diff gcc/ada/exp_ch6.adb @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/ada/exp_ch6.adb	Fri Oct 27 22:46:09 2017 +0900
@@ -0,0 +1,9380 @@
+------------------------------------------------------------------------------
+--                                                                          --
+--                         GNAT COMPILER COMPONENTS                         --
+--                                                                          --
+--                              E X P _ C H 6                               --
+--                                                                          --
+--                                 B o d y                                  --
+--                                                                          --
+--          Copyright (C) 1992-2017, Free Software Foundation, Inc.         --
+--                                                                          --
+-- GNAT is free software;  you can  redistribute it  and/or modify it under --
+-- terms of the  GNU General Public License as published  by the Free Soft- --
+-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
+-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
+-- for  more details.  You should have  received  a copy of the GNU General --
+-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license.          --
+--                                                                          --
+-- GNAT was originally developed  by the GNAT team at  New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc.      --
+--                                                                          --
+------------------------------------------------------------------------------
+
+with Atree;     use Atree;
+with Checks;    use Checks;
+with Contracts; use Contracts;
+with Debug;     use Debug;
+with Einfo;     use Einfo;
+with Errout;    use Errout;
+with Elists;    use Elists;
+with Expander;  use Expander;
+with Exp_Aggr;  use Exp_Aggr;
+with Exp_Atag;  use Exp_Atag;
+with Exp_Ch2;   use Exp_Ch2;
+with Exp_Ch3;   use Exp_Ch3;
+with Exp_Ch7;   use Exp_Ch7;
+with Exp_Ch9;   use Exp_Ch9;
+with Exp_Dbug;  use Exp_Dbug;
+with Exp_Disp;  use Exp_Disp;
+with Exp_Dist;  use Exp_Dist;
+with Exp_Intr;  use Exp_Intr;
+with Exp_Pakd;  use Exp_Pakd;
+with Exp_Tss;   use Exp_Tss;
+with Exp_Util;  use Exp_Util;
+with Freeze;    use Freeze;
+with Inline;    use Inline;
+with Itypes;    use Itypes;
+with Lib;       use Lib;
+with Namet;     use Namet;
+with Nlists;    use Nlists;
+with Nmake;     use Nmake;
+with Opt;       use Opt;
+with Restrict;  use Restrict;
+with Rident;    use Rident;
+with Rtsfind;   use Rtsfind;
+with Sem;       use Sem;
+with Sem_Aux;   use Sem_Aux;
+with Sem_Ch6;   use Sem_Ch6;
+with Sem_Ch8;   use Sem_Ch8;
+with Sem_Ch12;  use Sem_Ch12;
+with Sem_Ch13;  use Sem_Ch13;
+with Sem_Dim;   use Sem_Dim;
+with Sem_Disp;  use Sem_Disp;
+with Sem_Dist;  use Sem_Dist;
+with Sem_Eval;  use Sem_Eval;
+with Sem_Mech;  use Sem_Mech;
+with Sem_Res;   use Sem_Res;
+with Sem_SCIL;  use Sem_SCIL;
+with Sem_Util;  use Sem_Util;
+with Sinfo;     use Sinfo;
+with Snames;    use Snames;
+with Stand;     use Stand;
+with Tbuild;    use Tbuild;
+with Uintp;     use Uintp;
+with Validsw;   use Validsw;
+
+package body Exp_Ch6 is
+
+   -----------------------
+   -- Local Subprograms --
+   -----------------------
+
+   procedure Add_Access_Actual_To_Build_In_Place_Call
+     (Function_Call : Node_Id;
+      Function_Id   : Entity_Id;
+      Return_Object : Node_Id;
+      Is_Access     : Boolean := False);
+   --  Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
+   --  object name given by Return_Object and add the attribute to the end of
+   --  the actual parameter list associated with the build-in-place function
+   --  call denoted by Function_Call. However, if Is_Access is True, then
+   --  Return_Object is already an access expression, in which case it's passed
+   --  along directly to the build-in-place function. Finally, if Return_Object
+   --  is empty, then pass a null literal as the actual.
+
+   procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
+     (Function_Call  : Node_Id;
+      Function_Id    : Entity_Id;
+      Alloc_Form     : BIP_Allocation_Form := Unspecified;
+      Alloc_Form_Exp : Node_Id             := Empty;
+      Pool_Actual    : Node_Id             := Make_Null (No_Location));
+   --  Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
+   --  function call that returns a caller-unknown-size result (BIP_Alloc_Form
+   --  and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
+   --  otherwise pass a literal corresponding to the Alloc_Form parameter
+   --  (which must not be Unspecified in that case). Pool_Actual is the
+   --  parameter to pass to BIP_Storage_Pool.
+
+   procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
+     (Func_Call  : Node_Id;
+      Func_Id    : Entity_Id;
+      Ptr_Typ    : Entity_Id := Empty;
+      Master_Exp : Node_Id   := Empty);
+   --  Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
+   --  finalization actions, add an actual parameter which is a pointer to the
+   --  finalization master of the caller. If Master_Exp is not Empty, then that
+   --  will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
+   --  will result in an automatic "null" value for the actual.
+
+   procedure Add_Task_Actuals_To_Build_In_Place_Call
+     (Function_Call : Node_Id;
+      Function_Id   : Entity_Id;
+      Master_Actual : Node_Id;
+      Chain         : Node_Id := Empty);
+   --  Ada 2005 (AI-318-02): For a build-in-place call, if the result type
+   --  contains tasks, add two actual parameters: the master, and a pointer to
+   --  the caller's activation chain. Master_Actual is the actual parameter
+   --  expression to pass for the master. In most cases, this is the current
+   --  master (_master). The two exceptions are: If the function call is the
+   --  initialization expression for an allocator, we pass the master of the
+   --  access type. If the function call is the initialization expression for a
+   --  return object, we pass along the master passed in by the caller. In most
+   --  contexts, the activation chain to pass is the local one, which is
+   --  indicated by No (Chain). However, in an allocator, the caller passes in
+   --  the activation Chain. Note: Master_Actual can be Empty, but only if
+   --  there are no tasks.
+
+   function Caller_Known_Size
+     (Func_Call   : Node_Id;
+      Result_Subt : Entity_Id) return Boolean;
+   --  True if result subtype is definite, or has a size that does not require
+   --  secondary stack usage (i.e. no variant part or components whose type
+   --  depends on discriminants). In particular, untagged types with only
+   --  access discriminants do not require secondary stack use. Note we must
+   --  always use the secondary stack for dispatching-on-result calls.
+
+   procedure Check_Overriding_Operation (Subp : Entity_Id);
+   --  Subp is a dispatching operation. Check whether it may override an
+   --  inherited private operation, in which case its DT entry is that of
+   --  the hidden operation, not the one it may have received earlier.
+   --  This must be done before emitting the code to set the corresponding
+   --  DT to the address of the subprogram. The actual placement of Subp in
+   --  the proper place in the list of primitive operations is done in
+   --  Declare_Inherited_Private_Subprograms, which also has to deal with
+   --  implicit operations. This duplication is unavoidable for now???
+
+   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
+   --  This procedure is called only if the subprogram body N, whose spec
+   --  has the given entity Spec, contains a parameterless recursive call.
+   --  It attempts to generate runtime code to detect if this a case of
+   --  infinite recursion.
+   --
+   --  The body is scanned to determine dependencies. If the only external
+   --  dependencies are on a small set of scalar variables, then the values
+   --  of these variables are captured on entry to the subprogram, and if
+   --  the values are not changed for the call, we know immediately that
+   --  we have an infinite recursion.
+
+   procedure Expand_Actuals
+     (N         : Node_Id;
+      Subp      : Entity_Id;
+      Post_Call : out List_Id);
+   --  Return a list of actions to take place after the call in Post_Call. The
+   --  call will later be rewritten as an Expression_With_Actions, with the
+   --  Post_Call actions inserted, and the call inside.
+   --
+   --  For each actual of an in-out or out parameter which is a numeric (view)
+   --  conversion of the form T (A), where A denotes a variable, we insert the
+   --  declaration:
+   --
+   --    Temp : T[ := T (A)];
+   --
+   --  prior to the call. Then we replace the actual with a reference to Temp,
+   --  and append the assignment:
+   --
+   --    A := TypeA (Temp);
+   --
+   --  after the call. Here TypeA is the actual type of variable A. For out
+   --  parameters, the initial declaration has no expression. If A is not an
+   --  entity name, we generate instead:
+   --
+   --    Var  : TypeA renames A;
+   --    Temp : T := Var;       --  omitting expression for out parameter.
+   --    ...
+   --    Var := TypeA (Temp);
+   --
+   --  For other in-out parameters, we emit the required constraint checks
+   --  before and/or after the call.
+   --
+   --  For all parameter modes, actuals that denote components and slices of
+   --  packed arrays are expanded into suitable temporaries.
+   --
+   --  For non-scalar objects that are possibly unaligned, add call by copy
+   --  code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
+   --
+   --  For OUT and IN OUT parameters, add predicate checks after the call
+   --  based on the predicates of the actual type.
+
+   procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id);
+   --  Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
+
+   procedure Expand_Ctrl_Function_Call (N : Node_Id);
+   --  N is a function call which returns a controlled object. Transform the
+   --  call into a temporary which retrieves the returned object from the
+   --  secondary stack using 'reference.
+
+   procedure Expand_Non_Function_Return (N : Node_Id);
+   --  Expand a simple return statement found in a procedure body, entry body,
+   --  accept statement, or an extended return statement. Note that all non-
+   --  function returns are simple return statements.
+
+   function Expand_Protected_Object_Reference
+     (N    : Node_Id;
+      Scop : Entity_Id) return Node_Id;
+
+   procedure Expand_Protected_Subprogram_Call
+     (N    : Node_Id;
+      Subp : Entity_Id;
+      Scop : Entity_Id);
+   --  A call to a protected subprogram within the protected object may appear
+   --  as a regular call. The list of actuals must be expanded to contain a
+   --  reference to the object itself, and the call becomes a call to the
+   --  corresponding protected subprogram.
+
+   procedure Expand_Simple_Function_Return (N : Node_Id);
+   --  Expand simple return from function. In the case where we are returning
+   --  from a function body this is called by Expand_N_Simple_Return_Statement.
+
+   function Has_Unconstrained_Access_Discriminants
+     (Subtyp : Entity_Id) return Boolean;
+   --  Returns True if the given subtype is unconstrained and has one or more
+   --  access discriminants.
+
+   procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id);
+   --  Insert the Post_Call list previously produced by routine Expand_Actuals
+   --  or Expand_Call_Helper into the tree.
+
+   procedure Replace_Renaming_Declaration_Id
+      (New_Decl  : Node_Id;
+       Orig_Decl : Node_Id);
+   --  Replace the internal identifier of the new renaming declaration New_Decl
+   --  with the identifier of its original declaration Orig_Decl exchanging the
+   --  entities containing their defining identifiers to ensure the correct
+   --  replacement of the object declaration by the object renaming declaration
+   --  to avoid homograph conflicts (since the object declaration's defining
+   --  identifier was already entered in the current scope). The Next_Entity
+   --  links of the two entities are also swapped since the entities are part
+   --  of the return scope's entity list and the list structure would otherwise
+   --  be corrupted. The homonym chain is preserved as well.
+
+   procedure Rewrite_Function_Call_For_C (N : Node_Id);
+   --  When generating C code, replace a call to a function that returns an
+   --  array into the generated procedure with an additional out parameter.
+
+   procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
+   --  N is a return statement for a function that returns its result on the
+   --  secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
+   --  function and all blocks and loops that the return statement is jumping
+   --  out of. This ensures that the secondary stack is not released; otherwise
+   --  the function result would be reclaimed before returning to the caller.
+
+   ----------------------------------------------
+   -- Add_Access_Actual_To_Build_In_Place_Call --
+   ----------------------------------------------
+
+   procedure Add_Access_Actual_To_Build_In_Place_Call
+     (Function_Call : Node_Id;
+      Function_Id   : Entity_Id;
+      Return_Object : Node_Id;
+      Is_Access     : Boolean := False)
+   is
+      Loc            : constant Source_Ptr := Sloc (Function_Call);
+      Obj_Address    : Node_Id;
+      Obj_Acc_Formal : Entity_Id;
+
+   begin
+      --  Locate the implicit access parameter in the called function
+
+      Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
+
+      --  If no return object is provided, then pass null
+
+      if not Present (Return_Object) then
+         Obj_Address := Make_Null (Loc);
+         Set_Parent (Obj_Address, Function_Call);
+
+      --  If Return_Object is already an expression of an access type, then use
+      --  it directly, since it must be an access value denoting the return
+      --  object, and couldn't possibly be the return object itself.
+
+      elsif Is_Access then
+         Obj_Address := Return_Object;
+         Set_Parent (Obj_Address, Function_Call);
+
+      --  Apply Unrestricted_Access to caller's return object
+
+      else
+         Obj_Address :=
+            Make_Attribute_Reference (Loc,
+              Prefix         => Return_Object,
+              Attribute_Name => Name_Unrestricted_Access);
+
+         Set_Parent (Return_Object, Obj_Address);
+         Set_Parent (Obj_Address, Function_Call);
+      end if;
+
+      Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
+
+      --  Build the parameter association for the new actual and add it to the
+      --  end of the function's actuals.
+
+      Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
+   end Add_Access_Actual_To_Build_In_Place_Call;
+
+   ------------------------------------------------------
+   -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
+   ------------------------------------------------------
+
+   procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
+     (Function_Call  : Node_Id;
+      Function_Id    : Entity_Id;
+      Alloc_Form     : BIP_Allocation_Form := Unspecified;
+      Alloc_Form_Exp : Node_Id             := Empty;
+      Pool_Actual    : Node_Id             := Make_Null (No_Location))
+   is
+      Loc               : constant Source_Ptr := Sloc (Function_Call);
+      Alloc_Form_Actual : Node_Id;
+      Alloc_Form_Formal : Node_Id;
+      Pool_Formal       : Node_Id;
+
+   begin
+      --  The allocation form generally doesn't need to be passed in the case
+      --  of a constrained result subtype, since normally the caller performs
+      --  the allocation in that case. However this formal is still needed in
+      --  the case where the function has a tagged result, because generally
+      --  such functions can be called in a dispatching context and such calls
+      --  must be handled like calls to class-wide functions.
+
+      if Is_Constrained (Underlying_Type (Etype (Function_Id)))
+        and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
+      then
+         return;
+      end if;
+
+      --  Locate the implicit allocation form parameter in the called function.
+      --  Maybe it would be better for each implicit formal of a build-in-place
+      --  function to have a flag or a Uint attribute to identify it. ???
+
+      Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
+
+      if Present (Alloc_Form_Exp) then
+         pragma Assert (Alloc_Form = Unspecified);
+
+         Alloc_Form_Actual := Alloc_Form_Exp;
+
+      else
+         pragma Assert (Alloc_Form /= Unspecified);
+
+         Alloc_Form_Actual :=
+           Make_Integer_Literal (Loc,
+             Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
+      end if;
+
+      Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
+
+      --  Build the parameter association for the new actual and add it to the
+      --  end of the function's actuals.
+
+      Add_Extra_Actual_To_Call
+        (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
+
+      --  Pass the Storage_Pool parameter. This parameter is omitted on
+      --  ZFP as those targets do not support pools.
+
+      if RTE_Available (RE_Root_Storage_Pool_Ptr) then
+         Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
+         Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
+         Add_Extra_Actual_To_Call
+           (Function_Call, Pool_Formal, Pool_Actual);
+      end if;
+   end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
+
+   -----------------------------------------------------------
+   -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
+   -----------------------------------------------------------
+
+   procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
+     (Func_Call  : Node_Id;
+      Func_Id    : Entity_Id;
+      Ptr_Typ    : Entity_Id := Empty;
+      Master_Exp : Node_Id   := Empty)
+   is
+   begin
+      if not Needs_BIP_Finalization_Master (Func_Id) then
+         return;
+      end if;
+
+      declare
+         Formal : constant Entity_Id :=
+                    Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
+         Loc    : constant Source_Ptr := Sloc (Func_Call);
+
+         Actual    : Node_Id;
+         Desig_Typ : Entity_Id;
+
+      begin
+         --  If there is a finalization master actual, such as the implicit
+         --  finalization master of an enclosing build-in-place function,
+         --  then this must be added as an extra actual of the call.
+
+         if Present (Master_Exp) then
+            Actual := Master_Exp;
+
+         --  Case where the context does not require an actual master
+
+         elsif No (Ptr_Typ) then
+            Actual := Make_Null (Loc);
+
+         else
+            Desig_Typ := Directly_Designated_Type (Ptr_Typ);
+
+            --  Check for a library-level access type whose designated type has
+            --  suppressed finalization or the access type is subject to pragma
+            --  No_Heap_Finalization. Such an access type lacks a master. Pass
+            --  a null actual to callee in order to signal a missing master.
+
+            if Is_Library_Level_Entity (Ptr_Typ)
+              and then (Finalize_Storage_Only (Desig_Typ)
+                         or else No_Heap_Finalization (Ptr_Typ))
+            then
+               Actual := Make_Null (Loc);
+
+            --  Types in need of finalization actions
+
+            elsif Needs_Finalization (Desig_Typ) then
+
+               --  The general mechanism of creating finalization masters for
+               --  anonymous access types is disabled by default, otherwise
+               --  finalization masters will pop all over the place. Such types
+               --  use context-specific masters.
+
+               if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
+                 and then No (Finalization_Master (Ptr_Typ))
+               then
+                  Build_Anonymous_Master (Ptr_Typ);
+               end if;
+
+               --  Access-to-controlled types should always have a master
+
+               pragma Assert (Present (Finalization_Master (Ptr_Typ)));
+
+               Actual :=
+                 Make_Attribute_Reference (Loc,
+                   Prefix =>
+                     New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
+                   Attribute_Name => Name_Unrestricted_Access);
+
+            --  Tagged types
+
+            else
+               Actual := Make_Null (Loc);
+            end if;
+         end if;
+
+         Analyze_And_Resolve (Actual, Etype (Formal));
+
+         --  Build the parameter association for the new actual and add it to
+         --  the end of the function's actuals.
+
+         Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
+      end;
+   end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
+
+   ------------------------------
+   -- Add_Extra_Actual_To_Call --
+   ------------------------------
+
+   procedure Add_Extra_Actual_To_Call
+     (Subprogram_Call : Node_Id;
+      Extra_Formal    : Entity_Id;
+      Extra_Actual    : Node_Id)
+   is
+      Loc         : constant Source_Ptr := Sloc (Subprogram_Call);
+      Param_Assoc : Node_Id;
+
+   begin
+      Param_Assoc :=
+        Make_Parameter_Association (Loc,
+          Selector_Name             => New_Occurrence_Of (Extra_Formal, Loc),
+          Explicit_Actual_Parameter => Extra_Actual);
+
+      Set_Parent (Param_Assoc, Subprogram_Call);
+      Set_Parent (Extra_Actual, Param_Assoc);
+
+      if Present (Parameter_Associations (Subprogram_Call)) then
+         if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
+              N_Parameter_Association
+         then
+
+            --  Find last named actual, and append
+
+            declare
+               L : Node_Id;
+            begin
+               L := First_Actual (Subprogram_Call);
+               while Present (L) loop
+                  if No (Next_Actual (L)) then
+                     Set_Next_Named_Actual (Parent (L), Extra_Actual);
+                     exit;
+                  end if;
+                  Next_Actual (L);
+               end loop;
+            end;
+
+         else
+            Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
+         end if;
+
+         Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
+
+      else
+         Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
+         Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
+      end if;
+   end Add_Extra_Actual_To_Call;
+
+   ---------------------------------------------
+   -- Add_Task_Actuals_To_Build_In_Place_Call --
+   ---------------------------------------------
+
+   procedure Add_Task_Actuals_To_Build_In_Place_Call
+     (Function_Call : Node_Id;
+      Function_Id   : Entity_Id;
+      Master_Actual : Node_Id;
+      Chain         : Node_Id := Empty)
+   is
+      Loc           : constant Source_Ptr := Sloc (Function_Call);
+      Result_Subt   : constant Entity_Id :=
+                        Available_View (Etype (Function_Id));
+      Actual        : Node_Id;
+      Chain_Actual  : Node_Id;
+      Chain_Formal  : Node_Id;
+      Master_Formal : Node_Id;
+
+   begin
+      --  No such extra parameters are needed if there are no tasks
+
+      if not Has_Task (Result_Subt) then
+         return;
+      end if;
+
+      Actual := Master_Actual;
+
+      --  Use a dummy _master actual in case of No_Task_Hierarchy
+
+      if Restriction_Active (No_Task_Hierarchy) then
+         Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
+
+      --  In the case where we use the master associated with an access type,
+      --  the actual is an entity and requires an explicit reference.
+
+      elsif Nkind (Actual) = N_Defining_Identifier then
+         Actual := New_Occurrence_Of (Actual, Loc);
+      end if;
+
+      --  Locate the implicit master parameter in the called function
+
+      Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
+      Analyze_And_Resolve (Actual, Etype (Master_Formal));
+
+      --  Build the parameter association for the new actual and add it to the
+      --  end of the function's actuals.
+
+      Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
+
+      --  Locate the implicit activation chain parameter in the called function
+
+      Chain_Formal :=
+        Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
+
+      --  Create the actual which is a pointer to the current activation chain
+
+      if No (Chain) then
+         Chain_Actual :=
+           Make_Attribute_Reference (Loc,
+             Prefix         => Make_Identifier (Loc, Name_uChain),
+             Attribute_Name => Name_Unrestricted_Access);
+
+      --  Allocator case; make a reference to the Chain passed in by the caller
+
+      else
+         Chain_Actual :=
+           Make_Attribute_Reference (Loc,
+             Prefix         => New_Occurrence_Of (Chain, Loc),
+             Attribute_Name => Name_Unrestricted_Access);
+      end if;
+
+      Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
+
+      --  Build the parameter association for the new actual and add it to the
+      --  end of the function's actuals.
+
+      Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
+   end Add_Task_Actuals_To_Build_In_Place_Call;
+
+   -----------------------
+   -- BIP_Formal_Suffix --
+   -----------------------
+
+   function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
+   begin
+      case Kind is
+         when BIP_Alloc_Form =>
+            return "BIPalloc";
+
+         when BIP_Storage_Pool =>
+            return "BIPstoragepool";
+
+         when BIP_Finalization_Master =>
+            return "BIPfinalizationmaster";
+
+         when BIP_Task_Master =>
+            return "BIPtaskmaster";
+
+         when BIP_Activation_Chain =>
+            return "BIPactivationchain";
+
+         when BIP_Object_Access =>
+            return "BIPaccess";
+      end case;
+   end BIP_Formal_Suffix;
+
+   ---------------------------
+   -- Build_In_Place_Formal --
+   ---------------------------
+
+   function Build_In_Place_Formal
+     (Func : Entity_Id;
+      Kind : BIP_Formal_Kind) return Entity_Id
+   is
+      Formal_Name  : constant Name_Id :=
+                       New_External_Name
+                         (Chars (Func), BIP_Formal_Suffix (Kind));
+      Extra_Formal : Entity_Id := Extra_Formals (Func);
+
+   begin
+      --  Maybe it would be better for each implicit formal of a build-in-place
+      --  function to have a flag or a Uint attribute to identify it. ???
+
+      --  The return type in the function declaration may have been a limited
+      --  view, and the extra formals for the function were not generated at
+      --  that point. At the point of call the full view must be available and
+      --  the extra formals can be created.
+
+      if No (Extra_Formal) then
+         Create_Extra_Formals (Func);
+         Extra_Formal := Extra_Formals (Func);
+      end if;
+
+      loop
+         pragma Assert (Present (Extra_Formal));
+         exit when Chars (Extra_Formal) = Formal_Name;
+
+         Next_Formal_With_Extras (Extra_Formal);
+      end loop;
+
+      return Extra_Formal;
+   end Build_In_Place_Formal;
+
+   -------------------------------
+   -- Build_Procedure_Body_Form --
+   -------------------------------
+
+   function Build_Procedure_Body_Form
+     (Func_Id   : Entity_Id;
+      Func_Body : Node_Id) return Node_Id
+   is
+      Loc : constant Source_Ptr := Sloc (Func_Body);
+
+      Proc_Decl : constant Node_Id   :=
+                    Next (Unit_Declaration_Node (Func_Id));
+      --  It is assumed that the next node following the declaration of the
+      --  corresponding subprogram spec is the declaration of the procedure
+      --  form.
+
+      Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
+
+      procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
+      --  Replace each return statement found in the list Stmts with an
+      --  assignment of the return expression to parameter Param_Id.
+
+      ---------------------
+      -- Replace_Returns --
+      ---------------------
+
+      procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
+         Stmt : Node_Id;
+
+      begin
+         Stmt := First (Stmts);
+         while Present (Stmt) loop
+            if Nkind (Stmt) = N_Block_Statement then
+               Replace_Returns (Param_Id,
+                 Statements (Handled_Statement_Sequence (Stmt)));
+
+            elsif Nkind (Stmt) = N_Case_Statement then
+               declare
+                  Alt : Node_Id;
+               begin
+                  Alt := First (Alternatives (Stmt));
+                  while Present (Alt) loop
+                     Replace_Returns (Param_Id, Statements (Alt));
+                     Next (Alt);
+                  end loop;
+               end;
+
+            elsif Nkind (Stmt) = N_Extended_Return_Statement then
+               declare
+                  Ret_Obj : constant Entity_Id :=
+                              Defining_Entity
+                                (First (Return_Object_Declarations (Stmt)));
+                  Assign  : constant Node_Id :=
+                              Make_Assignment_Statement (Sloc (Stmt),
+                                Name       =>
+                                  New_Occurrence_Of (Param_Id, Loc),
+                                Expression =>
+                                  New_Occurrence_Of (Ret_Obj, Sloc (Stmt)));
+                  Stmts   : List_Id;
+
+               begin
+                  --  The extended return may just contain the declaration
+
+                  if Present (Handled_Statement_Sequence (Stmt)) then
+                     Stmts := Statements (Handled_Statement_Sequence (Stmt));
+                  else
+                     Stmts := New_List;
+                  end if;
+
+                  Set_Assignment_OK (Name (Assign));
+
+                  Rewrite (Stmt,
+                    Make_Block_Statement (Sloc (Stmt),
+                      Declarations               =>
+                        Return_Object_Declarations (Stmt),
+                      Handled_Statement_Sequence =>
+                        Make_Handled_Sequence_Of_Statements (Loc,
+                          Statements => Stmts)));
+
+                  Replace_Returns (Param_Id, Stmts);
+
+                  Append_To (Stmts, Assign);
+                  Append_To (Stmts, Make_Simple_Return_Statement (Loc));
+               end;
+
+            elsif Nkind (Stmt) = N_If_Statement then
+               Replace_Returns (Param_Id, Then_Statements (Stmt));
+               Replace_Returns (Param_Id, Else_Statements (Stmt));
+
+               declare
+                  Part : Node_Id;
+               begin
+                  Part := First (Elsif_Parts (Stmt));
+                  while Present (Part) loop
+                     Replace_Returns (Param_Id, Then_Statements (Part));
+                     Next (Part);
+                  end loop;
+               end;
+
+            elsif Nkind (Stmt) = N_Loop_Statement then
+               Replace_Returns (Param_Id, Statements (Stmt));
+
+            elsif Nkind (Stmt) = N_Simple_Return_Statement then
+
+               --  Generate:
+               --    Param := Expr;
+               --    return;
+
+               Rewrite (Stmt,
+                 Make_Assignment_Statement (Sloc (Stmt),
+                   Name       => New_Occurrence_Of (Param_Id, Loc),
+                   Expression => Relocate_Node (Expression (Stmt))));
+
+               Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
+
+               --  Skip the added return
+
+               Next (Stmt);
+            end if;
+
+            Next (Stmt);
+         end loop;
+      end Replace_Returns;
+
+      --  Local variables
+
+      Stmts    : List_Id;
+      New_Body : Node_Id;
+
+   --  Start of processing for Build_Procedure_Body_Form
+
+   begin
+      --  This routine replaces the original function body:
+
+      --    function F (...) return Array_Typ is
+      --    begin
+      --       ...
+      --       return Something;
+      --    end F;
+
+      --    with the following:
+
+      --    procedure P (..., Result : out Array_Typ) is
+      --    begin
+      --       ...
+      --       Result := Something;
+      --    end P;
+
+      Stmts :=
+        Statements (Handled_Statement_Sequence (Func_Body));
+      Replace_Returns (Last_Entity (Proc_Id), Stmts);
+
+      New_Body :=
+        Make_Subprogram_Body (Loc,
+          Specification              =>
+            Copy_Subprogram_Spec (Specification (Proc_Decl)),
+          Declarations               => Declarations (Func_Body),
+          Handled_Statement_Sequence =>
+            Make_Handled_Sequence_Of_Statements (Loc,
+              Statements => Stmts));
+
+      --  If the function is a generic instance, so is the new procedure.
+      --  Set flag accordingly so that the proper renaming declarations are
+      --  generated.
+
+      Set_Is_Generic_Instance (Proc_Id, Is_Generic_Instance (Func_Id));
+      return New_Body;
+   end Build_Procedure_Body_Form;
+
+   -----------------------
+   -- Caller_Known_Size --
+   -----------------------
+
+   function Caller_Known_Size
+     (Func_Call   : Node_Id;
+      Result_Subt : Entity_Id) return Boolean
+   is
+   begin
+      return
+          (Is_Definite_Subtype (Underlying_Type (Result_Subt))
+            and then No (Controlling_Argument (Func_Call)))
+        or else not Requires_Transient_Scope (Underlying_Type (Result_Subt));
+   end Caller_Known_Size;
+
+   --------------------------------
+   -- Check_Overriding_Operation --
+   --------------------------------
+
+   procedure Check_Overriding_Operation (Subp : Entity_Id) is
+      Typ     : constant Entity_Id := Find_Dispatching_Type (Subp);
+      Op_List : constant Elist_Id  := Primitive_Operations (Typ);
+      Op_Elmt : Elmt_Id;
+      Prim_Op : Entity_Id;
+      Par_Op  : Entity_Id;
+
+   begin
+      if Is_Derived_Type (Typ)
+        and then not Is_Private_Type (Typ)
+        and then In_Open_Scopes (Scope (Etype (Typ)))
+        and then Is_Base_Type (Typ)
+      then
+         --  Subp overrides an inherited private operation if there is an
+         --  inherited operation with a different name than Subp (see
+         --  Derive_Subprogram) whose Alias is a hidden subprogram with the
+         --  same name as Subp.
+
+         Op_Elmt := First_Elmt (Op_List);
+         while Present (Op_Elmt) loop
+            Prim_Op := Node (Op_Elmt);
+            Par_Op  := Alias (Prim_Op);
+
+            if Present (Par_Op)
+              and then not Comes_From_Source (Prim_Op)
+              and then Chars (Prim_Op) /= Chars (Par_Op)
+              and then Chars (Par_Op) = Chars (Subp)
+              and then Is_Hidden (Par_Op)
+              and then Type_Conformant (Prim_Op, Subp)
+            then
+               Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
+            end if;
+
+            Next_Elmt (Op_Elmt);
+         end loop;
+      end if;
+   end Check_Overriding_Operation;
+
+   -------------------------------
+   -- Detect_Infinite_Recursion --
+   -------------------------------
+
+   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
+      Loc : constant Source_Ptr := Sloc (N);
+
+      Var_List : constant Elist_Id := New_Elmt_List;
+      --  List of globals referenced by body of procedure
+
+      Call_List : constant Elist_Id := New_Elmt_List;
+      --  List of recursive calls in body of procedure
+
+      Shad_List : constant Elist_Id := New_Elmt_List;
+      --  List of entity id's for entities created to capture the value of
+      --  referenced globals on entry to the procedure.
+
+      Scop : constant Uint := Scope_Depth (Spec);
+      --  This is used to record the scope depth of the current procedure, so
+      --  that we can identify global references.
+
+      Max_Vars : constant := 4;
+      --  Do not test more than four global variables
+
+      Count_Vars : Natural := 0;
+      --  Count variables found so far
+
+      Var  : Entity_Id;
+      Elm  : Elmt_Id;
+      Ent  : Entity_Id;
+      Call : Elmt_Id;
+      Decl : Node_Id;
+      Test : Node_Id;
+      Elm1 : Elmt_Id;
+      Elm2 : Elmt_Id;
+      Last : Node_Id;
+
+      function Process (Nod : Node_Id) return Traverse_Result;
+      --  Function to traverse the subprogram body (using Traverse_Func)
+
+      -------------
+      -- Process --
+      -------------
+
+      function Process (Nod : Node_Id) return Traverse_Result is
+      begin
+         --  Procedure call
+
+         if Nkind (Nod) = N_Procedure_Call_Statement then
+
+            --  Case of one of the detected recursive calls
+
+            if Is_Entity_Name (Name (Nod))
+              and then Has_Recursive_Call (Entity (Name (Nod)))
+              and then Entity (Name (Nod)) = Spec
+            then
+               Append_Elmt (Nod, Call_List);
+               return Skip;
+
+            --  Any other procedure call may have side effects
+
+            else
+               return Abandon;
+            end if;
+
+         --  A call to a pure function can always be ignored
+
+         elsif Nkind (Nod) = N_Function_Call
+           and then Is_Entity_Name (Name (Nod))
+           and then Is_Pure (Entity (Name (Nod)))
+         then
+            return Skip;
+
+         --  Case of an identifier reference
+
+         elsif Nkind (Nod) = N_Identifier then
+            Ent := Entity (Nod);
+
+            --  If no entity, then ignore the reference
+
+            --  Not clear why this can happen. To investigate, remove this
+            --  test and look at the crash that occurs here in 3401-004 ???
+
+            if No (Ent) then
+               return Skip;
+
+            --  Ignore entities with no Scope, again not clear how this
+            --  can happen, to investigate, look at 4108-008 ???
+
+            elsif No (Scope (Ent)) then
+               return Skip;
+
+            --  Ignore the reference if not to a more global object
+
+            elsif Scope_Depth (Scope (Ent)) >= Scop then
+               return Skip;
+
+            --  References to types, exceptions and constants are always OK
+
+            elsif Is_Type (Ent)
+              or else Ekind (Ent) = E_Exception
+              or else Ekind (Ent) = E_Constant
+            then
+               return Skip;
+
+            --  If other than a non-volatile scalar variable, we have some
+            --  kind of global reference (e.g. to a function) that we cannot
+            --  deal with so we forget the attempt.
