comparison gcc/tree-ssa-uninit.c @ 63:b7f97abdc517 gcc-4.6-20100522

update gcc from gcc-4.5.0 to gcc-4.6
author ryoma <e075725@ie.u-ryukyu.ac.jp>
date Mon, 24 May 2010 12:47:05 +0900
parents
children f6334be47118
comparison
equal deleted inserted replaced
56:3c8a44c06a95 63:b7f97abdc517
1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2010 Free Software
3 Foundation, Inc.
4 Contributed by Xinliang David Li <davidxl@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "langhooks.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "gimple-pretty-print.h"
36 #include "bitmap.h"
37 #include "pointer-set.h"
38 #include "tree-flow.h"
39 #include "gimple.h"
40 #include "tree-inline.h"
41 #include "timevar.h"
42 #include "hashtab.h"
43 #include "tree-dump.h"
44 #include "tree-pass.h"
45 #include "toplev.h"
46 #include "timevar.h"
47
48 /* This implements the pass that does predicate aware warning on uses of
49 possibly uninitialized variables. The pass first collects the set of
50 possibly uninitialized SSA names. For each such name, it walks through
51 all its immediate uses. For each immediate use, it rebuilds the condition
52 expression (the predicate) that guards the use. The predicate is then
53 examined to see if the variable is always defined under that same condition.
54 This is done either by pruning the unrealizable paths that lead to the
55 default definitions or by checking if the predicate set that guards the
56 defining paths is a superset of the use predicate. */
57
58
59 /* Pointer set of potentially undefined ssa names, i.e.,
60 ssa names that are defined by phi with operands that
61 are not defined or potentially undefined. */
62 static struct pointer_set_t *possibly_undefined_names = 0;
63
64 /* Bit mask handling macros. */
65 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
66 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
67 #define MASK_EMPTY(mask) (mask == 0)
68
69 /* Returns the first bit position (starting from LSB)
70 in mask that is non zero. Returns -1 if the mask is empty. */
71 static int
72 get_mask_first_set_bit (unsigned mask)
73 {
74 int pos = 0;
75 if (mask == 0)
76 return -1;
77
78 while ((mask & (1 << pos)) == 0)
79 pos++;
80
81 return pos;
82 }
83 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
84
85
86 /* Return true if T, an SSA_NAME, has an undefined value. */
87
88 bool
89 ssa_undefined_value_p (tree t)
90 {
91 tree var = SSA_NAME_VAR (t);
92
93 /* Parameters get their initial value from the function entry. */
94 if (TREE_CODE (var) == PARM_DECL)
95 return false;
96
97 /* Hard register variables get their initial value from the ether. */
98 if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
99 return false;
100
101 /* The value is undefined iff its definition statement is empty. */
102 return (gimple_nop_p (SSA_NAME_DEF_STMT (t))
103 || (possibly_undefined_names
104 && pointer_set_contains (possibly_undefined_names, t)));
105 }
106
107 /* Checks if the operand OPND of PHI is defined by
108 another phi with one operand defined by this PHI,
109 but the rest operands are all defined. If yes,
110 returns true to skip this this operand as being
111 redundant. Can be enhanced to be more general. */
112
113 static bool
114 can_skip_redundant_opnd (tree opnd, gimple phi)
115 {
116 gimple op_def;
117 tree phi_def;
118 int i, n;
119
120 phi_def = gimple_phi_result (phi);
121 op_def = SSA_NAME_DEF_STMT (opnd);
122 if (gimple_code (op_def) != GIMPLE_PHI)
123 return false;
124 n = gimple_phi_num_args (op_def);
125 for (i = 0; i < n; ++i)
126 {
127 tree op = gimple_phi_arg_def (op_def, i);
128 if (TREE_CODE (op) != SSA_NAME)
129 continue;
130 if (op != phi_def && ssa_undefined_value_p (op))
131 return false;
132 }
133
134 return true;
135 }
136
137 /* Returns a bit mask holding the positions of arguments in PHI
138 that have empty (or possibly empty) definitions. */
139
140 static unsigned
141 compute_uninit_opnds_pos (gimple phi)
142 {
143 size_t i, n;
144 unsigned uninit_opnds = 0;
145
146 n = gimple_phi_num_args (phi);
147
148 for (i = 0; i < n; ++i)
149 {
150 tree op = gimple_phi_arg_def (phi, i);
151 if (TREE_CODE (op) == SSA_NAME
152 && ssa_undefined_value_p (op)
153 && !can_skip_redundant_opnd (op, phi))
154 MASK_SET_BIT (uninit_opnds, i);
155 }
156 return uninit_opnds;
157 }
158
159 /* Find the immediate postdominator PDOM of the specified
160 basic block BLOCK. */
161
162 static inline basic_block
163 find_pdom (basic_block block)
164 {
165 if (block == EXIT_BLOCK_PTR)
166 return EXIT_BLOCK_PTR;
167 else
168 {
169 basic_block bb
170 = get_immediate_dominator (CDI_POST_DOMINATORS, block);
171 if (! bb)
172 return EXIT_BLOCK_PTR;
173 return bb;
174 }
175 }
176
177 /* Find the immediate DOM of the specified
178 basic block BLOCK. */
179
180 static inline basic_block
181 find_dom (basic_block block)
182 {
183 if (block == ENTRY_BLOCK_PTR)
184 return ENTRY_BLOCK_PTR;
185 else
186 {
187 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
188 if (! bb)
189 return ENTRY_BLOCK_PTR;
190 return bb;
191 }
192 }
193
194 /* Returns true if BB1 is postdominating BB2 and BB1 is
195 not a loop exit bb. The loop exit bb check is simple and does
196 not cover all cases. */
197
198 static bool
199 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
200 {
201 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
202 return false;
203
204 if (single_pred_p (bb1) && !single_succ_p (bb2))
205 return false;
206
207 return true;
208 }
209
210 /* Find the closest postdominator of a specified BB, which is control
211 equivalent to BB. */
212
213 static inline basic_block
214 find_control_equiv_block (basic_block bb)
215 {
216 basic_block pdom;
217
218 pdom = find_pdom (bb);
219
220 /* Skip the postdominating bb that is also loop exit. */
221 if (!is_non_loop_exit_postdominating (pdom, bb))
222 return NULL;
223
224 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
225 return pdom;
226
227 return NULL;
228 }
229
230 #define MAX_NUM_CHAINS 8
231 #define MAX_CHAIN_LEN 5
232
233 /* Computes the control dependence chains (paths of edges)
234 for DEP_BB up to the dominating basic block BB (the head node of a
235 chain should be dominated by it). CD_CHAINS is pointer to a
236 dynamic array holding the result chains. CUR_CD_CHAIN is the current
237 chain being computed. *NUM_CHAINS is total number of chains. The
238 function returns true if the information is successfully computed,
239 return false if there is no control dependence or not computed. */
240
241 static bool
242 compute_control_dep_chain (basic_block bb, basic_block dep_bb,
243 VEC(edge, heap) **cd_chains,
244 size_t *num_chains,
245 VEC(edge, heap) **cur_cd_chain)
246 {
247 edge_iterator ei;
248 edge e;
249 size_t i;
250 bool found_cd_chain = false;
251 size_t cur_chain_len = 0;
252
253 if (EDGE_COUNT (bb->succs) < 2)
254 return false;
255
256 /* Could use a set instead. */
257 cur_chain_len = VEC_length (edge, *cur_cd_chain);
258 if (cur_chain_len > MAX_CHAIN_LEN)
259 return false;
260
261 for (i = 0; i < cur_chain_len; i++)
262 {
263 edge e = VEC_index (edge, *cur_cd_chain, i);
264 /* cycle detected. */
265 if (e->src == bb)
266 return false;
267 }
268
269 FOR_EACH_EDGE (e, ei, bb->succs)
270 {
271 basic_block cd_bb;
272 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
273 continue;
274
275 cd_bb = e->dest;
276 VEC_safe_push (edge, heap, *cur_cd_chain, e);
277 while (!is_non_loop_exit_postdominating (cd_bb, bb))
278 {
279 if (cd_bb == dep_bb)
280 {
281 /* Found a direct control dependence. */
282 if (*num_chains < MAX_NUM_CHAINS)
283 {
284 cd_chains[*num_chains]
285 = VEC_copy (edge, heap, *cur_cd_chain);
286 (*num_chains)++;
287 }
288 found_cd_chain = true;
289 /* check path from next edge. */
290 break;
291 }
292
293 /* Now check if DEP_BB is indirectly control dependent on BB. */
294 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
295 num_chains, cur_cd_chain))
296 {
297 found_cd_chain = true;
298 break;
299 }
300
301 cd_bb = find_pdom (cd_bb);
302 if (cd_bb == EXIT_BLOCK_PTR)
303 break;
304 }
305 VEC_pop (edge, *cur_cd_chain);
306 gcc_assert (VEC_length (edge, *cur_cd_chain) == cur_chain_len);
307 }
308 gcc_assert (VEC_length (edge, *cur_cd_chain) == cur_chain_len);
309
310 return found_cd_chain;
311 }
312
313 typedef struct use_pred_info
314 {
315 gimple cond;
316 bool invert;
317 } *use_pred_info_t;
318
319 DEF_VEC_P(use_pred_info_t);
320 DEF_VEC_ALLOC_P(use_pred_info_t, heap);
321
322
323 /* Converts the chains of control dependence edges into a set of
324 predicates. A control dependence chain is represented by a vector
325 edges. DEP_CHAINS points to an array of dependence chains.
