6272 value_range_t *lhs_vr = get_value_range (lhs);
6273 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6274 int edges, old_edges;
6275
6276 copy_value_range (&vr_result, lhs_vr);
6277
6278 if (dump_file && (dump_flags & TDF_DETAILS))
6279 {
6280 fprintf (dump_file, "\nVisiting PHI node: ");
6281 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6282 }
6283
6284 edges = 0;
6285 for (i = 0; i < gimple_phi_num_args (phi); i++)
6286 {
6287 edge e = gimple_phi_arg_edge (phi, i);
6288
6289 if (dump_file && (dump_flags & TDF_DETAILS))
6290 {
6291 fprintf (dump_file,
6292 "\n Argument #%d (%d -> %d %sexecutable)\n",
6293 (int) i, e->src->index, e->dest->index,
6294 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6295 }
6296
6297 if (e->flags & EDGE_EXECUTABLE)
6298 {
6299 tree arg = PHI_ARG_DEF (phi, i);
6300 value_range_t vr_arg;
6301
6302 ++edges;
6303
6304 if (TREE_CODE (arg) == SSA_NAME)
6305 {
6306 vr_arg = *(get_value_range (arg));
6307 }
6308 else
6309 {
6310 if (is_overflow_infinity (arg))
6311 {
6312 arg = copy_node (arg);
6313 TREE_OVERFLOW (arg) = 0;
6314 }
6315
6316 vr_arg.type = VR_RANGE;
6317 vr_arg.min = arg;
6318 vr_arg.max = arg;
6319 vr_arg.equiv = NULL;
6320 }
6321
6322 if (dump_file && (dump_flags & TDF_DETAILS))
6323 {
6324 fprintf (dump_file, "\t");
6325 print_generic_expr (dump_file, arg, dump_flags);
6326 fprintf (dump_file, "\n\tValue: ");
6327 dump_value_range (dump_file, &vr_arg);
6328 fprintf (dump_file, "\n");
6329 }
6330
6331 vrp_meet (&vr_result, &vr_arg);
6332
6333 if (vr_result.type == VR_VARYING)
6334 break;
6335 }
6336 }
6337
6338 if (vr_result.type == VR_VARYING)
6339 goto varying;
6340
6341 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6342 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6343
6344 /* To prevent infinite iterations in the algorithm, derive ranges
6345 when the new value is slightly bigger or smaller than the
6346 previous one. We don't do this if we have seen a new executable
6347 edge; this helps us avoid an overflow infinity for conditionals
6348 which are not in a loop. */
6349 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
6350 && edges <= old_edges)
6351 {
6352 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
6353 {
6354 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6355 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6356
6357 /* If the new minimum is smaller or larger than the previous
6358 one, go all the way to -INF. In the first case, to avoid
6359 iterating millions of times to reach -INF, and in the
6360 other case to avoid infinite bouncing between different
6361 minimums. */
6362 if (cmp_min > 0 || cmp_min < 0)
6363 {
6364 /* If we will end up with a (-INF, +INF) range, set it to
6365 VARYING. Same if the previous max value was invalid for
6366 the type and we'd end up with vr_result.min > vr_result.max. */
6367 if (vrp_val_is_max (vr_result.max)
6368 || compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)),
6369 vr_result.max) > 0)
6370 goto varying;
6371
6372 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6373 || !vrp_var_may_overflow (lhs, phi))
6374 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6375 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6376 vr_result.min =
6377 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6378 else
6379 goto varying;
6380 }
6381
6382 /* Similarly, if the new maximum is smaller or larger than
6383 the previous one, go all the way to +INF. */
6384 if (cmp_max < 0 || cmp_max > 0)
6385 {
6386 /* If we will end up with a (-INF, +INF) range, set it to
6387 VARYING. Same if the previous min value was invalid for
6388 the type and we'd end up with vr_result.max < vr_result.min. */
6389 if (vrp_val_is_min (vr_result.min)
6390 || compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)),
6391 vr_result.min) < 0)
6392 goto varying;
6393
6394 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6395 || !vrp_var_may_overflow (lhs, phi))