+
+            elsif Ekind (Ent) /= E_Variable
+              or else not Is_Scalar_Type (Etype (Ent))
+              or else Treat_As_Volatile (Ent)
+            then
+               return Abandon;
+
+            --  Otherwise we have a reference to a global scalar
+
+            else
+               --  Loop through global entities already detected
+
+               Elm := First_Elmt (Var_List);
+               loop
+                  --  If not detected before, record this new global reference
+
+                  if No (Elm) then
+                     Count_Vars := Count_Vars + 1;
+
+                     if Count_Vars <= Max_Vars then
+                        Append_Elmt (Entity (Nod), Var_List);
+                     else
+                        return Abandon;
+                     end if;
+
+                     exit;
+
+                  --  If recorded before, ignore
+
+                  elsif Node (Elm) = Entity (Nod) then
+                     return Skip;
+
+                  --  Otherwise keep looking
+
+                  else
+                     Next_Elmt (Elm);
+                  end if;
+               end loop;
+
+               return Skip;
+            end if;
+
+         --  For all other node kinds, recursively visit syntactic children
+
+         else
+            return OK;
+         end if;
+      end Process;
+
+      function Traverse_Body is new Traverse_Func (Process);
+
+   --  Start of processing for Detect_Infinite_Recursion
+
+   begin
+      --  Do not attempt detection in No_Implicit_Conditional mode, since we
+      --  won't be able to generate the code to handle the recursion in any
+      --  case.
+
+      if Restriction_Active (No_Implicit_Conditionals) then
+         return;
+      end if;
+
+      --  Otherwise do traversal and quit if we get abandon signal
+
+      if Traverse_Body (N) = Abandon then
+         return;
+
+      --  We must have a call, since Has_Recursive_Call was set. If not just
+      --  ignore (this is only an error check, so if we have a funny situation,
+      --  due to bugs or errors, we do not want to bomb).
+
+      elsif Is_Empty_Elmt_List (Call_List) then
+         return;
+      end if;
+
+      --  Here is the case where we detect recursion at compile time
+
+      --  Push our current scope for analyzing the declarations and code that
+      --  we will insert for the checking.
+
+      Push_Scope (Spec);
+
+      --  This loop builds temporary variables for each of the referenced
+      --  globals, so that at the end of the loop the list Shad_List contains
+      --  these temporaries in one-to-one correspondence with the elements in
+      --  Var_List.
+
+      Last := Empty;
+      Elm := First_Elmt (Var_List);
+      while Present (Elm) loop
+         Var := Node (Elm);
+         Ent := Make_Temporary (Loc, 'S');
+         Append_Elmt (Ent, Shad_List);
+
+         --  Insert a declaration for this temporary at the start of the
+         --  declarations for the procedure. The temporaries are declared as
+         --  constant objects initialized to the current values of the
+         --  corresponding temporaries.
+
+         Decl :=
+           Make_Object_Declaration (Loc,
+             Defining_Identifier => Ent,
+             Object_Definition   => New_Occurrence_Of (Etype (Var), Loc),
+             Constant_Present    => True,
+             Expression          => New_Occurrence_Of (Var, Loc));
+
+         if No (Last) then
+            Prepend (Decl, Declarations (N));
+         else
+            Insert_After (Last, Decl);
+         end if;
+
+         Last := Decl;
+         Analyze (Decl);
+         Next_Elmt (Elm);
+      end loop;
+
+      --  Loop through calls
+
+      Call := First_Elmt (Call_List);
+      while Present (Call) loop
+
+         --  Build a predicate expression of the form
+
+         --    True
+         --      and then global1 = temp1
+         --      and then global2 = temp2
+         --      ...
+
+         --  This predicate determines if any of the global values
+         --  referenced by the procedure have changed since the
+         --  current call, if not an infinite recursion is assured.
+
+         Test := New_Occurrence_Of (Standard_True, Loc);
+
+         Elm1 := First_Elmt (Var_List);
+         Elm2 := First_Elmt (Shad_List);
+         while Present (Elm1) loop
+            Test :=
+              Make_And_Then (Loc,
+                Left_Opnd  => Test,
+                Right_Opnd =>
+                  Make_Op_Eq (Loc,
+                    Left_Opnd  => New_Occurrence_Of (Node (Elm1), Loc),
+                    Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
+
+            Next_Elmt (Elm1);
+            Next_Elmt (Elm2);
+         end loop;
+
+         --  Now we replace the call with the sequence
+
+         --    if no-changes (see above) then
+         --       raise Storage_Error;
+         --    else
+         --       original-call
+         --    end if;
+
+         Rewrite (Node (Call),
+           Make_If_Statement (Loc,
+             Condition       => Test,
+             Then_Statements => New_List (
+               Make_Raise_Storage_Error (Loc,
+                 Reason => SE_Infinite_Recursion)),
+
+             Else_Statements => New_List (
+               Relocate_Node (Node (Call)))));
+
+         Analyze (Node (Call));
+
+         Next_Elmt (Call);
+      end loop;
+
+      --  Remove temporary scope stack entry used for analysis
+
+      Pop_Scope;
+   end Detect_Infinite_Recursion;
+
+   --------------------
+   -- Expand_Actuals --
+   --------------------
+
+   procedure Expand_Actuals
+     (N         : Node_Id;
+      Subp      : Entity_Id;
+      Post_Call : out List_Id)
+   is
+      Loc       : constant Source_Ptr := Sloc (N);
+      Actual    : Node_Id;
+      Formal    : Entity_Id;
+      N_Node    : Node_Id;
+      E_Actual  : Entity_Id;
+      E_Formal  : Entity_Id;
+
+      procedure Add_Call_By_Copy_Code;
+      --  For cases where the parameter must be passed by copy, this routine
+      --  generates a temporary variable into which the actual is copied and
+      --  then passes this as the parameter. For an OUT or IN OUT parameter,
+      --  an assignment is also generated to copy the result back. The call
+      --  also takes care of any constraint checks required for the type
+      --  conversion case (on both the way in and the way out).
+
+      procedure Add_Simple_Call_By_Copy_Code;
+      --  This is similar to the above, but is used in cases where we know
+      --  that all that is needed is to simply create a temporary and copy
+      --  the value in and out of the temporary.
+
+      procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id);
+      --  Perform copy-back for actual parameter Act which denotes a validation
+      --  variable.
+
+      procedure Check_Fortran_Logical;
+      --  A value of type Logical that is passed through a formal parameter
+      --  must be normalized because .TRUE. usually does not have the same
+      --  representation as True. We assume that .FALSE. = False = 0.
+      --  What about functions that return a logical type ???
+
+      function Is_Legal_Copy return Boolean;
+      --  Check that an actual can be copied before generating the temporary
+      --  to be used in the call. If the actual is of a by_reference type then
+      --  the program is illegal (this can only happen in the presence of
+      --  rep. clauses that force an incorrect alignment). If the formal is
+      --  a by_reference parameter imposed by a DEC pragma, emit a warning to
+      --  the effect that this might lead to unaligned arguments.
+
+      function Make_Var (Actual : Node_Id) return Entity_Id;
+      --  Returns an entity that refers to the given actual parameter, Actual
+      --  (not including any type conversion). If Actual is an entity name,
+      --  then this entity is returned unchanged, otherwise a renaming is
+      --  created to provide an entity for the actual.
+
+      procedure Reset_Packed_Prefix;
+      --  The expansion of a packed array component reference is delayed in
+      --  the context of a call. Now we need to complete the expansion, so we
+      --  unmark the analyzed bits in all prefixes.
+
+      ---------------------------
+      -- Add_Call_By_Copy_Code --
+      ---------------------------
+
+      procedure Add_Call_By_Copy_Code is
+         Crep  : Boolean;
+         Expr  : Node_Id;
+         F_Typ : Entity_Id := Etype (Formal);
+         Indic : Node_Id;
+         Init  : Node_Id;
+         Temp  : Entity_Id;
+         V_Typ : Entity_Id;
+         Var   : Entity_Id;
+
+      begin
+         if not Is_Legal_Copy then
+            return;
+         end if;
+
+         Temp := Make_Temporary (Loc, 'T', Actual);
+
+         --  Handle formals whose type comes from the limited view
+
+         if From_Limited_With (F_Typ)
+           and then Has_Non_Limited_View (F_Typ)
+         then
+            F_Typ := Non_Limited_View (F_Typ);
+         end if;
+
+         --  Use formal type for temp, unless formal type is an unconstrained
+         --  array, in which case we don't have to worry about bounds checks,
+         --  and we use the actual type, since that has appropriate bounds.
+
+         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
+            Indic := New_Occurrence_Of (Etype (Actual), Loc);
+         else
+            Indic := New_Occurrence_Of (F_Typ, Loc);
+         end if;
+
+         if Nkind (Actual) = N_Type_Conversion then
+            V_Typ := Etype (Expression (Actual));
+
+            --  If the formal is an (in-)out parameter, capture the name
+            --  of the variable in order to build the post-call assignment.
+
+            Var := Make_Var (Expression (Actual));
+
+            Crep := not Same_Representation
+                          (F_Typ, Etype (Expression (Actual)));
+
+         else
+            V_Typ := Etype (Actual);
+            Var   := Make_Var (Actual);
+            Crep  := False;
+         end if;
+
+         --  Setup initialization for case of in out parameter, or an out
+         --  parameter where the formal is an unconstrained array (in the
+         --  latter case, we have to pass in an object with bounds).
+
+         --  If this is an out parameter, the initial copy is wasteful, so as
+         --  an optimization for the one-dimensional case we extract the
+         --  bounds of the actual and build an uninitialized temporary of the
+         --  right size.
+
+         if Ekind (Formal) = E_In_Out_Parameter
+           or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
+         then
+            if Nkind (Actual) = N_Type_Conversion then
+               if Conversion_OK (Actual) then
+                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+               else
+                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+               end if;
+
+            elsif Ekind (Formal) = E_Out_Parameter
+              and then Is_Array_Type (F_Typ)
+              and then Number_Dimensions (F_Typ) = 1
+              and then not Has_Non_Null_Base_Init_Proc (F_Typ)
+            then
+               --  Actual is a one-dimensional array or slice, and the type
+               --  requires no initialization. Create a temporary of the
+               --  right size, but do not copy actual into it (optimization).
+
+               Init := Empty;
+               Indic :=
+                 Make_Subtype_Indication (Loc,
+                   Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
+                   Constraint   =>
+                     Make_Index_Or_Discriminant_Constraint (Loc,
+                       Constraints => New_List (
+                         Make_Range (Loc,
+                           Low_Bound  =>
+                             Make_Attribute_Reference (Loc,
+                               Prefix         => New_Occurrence_Of (Var, Loc),
+                               Attribute_Name => Name_First),
+                           High_Bound =>
+                             Make_Attribute_Reference (Loc,
+                               Prefix         => New_Occurrence_Of (Var, Loc),
+                               Attribute_Name => Name_Last)))));
+
+            else
+               Init := New_Occurrence_Of (Var, Loc);
+            end if;
+
+         --  An initialization is created for packed conversions as
+         --  actuals for out parameters to enable Make_Object_Declaration
+         --  to determine the proper subtype for N_Node. Note that this
+         --  is wasteful because the extra copying on the call side is
+         --  not required for such out parameters. ???
+
+         elsif Ekind (Formal) = E_Out_Parameter
+           and then Nkind (Actual) = N_Type_Conversion
+           and then (Is_Bit_Packed_Array (F_Typ)
+                       or else
+                     Is_Bit_Packed_Array (Etype (Expression (Actual))))
+         then
+            if Conversion_OK (Actual) then
+               Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+            else
+               Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+            end if;
+
+         elsif Ekind (Formal) = E_In_Parameter then
+
+            --  Handle the case in which the actual is a type conversion
+
+            if Nkind (Actual) = N_Type_Conversion then
+               if Conversion_OK (Actual) then
+                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+               else
+                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+               end if;
+            else
+               Init := New_Occurrence_Of (Var, Loc);
+            end if;
+
+         else
+            Init := Empty;
+         end if;
+
+         N_Node :=
+           Make_Object_Declaration (Loc,
+             Defining_Identifier => Temp,
+             Object_Definition   => Indic,
+             Expression          => Init);
+         Set_Assignment_OK (N_Node);
+         Insert_Action (N, N_Node);
+
+         --  Now, normally the deal here is that we use the defining
+         --  identifier created by that object declaration. There is
+         --  one exception to this. In the change of representation case
+         --  the above declaration will end up looking like:
+
+         --    temp : type := identifier;
+
+         --  And in this case we might as well use the identifier directly
+         --  and eliminate the temporary. Note that the analysis of the
+         --  declaration was not a waste of time in that case, since it is
+         --  what generated the necessary change of representation code. If
+         --  the change of representation introduced additional code, as in
+         --  a fixed-integer conversion, the expression is not an identifier
+         --  and must be kept.
+
+         if Crep
+           and then Present (Expression (N_Node))
+           and then Is_Entity_Name (Expression (N_Node))
+         then
+            Temp := Entity (Expression (N_Node));
+            Rewrite (N_Node, Make_Null_Statement (Loc));
+         end if;
+
+         --  For IN parameter, all we do is to replace the actual
+
+         if Ekind (Formal) = E_In_Parameter then
+            Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
+            Analyze (Actual);
+
+         --  Processing for OUT or IN OUT parameter
+
+         else
+            --  Kill current value indications for the temporary variable we
+            --  created, since we just passed it as an OUT parameter.
+
+            Kill_Current_Values (Temp);
+            Set_Is_Known_Valid (Temp, False);
+
+            --  If type conversion, use reverse conversion on exit
+
+            if Nkind (Actual) = N_Type_Conversion then
+               if Conversion_OK (Actual) then
+                  Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
+               else
+                  Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
+               end if;
+            else
+               Expr := New_Occurrence_Of (Temp, Loc);
+            end if;
+
+            Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
+            Analyze (Actual);
+
+            --  If the actual is a conversion of a packed reference, it may
+            --  already have been expanded by Remove_Side_Effects, and the
+            --  resulting variable is a temporary which does not designate
+            --  the proper out-parameter, which may not be addressable. In
+            --  that case, generate an assignment to the original expression
+            --  (before expansion of the packed reference) so that the proper
+            --  expansion of assignment to a packed component can take place.
+
+            declare
+               Obj : Node_Id;
+               Lhs : Node_Id;
+
+            begin
+               if Is_Renaming_Of_Object (Var)
+                 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
+                 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
+                   = N_Indexed_Component
+                 and then
+                   Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
+               then
+                  Obj := Renamed_Object (Var);
+                  Lhs :=
+                    Make_Selected_Component (Loc,
+                      Prefix        =>
+                        New_Copy_Tree (Original_Node (Prefix (Obj))),
+                      Selector_Name => New_Copy (Selector_Name (Obj)));
+                  Reset_Analyzed_Flags (Lhs);
+
+               else
+                  Lhs := New_Occurrence_Of (Var, Loc);
+               end if;
+
+               Set_Assignment_OK (Lhs);
+
+               if Is_Access_Type (E_Formal)
+                 and then Is_Entity_Name (Lhs)
+                 and then
+                   Present (Effective_Extra_Accessibility (Entity (Lhs)))
+               then
+                  --  Copyback target is an Ada 2012 stand-alone object of an
+                  --  anonymous access type.
+
+                  pragma Assert (Ada_Version >= Ada_2012);
+
+                  if Type_Access_Level (E_Formal) >
+                     Object_Access_Level (Lhs)
+                  then
+                     Append_To (Post_Call,
+                       Make_Raise_Program_Error (Loc,
+                         Reason => PE_Accessibility_Check_Failed));
+                  end if;
+
+                  Append_To (Post_Call,
+                    Make_Assignment_Statement (Loc,
+                      Name       => Lhs,
+                      Expression => Expr));
+
+                  --  We would like to somehow suppress generation of the
+                  --  extra_accessibility assignment generated by the expansion
+                  --  of the above assignment statement. It's not a correctness
+                  --  issue because the following assignment renders it dead,
+                  --  but generating back-to-back assignments to the same
+                  --  target is undesirable. ???
+
+                  Append_To (Post_Call,
+                    Make_Assignment_Statement (Loc,
+                      Name       => New_Occurrence_Of (
+                        Effective_Extra_Accessibility (Entity (Lhs)), Loc),
+                      Expression => Make_Integer_Literal (Loc,
+                        Type_Access_Level (E_Formal))));
+
+               else
+                  Append_To (Post_Call,
+                    Make_Assignment_Statement (Loc,
+                      Name       => Lhs,
+                      Expression => Expr));
+               end if;
+            end;
+         end if;
+      end Add_Call_By_Copy_Code;
+
+      ----------------------------------
+      -- Add_Simple_Call_By_Copy_Code --
+      ----------------------------------
+
+      procedure Add_Simple_Call_By_Copy_Code is
+         Decl   : Node_Id;
+         F_Typ  : Entity_Id := Etype (Formal);
+         Incod  : Node_Id;
+         Indic  : Node_Id;
+         Lhs    : Node_Id;
+         Outcod : Node_Id;
+         Rhs    : Node_Id;
+         Temp   : Entity_Id;
+
+      begin
+         if not Is_Legal_Copy then
+            return;
+         end if;
+
+         --  Handle formals whose type comes from the limited view
+
+         if From_Limited_With (F_Typ)
+           and then Has_Non_Limited_View (F_Typ)
+         then
+            F_Typ := Non_Limited_View (F_Typ);
+         end if;
+
+         --  Use formal type for temp, unless formal type is an unconstrained
+         --  array, in which case we don't have to worry about bounds checks,
+         --  and we use the actual type, since that has appropriate bounds.
+
+         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
+            Indic := New_Occurrence_Of (Etype (Actual), Loc);
+         else
+            Indic := New_Occurrence_Of (F_Typ, Loc);
+         end if;
+
+         --  Prepare to generate code
+
+         Reset_Packed_Prefix;
+
+         Temp := Make_Temporary (Loc, 'T', Actual);
+         Incod  := Relocate_Node (Actual);
+         Outcod := New_Copy_Tree (Incod);
+
+         --  Generate declaration of temporary variable, initializing it
+         --  with the input parameter unless we have an OUT formal or
+         --  this is an initialization call.
+
+         --  If the formal is an out parameter with discriminants, the
+         --  discriminants must be captured even if the rest of the object
+         --  is in principle uninitialized, because the discriminants may
+         --  be read by the called subprogram.
+
+         if Ekind (Formal) = E_Out_Parameter then
+            Incod := Empty;
+
+            if Has_Discriminants (F_Typ) then
+               Indic := New_Occurrence_Of (Etype (Actual), Loc);
+            end if;
+
+         elsif Inside_Init_Proc then
+
+            --  Could use a comment here to match comment below ???
+
+            if Nkind (Actual) /= N_Selected_Component
+              or else
+                not Has_Discriminant_Dependent_Constraint
+                  (Entity (Selector_Name (Actual)))
+            then
+               Incod := Empty;
+
+            --  Otherwise, keep the component in order to generate the proper
+            --  actual subtype, that depends on enclosing discriminants.
+
+            else
+               null;
+            end if;
+         end if;
+
+         Decl :=
+           Make_Object_Declaration (Loc,
+             Defining_Identifier => Temp,
+             Object_Definition   => Indic,
+             Expression          => Incod);
+
+         if Inside_Init_Proc
+           and then No (Incod)
+         then
+            --  If the call is to initialize a component of a composite type,
+            --  and the component does not depend on discriminants, use the
+            --  actual type of the component. This is required in case the
+            --  component is constrained, because in general the formal of the
+            --  initialization procedure will be unconstrained. Note that if
+            --  the component being initialized is constrained by an enclosing
+            --  discriminant, the presence of the initialization in the
+            --  declaration will generate an expression for the actual subtype.
+
+            Set_No_Initialization (Decl);
+            Set_Object_Definition (Decl,
+              New_Occurrence_Of (Etype (Actual), Loc));
+         end if;
+
+         Insert_Action (N, Decl);
+
+         --  The actual is simply a reference to the temporary
+
+         Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
+
+         --  Generate copy out if OUT or IN OUT parameter
+
+         if Ekind (Formal) /= E_In_Parameter then
+            Lhs := Outcod;
+            Rhs := New_Occurrence_Of (Temp, Loc);
+
+            --  Deal with conversion
+
+            if Nkind (Lhs) = N_Type_Conversion then
+               Lhs := Expression (Lhs);
+               Rhs := Convert_To (Etype (Actual), Rhs);
+            end if;
+
+            Append_To (Post_Call,
+              Make_Assignment_Statement (Loc,
+                Name       => Lhs,
+                Expression => Rhs));
+            Set_Assignment_OK (Name (Last (Post_Call)));
+         end if;
+      end Add_Simple_Call_By_Copy_Code;
+
+      --------------------------------------
+      -- Add_Validation_Call_By_Copy_Code --
+      --------------------------------------
+
+      procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id) is
+         Expr    : Node_Id;
+         Obj     : Node_Id;
+         Obj_Typ : Entity_Id;
+         Var     : constant Node_Id := Unqual_Conv (Act);
+         Var_Id  : Entity_Id;
+
+      begin
+         --  Copy the value of the validation variable back into the object
+         --  being validated.
+
+         if Is_Entity_Name (Var) then
+            Var_Id  := Entity (Var);
+            Obj     := Validated_Object (Var_Id);
+            Obj_Typ := Etype (Obj);
+
+            Expr := New_Occurrence_Of (Var_Id, Loc);
+
+            --  A type conversion is needed when the validation variable and
+            --  the validated object carry different types. This case occurs
+            --  when the actual is qualified in some fashion.
+
+            --    Common:
+            --      subtype Int is Integer range ...;
+            --      procedure Call (Val : in out Integer);
+
+            --    Original:
+            --      Object : Int;
+            --      Call (Integer (Object));
+
+            --    Expanded:
+            --      Object : Int;
+            --      Var : Integer := Object;  --  conversion to base type
+            --      if not Var'Valid then     --  validity check
+            --      Call (Var);               --  modify Var
+            --      Object := Int (Var);      --  conversion to subtype
+
+            if Etype (Var_Id) /= Obj_Typ then
+               Expr :=
+                 Make_Type_Conversion (Loc,
+                   Subtype_Mark => New_Occurrence_Of (Obj_Typ, Loc),
+                   Expression   => Expr);
+            end if;
+
+            --  Generate:
+            --    Object := Var;
+            --      <or>
+            --    Object := Object_Type (Var);
+
+            Append_To (Post_Call,
+              Make_Assignment_Statement (Loc,
+                Name       => Obj,
+                Expression => Expr));
+
+         --  If the flow reaches this point, then this routine was invoked with
+         --  an actual which does not denote a validation variable.
+
+         else
+            pragma Assert (False);
+            null;
+         end if;
+      end Add_Validation_Call_By_Copy_Code;
+
+      ---------------------------
+      -- Check_Fortran_Logical --
+      ---------------------------
+
+      procedure Check_Fortran_Logical is
+         Logical : constant Entity_Id := Etype (Formal);
+         Var     : Entity_Id;
+
+      --  Note: this is very incomplete, e.g. it does not handle arrays
+      --  of logical values. This is really not the right approach at all???)
+
+      begin
+         if Convention (Subp) = Convention_Fortran
+           and then Root_Type (Etype (Formal)) = Standard_Boolean
+           and then Ekind (Formal) /= E_In_Parameter
+         then
+            Var := Make_Var (Actual);
+            Append_To (Post_Call,
+              Make_Assignment_Statement (Loc,
+                Name => New_Occurrence_Of (Var, Loc),
+                Expression =>
+                  Unchecked_Convert_To (
+                    Logical,
+                    Make_Op_Ne (Loc,
+                      Left_Opnd  => New_Occurrence_Of (Var, Loc),
+                      Right_Opnd =>
+                        Unchecked_Convert_To (
+                          Logical,
+                          New_Occurrence_Of (Standard_False, Loc))))));
+         end if;
+      end Check_Fortran_Logical;
+
+      -------------------
+      -- Is_Legal_Copy --
+      -------------------
+
+      function Is_Legal_Copy return Boolean is
+      begin
+         --  An attempt to copy a value of such a type can only occur if
+         --  representation clauses give the actual a misaligned address.
+
+         if Is_By_Reference_Type (Etype (Formal)) then
+
+            --  The actual may in fact be properly aligned but there is not
+            --  enough front-end information to determine this. In that case
+            --  gigi will emit an error if a copy is not legal, or generate
+            --  the proper code.
+
+            return False;
+
+         --  For users of Starlet, we assume that the specification of by-
+         --  reference mechanism is mandatory. This may lead to unaligned
+         --  objects but at least for DEC legacy code it is known to work.
+         --  The warning will alert users of this code that a problem may
+         --  be lurking.
+
+         elsif Mechanism (Formal) = By_Reference
+           and then Is_Valued_Procedure (Scope (Formal))
+         then
+            Error_Msg_N
+              ("by_reference actual may be misaligned??", Actual);
+            return False;
+
+         else
+            return True;
+         end if;
+      end Is_Legal_Copy;
+
+      --------------
+      -- Make_Var --
+      --------------
+
+      function Make_Var (Actual : Node_Id) return Entity_Id is
+         Var : Entity_Id;
+
+      begin
+         if Is_Entity_Name (Actual) then
+            return Entity (Actual);
+
+         else
+            Var := Make_Temporary (Loc, 'T', Actual);
+
+            N_Node :=
+              Make_Object_Renaming_Declaration (Loc,
+                Defining_Identifier => Var,
+                Subtype_Mark        =>
+                  New_Occurrence_Of (Etype (Actual), Loc),
+                Name                => Relocate_Node (Actual));
+
+            Insert_Action (N, N_Node);
+            return Var;
+         end if;
+      end Make_Var;
+
+      -------------------------
+      -- Reset_Packed_Prefix --
+      -------------------------
+
+      procedure Reset_Packed_Prefix is
+         Pfx : Node_Id := Actual;
+      begin
+         loop
+            Set_Analyzed (Pfx, False);
+            exit when
+              not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
+            Pfx := Prefix (Pfx);
+         end loop;
+      end Reset_Packed_Prefix;
+
+   --  Start of processing for Expand_Actuals
+
+   begin
+      Post_Call := New_List;
+
+      Formal := First_Formal (Subp);
+      Actual := First_Actual (N);
+      while Present (Formal) loop
+         E_Formal := Etype (Formal);
+         E_Actual := Etype (Actual);
+
+         --  Handle formals whose type comes from the limited view
+
+         if From_Limited_With (E_Formal)
+           and then Has_Non_Limited_View (E_Formal)
+         then
+            E_Formal := Non_Limited_View (E_Formal);
+         end if;
+
+         if Is_Scalar_Type (E_Formal)
+           or else Nkind (Actual) = N_Slice
+         then
+            Check_Fortran_Logical;
+
+         --  RM 6.4.1 (11)
+
+         elsif Ekind (Formal) /= E_Out_Parameter then
+
+            --  The unusual case of the current instance of a protected type
+            --  requires special handling. This can only occur in the context
+            --  of a call within the body of a protected operation.
+
+            if Is_Entity_Name (Actual)
+              and then Ekind (Entity (Actual)) = E_Protected_Type
+              and then In_Open_Scopes (Entity (Actual))
+            then
+               if Scope (Subp) /= Entity (Actual) then
+                  Error_Msg_N
+                    ("operation outside protected type may not "
+                     & "call back its protected operations??", Actual);
+               end if;
+
+               Rewrite (Actual,
+                 Expand_Protected_Object_Reference (N, Entity (Actual)));
+            end if;
+
+            --  Ada 2005 (AI-318-02): If the actual parameter is a call to a
+            --  build-in-place function, then a temporary return object needs
+            --  to be created and access to it must be passed to the function.
+            --  Currently we limit such functions to those with inherently
+            --  limited result subtypes, but eventually we plan to expand the
+            --  functions that are treated as build-in-place to include other
+            --  composite result types.
+
+            if Is_Build_In_Place_Function_Call (Actual) then
+               Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
+
+            --  Ada 2005 (AI-318-02): Specialization of the previous case for
+            --  actuals containing build-in-place function calls whose returned
+            --  object covers interface types.
+
+            elsif Present (Unqual_BIP_Iface_Function_Call (Actual)) then
+               Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Actual);
+            end if;
+
+            Apply_Constraint_Check (Actual, E_Formal);
+
+         --  Out parameter case. No constraint checks on access type
+         --  RM 6.4.1 (13)
+
+         elsif Is_Access_Type (E_Formal) then
+            null;
+
+         --  RM 6.4.1 (14)
+
+         elsif Has_Discriminants (Base_Type (E_Formal))
+           or else Has_Non_Null_Base_Init_Proc (E_Formal)
+         then
+            Apply_Constraint_Check (Actual, E_Formal);
+
+         --  RM 6.4.1 (15)
+
+         else
+            Apply_Constraint_Check (Actual, Base_Type (E_Formal));
+         end if;
+
+         --  Processing for IN-OUT and OUT parameters
+
+         if Ekind (Formal) /= E_In_Parameter then
+
+            --  For type conversions of arrays, apply length/range checks
+
+            if Is_Array_Type (E_Formal)
+              and then Nkind (Actual) = N_Type_Conversion
+            then
+               if Is_Constrained (E_Formal) then
+                  Apply_Length_Check (Expression (Actual), E_Formal);
+               else
+                  Apply_Range_Check (Expression (Actual), E_Formal);
+               end if;
+            end if;
+
+            --  The actual denotes a variable which captures the value of an
+            --  object for validation purposes. Add a copy-back to reflect any
+            --  potential changes in value back into the original object.
+
+            --    Var : ... := Object;
+            --    if not Var'Valid then  --  validity check
+            --    Call (Var);            --  modify var
+            --    Object := Var;         --  update Object
+
+            --  This case is given higher priority because the subsequent check
+            --  for type conversion may add an extra copy of the variable and
+            --  prevent proper value propagation back in the original object.
+
+            if Is_Validation_Variable_Reference (Actual) then
+               Add_Validation_Call_By_Copy_Code (Actual);
+
+            --  If argument is a type conversion for a type that is passed by
+            --  copy, then we must pass the parameter by copy.
+
+            elsif Nkind (Actual) = N_Type_Conversion
+              and then
+                (Is_Numeric_Type (E_Formal)
+                  or else Is_Access_Type (E_Formal)
+                  or else Is_Enumeration_Type (E_Formal)
+                  or else Is_Bit_Packed_Array (Etype (Formal))
+                  or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
+
+                  --  Also pass by copy if change of representation
+
+                  or else not Same_Representation
+                                (Etype (Formal),
+                                 Etype (Expression (Actual))))
+            then
+               Add_Call_By_Copy_Code;
+
+            --  References to components of bit-packed arrays are expanded
+            --  at this point, rather than at the point of analysis of the
+            --  actuals, to handle the expansion of the assignment to
+            --  [in] out parameters.
+
+            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
+               Add_Simple_Call_By_Copy_Code;
+
+            --  If a non-scalar actual is possibly bit-aligned, we need a copy
+            --  because the back-end cannot cope with such objects. In other
+            --  cases where alignment forces a copy, the back-end generates
+            --  it properly. It should not be generated unconditionally in the
+            --  front-end because it does not know precisely the alignment
+            --  requirements of the target, and makes too conservative an
+            --  estimate, leading to superfluous copies or spurious errors
+            --  on by-reference parameters.
+
+            elsif Nkind (Actual) = N_Selected_Component
+              and then
+                Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
+              and then not Represented_As_Scalar (Etype (Formal))
+            then
+               Add_Simple_Call_By_Copy_Code;
+
+            --  References to slices of bit-packed arrays are expanded
+
+            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
+               Add_Call_By_Copy_Code;
+
+            --  References to possibly unaligned slices of arrays are expanded
+
+            elsif Is_Possibly_Unaligned_Slice (Actual) then
+               Add_Call_By_Copy_Code;
+
+            --  Deal with access types where the actual subtype and the
+            --  formal subtype are not the same, requiring a check.
+
+            --  It is necessary to exclude tagged types because of "downward
+            --  conversion" errors.
+
+            elsif Is_Access_Type (E_Formal)
+              and then not Same_Type (E_Formal, E_Actual)
+              and then not Is_Tagged_Type (Designated_Type (E_Formal))
+            then
+               Add_Call_By_Copy_Code;
+
+            --  If the actual is not a scalar and is marked for volatile
+            --  treatment, whereas the formal is not volatile, then pass
+            --  by copy unless it is a by-reference type.
+
+            --  Note: we use Is_Volatile here rather than Treat_As_Volatile,
+            --  because this is the enforcement of a language rule that applies
+            --  only to "real" volatile variables, not e.g. to the address
+            --  clause overlay case.
+
+            elsif Is_Entity_Name (Actual)
+              and then Is_Volatile (Entity (Actual))
+              and then not Is_By_Reference_Type (E_Actual)
+              and then not Is_Scalar_Type (Etype (Entity (Actual)))
+              and then not Is_Volatile (E_Formal)
+            then
+               Add_Call_By_Copy_Code;
+
+            elsif Nkind (Actual) = N_Indexed_Component
+              and then Is_Entity_Name (Prefix (Actual))
+              and then Has_Volatile_Components (Entity (Prefix (Actual)))
+            then
+               Add_Call_By_Copy_Code;
+
+            --  Add call-by-copy code for the case of scalar out parameters
+            --  when it is not known at compile time that the subtype of the
+            --  formal is a subrange of the subtype of the actual (or vice
+            --  versa for in out parameters), in order to get range checks
+            --  on such actuals. (Maybe this case should be handled earlier
+            --  in the if statement???)
+
+            elsif Is_Scalar_Type (E_Formal)
+              and then
+                (not In_Subrange_Of (E_Formal, E_Actual)
+                  or else
+                    (Ekind (Formal) = E_In_Out_Parameter
+                      and then not In_Subrange_Of (E_Actual, E_Formal)))
+            then
+               --  Perhaps the setting back to False should be done within
+               --  Add_Call_By_Copy_Code, since it could get set on other
+               --  cases occurring above???
+
+               if Do_Range_Check (Actual) then
+                  Set_Do_Range_Check (Actual, False);
+               end if;
+
+               Add_Call_By_Copy_Code;
+            end if;
+
+            --  RM 3.2.4 (23/3): A predicate is checked on in-out and out
+            --  by-reference parameters on exit from the call. If the actual
+            --  is a derived type and the operation is inherited, the body
+            --  of the operation will not contain a call to the predicate
+            --  function, so it must be done explicitly after the call. Ditto
+            --  if the actual is an entity of a predicated subtype.
+
+            --  The rule refers to by-reference types, but a check is needed
+            --  for by-copy types as well. That check is subsumed by the rule
+            --  for subtype conversion on assignment, but we can generate the
+            --  required check now.
+
+            --  Note also that Subp may be either a subprogram entity for
+            --  direct calls, or a type entity for indirect calls, which must
+            --  be handled separately because the name does not denote an
+            --  overloadable entity.
+
+            By_Ref_Predicate_Check : declare
+               Aund : constant Entity_Id := Underlying_Type (E_Actual);
+               Atyp : Entity_Id;
+
+               function Is_Public_Subp return Boolean;
+               --  Check whether the subprogram being called is a visible
+               --  operation of the type of the actual. Used to determine
+               --  whether an invariant check must be generated on the
+               --  caller side.