326 NUM_CHAINS is the size of the chain array. One edge in a dependence
327 chain is mapped to predicate expression represented by use_pred_info_t
328 type. One dependence chain is converted to a composite predicate that
329 is the result of AND operation of use_pred_info_t mapped to each edge.
330 A composite predicate is presented by a vector of use_pred_info_t. On
331 return, *PREDS points to the resulting array of composite predicates.
332 *NUM_PREDS is the number of composite predictes. */
333
334 static bool
335 convert_control_dep_chain_into_preds (VEC(edge, heap) **dep_chains,
336 size_t num_chains,
337 VEC(use_pred_info_t, heap) ***preds,
338 size_t *num_preds)
339 {
340 bool has_valid_pred = false;
341 size_t i, j;
342 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
343 return false;
344
345 /* Now convert CD chains into predicates */
346 has_valid_pred = true;
347
348 /* Now convert the control dep chain into a set
349 of predicates. */
350 *preds = XCNEWVEC (VEC(use_pred_info_t, heap) *,
351 num_chains);
352 *num_preds = num_chains;
353
354 for (i = 0; i < num_chains; i++)
355 {
356 VEC(edge, heap) *one_cd_chain = dep_chains[i];
357 for (j = 0; j < VEC_length (edge, one_cd_chain); j++)
358 {
359 gimple cond_stmt;
360 gimple_stmt_iterator gsi;
361 basic_block guard_bb;
362 use_pred_info_t one_pred;
363 edge e;
364
365 e = VEC_index (edge, one_cd_chain, j);
366 guard_bb = e->src;
367 gsi = gsi_last_bb (guard_bb);
368 if (gsi_end_p (gsi))
369 {
370 has_valid_pred = false;
371 break;
372 }
373 cond_stmt = gsi_stmt (gsi);
374 if (gimple_code (cond_stmt) == GIMPLE_CALL
375 && EDGE_COUNT (e->src->succs) >= 2)
376 {
377 /* Ignore EH edge. Can add assertion
378 on the other edge's flag. */
379 continue;
380 }
381 /* Skip if there is essentially one succesor. */
382 if (EDGE_COUNT (e->src->succs) == 2)
383 {
384 edge e1;
385 edge_iterator ei1;
386 bool skip = false;
387
388 FOR_EACH_EDGE (e1, ei1, e->src->succs)
389 {
390 if (EDGE_COUNT (e1->dest->succs) == 0)
391 {
392 skip = true;
393 break;
394 }
395 }
396 if (skip)
397 continue;
398 }
399 if (gimple_code (cond_stmt) != GIMPLE_COND)
400 {
401 has_valid_pred = false;
402 break;
403 }
404 one_pred = XNEW (struct use_pred_info);
405 one_pred->cond = cond_stmt;
406 one_pred->invert = !!(e->flags & EDGE_FALSE_VALUE);
407 VEC_safe_push (use_pred_info_t, heap, (*preds)[i], one_pred);
408 }
409
410 if (!has_valid_pred)
411 break;
412 }
413 return has_valid_pred;
414 }
415
416 /* Computes all control dependence chains for USE_BB. The control
417 dependence chains are then converted to an array of composite
418 predicates pointed to by PREDS. PHI_BB is the basic block of
419 the phi whose result is used in USE_BB. */
420
421 static bool
422 find_predicates (VEC(use_pred_info_t, heap) ***preds,
423 size_t *num_preds,
424 basic_block phi_bb,
425 basic_block use_bb)
426 {
427 size_t num_chains = 0, i;
428 VEC(edge, heap) **dep_chains = 0;
429 VEC(edge, heap) *cur_chain = 0;
430 bool has_valid_pred = false;
431 basic_block cd_root = 0;
432
433 dep_chains = XCNEWVEC (VEC(edge, heap) *, MAX_NUM_CHAINS);
434
435 /* First find the closest bb that is control equivalent to PHI_BB
436 that also dominates USE_BB. */
437 cd_root = phi_bb;
438 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
439 {
440 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
441 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
442 cd_root = ctrl_eq_bb;
443 else
444 break;
445 }
446
447 compute_control_dep_chain (cd_root, use_bb,
448 dep_chains, &num_chains,
449 &cur_chain);
450
451 has_valid_pred
452 = convert_control_dep_chain_into_preds (dep_chains,
453 num_chains,
454 preds,
455 num_preds);
456 /* Free individual chain */
457 VEC_free (edge, heap, cur_chain);
458 for (i = 0; i < num_chains; i++)
459 VEC_free (edge, heap, dep_chains[i]);
460 free (dep_chains);
461 return has_valid_pred;
462 }
463
464 /* Computes the set of incoming edges of PHI that have non empty
465 definitions of a phi chain. The collection will be done
466 recursively on operands that are defined by phis. CD_ROOT
467 is the control dependence root. *EDGES holds the result, and
468 VISITED_PHIS is a pointer set for detecting cycles. */
469
470 static void
471 collect_phi_def_edges (gimple phi, basic_block cd_root,
472 VEC(edge, heap) **edges,
473 struct pointer_set_t *visited_phis)
474 {
475 size_t i, n;
476 edge opnd_edge;
477 tree opnd;
478
479 if (pointer_set_insert (visited_phis, phi))
480 return;
481
482 n = gimple_phi_num_args (phi);
483 for (i = 0; i < n; i++)
484 {
485 opnd_edge = gimple_phi_arg_edge (phi, i);
486 opnd = gimple_phi_arg_def (phi, i);
487
488 if (TREE_CODE (opnd) != SSA_NAME
489 || !ssa_undefined_value_p (opnd))
490 VEC_safe_push (edge, heap, *edges, opnd_edge);
491 else
492 {
493 gimple def = SSA_NAME_DEF_STMT (opnd);
494 if (gimple_code (def) == GIMPLE_PHI
495 && dominated_by_p (CDI_DOMINATORS,
496 gimple_bb (def), cd_root))
497 collect_phi_def_edges (def, cd_root, edges,
498 visited_phis);
499 }
500 }
501 }
502
503 /* For each use edge of PHI, computes all control dependence chains.