6396 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6397 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6398 vr_result.max =
6399 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6400 else
6401 goto varying;
6402 }
6403 }
6404 }
6405
6406 /* If the new range is different than the previous value, keep
6407 iterating. */
6408 if (update_value_range (lhs, &vr_result))
6409 return SSA_PROP_INTERESTING;
6410
6411 /* Nothing changed, don't add outgoing edges. */
6412 return SSA_PROP_NOT_INTERESTING;
6413
6414 /* No match found. Set the LHS to VARYING. */
6415 varying:
6416 set_value_range_to_varying (lhs_vr);
6417 return SSA_PROP_VARYING;
6418 }
6419
6420 /* Simplify boolean operations if the source is known
6421 to be already a boolean. */
6422 static bool
6423 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6424 {
6425 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6426 tree val = NULL;
6427 tree op0, op1;
6428 value_range_t *vr;
6429 bool sop = false;
6430 bool need_conversion;
6431
6432 op0 = gimple_assign_rhs1 (stmt);
6433 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6434 {
6435 if (TREE_CODE (op0) != SSA_NAME)
6436 return false;
6437 vr = get_value_range (op0);
6438
6439 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6440 if (!val || !integer_onep (val))
6441 return false;
6442
6443 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6444 if (!val || !integer_onep (val))
6445 return false;
6446 }
6447
6448 if (rhs_code == TRUTH_NOT_EXPR)
6449 {
6450 rhs_code = NE_EXPR;
6451 op1 = build_int_cst (TREE_TYPE (op0), 1);
6452 }
6453 else
6454 {
6455 op1 = gimple_assign_rhs2 (stmt);
6456
6457 /* Reduce number of cases to handle. */
6458 if (is_gimple_min_invariant (op1))
6459 {
6460 /* Exclude anything that should have been already folded. */
6461 if (rhs_code != EQ_EXPR
6462 && rhs_code != NE_EXPR
6463 && rhs_code != TRUTH_XOR_EXPR)
6464 return false;
6465
6466 if (!integer_zerop (op1)
6467 && !integer_onep (op1)
6468 && !integer_all_onesp (op1))
6469 return false;
6470
6471 /* Limit the number of cases we have to consider. */
6472 if (rhs_code == EQ_EXPR)
6473 {
6474 rhs_code = NE_EXPR;
6475 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6476 }
6477 }
6478 else
6479 {
6480 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6481 if (rhs_code == EQ_EXPR)
6482 return false;
6483
6484 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6485 {
6486 vr = get_value_range (op1);
6487 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6488 if (!val || !integer_onep (val))
6489 return false;
6490
6491 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6492 if (!val || !integer_onep (val))
6493 return false;
6494 }
6495 }
6496 }
6497
6498 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6499 {
6500 location_t location;
6501
6502 if (!gimple_has_location (stmt))
6503 location = input_location;
6504 else
6505 location = gimple_location (stmt);
6506
6507 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6508 warning_at (location, OPT_Wstrict_overflow,
6509 _("assuming signed overflow does not occur when "
6510 "simplifying && or || to & or |"));
6511 else
6512 warning_at (location, OPT_Wstrict_overflow,
6513 _("assuming signed overflow does not occur when "
6514 "simplifying ==, != or ! to identity or ^"));
6515 }
6516
6517 need_conversion =
6518 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6519 TREE_TYPE (op0));
6520
6521 /* Make sure to not sign-extend -1 as a boolean value. */
6522 if (need_conversion
6523 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6524 && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
6525 return false;
6526
6527 switch (rhs_code)
6528 {
6529 case TRUTH_AND_EXPR:
6530 rhs_code = BIT_AND_EXPR;
6531 break;
6532 case TRUTH_OR_EXPR:
6533 rhs_code = BIT_IOR_EXPR;
6534 break;
6535 case TRUTH_XOR_EXPR:
6536 case NE_EXPR:
6537 if (integer_zerop (op1))
6538 {