+
+               ---------------------
+               --  Is_Public_Subp --
+               ---------------------
+
+               function Is_Public_Subp return Boolean is
+                  Pack      : constant Entity_Id := Scope (Subp);
+                  Subp_Decl : Node_Id;
+
+               begin
+                  if not Is_Subprogram (Subp) then
+                     return False;
+
+                  --  The operation may be inherited, or a primitive of the
+                  --  root type.
+
+                  elsif
+                    Nkind_In (Parent (Subp), N_Private_Extension_Declaration,
+                                             N_Full_Type_Declaration)
+                  then
+                     Subp_Decl := Parent (Subp);
+
+                  else
+                     Subp_Decl := Unit_Declaration_Node (Subp);
+                  end if;
+
+                  return Ekind (Pack) = E_Package
+                    and then
+                      List_Containing (Subp_Decl) =
+                        Visible_Declarations
+                          (Specification (Unit_Declaration_Node (Pack)));
+               end Is_Public_Subp;
+
+            --  Start of processing for By_Ref_Predicate_Check
+
+            begin
+               if No (Aund) then
+                  Atyp := E_Actual;
+               else
+                  Atyp := Aund;
+               end if;
+
+               if Has_Predicates (Atyp)
+                 and then Present (Predicate_Function (Atyp))
+
+                 --  Skip predicate checks for special cases
+
+                 and then Predicate_Tests_On_Arguments (Subp)
+               then
+                  Append_To (Post_Call,
+                    Make_Predicate_Check (Atyp, Actual));
+               end if;
+
+               --  We generated caller-side invariant checks in two cases:
+
+               --  a) when calling an inherited operation, where there is an
+               --  implicit view conversion of the actual to the parent type.
+
+               --  b) When the conversion is explicit
+
+               --  We treat these cases separately because the required
+               --  conversion for a) is added later when expanding the call.
+
+               if Has_Invariants (Etype (Actual))
+                  and then
+                    Nkind (Parent (Subp)) = N_Private_Extension_Declaration
+               then
+                  if Comes_From_Source (N) and then Is_Public_Subp then
+                     Append_To (Post_Call, Make_Invariant_Call (Actual));
+                  end if;
+
+               elsif Nkind (Actual) = N_Type_Conversion
+                 and then Has_Invariants (Etype (Expression (Actual)))
+               then
+                  if Comes_From_Source (N) and then Is_Public_Subp then
+                     Append_To (Post_Call,
+                       Make_Invariant_Call (Expression (Actual)));
+                  end if;
+               end if;
+            end By_Ref_Predicate_Check;
+
+         --  Processing for IN parameters
+
+         else
+            --  For IN parameters in the bit-packed array case, we expand an
+            --  indexed component (the circuit in Exp_Ch4 deliberately left
+            --  indexed components appearing as actuals untouched, so that
+            --  the special processing above for the OUT and IN OUT cases
+            --  could be performed. We could make the test in Exp_Ch4 more
+            --  complex and have it detect the parameter mode, but it is
+            --  easier simply to handle all cases here.)
+
+            if Nkind (Actual) = N_Indexed_Component
+              and then Is_Bit_Packed_Array (Etype (Prefix (Actual)))
+            then
+               Reset_Packed_Prefix;
+               Expand_Packed_Element_Reference (Actual);
+
+            --  If we have a reference to a bit-packed array, we copy it, since
+            --  the actual must be byte aligned.
+
+            --  Is this really necessary in all cases???
+
+            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
+               Add_Simple_Call_By_Copy_Code;
+
+            --  If a non-scalar actual is possibly unaligned, we need a copy
+
+            elsif Is_Possibly_Unaligned_Object (Actual)
+              and then not Represented_As_Scalar (Etype (Formal))
+            then
+               Add_Simple_Call_By_Copy_Code;
+
+            --  Similarly, we have to expand slices of packed arrays here
+            --  because the result must be byte aligned.
+
+            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
+               Add_Call_By_Copy_Code;
+
+            --  Only processing remaining is to pass by copy if this is a
+            --  reference to a possibly unaligned slice, since the caller
+            --  expects an appropriately aligned argument.
+
+            elsif Is_Possibly_Unaligned_Slice (Actual) then
+               Add_Call_By_Copy_Code;
+
+            --  An unusual case: a current instance of an enclosing task can be
+            --  an actual, and must be replaced by a reference to self.
+
+            elsif Is_Entity_Name (Actual)
+              and then Is_Task_Type (Entity (Actual))
+            then
+               if In_Open_Scopes (Entity (Actual)) then
+                  Rewrite (Actual,
+                    (Make_Function_Call (Loc,
+                       Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
+                  Analyze (Actual);
+
+               --  A task type cannot otherwise appear as an actual
+
+               else
+                  raise Program_Error;
+               end if;
+            end if;
+         end if;
+
+         Next_Formal (Formal);
+         Next_Actual (Actual);
+      end loop;
+   end Expand_Actuals;
+
+   -----------------
+   -- Expand_Call --
+   -----------------
+
+   procedure Expand_Call (N : Node_Id) is
+      Post_Call : List_Id;
+
+   begin
+      pragma Assert (Nkind_In (N, N_Entry_Call_Statement,
+                                  N_Function_Call,
+                                  N_Procedure_Call_Statement));
+
+      Expand_Call_Helper (N, Post_Call);
+      Insert_Post_Call_Actions (N, Post_Call);
+   end Expand_Call;
+
+   ------------------------
+   -- Expand_Call_Helper --
+   ------------------------
+
+   --  This procedure handles expansion of function calls and procedure call
+   --  statements (i.e. it serves as the body for Expand_N_Function_Call and
+   --  Expand_N_Procedure_Call_Statement). Processing for calls includes:
+
+   --    Replace call to Raise_Exception by Raise_Exception_Always if possible
+   --    Provide values of actuals for all formals in Extra_Formals list
+   --    Replace "call" to enumeration literal function by literal itself
+   --    Rewrite call to predefined operator as operator
+   --    Replace actuals to in-out parameters that are numeric conversions,
+   --     with explicit assignment to temporaries before and after the call.
+
+   --   Note that the list of actuals has been filled with default expressions
+   --   during semantic analysis of the call. Only the extra actuals required
+   --   for the 'Constrained attribute and for accessibility checks are added
+   --   at this point.
+
+   procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id) is
+      Loc           : constant Source_Ptr := Sloc (N);
+      Call_Node     : Node_Id := N;
+      Extra_Actuals : List_Id := No_List;
+      Prev          : Node_Id := Empty;
+
+      procedure Add_Actual_Parameter (Insert_Param : Node_Id);
+      --  Adds one entry to the end of the actual parameter list. Used for
+      --  default parameters and for extra actuals (for Extra_Formals). The
+      --  argument is an N_Parameter_Association node.
+
+      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
+      --  Adds an extra actual to the list of extra actuals. Expr is the
+      --  expression for the value of the actual, EF is the entity for the
+      --  extra formal.
+
+      procedure Add_View_Conversion_Invariants
+        (Formal : Entity_Id;
+         Actual : Node_Id);
+      --  Adds invariant checks for every intermediate type between the range
+      --  of a view converted argument to its ancestor (from parent to child).
+
+      function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
+      --  Within an instance, a type derived from an untagged formal derived
+      --  type inherits from the original parent, not from the actual. The
+      --  current derivation mechanism has the derived type inherit from the
+      --  actual, which is only correct outside of the instance. If the
+      --  subprogram is inherited, we test for this particular case through a
+      --  convoluted tree traversal before setting the proper subprogram to be
+      --  called.
+
+      function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
+      --  Return true if E comes from an instance that is not yet frozen
+
+      function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
+      --  Determine if Subp denotes a non-dispatching call to a Deep routine
+
+      function New_Value (From : Node_Id) return Node_Id;
+      --  From is the original Expression. New_Value is equivalent to a call
+      --  to Duplicate_Subexpr with an explicit dereference when From is an
+      --  access parameter.
+
+      --------------------------
+      -- Add_Actual_Parameter --
+      --------------------------
+
+      procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
+         Actual_Expr : constant Node_Id :=
+                         Explicit_Actual_Parameter (Insert_Param);
+
+      begin
+         --  Case of insertion is first named actual
+
+         if No (Prev) or else
+            Nkind (Parent (Prev)) /= N_Parameter_Association
+         then
+            Set_Next_Named_Actual
+              (Insert_Param, First_Named_Actual (Call_Node));
+            Set_First_Named_Actual (Call_Node, Actual_Expr);
+
+            if No (Prev) then
+               if No (Parameter_Associations (Call_Node)) then
+                  Set_Parameter_Associations (Call_Node, New_List);
+               end if;
+
+               Append (Insert_Param, Parameter_Associations (Call_Node));
+
+            else
+               Insert_After (Prev, Insert_Param);
+            end if;
+
+         --  Case of insertion is not first named actual
+
+         else
+            Set_Next_Named_Actual
+              (Insert_Param, Next_Named_Actual (Parent (Prev)));
+            Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
+            Append (Insert_Param, Parameter_Associations (Call_Node));
+         end if;
+
+         Prev := Actual_Expr;
+      end Add_Actual_Parameter;
+
+      ----------------------
+      -- Add_Extra_Actual --
+      ----------------------
+
+      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
+         Loc : constant Source_Ptr := Sloc (Expr);
+
+      begin
+         if Extra_Actuals = No_List then
+            Extra_Actuals := New_List;
+            Set_Parent (Extra_Actuals, Call_Node);
+         end if;
+
+         Append_To (Extra_Actuals,
+           Make_Parameter_Association (Loc,
+             Selector_Name             => New_Occurrence_Of (EF, Loc),
+             Explicit_Actual_Parameter => Expr));
+
+         Analyze_And_Resolve (Expr, Etype (EF));
+
+         if Nkind (Call_Node) = N_Function_Call then
+            Set_Is_Accessibility_Actual (Parent (Expr));
+         end if;
+      end Add_Extra_Actual;
+
+      ------------------------------------
+      -- Add_View_Conversion_Invariants --
+      ------------------------------------
+
+      procedure Add_View_Conversion_Invariants
+        (Formal : Entity_Id;
+         Actual : Node_Id)
+      is
+         Arg        : Entity_Id;
+         Curr_Typ   : Entity_Id;
+         Inv_Checks : List_Id;
+         Par_Typ    : Entity_Id;
+
+      begin
+         Inv_Checks := No_List;
+
+         --  Extract the argument from a potentially nested set of view
+         --  conversions.
+
+         Arg := Actual;
+         while Nkind (Arg) = N_Type_Conversion loop
+            Arg := Expression (Arg);
+         end loop;
+
+         --  Move up the derivation chain starting with the type of the formal
+         --  parameter down to the type of the actual object.
+
+         Curr_Typ := Empty;
+         Par_Typ  := Etype (Arg);
+         while Par_Typ /= Etype (Formal) and Par_Typ /= Curr_Typ loop
+            Curr_Typ := Par_Typ;
+
+            if Has_Invariants (Curr_Typ)
+              and then Present (Invariant_Procedure (Curr_Typ))
+            then
+               --  Verify the invariate of the current type. Generate:
+
+               --    <Curr_Typ>Invariant (Curr_Typ (Arg));
+
+               Prepend_New_To (Inv_Checks,
+                 Make_Procedure_Call_Statement (Loc,
+                   Name                   =>
+                     New_Occurrence_Of
+                       (Invariant_Procedure (Curr_Typ), Loc),
+                   Parameter_Associations => New_List (
+                     Make_Type_Conversion (Loc,
+                       Subtype_Mark => New_Occurrence_Of (Curr_Typ, Loc),
+                       Expression   => New_Copy_Tree (Arg)))));
+            end if;
+
+            Par_Typ := Base_Type (Etype (Curr_Typ));
+         end loop;
+
+         if not Is_Empty_List (Inv_Checks) then
+            Insert_Actions_After (N, Inv_Checks);
+         end if;
+      end Add_View_Conversion_Invariants;
+
+      ---------------------------
+      -- Inherited_From_Formal --
+      ---------------------------
+
+      function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
+         Par      : Entity_Id;
+         Gen_Par  : Entity_Id;
+         Gen_Prim : Elist_Id;
+         Elmt     : Elmt_Id;
+         Indic    : Node_Id;
+
+      begin
+         --  If the operation is inherited, it is attached to the corresponding
+         --  type derivation. If the parent in the derivation is a generic
+         --  actual, it is a subtype of the actual, and we have to recover the
+         --  original derived type declaration to find the proper parent.
+
+         if Nkind (Parent (S)) /= N_Full_Type_Declaration
+           or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
+           or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
+                                                   N_Derived_Type_Definition
+           or else not In_Instance
+         then
+            return Empty;
+
+         else
+            Indic :=
+              Subtype_Indication
+                (Type_Definition (Original_Node (Parent (S))));
+
+            if Nkind (Indic) = N_Subtype_Indication then
+               Par := Entity (Subtype_Mark (Indic));
+            else
+               Par := Entity (Indic);
+            end if;
+         end if;
+
+         if not Is_Generic_Actual_Type (Par)
+           or else Is_Tagged_Type (Par)
+           or else Nkind (Parent (Par)) /= N_Subtype_Declaration
+           or else not In_Open_Scopes (Scope (Par))
+         then
+            return Empty;
+         else
+            Gen_Par := Generic_Parent_Type (Parent (Par));
+         end if;
+
+         --  If the actual has no generic parent type, the formal is not
+         --  a formal derived type, so nothing to inherit.
+
+         if No (Gen_Par) then
+            return Empty;
+         end if;
+
+         --  If the generic parent type is still the generic type, this is a
+         --  private formal, not a derived formal, and there are no operations
+         --  inherited from the formal.
+
+         if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
+            return Empty;
+         end if;
+
+         Gen_Prim := Collect_Primitive_Operations (Gen_Par);
+
+         Elmt := First_Elmt (Gen_Prim);
+         while Present (Elmt) loop
+            if Chars (Node (Elmt)) = Chars (S) then
+               declare
+                  F1 : Entity_Id;
+                  F2 : Entity_Id;
+
+               begin
+                  F1 := First_Formal (S);
+                  F2 := First_Formal (Node (Elmt));
+                  while Present (F1)
+                    and then Present (F2)
+                  loop
+                     if Etype (F1) = Etype (F2)
+                       or else Etype (F2) = Gen_Par
+                     then
+                        Next_Formal (F1);
+                        Next_Formal (F2);
+                     else
+                        Next_Elmt (Elmt);
+                        exit;   --  not the right subprogram
+                     end if;
+
+                     return Node (Elmt);
+                  end loop;
+               end;
+
+            else
+               Next_Elmt (Elmt);
+            end if;
+         end loop;
+
+         raise Program_Error;
+      end Inherited_From_Formal;
+
+      --------------------------
+      -- In_Unfrozen_Instance --
+      --------------------------
+
+      function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
+         S : Entity_Id;
+
+      begin
+         S := E;
+         while Present (S) and then S /= Standard_Standard loop
+            if Is_Generic_Instance (S)
+              and then Present (Freeze_Node (S))
+              and then not Analyzed (Freeze_Node (S))
+            then
+               return True;
+            end if;
+
+            S := Scope (S);
+         end loop;
+
+         return False;
+      end In_Unfrozen_Instance;
+
+      -------------------------
+      -- Is_Direct_Deep_Call --
+      -------------------------
+
+      function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
+      begin
+         if Is_TSS (Subp, TSS_Deep_Adjust)
+           or else Is_TSS (Subp, TSS_Deep_Finalize)
+           or else Is_TSS (Subp, TSS_Deep_Initialize)
+         then
+            declare
+               Actual : Node_Id;
+               Formal : Node_Id;
+
+            begin
+               Actual := First (Parameter_Associations (N));
+               Formal := First_Formal (Subp);
+               while Present (Actual)
+                 and then Present (Formal)
+               loop
+                  if Nkind (Actual) = N_Identifier
+                    and then Is_Controlling_Actual (Actual)
+                    and then Etype (Actual) = Etype (Formal)
+                  then
+                     return True;
+                  end if;
+
+                  Next (Actual);
+                  Next_Formal (Formal);
+               end loop;
+            end;
+         end if;
+
+         return False;
+      end Is_Direct_Deep_Call;
+
+      ---------------
+      -- New_Value --
+      ---------------
+
+      function New_Value (From : Node_Id) return Node_Id is
+         Res : constant Node_Id := Duplicate_Subexpr (From);
+      begin
+         if Is_Access_Type (Etype (From)) then
+            return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
+         else
+            return Res;
+         end if;
+      end New_Value;
+
+      --  Local variables
+
+      Remote        : constant Boolean := Is_Remote_Call (Call_Node);
+      Actual        : Node_Id;
+      Formal        : Entity_Id;
+      Orig_Subp     : Entity_Id := Empty;
+      Param_Count   : Natural := 0;
+      Parent_Formal : Entity_Id;
+      Parent_Subp   : Entity_Id;
+      Pref_Entity   : Entity_Id;
+      Scop          : Entity_Id;
+      Subp          : Entity_Id;
+
+      Prev_Orig : Node_Id;
+      --  Original node for an actual, which may have been rewritten. If the
+      --  actual is a function call that has been transformed from a selected
+      --  component, the original node is unanalyzed. Otherwise, it carries
+      --  semantic information used to generate additional actuals.
+
+      CW_Interface_Formals_Present : Boolean := False;
+
+   --  Start of processing for Expand_Call_Helper
+
+   begin
+      Post_Call := New_List;
+
+      --  Expand the function or procedure call if the first actual has a
+      --  declared dimension aspect, and the subprogram is declared in one
+      --  of the dimension I/O packages.
+
+      if Ada_Version >= Ada_2012
+        and then
+           Nkind_In (Call_Node, N_Procedure_Call_Statement, N_Function_Call)
+        and then Present (Parameter_Associations (Call_Node))
+      then
+         Expand_Put_Call_With_Symbol (Call_Node);
+      end if;
+
+      --  Ignore if previous error
+
+      if Nkind (Call_Node) in N_Has_Etype
+        and then Etype (Call_Node) = Any_Type
+      then
+         return;
+      end if;
+
+      --  Call using access to subprogram with explicit dereference
+
+      if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
+         Subp        := Etype (Name (Call_Node));
+         Parent_Subp := Empty;
+
+      --  Case of call to simple entry, where the Name is a selected component
+      --  whose prefix is the task, and whose selector name is the entry name
+
+      elsif Nkind (Name (Call_Node)) = N_Selected_Component then
+         Subp        := Entity (Selector_Name (Name (Call_Node)));
+         Parent_Subp := Empty;
+
+      --  Case of call to member of entry family, where Name is an indexed
+      --  component, with the prefix being a selected component giving the
+      --  task and entry family name, and the index being the entry index.
+
+      elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
+         Subp        := Entity (Selector_Name (Prefix (Name (Call_Node))));
+         Parent_Subp := Empty;
+
+      --  Normal case
+
+      else
+         Subp        := Entity (Name (Call_Node));
+         Parent_Subp := Alias (Subp);
+
+         --  Replace call to Raise_Exception by call to Raise_Exception_Always
+         --  if we can tell that the first parameter cannot possibly be null.
+         --  This improves efficiency by avoiding a run-time test.
+
+         --  We do not do this if Raise_Exception_Always does not exist, which
+         --  can happen in configurable run time profiles which provide only a
+         --  Raise_Exception.
+
+         if Is_RTE (Subp, RE_Raise_Exception)
+           and then RTE_Available (RE_Raise_Exception_Always)
+         then
+            declare
+               FA : constant Node_Id :=
+                      Original_Node (First_Actual (Call_Node));
+
+            begin
+               --  The case we catch is where the first argument is obtained
+               --  using the Identity attribute (which must always be
+               --  non-null).
+
+               if Nkind (FA) = N_Attribute_Reference
+                 and then Attribute_Name (FA) = Name_Identity
+               then
+                  Subp := RTE (RE_Raise_Exception_Always);
+                  Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
+               end if;
+            end;
+         end if;
+
+         if Ekind (Subp) = E_Entry then
+            Parent_Subp := Empty;
+         end if;
+      end if;
+
+      --  Ada 2005 (AI-345): We have a procedure call as a triggering
+      --  alternative in an asynchronous select or as an entry call in
+      --  a conditional or timed select. Check whether the procedure call
+      --  is a renaming of an entry and rewrite it as an entry call.
+
+      if Ada_Version >= Ada_2005
+        and then Nkind (Call_Node) = N_Procedure_Call_Statement
+        and then
+           ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
+              and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
+          or else
+            (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
+              and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
+      then
+         declare
+            Ren_Decl : Node_Id;
+            Ren_Root : Entity_Id := Subp;
+
+         begin
+            --  This may be a chain of renamings, find the root
+
+            if Present (Alias (Ren_Root)) then
+               Ren_Root := Alias (Ren_Root);
+            end if;
+
+            if Present (Original_Node (Parent (Parent (Ren_Root)))) then
+               Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
+
+               if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
+                  Rewrite (Call_Node,
+                    Make_Entry_Call_Statement (Loc,
+                      Name =>
+                        New_Copy_Tree (Name (Ren_Decl)),
+                      Parameter_Associations =>
+                        New_Copy_List_Tree
+                          (Parameter_Associations (Call_Node))));
+
+                  return;
+               end if;
+            end if;
+         end;
+      end if;
+
+      if Modify_Tree_For_C
+        and then Nkind (Call_Node) = N_Function_Call
+        and then Is_Entity_Name (Name (Call_Node))
+      then
+         declare
+            Func_Id : constant Entity_Id :=
+                        Ultimate_Alias (Entity (Name (Call_Node)));
+         begin
+            --  When generating C code, transform a function call that returns
+            --  a constrained array type into procedure form.
+
+            if Rewritten_For_C (Func_Id) then
+
+               --  For internally generated calls ensure that they reference
+               --  the entity of the spec of the called function (needed since
+               --  the expander may generate calls using the entity of their
+               --  body). See for example Expand_Boolean_Operator().
+
+               if not (Comes_From_Source (Call_Node))
+                 and then Nkind (Unit_Declaration_Node (Func_Id)) =
+                            N_Subprogram_Body
+               then
+                  Set_Entity (Name (Call_Node),
+                    Corresponding_Function
+                      (Corresponding_Procedure (Func_Id)));
+               end if;
+
+               Rewrite_Function_Call_For_C (Call_Node);
+               return;
+
+            --  Also introduce a temporary for functions that return a record
+            --  called within another procedure or function call, since records
+            --  are passed by pointer in the generated C code, and we cannot
+            --  take a pointer from a subprogram call.
+
+            elsif Nkind (Parent (Call_Node)) in N_Subprogram_Call
+              and then Is_Record_Type (Etype (Func_Id))
+            then
+               declare
+                  Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
+                  Decl    : Node_Id;
+
+               begin
+                  --  Generate:
+                  --    Temp : ... := Func_Call (...);
+
+                  Decl :=
+                    Make_Object_Declaration (Loc,
+                      Defining_Identifier => Temp_Id,
+                      Object_Definition   =>
+                        New_Occurrence_Of (Etype (Func_Id), Loc),
+                      Expression          =>
+                        Make_Function_Call (Loc,
+                          Name                   =>
+                            New_Occurrence_Of (Func_Id, Loc),
+                          Parameter_Associations =>
+                            Parameter_Associations (Call_Node)));
+
+                  Insert_Action (Parent (Call_Node), Decl);
+                  Rewrite (Call_Node, New_Occurrence_Of (Temp_Id, Loc));
+                  return;
+               end;
+            end if;
+         end;
+      end if;
+
+      --  First step, compute extra actuals, corresponding to any Extra_Formals
+      --  present. Note that we do not access Extra_Formals directly, instead
+      --  we simply note the presence of the extra formals as we process the
+      --  regular formals collecting corresponding actuals in Extra_Actuals.
+
+      --  We also generate any required range checks for actuals for in formals
+      --  as we go through the loop, since this is a convenient place to do it.
+      --  (Though it seems that this would be better done in Expand_Actuals???)
+
+      --  Special case: Thunks must not compute the extra actuals; they must
+      --  just propagate to the target primitive their extra actuals.
+
+      if Is_Thunk (Current_Scope)
+        and then Thunk_Entity (Current_Scope) = Subp
+        and then Present (Extra_Formals (Subp))
+      then
+         pragma Assert (Present (Extra_Formals (Current_Scope)));
+
+         declare
+            Target_Formal : Entity_Id;
+            Thunk_Formal  : Entity_Id;
+
+         begin
+            Target_Formal := Extra_Formals (Subp);
+            Thunk_Formal  := Extra_Formals (Current_Scope);
+            while Present (Target_Formal) loop
+               Add_Extra_Actual
+                 (Expr => New_Occurrence_Of (Thunk_Formal, Loc),
+                  EF   => Thunk_Formal);
+
+               Target_Formal := Extra_Formal (Target_Formal);
+               Thunk_Formal  := Extra_Formal (Thunk_Formal);
+            end loop;
+
+            while Is_Non_Empty_List (Extra_Actuals) loop
+               Add_Actual_Parameter (Remove_Head (Extra_Actuals));
+            end loop;
+
+            Expand_Actuals (Call_Node, Subp, Post_Call);
+            pragma Assert (Is_Empty_List (Post_Call));
+            return;
+         end;
+      end if;
+
+      Formal := First_Formal (Subp);
+      Actual := First_Actual (Call_Node);
+      Param_Count := 1;
+      while Present (Formal) loop
+
+         --  Generate range check if required
+
+         if Do_Range_Check (Actual)
+           and then Ekind (Formal) = E_In_Parameter
+         then
+            Generate_Range_Check
+              (Actual, Etype (Formal), CE_Range_Check_Failed);
+         end if;
+
+         --  Prepare to examine current entry
+
+         Prev := Actual;
+         Prev_Orig := Original_Node (Prev);
+
+         --  Ada 2005 (AI-251): Check if any formal is a class-wide interface
+         --  to expand it in a further round.
+
+         CW_Interface_Formals_Present :=
+           CW_Interface_Formals_Present
+             or else
+               (Is_Class_Wide_Type (Etype (Formal))
+                 and then Is_Interface (Etype (Etype (Formal))))
+             or else
+               (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
+                 and then Is_Class_Wide_Type (Directly_Designated_Type
+                                               (Etype (Etype (Formal))))
+                 and then Is_Interface (Directly_Designated_Type
+                                         (Etype (Etype (Formal)))));
+
+         --  Create possible extra actual for constrained case. Usually, the
+         --  extra actual is of the form actual'constrained, but since this
+         --  attribute is only available for unconstrained records, TRUE is
+         --  expanded if the type of the formal happens to be constrained (for
+         --  instance when this procedure is inherited from an unconstrained
+         --  record to a constrained one) or if the actual has no discriminant
+         --  (its type is constrained). An exception to this is the case of a
+         --  private type without discriminants. In this case we pass FALSE
+         --  because the object has underlying discriminants with defaults.
+
+         if Present (Extra_Constrained (Formal)) then
+            if Ekind (Etype (Prev)) in Private_Kind
+              and then not Has_Discriminants (Base_Type (Etype (Prev)))
+            then
+               Add_Extra_Actual
+                 (Expr => New_Occurrence_Of (Standard_False, Loc),
+                  EF   => Extra_Constrained (Formal));
+
+            elsif Is_Constrained (Etype (Formal))
+              or else not Has_Discriminants (Etype (Prev))
+            then
+               Add_Extra_Actual
+                 (Expr => New_Occurrence_Of (Standard_True, Loc),
+                  EF   => Extra_Constrained (Formal));
+
+            --  Do not produce extra actuals for Unchecked_Union parameters.
+            --  Jump directly to the end of the loop.
+
+            elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
+               goto Skip_Extra_Actual_Generation;
+
+            else
+               --  If the actual is a type conversion, then the constrained
+               --  test applies to the actual, not the target type.
+
+               declare
+                  Act_Prev : Node_Id;
+
+               begin
+                  --  Test for unchecked conversions as well, which can occur
+                  --  as out parameter actuals on calls to stream procedures.
+
+                  Act_Prev := Prev;
+                  while Nkind_In (Act_Prev, N_Type_Conversion,
+                                            N_Unchecked_Type_Conversion)
+                  loop
+                     Act_Prev := Expression (Act_Prev);
+                  end loop;
+
+                  --  If the expression is a conversion of a dereference, this
+                  --  is internally generated code that manipulates addresses,
+                  --  e.g. when building interface tables. No check should
+                  --  occur in this case, and the discriminated object is not
+                  --  directly a hand.
+
+                  if not Comes_From_Source (Actual)
+                    and then Nkind (Actual) = N_Unchecked_Type_Conversion
+                    and then Nkind (Act_Prev) = N_Explicit_Dereference
+                  then
+                     Add_Extra_Actual
+                       (Expr => New_Occurrence_Of (Standard_False, Loc),
+                        EF   => Extra_Constrained (Formal));
+
+                  else
+                     Add_Extra_Actual
+                       (Expr =>
+                          Make_Attribute_Reference (Sloc (Prev),
+                            Prefix         =>
+                              Duplicate_Subexpr_No_Checks
+                                (Act_Prev, Name_Req => True),
+                            Attribute_Name => Name_Constrained),
+                        EF   => Extra_Constrained (Formal));
+                  end if;
+               end;
+            end if;
+         end if;
+
+         --  Create possible extra actual for accessibility level
+
+         if Present (Extra_Accessibility (Formal)) then
+
+            --  Ada 2005 (AI-252): If the actual was rewritten as an Access
+            --  attribute, then the original actual may be an aliased object
+            --  occurring as the prefix in a call using "Object.Operation"
+            --  notation. In that case we must pass the level of the object,
+            --  so Prev_Orig is reset to Prev and the attribute will be
+            --  processed by the code for Access attributes further below.
+
+            if Prev_Orig /= Prev
+              and then Nkind (Prev) = N_Attribute_Reference
+              and then Get_Attribute_Id (Attribute_Name (Prev)) =
+                         Attribute_Access
+              and then Is_Aliased_View (Prev_Orig)
+            then
+               Prev_Orig := Prev;
+
+            --  A class-wide precondition generates a test in which formals of
+            --  the subprogram are replaced by actuals that came from source.
+            --  In that case as well, the accessiblity comes from the actual.
+            --  This is the one case in which there are references to formals
+            --  outside of their subprogram.
+
+            elsif Prev_Orig /= Prev
+              and then Is_Entity_Name (Prev_Orig)
+              and then Present (Entity (Prev_Orig))
+              and then Is_Formal (Entity (Prev_Orig))
+              and then not In_Open_Scopes (Scope (Entity (Prev_Orig)))
+            then
+               Prev_Orig := Prev;
+
+            --  If the actual is a formal of an enclosing subprogram it is
+            --  the right entity, even if it is a rewriting. This happens
+            --  when the call is within an inherited condition or predicate.
+
+            elsif Is_Entity_Name (Actual)
+              and then Is_Formal (Entity (Actual))
+              and then In_Open_Scopes (Scope (Entity (Actual)))
+            then
+               Prev_Orig := Prev;
+
+            elsif Nkind (Prev_Orig) = N_Type_Conversion then
+               Prev_Orig := Expression (Prev_Orig);
+            end if;
+
+            --  Ada 2005 (AI-251): Thunks must propagate the extra actuals of
+            --  accessibility levels.
+
+            if Is_Thunk (Current_Scope) then
+               declare
+                  Parm_Ent : Entity_Id;
+
+               begin
+                  if Is_Controlling_Actual (Actual) then
+
+                     --  Find the corresponding actual of the thunk
+
+                     Parm_Ent := First_Entity (Current_Scope);
+                     for J in 2 .. Param_Count loop
+                        Next_Entity (Parm_Ent);
+                     end loop;
+
+                  --  Handle unchecked conversion of access types generated
+                  --  in thunks (cf. Expand_Interface_Thunk).
+
+                  elsif Is_Access_Type (Etype (Actual))
+                    and then Nkind (Actual) = N_Unchecked_Type_Conversion
+                  then
+                     Parm_Ent := Entity (Expression (Actual));
+
+                  else pragma Assert (Is_Entity_Name (Actual));
+                     Parm_Ent := Entity (Actual);
+                  end if;
+
+                  Add_Extra_Actual
+                    (Expr =>
+                       New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
+                     EF   => Extra_Accessibility (Formal));
+               end;
+
+            elsif Is_Entity_Name (Prev_Orig) then
+
+               --  When passing an access parameter, or a renaming of an access
+               --  parameter, as the actual to another access parameter we need
+               --  to pass along the actual's own access level parameter. This
+               --  is done if we are within the scope of the formal access
+               --  parameter (if this is an inlined body the extra formal is
+               --  irrelevant).
+
+               if (Is_Formal (Entity (Prev_Orig))
+                    or else
+                      (Present (Renamed_Object (Entity (Prev_Orig)))
+                        and then
+                          Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
+                        and then
+                          Is_Formal
+                            (Entity (Renamed_Object (Entity (Prev_Orig))))))
+                 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
+                 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
+               then
+                  declare
+                     Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
+
+                  begin
+                     pragma Assert (Present (Parm_Ent));
+
+                     if Present (Extra_Accessibility (Parm_Ent)) then
+                        Add_Extra_Actual
+                          (Expr =>
+                             New_Occurrence_Of
+                               (Extra_Accessibility (Parm_Ent), Loc),
+                           EF   => Extra_Accessibility (Formal));
+
+                     --  If the actual access parameter does not have an
+                     --  associated extra formal providing its scope level,
+                     --  then treat the actual as having library-level
+                     --  accessibility.
+
+                     else
+                        Add_Extra_Actual
+                          (Expr =>
+                             Make_Integer_Literal (Loc,
+                               Intval => Scope_Depth (Standard_Standard)),
+                           EF   => Extra_Accessibility (Formal));
+                     end if;
+                  end;
+
+               --  The actual is a normal access value, so just pass the level
+               --  of the actual's access type.
+
+               else
+                  Add_Extra_Actual
+                    (Expr => Dynamic_Accessibility_Level (Prev_Orig),
+                     EF   => Extra_Accessibility (Formal));
+               end if;
+
+            --  If the actual is an access discriminant, then pass the level
+            --  of the enclosing object (RM05-3.10.2(12.4/2)).
+
+            elsif Nkind (Prev_Orig) = N_Selected_Component
+              and then Ekind (Entity (Selector_Name (Prev_Orig))) =
+                                                       E_Discriminant
+              and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
+                                                       E_Anonymous_Access_Type
+            then
+               Add_Extra_Actual
+                 (Expr =>
+                    Make_Integer_Literal (Loc,
+                      Intval => Object_Access_Level (Prefix (Prev_Orig))),
+                  EF   => Extra_Accessibility (Formal));
+
+            --  All other cases
+
+            else
+               case Nkind (Prev_Orig) is
+                  when N_Attribute_Reference =>
+                     case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
+
+                        --  For X'Access, pass on the level of the prefix X
+
+                        when Attribute_Access =>
+
+                           --  Accessibility level of S'Access is that of A
+
+                           Prev_Orig := Prefix (Prev_Orig);
+
+                           --  If the expression is a view conversion, the
+                           --  accessibility level is that of the expression.