504 The control dependence chains are then converted to an array of
505 composite predicates pointed to by PREDS. */
506
507 static bool
508 find_def_preds (VEC(use_pred_info_t, heap) ***preds,
509 size_t *num_preds, gimple phi)
510 {
511 size_t num_chains = 0, i, n;
512 VEC(edge, heap) **dep_chains = 0;
513 VEC(edge, heap) *cur_chain = 0;
514 VEC(edge, heap) *def_edges = 0;
515 bool has_valid_pred = false;
516 basic_block phi_bb, cd_root = 0;
517 struct pointer_set_t *visited_phis;
518
519 dep_chains = XCNEWVEC (VEC(edge, heap) *, MAX_NUM_CHAINS);
520
521 phi_bb = gimple_bb (phi);
522 /* First find the closest dominating bb to be
523 the control dependence root */
524 cd_root = find_dom (phi_bb);
525 if (!cd_root)
526 return false;
527
528 visited_phis = pointer_set_create ();
529 collect_phi_def_edges (phi, cd_root, &def_edges, visited_phis);
530 pointer_set_destroy (visited_phis);
531
532 n = VEC_length (edge, def_edges);
533 if (n == 0)
534 return false;
535
536 for (i = 0; i < n; i++)
537 {
538 size_t prev_nc, j;
539 edge opnd_edge;
540
541 opnd_edge = VEC_index (edge, def_edges, i);
542 prev_nc = num_chains;
543 compute_control_dep_chain (cd_root, opnd_edge->src,
544 dep_chains, &num_chains,
545 &cur_chain);
546 /* Free individual chain */
547 VEC_free (edge, heap, cur_chain);
548 cur_chain = 0;
549
550 /* Now update the newly added chains with
551 the phi operand edge: */
552 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
553 {
554 if (prev_nc == num_chains
555 && num_chains < MAX_NUM_CHAINS)
556 num_chains++;
557 for (j = prev_nc; j < num_chains; j++)
558 {
559 VEC_safe_push (edge, heap, dep_chains[j], opnd_edge);
560 }
561 }
562 }
563
564 has_valid_pred
565 = convert_control_dep_chain_into_preds (dep_chains,
566 num_chains,
567 preds,
568 num_preds);
569 for (i = 0; i < num_chains; i++)
570 VEC_free (edge, heap, dep_chains[i]);
571 free (dep_chains);
572 return has_valid_pred;
573 }
574
575 /* Dumps the predicates (PREDS) for USESTMT. */
576
577 static void
578 dump_predicates (gimple usestmt, size_t num_preds,
579 VEC(use_pred_info_t, heap) **preds,
580 const char* msg)
581 {
582 size_t i, j;
583 VEC(use_pred_info_t, heap) *one_pred_chain;
584 fprintf (dump_file, msg);
585 print_gimple_stmt (dump_file, usestmt, 0, 0);
586 fprintf (dump_file, "is guarded by :\n");
587 /* do some dumping here: */
588 for (i = 0; i < num_preds; i++)
589 {
590 size_t np;
591
592 one_pred_chain = preds[i];
593 np = VEC_length (use_pred_info_t, one_pred_chain);
594
595 for (j = 0; j < np; j++)
596 {
597 use_pred_info_t one_pred
598 = VEC_index (use_pred_info_t, one_pred_chain, j);
599 if (one_pred->invert)
600 fprintf (dump_file, " (.NOT.) ");
601 print_gimple_stmt (dump_file, one_pred->cond, 0, 0);
602 if (j < np - 1)
603 fprintf (dump_file, "(.AND.)\n");
604 }
605 if (i < num_preds - 1)
606 fprintf (dump_file, "(.OR.)\n");
607 }
608 }
609
610 /* Destroys the predicate set *PREDS. */
611
612 static void
613 destroy_predicate_vecs (size_t n,
614 VEC(use_pred_info_t, heap) ** preds)
615 {
616 size_t i, j;
617 for (i = 0; i < n; i++)
618 {
619 for (j = 0; j < VEC_length (use_pred_info_t, preds[i]); j++)
620 free (VEC_index (use_pred_info_t, preds[i], j));
621 VEC_free (use_pred_info_t, heap, preds[i]);
622 }
623 free (preds);
624 }
625
626
627 /* Computes the 'normalized' conditional code with operand
628 swapping and condition inversion. */
629
630 static enum tree_code
631 get_cmp_code (enum tree_code orig_cmp_code,
632 bool swap_cond, bool invert)
633 {
634 enum tree_code tc = orig_cmp_code;
635
636 if (swap_cond)
637 tc = swap_tree_comparison (orig_cmp_code);
638 if (invert)
639 tc = invert_tree_comparison (tc, false);
640
641 switch (tc)
642 {
643 case LT_EXPR:
644 case LE_EXPR:
645 case GT_EXPR:
646 case GE_EXPR:
647 case EQ_EXPR:
648 case NE_EXPR:
649 break;
650 default:
651 return ERROR_MARK;
652 }
653 return tc;
654 }
655
656 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
657 all values in the range satisfies (x CMPC BOUNDARY) == true. */
658
659 static bool
660 is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
661 {
662 bool inverted = false;
663 bool is_unsigned;
664 bool result;
665
666 /* Only handle integer constant here. */
667 if (TREE_CODE (val) != INTEGER_CST
668 || TREE_CODE (boundary) != INTEGER_CST)
669 return true;
670
671 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
672
673 if (cmpc == GE_EXPR || cmpc == GT_EXPR
674 || cmpc == NE_EXPR)
675 {
676 cmpc = invert_tree_comparison (cmpc, false);
677 inverted = true;
678 }
679
680 if (is_unsigned)
681 {
682 if (cmpc == EQ_EXPR)
683 result = tree_int_cst_equal (val, boundary);
684 else if (cmpc == LT_EXPR)
685 result = INT_CST_LT_UNSIGNED (val, boundary);
686 else
687 {
688 gcc_assert (cmpc == LE_EXPR);
689 result = (tree_int_cst_equal (val, boundary)
690 || INT_CST_LT_UNSIGNED (val, boundary));
691 }
692 }
693 else
694 {
695 if (cmpc == EQ_EXPR)
696 result = tree_int_cst_equal (val, boundary);
697 else if (cmpc == LT_EXPR)
698 result = INT_CST_LT (val, boundary);
699 else
700 {
701 gcc_assert (cmpc == LE_EXPR);
702 result = (tree_int_cst_equal (val, boundary)
703 || INT_CST_LT (val, boundary));
704 }
705 }
706
707 if (inverted)
708 result ^= 1;
709
710 return result;
711 }
712
713 /* Returns true if PRED is common among all the predicate
714 chains (PREDS) (and therefore can be factored out).