6539 gimple_assign_set_rhs_with_ops (gsi,
6540 need_conversion ? NOP_EXPR : SSA_NAME,
6541 op0, NULL);
6542 update_stmt (gsi_stmt (*gsi));
6543 return true;
6544 }
6545
6546 rhs_code = BIT_XOR_EXPR;
6547 break;
6548 default:
6549 gcc_unreachable ();
6550 }
6551
6552 if (need_conversion)
6553 return false;
6554
6555 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6556 update_stmt (gsi_stmt (*gsi));
6557 return true;
6558 }
6559
6560 /* Simplify a division or modulo operator to a right shift or
6561 bitwise and if the first operand is unsigned or is greater
6562 than zero and the second operand is an exact power of two. */
6563
6564 static bool
6565 simplify_div_or_mod_using_ranges (gimple stmt)
6566 {
6567 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6568 tree val = NULL;
6569 tree op0 = gimple_assign_rhs1 (stmt);
6570 tree op1 = gimple_assign_rhs2 (stmt);
6571 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6572
6573 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6574 {
6575 val = integer_one_node;
6576 }
6577 else
6578 {
6579 bool sop = false;
6580
6581 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6582
6583 if (val
6584 && sop
6585 && integer_onep (val)
6586 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6587 {
6588 location_t location;
6589
6590 if (!gimple_has_location (stmt))
6591 location = input_location;
6592 else
6593 location = gimple_location (stmt);
6594 warning (OPT_Wstrict_overflow,
6595 ("%Hassuming signed overflow does not occur when "
6596 "simplifying / or %% to >> or &"),
6597 &location);
6598 }
6599 }
6600
6601 if (val && integer_onep (val))
6602 {
6603 tree t;
6604
6605 if (rhs_code == TRUNC_DIV_EXPR)
6606 {
6607 t = build_int_cst (NULL_TREE, tree_log2 (op1));
6608 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6609 gimple_assign_set_rhs1 (stmt, op0);
6610 gimple_assign_set_rhs2 (stmt, t);
6611 }
6612 else
6613 {
6614 t = build_int_cst (TREE_TYPE (op1), 1);
6615 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6616 t = fold_convert (TREE_TYPE (op0), t);
6617
6618 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6619 gimple_assign_set_rhs1 (stmt, op0);
6620 gimple_assign_set_rhs2 (stmt, t);
6621 }
6622
6623 update_stmt (stmt);
6624 return true;
6625 }
6626
6627 return false;
6628 }
6629
6630 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6631 ABS_EXPR. If the operand is <= 0, then simplify the
6632 ABS_EXPR into a NEGATE_EXPR. */
6633
6634 static bool
6635 simplify_abs_using_ranges (gimple stmt)
6636 {
6637 tree val = NULL;
6638 tree op = gimple_assign_rhs1 (stmt);
6639 tree type = TREE_TYPE (op);
6640 value_range_t *vr = get_value_range (op);
6641
6642 if (TYPE_UNSIGNED (type))
6643 {
6644 val = integer_zero_node;
6645 }
6646 else if (vr)
6647 {
6648 bool sop = false;
6649
6650 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6651 if (!val)
6652 {
6653 sop = false;
6654 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6655 &sop);
6656
6657 if (val)
6658 {
6659 if (integer_zerop (val))
6660 val = integer_one_node;
6661 else if (integer_onep (val))
6662 val = integer_zero_node;
6663 }
6664 }
6665
6666 if (val
6667 && (integer_onep (val) || integer_zerop (val)))
6668 {
6669 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6670 {
6671 location_t location;
6672
6673 if (!gimple_has_location (stmt))
6674 location = input_location;
6675 else
6676 location = gimple_location (stmt);
6677 warning (OPT_Wstrict_overflow,
6678 ("%Hassuming signed overflow does not occur when "
6679 "simplifying abs (X) to X or -X"),
6680 &location);
6681 }
6682
6683 gimple_assign_set_rhs1 (stmt, op);
6684 if (integer_onep (val))
6685 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6686 else
6687 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6688 update_stmt (stmt);
6689 return true;
6690 }
6691 }
6692
6693 return false;
6694 }
6695
6696 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6697 a known value range VR.