+
+                           if Nkind (Original_Node (Prev_Orig)) =
+                                N_Type_Conversion
+                             and then
+                               Nkind (Expression (Original_Node (Prev_Orig))) =
+                                 N_Explicit_Dereference
+                           then
+                              Prev_Orig :=
+                                Expression (Original_Node (Prev_Orig));
+                           end if;
+
+                           --  If this is an Access attribute applied to the
+                           --  the current instance object passed to a type
+                           --  initialization procedure, then use the level
+                           --  of the type itself. This is not really correct,
+                           --  as there should be an extra level parameter
+                           --  passed in with _init formals (only in the case
+                           --  where the type is immutably limited), but we
+                           --  don't have an easy way currently to create such
+                           --  an extra formal (init procs aren't ever frozen).
+                           --  For now we just use the level of the type,
+                           --  which may be too shallow, but that works better
+                           --  than passing Object_Access_Level of the type,
+                           --  which can be one level too deep in some cases.
+                           --  ???
+
+                           --  A further case that requires special handling
+                           --  is the common idiom E.all'access.  If E is a
+                           --  formal of the enclosing subprogram, the
+                           --  accessibility of the expression is that of E.
+
+                           if Is_Entity_Name (Prev_Orig) then
+                              Pref_Entity := Entity (Prev_Orig);
+
+                           elsif Nkind (Prev_Orig) = N_Explicit_Dereference
+                             and then Is_Entity_Name (Prefix (Prev_Orig))
+                           then
+                              Pref_Entity := Entity (Prefix ((Prev_Orig)));
+
+                           else
+                              Pref_Entity := Empty;
+                           end if;
+
+                           if Is_Entity_Name (Prev_Orig)
+                             and then Is_Type (Entity (Prev_Orig))
+                           then
+                              Add_Extra_Actual
+                                (Expr =>
+                                   Make_Integer_Literal (Loc,
+                                     Intval =>
+                                       Type_Access_Level (Pref_Entity)),
+                                 EF   => Extra_Accessibility (Formal));
+
+                           elsif Nkind (Prev_Orig) = N_Explicit_Dereference
+                             and then Present (Pref_Entity)
+                             and then Is_Formal (Pref_Entity)
+                             and then Present
+                                        (Extra_Accessibility (Pref_Entity))
+                           then
+                              Add_Extra_Actual
+                                (Expr =>
+                                   New_Occurrence_Of
+                                     (Extra_Accessibility (Pref_Entity), Loc),
+                                 EF   => Extra_Accessibility (Formal));
+
+                           else
+                              Add_Extra_Actual
+                                (Expr =>
+                                   Make_Integer_Literal (Loc,
+                                     Intval =>
+                                       Object_Access_Level (Prev_Orig)),
+                                 EF   => Extra_Accessibility (Formal));
+                           end if;
+
+                        --  Treat the unchecked attributes as library-level
+
+                        when Attribute_Unchecked_Access
+                           | Attribute_Unrestricted_Access
+                        =>
+                           Add_Extra_Actual
+                             (Expr =>
+                                Make_Integer_Literal (Loc,
+                                  Intval => Scope_Depth (Standard_Standard)),
+                              EF   => Extra_Accessibility (Formal));
+
+                        --  No other cases of attributes returning access
+                        --  values that can be passed to access parameters.
+
+                        when others =>
+                           raise Program_Error;
+
+                     end case;
+
+                  --  For allocators we pass the level of the execution of the
+                  --  called subprogram, which is one greater than the current
+                  --  scope level.
+
+                  when N_Allocator =>
+                     Add_Extra_Actual
+                       (Expr =>
+                          Make_Integer_Literal (Loc,
+                            Intval => Scope_Depth (Current_Scope) + 1),
+                        EF   => Extra_Accessibility (Formal));
+
+                  --  For most other cases we simply pass the level of the
+                  --  actual's access type. The type is retrieved from
+                  --  Prev rather than Prev_Orig, because in some cases
+                  --  Prev_Orig denotes an original expression that has
+                  --  not been analyzed.
+
+                  when others =>
+                     Add_Extra_Actual
+                       (Expr => Dynamic_Accessibility_Level (Prev),
+                        EF   => Extra_Accessibility (Formal));
+               end case;
+            end if;
+         end if;
+
+         --  Perform the check of 4.6(49) that prevents a null value from being
+         --  passed as an actual to an access parameter. Note that the check
+         --  is elided in the common cases of passing an access attribute or
+         --  access parameter as an actual. Also, we currently don't enforce
+         --  this check for expander-generated actuals and when -gnatdj is set.
+
+         if Ada_Version >= Ada_2005 then
+
+            --  Ada 2005 (AI-231): Check null-excluding access types. Note that
+            --  the intent of 6.4.1(13) is that null-exclusion checks should
+            --  not be done for 'out' parameters, even though it refers only
+            --  to constraint checks, and a null_exclusion is not a constraint.
+            --  Note that AI05-0196-1 corrects this mistake in the RM.
+
+            if Is_Access_Type (Etype (Formal))
+              and then Can_Never_Be_Null (Etype (Formal))
+              and then Ekind (Formal) /= E_Out_Parameter
+              and then Nkind (Prev) /= N_Raise_Constraint_Error
+              and then (Known_Null (Prev)
+                         or else not Can_Never_Be_Null (Etype (Prev)))
+            then
+               Install_Null_Excluding_Check (Prev);
+            end if;
+
+         --  Ada_Version < Ada_2005
+
+         else
+            if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
+              or else Access_Checks_Suppressed (Subp)
+            then
+               null;
+
+            elsif Debug_Flag_J then
+               null;
+
+            elsif not Comes_From_Source (Prev) then
+               null;
+
+            elsif Is_Entity_Name (Prev)
+              and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
+            then
+               null;
+
+            elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
+               null;
+
+            else
+               Install_Null_Excluding_Check (Prev);
+            end if;
+         end if;
+
+         --  Perform appropriate validity checks on parameters that
+         --  are entities.
+
+         if Validity_Checks_On then
+            if  (Ekind (Formal) = E_In_Parameter
+                  and then Validity_Check_In_Params)
+              or else
+                (Ekind (Formal) = E_In_Out_Parameter
+                  and then Validity_Check_In_Out_Params)
+            then
+               --  If the actual is an indexed component of a packed type (or
+               --  is an indexed or selected component whose prefix recursively
+               --  meets this condition), it has not been expanded yet. It will
+               --  be copied in the validity code that follows, and has to be
+               --  expanded appropriately, so reanalyze it.
+
+               --  What we do is just to unset analyzed bits on prefixes till
+               --  we reach something that does not have a prefix.
+
+               declare
+                  Nod : Node_Id;
+
+               begin
+                  Nod := Actual;
+                  while Nkind_In (Nod, N_Indexed_Component,
+                                       N_Selected_Component)
+                  loop
+                     Set_Analyzed (Nod, False);
+                     Nod := Prefix (Nod);
+                  end loop;
+               end;
+
+               Ensure_Valid (Actual);
+            end if;
+         end if;
+
+         --  For IN OUT and OUT parameters, ensure that subscripts are valid
+         --  since this is a left side reference. We only do this for calls
+         --  from the source program since we assume that compiler generated
+         --  calls explicitly generate any required checks. We also need it
+         --  only if we are doing standard validity checks, since clearly it is
+         --  not needed if validity checks are off, and in subscript validity
+         --  checking mode, all indexed components are checked with a call
+         --  directly from Expand_N_Indexed_Component.
+
+         if Comes_From_Source (Call_Node)
+           and then Ekind (Formal) /= E_In_Parameter
+           and then Validity_Checks_On
+           and then Validity_Check_Default
+           and then not Validity_Check_Subscripts
+         then
+            Check_Valid_Lvalue_Subscripts (Actual);
+         end if;
+
+         --  Mark any scalar OUT parameter that is a simple variable as no
+         --  longer known to be valid (unless the type is always valid). This
+         --  reflects the fact that if an OUT parameter is never set in a
+         --  procedure, then it can become invalid on the procedure return.
+
+         if Ekind (Formal) = E_Out_Parameter
+           and then Is_Entity_Name (Actual)
+           and then Ekind (Entity (Actual)) = E_Variable
+           and then not Is_Known_Valid (Etype (Actual))
+         then
+            Set_Is_Known_Valid (Entity (Actual), False);
+         end if;
+
+         --  For an OUT or IN OUT parameter, if the actual is an entity, then
+         --  clear current values, since they can be clobbered. We are probably
+         --  doing this in more places than we need to, but better safe than
+         --  sorry when it comes to retaining bad current values.
+
+         if Ekind (Formal) /= E_In_Parameter
+           and then Is_Entity_Name (Actual)
+           and then Present (Entity (Actual))
+         then
+            declare
+               Ent : constant Entity_Id := Entity (Actual);
+               Sav : Node_Id;
+
+            begin
+               --  For an OUT or IN OUT parameter that is an assignable entity,
+               --  we do not want to clobber the Last_Assignment field, since
+               --  if it is set, it was precisely because it is indeed an OUT
+               --  or IN OUT parameter. We do reset the Is_Known_Valid flag
+               --  since the subprogram could have returned in invalid value.
+
+               if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
+                 and then Is_Assignable (Ent)
+               then
+                  Sav := Last_Assignment (Ent);
+                  Kill_Current_Values (Ent);
+                  Set_Last_Assignment (Ent, Sav);
+                  Set_Is_Known_Valid (Ent, False);
+
+               --  For all other cases, just kill the current values
+
+               else
+                  Kill_Current_Values (Ent);
+               end if;
+            end;
+         end if;
+
+         --  If the formal is class wide and the actual is an aggregate, force
+         --  evaluation so that the back end who does not know about class-wide
+         --  type, does not generate a temporary of the wrong size.
+
+         if not Is_Class_Wide_Type (Etype (Formal)) then
+            null;
+
+         elsif Nkind (Actual) = N_Aggregate
+           or else (Nkind (Actual) = N_Qualified_Expression
+                     and then Nkind (Expression (Actual)) = N_Aggregate)
+         then
+            Force_Evaluation (Actual);
+         end if;
+
+         --  In a remote call, if the formal is of a class-wide type, check
+         --  that the actual meets the requirements described in E.4(18).
+
+         if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
+            Insert_Action (Actual,
+              Make_Transportable_Check (Loc,
+                Duplicate_Subexpr_Move_Checks (Actual)));
+         end if;
+
+         --  Perform invariant checks for all intermediate types in a view
+         --  conversion after successful return from a call that passes the
+         --  view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
+         --  13/3, 14/3)). Consider only source conversion in order to avoid
+         --  generating spurious checks on complex expansion such as object
+         --  initialization through an extension aggregate.
+
+         if Comes_From_Source (N)
+           and then Ekind (Formal) /= E_In_Parameter
+           and then Nkind (Actual) = N_Type_Conversion
+         then
+            Add_View_Conversion_Invariants (Formal, Actual);
+         end if;
+
+         --  Generating C the initialization of an allocator is performed by
+         --  means of individual statements, and hence it must be done before
+         --  the call.
+
+         if Modify_Tree_For_C
+           and then Nkind (Actual) = N_Allocator
+           and then Nkind (Expression (Actual)) = N_Qualified_Expression
+         then
+            Remove_Side_Effects (Actual);
+         end if;
+
+         --  This label is required when skipping extra actual generation for
+         --  Unchecked_Union parameters.
+
+         <<Skip_Extra_Actual_Generation>>
+
+         Param_Count := Param_Count + 1;
+         Next_Actual (Actual);
+         Next_Formal (Formal);
+      end loop;
+
+      --  If we are calling an Ada 2012 function which needs to have the
+      --  "accessibility level determined by the point of call" (AI05-0234)
+      --  passed in to it, then pass it in.
+
+      if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
+        and then
+          Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
+      then
+         declare
+            Ancestor : Node_Id := Parent (Call_Node);
+            Level    : Node_Id := Empty;
+            Defer    : Boolean := False;
+
+         begin
+            --  Unimplemented: if Subp returns an anonymous access type, then
+
+            --    a) if the call is the operand of an explict conversion, then
+            --       the target type of the conversion (a named access type)
+            --       determines the accessibility level pass in;
+
+            --    b) if the call defines an access discriminant of an object
+            --       (e.g., the discriminant of an object being created by an
+            --       allocator, or the discriminant of a function result),
+            --       then the accessibility level to pass in is that of the
+            --       discriminated object being initialized).
+
+            --  ???
+
+            while Nkind (Ancestor) = N_Qualified_Expression
+            loop
+               Ancestor := Parent (Ancestor);
+            end loop;
+
+            case Nkind (Ancestor) is
+               when N_Allocator =>
+
+                  --  At this point, we'd like to assign
+
+                  --    Level := Dynamic_Accessibility_Level (Ancestor);
+
+                  --  but Etype of Ancestor may not have been set yet,
+                  --  so that doesn't work.
+
+                  --  Handle this later in Expand_Allocator_Expression.
+
+                  Defer := True;
+
+               when N_Object_Declaration
+                  | N_Object_Renaming_Declaration
+               =>
+                  declare
+                     Def_Id : constant Entity_Id :=
+                                Defining_Identifier (Ancestor);
+
+                  begin
+                     if Is_Return_Object (Def_Id) then
+                        if Present (Extra_Accessibility_Of_Result
+                                     (Return_Applies_To (Scope (Def_Id))))
+                        then
+                           --  Pass along value that was passed in if the
+                           --  routine we are returning from also has an
+                           --  Accessibility_Of_Result formal.
+
+                           Level :=
+                             New_Occurrence_Of
+                              (Extra_Accessibility_Of_Result
+                                (Return_Applies_To (Scope (Def_Id))), Loc);
+                        end if;
+                     else
+                        Level :=
+                          Make_Integer_Literal (Loc,
+                            Intval => Object_Access_Level (Def_Id));
+                     end if;
+                  end;
+
+               when N_Simple_Return_Statement =>
+                  if Present (Extra_Accessibility_Of_Result
+                               (Return_Applies_To
+                                 (Return_Statement_Entity (Ancestor))))
+                  then
+                     --  Pass along value that was passed in if the returned
+                     --  routine also has an Accessibility_Of_Result formal.
+
+                     Level :=
+                       New_Occurrence_Of
+                         (Extra_Accessibility_Of_Result
+                           (Return_Applies_To
+                             (Return_Statement_Entity (Ancestor))), Loc);
+                  end if;
+
+               when others =>
+                  null;
+            end case;
+
+            if not Defer then
+               if not Present (Level) then
+
+                  --  The "innermost master that evaluates the function call".
+
+                  --  ??? - Should we use Integer'Last here instead in order
+                  --  to deal with (some of) the problems associated with
+                  --  calls to subps whose enclosing scope is unknown (e.g.,
+                  --  Anon_Access_To_Subp_Param.all)?
+
+                  Level :=
+                    Make_Integer_Literal (Loc,
+                      Intval => Scope_Depth (Current_Scope) + 1);
+               end if;
+
+               Add_Extra_Actual
+                 (Expr => Level,
+                  EF   =>
+                    Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
+            end if;
+         end;
+      end if;
+
+      --  If we are expanding the RHS of an assignment we need to check if tag
+      --  propagation is needed. You might expect this processing to be in
+      --  Analyze_Assignment but has to be done earlier (bottom-up) because the
+      --  assignment might be transformed to a declaration for an unconstrained
+      --  value if the expression is classwide.
+
+      if Nkind (Call_Node) = N_Function_Call
+        and then Is_Tag_Indeterminate (Call_Node)
+        and then Is_Entity_Name (Name (Call_Node))
+      then
+         declare
+            Ass : Node_Id := Empty;
+
+         begin
+            if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
+               Ass := Parent (Call_Node);
+
+            elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
+              and then Nkind (Parent (Parent (Call_Node))) =
+                                                  N_Assignment_Statement
+            then
+               Ass := Parent (Parent (Call_Node));
+
+            elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
+              and then Nkind (Parent (Parent (Call_Node))) =
+                                                  N_Assignment_Statement
+            then
+               Ass := Parent (Parent (Call_Node));
+            end if;
+
+            if Present (Ass)
+              and then Is_Class_Wide_Type (Etype (Name (Ass)))
+            then
+               if Is_Access_Type (Etype (Call_Node)) then
+                  if Designated_Type (Etype (Call_Node)) /=
+                    Root_Type (Etype (Name (Ass)))
+                  then
+                     Error_Msg_NE
+                       ("tag-indeterminate expression must have designated "
+                        & "type& (RM 5.2 (6))",
+                         Call_Node, Root_Type (Etype (Name (Ass))));
+                  else
+                     Propagate_Tag (Name (Ass), Call_Node);
+                  end if;
+
+               elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
+                  Error_Msg_NE
+                    ("tag-indeterminate expression must have type & "
+                     & "(RM 5.2 (6))",
+                     Call_Node, Root_Type (Etype (Name (Ass))));
+
+               else
+                  Propagate_Tag (Name (Ass), Call_Node);
+               end if;
+
+               --  The call will be rewritten as a dispatching call, and
+               --  expanded as such.
+
+               return;
+            end if;
+         end;
+      end if;
+
+      --  Ada 2005 (AI-251): If some formal is a class-wide interface, expand
+      --  it to point to the correct secondary virtual table
+
+      if Nkind (Call_Node) in N_Subprogram_Call
+        and then CW_Interface_Formals_Present
+      then
+         Expand_Interface_Actuals (Call_Node);
+      end if;
+
+      --  Deals with Dispatch_Call if we still have a call, before expanding
+      --  extra actuals since this will be done on the re-analysis of the
+      --  dispatching call. Note that we do not try to shorten the actual list
+      --  for a dispatching call, it would not make sense to do so. Expansion
+      --  of dispatching calls is suppressed for VM targets, because the VM
+      --  back-ends directly handle the generation of dispatching calls and
+      --  would have to undo any expansion to an indirect call.
+
+      if Nkind (Call_Node) in N_Subprogram_Call
+        and then Present (Controlling_Argument (Call_Node))
+      then
+         declare
+            Call_Typ   : constant Entity_Id := Etype (Call_Node);
+            Typ        : constant Entity_Id := Find_Dispatching_Type (Subp);
+            Eq_Prim_Op : Entity_Id := Empty;
+            New_Call   : Node_Id;
+            Param      : Node_Id;
+            Prev_Call  : Node_Id;
+
+         begin
+            if not Is_Limited_Type (Typ) then
+               Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
+            end if;
+
+            if Tagged_Type_Expansion then
+               Expand_Dispatching_Call (Call_Node);
+
+               --  The following return is worrisome. Is it really OK to skip
+               --  all remaining processing in this procedure ???
+
+               return;
+
+            --  VM targets
+
+            else
+               Apply_Tag_Checks (Call_Node);
+
+               --  If this is a dispatching "=", we must first compare the
+               --  tags so we generate: x.tag = y.tag and then x = y
+
+               if Subp = Eq_Prim_Op then
+
+                  --  Mark the node as analyzed to avoid reanalyzing this
+                  --  dispatching call (which would cause a never-ending loop)
+
+                  Prev_Call := Relocate_Node (Call_Node);
+                  Set_Analyzed (Prev_Call);
+
+                  Param := First_Actual (Call_Node);
+                  New_Call :=
+                    Make_And_Then (Loc,
+                      Left_Opnd =>
+                           Make_Op_Eq (Loc,
+                             Left_Opnd =>
+                               Make_Selected_Component (Loc,
+                                 Prefix        => New_Value (Param),
+                                 Selector_Name =>
+                                   New_Occurrence_Of
+                                     (First_Tag_Component (Typ), Loc)),
+
+                             Right_Opnd =>
+                               Make_Selected_Component (Loc,
+                                 Prefix        =>
+                                   Unchecked_Convert_To (Typ,
+                                     New_Value (Next_Actual (Param))),
+                                 Selector_Name =>
+                                   New_Occurrence_Of
+                                     (First_Tag_Component (Typ), Loc))),
+                      Right_Opnd => Prev_Call);
+
+                  Rewrite (Call_Node, New_Call);
+
+                  Analyze_And_Resolve
+                    (Call_Node, Call_Typ, Suppress => All_Checks);
+               end if;
+
+               --  Expansion of a dispatching call results in an indirect call,
+               --  which in turn causes current values to be killed (see
+               --  Resolve_Call), so on VM targets we do the call here to
+               --  ensure consistent warnings between VM and non-VM targets.
+
+               Kill_Current_Values;
+            end if;
+
+            --  If this is a dispatching "=" then we must update the reference
+            --  to the call node because we generated:
+            --     x.tag = y.tag and then x = y
+
+            if Subp = Eq_Prim_Op then
+               Call_Node := Right_Opnd (Call_Node);
+            end if;
+         end;
+      end if;
+
+      --  Similarly, expand calls to RCI subprograms on which pragma
+      --  All_Calls_Remote applies. The rewriting will be reanalyzed
+      --  later. Do this only when the call comes from source since we
+      --  do not want such a rewriting to occur in expanded code.
+
+      if Is_All_Remote_Call (Call_Node) then
+         Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
+
+      --  Similarly, do not add extra actuals for an entry call whose entity
+      --  is a protected procedure, or for an internal protected subprogram
+      --  call, because it will be rewritten as a protected subprogram call
+      --  and reanalyzed (see Expand_Protected_Subprogram_Call).
+
+      elsif Is_Protected_Type (Scope (Subp))
+         and then (Ekind (Subp) = E_Procedure
+                    or else Ekind (Subp) = E_Function)
+      then
+         null;
+
+      --  During that loop we gathered the extra actuals (the ones that
+      --  correspond to Extra_Formals), so now they can be appended.
+
+      else
+         while Is_Non_Empty_List (Extra_Actuals) loop
+            Add_Actual_Parameter (Remove_Head (Extra_Actuals));
+         end loop;
+      end if;
+
+      --  At this point we have all the actuals, so this is the point at which
+      --  the various expansion activities for actuals is carried out.
+
+      Expand_Actuals (Call_Node, Subp, Post_Call);
+
+      --  Verify that the actuals do not share storage. This check must be done
+      --  on the caller side rather that inside the subprogram to avoid issues
+      --  of parameter passing.
+
+      if Check_Aliasing_Of_Parameters then
+         Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
+      end if;
+
+      --  If the subprogram is a renaming, or if it is inherited, replace it in
+      --  the call with the name of the actual subprogram being called. If this
+      --  is a dispatching call, the run-time decides what to call. The Alias
+      --  attribute does not apply to entries.
+
+      if Nkind (Call_Node) /= N_Entry_Call_Statement
+        and then No (Controlling_Argument (Call_Node))
+        and then Present (Parent_Subp)
+        and then not Is_Direct_Deep_Call (Subp)
+      then
+         if Present (Inherited_From_Formal (Subp)) then
+            Parent_Subp := Inherited_From_Formal (Subp);
+         else
+            Parent_Subp := Ultimate_Alias (Parent_Subp);
+         end if;
+
+         --  The below setting of Entity is suspect, see F109-018 discussion???
+
+         Set_Entity (Name (Call_Node), Parent_Subp);
+
+         if Is_Abstract_Subprogram (Parent_Subp)
+           and then not In_Instance
+         then
+            Error_Msg_NE
+              ("cannot call abstract subprogram &!",
+               Name (Call_Node), Parent_Subp);
+         end if;
+
+         --  Inspect all formals of derived subprogram Subp. Compare parameter
+         --  types with the parent subprogram and check whether an actual may
+         --  need a type conversion to the corresponding formal of the parent
+         --  subprogram.
+
+         --  Not clear whether intrinsic subprograms need such conversions. ???
+
+         if not Is_Intrinsic_Subprogram (Parent_Subp)
+           or else Is_Generic_Instance (Parent_Subp)
+         then
+            declare
+               procedure Convert (Act : Node_Id; Typ : Entity_Id);
+               --  Rewrite node Act as a type conversion of Act to Typ. Analyze
+               --  and resolve the newly generated construct.
+
+               -------------
+               -- Convert --
+               -------------
+
+               procedure Convert (Act : Node_Id; Typ : Entity_Id) is
+               begin
+                  Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
+                  Analyze (Act);
+                  Resolve (Act, Typ);
+               end Convert;
+
+               --  Local variables
+
+               Actual_Typ : Entity_Id;
+               Formal_Typ : Entity_Id;
+               Parent_Typ : Entity_Id;
+
+            begin
+               Actual := First_Actual (Call_Node);
+               Formal := First_Formal (Subp);
+               Parent_Formal := First_Formal (Parent_Subp);
+               while Present (Formal) loop
+                  Actual_Typ := Etype (Actual);
+                  Formal_Typ := Etype (Formal);
+                  Parent_Typ := Etype (Parent_Formal);
+
+                  --  For an IN parameter of a scalar type, the parent formal
+                  --  type and derived formal type differ or the parent formal
+                  --  type and actual type do not match statically.
+
+                  if Is_Scalar_Type (Formal_Typ)
+                    and then Ekind (Formal) = E_In_Parameter
+                    and then Formal_Typ /= Parent_Typ
+                    and then
+                      not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
+                    and then not Raises_Constraint_Error (Actual)
+                  then
+                     Convert (Actual, Parent_Typ);
+                     Enable_Range_Check (Actual);
+
+                     --  If the actual has been marked as requiring a range
+                     --  check, then generate it here.
+
+                     if Do_Range_Check (Actual) then
+                        Generate_Range_Check
+                          (Actual, Etype (Formal), CE_Range_Check_Failed);
+                     end if;
+
+                  --  For access types, the parent formal type and actual type
+                  --  differ.
+
+                  elsif Is_Access_Type (Formal_Typ)
+                    and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
+                  then
+                     if Ekind (Formal) /= E_In_Parameter then
+                        Convert (Actual, Parent_Typ);
+
+                     elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
+                       and then Designated_Type (Parent_Typ) /=
+                                Designated_Type (Actual_Typ)
+                       and then not Is_Controlling_Formal (Formal)
+                     then
+                        --  This unchecked conversion is not necessary unless
+                        --  inlining is enabled, because in that case the type
+                        --  mismatch may become visible in the body about to be
+                        --  inlined.
+
+                        Rewrite (Actual,
+                          Unchecked_Convert_To (Parent_Typ,
+                            Relocate_Node (Actual)));
+                        Analyze (Actual);
+                        Resolve (Actual, Parent_Typ);
+                     end if;
+
+                  --  If there is a change of representation, then generate a
+                  --  warning, and do the change of representation.
+
+                  elsif not Same_Representation (Formal_Typ, Parent_Typ) then
+                     Error_Msg_N
+                       ("??change of representation required", Actual);
+                     Convert (Actual, Parent_Typ);
+
+                  --  For array and record types, the parent formal type and
+                  --  derived formal type have different sizes or pragma Pack
+                  --  status.
+
+                  elsif ((Is_Array_Type (Formal_Typ)
+                           and then Is_Array_Type (Parent_Typ))
+                       or else
+                         (Is_Record_Type (Formal_Typ)
+                           and then Is_Record_Type (Parent_Typ)))
+                    and then
+                      (Esize (Formal_Typ) /= Esize (Parent_Typ)
+                        or else Has_Pragma_Pack (Formal_Typ) /=
+                                Has_Pragma_Pack (Parent_Typ))
+                  then
+                     Convert (Actual, Parent_Typ);
+                  end if;
+
+                  Next_Actual (Actual);
+                  Next_Formal (Formal);
+                  Next_Formal (Parent_Formal);
+               end loop;
+            end;
+         end if;
+
+         Orig_Subp := Subp;
+         Subp := Parent_Subp;
+      end if;
+
+      --  Deal with case where call is an explicit dereference
+
+      if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
+
+      --  Handle case of access to protected subprogram type
+
+         if Is_Access_Protected_Subprogram_Type
+              (Base_Type (Etype (Prefix (Name (Call_Node)))))
+         then
+            --  If this is a call through an access to protected operation, the
+            --  prefix has the form (object'address, operation'access). Rewrite
+            --  as a for other protected calls: the object is the 1st parameter
+            --  of the list of actuals.
+
+            declare
+               Call : Node_Id;
+               Parm : List_Id;
+               Nam  : Node_Id;
+               Obj  : Node_Id;
+               Ptr  : constant Node_Id := Prefix (Name (Call_Node));
+
+               T : constant Entity_Id :=
+                     Equivalent_Type (Base_Type (Etype (Ptr)));
+
+               D_T : constant Entity_Id :=
+                       Designated_Type (Base_Type (Etype (Ptr)));
+
+            begin
+               Obj :=
+                 Make_Selected_Component (Loc,
+                   Prefix        => Unchecked_Convert_To (T, Ptr),
+                   Selector_Name =>
+                     New_Occurrence_Of (First_Entity (T), Loc));
+
+               Nam :=
+                 Make_Selected_Component (Loc,
+                   Prefix        => Unchecked_Convert_To (T, Ptr),
+                   Selector_Name =>
+                     New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
+
+               Nam :=
+                 Make_Explicit_Dereference (Loc,
+                   Prefix => Nam);
+
+               if Present (Parameter_Associations (Call_Node)) then
+                  Parm := Parameter_Associations (Call_Node);
+               else
+                  Parm := New_List;
+               end if;
+
+               Prepend (Obj, Parm);
+
+               if Etype (D_T) = Standard_Void_Type then
+                  Call :=
+                    Make_Procedure_Call_Statement (Loc,
+                      Name                   => Nam,
+                      Parameter_Associations => Parm);
+               else
+                  Call :=
+                    Make_Function_Call (Loc,
+                      Name                   => Nam,
+                      Parameter_Associations => Parm);
+               end if;
+
+               Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
+               Set_Etype (Call, Etype (D_T));
+
+               --  We do not re-analyze the call to avoid infinite recursion.
+               --  We analyze separately the prefix and the object, and set
+               --  the checks on the prefix that would otherwise be emitted
+               --  when resolving a call.
+
+               Rewrite (Call_Node, Call);
+               Analyze (Nam);
+               Apply_Access_Check (Nam);
+               Analyze (Obj);
+               return;
+            end;
+         end if;
+      end if;
+
+      --  If this is a call to an intrinsic subprogram, then perform the
+      --  appropriate expansion to the corresponding tree node and we
+      --  are all done (since after that the call is gone).
+
+      --  In the case where the intrinsic is to be processed by the back end,
+      --  the call to Expand_Intrinsic_Call will do nothing, which is fine,
+      --  since the idea in this case is to pass the call unchanged. If the
+      --  intrinsic is an inherited unchecked conversion, and the derived type
+      --  is the target type of the conversion, we must retain it as the return
+      --  type of the expression. Otherwise the expansion below, which uses the
+      --  parent operation, will yield the wrong type.
+
+      if Is_Intrinsic_Subprogram (Subp) then
+         Expand_Intrinsic_Call (Call_Node, Subp);
+
+         if Nkind (Call_Node) = N_Unchecked_Type_Conversion
+           and then Parent_Subp /= Orig_Subp
+           and then Etype (Parent_Subp) /= Etype (Orig_Subp)
+         then
+            Set_Etype (Call_Node, Etype (Orig_Subp));
+         end if;
+
+         return;
+      end if;
+
+      if Ekind_In (Subp, E_Function, E_Procedure) then
+
+         --  We perform a simple optimization on calls for To_Address by
+         --  replacing them with an unchecked conversion. Not only is this
+         --  efficient, but it also avoids order of elaboration problems when
+         --  address clauses are inlined (address expression elaborated at the
+         --  wrong point).
+
+         --  We perform this optimization regardless of whether we are in the
+         --  main unit or in a unit in the context of the main unit, to ensure
+         --  that the generated tree is the same in both cases, for CodePeer
+         --  use.
+
+         if Is_RTE (Subp, RE_To_Address) then
+            Rewrite (Call_Node,
+              Unchecked_Convert_To
+                (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
+            return;
+
+         --  A call to a null procedure is replaced by a null statement, but we
+         --  are not allowed to ignore possible side effects of the call, so we
+         --  make sure that actuals are evaluated.
+         --  We also suppress this optimization for GNATCoverage.
+
+         elsif Is_Null_Procedure (Subp)
+           and then not Opt.Suppress_Control_Flow_Optimizations
+         then
+            Actual := First_Actual (Call_Node);
+            while Present (Actual) loop
+               Remove_Side_Effects (Actual);
+               Next_Actual (Actual);
+            end loop;
+
+            Rewrite (Call_Node, Make_Null_Statement (Loc));
+            return;
+         end if;
+
+         --  Handle inlining. No action needed if the subprogram is not inlined
+
+         if not Is_Inlined (Subp) then
+            null;
+
+         --  Frontend inlining of expression functions (performed also when
+         --  backend inlining is enabled).
+
+         elsif Is_Inlinable_Expression_Function (Subp) then
+            Rewrite (N, New_Copy (Expression_Of_Expression_Function (Subp)));
+            Analyze (N);
+            return;
+
+         --  Handle frontend inlining
+
+         elsif not Back_End_Inlining then
+            Inlined_Subprogram : declare
+               Bod         : Node_Id;
+               Must_Inline : Boolean := False;
+               Spec        : constant Node_Id := Unit_Declaration_Node (Subp);
+
+            begin
+               --  Verify that the body to inline has already been seen, and
+               --  that if the body is in the current unit the inlining does
+               --  not occur earlier. This avoids order-of-elaboration problems
+               --  in the back end.
+
+               --  This should be documented in sinfo/einfo ???
+
+               if No (Spec)
+                 or else Nkind (Spec) /= N_Subprogram_Declaration
+                 or else No (Body_To_Inline (Spec))
+               then
+                  Must_Inline := False;
+
+               --  If this an inherited function that returns a private type,
+               --  do not inline if the full view is an unconstrained array,
+               --  because such calls cannot be inlined.
+
+               elsif Present (Orig_Subp)
+                 and then Is_Array_Type (Etype (Orig_Subp))
+                 and then not Is_Constrained (Etype (Orig_Subp))
+               then
+                  Must_Inline := False;
+
+               elsif In_Unfrozen_Instance (Scope (Subp)) then
+                  Must_Inline := False;
+
+               else
+                  Bod := Body_To_Inline (Spec);
+
+                  if (In_Extended_Main_Code_Unit (Call_Node)
+                        or else In_Extended_Main_Code_Unit (Parent (Call_Node))
+                        or else Has_Pragma_Inline_Always (Subp))
+                    and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
+                               or else
+                                 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
+                  then
+                     Must_Inline := True;
+
+                  --  If we are compiling a package body that is not the main
+                  --  unit, it must be for inlining/instantiation purposes,
+                  --  in which case we inline the call to insure that the same
+                  --  temporaries are generated when compiling the body by
+                  --  itself. Otherwise link errors can occur.