715 NUM_PRED_CHAIN is the size of array PREDS. */
716
717 static bool
718 find_matching_predicate_in_rest_chains (use_pred_info_t pred,
719 VEC(use_pred_info_t, heap) **preds,
720 size_t num_pred_chains)
721 {
722 size_t i, j, n;
723
724 /* trival case */
725 if (num_pred_chains == 1)
726 return true;
727
728 for (i = 1; i < num_pred_chains; i++)
729 {
730 bool found = false;
731 VEC(use_pred_info_t, heap) *one_chain = preds[i];
732 n = VEC_length (use_pred_info_t, one_chain);
733 for (j = 0; j < n; j++)
734 {
735 use_pred_info_t pred2
736 = VEC_index (use_pred_info_t, one_chain, j);
737 /* can relax the condition comparison to not
738 use address comparison. However, the most common
739 case is that multiple control dependent paths share
740 a common path prefix, so address comparison should
741 be ok. */
742
743 if (pred2->cond == pred->cond
744 && pred2->invert == pred->invert)
745 {
746 found = true;
747 break;
748 }
749 }
750 if (!found)
751 return false;
752 }
753 return true;
754 }
755
756 /* Forward declaration. */
757 static bool
758 is_use_properly_guarded (gimple use_stmt,
759 basic_block use_bb,
760 gimple phi,
761 unsigned uninit_opnds,
762 struct pointer_set_t *visited_phis);
763
764 /* A helper function that determines if the predicate set
765 of the use is not overlapping with that of the uninit paths.
766 The most common senario of guarded use is in Example 1:
767 Example 1:
768 if (some_cond)
769 {
770 x = ...;
771 flag = true;
772 }
773
774 ... some code ...
775
776 if (flag)
777 use (x);
778
779 The real world examples are usually more complicated, but similar
780 and usually result from inlining:
781
782 bool init_func (int * x)
783 {
784 if (some_cond)
785 return false;
786 *x = ..
787 return true;
788 }
789
790 void foo(..)
791 {
792 int x;
793
794 if (!init_func(&x))
795 return;
796
797 .. some_code ...
798 use (x);
799 }
800
801 Another possible use scenario is in the following trivial example:
802
803 Example 2:
804 if (n > 0)
805 x = 1;
806 ...
807 if (n > 0)
808 {
809 if (m < 2)
810 .. = x;
811 }
812
813 Predicate analysis needs to compute the composite predicate:
814
815 1) 'x' use predicate: (n > 0) .AND. (m < 2)
816 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
817 (the predicate chain for phi operand defs can be computed
818 starting from a bb that is control equivalent to the phi's
819 bb and is dominating the operand def.)
820
821 and check overlapping:
822 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
823 <==> false
824
825 This implementation provides framework that can handle
826 scenarios. (Note that many simple cases are handled properly
827 without the predicate analysis -- this is due to jump threading
828 transformation which eliminates the merge point thus makes
829 path sensitive analysis unnecessary.)
830
831 NUM_PREDS is the number is the number predicate chains, PREDS is
832 the array of chains, PHI is the phi node whose incoming (undefined)
833 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
834 uninit operand positions. VISITED_PHIS is the pointer set of phi
835 stmts being checked. */
836
837
838 static bool
839 use_pred_not_overlap_with_undef_path_pred (
840 size_t num_preds,
841 VEC(use_pred_info_t, heap) **preds,
842 gimple phi, unsigned uninit_opnds,
843 struct pointer_set_t *visited_phis)
844 {
845 unsigned int i, n;
846 gimple flag_def = 0;
847 tree boundary_cst = 0;
848 enum tree_code cmp_code;
849 bool swap_cond = false;
850 bool invert = false;
851 VEC(use_pred_info_t, heap) *the_pred_chain;
852
853 gcc_assert (num_preds > 0);
854 /* Find within the common prefix of multiple predicate chains
855 a predicate that is a comparison of a flag variable against
856 a constant. */
857 the_pred_chain = preds[0];
858 n = VEC_length (use_pred_info_t, the_pred_chain);
859 for (i = 0; i < n; i++)
860 {
861 gimple cond;
862 tree cond_lhs, cond_rhs, flag = 0;
863
864 use_pred_info_t the_pred
865 = VEC_index (use_pred_info_t, the_pred_chain, i);
866
867 cond = the_pred->cond;
868 invert = the_pred->invert;
869 cond_lhs = gimple_cond_lhs (cond);
870 cond_rhs = gimple_cond_rhs (cond);
871 cmp_code = gimple_cond_code (cond);
872
873 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
874 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
875 {
876 boundary_cst = cond_rhs;
877 flag = cond_lhs;
878 }
879 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
880 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
881 {
882 boundary_cst = cond_lhs;
883 flag = cond_rhs;
884 swap_cond = true;
885 }
886
887 if (!flag)
888 continue;
889
890 flag_def = SSA_NAME_DEF_STMT (flag);
891
892 if (!flag_def)
893 continue;
894
895 if ((gimple_code (flag_def) == GIMPLE_PHI)
896 && (gimple_bb (flag_def) == gimple_bb (phi))
897 && find_matching_predicate_in_rest_chains (
898 the_pred, preds, num_preds))
899 break;
900
901 flag_def = 0;
902 }
903
904 if (!flag_def)
905 return false;
906
907 /* Now check all the uninit incoming edge has a constant flag value
908 that is in conflict with the use guard/predicate. */
909 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
910
911 if (cmp_code == ERROR_MARK)
912 return false;
913
914 for (i = 0; i < sizeof (unsigned); i++)
915 {
916 tree flag_arg;
917
918 if (!MASK_TEST_BIT (uninit_opnds, i))
919 continue;
920
921 flag_arg = gimple_phi_arg_def (flag_def, i);
922 if (!is_gimple_constant (flag_arg))
923 return false;
924
925 /* Now check if the constant is in the guarded range. */
926 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
927 {
928 tree opnd;
929 gimple opnd_def;
930
931 /* Now that we know that this undefined edge is not
932 pruned. If the operand is defined by another phi,