6698
6699 If there is one and only one value which will satisfy the
6700 conditional, then return that value. Else return NULL. */
6701
6702 static tree
6703 test_for_singularity (enum tree_code cond_code, tree op0,
6704 tree op1, value_range_t *vr)
6705 {
6706 tree min = NULL;
6707 tree max = NULL;
6708
6709 /* Extract minimum/maximum values which satisfy the
6710 the conditional as it was written. */
6711 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
6712 {
6713 /* This should not be negative infinity; there is no overflow
6714 here. */
6715 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
6716
6717 max = op1;
6718 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
6719 {
6720 tree one = build_int_cst (TREE_TYPE (op0), 1);
6721 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
6722 if (EXPR_P (max))
6723 TREE_NO_WARNING (max) = 1;
6724 }
6725 }
6726 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
6727 {
6728 /* This should not be positive infinity; there is no overflow
6729 here. */
6730 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
6731
6732 min = op1;
6733 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
6734 {
6735 tree one = build_int_cst (TREE_TYPE (op0), 1);
6736 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
6737 if (EXPR_P (min))
6738 TREE_NO_WARNING (min) = 1;
6739 }
6740 }
6741
6742 /* Now refine the minimum and maximum values using any
6743 value range information we have for op0. */
6744 if (min && max)
6745 {
6746 if (compare_values (vr->min, min) == -1)
6747 min = min;
6748 else
6749 min = vr->min;
6750 if (compare_values (vr->max, max) == 1)
6751 max = max;
6752 else
6753 max = vr->max;
6754
6755 /* If the new min/max values have converged to a single value,
6756 then there is only one value which can satisfy the condition,
6757 return that value. */
6758 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
6759 return min;
6760 }
6761 return NULL;
6762 }
6763
6764 /* Simplify a conditional using a relational operator to an equality
6765 test if the range information indicates only one value can satisfy
6766 the original conditional. */
6767
6768 static bool
6769 simplify_cond_using_ranges (gimple stmt)
6770 {
6771 tree op0 = gimple_cond_lhs (stmt);
6772 tree op1 = gimple_cond_rhs (stmt);
6773 enum tree_code cond_code = gimple_cond_code (stmt);
6774
6775 if (cond_code != NE_EXPR
6776 && cond_code != EQ_EXPR
6777 && TREE_CODE (op0) == SSA_NAME
6778 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
6779 && is_gimple_min_invariant (op1))
6780 {
6781 value_range_t *vr = get_value_range (op0);
6782
6783 /* If we have range information for OP0, then we might be
6784 able to simplify this conditional. */
6785 if (vr->type == VR_RANGE)
6786 {
6787 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
6788
6789 if (new_tree)
6790 {
6791 if (dump_file)
6792 {
6793 fprintf (dump_file, "Simplified relational ");
6794 print_gimple_stmt (dump_file, stmt, 0, 0);
6795 fprintf (dump_file, " into ");
6796 }
6797
6798 gimple_cond_set_code (stmt, EQ_EXPR);
6799 gimple_cond_set_lhs (stmt, op0);
6800 gimple_cond_set_rhs (stmt, new_tree);
6801
6802 update_stmt (stmt);
6803
6804 if (dump_file)
6805 {
6806 print_gimple_stmt (dump_file, stmt, 0, 0);
6807 fprintf (dump_file, "\n");
6808 }
6809
6810 return true;
6811 }
6812
6813 /* Try again after inverting the condition. We only deal
6814 with integral types here, so no need to worry about
6815 issues with inverting FP comparisons. */
6816 cond_code = invert_tree_comparison (cond_code, false);
6817 new_tree = test_for_singularity (cond_code, op0, op1, vr);
6818
6819 if (new_tree)
6820 {
6821 if (dump_file)
6822 {
6823 fprintf (dump_file, "Simplified relational ");
6824 print_gimple_stmt (dump_file, stmt, 0, 0);
6825 fprintf (dump_file, " into ");
6826 }
6827
6828 gimple_cond_set_code (stmt, NE_EXPR);
6829 gimple_cond_set_lhs (stmt, op0);
6830 gimple_cond_set_rhs (stmt, new_tree);
6831
6832 update_stmt (stmt);
6833
6834 if (dump_file)
6835 {
6836 print_gimple_stmt (dump_file, stmt, 0, 0);