+
+                  --  If the function being called is itself in the main unit,
+                  --  we cannot inline, because there is a risk of double
+                  --  elaboration and/or circularity: the inlining can make
+                  --  visible a private entity in the body of the main unit,
+                  --  that gigi will see before its sees its proper definition.
+
+                  elsif not (In_Extended_Main_Code_Unit (Call_Node))
+                    and then In_Package_Body
+                  then
+                     Must_Inline := not In_Extended_Main_Source_Unit (Subp);
+
+                  --  Inline calls to _postconditions when generating C code
+
+                  elsif Modify_Tree_For_C
+                    and then In_Same_Extended_Unit (Sloc (Bod), Loc)
+                    and then Chars (Name (N)) = Name_uPostconditions
+                  then
+                     Must_Inline := True;
+                  end if;
+               end if;
+
+               if Must_Inline then
+                  Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
+
+               else
+                  --  Let the back end handle it
+
+                  Add_Inlined_Body (Subp, Call_Node);
+
+                  if Front_End_Inlining
+                    and then Nkind (Spec) = N_Subprogram_Declaration
+                    and then (In_Extended_Main_Code_Unit (Call_Node))
+                    and then No (Body_To_Inline (Spec))
+                    and then not Has_Completion (Subp)
+                    and then In_Same_Extended_Unit (Sloc (Spec), Loc)
+                  then
+                     Cannot_Inline
+                       ("cannot inline& (body not seen yet)?",
+                        Call_Node, Subp);
+                  end if;
+               end if;
+            end Inlined_Subprogram;
+
+         --  Back end inlining: let the back end handle it
+
+         elsif No (Unit_Declaration_Node (Subp))
+           or else Nkind (Unit_Declaration_Node (Subp)) /=
+                                                 N_Subprogram_Declaration
+           or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
+           or else Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) in
+                                                                      N_Entity
+         then
+            Add_Inlined_Body (Subp, Call_Node);
+
+            --  If the inlined call appears within an instantiation and some
+            --  level of optimization is required, ensure that the enclosing
+            --  instance body is available so that the back-end can actually
+            --  perform the inlining.
+
+            if In_Instance
+              and then Comes_From_Source (Subp)
+              and then Optimization_Level > 0
+            then
+               declare
+                  Decl      : Node_Id;
+                  Inst      : Entity_Id;
+                  Inst_Node : Node_Id;
+
+               begin
+                  Inst := Scope (Subp);
+
+                  --  Find enclosing instance
+
+                  while Present (Inst) and then Inst /= Standard_Standard loop
+                     exit when Is_Generic_Instance (Inst);
+                     Inst := Scope (Inst);
+                  end loop;
+
+                  if Present (Inst)
+                    and then Is_Generic_Instance (Inst)
+                    and then not Is_Inlined (Inst)
+                  then
+                     Set_Is_Inlined (Inst);
+                     Decl := Unit_Declaration_Node (Inst);
+
+                     --  Do not add a pending instantiation if the body exits
+                     --  already, or if the instance is a compilation unit, or
+                     --  the instance node is missing.
+
+                     if Present (Corresponding_Body (Decl))
+                       or else Nkind (Parent (Decl)) = N_Compilation_Unit
+                       or else No (Next (Decl))
+                     then
+                        null;
+
+                     else
+                        --  The instantiation node usually follows the package
+                        --  declaration for the instance. If the generic unit
+                        --  has aspect specifications, they are transformed
+                        --  into pragmas in the instance, and the instance node
+                        --  appears after them.
+
+                        Inst_Node := Next (Decl);
+
+                        while Nkind (Inst_Node) /= N_Package_Instantiation loop
+                           Inst_Node := Next (Inst_Node);
+                        end loop;
+
+                        Add_Pending_Instantiation (Inst_Node, Decl);
+                     end if;
+                  end if;
+               end;
+            end if;
+
+         --  Front end expansion of simple functions returning unconstrained
+         --  types (see Check_And_Split_Unconstrained_Function). Note that the
+         --  case of a simple renaming (Body_To_Inline in N_Entity above, see
+         --  also Build_Renamed_Body) cannot be expanded here because this may
+         --  give rise to order-of-elaboration issues for the types of the
+         --  parameters of the subprogram, if any.
+
+         else
+            Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
+         end if;
+      end if;
+
+      --  Check for protected subprogram. This is either an intra-object call,
+      --  or a protected function call. Protected procedure calls are rewritten
+      --  as entry calls and handled accordingly.
+
+      --  In Ada 2005, this may be an indirect call to an access parameter that
+      --  is an access_to_subprogram. In that case the anonymous type has a
+      --  scope that is a protected operation, but the call is a regular one.
+      --  In either case do not expand call if subprogram is eliminated.
+
+      Scop := Scope (Subp);
+
+      if Nkind (Call_Node) /= N_Entry_Call_Statement
+        and then Is_Protected_Type (Scop)
+        and then Ekind (Subp) /= E_Subprogram_Type
+        and then not Is_Eliminated (Subp)
+      then
+         --  If the call is an internal one, it is rewritten as a call to the
+         --  corresponding unprotected subprogram.
+
+         Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
+      end if;
+
+      --  Functions returning controlled objects need special attention. If
+      --  the return type is limited, then the context is initialization and
+      --  different processing applies. If the call is to a protected function,
+      --  the expansion above will call Expand_Call recursively. Otherwise the
+      --  function call is transformed into a temporary which obtains the
+      --  result from the secondary stack.
+
+      if Needs_Finalization (Etype (Subp)) then
+         if not Is_Build_In_Place_Function_Call (Call_Node)
+           and then
+             (No (First_Formal (Subp))
+               or else
+                 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
+         then
+            Expand_Ctrl_Function_Call (Call_Node);
+
+         --  Build-in-place function calls which appear in anonymous contexts
+         --  need a transient scope to ensure the proper finalization of the
+         --  intermediate result after its use.
+
+         elsif Is_Build_In_Place_Function_Call (Call_Node)
+           and then Nkind_In (Parent (Unqual_Conv (Call_Node)),
+                              N_Attribute_Reference,
+                              N_Function_Call,
+                              N_Indexed_Component,
+                              N_Object_Renaming_Declaration,
+                              N_Procedure_Call_Statement,
+                              N_Selected_Component,
+                              N_Slice)
+         then
+            Establish_Transient_Scope (Call_Node, Sec_Stack => True);
+         end if;
+      end if;
+   end Expand_Call_Helper;
+
+   -------------------------------
+   -- Expand_Ctrl_Function_Call --
+   -------------------------------
+
+   procedure Expand_Ctrl_Function_Call (N : Node_Id) is
+      function Is_Element_Reference (N : Node_Id) return Boolean;
+      --  Determine whether node N denotes a reference to an Ada 2012 container
+      --  element.
+
+      --------------------------
+      -- Is_Element_Reference --
+      --------------------------
+
+      function Is_Element_Reference (N : Node_Id) return Boolean is
+         Ref : constant Node_Id := Original_Node (N);
+
+      begin
+         --  Analysis marks an element reference by setting the generalized
+         --  indexing attribute of an indexed component before the component
+         --  is rewritten into a function call.
+
+         return
+           Nkind (Ref) = N_Indexed_Component
+             and then Present (Generalized_Indexing (Ref));
+      end Is_Element_Reference;
+
+   --  Start of processing for Expand_Ctrl_Function_Call
+
+   begin
+      --  Optimization, if the returned value (which is on the sec-stack) is
+      --  returned again, no need to copy/readjust/finalize, we can just pass
+      --  the value thru (see Expand_N_Simple_Return_Statement), and thus no
+      --  attachment is needed
+
+      if Nkind (Parent (N)) = N_Simple_Return_Statement then
+         return;
+      end if;
+
+      --  Resolution is now finished, make sure we don't start analysis again
+      --  because of the duplication.
+
+      Set_Analyzed (N);
+
+      --  A function which returns a controlled object uses the secondary
+      --  stack. Rewrite the call into a temporary which obtains the result of
+      --  the function using 'reference.
+
+      Remove_Side_Effects (N);
+
+      --  The side effect removal of the function call produced a temporary.
+      --  When the context is a case expression, if expression, or expression
+      --  with actions, the lifetime of the temporary must be extended to match
+      --  that of the context. Otherwise the function result will be finalized
+      --  too early and affect the result of the expression. To prevent this
+      --  unwanted effect, the temporary should not be considered for clean up
+      --  actions by the general finalization machinery.
+
+      --  Exception to this rule are references to Ada 2012 container elements.
+      --  Such references must be finalized at the end of each iteration of the
+      --  related quantified expression, otherwise the container will remain
+      --  busy.
+
+      if Nkind (N) = N_Explicit_Dereference
+        and then Within_Case_Or_If_Expression (N)
+        and then not Is_Element_Reference (N)
+      then
+         Set_Is_Ignored_Transient (Entity (Prefix (N)));
+      end if;
+   end Expand_Ctrl_Function_Call;
+
+   ----------------------------------------
+   -- Expand_N_Extended_Return_Statement --
+   ----------------------------------------
+
+   --  If there is a Handled_Statement_Sequence, we rewrite this:
+
+   --     return Result : T := <expression> do
+   --        <handled_seq_of_stms>
+   --     end return;
+
+   --  to be:
+
+   --     declare
+   --        Result : T := <expression>;
+   --     begin
+   --        <handled_seq_of_stms>
+   --        return Result;
+   --     end;
+
+   --  Otherwise (no Handled_Statement_Sequence), we rewrite this:
+
+   --     return Result : T := <expression>;
+
+   --  to be:
+
+   --     return <expression>;
+
+   --  unless it's build-in-place or there's no <expression>, in which case
+   --  we generate:
+
+   --     declare
+   --        Result : T := <expression>;
+   --     begin
+   --        return Result;
+   --     end;
+
+   --  Note that this case could have been written by the user as an extended
+   --  return statement, or could have been transformed to this from a simple
+   --  return statement.
+
+   --  That is, we need to have a reified return object if there are statements
+   --  (which might refer to it) or if we're doing build-in-place (so we can
+   --  set its address to the final resting place or if there is no expression
+   --  (in which case default initial values might need to be set).
+
+   procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
+      Loc : constant Source_Ptr := Sloc (N);
+
+      function Build_Heap_Allocator
+        (Temp_Id    : Entity_Id;
+         Temp_Typ   : Entity_Id;
+         Func_Id    : Entity_Id;
+         Ret_Typ    : Entity_Id;
+         Alloc_Expr : Node_Id) return Node_Id;
+      --  Create the statements necessary to allocate a return object on the
+      --  caller's master. The master is available through implicit parameter
+      --  BIPfinalizationmaster.
+      --
+      --    if BIPfinalizationmaster /= null then
+      --       declare
+      --          type Ptr_Typ is access Ret_Typ;
+      --          for Ptr_Typ'Storage_Pool use
+      --                Base_Pool (BIPfinalizationmaster.all).all;
+      --          Local : Ptr_Typ;
+      --
+      --       begin
+      --          procedure Allocate (...) is
+      --          begin
+      --             System.Storage_Pools.Subpools.Allocate_Any (...);
+      --          end Allocate;
+      --
+      --          Local := <Alloc_Expr>;
+      --          Temp_Id := Temp_Typ (Local);
+      --       end;
+      --    end if;
+      --
+      --  Temp_Id is the temporary which is used to reference the internally
+      --  created object in all allocation forms. Temp_Typ is the type of the
+      --  temporary. Func_Id is the enclosing function. Ret_Typ is the return
+      --  type of Func_Id. Alloc_Expr is the actual allocator.
+
+      function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
+      --  Construct a call to System.Tasking.Stages.Move_Activation_Chain
+      --  with parameters:
+      --    From         current activation chain
+      --    To           activation chain passed in by the caller
+      --    New_Master   master passed in by the caller
+      --
+      --  Func_Id is the entity of the function where the extended return
+      --  statement appears.
+
+      --------------------------
+      -- Build_Heap_Allocator --
+      --------------------------
+
+      function Build_Heap_Allocator
+        (Temp_Id    : Entity_Id;
+         Temp_Typ   : Entity_Id;
+         Func_Id    : Entity_Id;
+         Ret_Typ    : Entity_Id;
+         Alloc_Expr : Node_Id) return Node_Id
+      is
+      begin
+         pragma Assert (Is_Build_In_Place_Function (Func_Id));
+
+         --  Processing for build-in-place object allocation.
+
+         if Needs_Finalization (Ret_Typ) then
+            declare
+               Decls      : constant List_Id := New_List;
+               Fin_Mas_Id : constant Entity_Id :=
+                              Build_In_Place_Formal
+                                (Func_Id, BIP_Finalization_Master);
+               Stmts      : constant List_Id := New_List;
+               Desig_Typ  : Entity_Id;
+               Local_Id   : Entity_Id;
+               Pool_Id    : Entity_Id;
+               Ptr_Typ    : Entity_Id;
+
+            begin
+               --  Generate:
+               --    Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
+
+               Pool_Id := Make_Temporary (Loc, 'P');
+
+               Append_To (Decls,
+                 Make_Object_Renaming_Declaration (Loc,
+                   Defining_Identifier => Pool_Id,
+                   Subtype_Mark        =>
+                     New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
+                   Name                =>
+                     Make_Explicit_Dereference (Loc,
+                       Prefix =>
+                         Make_Function_Call (Loc,
+                           Name                   =>
+                             New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
+                           Parameter_Associations => New_List (
+                             Make_Explicit_Dereference (Loc,
+                               Prefix =>
+                                 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
+
+               --  Create an access type which uses the storage pool of the
+               --  caller's master. This additional type is necessary because
+               --  the finalization master cannot be associated with the type
+               --  of the temporary. Otherwise the secondary stack allocation
+               --  will fail.
+
+               Desig_Typ := Ret_Typ;
+
+               --  Ensure that the build-in-place machinery uses a fat pointer
+               --  when allocating an unconstrained array on the heap. In this
+               --  case the result object type is a constrained array type even
+               --  though the function type is unconstrained.
+
+               if Ekind (Desig_Typ) = E_Array_Subtype then
+                  Desig_Typ := Base_Type (Desig_Typ);
+               end if;
+
+               --  Generate:
+               --    type Ptr_Typ is access Desig_Typ;
+
+               Ptr_Typ := Make_Temporary (Loc, 'P');
+
+               Append_To (Decls,
+                 Make_Full_Type_Declaration (Loc,
+                   Defining_Identifier => Ptr_Typ,
+                   Type_Definition     =>
+                     Make_Access_To_Object_Definition (Loc,
+                       Subtype_Indication =>
+                         New_Occurrence_Of (Desig_Typ, Loc))));
+
+               --  Perform minor decoration in order to set the master and the
+               --  storage pool attributes.
+
+               Set_Ekind (Ptr_Typ, E_Access_Type);
+               Set_Finalization_Master     (Ptr_Typ, Fin_Mas_Id);
+               Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
+
+               --  Create the temporary, generate:
+               --    Local_Id : Ptr_Typ;
+
+               Local_Id := Make_Temporary (Loc, 'T');
+
+               Append_To (Decls,
+                 Make_Object_Declaration (Loc,
+                   Defining_Identifier => Local_Id,
+                   Object_Definition   =>
+                     New_Occurrence_Of (Ptr_Typ, Loc)));
+
+               --  Allocate the object, generate:
+               --    Local_Id := <Alloc_Expr>;
+
+               Append_To (Stmts,
+                 Make_Assignment_Statement (Loc,
+                   Name       => New_Occurrence_Of (Local_Id, Loc),
+                   Expression => Alloc_Expr));
+
+               --  Generate:
+               --    Temp_Id := Temp_Typ (Local_Id);
+
+               Append_To (Stmts,
+                 Make_Assignment_Statement (Loc,
+                   Name       => New_Occurrence_Of (Temp_Id, Loc),
+                   Expression =>
+                     Unchecked_Convert_To (Temp_Typ,
+                       New_Occurrence_Of (Local_Id, Loc))));
+
+               --  Wrap the allocation in a block. This is further conditioned
+               --  by checking the caller finalization master at runtime. A
+               --  null value indicates a non-existent master, most likely due
+               --  to a Finalize_Storage_Only allocation.
+
+               --  Generate:
+               --    if BIPfinalizationmaster /= null then
+               --       declare
+               --          <Decls>
+               --       begin
+               --          <Stmts>
+               --       end;
+               --    end if;
+
+               return
+                 Make_If_Statement (Loc,
+                   Condition       =>
+                     Make_Op_Ne (Loc,
+                       Left_Opnd  => New_Occurrence_Of (Fin_Mas_Id, Loc),
+                       Right_Opnd => Make_Null (Loc)),
+
+                   Then_Statements => New_List (
+                     Make_Block_Statement (Loc,
+                       Declarations               => Decls,
+                       Handled_Statement_Sequence =>
+                         Make_Handled_Sequence_Of_Statements (Loc,
+                           Statements => Stmts))));
+            end;
+
+         --  For all other cases, generate:
+         --    Temp_Id := <Alloc_Expr>;
+
+         else
+            return
+              Make_Assignment_Statement (Loc,
+                Name       => New_Occurrence_Of (Temp_Id, Loc),
+                Expression => Alloc_Expr);
+         end if;
+      end Build_Heap_Allocator;
+
+      ---------------------------
+      -- Move_Activation_Chain --
+      ---------------------------
+
+      function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
+      begin
+         return
+           Make_Procedure_Call_Statement (Loc,
+             Name                   =>
+               New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
+
+             Parameter_Associations => New_List (
+
+               --  Source chain
+
+               Make_Attribute_Reference (Loc,
+                 Prefix         => Make_Identifier (Loc, Name_uChain),
+                 Attribute_Name => Name_Unrestricted_Access),
+
+               --  Destination chain
+
+               New_Occurrence_Of
+                 (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
+
+               --  New master
+
+               New_Occurrence_Of
+                 (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
+      end Move_Activation_Chain;
+
+      --  Local variables
+
+      Func_Id      : constant Entity_Id :=
+                       Return_Applies_To (Return_Statement_Entity (N));
+      Is_BIP_Func  : constant Boolean   :=
+                       Is_Build_In_Place_Function (Func_Id);
+      Ret_Obj_Id   : constant Entity_Id :=
+                       First_Entity (Return_Statement_Entity (N));
+      Ret_Obj_Decl : constant Node_Id   := Parent (Ret_Obj_Id);
+      Ret_Typ      : constant Entity_Id := Etype (Func_Id);
+
+      Exp         : Node_Id;
+      HSS         : Node_Id;
+      Result      : Node_Id;
+      Return_Stmt : Node_Id;
+      Stmts       : List_Id;
+
+   --  Start of processing for Expand_N_Extended_Return_Statement
+
+   begin
+      --  Given that functionality of interface thunks is simple (just displace
+      --  the pointer to the object) they are always handled by means of
+      --  simple return statements.
+
+      pragma Assert (not Is_Thunk (Current_Scope));
+
+      if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
+         Exp := Expression (Ret_Obj_Decl);
+      else
+         Exp := Empty;
+      end if;
+
+      HSS := Handled_Statement_Sequence (N);
+
+      --  If the returned object needs finalization actions, the function must
+      --  perform the appropriate cleanup should it fail to return. The state
+      --  of the function itself is tracked through a flag which is coupled
+      --  with the scope finalizer. There is one flag per each return object
+      --  in case of multiple returns.
+
+      if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
+         declare
+            Flag_Decl : Node_Id;
+            Flag_Id   : Entity_Id;
+            Func_Bod  : Node_Id;
+
+         begin
+            --  Recover the function body
+
+            Func_Bod := Unit_Declaration_Node (Func_Id);
+
+            if Nkind (Func_Bod) = N_Subprogram_Declaration then
+               Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
+            end if;
+
+            if Nkind (Func_Bod) = N_Function_Specification then
+               Func_Bod := Parent (Func_Bod); -- one more level for child units
+            end if;
+
+            pragma Assert (Nkind (Func_Bod) = N_Subprogram_Body);
+
+            --  Create a flag to track the function state
+
+            Flag_Id := Make_Temporary (Loc, 'F');
+            Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
+
+            --  Insert the flag at the beginning of the function declarations,
+            --  generate:
+            --    Fnn : Boolean := False;
+
+            Flag_Decl :=
+              Make_Object_Declaration (Loc,
+                Defining_Identifier => Flag_Id,
+                  Object_Definition =>
+                    New_Occurrence_Of (Standard_Boolean, Loc),
+                  Expression        =>
+                    New_Occurrence_Of (Standard_False, Loc));
+
+            Prepend_To (Declarations (Func_Bod), Flag_Decl);
+            Analyze (Flag_Decl);
+         end;
+      end if;
+
+      --  Build a simple_return_statement that returns the return object when
+      --  there is a statement sequence, or no expression, or the result will
+      --  be built in place. Note however that we currently do this for all
+      --  composite cases, even though not all are built in place.
+
+      if Present (HSS)
+        or else Is_Composite_Type (Ret_Typ)
+        or else No (Exp)
+      then
+         if No (HSS) then
+            Stmts := New_List;
+
+         --  If the extended return has a handled statement sequence, then wrap
+         --  it in a block and use the block as the first statement.
+
+         else
+            Stmts := New_List (
+              Make_Block_Statement (Loc,
+                Declarations               => New_List,
+                Handled_Statement_Sequence => HSS));
+         end if;
+
+         --  If the result type contains tasks, we call Move_Activation_Chain.
+         --  Later, the cleanup code will call Complete_Master, which will
+         --  terminate any unactivated tasks belonging to the return statement
+         --  master. But Move_Activation_Chain updates their master to be that
+         --  of the caller, so they will not be terminated unless the return
+         --  statement completes unsuccessfully due to exception, abort, goto,
+         --  or exit. As a formality, we test whether the function requires the
+         --  result to be built in place, though that's necessarily true for
+         --  the case of result types with task parts.
+
+         if Is_BIP_Func and then Has_Task (Ret_Typ) then
+
+            --  The return expression is an aggregate for a complex type which
+            --  contains tasks. This particular case is left unexpanded since
+            --  the regular expansion would insert all temporaries and
+            --  initialization code in the wrong block.
+
+            if Nkind (Exp) = N_Aggregate then
+               Expand_N_Aggregate (Exp);
+            end if;
+
+            --  Do not move the activation chain if the return object does not
+            --  contain tasks.
+
+            if Has_Task (Etype (Ret_Obj_Id)) then
+               Append_To (Stmts, Move_Activation_Chain (Func_Id));
+            end if;
+         end if;
+
+         --  Update the state of the function right before the object is
+         --  returned.
+
+         if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
+            declare
+               Flag_Id : constant Entity_Id :=
+                           Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
+
+            begin
+               --  Generate:
+               --    Fnn := True;
+
+               Append_To (Stmts,
+                 Make_Assignment_Statement (Loc,
+                   Name       => New_Occurrence_Of (Flag_Id, Loc),
+                   Expression => New_Occurrence_Of (Standard_True, Loc)));
+            end;
+         end if;
+
+         --  Build a simple_return_statement that returns the return object
+
+         Return_Stmt :=
+           Make_Simple_Return_Statement (Loc,
+             Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
+         Append_To (Stmts, Return_Stmt);
+
+         HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
+      end if;
+
+      --  Case where we build a return statement block
+
+      if Present (HSS) then
+         Result :=
+           Make_Block_Statement (Loc,
+             Declarations               => Return_Object_Declarations (N),
+             Handled_Statement_Sequence => HSS);
+
+         --  We set the entity of the new block statement to be that of the
+         --  return statement. This is necessary so that various fields, such
+         --  as Finalization_Chain_Entity carry over from the return statement
+         --  to the block. Note that this block is unusual, in that its entity
+         --  is an E_Return_Statement rather than an E_Block.
+
+         Set_Identifier
+           (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
+
+         --  If the object decl was already rewritten as a renaming, then we
+         --  don't want to do the object allocation and transformation of
+         --  the return object declaration to a renaming. This case occurs
+         --  when the return object is initialized by a call to another
+         --  build-in-place function, and that function is responsible for
+         --  the allocation of the return object.
+
+         if Is_BIP_Func
+           and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
+         then
+            pragma Assert
+              (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
+                and then
+
+                  --  It is a regular BIP object declaration
+
+                  (Is_Build_In_Place_Function_Call
+                     (Expression (Original_Node (Ret_Obj_Decl)))
+
+                  --  It is a BIP object declaration that displaces the pointer
+                  --  to the object to reference a convered interface type.
+
+                  or else
+                    Present (Unqual_BIP_Iface_Function_Call
+                              (Expression (Original_Node (Ret_Obj_Decl))))));
+
+            --  Return the build-in-place result by reference
+
+            Set_By_Ref (Return_Stmt);
+
+         elsif Is_BIP_Func then
+
+            --  Locate the implicit access parameter associated with the
+            --  caller-supplied return object and convert the return
+            --  statement's return object declaration to a renaming of a
+            --  dereference of the access parameter. If the return object's
+            --  declaration includes an expression that has not already been
+            --  expanded as separate assignments, then add an assignment
+            --  statement to ensure the return object gets initialized.
+
+            --    declare
+            --       Result : T [:= <expression>];
+            --    begin
+            --       ...
+
+            --  is converted to
+
+            --    declare
+            --       Result : T renames FuncRA.all;
+            --       [Result := <expression;]
+            --    begin
+            --       ...
+
+            declare
+               Ret_Obj_Expr : constant Node_Id   := Expression (Ret_Obj_Decl);
+               Ret_Obj_Typ  : constant Entity_Id := Etype (Ret_Obj_Id);
+
+               Init_Assignment  : Node_Id := Empty;
+               Obj_Acc_Formal   : Entity_Id;
+               Obj_Acc_Deref    : Node_Id;
+               Obj_Alloc_Formal : Entity_Id;
+
+            begin
+               --  Build-in-place results must be returned by reference
+
+               Set_By_Ref (Return_Stmt);
+
+               --  Retrieve the implicit access parameter passed by the caller
+
+               Obj_Acc_Formal :=
+                 Build_In_Place_Formal (Func_Id, BIP_Object_Access);
+
+               --  If the return object's declaration includes an expression
+               --  and the declaration isn't marked as No_Initialization, then
+               --  we need to generate an assignment to the object and insert
+               --  it after the declaration before rewriting it as a renaming
+               --  (otherwise we'll lose the initialization). The case where
+               --  the result type is an interface (or class-wide interface)
+               --  is also excluded because the context of the function call
+               --  must be unconstrained, so the initialization will always
+               --  be done as part of an allocator evaluation (storage pool
+               --  or secondary stack), never to a constrained target object
+               --  passed in by the caller. Besides the assignment being
+               --  unneeded in this case, it avoids problems with trying to
+               --  generate a dispatching assignment when the return expression
+               --  is a nonlimited descendant of a limited interface (the
+               --  interface has no assignment operation).
+
+               if Present (Ret_Obj_Expr)
+                 and then not No_Initialization (Ret_Obj_Decl)
+                 and then not Is_Interface (Ret_Obj_Typ)
+               then
+                  Init_Assignment :=
+                    Make_Assignment_Statement (Loc,
+                      Name       => New_Occurrence_Of (Ret_Obj_Id, Loc),
+                      Expression => New_Copy_Tree (Ret_Obj_Expr));
+
+                  Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
+                  Set_Assignment_OK (Name (Init_Assignment));
+                  Set_No_Ctrl_Actions (Init_Assignment);
+
+                  Set_Parent (Name (Init_Assignment), Init_Assignment);
+                  Set_Parent (Expression (Init_Assignment), Init_Assignment);
+
+                  Set_Expression (Ret_Obj_Decl, Empty);
+
+                  if Is_Class_Wide_Type (Etype (Ret_Obj_Id))
+                    and then not Is_Class_Wide_Type
+                                   (Etype (Expression (Init_Assignment)))
+                  then
+                     Rewrite (Expression (Init_Assignment),
+                       Make_Type_Conversion (Loc,
+                         Subtype_Mark =>
+                           New_Occurrence_Of (Etype (Ret_Obj_Id), Loc),
+                         Expression   =>
+                           Relocate_Node (Expression (Init_Assignment))));
+                  end if;
+
+                  --  In the case of functions where the calling context can
+                  --  determine the form of allocation needed, initialization
+                  --  is done with each part of the if statement that handles
+                  --  the different forms of allocation (this is true for
+                  --  unconstrained and tagged result subtypes).
+
+                  if Is_Constrained (Ret_Typ)
+                    and then not Is_Tagged_Type (Underlying_Type (Ret_Typ))
+                  then
+                     Insert_After (Ret_Obj_Decl, Init_Assignment);
+                  end if;
+               end if;
+
+               --  When the function's subtype is unconstrained, a run-time
+               --  test is needed to determine the form of allocation to use
+               --  for the return object. The function has an implicit formal
+               --  parameter indicating this. If the BIP_Alloc_Form formal has
+               --  the value one, then the caller has passed access to an
+               --  existing object for use as the return object. If the value
+               --  is two, then the return object must be allocated on the
+               --  secondary stack. Otherwise, the object must be allocated in
+               --  a storage pool. We generate an if statement to test the
+               --  implicit allocation formal and initialize a local access
+               --  value appropriately, creating allocators in the secondary
+               --  stack and global heap cases.  The special formal also exists
+               --  and must be tested when the function has a tagged result,
+               --  even when the result subtype is constrained, because in
+               --  general such functions can be called in dispatching contexts
+               --  and must be handled similarly to functions with a class-wide
+               --  result.
+
+               if not Is_Constrained (Ret_Typ)
+                 or else Is_Tagged_Type (Underlying_Type (Ret_Typ))
+               then
+                  Obj_Alloc_Formal :=
+                    Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
+
+                  declare
+                     Pool_Id        : constant Entity_Id :=
+                                        Make_Temporary (Loc, 'P');
+                     Alloc_Obj_Id   : Entity_Id;
+                     Alloc_Obj_Decl : Node_Id;
+                     Alloc_If_Stmt  : Node_Id;
+                     Heap_Allocator : Node_Id;
+                     Pool_Decl      : Node_Id;
+                     Pool_Allocator : Node_Id;
+                     Ptr_Type_Decl  : Node_Id;
+                     Ref_Type       : Entity_Id;
+                     SS_Allocator   : Node_Id;
+
+                  begin
+                     --  Reuse the itype created for the function's implicit
+                     --  access formal. This avoids the need to create a new
+                     --  access type here, plus it allows assigning the access
+                     --  formal directly without applying a conversion.
+
+                     --    Ref_Type := Etype (Object_Access);
+
+                     --  Create an access type designating the function's
+                     --  result subtype.
+
+                     Ref_Type := Make_Temporary (Loc, 'A');
+
+                     Ptr_Type_Decl :=
+                       Make_Full_Type_Declaration (Loc,
+                         Defining_Identifier => Ref_Type,
+                         Type_Definition     =>
+                           Make_Access_To_Object_Definition (Loc,
+                             All_Present        => True,
+                             Subtype_Indication =>
+                               New_Occurrence_Of (Ret_Obj_Typ, Loc)));
+
+                     Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
+
+                     --  Create an access object that will be initialized to an
+                     --  access value denoting the return object, either coming
+                     --  from an implicit access value passed in by the caller
+                     --  or from the result of an allocator.
+
+                     Alloc_Obj_Id := Make_Temporary (Loc, 'R');
+                     Set_Etype (Alloc_Obj_Id, Ref_Type);
+
+                     Alloc_Obj_Decl :=
+                       Make_Object_Declaration (Loc,
+                         Defining_Identifier => Alloc_Obj_Id,
+                         Object_Definition   =>
+                           New_Occurrence_Of (Ref_Type, Loc));
+
+                     Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
+
+                     --  Create allocators for both the secondary stack and
+                     --  global heap. If there's an initialization expression,
+                     --  then create these as initialized allocators.
+
+                     if Present (Ret_Obj_Expr)
+                       and then not No_Initialization (Ret_Obj_Decl)
+                     then
+                        --  Always use the type of the expression for the
+                        --  qualified expression, rather than the result type.
+                        --  In general we cannot always use the result type
+                        --  for the allocator, because the expression might be
+                        --  of a specific type, such as in the case of an
+                        --  aggregate or even a nonlimited object when the
+                        --  result type is a limited class-wide interface type.
+
+                        Heap_Allocator :=
+                          Make_Allocator (Loc,
+                            Expression =>
+                              Make_Qualified_Expression (Loc,
+                                Subtype_Mark =>
+                                  New_Occurrence_Of
+                                    (Etype (Ret_Obj_Expr), Loc),
+                                Expression   => New_Copy_Tree (Ret_Obj_Expr)));
+
+                     else
+                        --  If the function returns a class-wide type we cannot
+                        --  use the return type for the allocator. Instead we
+                        --  use the type of the expression, which must be an
+                        --  aggregate of a definite type.
+
+                        if Is_Class_Wide_Type (Ret_Obj_Typ) then
+                           Heap_Allocator :=
+                             Make_Allocator (Loc,
+                               Expression =>
+                                 New_Occurrence_Of
+                                   (Etype (Ret_Obj_Expr), Loc));
+                        else
+                           Heap_Allocator :=
+                             Make_Allocator (Loc,
+                               Expression =>
+                                 New_Occurrence_Of (Ret_Obj_Typ, Loc));
+                        end if;
+
+                        --  If the object requires default initialization then
+                        --  that will happen later following the elaboration of
+                        --  the object renaming. If we don't turn it off here
+                        --  then the object will be default initialized twice.
+
+                        Set_No_Initialization (Heap_Allocator);
+                     end if;
+
+                     --  Set the flag indicating that the allocator came from
+                     --  a build-in-place return statement, so we can avoid
+                     --  adjusting the allocated object. Note that this flag
+                     --  will be inherited by the copies made below.
+
+                     Set_Alloc_For_BIP_Return (Heap_Allocator);
+
+                     --  The Pool_Allocator is just like the Heap_Allocator,
+                     --  except we set Storage_Pool and Procedure_To_Call so
+                     --  it will use the user-defined storage pool.
+
+                     Pool_Allocator := New_Copy_Tree (Heap_Allocator);
+                     pragma Assert (Alloc_For_BIP_Return (Pool_Allocator));
+
+                     --  Do not generate the renaming of the build-in-place
+                     --  pool parameter on ZFP because the parameter is not
+                     --  created in the first place.
+
+                     if RTE_Available (RE_Root_Storage_Pool_Ptr) then
+                        Pool_Decl :=
+                          Make_Object_Renaming_Declaration (Loc,
+                            Defining_Identifier => Pool_Id,
+                            Subtype_Mark        =>
+                              New_Occurrence_Of
+                                (RTE (RE_Root_Storage_Pool), Loc),
+                            Name                =>
+                              Make_Explicit_Dereference (Loc,
+                                New_Occurrence_Of
+                                  (Build_In_Place_Formal
+                                     (Func_Id, BIP_Storage_Pool), Loc)));
+                        Set_Storage_Pool (Pool_Allocator, Pool_Id);
+                        Set_Procedure_To_Call
+                          (Pool_Allocator, RTE (RE_Allocate_Any));
+                     else
+                        Pool_Decl := Make_Null_Statement (Loc);
+                     end if;
+
+                     --  If the No_Allocators restriction is active, then only
+                     --  an allocator for secondary stack allocation is needed.
