Mercurial > hg > CbC > CbC_gcc
comparison libgcc/config/libbid/bid64_add.c @ 0:a06113de4d67
first commit
author | kent <kent@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jul 2009 14:47:48 +0900 |
parents | |
children | 04ced10e8804 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:a06113de4d67 |
---|---|
1 /* Copyright (C) 2007, 2009 Free Software Foundation, Inc. | |
2 | |
3 This file is part of GCC. | |
4 | |
5 GCC is free software; you can redistribute it and/or modify it under | |
6 the terms of the GNU General Public License as published by the Free | |
7 Software Foundation; either version 3, or (at your option) any later | |
8 version. | |
9 | |
10 GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |
11 WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
13 for more details. | |
14 | |
15 Under Section 7 of GPL version 3, you are granted additional | |
16 permissions described in the GCC Runtime Library Exception, version | |
17 3.1, as published by the Free Software Foundation. | |
18 | |
19 You should have received a copy of the GNU General Public License and | |
20 a copy of the GCC Runtime Library Exception along with this program; | |
21 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see | |
22 <http://www.gnu.org/licenses/>. */ | |
23 | |
24 /***************************************************************************** | |
25 * BID64 add | |
26 ***************************************************************************** | |
27 * | |
28 * Algorithm description: | |
29 * | |
30 * if(exponent_a < exponent_b) | |
31 * switch a, b | |
32 * diff_expon = exponent_a - exponent_b | |
33 * if(diff_expon > 16) | |
34 * return normalize(a) | |
35 * if(coefficient_a*10^diff_expon guaranteed below 2^62) | |
36 * S = sign_a*coefficient_a*10^diff_expon + sign_b*coefficient_b | |
37 * if(|S|<10^16) | |
38 * return get_BID64(sign(S),exponent_b,|S|) | |
39 * else | |
40 * determine number of extra digits in S (1, 2, or 3) | |
41 * return rounded result | |
42 * else // large exponent difference | |
43 * if(number_digits(coefficient_a*10^diff_expon) +/- 10^16) | |
44 * guaranteed the same as | |
45 * number_digits(coefficient_a*10^diff_expon) ) | |
46 * S = normalize(coefficient_a + (sign_a^sign_b)*10^(16-diff_expon)) | |
47 * corr = 10^16 + (sign_a^sign_b)*coefficient_b | |
48 * corr*10^exponent_b is rounded so it aligns with S*10^exponent_S | |
49 * return get_BID64(sign_a,exponent(S),S+rounded(corr)) | |
50 * else | |
51 * add sign_a*coefficient_a*10^diff_expon, sign_b*coefficient_b | |
52 * in 128-bit integer arithmetic, then round to 16 decimal digits | |
53 * | |
54 * | |
55 ****************************************************************************/ | |
56 | |
57 #include "bid_internal.h" | |
58 | |
59 #if DECIMAL_CALL_BY_REFERENCE | |
60 void bid64_add (UINT64 * pres, UINT64 * px, | |
61 UINT64 * | |
62 py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM | |
63 _EXC_INFO_PARAM); | |
64 #else | |
65 UINT64 bid64_add (UINT64 x, | |
66 UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM | |
67 _EXC_MASKS_PARAM _EXC_INFO_PARAM); | |
68 #endif | |
69 | |
70 #if DECIMAL_CALL_BY_REFERENCE | |
71 | |
72 void | |
73 bid64_sub (UINT64 * pres, UINT64 * px, | |
74 UINT64 * | |
75 py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM | |
76 _EXC_INFO_PARAM) { | |
77 UINT64 y = *py; | |
78 #if !DECIMAL_GLOBAL_ROUNDING | |
79 _IDEC_round rnd_mode = *prnd_mode; | |
80 #endif | |
81 // check if y is not NaN | |
82 if (((y & NAN_MASK64) != NAN_MASK64)) | |
83 y ^= 0x8000000000000000ull; | |
84 bid64_add (pres, px, | |
85 &y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG | |
86 _EXC_INFO_ARG); | |
87 } | |
88 #else | |
89 | |
90 UINT64 | |
91 bid64_sub (UINT64 x, | |
92 UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM | |
93 _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | |
94 // check if y is not NaN | |
95 if (((y & NAN_MASK64) != NAN_MASK64)) | |
96 y ^= 0x8000000000000000ull; | |
97 | |
98 return bid64_add (x, | |
99 y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG | |
100 _EXC_INFO_ARG); | |
101 } | |
102 #endif | |
103 | |
104 | |
105 | |
106 #if DECIMAL_CALL_BY_REFERENCE | |
107 | |
108 void | |
109 bid64_add (UINT64 * pres, UINT64 * px, | |
110 UINT64 * | |
111 py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM | |
112 _EXC_INFO_PARAM) { | |
113 UINT64 x, y; | |
114 #else | |
115 | |
116 UINT64 | |
117 bid64_add (UINT64 x, | |
118 UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM | |
119 _EXC_MASKS_PARAM _EXC_INFO_PARAM) { | |
120 #endif | |
121 | |
122 UINT128 CA, CT, CT_new; | |
123 UINT64 sign_x, sign_y, coefficient_x, coefficient_y, C64_new; | |
124 UINT64 valid_x, valid_y; | |
125 UINT64 res; | |
126 UINT64 sign_a, sign_b, coefficient_a, coefficient_b, sign_s, sign_ab, | |
127 rem_a; | |
128 UINT64 saved_ca, saved_cb, C0_64, C64, remainder_h, T1, carry, tmp; | |
129 int_double tempx; | |
130 int exponent_x, exponent_y, exponent_a, exponent_b, diff_dec_expon; | |
131 int bin_expon_ca, extra_digits, amount, scale_k, scale_ca; | |
132 unsigned rmode, status; | |
133 | |
134 #if DECIMAL_CALL_BY_REFERENCE | |
135 #if !DECIMAL_GLOBAL_ROUNDING | |
136 _IDEC_round rnd_mode = *prnd_mode; | |
137 #endif | |
138 x = *px; | |
139 y = *py; | |
140 #endif | |
141 | |
142 valid_x = unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x); | |
143 valid_y = unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y); | |
144 | |
145 // unpack arguments, check for NaN or Infinity | |
146 if (!valid_x) { | |
147 // x is Inf. or NaN | |
148 | |
149 // test if x is NaN | |
150 if ((x & NAN_MASK64) == NAN_MASK64) { | |
151 #ifdef SET_STATUS_FLAGS | |
152 if (((x & SNAN_MASK64) == SNAN_MASK64) // sNaN | |
153 || ((y & SNAN_MASK64) == SNAN_MASK64)) | |
154 __set_status_flags (pfpsf, INVALID_EXCEPTION); | |
155 #endif | |
156 res = coefficient_x & QUIET_MASK64; | |
157 BID_RETURN (res); | |
158 } | |
159 // x is Infinity? | |
160 if ((x & INFINITY_MASK64) == INFINITY_MASK64) { | |
161 // check if y is Inf | |
162 if (((y & NAN_MASK64) == INFINITY_MASK64)) { | |
163 if (sign_x == (y & 0x8000000000000000ull)) { | |
164 res = coefficient_x; | |
165 BID_RETURN (res); | |
166 } | |
167 // return NaN | |
168 { | |
169 #ifdef SET_STATUS_FLAGS | |
170 __set_status_flags (pfpsf, INVALID_EXCEPTION); | |
171 #endif | |
172 res = NAN_MASK64; | |
173 BID_RETURN (res); | |
174 } | |
175 } | |
176 // check if y is NaN | |
177 if (((y & NAN_MASK64) == NAN_MASK64)) { | |
178 res = coefficient_y & QUIET_MASK64; | |
179 #ifdef SET_STATUS_FLAGS | |