6837 fprintf (dump_file, "\n");
6838 }
6839
6840 return true;
6841 }
6842 }
6843 }
6844
6845 return false;
6846 }
6847
6848 /* Simplify a switch statement using the value range of the switch
6849 argument. */
6850
6851 static bool
6852 simplify_switch_using_ranges (gimple stmt)
6853 {
6854 tree op = gimple_switch_index (stmt);
6855 value_range_t *vr;
6856 bool take_default;
6857 edge e;
6858 edge_iterator ei;
6859 size_t i = 0, j = 0, n, n2;
6860 tree vec2;
6861 switch_update su;
6862
6863 if (TREE_CODE (op) != SSA_NAME)
6864 return false;
6865
6866 vr = get_value_range (op);
6867
6868 /* We can only handle integer ranges. */
6869 if (vr->type != VR_RANGE
6870 || symbolic_range_p (vr))
6871 return false;
6872
6873 /* Find case label for min/max of the value range. */
6874 n = gimple_switch_num_labels (stmt);
6875 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6876
6877 /* Bail out if this is just all edges taken. */
6878 if (i == 1
6879 && j == n - 1
6880 && take_default)
6881 return false;
6882
6883 /* Build a new vector of taken case labels. */
6884 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
6885 n2 = 0;
6886
6887 /* Add the default edge, if necessary. */
6888 if (take_default)
6889 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
6890
6891 for (; i <= j; ++i, ++n2)
6892 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
6893
6894 /* Mark needed edges. */
6895 for (i = 0; i < n2; ++i)
6896 {
6897 e = find_edge (gimple_bb (stmt),
6898 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
6899 e->aux = (void *)-1;
6900 }
6901
6902 /* Queue not needed edges for later removal. */
6903 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
6904 {
6905 if (e->aux == (void *)-1)
6906 {
6907 e->aux = NULL;
6908 continue;
6909 }
6910
6911 if (dump_file && (dump_flags & TDF_DETAILS))
6912 {
6913 fprintf (dump_file, "removing unreachable case label\n");
6914 }
6915 VEC_safe_push (edge, heap, to_remove_edges, e);
6916 }
6917
6918 /* And queue an update for the stmt. */
6919 su.stmt = stmt;
6920 su.vec = vec2;
6921 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
6922 return false;
6923 }
6924
6925 /* Simplify STMT using ranges if possible. */
6926
6927 bool
6928 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
6929 {
6930 gimple stmt = gsi_stmt (*gsi);
6931 if (is_gimple_assign (stmt))
6932 {
6933 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6934
6935 switch (rhs_code)
6936 {
6937 case EQ_EXPR:
6938 case NE_EXPR:
6939 case TRUTH_NOT_EXPR:
6940 case TRUTH_AND_EXPR:
6941 case TRUTH_OR_EXPR:
6942 case TRUTH_XOR_EXPR:
6943 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
6944 or identity if the RHS is zero or one, and the LHS are known
6945 to be boolean values. Transform all TRUTH_*_EXPR into
6946 BIT_*_EXPR if both arguments are known to be boolean values. */
6947 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6948 return simplify_truth_ops_using_ranges (gsi, stmt);
6949 break;
6950
6951 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6952 and BIT_AND_EXPR respectively if the first operand is greater
6953 than zero and the second operand is an exact power of two. */
6954 case TRUNC_DIV_EXPR:
6955 case TRUNC_MOD_EXPR:
6956 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6957 && integer_pow2p (gimple_assign_rhs2 (stmt)))
6958 return simplify_div_or_mod_using_ranges (stmt);
6959 break;
6960
6961 /* Transform ABS (X) into X or -X as appropriate. */
6962 case ABS_EXPR:
6963 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
6964 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6965 return simplify_abs_using_ranges (stmt);
6966 break;
6967
6968 default:
6969 break;
6970 }
6971 }
6972 else if (gimple_code (stmt) == GIMPLE_COND)
6973 return simplify_cond_using_ranges (stmt);
6974 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6975 return simplify_switch_using_ranges (stmt);
6976
6977 return false;
6978 }
6979
6980 /* Stack of dest,src equivalency pairs that need to be restored after
6981 each attempt to thread a block's incoming edge to an outgoing edge.