+                     --  It's OK for such allocators to have Comes_From_Source
+                     --  set to False, because gigi knows not to flag them as
+                     --  being a violation of No_Implicit_Heap_Allocations.
+
+                     if Restriction_Active (No_Allocators) then
+                        SS_Allocator   := Heap_Allocator;
+                        Heap_Allocator := Make_Null (Loc);
+                        Pool_Allocator := Make_Null (Loc);
+
+                     --  Otherwise the heap and pool allocators may be needed,
+                     --  so we make another allocator for secondary stack
+                     --  allocation.
+
+                     else
+                        SS_Allocator := New_Copy_Tree (Heap_Allocator);
+                        pragma Assert (Alloc_For_BIP_Return (SS_Allocator));
+
+                        --  The heap and pool allocators are marked as
+                        --  Comes_From_Source since they correspond to an
+                        --  explicit user-written allocator (that is, it will
+                        --  only be executed on behalf of callers that call the
+                        --  function as initialization for such an allocator).
+                        --  Prevents errors when No_Implicit_Heap_Allocations
+                        --  is in force.
+
+                        Set_Comes_From_Source (Heap_Allocator, True);
+                        Set_Comes_From_Source (Pool_Allocator, True);
+                     end if;
+
+                     --  The allocator is returned on the secondary stack.
+
+                     Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
+                     Set_Procedure_To_Call
+                       (SS_Allocator, RTE (RE_SS_Allocate));
+
+                     --  The allocator is returned on the secondary stack,
+                     --  so indicate that the function return, as well as
+                     --  all blocks that encloses the allocator, must not
+                     --  release it. The flags must be set now because
+                     --  the decision to use the secondary stack is done
+                     --  very late in the course of expanding the return
+                     --  statement, past the point where these flags are
+                     --  normally set.
+
+                     Set_Uses_Sec_Stack (Func_Id);
+                     Set_Uses_Sec_Stack (Return_Statement_Entity (N));
+                     Set_Sec_Stack_Needed_For_Return
+                       (Return_Statement_Entity (N));
+                     Set_Enclosing_Sec_Stack_Return (N);
+
+                     --  Create an if statement to test the BIP_Alloc_Form
+                     --  formal and initialize the access object to either the
+                     --  BIP_Object_Access formal (BIP_Alloc_Form =
+                     --  Caller_Allocation), the result of allocating the
+                     --  object in the secondary stack (BIP_Alloc_Form =
+                     --  Secondary_Stack), or else an allocator to create the
+                     --  return object in the heap or user-defined pool
+                     --  (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
+
+                     --  ??? An unchecked type conversion must be made in the
+                     --  case of assigning the access object formal to the
+                     --  local access object, because a normal conversion would
+                     --  be illegal in some cases (such as converting access-
+                     --  to-unconstrained to access-to-constrained), but the
+                     --  the unchecked conversion will presumably fail to work
+                     --  right in just such cases. It's not clear at all how to
+                     --  handle this. ???
+
+                     Alloc_If_Stmt :=
+                       Make_If_Statement (Loc,
+                         Condition =>
+                           Make_Op_Eq (Loc,
+                             Left_Opnd  =>
+                               New_Occurrence_Of (Obj_Alloc_Formal, Loc),
+                             Right_Opnd =>
+                               Make_Integer_Literal (Loc,
+                                 UI_From_Int (BIP_Allocation_Form'Pos
+                                                (Caller_Allocation)))),
+
+                         Then_Statements => New_List (
+                           Make_Assignment_Statement (Loc,
+                             Name       =>
+                               New_Occurrence_Of (Alloc_Obj_Id, Loc),
+                             Expression =>
+                               Make_Unchecked_Type_Conversion (Loc,
+                                 Subtype_Mark =>
+                                   New_Occurrence_Of (Ref_Type, Loc),
+                                 Expression   =>
+                                   New_Occurrence_Of (Obj_Acc_Formal, Loc)))),
+
+                         Elsif_Parts => New_List (
+                           Make_Elsif_Part (Loc,
+                             Condition =>
+                               Make_Op_Eq (Loc,
+                                 Left_Opnd  =>
+                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
+                                 Right_Opnd =>
+                                   Make_Integer_Literal (Loc,
+                                     UI_From_Int (BIP_Allocation_Form'Pos
+                                                    (Secondary_Stack)))),
+
+                             Then_Statements => New_List (
+                               Make_Assignment_Statement (Loc,
+                                 Name       =>
+                                   New_Occurrence_Of (Alloc_Obj_Id, Loc),
+                                 Expression => SS_Allocator))),
+
+                           Make_Elsif_Part (Loc,
+                             Condition =>
+                               Make_Op_Eq (Loc,
+                                 Left_Opnd  =>
+                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
+                                 Right_Opnd =>
+                                   Make_Integer_Literal (Loc,
+                                     UI_From_Int (BIP_Allocation_Form'Pos
+                                                    (Global_Heap)))),
+
+                             Then_Statements => New_List (
+                               Build_Heap_Allocator
+                                 (Temp_Id    => Alloc_Obj_Id,
+                                  Temp_Typ   => Ref_Type,
+                                  Func_Id    => Func_Id,
+                                  Ret_Typ    => Ret_Obj_Typ,
+                                  Alloc_Expr => Heap_Allocator))),
+
+                           --  ???If all is well, we can put the following
+                           --  'elsif' in the 'else', but this is a useful
+                           --  self-check in case caller and callee don't agree
+                           --  on whether BIPAlloc and so on should be passed.
+
+                           Make_Elsif_Part (Loc,
+                             Condition =>
+                               Make_Op_Eq (Loc,
+                                 Left_Opnd  =>
+                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
+                                 Right_Opnd =>
+                                   Make_Integer_Literal (Loc,
+                                     UI_From_Int (BIP_Allocation_Form'Pos
+                                                    (User_Storage_Pool)))),
+
+                             Then_Statements => New_List (
+                               Pool_Decl,
+                               Build_Heap_Allocator
+                                 (Temp_Id    => Alloc_Obj_Id,
+                                  Temp_Typ   => Ref_Type,
+                                  Func_Id    => Func_Id,
+                                  Ret_Typ    => Ret_Obj_Typ,
+                                  Alloc_Expr => Pool_Allocator)))),
+
+                         --  Raise Program_Error if it's none of the above;
+                         --  this is a compiler bug. ???PE_All_Guards_Closed
+                         --  is bogus; we should have a new code.
+
+                         Else_Statements => New_List (
+                           Make_Raise_Program_Error (Loc,
+                              Reason => PE_All_Guards_Closed)));
+
+                     --  If a separate initialization assignment was created
+                     --  earlier, append that following the assignment of the
+                     --  implicit access formal to the access object, to ensure
+                     --  that the return object is initialized in that case. In
+                     --  this situation, the target of the assignment must be
+                     --  rewritten to denote a dereference of the access to the
+                     --  return object passed in by the caller.
+
+                     if Present (Init_Assignment) then
+                        Rewrite (Name (Init_Assignment),
+                          Make_Explicit_Dereference (Loc,
+                            Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
+
+                        Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
+
+                        Append_To
+                          (Then_Statements (Alloc_If_Stmt), Init_Assignment);
+                     end if;
+
+                     Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
+
+                     --  Remember the local access object for use in the
+                     --  dereference of the renaming created below.
+
+                     Obj_Acc_Formal := Alloc_Obj_Id;
+                  end;
+               end if;
+
+               --  Replace the return object declaration with a renaming of a
+               --  dereference of the access value designating the return
+               --  object.
+
+               Obj_Acc_Deref :=
+                 Make_Explicit_Dereference (Loc,
+                   Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
+
+               Rewrite (Ret_Obj_Decl,
+                 Make_Object_Renaming_Declaration (Loc,
+                   Defining_Identifier => Ret_Obj_Id,
+                   Access_Definition   => Empty,
+                   Subtype_Mark        => New_Occurrence_Of (Ret_Obj_Typ, Loc),
+                   Name                => Obj_Acc_Deref));
+
+               Set_Renamed_Object (Ret_Obj_Id, Obj_Acc_Deref);
+            end;
+         end if;
+
+      --  Case where we do not build a block
+
+      else
+         --  We're about to drop Return_Object_Declarations on the floor, so
+         --  we need to insert it, in case it got expanded into useful code.
+         --  Remove side effects from expression, which may be duplicated in
+         --  subsequent checks (see Expand_Simple_Function_Return).
+
+         Insert_List_Before (N, Return_Object_Declarations (N));
+         Remove_Side_Effects (Exp);
+
+         --  Build simple_return_statement that returns the expression directly
+
+         Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
+         Result := Return_Stmt;
+      end if;
+
+      --  Set the flag to prevent infinite recursion
+
+      Set_Comes_From_Extended_Return_Statement (Return_Stmt);
+
+      Rewrite (N, Result);
+      Analyze (N);
+   end Expand_N_Extended_Return_Statement;
+
+   ----------------------------
+   -- Expand_N_Function_Call --
+   ----------------------------
+
+   procedure Expand_N_Function_Call (N : Node_Id) is
+   begin
+      Expand_Call (N);
+   end Expand_N_Function_Call;
+
+   ---------------------------------------
+   -- Expand_N_Procedure_Call_Statement --
+   ---------------------------------------
+
+   procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
+   begin
+      Expand_Call (N);
+   end Expand_N_Procedure_Call_Statement;
+
+   --------------------------------------
+   -- Expand_N_Simple_Return_Statement --
+   --------------------------------------
+
+   procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
+   begin
+      --  Defend against previous errors (i.e. the return statement calls a
+      --  function that is not available in configurable runtime).
+
+      if Present (Expression (N))
+        and then Nkind (Expression (N)) = N_Empty
+      then
+         Check_Error_Detected;
+         return;
+      end if;
+
+      --  Distinguish the function and non-function cases:
+
+      case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
+         when E_Function
+            | E_Generic_Function
+         =>
+            Expand_Simple_Function_Return (N);
+
+         when E_Entry
+            | E_Entry_Family
+            | E_Generic_Procedure
+            | E_Procedure
+            | E_Return_Statement
+         =>
+            Expand_Non_Function_Return (N);
+
+         when others =>
+            raise Program_Error;
+      end case;
+
+   exception
+      when RE_Not_Available =>
+         return;
+   end Expand_N_Simple_Return_Statement;
+
+   ------------------------------
+   -- Expand_N_Subprogram_Body --
+   ------------------------------
+
+   --  Add poll call if ATC polling is enabled, unless the body will be inlined
+   --  by the back-end.
+
+   --  Add dummy push/pop label nodes at start and end to clear any local
+   --  exception indications if local-exception-to-goto optimization is active.
+
+   --  Add return statement if last statement in body is not a return statement
+   --  (this makes things easier on Gigi which does not want to have to handle
+   --  a missing return).
+
+   --  Add call to Activate_Tasks if body is a task activator
+
+   --  Deal with possible detection of infinite recursion
+
+   --  Eliminate body completely if convention stubbed
+
+   --  Encode entity names within body, since we will not need to reference
+   --  these entities any longer in the front end.
+
+   --  Initialize scalar out parameters if Initialize/Normalize_Scalars
+
+   --  Reset Pure indication if any parameter has root type System.Address
+   --  or has any parameters of limited types, where limited means that the
+   --  run-time view is limited (i.e. the full type is limited).
+
+   --  Wrap thread body
+
+   procedure Expand_N_Subprogram_Body (N : Node_Id) is
+      Body_Id  : constant Entity_Id  := Defining_Entity (N);
+      HSS      : constant Node_Id    := Handled_Statement_Sequence (N);
+      Loc      : constant Source_Ptr := Sloc (N);
+
+      procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
+      --  Append a return statement to the statement sequence Stmts if the last
+      --  statement is not already a return or a goto statement. Note that the
+      --  latter test is not critical, it does not matter if we add a few extra
+      --  returns, since they get eliminated anyway later on. Spec_Id denotes
+      --  the corresponding spec of the subprogram body.
+
+      ----------------
+      -- Add_Return --
+      ----------------
+
+      procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
+         Last_Stmt : Node_Id;
+         Loc       : Source_Ptr;
+         Stmt      : Node_Id;
+
+      begin
+         --  Get last statement, ignoring any Pop_xxx_Label nodes, which are
+         --  not relevant in this context since they are not executable.
+
+         Last_Stmt := Last (Stmts);
+         while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
+            Prev (Last_Stmt);
+         end loop;
+
+         --  Now insert return unless last statement is a transfer
+
+         if not Is_Transfer (Last_Stmt) then
+
+            --  The source location for the return is the end label of the
+            --  procedure if present. Otherwise use the sloc of the last
+            --  statement in the list. If the list comes from a generated
+            --  exception handler and we are not debugging generated code,
+            --  all the statements within the handler are made invisible
+            --  to the debugger.
+
+            if Nkind (Parent (Stmts)) = N_Exception_Handler
+              and then not Comes_From_Source (Parent (Stmts))
+            then
+               Loc := Sloc (Last_Stmt);
+            elsif Present (End_Label (HSS)) then
+               Loc := Sloc (End_Label (HSS));
+            else
+               Loc := Sloc (Last_Stmt);
+            end if;
+
+            --  Append return statement, and set analyzed manually. We can't
+            --  call Analyze on this return since the scope is wrong.
+
+            --  Note: it almost works to push the scope and then do the Analyze
+            --  call, but something goes wrong in some weird cases and it is
+            --  not worth worrying about ???
+
+            Stmt := Make_Simple_Return_Statement (Loc);
+
+            --  The return statement is handled properly, and the call to the
+            --  postcondition, inserted below, does not require information
+            --  from the body either. However, that call is analyzed in the
+            --  enclosing scope, and an elaboration check might improperly be
+            --  added to it. A guard in Sem_Elab is needed to prevent that
+            --  spurious check, see Check_Elab_Call.
+
+            Append_To (Stmts, Stmt);
+            Set_Analyzed (Stmt);
+
+            --  Call the _Postconditions procedure if the related subprogram
+            --  has contract assertions that need to be verified on exit.
+
+            if Ekind (Spec_Id) = E_Procedure
+              and then Present (Postconditions_Proc (Spec_Id))
+            then
+               Insert_Action (Stmt,
+                 Make_Procedure_Call_Statement (Loc,
+                   Name =>
+                     New_Occurrence_Of (Postconditions_Proc (Spec_Id), Loc)));
+            end if;
+         end if;
+      end Add_Return;
+
+      --  Local variables
+
+      Except_H : Node_Id;
+      L        : List_Id;
+      Spec_Id  : Entity_Id;
+
+   --  Start of processing for Expand_N_Subprogram_Body
+
+   begin
+      if Present (Corresponding_Spec (N)) then
+         Spec_Id := Corresponding_Spec (N);
+      else
+         Spec_Id := Body_Id;
+      end if;
+
+      --  If this is a Pure function which has any parameters whose root type
+      --  is System.Address, reset the Pure indication.
+      --  This check is also performed when the subprogram is frozen, but we
+      --  repeat it on the body so that the indication is consistent, and so
+      --  it applies as well to bodies without separate specifications.
+
+      if Is_Pure (Spec_Id)
+        and then Is_Subprogram (Spec_Id)
+        and then not Has_Pragma_Pure_Function (Spec_Id)
+      then
+         Check_Function_With_Address_Parameter (Spec_Id);
+
+         if Spec_Id /= Body_Id then
+            Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
+         end if;
+      end if;
+
+      --  Set L to either the list of declarations if present, or to the list
+      --  of statements if no declarations are present. This is used to insert
+      --  new stuff at the start.
+
+      if Is_Non_Empty_List (Declarations (N)) then
+         L := Declarations (N);
+      else
+         L := Statements (HSS);
+      end if;
+
+      --  If local-exception-to-goto optimization active, insert dummy push
+      --  statements at start, and dummy pop statements at end, but inhibit
+      --  this if we have No_Exception_Handlers, since they are useless and
+      --  intefere with analysis, e.g. by codepeer.
+
+      if (Debug_Flag_Dot_G
+           or else Restriction_Active (No_Exception_Propagation))
+        and then not Restriction_Active (No_Exception_Handlers)
+        and then not CodePeer_Mode
+        and then Is_Non_Empty_List (L)
+      then
+         declare
+            FS  : constant Node_Id    := First (L);
+            FL  : constant Source_Ptr := Sloc (FS);
+            LS  : Node_Id;
+            LL  : Source_Ptr;
+
+         begin
+            --  LS points to either last statement, if statements are present
+            --  or to the last declaration if there are no statements present.
+            --  It is the node after which the pop's are generated.
+
+            if Is_Non_Empty_List (Statements (HSS)) then
+               LS := Last (Statements (HSS));
+            else
+               LS := Last (L);
+            end if;
+
+            LL := Sloc (LS);
+
+            Insert_List_Before_And_Analyze (FS, New_List (
+              Make_Push_Constraint_Error_Label (FL),
+              Make_Push_Program_Error_Label    (FL),
+              Make_Push_Storage_Error_Label    (FL)));
+
+            Insert_List_After_And_Analyze (LS, New_List (
+              Make_Pop_Constraint_Error_Label  (LL),
+              Make_Pop_Program_Error_Label     (LL),
+              Make_Pop_Storage_Error_Label     (LL)));
+         end;
+      end if;
+
+      --  Need poll on entry to subprogram if polling enabled. We only do this
+      --  for non-empty subprograms, since it does not seem necessary to poll
+      --  for a dummy null subprogram.
+
+      if Is_Non_Empty_List (L) then
+
+         --  Do not add a polling call if the subprogram is to be inlined by
+         --  the back-end, to avoid repeated calls with multiple inlinings.
+
+         if Is_Inlined (Spec_Id)
+           and then Front_End_Inlining
+           and then Optimization_Level > 1
+         then
+            null;
+         else
+            Generate_Poll_Call (First (L));
+         end if;
+      end if;
+
+      --  Initialize any scalar OUT args if Initialize/Normalize_Scalars
+
+      if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
+         declare
+            F : Entity_Id;
+            A : Node_Id;
+
+         begin
+            --  Loop through formals
+
+            F := First_Formal (Spec_Id);
+            while Present (F) loop
+               if Is_Scalar_Type (Etype (F))
+                 and then Ekind (F) = E_Out_Parameter
+               then
+                  Check_Restriction (No_Default_Initialization, F);
+
+                  --  Insert the initialization. We turn off validity checks
+                  --  for this assignment, since we do not want any check on
+                  --  the initial value itself (which may well be invalid).
+                  --  Predicate checks are disabled as well (RM 6.4.1 (13/3))
+
+                  A :=
+                    Make_Assignment_Statement (Loc,
+                      Name       => New_Occurrence_Of (F, Loc),
+                      Expression => Get_Simple_Init_Val (Etype (F), N));
+                  Set_Suppress_Assignment_Checks (A);
+
+                  Insert_Before_And_Analyze (First (L),
+                    A, Suppress => Validity_Check);
+               end if;
+
+               Next_Formal (F);
+            end loop;
+         end;
+      end if;
+
+      --  Clear out statement list for stubbed procedure
+
+      if Present (Corresponding_Spec (N)) then
+         Set_Elaboration_Flag (N, Spec_Id);
+
+         if Convention (Spec_Id) = Convention_Stubbed
+           or else Is_Eliminated (Spec_Id)
+         then
+            Set_Declarations (N, Empty_List);
+            Set_Handled_Statement_Sequence (N,
+              Make_Handled_Sequence_Of_Statements (Loc,
+                Statements => New_List (Make_Null_Statement (Loc))));
+
+            return;
+         end if;
+      end if;
+
+      --  Create a set of discriminals for the next protected subprogram body
+
+      if Is_List_Member (N)
+        and then Present (Parent (List_Containing (N)))
+        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
+        and then Present (Next_Protected_Operation (N))
+      then
+         Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
+      end if;
+
+      --  Returns_By_Ref flag is normally set when the subprogram is frozen but
+      --  subprograms with no specs are not frozen.
+
+      declare
+         Typ  : constant Entity_Id := Etype (Spec_Id);
+         Utyp : constant Entity_Id := Underlying_Type (Typ);
+
+      begin
+         if Is_Limited_View (Typ) then
+            Set_Returns_By_Ref (Spec_Id);
+
+         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
+            Set_Returns_By_Ref (Spec_Id);
+         end if;
+      end;
+
+      --  For a procedure, we add a return for all possible syntactic ends of
+      --  the subprogram.
+
+      if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
+         Add_Return (Spec_Id, Statements (HSS));
+
+         if Present (Exception_Handlers (HSS)) then
+            Except_H := First_Non_Pragma (Exception_Handlers (HSS));
+            while Present (Except_H) loop
+               Add_Return (Spec_Id, Statements (Except_H));
+               Next_Non_Pragma (Except_H);
+            end loop;
+         end if;
+
+      --  For a function, we must deal with the case where there is at least
+      --  one missing return. What we do is to wrap the entire body of the
+      --  function in a block:
+
+      --    begin
+      --      ...
+      --    end;
+
+      --  becomes
+
+      --    begin
+      --       begin
+      --          ...
+      --       end;
+
+      --       raise Program_Error;
+      --    end;
+
+      --  This approach is necessary because the raise must be signalled to the
+      --  caller, not handled by any local handler (RM 6.4(11)).
+
+      --  Note: we do not need to analyze the constructed sequence here, since
+      --  it has no handler, and an attempt to analyze the handled statement
+      --  sequence twice is risky in various ways (e.g. the issue of expanding
+      --  cleanup actions twice).
+
+      elsif Has_Missing_Return (Spec_Id) then
+         declare
+            Hloc : constant Source_Ptr := Sloc (HSS);
+            Blok : constant Node_Id    :=
+                     Make_Block_Statement (Hloc,
+                       Handled_Statement_Sequence => HSS);
+            Rais : constant Node_Id    :=
+                     Make_Raise_Program_Error (Hloc,
+                       Reason => PE_Missing_Return);
+
+         begin
+            Set_Handled_Statement_Sequence (N,
+              Make_Handled_Sequence_Of_Statements (Hloc,
+                Statements => New_List (Blok, Rais)));
+
+            Push_Scope (Spec_Id);
+            Analyze (Blok);
+            Analyze (Rais);
+            Pop_Scope;
+         end;
+      end if;
+
+      --  If subprogram contains a parameterless recursive call, then we may
+      --  have an infinite recursion, so see if we can generate code to check
+      --  for this possibility if storage checks are not suppressed.
+
+      if Ekind (Spec_Id) = E_Procedure
+        and then Has_Recursive_Call (Spec_Id)
+        and then not Storage_Checks_Suppressed (Spec_Id)
+      then
+         Detect_Infinite_Recursion (N, Spec_Id);
+      end if;
+
+      --  Set to encode entity names in package body before gigi is called
+
+      Qualify_Entity_Names (N);
+
+      --  If the body belongs to a nonabstract library-level source primitive
+      --  of a tagged type, install an elaboration check which ensures that a
+      --  dispatching call targeting the primitive will not execute the body
+      --  without it being previously elaborated.
+
+      Install_Primitive_Elaboration_Check (N);
+   end Expand_N_Subprogram_Body;
+
+   -----------------------------------
+   -- Expand_N_Subprogram_Body_Stub --
+   -----------------------------------
+
+   procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
+      Bod : Node_Id;
+
+   begin
+      if Present (Corresponding_Body (N)) then
+         Bod := Unit_Declaration_Node (Corresponding_Body (N));
+
+         --  The body may have been expanded already when it is analyzed
+         --  through the subunit node. Do no expand again: it interferes
+         --  with the construction of unnesting tables when generating C.
+
+         if not Analyzed (Bod) then
+            Expand_N_Subprogram_Body (Bod);
+         end if;
+
+         --  Add full qualification to entities that may be created late
+         --  during unnesting.
+
+         Qualify_Entity_Names (N);
+      end if;
+   end Expand_N_Subprogram_Body_Stub;
+
+   -------------------------------------
+   -- Expand_N_Subprogram_Declaration --
+   -------------------------------------
+
+   --  If the declaration appears within a protected body, it is a private
+   --  operation of the protected type. We must create the corresponding
+   --  protected subprogram an associated formals. For a normal protected
+   --  operation, this is done when expanding the protected type declaration.
+
+   --  If the declaration is for a null procedure, emit null body
+
+   procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
+      Loc  : constant Source_Ptr := Sloc (N);
+      Subp : constant Entity_Id  := Defining_Entity (N);
+
+      --  Local variables
+
+      Scop      : constant Entity_Id  := Scope (Subp);
+      Prot_Bod  : Node_Id;
+      Prot_Decl : Node_Id;
+      Prot_Id   : Entity_Id;
+
+   --  Start of processing for Expand_N_Subprogram_Declaration
+
+   begin
+      --  In SPARK, subprogram declarations are only allowed in package
+      --  specifications.
+
+      if Nkind (Parent (N)) /= N_Package_Specification then
+         if Nkind (Parent (N)) = N_Compilation_Unit then
+            Check_SPARK_05_Restriction
+              ("subprogram declaration is not a library item", N);
+
+         elsif Present (Next (N))
+           and then Nkind (Next (N)) = N_Pragma
+           and then Get_Pragma_Id (Next (N)) = Pragma_Import
+         then
+            --  In SPARK, subprogram declarations are also permitted in
+            --  declarative parts when immediately followed by a corresponding
+            --  pragma Import. We only check here that there is some pragma
+            --  Import.
+
+            null;
+         else
+            Check_SPARK_05_Restriction
+              ("subprogram declaration is not allowed here", N);
+         end if;
+      end if;
+
+      --  Deal with case of protected subprogram. Do not generate protected
+      --  operation if operation is flagged as eliminated.
+
+      if Is_List_Member (N)
+        and then Present (Parent (List_Containing (N)))
+        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
+        and then Is_Protected_Type (Scop)
+      then
+         if No (Protected_Body_Subprogram (Subp))
+           and then not Is_Eliminated (Subp)
+         then
+            Prot_Decl :=
+              Make_Subprogram_Declaration (Loc,
+                Specification =>
+                  Build_Protected_Sub_Specification
+                    (N, Scop, Unprotected_Mode));
+
+            --  The protected subprogram is declared outside of the protected
+            --  body. Given that the body has frozen all entities so far, we
+            --  analyze the subprogram and perform freezing actions explicitly.
+            --  including the generation of an explicit freeze node, to ensure
+            --  that gigi has the proper order of elaboration.
+            --  If the body is a subunit, the insertion point is before the
+            --  stub in the parent.
+
+            Prot_Bod := Parent (List_Containing (N));
+
+            if Nkind (Parent (Prot_Bod)) = N_Subunit then
+               Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
+            end if;
+
+            Insert_Before (Prot_Bod, Prot_Decl);
+            Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
+            Set_Has_Delayed_Freeze (Prot_Id);
+
+            Push_Scope (Scope (Scop));
+            Analyze (Prot_Decl);
+            Freeze_Before (N, Prot_Id);
+            Set_Protected_Body_Subprogram (Subp, Prot_Id);
+
+            --  Create protected operation as well. Even though the operation
+            --  is only accessible within the body, it is possible to make it
+            --  available outside of the protected object by using 'Access to
+            --  provide a callback, so build protected version in all cases.
+
+            Prot_Decl :=
+              Make_Subprogram_Declaration (Loc,
+                Specification =>
+                  Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
+            Insert_Before (Prot_Bod, Prot_Decl);
+            Analyze (Prot_Decl);
+
+            Pop_Scope;
+         end if;
+
+      --  Ada 2005 (AI-348): Generate body for a null procedure. In most
+      --  cases this is superfluous because calls to it will be automatically
+      --  inlined, but we definitely need the body if preconditions for the
+      --  procedure are present, or if performing coverage analysis.
+
+      elsif Nkind (Specification (N)) = N_Procedure_Specification
+        and then Null_Present (Specification (N))
+      then
+         declare
+            Bod : constant Node_Id := Body_To_Inline (N);
+
+         begin
+            Set_Has_Completion (Subp, False);
+            Append_Freeze_Action (Subp, Bod);
+
+            --  The body now contains raise statements, so calls to it will
+            --  not be inlined.
+
+            Set_Is_Inlined (Subp, False);
+         end;
+      end if;
+
+      --  When generating C code, transform a function that returns a
+      --  constrained array type into a procedure with an out parameter
+      --  that carries the return value.
+
+      --  We skip this transformation for unchecked conversions, since they
+      --  are not needed by the C generator (and this also produces cleaner
+      --  output).
+
+      if Modify_Tree_For_C
+        and then Nkind (Specification (N)) = N_Function_Specification
+        and then Is_Array_Type (Etype (Subp))
+        and then Is_Constrained (Etype (Subp))
+        and then not Is_Unchecked_Conversion_Instance (Subp)
+      then
+         Build_Procedure_Form (N);
+      end if;
+   end Expand_N_Subprogram_Declaration;
+
+   --------------------------------
+   -- Expand_Non_Function_Return --
+   --------------------------------
+
+   procedure Expand_Non_Function_Return (N : Node_Id) is
+      pragma Assert (No (Expression (N)));
+
+      Loc       : constant Source_Ptr := Sloc (N);
+      Scope_Id  : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
+      Kind      : constant Entity_Kind := Ekind (Scope_Id);
+      Call      : Node_Id;
+      Acc_Stat  : Node_Id;
+      Goto_Stat : Node_Id;
+      Lab_Node  : Node_Id;
+
+   begin
+      --  Call the _Postconditions procedure if the related subprogram has
+      --  contract assertions that need to be verified on exit.
+
+      if Ekind_In (Scope_Id, E_Entry, E_Entry_Family, E_Procedure)
+        and then Present (Postconditions_Proc (Scope_Id))
+      then
+         Insert_Action (N,
+           Make_Procedure_Call_Statement (Loc,
+             Name => New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc)));
+      end if;
+
+      --  If it is a return from a procedure do no extra steps
+
+      if Kind = E_Procedure or else Kind = E_Generic_Procedure then
+         return;
+
+      --  If it is a nested return within an extended one, replace it with a
+      --  return of the previously declared return object.
+
+      elsif Kind = E_Return_Statement then
+         Rewrite (N,
+           Make_Simple_Return_Statement (Loc,
+             Expression =>
+               New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
+         Set_Comes_From_Extended_Return_Statement (N);
+         Set_Return_Statement_Entity (N, Scope_Id);
+         Expand_Simple_Function_Return (N);
+         return;
+      end if;
+
+      pragma Assert (Is_Entry (Scope_Id));
+
+      --  Look at the enclosing block to see whether the return is from an
+      --  accept statement or an entry body.
+
+      for J in reverse 0 .. Scope_Stack.Last loop
+         Scope_Id := Scope_Stack.Table (J).Entity;
+         exit when Is_Concurrent_Type (Scope_Id);
+      end loop;
+
+      --  If it is a return from accept statement it is expanded as call to
+      --  RTS Complete_Rendezvous and a goto to the end of the accept body.
+
+      --  (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
+      --  Expand_N_Accept_Alternative in exp_ch9.adb)
+
+      if Is_Task_Type (Scope_Id) then
+
+         Call :=
+           Make_Procedure_Call_Statement (Loc,
+             Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
+         Insert_Before (N, Call);
+         --  why not insert actions here???
+         Analyze (Call);
+
+         Acc_Stat := Parent (N);
+         while Nkind (Acc_Stat) /= N_Accept_Statement loop
+            Acc_Stat := Parent (Acc_Stat);
+         end loop;
+
+         Lab_Node := Last (Statements
+           (Handled_Statement_Sequence (Acc_Stat)));
+
+         Goto_Stat := Make_Goto_Statement (Loc,
+           Name => New_Occurrence_Of
+             (Entity (Identifier (Lab_Node)), Loc));
+
+         Set_Analyzed (Goto_Stat);
+
+         Rewrite (N, Goto_Stat);
+         Analyze (N);
+
+      --  If it is a return from an entry body, put a Complete_Entry_Body call
+      --  in front of the return.
+
+      elsif Is_Protected_Type (Scope_Id) then
+         Call :=
+           Make_Procedure_Call_Statement (Loc,
+             Name =>
+               New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
+             Parameter_Associations => New_List (
+               Make_Attribute_Reference (Loc,
+                 Prefix         =>
+                   New_Occurrence_Of
+                     (Find_Protection_Object (Current_Scope), Loc),
+                 Attribute_Name => Name_Unchecked_Access)));
+
+         Insert_Before (N, Call);
+         Analyze (Call);
+      end if;
+   end Expand_Non_Function_Return;
+
+   ---------------------------------------
+   -- Expand_Protected_Object_Reference --
+   ---------------------------------------
+
+   function Expand_Protected_Object_Reference
+     (N    : Node_Id;
+      Scop : Entity_Id) return Node_Id
+   is
+      Loc   : constant Source_Ptr := Sloc (N);
+      Corr  : Entity_Id;
+      Rec   : Node_Id;
+      Param : Entity_Id;
+      Proc  : Entity_Id;
+
+   begin
+      Rec := Make_Identifier (Loc, Name_uObject);
+      Set_Etype (Rec, Corresponding_Record_Type (Scop));
+
+      --  Find enclosing protected operation, and retrieve its first parameter,
+      --  which denotes the enclosing protected object. If the enclosing
+      --  operation is an entry, we are immediately within the protected body,
+      --  and we can retrieve the object from the service entries procedure. A
+      --  barrier function has the same signature as an entry. A barrier
+      --  function is compiled within the protected object, but unlike
+      --  protected operations its never needs locks, so that its protected
+      --  body subprogram points to itself.
+
+      Proc := Current_Scope;
+      while Present (Proc)
+        and then Scope (Proc) /= Scop
+      loop
+         Proc := Scope (Proc);
+      end loop;
+
+      Corr := Protected_Body_Subprogram (Proc);
+
+      if No (Corr) then
+
+         --  Previous error left expansion incomplete.
+         --  Nothing to do on this call.
+
+         return Empty;
+      end if;
+
+      Param :=
+        Defining_Identifier
+          (First (Parameter_Specifications (Parent (Corr))));
+
+      if Is_Subprogram (Proc) and then Proc /= Corr then
+
+         --  Protected function or procedure
+
+         Set_Entity (Rec, Param);
+
+         --  Rec is a reference to an entity which will not be in scope when
+         --  the call is reanalyzed, and needs no further analysis.
+
+         Set_Analyzed (Rec);
+
+      else
+         --  Entry or barrier function for entry body. The first parameter of
+         --  the entry body procedure is pointer to the object. We create a
+         --  local variable of the proper type, duplicating what is done to
+         --  define _object later on.