933 we can further prune the incoming edges of that
934 phi by checking the predicates of this operands. */
935
936 opnd = gimple_phi_arg_def (phi, i);
937 opnd_def = SSA_NAME_DEF_STMT (opnd);
938 if (gimple_code (opnd_def) == GIMPLE_PHI)
939 {
940 edge opnd_edge;
941 unsigned uninit_opnds2
942 = compute_uninit_opnds_pos (opnd_def);
943 gcc_assert (!MASK_EMPTY (uninit_opnds2));
944 opnd_edge = gimple_phi_arg_edge (phi, i);
945 if (!is_use_properly_guarded (phi,
946 opnd_edge->src,
947 opnd_def,
948 uninit_opnds2,
949 visited_phis))
950 return false;
951 }
952 else
953 return false;
954 }
955 }
956
957 return true;
958 }
959
960 /* Returns true if TC is AND or OR */
961
962 static inline bool
963 is_and_or_or (enum tree_code tc, tree typ)
964 {
965 return (tc == TRUTH_AND_EXPR
966 || tc == TRUTH_OR_EXPR
967 || tc == BIT_IOR_EXPR
968 || (tc == BIT_AND_EXPR
969 && (typ == 0 || TREE_CODE (typ) == BOOLEAN_TYPE)));
970 }
971
972 typedef struct norm_cond
973 {
974 VEC(gimple, heap) *conds;
975 enum tree_code cond_code;
976 bool invert;
977 } *norm_cond_t;
978
979
980 /* Normalizes gimple condition COND. The normalization follows
981 UD chains to form larger condition expression trees. NORM_COND
982 holds the normalized result. COND_CODE is the logical opcode
983 (AND or OR) of the normalized tree. */
984
985 static void
986 normalize_cond_1 (gimple cond,
987 norm_cond_t norm_cond,
988 enum tree_code cond_code)
989 {
990 enum gimple_code gc;
991 enum tree_code cur_cond_code;
992 tree rhs1, rhs2;
993
994 gc = gimple_code (cond);
995 if (gc != GIMPLE_ASSIGN)
996 {
997 VEC_safe_push (gimple, heap, norm_cond->conds, cond);
998 return;
999 }
1000
1001 cur_cond_code = gimple_assign_rhs_code (cond);
1002 rhs1 = gimple_assign_rhs1 (cond);
1003 rhs2 = gimple_assign_rhs2 (cond);
1004 if (cur_cond_code == NE_EXPR)
1005 {
1006 if (integer_zerop (rhs2)
1007 && (TREE_CODE (rhs1) == SSA_NAME))
1008 normalize_cond_1 (
1009 SSA_NAME_DEF_STMT (rhs1),
1010 norm_cond, cond_code);
1011 else if (integer_zerop (rhs1)
1012 && (TREE_CODE (rhs2) == SSA_NAME))
1013 normalize_cond_1 (
1014 SSA_NAME_DEF_STMT (rhs2),
1015 norm_cond, cond_code);
1016 else
1017 VEC_safe_push (gimple, heap, norm_cond->conds, cond);
1018
1019 return;
1020 }
1021
1022 if (is_and_or_or (cur_cond_code, TREE_TYPE (rhs1))
1023 && (cond_code == cur_cond_code || cond_code == ERROR_MARK)
1024 && (TREE_CODE (rhs1) == SSA_NAME && TREE_CODE (rhs2) == SSA_NAME))
1025 {
1026 normalize_cond_1 (SSA_NAME_DEF_STMT (rhs1),
1027 norm_cond, cur_cond_code);
1028 normalize_cond_1 (SSA_NAME_DEF_STMT (rhs2),
1029 norm_cond, cur_cond_code);
1030 norm_cond->cond_code = cur_cond_code;
1031 }
1032 else
1033 VEC_safe_push (gimple, heap, norm_cond->conds, cond);
1034 }
1035
1036 /* See normalize_cond_1 for details. INVERT is a flag to indicate
1037 if COND needs to be inverted or not. */
1038
1039 static void
1040 normalize_cond (gimple cond, norm_cond_t norm_cond, bool invert)
1041 {
1042 enum tree_code cond_code;
1043
1044 norm_cond->cond_code = ERROR_MARK;
1045 norm_cond->invert = false;
1046 norm_cond->conds = NULL;
1047 gcc_assert (gimple_code (cond) == GIMPLE_COND);
1048 cond_code = gimple_cond_code (cond);
1049 if (invert)
1050 cond_code = invert_tree_comparison (cond_code, false);
1051
1052 if (cond_code == NE_EXPR)
1053 {
1054 if (integer_zerop (gimple_cond_rhs (cond))
1055 && (TREE_CODE (gimple_cond_lhs (cond)) == SSA_NAME))
1056 normalize_cond_1 (
1057 SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)),
1058 norm_cond, ERROR_MARK);
1059 else if (integer_zerop (gimple_cond_lhs (cond))
1060 && (TREE_CODE (gimple_cond_rhs (cond)) == SSA_NAME))
1061 normalize_cond_1 (
1062 SSA_NAME_DEF_STMT (gimple_cond_rhs (cond)),
1063 norm_cond, ERROR_MARK);
1064 else
1065 {
1066 VEC_safe_push (gimple, heap, norm_cond->conds, cond);
1067 norm_cond->invert = invert;
1068 }
1069 }
1070 else
1071 {
1072 VEC_safe_push (gimple, heap, norm_cond->conds, cond);
1073 norm_cond->invert = invert;
1074 }
1075
1076 gcc_assert (VEC_length (gimple, norm_cond->conds) == 1
1077 || is_and_or_or (norm_cond->cond_code, NULL));
1078 }
1079
1080 /* Returns true if the domain for condition COND1 is a subset of
1081 COND2. REVERSE is a flag. when it is true the function checks
1082 if COND1 is a superset of COND2. INVERT1 and INVERT2 are flags
1083 to indicate if COND1 and COND2 need to be inverted or not. */
1084
1085 static bool
1086 is_gcond_subset_of (gimple cond1, bool invert1,
1087 gimple cond2, bool invert2,
1088 bool reverse)
1089 {
1090 enum gimple_code gc1, gc2;
1091 enum tree_code cond1_code, cond2_code;
1092 gimple tmp;
1093 tree cond1_lhs, cond1_rhs, cond2_lhs, cond2_rhs;
1094
1095 /* Take the short cut. */
1096 if (cond1 == cond2)
1097 return true;
1098
1099 if (reverse)
1100 {
1101 tmp = cond1;
1102 cond1 = cond2;
1103 cond2 = tmp;
1104 }
1105
1106 gc1 = gimple_code (cond1);
1107 gc2 = gimple_code (cond2);
1108
1109 if ((gc1 != GIMPLE_ASSIGN && gc1 != GIMPLE_COND)
1110 || (gc2 != GIMPLE_ASSIGN && gc2 != GIMPLE_COND))
1111 return cond1 == cond2;
1112
1113 cond1_code = ((gc1 == GIMPLE_ASSIGN)
1114 ? gimple_assign_rhs_code (cond1)
1115 : gimple_cond_code (cond1));
1116
1117 cond2_code = ((gc2 == GIMPLE_ASSIGN)
1118 ? gimple_assign_rhs_code (cond2)
1119 : gimple_cond_code (cond2));
1120
1121 if (TREE_CODE_CLASS (cond1_code) != tcc_comparison
1122 || TREE_CODE_CLASS (cond2_code) != tcc_comparison)
1123 return false;
1124
1125 if (invert1)
1126 cond1_code = invert_tree_comparison (cond1_code, false);
1127 if (invert2)
1128 cond2_code = invert_tree_comparison (cond2_code, false);
1129
1130 cond1_lhs = ((gc1 == GIMPLE_ASSIGN)
1131 ? gimple_assign_rhs1 (cond1)
1132 : gimple_cond_lhs (cond1));
1133 cond1_rhs = ((gc1 == GIMPLE_ASSIGN)