6982
6983 A NULL entry is used to mark the end of pairs which need to be
6984 restored. */
6985 static VEC(tree,heap) *stack;
6986
6987 /* A trivial wrapper so that we can present the generic jump threading
6988 code with a simple API for simplifying statements. STMT is the
6989 statement we want to simplify, WITHIN_STMT provides the location
6990 for any overflow warnings. */
6991
6992 static tree
6993 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
6994 {
6995 /* We only use VRP information to simplify conditionals. This is
6996 overly conservative, but it's unclear if doing more would be
6997 worth the compile time cost. */
6998 if (gimple_code (stmt) != GIMPLE_COND)
6999 return NULL;
7000
7001 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7002 gimple_cond_lhs (stmt),
7003 gimple_cond_rhs (stmt), within_stmt);
7004 }
7005
7006 /* Blocks which have more than one predecessor and more than
7007 one successor present jump threading opportunities, i.e.,
7008 when the block is reached from a specific predecessor, we
7009 may be able to determine which of the outgoing edges will
7010 be traversed. When this optimization applies, we are able
7011 to avoid conditionals at runtime and we may expose secondary
7012 optimization opportunities.
7013
7014 This routine is effectively a driver for the generic jump
7015 threading code. It basically just presents the generic code
7016 with edges that may be suitable for jump threading.
7017
7018 Unlike DOM, we do not iterate VRP if jump threading was successful.
7019 While iterating may expose new opportunities for VRP, it is expected
7020 those opportunities would be very limited and the compile time cost
7021 to expose those opportunities would be significant.
7022
7023 As jump threading opportunities are discovered, they are registered
7024 for later realization. */
7025
7026 static void
7027 identify_jump_threads (void)
7028 {
7029 basic_block bb;
7030 gimple dummy;
7031 int i;
7032 edge e;
7033
7034 /* Ugh. When substituting values earlier in this pass we can
7035 wipe the dominance information. So rebuild the dominator
7036 information as we need it within the jump threading code. */
7037 calculate_dominance_info (CDI_DOMINATORS);
7038
7039 /* We do not allow VRP information to be used for jump threading
7040 across a back edge in the CFG. Otherwise it becomes too
7041 difficult to avoid eliminating loop exit tests. Of course
7042 EDGE_DFS_BACK is not accurate at this time so we have to
7043 recompute it. */
7044 mark_dfs_back_edges ();
7045
7046 /* Do not thread across edges we are about to remove. Just marking
7047 them as EDGE_DFS_BACK will do. */
7048 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7049 e->flags |= EDGE_DFS_BACK;
7050
7051 /* Allocate our unwinder stack to unwind any temporary equivalences
7052 that might be recorded. */
7053 stack = VEC_alloc (tree, heap, 20);
7054
7055 /* To avoid lots of silly node creation, we create a single
7056 conditional and just modify it in-place when attempting to
7057 thread jumps. */
7058 dummy = gimple_build_cond (EQ_EXPR,
7059 integer_zero_node, integer_zero_node,
7060 NULL, NULL);
7061
7062 /* Walk through all the blocks finding those which present a
7063 potential jump threading opportunity. We could set this up
7064 as a dominator walker and record data during the walk, but
7065 I doubt it's worth the effort for the classes of jump
7066 threading opportunities we are trying to identify at this
7067 point in compilation. */
7068 FOR_EACH_BB (bb)
7069 {
7070 gimple last;
7071
7072 /* If the generic jump threading code does not find this block
7073 interesting, then there is nothing to do. */
7074 if (! potentially_threadable_block (bb))
7075 continue;
7076
7077 /* We only care about blocks ending in a COND_EXPR. While there
7078 may be some value in handling SWITCH_EXPR here, I doubt it's
7079 terribly important. */
7080 last = gsi_stmt (gsi_last_bb (bb));
7081 if (gimple_code (last) != GIMPLE_COND)
7082 continue;
7083
7084 /* We're basically looking for any kind of conditional with
7085 integral type arguments. */
7086 if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7087 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7088 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7089 || is_gimple_min_invariant (gimple_cond_rhs (last)))
7090 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
7091 {
7092 edge_iterator ei;
7093
7094 /* We've got a block with multiple predecessors and multiple
7095 successors which also ends in a suitable conditional. For
7096 each predecessor, see if we can thread it to a specific
7097 successor. */
7098 FOR_EACH_EDGE (e, ei, bb->preds)
7099 {
7100 /* Do not thread across back edges or abnormal edges
7101 in the CFG. */
7102 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7103 continue;
7104
7105 thread_across_edge (dummy, e, true, &stack,
7106 simplify_stmt_for_jump_threading);
7107 }
7108 }
7109 }
7110
7111 /* We do not actually update the CFG or SSA graphs at this point as
7112 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7113 handle ASSERT_EXPRs gracefully. */