180 if (((y & SNAN_MASK64) == SNAN_MASK64)) | |
181 __set_status_flags (pfpsf, INVALID_EXCEPTION); | |
182 #endif | |
183 BID_RETURN (res); | |
184 } | |
185 // otherwise return +/-Inf | |
186 { | |
187 res = coefficient_x; | |
188 BID_RETURN (res); | |
189 } | |
190 } | |
191 // x is 0 | |
192 { | |
193 if (((y & INFINITY_MASK64) != INFINITY_MASK64) && coefficient_y) { | |
194 if (exponent_y <= exponent_x) { | |
195 res = y; | |
196 BID_RETURN (res); | |
197 } | |
198 } | |
199 } | |
200 | |
201 } | |
202 if (!valid_y) { | |
203 // y is Inf. or NaN? | |
204 if (((y & INFINITY_MASK64) == INFINITY_MASK64)) { | |
205 #ifdef SET_STATUS_FLAGS | |
206 if ((y & SNAN_MASK64) == SNAN_MASK64) // sNaN | |
207 __set_status_flags (pfpsf, INVALID_EXCEPTION); | |
208 #endif | |
209 res = coefficient_y & QUIET_MASK64; | |
210 BID_RETURN (res); | |
211 } | |
212 // y is 0 | |
213 if (!coefficient_x) { // x==0 | |
214 if (exponent_x <= exponent_y) | |
215 res = ((UINT64) exponent_x) << 53; | |
216 else | |
217 res = ((UINT64) exponent_y) << 53; | |
218 if (sign_x == sign_y) | |
219 res |= sign_x; | |
220 #ifndef IEEE_ROUND_NEAREST_TIES_AWAY | |
221 #ifndef IEEE_ROUND_NEAREST | |
222 if (rnd_mode == ROUNDING_DOWN && sign_x != sign_y) | |
223 res |= 0x8000000000000000ull; | |
224 #endif | |
225 #endif | |
226 BID_RETURN (res); | |
227 } else if (exponent_y >= exponent_x) { | |
228 res = x; | |
229 BID_RETURN (res); | |
230 } | |
231 } | |
232 // sort arguments by exponent | |
233 if (exponent_x < exponent_y) { | |
234 sign_a = sign_y; | |
235 exponent_a = exponent_y; | |
236 coefficient_a = coefficient_y; | |
237 sign_b = sign_x; | |
238 exponent_b = exponent_x; | |
239 coefficient_b = coefficient_x; | |
240 } else { | |
241 sign_a = sign_x; | |
242 exponent_a = exponent_x; | |
243 coefficient_a = coefficient_x; | |
244 sign_b = sign_y; | |
245 exponent_b = exponent_y; | |
246 coefficient_b = coefficient_y; | |
247 } | |
248 | |
249 // exponent difference | |
250 diff_dec_expon = exponent_a - exponent_b; | |
251 | |
252 /* get binary coefficients of x and y */ | |
253 | |
254 //--- get number of bits in the coefficients of x and y --- | |
255 | |
256 // version 2 (original) | |
257 tempx.d = (double) coefficient_a; | |
258 bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff; | |
259 | |
260 if (diff_dec_expon > MAX_FORMAT_DIGITS) { | |
261 // normalize a to a 16-digit coefficient | |
262 | |
263 scale_ca = estimate_decimal_digits[bin_expon_ca]; | |
264 if (coefficient_a >= power10_table_128[scale_ca].w[0]) | |
265 scale_ca++; | |
266 | |
267 scale_k = 16 - scale_ca; | |
268 | |
269 coefficient_a *= power10_table_128[scale_k].w[0]; | |
270 | |
271 diff_dec_expon -= scale_k; | |
272 exponent_a -= scale_k; | |
273 | |
274 /* get binary coefficients of x and y */ | |
275 | |
276 //--- get number of bits in the coefficients of x and y --- | |
277 tempx.d = (double) coefficient_a; | |
278 bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff; | |
279 | |
280 if (diff_dec_expon > MAX_FORMAT_DIGITS) { | |
281 #ifdef SET_STATUS_FLAGS | |
282 if (coefficient_b) { | |
283 __set_status_flags (pfpsf, INEXACT_EXCEPTION); | |
284 } | |
285 #endif | |
286 | |
287 #ifndef IEEE_ROUND_NEAREST_TIES_AWAY | |
288 #ifndef IEEE_ROUND_NEAREST | |
289 if (((rnd_mode) & 3) && coefficient_b) // not ROUNDING_TO_NEAREST | |