1134 ? gimple_assign_rhs2 (cond1)
1135 : gimple_cond_rhs (cond1));
1136 cond2_lhs = ((gc2 == GIMPLE_ASSIGN)
1137 ? gimple_assign_rhs1 (cond2)
1138 : gimple_cond_lhs (cond2));
1139 cond2_rhs = ((gc2 == GIMPLE_ASSIGN)
1140 ? gimple_assign_rhs2 (cond2)
1141 : gimple_cond_rhs (cond2));
1142
1143 /* Assuming const operands have been swapped to the
1144 rhs at this point of the analysis. */
1145
1146 if (cond1_lhs != cond2_lhs)
1147 return false;
1148
1149 if (!is_gimple_constant (cond1_rhs)
1150 || TREE_CODE (cond1_rhs) != INTEGER_CST)
1151 return (cond1_rhs == cond2_rhs);
1152
1153 if (!is_gimple_constant (cond2_rhs)
1154 || TREE_CODE (cond2_rhs) != INTEGER_CST)
1155 return (cond1_rhs == cond2_rhs);
1156
1157 if (cond1_code == EQ_EXPR)
1158 return is_value_included_in (cond1_rhs,
1159 cond2_rhs, cond2_code);
1160 if (cond1_code == NE_EXPR || cond2_code == EQ_EXPR)
1161 return ((cond2_code == cond1_code)
1162 && tree_int_cst_equal (cond1_rhs, cond2_rhs));
1163
1164 if (((cond1_code == GE_EXPR || cond1_code == GT_EXPR)
1165 && (cond2_code == LE_EXPR || cond2_code == LT_EXPR))
1166 || ((cond1_code == LE_EXPR || cond1_code == LT_EXPR)
1167 && (cond2_code == GE_EXPR || cond2_code == GT_EXPR)))
1168 return false;
1169
1170 if (cond1_code != GE_EXPR && cond1_code != GT_EXPR
1171 && cond1_code != LE_EXPR && cond1_code != LT_EXPR)
1172 return false;
1173
1174 if (cond1_code == GT_EXPR)
1175 {
1176 cond1_code = GE_EXPR;
1177 cond1_rhs = fold_binary (PLUS_EXPR, TREE_TYPE (cond1_rhs),
1178 cond1_rhs,
1179 fold_convert (TREE_TYPE (cond1_rhs),
1180 integer_one_node));
1181 }
1182 else if (cond1_code == LT_EXPR)
1183 {
1184 cond1_code = LE_EXPR;
1185 cond1_rhs = fold_binary (MINUS_EXPR, TREE_TYPE (cond1_rhs),
1186 cond1_rhs,
1187 fold_convert (TREE_TYPE (cond1_rhs),
1188 integer_one_node));
1189 }
1190
1191 if (!cond1_rhs)
1192 return false;
1193
1194 gcc_assert (cond1_code == GE_EXPR || cond1_code == LE_EXPR);
1195
1196 if (cond2_code == GE_EXPR || cond2_code == GT_EXPR ||
1197 cond2_code == LE_EXPR || cond2_code == LT_EXPR)
1198 return is_value_included_in (cond1_rhs,
1199 cond2_rhs, cond2_code);
1200 else if (cond2_code == NE_EXPR)
1201 return
1202 (is_value_included_in (cond1_rhs,
1203 cond2_rhs, cond2_code)
1204 && !is_value_included_in (cond2_rhs,
1205 cond1_rhs, cond1_code));
1206 return false;
1207 }
1208
1209 /* Returns true if the domain of the condition expression
1210 in COND is a subset of any of the sub-conditions
1211 of the normalized condtion NORM_COND. INVERT is a flag
1212 to indicate of the COND needs to be inverted.
1213 REVERSE is a flag. When it is true, the check is reversed --
1214 it returns true if COND is a superset of any of the subconditions
1215 of NORM_COND. */
1216
1217 static bool
1218 is_subset_of_any (gimple cond, bool invert,
1219 norm_cond_t norm_cond, bool reverse)
1220 {
1221 size_t i;
1222 size_t len = VEC_length (gimple, norm_cond->conds);
1223
1224 for (i = 0; i < len; i++)
1225 {
1226 if (is_gcond_subset_of (cond, invert,
1227 VEC_index (gimple, norm_cond->conds, i),
1228 false, reverse))
1229 return true;
1230 }
1231 return false;
1232 }
1233
1234 /* NORM_COND1 and NORM_COND2 are normalized logical/BIT OR
1235 expressions (formed by following UD chains not control
1236 dependence chains). The function returns true of domain
1237 of and expression NORM_COND1 is a subset of NORM_COND2's.
1238 The implementation is conservative, and it returns false if
1239 it the inclusion relationship may not hold. */
1240
1241 static bool
1242 is_or_set_subset_of (norm_cond_t norm_cond1,
1243 norm_cond_t norm_cond2)
1244 {
1245 size_t i;
1246 size_t len = VEC_length (gimple, norm_cond1->conds);
1247
1248 for (i = 0; i < len; i++)
1249 {
1250 if (!is_subset_of_any (VEC_index (gimple, norm_cond1->conds, i),
1251 false, norm_cond2, false))
1252 return false;
1253 }
1254 return true;
1255 }
1256
1257 /* NORM_COND1 and NORM_COND2 are normalized logical AND
1258 expressions (formed by following UD chains not control
1259 dependence chains). The function returns true of domain
1260 of and expression NORM_COND1 is a subset of NORM_COND2's. */
1261
1262 static bool
1263 is_and_set_subset_of (norm_cond_t norm_cond1,
1264 norm_cond_t norm_cond2)
1265 {
1266 size_t i;
1267 size_t len = VEC_length (gimple, norm_cond2->conds);
1268
1269 for (i = 0; i < len; i++)
1270 {
1271 if (!is_subset_of_any (VEC_index (gimple, norm_cond2->conds, i),
1272 false, norm_cond1, true))
1273 return false;
1274 }
1275 return true;
1276 }
1277
1278 /* Returns true of the domain if NORM_COND1 is a subset
1279 of that of NORM_COND2. Returns false if it can not be
1280 proved to be so. */
1281
1282 static bool
1283 is_norm_cond_subset_of (norm_cond_t norm_cond1,
1284 norm_cond_t norm_cond2)
1285 {
1286 size_t i;
1287 enum tree_code code1, code2;
1288
1289 code1 = norm_cond1->cond_code;
1290 code2 = norm_cond2->cond_code;
1291
1292 if (code1 == TRUTH_AND_EXPR || code1 == BIT_AND_EXPR)
1293 {
1294 /* Both conditions are AND expressions. */
1295 if (code2 == TRUTH_AND_EXPR || code2 == BIT_AND_EXPR)
1296 return is_and_set_subset_of (norm_cond1, norm_cond2);
1297 /* NORM_COND1 is an AND expression, and NORM_COND2 is an OR
1298 expression. In this case, returns true if any subexpression
1299 of NORM_COND1 is a subset of any subexpression of NORM_COND2. */
1300 else if (code2 == TRUTH_OR_EXPR || code2 == BIT_IOR_EXPR)
1301 {
1302 size_t len1;
1303 len1 = VEC_length (gimple, norm_cond1->conds);
1304 for (i = 0; i < len1; i++)
1305 {
1306 gimple cond1 = VEC_index (gimple, norm_cond1->conds, i);
1307 if (is_subset_of_any (cond1, false, norm_cond2, false))
1308 return true;
1309 }
1310 return false;
1311 }
1312 else
1313 {