+
+         declare
+            Decls   : List_Id;
+            Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
+
+         begin
+            Decls := New_List (
+              Make_Full_Type_Declaration (Loc,
+                Defining_Identifier => Obj_Ptr,
+                  Type_Definition   =>
+                     Make_Access_To_Object_Definition (Loc,
+                       Subtype_Indication =>
+                         New_Occurrence_Of
+                           (Corresponding_Record_Type (Scop), Loc))));
+
+            Insert_Actions (N, Decls);
+            Freeze_Before (N, Obj_Ptr);
+
+            Rec :=
+              Make_Explicit_Dereference (Loc,
+                Prefix =>
+                  Unchecked_Convert_To (Obj_Ptr,
+                    New_Occurrence_Of (Param, Loc)));
+
+            --  Analyze new actual. Other actuals in calls are already analyzed
+            --  and the list of actuals is not reanalyzed after rewriting.
+
+            Set_Parent (Rec, N);
+            Analyze (Rec);
+         end;
+      end if;
+
+      return Rec;
+   end Expand_Protected_Object_Reference;
+
+   --------------------------------------
+   -- Expand_Protected_Subprogram_Call --
+   --------------------------------------
+
+   procedure Expand_Protected_Subprogram_Call
+     (N    : Node_Id;
+      Subp : Entity_Id;
+      Scop : Entity_Id)
+   is
+      Rec : Node_Id;
+
+      procedure Expand_Internal_Init_Call;
+      --  A call to an operation of the type may occur in the initialization
+      --  of a private component. In that case the prefix of the call is an
+      --  entity name and the call is treated as internal even though it
+      --  appears in code outside of the protected type.
+
+      procedure Freeze_Called_Function;
+      --  If it is a function call it can appear in elaboration code and
+      --  the called entity must be frozen before the call. This must be
+      --  done before the call is expanded, as the expansion may rewrite it
+      --  to something other than a call (e.g. a temporary initialized in a
+      --  transient block).
+
+      -------------------------------
+      -- Expand_Internal_Init_Call --
+      -------------------------------
+
+      procedure Expand_Internal_Init_Call is
+      begin
+         --  If the context is a protected object (rather than a protected
+         --  type) the call itself is bound to raise program_error because
+         --  the protected body will not have been elaborated yet. This is
+         --  diagnosed subsequently in Sem_Elab.
+
+         Freeze_Called_Function;
+
+         --  The target of the internal call is the first formal of the
+         --  enclosing initialization procedure.
+
+         Rec := New_Occurrence_Of (First_Formal (Current_Scope), Sloc (N));
+         Build_Protected_Subprogram_Call (N,
+           Name     => Name (N),
+           Rec      => Rec,
+           External => False);
+         Analyze (N);
+         Resolve (N, Etype (Subp));
+      end Expand_Internal_Init_Call;
+
+      ----------------------------
+      -- Freeze_Called_Function --
+      ----------------------------
+
+      procedure Freeze_Called_Function is
+      begin
+         if Ekind (Subp) = E_Function then
+            Freeze_Expression (Name (N));
+         end if;
+      end Freeze_Called_Function;
+
+   --  Start of processing for Expand_Protected_Subprogram_Call
+
+   begin
+      --  If the protected object is not an enclosing scope, this is an inter-
+      --  object function call. Inter-object procedure calls are expanded by
+      --  Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
+      --  subprogram being called is in the protected body being compiled, and
+      --  if the protected object in the call is statically the enclosing type.
+      --  The object may be a component of some other data structure, in which
+      --  case this must be handled as an inter-object call.
+
+      if not In_Open_Scopes (Scop)
+        or else Is_Entry_Wrapper (Current_Scope)
+        or else not Is_Entity_Name (Name (N))
+      then
+         if Nkind (Name (N)) = N_Selected_Component then
+            Rec := Prefix (Name (N));
+
+         elsif Nkind (Name (N)) = N_Indexed_Component then
+            Rec := Prefix (Prefix (Name (N)));
+
+         --  If this is a call within an entry wrapper, it appears within a
+         --  precondition that calls another primitive of the synchronized
+         --  type. The target object of the call is the first actual on the
+         --  wrapper. Note that this is an external call, because the wrapper
+         --  is called outside of the synchronized object. This means that
+         --  an entry call to an entry with preconditions involves two
+         --  synchronized operations.
+
+         elsif Ekind (Current_Scope) = E_Procedure
+           and then Is_Entry_Wrapper (Current_Scope)
+         then
+            Rec := New_Occurrence_Of (First_Entity (Current_Scope), Sloc (N));
+
+         else
+            --  If the context is the initialization procedure for a protected
+            --  type, the call is legal because the called entity must be a
+            --  function of that enclosing type, and this is treated as an
+            --  internal call.
+
+            pragma Assert
+              (Is_Entity_Name (Name (N)) and then Inside_Init_Proc);
+
+            Expand_Internal_Init_Call;
+            return;
+         end if;
+
+         Freeze_Called_Function;
+         Build_Protected_Subprogram_Call (N,
+           Name     => New_Occurrence_Of (Subp, Sloc (N)),
+           Rec      => Convert_Concurrent (Rec, Etype (Rec)),
+           External => True);
+
+      else
+         Rec := Expand_Protected_Object_Reference (N, Scop);
+
+         if No (Rec) then
+            return;
+         end if;
+
+         Freeze_Called_Function;
+         Build_Protected_Subprogram_Call (N,
+           Name     => Name (N),
+           Rec      => Rec,
+           External => False);
+      end if;
+
+      --  Analyze and resolve the new call. The actuals have already been
+      --  resolved, but expansion of a function call will add extra actuals
+      --  if needed. Analysis of a procedure call already includes resolution.
+
+      Analyze (N);
+
+      if Ekind (Subp) = E_Function then
+         Resolve (N, Etype (Subp));
+      end if;
+   end Expand_Protected_Subprogram_Call;
+
+   -----------------------------------
+   -- Expand_Simple_Function_Return --
+   -----------------------------------
+
+   --  The "simple" comes from the syntax rule simple_return_statement. The
+   --  semantics are not at all simple.
+
+   procedure Expand_Simple_Function_Return (N : Node_Id) is
+      Loc : constant Source_Ptr := Sloc (N);
+
+      Scope_Id : constant Entity_Id :=
+                   Return_Applies_To (Return_Statement_Entity (N));
+      --  The function we are returning from
+
+      R_Type : constant Entity_Id := Etype (Scope_Id);
+      --  The result type of the function
+
+      Utyp : constant Entity_Id := Underlying_Type (R_Type);
+
+      Exp : Node_Id := Expression (N);
+      pragma Assert (Present (Exp));
+
+      Exptyp : constant Entity_Id := Etype (Exp);
+      --  The type of the expression (not necessarily the same as R_Type)
+
+      Subtype_Ind : Node_Id;
+      --  If the result type of the function is class-wide and the expression
+      --  has a specific type, then we use the expression's type as the type of
+      --  the return object. In cases where the expression is an aggregate that
+      --  is built in place, this avoids the need for an expensive conversion
+      --  of the return object to the specific type on assignments to the
+      --  individual components.
+
+   begin
+      if Is_Class_Wide_Type (R_Type)
+        and then not Is_Class_Wide_Type (Exptyp)
+        and then Nkind (Exp) /= N_Type_Conversion
+      then
+         Subtype_Ind := New_Occurrence_Of (Exptyp, Loc);
+      else
+         Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
+
+         --  If the result type is class-wide and the expression is a view
+         --  conversion, the conversion plays no role in the expansion because
+         --  it does not modify the tag of the object. Remove the conversion
+         --  altogether to prevent tag overwriting.
+
+         if Is_Class_Wide_Type (R_Type)
+           and then not Is_Class_Wide_Type (Exptyp)
+           and then Nkind (Exp) = N_Type_Conversion
+         then
+            Exp := Expression (Exp);
+         end if;
+      end if;
+
+      --  For the case of a simple return that does not come from an
+      --  extended return, in the case of build-in-place, we rewrite
+      --  "return <expression>;" to be:
+
+      --    return _anon_ : <return_subtype> := <expression>
+
+      --  The expansion produced by Expand_N_Extended_Return_Statement will
+      --  contain simple return statements (for example, a block containing
+      --  simple return of the return object), which brings us back here with
+      --  Comes_From_Extended_Return_Statement set. The reason for the barrier
+      --  checking for a simple return that does not come from an extended
+      --  return is to avoid this infinite recursion.
+
+      --  The reason for this design is that for Ada 2005 limited returns, we
+      --  need to reify the return object, so we can build it "in place", and
+      --  we need a block statement to hang finalization and tasking stuff.
+
+      --  ??? In order to avoid disruption, we avoid translating to extended
+      --  return except in the cases where we really need to (Ada 2005 for
+      --  inherently limited). We might prefer to do this translation in all
+      --  cases (except perhaps for the case of Ada 95 inherently limited),
+      --  in order to fully exercise the Expand_N_Extended_Return_Statement
+      --  code. This would also allow us to do the build-in-place optimization
+      --  for efficiency even in cases where it is semantically not required.
+
+      --  As before, we check the type of the return expression rather than the
+      --  return type of the function, because the latter may be a limited
+      --  class-wide interface type, which is not a limited type, even though
+      --  the type of the expression may be.
+
+      pragma Assert
+        (Comes_From_Extended_Return_Statement (N)
+          or else not Is_Build_In_Place_Function_Call (Exp)
+          or else Is_Build_In_Place_Function (Scope_Id));
+
+      if not Comes_From_Extended_Return_Statement (N)
+        and then Is_Build_In_Place_Function (Scope_Id)
+        and then not Debug_Flag_Dot_L
+
+         --  The functionality of interface thunks is simple and it is always
+         --  handled by means of simple return statements. This leaves their
+         --  expansion simple and clean.
+
+        and then not Is_Thunk (Current_Scope)
+      then
+         declare
+            Return_Object_Entity : constant Entity_Id :=
+                                     Make_Temporary (Loc, 'R', Exp);
+
+            Obj_Decl : constant Node_Id :=
+                         Make_Object_Declaration (Loc,
+                           Defining_Identifier => Return_Object_Entity,
+                           Object_Definition   => Subtype_Ind,
+                           Expression          => Exp);
+
+            Ext : constant Node_Id :=
+                    Make_Extended_Return_Statement (Loc,
+                      Return_Object_Declarations => New_List (Obj_Decl));
+            --  Do not perform this high-level optimization if the result type
+            --  is an interface because the "this" pointer must be displaced.
+
+         begin
+            Rewrite (N, Ext);
+            Analyze (N);
+            return;
+         end;
+      end if;
+
+      --  Here we have a simple return statement that is part of the expansion
+      --  of an extended return statement (either written by the user, or
+      --  generated by the above code).
+
+      --  Always normalize C/Fortran boolean result. This is not always needed,
+      --  but it seems a good idea to minimize the passing around of non-
+      --  normalized values, and in any case this handles the processing of
+      --  barrier functions for protected types, which turn the condition into
+      --  a return statement.
+
+      if Is_Boolean_Type (Exptyp)
+        and then Nonzero_Is_True (Exptyp)
+      then
+         Adjust_Condition (Exp);
+         Adjust_Result_Type (Exp, Exptyp);
+      end if;
+
+      --  Do validity check if enabled for returns
+
+      if Validity_Checks_On
+        and then Validity_Check_Returns
+      then
+         Ensure_Valid (Exp);
+      end if;
+
+      --  Check the result expression of a scalar function against the subtype
+      --  of the function by inserting a conversion. This conversion must
+      --  eventually be performed for other classes of types, but for now it's
+      --  only done for scalars.
+      --  ???
+
+      if Is_Scalar_Type (Exptyp) then
+         Rewrite (Exp, Convert_To (R_Type, Exp));
+
+         --  The expression is resolved to ensure that the conversion gets
+         --  expanded to generate a possible constraint check.
+
+         Analyze_And_Resolve (Exp, R_Type);
+      end if;
+
+      --  Deal with returning variable length objects and controlled types
+
+      --  Nothing to do if we are returning by reference, or this is not a
+      --  type that requires special processing (indicated by the fact that
+      --  it requires a cleanup scope for the secondary stack case).
+
+      if Is_Build_In_Place_Function (Scope_Id)
+        or else Is_Limited_Interface (Exptyp)
+      then
+         null;
+
+      --  No copy needed for thunks returning interface type objects since
+      --  the object is returned by reference and the maximum functionality
+      --  required is just to displace the pointer.
+
+      elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
+         null;
+
+      --  If the call is within a thunk and the type is a limited view, the
+      --  backend will eventually see the non-limited view of the type.
+
+      elsif Is_Thunk (Current_Scope) and then Is_Incomplete_Type (Exptyp) then
+         return;
+
+      elsif not Requires_Transient_Scope (R_Type) then
+
+         --  Mutable records with variable-length components are not returned
+         --  on the sec-stack, so we need to make sure that the back end will
+         --  only copy back the size of the actual value, and not the maximum
+         --  size. We create an actual subtype for this purpose. However we
+         --  need not do it if the expression is a function call since this
+         --  will be done in the called function and doing it here too would
+         --  cause a temporary with maximum size to be created.
+
+         declare
+            Ubt  : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
+            Decl : Node_Id;
+            Ent  : Entity_Id;
+         begin
+            if Nkind (Exp) /= N_Function_Call
+              and then Has_Discriminants (Ubt)
+              and then not Is_Constrained (Ubt)
+              and then not Has_Unchecked_Union (Ubt)
+            then
+               Decl := Build_Actual_Subtype (Ubt, Exp);
+               Ent := Defining_Identifier (Decl);
+               Insert_Action (Exp, Decl);
+               Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
+               Analyze_And_Resolve (Exp);
+            end if;
+         end;
+
+      --  Here if secondary stack is used
+
+      else
+         --  Prevent the reclamation of the secondary stack by all enclosing
+         --  blocks and loops as well as the related function; otherwise the
+         --  result would be reclaimed too early.
+
+         Set_Enclosing_Sec_Stack_Return (N);
+
+         --  Optimize the case where the result is a function call. In this
+         --  case either the result is already on the secondary stack, or is
+         --  already being returned with the stack pointer depressed and no
+         --  further processing is required except to set the By_Ref flag
+         --  to ensure that gigi does not attempt an extra unnecessary copy.
+         --  (actually not just unnecessary but harmfully wrong in the case
+         --  of a controlled type, where gigi does not know how to do a copy).
+         --  To make up for a gcc 2.8.1 deficiency (???), we perform the copy
+         --  for array types if the constrained status of the target type is
+         --  different from that of the expression.
+
+         if Requires_Transient_Scope (Exptyp)
+           and then
+              (not Is_Array_Type (Exptyp)
+                or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
+                or else CW_Or_Has_Controlled_Part (Utyp))
+           and then Nkind (Exp) = N_Function_Call
+         then
+            Set_By_Ref (N);
+
+            --  Remove side effects from the expression now so that other parts
+            --  of the expander do not have to reanalyze this node without this
+            --  optimization
+
+            Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
+
+            --  Ada 2005 (AI-251): If the type of the returned object is
+            --  an interface then add an implicit type conversion to force
+            --  displacement of the "this" pointer.
+
+            if Is_Interface (R_Type) then
+               Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
+            end if;
+
+            Analyze_And_Resolve (Exp, R_Type);
+
+         --  For controlled types, do the allocation on the secondary stack
+         --  manually in order to call adjust at the right time:
+
+         --    type Anon1 is access R_Type;
+         --    for Anon1'Storage_pool use ss_pool;
+         --    Anon2 : anon1 := new R_Type'(expr);
+         --    return Anon2.all;
+
+         --  We do the same for classwide types that are not potentially
+         --  controlled (by the virtue of restriction No_Finalization) because
+         --  gigi is not able to properly allocate class-wide types.
+
+         elsif CW_Or_Has_Controlled_Part (Utyp) then
+            declare
+               Loc        : constant Source_Ptr := Sloc (N);
+               Acc_Typ    : constant Entity_Id := Make_Temporary (Loc, 'A');
+               Alloc_Node : Node_Id;
+               Temp       : Entity_Id;
+
+            begin
+               Set_Ekind (Acc_Typ, E_Access_Type);
+
+               Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
+
+               --  This is an allocator for the secondary stack, and it's fine
+               --  to have Comes_From_Source set False on it, as gigi knows not
+               --  to flag it as a violation of No_Implicit_Heap_Allocations.
+
+               Alloc_Node :=
+                 Make_Allocator (Loc,
+                   Expression =>
+                     Make_Qualified_Expression (Loc,
+                       Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
+                       Expression   => Relocate_Node (Exp)));
+
+               --  We do not want discriminant checks on the declaration,
+               --  given that it gets its value from the allocator.
+
+               Set_No_Initialization (Alloc_Node);
+
+               Temp := Make_Temporary (Loc, 'R', Alloc_Node);
+
+               Insert_List_Before_And_Analyze (N, New_List (
+                 Make_Full_Type_Declaration (Loc,
+                   Defining_Identifier => Acc_Typ,
+                   Type_Definition     =>
+                     Make_Access_To_Object_Definition (Loc,
+                       Subtype_Indication => Subtype_Ind)),
+
+                 Make_Object_Declaration (Loc,
+                   Defining_Identifier => Temp,
+                   Object_Definition   => New_Occurrence_Of (Acc_Typ, Loc),
+                   Expression          => Alloc_Node)));
+
+               Rewrite (Exp,
+                 Make_Explicit_Dereference (Loc,
+                 Prefix => New_Occurrence_Of (Temp, Loc)));
+
+               --  Ada 2005 (AI-251): If the type of the returned object is
+               --  an interface then add an implicit type conversion to force
+               --  displacement of the "this" pointer.
+
+               if Is_Interface (R_Type) then
+                  Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
+               end if;
+
+               Analyze_And_Resolve (Exp, R_Type);
+            end;
+
+         --  Otherwise use the gigi mechanism to allocate result on the
+         --  secondary stack.
+
+         else
+            Check_Restriction (No_Secondary_Stack, N);
+            Set_Storage_Pool (N, RTE (RE_SS_Pool));
+            Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
+         end if;
+      end if;
+
+      --  Implement the rules of 6.5(8-10), which require a tag check in
+      --  the case of a limited tagged return type, and tag reassignment for
+      --  nonlimited tagged results. These actions are needed when the return
+      --  type is a specific tagged type and the result expression is a
+      --  conversion or a formal parameter, because in that case the tag of
+      --  the expression might differ from the tag of the specific result type.
+
+      if Is_Tagged_Type (Utyp)
+        and then not Is_Class_Wide_Type (Utyp)
+        and then (Nkind_In (Exp, N_Type_Conversion,
+                                 N_Unchecked_Type_Conversion)
+                    or else (Is_Entity_Name (Exp)
+                               and then Ekind (Entity (Exp)) in Formal_Kind))
+      then
+         --  When the return type is limited, perform a check that the tag of
+         --  the result is the same as the tag of the return type.
+
+         if Is_Limited_Type (R_Type) then
+            Insert_Action (Exp,
+              Make_Raise_Constraint_Error (Loc,
+                Condition =>
+                  Make_Op_Ne (Loc,
+                    Left_Opnd  =>
+                      Make_Selected_Component (Loc,
+                        Prefix        => Duplicate_Subexpr (Exp),
+                        Selector_Name => Make_Identifier (Loc, Name_uTag)),
+                    Right_Opnd =>
+                      Make_Attribute_Reference (Loc,
+                        Prefix         =>
+                          New_Occurrence_Of (Base_Type (Utyp), Loc),
+                        Attribute_Name => Name_Tag)),
+                Reason    => CE_Tag_Check_Failed));
+
+         --  If the result type is a specific nonlimited tagged type, then we
+         --  have to ensure that the tag of the result is that of the result
+         --  type. This is handled by making a copy of the expression in
+         --  the case where it might have a different tag, namely when the
+         --  expression is a conversion or a formal parameter. We create a new
+         --  object of the result type and initialize it from the expression,
+         --  which will implicitly force the tag to be set appropriately.
+
+         else
+            declare
+               ExpR       : constant Node_Id   := Relocate_Node (Exp);
+               Result_Id  : constant Entity_Id :=
+                              Make_Temporary (Loc, 'R', ExpR);
+               Result_Exp : constant Node_Id   :=
+                              New_Occurrence_Of (Result_Id, Loc);
+               Result_Obj : constant Node_Id   :=
+                              Make_Object_Declaration (Loc,
+                                Defining_Identifier => Result_Id,
+                                Object_Definition   =>
+                                  New_Occurrence_Of (R_Type, Loc),
+                                Constant_Present    => True,
+                                Expression          => ExpR);
+
+            begin
+               Set_Assignment_OK (Result_Obj);
+               Insert_Action (Exp, Result_Obj);
+
+               Rewrite (Exp, Result_Exp);
+               Analyze_And_Resolve (Exp, R_Type);
+            end;
+         end if;
+
+      --  Ada 2005 (AI-344): If the result type is class-wide, then insert
+      --  a check that the level of the return expression's underlying type
+      --  is not deeper than the level of the master enclosing the function.
+      --  Always generate the check when the type of the return expression
+      --  is class-wide, when it's a type conversion, or when it's a formal
+      --  parameter. Otherwise, suppress the check in the case where the
+      --  return expression has a specific type whose level is known not to
+      --  be statically deeper than the function's result type.
+
+      --  No runtime check needed in interface thunks since it is performed
+      --  by the target primitive associated with the thunk.
+
+      --  Note: accessibility check is skipped in the VM case, since there
+      --  does not seem to be any practical way to implement this check.
+
+      elsif Ada_Version >= Ada_2005
+        and then Tagged_Type_Expansion
+        and then Is_Class_Wide_Type (R_Type)
+        and then not Is_Thunk (Current_Scope)
+        and then not Scope_Suppress.Suppress (Accessibility_Check)
+        and then
+          (Is_Class_Wide_Type (Etype (Exp))
+            or else Nkind_In (Exp, N_Type_Conversion,
+                                   N_Unchecked_Type_Conversion)
+            or else (Is_Entity_Name (Exp)
+                      and then Ekind (Entity (Exp)) in Formal_Kind)
+            or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
+                      Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
+      then
+         declare
+            Tag_Node : Node_Id;
+
+         begin
+            --  Ada 2005 (AI-251): In class-wide interface objects we displace
+            --  "this" to reference the base of the object. This is required to
+            --  get access to the TSD of the object.
+
+            if Is_Class_Wide_Type (Etype (Exp))
+              and then Is_Interface (Etype (Exp))
+            then
+               --  If the expression is an explicit dereference then we can
+               --  directly displace the pointer to reference the base of
+               --  the object.
+
+               if Nkind (Exp) = N_Explicit_Dereference then
+                  Tag_Node :=
+                    Make_Explicit_Dereference (Loc,
+                      Prefix =>
+                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
+                          Make_Function_Call (Loc,
+                            Name                   =>
+                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
+                            Parameter_Associations => New_List (
+                              Unchecked_Convert_To (RTE (RE_Address),
+                                Duplicate_Subexpr (Prefix (Exp)))))));
+
+               --  Similar case to the previous one but the expression is a
+               --  renaming of an explicit dereference.
+
+               elsif Nkind (Exp) = N_Identifier
+                 and then Present (Renamed_Object (Entity (Exp)))
+                 and then Nkind (Renamed_Object (Entity (Exp)))
+                            = N_Explicit_Dereference
+               then
+                  Tag_Node :=
+                    Make_Explicit_Dereference (Loc,
+                      Prefix =>
+                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
+                          Make_Function_Call (Loc,
+                            Name                   =>
+                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
+                            Parameter_Associations => New_List (
+                              Unchecked_Convert_To (RTE (RE_Address),
+                                Duplicate_Subexpr
+                                  (Prefix
+                                    (Renamed_Object (Entity (Exp)))))))));
+
+               --  Common case: obtain the address of the actual object and
+               --  displace the pointer to reference the base of the object.
+
+               else
+                  Tag_Node :=
+                    Make_Explicit_Dereference (Loc,
+                      Prefix =>
+                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
+                          Make_Function_Call (Loc,
+                            Name               =>
+                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
+                            Parameter_Associations => New_List (
+                              Make_Attribute_Reference (Loc,
+                                Prefix         => Duplicate_Subexpr (Exp),
+                                Attribute_Name => Name_Address)))));
+               end if;
+            else
+               Tag_Node :=
+                 Make_Attribute_Reference (Loc,
+                   Prefix         => Duplicate_Subexpr (Exp),
+                   Attribute_Name => Name_Tag);
+            end if;
+
+            --  CodePeer does not do anything useful with
+            --  Ada.Tags.Type_Specific_Data components.
+
+            if not CodePeer_Mode then
+               Insert_Action (Exp,
+                 Make_Raise_Program_Error (Loc,
+                   Condition =>
+                     Make_Op_Gt (Loc,
+                       Left_Opnd  => Build_Get_Access_Level (Loc, Tag_Node),
+                       Right_Opnd =>
+                         Make_Integer_Literal (Loc,
+                           Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
+                   Reason    => PE_Accessibility_Check_Failed));
+            end if;
+         end;
+
+      --  AI05-0073: If function has a controlling access result, check that
+      --  the tag of the return value, if it is not null, matches designated
+      --  type of return type.
+
+      --  The return expression is referenced twice in the code below, so it
+      --  must be made free of side effects. Given that different compilers
+      --  may evaluate these parameters in different order, both occurrences
+      --  perform a copy.
+
+      elsif Ekind (R_Type) = E_Anonymous_Access_Type
+        and then Has_Controlling_Result (Scope_Id)
+      then
+         Insert_Action (N,
+           Make_Raise_Constraint_Error (Loc,
+             Condition =>
+               Make_And_Then (Loc,
+                 Left_Opnd  =>
+                   Make_Op_Ne (Loc,
+                     Left_Opnd  => Duplicate_Subexpr (Exp),
+                     Right_Opnd => Make_Null (Loc)),
+
+                 Right_Opnd => Make_Op_Ne (Loc,
+                   Left_Opnd  =>
+                     Make_Selected_Component (Loc,
+                       Prefix        => Duplicate_Subexpr (Exp),
+                       Selector_Name => Make_Identifier (Loc, Name_uTag)),
+
+                   Right_Opnd =>
+                     Make_Attribute_Reference (Loc,
+                       Prefix         =>
+                         New_Occurrence_Of (Designated_Type (R_Type), Loc),
+                       Attribute_Name => Name_Tag))),
+
+             Reason    => CE_Tag_Check_Failed),
+             Suppress  => All_Checks);
+      end if;
+
+      --  AI05-0234: RM 6.5(21/3). Check access discriminants to
+      --  ensure that the function result does not outlive an
+      --  object designated by one of it discriminants.
+
+      if Present (Extra_Accessibility_Of_Result (Scope_Id))
+        and then Has_Unconstrained_Access_Discriminants (R_Type)
+      then
+         declare
+            Discrim_Source : Node_Id;
+
+            procedure Check_Against_Result_Level (Level : Node_Id);
+            --  Check the given accessibility level against the level
+            --  determined by the point of call. (AI05-0234).
+
+            --------------------------------
+            -- Check_Against_Result_Level --
+            --------------------------------
+
+            procedure Check_Against_Result_Level (Level : Node_Id) is
+            begin
+               Insert_Action (N,
+                 Make_Raise_Program_Error (Loc,
+                   Condition =>
+                     Make_Op_Gt (Loc,
+                       Left_Opnd  => Level,
+                       Right_Opnd =>
+                         New_Occurrence_Of
+                           (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
+                       Reason => PE_Accessibility_Check_Failed));
+            end Check_Against_Result_Level;
+
+         begin
+            Discrim_Source := Exp;
+            while Nkind (Discrim_Source) = N_Qualified_Expression loop
+               Discrim_Source := Expression (Discrim_Source);
+            end loop;
+
+            if Nkind (Discrim_Source) = N_Identifier
+              and then Is_Return_Object (Entity (Discrim_Source))
+            then
+               Discrim_Source := Entity (Discrim_Source);
+
+               if Is_Constrained (Etype (Discrim_Source)) then
+                  Discrim_Source := Etype (Discrim_Source);
+               else
+                  Discrim_Source := Expression (Parent (Discrim_Source));
+               end if;
+
+            elsif Nkind (Discrim_Source) = N_Identifier
+              and then Nkind_In (Original_Node (Discrim_Source),
+                                 N_Aggregate, N_Extension_Aggregate)
+            then
+               Discrim_Source := Original_Node (Discrim_Source);
+
+            elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
+              Nkind (Original_Node (Discrim_Source)) = N_Function_Call
+            then
+               Discrim_Source := Original_Node (Discrim_Source);
+            end if;
+
+            Discrim_Source := Unqual_Conv (Discrim_Source);
+
+            case Nkind (Discrim_Source) is
+               when N_Defining_Identifier =>
+                  pragma Assert (Is_Composite_Type (Discrim_Source)
+                                  and then Has_Discriminants (Discrim_Source)
+                                  and then Is_Constrained (Discrim_Source));
+
+                  declare
+                     Discrim   : Entity_Id :=
+                                   First_Discriminant (Base_Type (R_Type));
+                     Disc_Elmt : Elmt_Id   :=
+                                   First_Elmt (Discriminant_Constraint
+                                                 (Discrim_Source));
+                  begin
+                     loop
+                        if Ekind (Etype (Discrim)) =
+                             E_Anonymous_Access_Type
+                        then
+                           Check_Against_Result_Level
+                             (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
+                        end if;
+
+                        Next_Elmt (Disc_Elmt);
+                        Next_Discriminant (Discrim);
+                        exit when not Present (Discrim);
+                     end loop;
+                  end;
+
+               when N_Aggregate
+                  | N_Extension_Aggregate
+               =>
+                  --  Unimplemented: extension aggregate case where discrims
+                  --  come from ancestor part, not extension part.
+
+                  declare
+                     Discrim  : Entity_Id :=
+                                  First_Discriminant (Base_Type (R_Type));
+
+                     Disc_Exp : Node_Id   := Empty;
+
+                     Positionals_Exhausted
+                              : Boolean   := not Present (Expressions
+                                                            (Discrim_Source));
+
+                     function Associated_Expr
+                       (Comp_Id : Entity_Id;
+                        Associations : List_Id) return Node_Id;
+
+                     --  Given a component and a component associations list,
+                     --  locate the expression for that component; returns
+                     --  Empty if no such expression is found.
+
+                     ---------------------
+                     -- Associated_Expr --
+                     ---------------------
+
+                     function Associated_Expr
+                       (Comp_Id : Entity_Id;
+                        Associations : List_Id) return Node_Id
+                     is
+                        Assoc  : Node_Id;
+                        Choice : Node_Id;
+
+                     begin
+                        --  Simple linear search seems ok here
+
+                        Assoc := First (Associations);
+                        while Present (Assoc) loop
+                           Choice := First (Choices (Assoc));
+                           while Present (Choice) loop
+                              if (Nkind (Choice) = N_Identifier
+                                   and then Chars (Choice) = Chars (Comp_Id))
+                                or else (Nkind (Choice) = N_Others_Choice)
+                              then
+                                 return Expression (Assoc);
+                              end if;
+
+                              Next (Choice);
+                           end loop;
+
+                           Next (Assoc);
+                        end loop;
+
+                        return Empty;
+                     end Associated_Expr;
+
+                  --  Start of processing for Expand_Simple_Function_Return
+
+                  begin
+                     if not Positionals_Exhausted then
+                        Disc_Exp := First (Expressions (Discrim_Source));
+                     end if;
+
+                     loop
+                        if Positionals_Exhausted then
+                           Disc_Exp :=
+                             Associated_Expr
+                               (Discrim,
+                                Component_Associations (Discrim_Source));
+                        end if;
+
+                        if Ekind (Etype (Discrim)) =
+                             E_Anonymous_Access_Type
+                        then
+                           Check_Against_Result_Level
+                             (Dynamic_Accessibility_Level (Disc_Exp));
+                        end if;
+
+                        Next_Discriminant (Discrim);
+                        exit when not Present (Discrim);
+
+                        if not Positionals_Exhausted then
+                           Next (Disc_Exp);
+                           Positionals_Exhausted := not Present (Disc_Exp);
+                        end if;
+                     end loop;
+                  end;
+
+               when N_Function_Call =>
+
+                  --  No check needed (check performed by callee)
+
+                  null;
+
+               when others =>
+                  declare
+                     Level : constant Node_Id :=
+                               Make_Integer_Literal (Loc,
+                                 Object_Access_Level (Discrim_Source));
+
+                  begin
+                     --  Unimplemented: check for name prefix that includes
+                     --  a dereference of an access value with a dynamic
+                     --  accessibility level (e.g., an access param or a
+                     --  saooaaat) and use dynamic level in that case. For
+                     --  example:
+                     --    return Access_Param.all(Some_Index).Some_Component;
+                     --  ???
+
+                     Set_Etype (Level, Standard_Natural);
+                     Check_Against_Result_Level (Level);
+                  end;
+            end case;
+         end;
+      end if;
+
+      --  If we are returning an object that may not be bit-aligned, then copy
+      --  the value into a temporary first. This copy may need to expand to a
+      --  loop of component operations.
+
+      if Is_Possibly_Unaligned_Slice (Exp)
+        or else Is_Possibly_Unaligned_Object (Exp)
+      then
+         declare
+            ExpR : constant Node_Id   := Relocate_Node (Exp);
+            Tnn  : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
+         begin
+            Insert_Action (Exp,
+              Make_Object_Declaration (Loc,
+                Defining_Identifier => Tnn,
+                Constant_Present    => True,
+                Object_Definition   => New_Occurrence_Of (R_Type, Loc),
+                Expression          => ExpR),
+              Suppress => All_Checks);
+            Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
+         end;
+      end if;
+
+      --  Call the _Postconditions procedure if the related function has
+      --  contract assertions that need to be verified on exit.
+
+      if Ekind (Scope_Id) = E_Function
+        and then Present (Postconditions_Proc (Scope_Id))
+      then
+         --  In the case of discriminated objects, we have created a
+         --  constrained subtype above, and used the underlying type. This
+         --  transformation is post-analysis and harmless, except that now the
+         --  call to the post-condition will be analyzed and the type kinds
+         --  have to match.
+
+         if Nkind (Exp) = N_Unchecked_Type_Conversion
+           and then Is_Private_Type (R_Type) /= Is_Private_Type (Etype (Exp))
+         then
+            Rewrite (Exp, Expression (Relocate_Node (Exp)));
+         end if;
+
+         --  We are going to reference the returned value twice in this case,
+         --  once in the call to _Postconditions, and once in the actual return
+         --  statement, but we can't have side effects happening twice.
+
+         Force_Evaluation (Exp, Mode => Strict);
+
+         --  Generate call to _Postconditions
+
+         Insert_Action (Exp,
+           Make_Procedure_Call_Statement (Loc,
+             Name                   =>
+               New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc),
+             Parameter_Associations => New_List (New_Copy_Tree (Exp))));
+      end if;
+
+      --  Ada 2005 (AI-251): If this return statement corresponds with an
+      --  simple return statement associated with an extended return statement
+      --  and the type of the returned object is an interface then generate an
+      --  implicit conversion to force displacement of the "this" pointer.