7114 }
7115
7116 /* We identified all the jump threading opportunities earlier, but could
7117 not transform the CFG at that time. This routine transforms the
7118 CFG and arranges for the dominator tree to be rebuilt if necessary.
7119
7120 Note the SSA graph update will occur during the normal TODO
7121 processing by the pass manager. */
7122 static void
7123 finalize_jump_threads (void)
7124 {
7125 thread_through_all_blocks (false);
7126 VEC_free (tree, heap, stack);
7127 }
7128
7129
7130 /* Traverse all the blocks folding conditionals with known ranges. */
7131
7132 static void
7133 vrp_finalize (void)
7134 {
7135 size_t i;
7136 prop_value_t *single_val_range;
7137 bool do_value_subst_p;
7138
7139 if (dump_file)
7140 {
7141 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7142 dump_all_value_ranges (dump_file);
7143 fprintf (dump_file, "\n");
7144 }
7145
7146 /* We may have ended with ranges that have exactly one value. Those
7147 values can be substituted as any other copy/const propagated
7148 value using substitute_and_fold. */
7149 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
7150
7151 do_value_subst_p = false;
7152 for (i = 0; i < num_ssa_names; i++)
7153 if (vr_value[i]
7154 && vr_value[i]->type == VR_RANGE
7155 && vr_value[i]->min == vr_value[i]->max)
7156 {
7157 single_val_range[i].value = vr_value[i]->min;
7158 do_value_subst_p = true;
7159 }
7160
7161 if (!do_value_subst_p)
7162 {
7163 /* We found no single-valued ranges, don't waste time trying to
7164 do single value substitution in substitute_and_fold. */
7165 free (single_val_range);
7166 single_val_range = NULL;
7167 }
7168
7169 substitute_and_fold (single_val_range, true);
7170
7171 if (warn_array_bounds)
7172 check_all_array_refs ();
7173
7174 /* We must identify jump threading opportunities before we release
7175 the datastructures built by VRP. */
7176 identify_jump_threads ();
7177
7178 /* Free allocated memory. */
7179 for (i = 0; i < num_ssa_names; i++)
7180 if (vr_value[i])
7181 {
7182 BITMAP_FREE (vr_value[i]->equiv);
7183 free (vr_value[i]);
7184 }
7185
7186 free (single_val_range);
7187 free (vr_value);
7188 free (vr_phi_edge_counts);
7189
7190 /* So that we can distinguish between VRP data being available
7191 and not available. */
7192 vr_value = NULL;
7193 vr_phi_edge_counts = NULL;
7194 }
7195
7196
7197 /* Main entry point to VRP (Value Range Propagation). This pass is
7198 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7199 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7200 Programming Language Design and Implementation, pp. 67-78, 1995.
7201 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7202
7203 This is essentially an SSA-CCP pass modified to deal with ranges
7204 instead of constants.
7205
7206 While propagating ranges, we may find that two or more SSA name
7207 have equivalent, though distinct ranges. For instance,
7208
7209 1 x_9 = p_3->a;
7210 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7211 3 if (p_4 == q_2)
7212 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7213 5 endif
7214 6 if (q_2)
7215
7216 In the code above, pointer p_5 has range [q_2, q_2], but from the
7217 code we can also determine that p_5 cannot be NULL and, if q_2 had
7218 a non-varying range, p_5's range should also be compatible with it.