1314 gcc_assert (code2 == ERROR_MARK);
1315 gcc_assert (VEC_length (gimple, norm_cond2->conds) == 1);
1316 return is_subset_of_any (VEC_index (gimple, norm_cond2->conds, 0),
1317 norm_cond2->invert, norm_cond1, true);
1318 }
1319 }
1320 /* NORM_COND1 is an OR expression */
1321 else if (code1 == TRUTH_OR_EXPR || code1 == BIT_IOR_EXPR)
1322 {
1323 if (code2 != code1)
1324 return false;
1325
1326 return is_or_set_subset_of (norm_cond1, norm_cond2);
1327 }
1328 else
1329 {
1330 gcc_assert (code1 == ERROR_MARK);
1331 gcc_assert (VEC_length (gimple, norm_cond1->conds) == 1);
1332 /* Conservatively returns false if NORM_COND1 is non-decomposible
1333 and NORM_COND2 is an AND expression. */
1334 if (code2 == TRUTH_AND_EXPR || code2 == BIT_AND_EXPR)
1335 return false;
1336
1337 if (code2 == TRUTH_OR_EXPR || code2 == BIT_IOR_EXPR)
1338 return is_subset_of_any (VEC_index (gimple, norm_cond1->conds, 0),
1339 norm_cond1->invert, norm_cond2, false);
1340
1341 gcc_assert (code2 == ERROR_MARK);
1342 gcc_assert (VEC_length (gimple, norm_cond2->conds) == 1);
1343 return is_gcond_subset_of (VEC_index (gimple, norm_cond1->conds, 0),
1344 norm_cond1->invert,
1345 VEC_index (gimple, norm_cond2->conds, 0),
1346 norm_cond2->invert, false);
1347 }
1348 }
1349
1350 /* Returns true of the domain of single predicate expression
1351 EXPR1 is a subset of that of EXPR2. Returns false if it
1352 can not be proved. */
1353
1354 static bool
1355 is_pred_expr_subset_of (use_pred_info_t expr1,
1356 use_pred_info_t expr2)
1357 {
1358 gimple cond1, cond2;
1359 enum tree_code code1, code2;
1360 struct norm_cond norm_cond1, norm_cond2;
1361 bool is_subset = false;
1362
1363 cond1 = expr1->cond;
1364 cond2 = expr2->cond;
1365 code1 = gimple_cond_code (cond1);
1366 code2 = gimple_cond_code (cond2);
1367
1368 if (expr1->invert)
1369 code1 = invert_tree_comparison (code1, false);
1370 if (expr2->invert)
1371 code2 = invert_tree_comparison (code2, false);
1372
1373 /* Fast path -- match exactly */
1374 if ((gimple_cond_lhs (cond1) == gimple_cond_lhs (cond2))
1375 && (gimple_cond_rhs (cond1) == gimple_cond_rhs (cond2))
1376 && (code1 == code2))
1377 return true;
1378
1379 /* Normalize conditions. To keep NE_EXPR, do not invert
1380 with both need inversion. */
1381 normalize_cond (cond1, &norm_cond1, (expr1->invert));
1382 normalize_cond (cond2, &norm_cond2, (expr2->invert));
1383
1384 is_subset = is_norm_cond_subset_of (&norm_cond1, &norm_cond2);
1385
1386 /* Free memory */
1387 VEC_free (gimple, heap, norm_cond1.conds);
1388 VEC_free (gimple, heap, norm_cond2.conds);
1389 return is_subset ;
1390 }
1391
1392 /* Returns true if the domain of PRED1 is a subset
1393 of that of PRED2. Returns false if it can not be proved so. */
1394
1395 static bool
1396 is_pred_chain_subset_of (VEC(use_pred_info_t, heap) *pred1,
1397 VEC(use_pred_info_t, heap) *pred2)
1398 {
1399 size_t np1, np2, i1, i2;
1400
1401 np1 = VEC_length (use_pred_info_t, pred1);
1402 np2 = VEC_length (use_pred_info_t, pred2);
1403
1404 for (i2 = 0; i2 < np2; i2++)
1405 {
1406 bool found = false;
1407 use_pred_info_t info2
1408 = VEC_index (use_pred_info_t, pred2, i2);
1409 for (i1 = 0; i1 < np1; i1++)
1410 {
1411 use_pred_info_t info1
1412 = VEC_index (use_pred_info_t, pred1, i1);
1413 if (is_pred_expr_subset_of (info1, info2))
1414 {
1415 found = true;
1416 break;
1417 }
1418 }
1419 if (!found)
1420 return false;
1421 }
1422 return true;
1423 }
1424
1425 /* Returns true if the domain defined by
1426 one pred chain ONE_PRED is a subset of the domain
1427 of *PREDS. It returns false if ONE_PRED's domain is
1428 not a subset of any of the sub-domains of PREDS (
1429 corresponding to each individual chains in it), even
1430 though it may be still be a subset of whole domain
1431 of PREDS which is the union (ORed) of all its subdomains.
1432 In other words, the result is conservative. */
1433
1434 static bool
1435 is_included_in (VEC(use_pred_info_t, heap) *one_pred,
1436 VEC(use_pred_info_t, heap) **preds,
1437 size_t n)
1438 {
1439 size_t i;
1440
1441 for (i = 0; i < n; i++)
1442 {
1443 if (is_pred_chain_subset_of (one_pred, preds[i]))
1444 return true;
1445 }
1446
1447 return false;
1448 }
1449
1450 /* compares two predicate sets PREDS1 and PREDS2 and returns
1451 true if the domain defined by PREDS1 is a superset
1452 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1453 PREDS2 respectively. The implementation chooses not to build
1454 generic trees (and relying on the folding capability of the
1455 compiler), but instead performs brute force comparison of
1456 individual predicate chains (won't be a compile time problem
1457 as the chains are pretty short). When the function returns
1458 false, it does not necessarily mean *PREDS1 is not a superset
1459 of *PREDS2, but mean it may not be so since the analysis can
1460 not prove it. In such cases, false warnings may still be
1461 emitted. */
1462
1463 static bool
1464 is_superset_of (VEC(use_pred_info_t, heap) **preds1,
1465 size_t n1,
1466 VEC(use_pred_info_t, heap) **preds2,
1467 size_t n2)
1468 {
1469 size_t i;
1470 VEC(use_pred_info_t, heap) *one_pred_chain;
1471
1472 for (i = 0; i < n2; i++)
1473 {
1474 one_pred_chain = preds2[i];
1475 if (!is_included_in (one_pred_chain, preds1, n1))
1476 return false;
1477 }
1478
1479 return true;
1480 }
1481
1482 /* Computes the predicates that guard the use and checks
1483 if the incoming paths that have empty (or possibly
1484 empty) defintion can be pruned/filtered. The function returns
1485 true if it can be determined that the use of PHI's def in
1486 USE_STMT is guarded with a predicate set not overlapping with
1487 predicate sets of all runtime paths that do not have a definition.