290 { | |
291 switch (rnd_mode) { | |
292 case ROUNDING_DOWN: | |
293 if (sign_b) { | |
294 coefficient_a -= ((((SINT64) sign_a) >> 63) | 1); | |
295 if (coefficient_a < 1000000000000000ull) { | |
296 exponent_a--; | |
297 coefficient_a = 9999999999999999ull; | |
298 } else if (coefficient_a >= 10000000000000000ull) { | |
299 exponent_a++; | |
300 coefficient_a = 1000000000000000ull; | |
301 } | |
302 } | |
303 break; | |
304 case ROUNDING_UP: | |
305 if (!sign_b) { | |
306 coefficient_a += ((((SINT64) sign_a) >> 63) | 1); | |
307 if (coefficient_a < 1000000000000000ull) { | |
308 exponent_a--; | |
309 coefficient_a = 9999999999999999ull; | |
310 } else if (coefficient_a >= 10000000000000000ull) { | |
311 exponent_a++; | |
312 coefficient_a = 1000000000000000ull; | |
313 } | |
314 } | |
315 break; | |
316 default: // RZ | |
317 if (sign_a != sign_b) { | |
318 coefficient_a--; | |
319 if (coefficient_a < 1000000000000000ull) { | |
320 exponent_a--; | |
321 coefficient_a = 9999999999999999ull; | |
322 } | |
323 } | |
324 break; | |
325 } | |
326 } else | |
327 #endif | |
328 #endif | |
329 // check special case here | |
330 if ((coefficient_a == 1000000000000000ull) | |
331 && (diff_dec_expon == MAX_FORMAT_DIGITS + 1) | |
332 && (sign_a ^ sign_b) | |
333 && (coefficient_b > 5000000000000000ull)) { | |
334 coefficient_a = 9999999999999999ull; | |
335 exponent_a--; | |
336 } | |
337 | |
338 res = | |
339 fast_get_BID64_check_OF (sign_a, exponent_a, coefficient_a, | |
340 rnd_mode, pfpsf); | |
341 BID_RETURN (res); | |
342 } | |
343 } | |
344 // test whether coefficient_a*10^(exponent_a-exponent_b) may exceed 2^62 | |
345 if (bin_expon_ca + estimate_bin_expon[diff_dec_expon] < 60) { | |
346 // coefficient_a*10^(exponent_a-exponent_b)<2^63 | |
347 | |
348 // multiply by 10^(exponent_a-exponent_b) | |
349 coefficient_a *= power10_table_128[diff_dec_expon].w[0]; | |
350 | |
351 // sign mask | |
352 sign_b = ((SINT64) sign_b) >> 63; | |
353 // apply sign to coeff. of b | |
354 coefficient_b = (coefficient_b + sign_b) ^ sign_b; | |
355 | |
356 // apply sign to coefficient a | |
357 sign_a = ((SINT64) sign_a) >> 63; | |
358 coefficient_a = (coefficient_a + sign_a) ^ sign_a; | |
359 | |
360 coefficient_a += coefficient_b; | |
361 // get sign | |
362 sign_s = ((SINT64) coefficient_a) >> 63; | |
363 coefficient_a = (coefficient_a + sign_s) ^ sign_s; | |
364 sign_s &= 0x8000000000000000ull; | |
365 | |
366 // coefficient_a < 10^16 ? | |
367 if (coefficient_a < power10_table_128[MAX_FORMAT_DIGITS].w[0]) { | |
368 #ifndef IEEE_ROUND_NEAREST_TIES_AWAY | |
369 #ifndef IEEE_ROUND_NEAREST | |
370 if (rnd_mode == ROUNDING_DOWN && (!coefficient_a) | |
371 && sign_a != sign_b) | |
372 sign_s = 0x8000000000000000ull; | |
373 #endif | |
374 #endif | |
375 res = very_fast_get_BID64 (sign_s, exponent_b, coefficient_a); | |
376 BID_RETURN (res); | |
377 } | |
378 // otherwise rounding is necessary | |
379 | |
380 // already know coefficient_a<10^19 | |
381 // coefficient_a < 10^17 ? | |
382 if (coefficient_a < power10_table_128[17].w[0]) | |
383 extra_digits = 1; | |
384 else if (coefficient_a < power10_table_128[18].w[0]) | |
385 extra_digits = 2; | |
386 else | |
387 extra_digits = 3; | |
388 | |
389 #ifndef IEEE_ROUND_NEAREST_TIES_AWAY | |