7219
7220 These equivalences are created by two expressions: ASSERT_EXPR and
7221 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7222 result of another assertion, then we can use the fact that p_5 and
7223 p_4 are equivalent when evaluating p_5's range.
7224
7225 Together with value ranges, we also propagate these equivalences
7226 between names so that we can take advantage of information from
7227 multiple ranges when doing final replacement. Note that this
7228 equivalency relation is transitive but not symmetric.
7229
7230 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7231 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7232 in contexts where that assertion does not hold (e.g., in line 6).
7233
7234 TODO, the main difference between this pass and Patterson's is that
7235 we do not propagate edge probabilities. We only compute whether
7236 edges can be taken or not. That is, instead of having a spectrum
7237 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7238 DON'T KNOW. In the future, it may be worthwhile to propagate
7239 probabilities to aid branch prediction. */
7240
7241 static unsigned int
7242 execute_vrp (void)
7243 {
7244 int i;
7245 edge e;
7246 switch_update *su;
7247
7248 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7249 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7250 scev_initialize ();
7251
7252 insert_range_assertions ();
7253
7254 to_remove_edges = VEC_alloc (edge, heap, 10);
7255 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7256
7257 vrp_initialize ();
7258 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7259 vrp_finalize ();
7260
7261 /* ASSERT_EXPRs must be removed before finalizing jump threads
7262 as finalizing jump threads calls the CFG cleanup code which
7263 does not properly handle ASSERT_EXPRs. */
7264 remove_range_assertions ();
7265
7266 /* If we exposed any new variables, go ahead and put them into
7267 SSA form now, before we handle jump threading. This simplifies
7268 interactions between rewriting of _DECL nodes into SSA form
7269 and rewriting SSA_NAME nodes into SSA form after block
7270 duplication and CFG manipulation. */
7271 update_ssa (TODO_update_ssa);
7272
7273 finalize_jump_threads ();
7274
7275 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7276 CFG in a broken state and requires a cfg_cleanup run. */
7277 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7278 remove_edge (e);
7279 /* Update SWITCH_EXPR case label vector. */
7280 for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
7281 {
7282 size_t j;
7283 size_t n = TREE_VEC_LENGTH (su->vec);
7284 tree label;
7285 gimple_switch_set_num_labels (su->stmt, n);
7286 for (j = 0; j < n; j++)
7287 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7288 /* As we may have replaced the default label with a regular one
7289 make sure to make it a real default label again. This ensures
7290 optimal expansion. */
7291 label = gimple_switch_default_label (su->stmt);
7292 CASE_LOW (label) = NULL_TREE;
7293 CASE_HIGH (label) = NULL_TREE;
7294 }
7295
7296 if (VEC_length (edge, to_remove_edges) > 0)
7297 free_dominance_info (CDI_DOMINATORS);
7298
7299 VEC_free (edge, heap, to_remove_edges);
7300 VEC_free (switch_update, heap, to_update_switch_stmts);
7301
7302 scev_finalize ();
7303 loop_optimizer_finalize ();
7304 return 0;
7305 }
7306
7307 static bool
7308 gate_vrp (void)
7309 {
7310 return flag_tree_vrp != 0;
7311 }
7312
7313 struct gimple_opt_pass pass_vrp =
7314 {
7315 {
7316 GIMPLE_PASS,
7317 "vrp", /* name */
7318 gate_vrp, /* gate */
7319 execute_vrp, /* execute */
7320 NULL, /* sub */
7321 NULL, /* next */
7322 0, /* static_pass_number */
7323 TV_TREE_VRP, /* tv_id */
7324 PROP_ssa | PROP_alias, /* properties_required */
7325 0, /* properties_provided */
7326 0, /* properties_destroyed */
7327 0, /* todo_flags_start */
7328 TODO_cleanup_cfg
7329 | TODO_ggc_collect
7330 | TODO_verify_ssa
7331 | TODO_dump_func
7332 | TODO_update_ssa /* todo_flags_finish */
7333 }
7334 };