1488 Returns false if it is not or it can not be determined. USE_BB is
1489 the bb of the use (for phi operand use, the bb is not the bb of
1490 the phi stmt, but the src bb of the operand edge). UNINIT_OPNDS
1491 is a bit vector. If an operand of PHI is uninitialized, the
1492 correponding bit in the vector is 1. VISIED_PHIS is a pointer
1493 set of phis being visted. */
1494
1495 static bool
1496 is_use_properly_guarded (gimple use_stmt,
1497 basic_block use_bb,
1498 gimple phi,
1499 unsigned uninit_opnds,
1500 struct pointer_set_t *visited_phis)
1501 {
1502 basic_block phi_bb;
1503 VEC(use_pred_info_t, heap) **preds = 0;
1504 VEC(use_pred_info_t, heap) **def_preds = 0;
1505 size_t num_preds = 0, num_def_preds = 0;
1506 bool has_valid_preds = false;
1507 bool is_properly_guarded = false;
1508
1509 if (pointer_set_insert (visited_phis, phi))
1510 return false;
1511
1512 phi_bb = gimple_bb (phi);
1513
1514 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
1515 return false;
1516
1517 has_valid_preds = find_predicates (&preds, &num_preds,
1518 phi_bb, use_bb);
1519
1520 if (!has_valid_preds)
1521 {
1522 destroy_predicate_vecs (num_preds, preds);
1523 return false;
1524 }
1525
1526 if (dump_file)
1527 dump_predicates (use_stmt, num_preds, preds,
1528 "Use in stmt ");
1529
1530 has_valid_preds = find_def_preds (&def_preds,
1531 &num_def_preds, phi);
1532
1533 if (has_valid_preds)
1534 {
1535 if (dump_file)
1536 dump_predicates (phi, num_def_preds, def_preds,
1537 "Operand defs of phi ");
1538 is_properly_guarded =
1539 is_superset_of (def_preds, num_def_preds,
1540 preds, num_preds);
1541 }
1542
1543 /* further prune the dead incoming phi edges. */
1544 if (!is_properly_guarded)
1545 is_properly_guarded
1546 = use_pred_not_overlap_with_undef_path_pred (
1547 num_preds, preds, phi, uninit_opnds, visited_phis);
1548
1549 destroy_predicate_vecs (num_preds, preds);
1550 destroy_predicate_vecs (num_def_preds, def_preds);
1551 return is_properly_guarded;
1552 }
1553
1554 /* Searches through all uses of a potentially
1555 uninitialized variable defined by PHI and returns a use
1556 statement if the use is not properly guarded. It returns
1557 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
1558 holding the position(s) of uninit PHI operands. WORKLIST
1559 is the vector of candidate phis that may be updated by this
1560 function. ADDED_TO_WORKLIST is the pointer set tracking
1561 if the new phi is already in the worklist. */
1562
1563 static gimple
1564 find_uninit_use (gimple phi, unsigned uninit_opnds,
1565 VEC(gimple, heap) **worklist,
1566 struct pointer_set_t *added_to_worklist)
1567 {
1568 tree phi_result;
1569 use_operand_p use_p;
1570 gimple use_stmt;
1571 imm_use_iterator iter;
1572
1573 phi_result = gimple_phi_result (phi);
1574
1575 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
1576 {
1577 struct pointer_set_t *visited_phis;
1578 basic_block use_bb;
1579
1580 use_stmt = use_p->loc.stmt;
1581
1582 visited_phis = pointer_set_create ();
1583
1584 use_bb = gimple_bb (use_stmt);
1585 if (gimple_code (use_stmt) == GIMPLE_PHI)
1586 {
1587 unsigned i, n;
1588 n = gimple_phi_num_args (use_stmt);
1589
1590 /* Find the matching phi argument of the use. */
1591 for (i = 0; i < n; ++i)
1592 {
1593 if (gimple_phi_arg_def_ptr (use_stmt, i) == use_p->use)
1594 {
1595 edge e = gimple_phi_arg_edge (use_stmt, i);
1596 use_bb = e->src;
1597 break;
1598 }
1599 }
1600 }
1601
1602 if (is_use_properly_guarded (use_stmt,
1603 use_bb,
1604 phi,
1605 uninit_opnds,
1606 visited_phis))
1607 {
1608 pointer_set_destroy (visited_phis);
1609 continue;
1610 }
1611 pointer_set_destroy (visited_phis);
1612
1613 /* Found one real use, return. */
1614 if (gimple_code (use_stmt) != GIMPLE_PHI)
1615 return use_stmt;
1616
1617 /* Found a phi use that is not guarded,
1618 add the phi to the worklist. */
1619 if (!pointer_set_insert (added_to_worklist,
1620 use_stmt))
1621 {
1622 VEC_safe_push (gimple, heap, *worklist, use_stmt);
1623 pointer_set_insert (possibly_undefined_names,
1624 phi_result);
1625 }
1626 }
1627
1628 return NULL;
1629 }
1630
1631 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
1632 and gives warning if there exists a runtime path from the entry to a
1633 use of the PHI def that does not contain a definition. In other words,
1634 the warning is on the real use. The more dead paths that can be pruned
1635 by the compiler, the fewer false positives the warning is. WORKLIST
1636 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
1637 a pointer set tracking if the new phi is added to the worklist or not. */
1638
1639 static void
1640 warn_uninitialized_phi (gimple phi, VEC(gimple, heap) **worklist,
1641 struct pointer_set_t *added_to_worklist)
1642 {
1643 unsigned uninit_opnds;
1644 gimple uninit_use_stmt = 0;
1645 tree uninit_op;
1646
1647 /* Don't look at memory tags. */
1648 if (!is_gimple_reg (gimple_phi_result (phi)))
1649 return;
1650
1651 uninit_opnds = compute_uninit_opnds_pos (phi);
1652
1653 if (MASK_EMPTY (uninit_opnds))
1654 return;
1655
1656 /* Now check if we have any use of the value without proper guard. */
1657 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
1658 worklist, added_to_worklist);
1659
1660 /* All uses are properly guarded. */
1661 if (!uninit_use_stmt)
1662 return;
1663
1664 uninit_op = gimple_phi_arg_def (phi, MASK_FIRST_SET_BIT (uninit_opnds));
1665 warn_uninit (uninit_op,
1666 "%qD may be used uninitialized in this function",
1667 uninit_use_stmt);
1668
1669 }
1670
1671
1672 /* Entry point to the late uninitialized warning pass. */
1673
1674 static unsigned int
1675 execute_late_warn_uninitialized (void)
1676 {
1677 basic_block bb;
1678 gimple_stmt_iterator gsi;
1679 VEC(gimple, heap) *worklist = 0;
1680 struct pointer_set_t *added_to_worklist;
1681
1682 calculate_dominance_info (CDI_DOMINATORS);
1683 calculate_dominance_info (CDI_POST_DOMINATORS);
1684 /* Re-do the plain uninitialized variable check, as optimization may have
1685 straightened control flow. Do this first so that we don't accidentally
1686 get a "may be" warning when we'd have seen an "is" warning later. */
1687 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
1688
1689 timevar_push (TV_TREE_UNINIT);
1690
1691 possibly_undefined_names = pointer_set_create ();
1692 added_to_worklist = pointer_set_create ();
1693
1694 /* Initialize worklist */
1695 FOR_EACH_BB (bb)
1696 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1697 {
1698 gimple phi = gsi_stmt (gsi);
1699 size_t n, i;
1700
1701 n = gimple_phi_num_args (phi);
1702
1703 /* Don't look at memory tags. */
1704 if (!is_gimple_reg (gimple_phi_result (phi)))
1705 continue;
1706
1707 for (i = 0; i < n; ++i)
1708 {
1709 tree op = gimple_phi_arg_def (phi, i);
1710 if (TREE_CODE (op) == SSA_NAME
1711 && ssa_undefined_value_p (op))
1712 {
1713 VEC_safe_push (gimple, heap, worklist, phi);
1714 pointer_set_insert (added_to_worklist, phi);
1715 break;
1716 }
1717 }
1718 }
1719
1720 while (VEC_length (gimple, worklist) != 0)
1721 {
1722 gimple cur_phi = 0;
1723 cur_phi = VEC_pop (gimple, worklist);
1724 warn_uninitialized_phi (cur_phi, &worklist, added_to_worklist);
1725 }
1726
1727 VEC_free (gimple, heap, worklist);
1728 pointer_set_destroy (added_to_worklist);
1729 pointer_set_destroy (possibly_undefined_names);
1730 possibly_undefined_names = NULL;
1731 free_dominance_info (CDI_POST_DOMINATORS);
1732 timevar_pop (TV_TREE_UNINIT);
1733 return 0;
1734 }
1735
1736 static bool
1737 gate_warn_uninitialized (void)
1738 {
1739 return warn_uninitialized != 0;
1740 }
1741
1742 struct gimple_opt_pass pass_late_warn_uninitialized =
1743 {
1744 {
1745 GIMPLE_PASS,
1746 "uninit", /* name */
1747 gate_warn_uninitialized, /* gate */
1748 execute_late_warn_uninitialized, /* execute */
1749 NULL, /* sub */
1750 NULL, /* next */
1751 0, /* static_pass_number */
1752 TV_NONE, /* tv_id */
1753 PROP_ssa, /* properties_required */
1754 0, /* properties_provided */
1755 0, /* properties_destroyed */
1756 0, /* todo_flags_start */
1757 0 /* todo_flags_finish */
1758 }
1759 };