390 #ifndef IEEE_ROUND_NEAREST | |
391 rmode = rnd_mode; | |
392 if (sign_s && (unsigned) (rmode - 1) < 2) | |
393 rmode = 3 - rmode; | |
394 #else | |
395 rmode = 0; | |
396 #endif | |
397 #else | |
398 rmode = 0; | |
399 #endif | |
400 coefficient_a += round_const_table[rmode][extra_digits]; | |
401 | |
402 // get P*(2^M[extra_digits])/10^extra_digits | |
403 __mul_64x64_to_128 (CT, coefficient_a, | |
404 reciprocals10_64[extra_digits]); | |
405 | |
406 // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 | |
407 amount = short_recip_scale[extra_digits]; | |
408 C64 = CT.w[1] >> amount; | |
409 | |
410 } else { | |
411 // coefficient_a*10^(exponent_a-exponent_b) is large | |
412 sign_s = sign_a; | |
413 | |
414 #ifndef IEEE_ROUND_NEAREST_TIES_AWAY | |
415 #ifndef IEEE_ROUND_NEAREST | |
416 rmode = rnd_mode; | |
417 if (sign_s && (unsigned) (rmode - 1) < 2) | |
418 rmode = 3 - rmode; | |
419 #else | |
420 rmode = 0; | |
421 #endif | |
422 #else | |
423 rmode = 0; | |
424 #endif | |
425 | |
426 // check whether we can take faster path | |
427 scale_ca = estimate_decimal_digits[bin_expon_ca]; | |
428 | |
429 sign_ab = sign_a ^ sign_b; | |
430 sign_ab = ((SINT64) sign_ab) >> 63; | |
431 | |
432 // T1 = 10^(16-diff_dec_expon) | |
433 T1 = power10_table_128[16 - diff_dec_expon].w[0]; | |
434 | |
435 // get number of digits in coefficient_a | |
436 if (coefficient_a >= power10_table_128[scale_ca].w[0]) { | |
437 scale_ca++; | |
438 } | |
439 | |
440 scale_k = 16 - scale_ca; | |
441 | |
442 // addition | |
443 saved_ca = coefficient_a - T1; | |
444 coefficient_a = | |
445 (SINT64) saved_ca *(SINT64) power10_table_128[scale_k].w[0]; | |
446 extra_digits = diff_dec_expon - scale_k; | |
447 | |
448 // apply sign | |
449 saved_cb = (coefficient_b + sign_ab) ^ sign_ab; | |
450 // add 10^16 and rounding constant | |
451 coefficient_b = | |
452 saved_cb + 10000000000000000ull + | |
453 round_const_table[rmode][extra_digits]; | |
454 | |
455 // get P*(2^M[extra_digits])/10^extra_digits | |
456 __mul_64x64_to_128 (CT, coefficient_b, | |
457 reciprocals10_64[extra_digits]); | |
458 | |
459 // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 | |
460 amount = short_recip_scale[extra_digits]; | |
461 C0_64 = CT.w[1] >> amount; | |
462 | |
463 // result coefficient | |
464 C64 = C0_64 + coefficient_a; | |
465 // filter out difficult (corner) cases | |
466 // this test ensures the number of digits in coefficient_a does not change | |
467 // after adding (the appropriately scaled and rounded) coefficient_b | |
468 if ((UINT64) (C64 - 1000000000000000ull - 1) > | |
469 9000000000000000ull - 2) { | |
470 if (C64 >= 10000000000000000ull) { | |
471 // result has more than 16 digits | |
472 if (!scale_k) { | |
473 // must divide coeff_a by 10 | |
474 saved_ca = saved_ca + T1; | |
475 __mul_64x64_to_128 (CA, saved_ca, 0x3333333333333334ull); | |
476 //reciprocals10_64[1]); | |
477 coefficient_a = CA.w[1] >> 1; | |
478 rem_a = | |
479 saved_ca - (coefficient_a << 3) - (coefficient_a << 1); | |
480 coefficient_a = coefficient_a - T1; | |
481 | |
482 saved_cb += rem_a * power10_table_128[diff_dec_expon].w[0]; | |
483 } else | |
484 coefficient_a = | |
485 (SINT64) (saved_ca - T1 - | |
486 (T1 << 3)) * (SINT64) power10_table_128[scale_k - | |
487 1].w[0]; | |
488 | |
489 extra_digits++; | |
490 coefficient_b = | |
491 saved_cb + 100000000000000000ull + | |
492 round_const_table[rmode][extra_digits]; | |
493 | |
494 // get P*(2^M[extra_digits])/10^extra_digits | |
495 __mul_64x64_to_128 (CT, coefficient_b, | |
496 reciprocals10_64[extra_digits]); | |
497 | |
498 // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 | |
499 amount = short_recip_scale[extra_digits]; | |
500 C0_64 = CT.w[1] >> amount; | |
501 | |
502 // result coefficient | |
503 C64 = C0_64 + coefficient_a; | |
504 } else if (C64 <= 1000000000000000ull) { | |
505 // less than 16 digits in result | |
506 coefficient_a = | |
507 (SINT64) saved_ca *(SINT64) power10_table_128[scale_k + | |
508 1].w[0]; | |
509 //extra_digits --; | |
510 exponent_b--; | |
511 coefficient_b = | |
512 (saved_cb << 3) + (saved_cb << 1) + 100000000000000000ull + | |
513 round_const_table[rmode][extra_digits]; | |
514 | |
515 // get P*(2^M[extra_digits])/10^extra_digits | |
516 __mul_64x64_to_128 (CT_new, coefficient_b, | |
517 reciprocals10_64[extra_digits]); | |
518 | |
519 // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 | |
520 amount = short_recip_scale[extra_digits]; | |
521 C0_64 = CT_new.w[1] >> amount; | |
522 | |
523 // result coefficient | |
524 C64_new = C0_64 + coefficient_a; | |
525 if (C64_new < 10000000000000000ull) { | |
526 C64 = C64_new; | |
527 #ifdef SET_STATUS_FLAGS | |
528 CT = CT_new; | |
529 #endif | |
530 } else | |
531 exponent_b++; | |
532 } | |
533 | |
534 } | |
535 | |
536 } | |
537 | |
538 #ifndef IEEE_ROUND_NEAREST_TIES_AWAY | |
539 #ifndef IEEE_ROUND_NEAREST | |
540 if (rmode == 0) //ROUNDING_TO_NEAREST | |
541 #endif | |
542 if (C64 & 1) { | |
543 // check whether fractional part of initial_P/10^extra_digits is | |
544 // exactly .5 | |
545 // this is the same as fractional part of | |
546 // (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero | |
547 | |
548 // get remainder | |
549 remainder_h = CT.w[1] << (64 - amount); | |
550 | |
551 // test whether fractional part is 0 | |
552 if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) { | |
553 C64--; | |
554 } | |
555 } | |
556 #endif | |
557 | |
558 #ifdef SET_STATUS_FLAGS | |
559 status = INEXACT_EXCEPTION; | |
560 | |
561 // get remainder | |
562 remainder_h = CT.w[1] << (64 - amount); | |
563 | |
564 switch (rmode) { | |
565 case ROUNDING_TO_NEAREST: | |
566 case ROUNDING_TIES_AWAY: | |
567 // test whether fractional part is 0 | |
568 if ((remainder_h == 0x8000000000000000ull) | |
569 && (CT.w[0] < reciprocals10_64[extra_digits])) | |
570 status = EXACT_STATUS; | |
571 break; | |
572 case ROUNDING_DOWN: | |
573 case ROUNDING_TO_ZERO: | |
574 if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) | |
575 status = EXACT_STATUS; | |
576 //if(!C64 && rmode==ROUNDING_DOWN) sign_s=sign_y; | |
577 break; | |
578 default: | |
579 // round up | |
580 __add_carry_out (tmp, carry, CT.w[0], | |
581 reciprocals10_64[extra_digits]); | |
582 if ((remainder_h >> (64 - amount)) + carry >= | |
583 (((UINT64) 1) << amount)) | |
584 status = EXACT_STATUS; | |
585 break; | |
586 } | |
587 __set_status_flags (pfpsf, status); | |
588 | |
589 #endif | |
590 | |
591 res = | |
592 fast_get_BID64_check_OF (sign_s, exponent_b + extra_digits, C64, | |
593 rnd_mode, pfpsf); | |
594 BID_RETURN (res); | |
595 } |