+
+      if Ada_Version >= Ada_2005
+        and then Comes_From_Extended_Return_Statement (N)
+        and then Nkind (Expression (N)) = N_Identifier
+        and then Is_Interface (Utyp)
+        and then Utyp /= Underlying_Type (Exptyp)
+      then
+         Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
+         Analyze_And_Resolve (Exp);
+      end if;
+   end Expand_Simple_Function_Return;
+
+   --------------------------------------------
+   -- Has_Unconstrained_Access_Discriminants --
+   --------------------------------------------
+
+   function Has_Unconstrained_Access_Discriminants
+     (Subtyp : Entity_Id) return Boolean
+   is
+      Discr : Entity_Id;
+
+   begin
+      if Has_Discriminants (Subtyp)
+        and then not Is_Constrained (Subtyp)
+      then
+         Discr := First_Discriminant (Subtyp);
+         while Present (Discr) loop
+            if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
+               return True;
+            end if;
+
+            Next_Discriminant (Discr);
+         end loop;
+      end if;
+
+      return False;
+   end Has_Unconstrained_Access_Discriminants;
+
+   -----------------------------------
+   -- Is_Build_In_Place_Result_Type --
+   -----------------------------------
+
+   function Is_Build_In_Place_Result_Type (Typ : Entity_Id) return Boolean is
+   begin
+      if not Expander_Active then
+         return False;
+      end if;
+
+      --  In Ada 2005 all functions with an inherently limited return type
+      --  must be handled using a build-in-place profile, including the case
+      --  of a function with a limited interface result, where the function
+      --  may return objects of nonlimited descendants.
+
+      if Is_Limited_View (Typ) then
+         return Ada_Version >= Ada_2005 and then not Debug_Flag_Dot_L;
+
+      else
+         if Debug_Flag_Dot_9 then
+            return False;
+         end if;
+
+         if Has_Interfaces (Typ) then
+            return False;
+         end if;
+
+         declare
+            T : Entity_Id := Typ;
+         begin
+            --  For T'Class, return True if it's True for T. This is necessary
+            --  because a class-wide function might say "return F (...)", where
+            --  F returns the corresponding specific type. We need a loop in
+            --  case T is a subtype of a class-wide type.
+
+            while Is_Class_Wide_Type (T) loop
+               T := Etype (T);
+            end loop;
+
+            --  If this is a generic formal type in an instance, return True if
+            --  it's True for the generic actual type.
+
+            if Nkind (Parent (T)) = N_Subtype_Declaration
+              and then Present (Generic_Parent_Type (Parent (T)))
+            then
+               T := Entity (Subtype_Indication (Parent (T)));
+
+               if Present (Full_View (T)) then
+                  T := Full_View (T);
+               end if;
+            end if;
+
+            if Present (Underlying_Type (T)) then
+               T := Underlying_Type (T);
+            end if;
+
+            declare
+               Result : Boolean;
+               --  So we can stop here in the debugger
+            begin
+               --  ???For now, enable build-in-place for a very narrow set of
+               --  controlled types. Change "if True" to "if False" to
+               --  experiment more controlled types. Eventually, we would
+               --  like to enable build-in-place for all tagged types, all
+               --  types that need finalization, and all caller-unknown-size
+               --  types.
+
+               if True then
+                  Result := Is_Controlled (T)
+                    and then Present (Enclosing_Subprogram (T))
+                    and then not Is_Compilation_Unit (Enclosing_Subprogram (T))
+                    and then Ekind (Enclosing_Subprogram (T)) = E_Procedure;
+               else
+                  Result := Is_Controlled (T);
+               end if;
+
+               return Result;
+            end;
+         end;
+      end if;
+   end Is_Build_In_Place_Result_Type;
+
+   --------------------------------
+   -- Is_Build_In_Place_Function --
+   --------------------------------
+
+   function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
+   begin
+      --  This function is called from Expand_Subtype_From_Expr during
+      --  semantic analysis, even when expansion is off. In those cases
+      --  the build_in_place expansion will not take place.
+
+      if not Expander_Active then
+         return False;
+      end if;
+
+      --  For now we test whether E denotes a function or access-to-function
+      --  type whose result subtype is inherently limited. Later this test
+      --  may be revised to allow composite nonlimited types. Functions with
+      --  a foreign convention or whose result type has a foreign convention
+      --  never qualify.
+
+      if Ekind_In (E, E_Function, E_Generic_Function)
+        or else (Ekind (E) = E_Subprogram_Type
+                  and then Etype (E) /= Standard_Void_Type)
+      then
+         --  Note: If the function has a foreign convention, it cannot build
+         --  its result in place, so you're on your own. On the other hand,
+         --  if only the return type has a foreign convention, its layout is
+         --  intended to be compatible with the other language, but the build-
+         --  in place machinery can ensure that the object is not copied.
+
+         return Is_Build_In_Place_Result_Type (Etype (E))
+           and then not Has_Foreign_Convention (E)
+           and then not Debug_Flag_Dot_L;
+
+      else
+         return False;
+      end if;
+   end Is_Build_In_Place_Function;
+
+   -------------------------------------
+   -- Is_Build_In_Place_Function_Call --
+   -------------------------------------
+
+   function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
+      Exp_Node    : constant Node_Id := Unqual_Conv (N);
+      Function_Id : Entity_Id;
+
+   begin
+      --  Return False if the expander is currently inactive, since awareness
+      --  of build-in-place treatment is only relevant during expansion. Note
+      --  that Is_Build_In_Place_Function, which is called as part of this
+      --  function, is also conditioned this way, but we need to check here as
+      --  well to avoid blowing up on processing protected calls when expansion
+      --  is disabled (such as with -gnatc) since those would trip over the
+      --  raise of Program_Error below.
+
+      --  In SPARK mode, build-in-place calls are not expanded, so that we
+      --  may end up with a call that is neither resolved to an entity, nor
+      --  an indirect call.
+
+      if not Expander_Active or else Nkind (Exp_Node) /= N_Function_Call then
+         return False;
+      end if;
+
+      if Is_Entity_Name (Name (Exp_Node)) then
+         Function_Id := Entity (Name (Exp_Node));
+
+      --  In the case of an explicitly dereferenced call, use the subprogram
+      --  type generated for the dereference.
+
+      elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
+         Function_Id := Etype (Name (Exp_Node));
+
+      --  This may be a call to a protected function.
+
+      elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
+         Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
+
+      else
+         raise Program_Error;
+      end if;
+
+      declare
+         Result : constant Boolean := Is_Build_In_Place_Function (Function_Id);
+         --  So we can stop here in the debugger
+      begin
+         return Result;
+      end;
+   end Is_Build_In_Place_Function_Call;
+
+   -----------------------
+   -- Freeze_Subprogram --
+   -----------------------
+
+   procedure Freeze_Subprogram (N : Node_Id) is
+      Loc : constant Source_Ptr := Sloc (N);
+
+      procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
+      --  (Ada 2005): Register a predefined primitive in all the secondary
+      --  dispatch tables of its primitive type.
+
+      ----------------------------------
+      -- Register_Predefined_DT_Entry --
+      ----------------------------------
+
+      procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
+         Iface_DT_Ptr : Elmt_Id;
+         Tagged_Typ   : Entity_Id;
+         Thunk_Id     : Entity_Id;
+         Thunk_Code   : Node_Id;
+
+      begin
+         Tagged_Typ := Find_Dispatching_Type (Prim);
+
+         if No (Access_Disp_Table (Tagged_Typ))
+           or else not Has_Interfaces (Tagged_Typ)
+           or else not RTE_Available (RE_Interface_Tag)
+           or else Restriction_Active (No_Dispatching_Calls)
+         then
+            return;
+         end if;
+
+         --  Skip the first two access-to-dispatch-table pointers since they
+         --  leads to the primary dispatch table (predefined DT and user
+         --  defined DT). We are only concerned with the secondary dispatch
+         --  table pointers. Note that the access-to- dispatch-table pointer
+         --  corresponds to the first implemented interface retrieved below.
+
+         Iface_DT_Ptr :=
+           Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
+
+         while Present (Iface_DT_Ptr)
+           and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
+         loop
+            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
+            Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
+
+            if Present (Thunk_Code) then
+               Insert_Actions_After (N, New_List (
+                 Thunk_Code,
+
+                 Build_Set_Predefined_Prim_Op_Address (Loc,
+                   Tag_Node     =>
+                     New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
+                   Position     => DT_Position (Prim),
+                   Address_Node =>
+                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
+                       Make_Attribute_Reference (Loc,
+                         Prefix         => New_Occurrence_Of (Thunk_Id, Loc),
+                         Attribute_Name => Name_Unrestricted_Access))),
+
+                 Build_Set_Predefined_Prim_Op_Address (Loc,
+                   Tag_Node     =>
+                     New_Occurrence_Of
+                      (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
+                       Loc),
+                   Position     => DT_Position (Prim),
+                   Address_Node =>
+                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
+                       Make_Attribute_Reference (Loc,
+                         Prefix         => New_Occurrence_Of (Prim, Loc),
+                         Attribute_Name => Name_Unrestricted_Access)))));
+            end if;
+
+            --  Skip the tag of the predefined primitives dispatch table
+
+            Next_Elmt (Iface_DT_Ptr);
+            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
+
+            --  Skip tag of the no-thunks dispatch table
+
+            Next_Elmt (Iface_DT_Ptr);
+            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
+
+            --  Skip tag of predefined primitives no-thunks dispatch table
+
+            Next_Elmt (Iface_DT_Ptr);
+            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
+
+            Next_Elmt (Iface_DT_Ptr);
+         end loop;
+      end Register_Predefined_DT_Entry;
+
+      --  Local variables
+
+      Subp : constant Entity_Id  := Entity (N);
+
+   --  Start of processing for Freeze_Subprogram
+
+   begin
+      --  We suppress the initialization of the dispatch table entry when
+      --  not Tagged_Type_Expansion because the dispatching mechanism is
+      --  handled internally by the target.
+
+      if Is_Dispatching_Operation (Subp)
+        and then not Is_Abstract_Subprogram (Subp)
+        and then Present (DTC_Entity (Subp))
+        and then Present (Scope (DTC_Entity (Subp)))
+        and then Tagged_Type_Expansion
+        and then not Restriction_Active (No_Dispatching_Calls)
+        and then RTE_Available (RE_Tag)
+      then
+         declare
+            Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
+
+         begin
+            --  Handle private overridden primitives
+
+            if not Is_CPP_Class (Typ) then
+               Check_Overriding_Operation (Subp);
+            end if;
+
+            --  We assume that imported CPP primitives correspond with objects
+            --  whose constructor is in the CPP side; therefore we don't need
+            --  to generate code to register them in the dispatch table.
+
+            if Is_CPP_Class (Typ) then
+               null;
+
+            --  Handle CPP primitives found in derivations of CPP_Class types.
+            --  These primitives must have been inherited from some parent, and
+            --  there is no need to register them in the dispatch table because
+            --  Build_Inherit_Prims takes care of initializing these slots.
+
+            elsif Is_Imported (Subp)
+               and then (Convention (Subp) = Convention_CPP
+                           or else Convention (Subp) = Convention_C)
+            then
+               null;
+
+            --  Generate code to register the primitive in non statically
+            --  allocated dispatch tables
+
+            elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
+
+               --  When a primitive is frozen, enter its name in its dispatch
+               --  table slot.
+
+               if not Is_Interface (Typ)
+                 or else Present (Interface_Alias (Subp))
+               then
+                  if Is_Predefined_Dispatching_Operation (Subp) then
+                     Register_Predefined_DT_Entry (Subp);
+                  end if;
+
+                  Insert_Actions_After (N,
+                    Register_Primitive (Loc, Prim => Subp));
+               end if;
+            end if;
+         end;
+      end if;
+
+      --  Mark functions that return by reference. Note that it cannot be part
+      --  of the normal semantic analysis of the spec since the underlying
+      --  returned type may not be known yet (for private types).
+
+      declare
+         Typ  : constant Entity_Id := Etype (Subp);
+         Utyp : constant Entity_Id := Underlying_Type (Typ);
+
+      begin
+         if Is_Limited_View (Typ) then
+            Set_Returns_By_Ref (Subp);
+
+         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
+            Set_Returns_By_Ref (Subp);
+         end if;
+      end;
+
+      --  Wnen freezing a null procedure, analyze its delayed aspects now
+      --  because we may not have reached the end of the declarative list when
+      --  delayed aspects are normally analyzed. This ensures that dispatching
+      --  calls are properly rewritten when the generated _Postcondition
+      --  procedure is analyzed in the null procedure body.
+
+      if Nkind (Parent (Subp)) = N_Procedure_Specification
+        and then Null_Present (Parent (Subp))
+      then
+         Analyze_Entry_Or_Subprogram_Contract (Subp);
+      end if;
+   end Freeze_Subprogram;
+
+   ------------------------------
+   -- Insert_Post_Call_Actions --
+   ------------------------------
+
+   procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id) is
+      Context : constant Node_Id := Parent (N);
+
+   begin
+      if Is_Empty_List (Post_Call) then
+         return;
+      end if;
+
+      --  Cases where the call is not a member of a statement list. This
+      --  includes the case where the call is an actual in another function
+      --  call or indexing, i.e. an expression context as well.
+
+      if not Is_List_Member (N)
+        or else Nkind_In (Context, N_Function_Call, N_Indexed_Component)
+      then
+         --  In Ada 2012 the call may be a function call in an expression
+         --  (since OUT and IN OUT parameters are now allowed for such calls).
+         --  The write-back of (in)-out parameters is handled by the back-end,
+         --  but the constraint checks generated when subtypes of formal and
+         --  actual don't match must be inserted in the form of assignments.
+
+         if Nkind (Original_Node (N)) = N_Function_Call then
+            pragma Assert (Ada_Version >= Ada_2012);
+            --  Functions with '[in] out' parameters are only allowed in Ada
+            --  2012.
+
+            --  We used to handle this by climbing up parents to a
+            --  non-statement/declaration and then simply making a call to
+            --  Insert_Actions_After (P, Post_Call), but that doesn't work
+            --  for Ada 2012. If we are in the middle of an expression, e.g.
+            --  the condition of an IF, this call would insert after the IF
+            --  statement, which is much too late to be doing the write back.
+            --  For example:
+
+            --     if Clobber (X) then
+            --        Put_Line (X'Img);
+            --     else
+            --        goto Junk
+            --     end if;
+
+            --  Now assume Clobber changes X, if we put the write back after
+            --  the IF, the Put_Line gets the wrong value and the goto causes
+            --  the write back to be skipped completely.
+
+            --  To deal with this, we replace the call by
+
+            --    do
+            --       Tnnn : constant function-result-type := function-call;
+            --       Post_Call actions
+            --    in
+            --       Tnnn;
+            --    end;
+
+            declare
+               Loc   : constant Source_Ptr := Sloc (N);
+               Tnnn  : constant Entity_Id := Make_Temporary (Loc, 'T');
+               FRTyp : constant Entity_Id := Etype (N);
+               Name  : constant Node_Id   := Relocate_Node (N);
+
+            begin
+               Prepend_To (Post_Call,
+                 Make_Object_Declaration (Loc,
+                   Defining_Identifier => Tnnn,
+                   Object_Definition   => New_Occurrence_Of (FRTyp, Loc),
+                   Constant_Present    => True,
+                   Expression          => Name));
+
+               Rewrite (N,
+                 Make_Expression_With_Actions (Loc,
+                   Actions    => Post_Call,
+                   Expression => New_Occurrence_Of (Tnnn, Loc)));
+
+               --  We don't want to just blindly call Analyze_And_Resolve
+               --  because that would cause unwanted recursion on the call.
+               --  So for a moment set the call as analyzed to prevent that
+               --  recursion, and get the rest analyzed properly, then reset
+               --  the analyzed flag, so our caller can continue.
+
+               Set_Analyzed (Name, True);
+               Analyze_And_Resolve (N, FRTyp);
+               Set_Analyzed (Name, False);
+            end;
+
+         --  If not the special Ada 2012 case of a function call, then we must
+         --  have the triggering statement of a triggering alternative or an
+         --  entry call alternative, and we can add the post call stuff to the
+         --  corresponding statement list.
+
+         else
+            pragma Assert (Nkind_In (Context, N_Entry_Call_Alternative,
+                                              N_Triggering_Alternative));
+
+            if Is_Non_Empty_List (Statements (Context)) then
+               Insert_List_Before_And_Analyze
+                 (First (Statements (Context)), Post_Call);
+            else
+               Set_Statements (Context, Post_Call);
+            end if;
+         end if;
+
+      --  A procedure call is always part of a declarative or statement list,
+      --  however a function call may appear nested within a construct. Most
+      --  cases of function call nesting are handled in the special case above.
+      --  The only exception is when the function call acts as an actual in a
+      --  procedure call. In this case the function call is in a list, but the
+      --  post-call actions must be inserted after the procedure call.
+
+      elsif Nkind (Context) = N_Procedure_Call_Statement then
+         Insert_Actions_After (Context, Post_Call);
+
+      --  Otherwise, normal case where N is in a statement sequence, just put
+      --  the post-call stuff after the call statement.
+
+      else
+         Insert_Actions_After (N, Post_Call);
+      end if;
+   end Insert_Post_Call_Actions;
+
+   -----------------------
+   -- Is_Null_Procedure --
+   -----------------------
+
+   function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
+      Decl : constant Node_Id := Unit_Declaration_Node (Subp);
+
+   begin
+      if Ekind (Subp) /= E_Procedure then
+         return False;
+
+      --  Check if this is a declared null procedure
+
+      elsif Nkind (Decl) = N_Subprogram_Declaration then
+         if not Null_Present (Specification (Decl)) then
+            return False;
+
+         elsif No (Body_To_Inline (Decl)) then
+            return False;
+
+         --  Check if the body contains only a null statement, followed by
+         --  the return statement added during expansion.
+
+         else
+            declare
+               Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
+
+               Stat  : Node_Id;
+               Stat2 : Node_Id;
+
+            begin
+               if Nkind (Orig_Bod) /= N_Subprogram_Body then
+                  return False;
+               else
+                  --  We must skip SCIL nodes because they are currently
+                  --  implemented as special N_Null_Statement nodes.
+
+                  Stat :=
+                     First_Non_SCIL_Node
+                       (Statements (Handled_Statement_Sequence (Orig_Bod)));
+                  Stat2 := Next_Non_SCIL_Node (Stat);
+
+                  return
+                     Is_Empty_List (Declarations (Orig_Bod))
+                       and then Nkind (Stat) = N_Null_Statement
+                       and then
+                        (No (Stat2)
+                          or else
+                            (Nkind (Stat2) = N_Simple_Return_Statement
+                              and then No (Next (Stat2))));
+               end if;
+            end;
+         end if;
+
+      else
+         return False;
+      end if;
+   end Is_Null_Procedure;
+
+   -------------------------------------------
+   -- Make_Build_In_Place_Call_In_Allocator --
+   -------------------------------------------
+
+   procedure Make_Build_In_Place_Call_In_Allocator
+     (Allocator     : Node_Id;
+      Function_Call : Node_Id)
+   is
+      Acc_Type          : constant Entity_Id := Etype (Allocator);
+      Loc               : constant Source_Ptr := Sloc (Function_Call);
+      Func_Call         : Node_Id := Function_Call;
+      Ref_Func_Call     : Node_Id;
+      Function_Id       : Entity_Id;
+      Result_Subt       : Entity_Id;
+      New_Allocator     : Node_Id;
+      Return_Obj_Access : Entity_Id; -- temp for function result
+      Temp_Init         : Node_Id; -- initial value of Return_Obj_Access
+      Alloc_Form        : BIP_Allocation_Form;
+      Pool              : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
+      Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
+      Chain             : Entity_Id; -- activation chain, in case of tasks
+
+   begin
+      --  Step past qualification or unchecked conversion (the latter can occur
+      --  in cases of calls to 'Input).
+
+      if Nkind_In (Func_Call,
+                   N_Qualified_Expression,
+                   N_Type_Conversion,
+                   N_Unchecked_Type_Conversion)
+      then
+         Func_Call := Expression (Func_Call);
+      end if;
+
+      --  Mark the call as processed as a build-in-place call
+
+      pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
+      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
+
+      if Is_Entity_Name (Name (Func_Call)) then
+         Function_Id := Entity (Name (Func_Call));
+
+      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
+         Function_Id := Etype (Name (Func_Call));
+
+      else
+         raise Program_Error;
+      end if;
+
+      Result_Subt := Available_View (Etype (Function_Id));
+
+      --  Create a temp for the function result. In the caller-allocates case,
+      --  this will be initialized to the result of a new uninitialized
+      --  allocator. Note: we do not use Allocator as the Related_Node of
+      --  Return_Obj_Access in call to Make_Temporary below as this would
+      --  create a sort of infinite "recursion".
+
+      Return_Obj_Access := Make_Temporary (Loc, 'R');
+      Set_Etype (Return_Obj_Access, Acc_Type);
+      Set_Can_Never_Be_Null (Acc_Type, False);
+      --  It gets initialized to null, so we can't have that
+
+      --  When the result subtype is constrained, the return object is
+      --  allocated on the caller side, and access to it is passed to the
+      --  function.
+
+      --  Here and in related routines, we must examine the full view of the
+      --  type, because the view at the point of call may differ from that
+      --  that in the function body, and the expansion mechanism depends on
+      --  the characteristics of the full view.
+
+      if Is_Constrained (Underlying_Type (Result_Subt)) then
+         --  Replace the initialized allocator of form "new T'(Func (...))"
+         --  with an uninitialized allocator of form "new T", where T is the
+         --  result subtype of the called function. The call to the function
+         --  is handled separately further below.
+
+         New_Allocator :=
+           Make_Allocator (Loc,
+             Expression => New_Occurrence_Of (Result_Subt, Loc));
+         Set_No_Initialization (New_Allocator);
+
+         --  Copy attributes to new allocator. Note that the new allocator
+         --  logically comes from source if the original one did, so copy the
+         --  relevant flag. This ensures proper treatment of the restriction
+         --  No_Implicit_Heap_Allocations in this case.
+
+         Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
+         Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
+         Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
+
+         Rewrite (Allocator, New_Allocator);
+
+         --  Initial value of the temp is the result of the uninitialized
+         --  allocator. Unchecked_Convert is needed for T'Input where T is
+         --  derived from a controlled type.
+
+         Temp_Init := Relocate_Node (Allocator);
+
+         if Nkind_In
+           (Function_Call, N_Type_Conversion, N_Unchecked_Type_Conversion)
+         then
+            Temp_Init := Unchecked_Convert_To (Acc_Type, Temp_Init);
+         end if;
+
+         --  Indicate that caller allocates, and pass in the return object
+
+         Alloc_Form := Caller_Allocation;
+         Pool := Make_Null (No_Location);
+         Return_Obj_Actual :=
+           Make_Unchecked_Type_Conversion (Loc,
+             Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
+             Expression   =>
+               Make_Explicit_Dereference (Loc,
+                 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
+
+      --  When the result subtype is unconstrained, the function itself must
+      --  perform the allocation of the return object, so we pass parameters
+      --  indicating that.
+
+      else
+         Temp_Init := Empty;
+
+         --  Case of a user-defined storage pool. Pass an allocation parameter
+         --  indicating that the function should allocate its result in the
+         --  pool, and pass the pool. Use 'Unrestricted_Access because the
+         --  pool may not be aliased.
+
+         if Present (Associated_Storage_Pool (Acc_Type)) then
+            Alloc_Form := User_Storage_Pool;
+            Pool :=
+              Make_Attribute_Reference (Loc,
+                Prefix         =>
+                  New_Occurrence_Of
+                    (Associated_Storage_Pool (Acc_Type), Loc),
+                Attribute_Name => Name_Unrestricted_Access);
+
+         --  No user-defined pool; pass an allocation parameter indicating that
+         --  the function should allocate its result on the heap.
+
+         else
+            Alloc_Form := Global_Heap;
+            Pool := Make_Null (No_Location);
+         end if;
+
+         --  The caller does not provide the return object in this case, so we
+         --  have to pass null for the object access actual.
+
+         Return_Obj_Actual := Empty;
+      end if;
+
+      --  Declare the temp object
+
+      Insert_Action (Allocator,
+        Make_Object_Declaration (Loc,
+          Defining_Identifier => Return_Obj_Access,
+          Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
+          Expression          => Temp_Init));
+
+      Ref_Func_Call := Make_Reference (Loc, Func_Call);
+
+      --  Ada 2005 (AI-251): If the type of the allocator is an interface
+      --  then generate an implicit conversion to force displacement of the
+      --  "this" pointer.
+
+      if Is_Interface (Designated_Type (Acc_Type)) then
+         Rewrite
+           (Ref_Func_Call,
+            OK_Convert_To (Acc_Type, Ref_Func_Call));
+
+      --  If the types are incompatible, we need an unchecked conversion. Note
+      --  that the full types will be compatible, but the types not visibly
+      --  compatible.
+
+      elsif Nkind_In
+        (Function_Call, N_Type_Conversion, N_Unchecked_Type_Conversion)
+      then
+         Ref_Func_Call := Unchecked_Convert_To (Acc_Type, Ref_Func_Call);
+      end if;
+
+      declare
+         Assign : constant Node_Id :=
+           Make_Assignment_Statement (Loc,
+             Name       => New_Occurrence_Of (Return_Obj_Access, Loc),
+             Expression => Ref_Func_Call);
+         --  Assign the result of the function call into the temp. In the
+         --  caller-allocates case, this is overwriting the temp with its
+         --  initial value, which has no effect. In the callee-allocates case,
+         --  this is setting the temp to point to the object allocated by the
+         --  callee. Unchecked_Convert is needed for T'Input where T is derived
+         --  from a controlled type.
+
+         Actions : List_Id;
+         --  Actions to be inserted. If there are no tasks, this is just the
+         --  assignment statement. If the allocated object has tasks, we need
+         --  to wrap the assignment in a block that activates them. The
+         --  activation chain of that block must be passed to the function,
+         --  rather than some outer chain.
+      begin
+         if Has_Task (Result_Subt) then
+            Actions := New_List;
+            Build_Task_Allocate_Block_With_Init_Stmts
+              (Actions, Allocator, Init_Stmts => New_List (Assign));
+            Chain := Activation_Chain_Entity (Last (Actions));
+         else
+            Actions := New_List (Assign);
+            Chain   := Empty;
+         end if;
+
+         Insert_Actions (Allocator, Actions);
+      end;
+
+      --  When the function has a controlling result, an allocation-form
+      --  parameter must be passed indicating that the caller is allocating
+      --  the result object. This is needed because such a function can be
+      --  called as a dispatching operation and must be treated similarly
+      --  to functions with unconstrained result subtypes.
+
+      Add_Unconstrained_Actuals_To_Build_In_Place_Call
+        (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
+
+      Add_Finalization_Master_Actual_To_Build_In_Place_Call
+        (Func_Call, Function_Id, Acc_Type);
+
+      Add_Task_Actuals_To_Build_In_Place_Call
+        (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
+         Chain => Chain);
+
+      --  Add an implicit actual to the function call that provides access
+      --  to the allocated object. An unchecked conversion to the (specific)
+      --  result subtype of the function is inserted to handle cases where
+      --  the access type of the allocator has a class-wide designated type.
+
+      Add_Access_Actual_To_Build_In_Place_Call
+        (Func_Call, Function_Id, Return_Obj_Actual);
+
+      --  Finally, replace the allocator node with a reference to the temp
+
+      Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
+
+      Analyze_And_Resolve (Allocator, Acc_Type);
+   end Make_Build_In_Place_Call_In_Allocator;
+
+   ---------------------------------------------------
+   -- Make_Build_In_Place_Call_In_Anonymous_Context --
+   ---------------------------------------------------
+
+   procedure Make_Build_In_Place_Call_In_Anonymous_Context
+     (Function_Call : Node_Id)
+   is
+      Loc             : constant Source_Ptr := Sloc (Function_Call);
+      Func_Call       : constant Node_Id := Unqual_Conv (Function_Call);
+      Function_Id     : Entity_Id;
+      Result_Subt     : Entity_Id;
+      Return_Obj_Id   : Entity_Id;
+      Return_Obj_Decl : Entity_Id;
+
+   begin
+      --  If the call has already been processed to add build-in-place actuals
+      --  then return. One place this can occur is for calls to build-in-place
+      --  functions that occur within a call to a protected operation, where
+      --  due to rewriting and expansion of the protected call there can be
+      --  more than one call to Expand_Actuals for the same set of actuals.
+
+      if Is_Expanded_Build_In_Place_Call (Func_Call) then
+         return;
+      end if;
+
+      --  Mark the call as processed as a build-in-place call
+
+      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
+
+      if Is_Entity_Name (Name (Func_Call)) then
+         Function_Id := Entity (Name (Func_Call));
+
+      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
+         Function_Id := Etype (Name (Func_Call));
+
+      else
+         raise Program_Error;
+      end if;
+
+      Result_Subt := Etype (Function_Id);
+
+      --  If the build-in-place function returns a controlled object, then the
+      --  object needs to be finalized immediately after the context. Since
+      --  this case produces a transient scope, the servicing finalizer needs
+      --  to name the returned object. Create a temporary which is initialized
+      --  with the function call:
+      --
+      --    Temp_Id : Func_Type := BIP_Func_Call;
+      --
+      --  The initialization expression of the temporary will be rewritten by
+      --  the expander using the appropriate mechanism in Make_Build_In_Place_
+      --  Call_In_Object_Declaration.
+
+      if Needs_Finalization (Result_Subt) then
+         declare
+            Temp_Id   : constant Entity_Id := Make_Temporary (Loc, 'R');
+            Temp_Decl : Node_Id;
+
+         begin
+            --  Reset the guard on the function call since the following does
+            --  not perform actual call expansion.
+
+            Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
+
+            Temp_Decl :=
+              Make_Object_Declaration (Loc,
+                Defining_Identifier => Temp_Id,
+                Object_Definition =>
+                  New_Occurrence_Of (Result_Subt, Loc),
+                Expression =>
+                  New_Copy_Tree (Function_Call));
+
+            Insert_Action (Function_Call, Temp_Decl);
+
+            Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
+            Analyze (Function_Call);
+         end;
+
+      --  When the result subtype is definite, an object of the subtype is
+      --  declared and an access value designating it is passed as an actual.
+
+      elsif Caller_Known_Size (Func_Call, Result_Subt) then
+
+         --  Create a temporary object to hold the function result
+
+         Return_Obj_Id := Make_Temporary (Loc, 'R');
+         Set_Etype (Return_Obj_Id, Result_Subt);
+
+         Return_Obj_Decl :=
+           Make_Object_Declaration (Loc,
+             Defining_Identifier => Return_Obj_Id,
+             Aliased_Present     => True,
+             Object_Definition   => New_Occurrence_Of (Result_Subt, Loc));
+
+         Set_No_Initialization (Return_Obj_Decl);
+
+         Insert_Action (Func_Call, Return_Obj_Decl);
+
+         --  When the function has a controlling result, an allocation-form
+         --  parameter must be passed indicating that the caller is allocating
+         --  the result object. This is needed because such a function can be
+         --  called as a dispatching operation and must be treated similarly
+         --  to functions with unconstrained result subtypes.
+
+         Add_Unconstrained_Actuals_To_Build_In_Place_Call
+           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
+
+         Add_Finalization_Master_Actual_To_Build_In_Place_Call
+           (Func_Call, Function_Id);
+
+         Add_Task_Actuals_To_Build_In_Place_Call
+           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
+
+         --  Add an implicit actual to the function call that provides access
+         --  to the caller's return object.
+
+         Add_Access_Actual_To_Build_In_Place_Call
+           (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
+
+      --  When the result subtype is unconstrained, the function must allocate
+      --  the return object in the secondary stack, so appropriate implicit
+      --  parameters are added to the call to indicate that. A transient
+      --  scope is established to ensure eventual cleanup of the result.
+
+      else
+         --  Pass an allocation parameter indicating that the function should
+         --  allocate its result on the secondary stack.
+
+         Add_Unconstrained_Actuals_To_Build_In_Place_Call
+           (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
+
+         Add_Finalization_Master_Actual_To_Build_In_Place_Call
+           (Func_Call, Function_Id);
+
+         Add_Task_Actuals_To_Build_In_Place_Call
+           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
+
+         --  Pass a null value to the function since no return object is
+         --  available on the caller side.
+
+         Add_Access_Actual_To_Build_In_Place_Call
+           (Func_Call, Function_Id, Empty);
+      end if;
+   end Make_Build_In_Place_Call_In_Anonymous_Context;
+
+   --------------------------------------------
+   -- Make_Build_In_Place_Call_In_Assignment --
+   --------------------------------------------
+
+   procedure Make_Build_In_Place_Call_In_Assignment
+     (Assign        : Node_Id;
+      Function_Call : Node_Id)
+   is
+      Func_Call    : constant Node_Id    := Unqual_Conv (Function_Call);
+      Lhs          : constant Node_Id    := Name (Assign);
+      Loc          : constant Source_Ptr := Sloc (Function_Call);
+      Func_Id      : Entity_Id;
+      Obj_Decl     : Node_Id;
+      Obj_Id       : Entity_Id;
+      Ptr_Typ      : Entity_Id;
+      Ptr_Typ_Decl : Node_Id;
+      New_Expr     : Node_Id;
+      Result_Subt  : Entity_Id;
+
+   begin
+      --  Mark the call as processed as a build-in-place call
+
+      pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
+      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
+
+      if Is_Entity_Name (Name (Func_Call)) then
+         Func_Id := Entity (Name (Func_Call));
+
+      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
+         Func_Id := Etype (Name (Func_Call));
+
+      else
+         raise Program_Error;
+      end if;
+
+      Result_Subt := Etype (Func_Id);
+
+      --  When the result subtype is unconstrained, an additional actual must
+      --  be passed to indicate that the caller is providing the return object.
+      --  This parameter must also be passed when the called function has a
+      --  controlling result, because dispatching calls to the function needs
+      --  to be treated effectively the same as calls to class-wide functions.
+
+      Add_Unconstrained_Actuals_To_Build_In_Place_Call
+        (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
+
+      Add_Finalization_Master_Actual_To_Build_In_Place_Call
+        (Func_Call, Func_Id);
+
+      Add_Task_Actuals_To_Build_In_Place_Call
+        (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
+
+      --  Add an implicit actual to the function call that provides access to
+      --  the caller's return object.
+
+      Add_Access_Actual_To_Build_In_Place_Call
+        (Func_Call,
+         Func_Id,
+         Make_Unchecked_Type_Conversion (Loc,
+           Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
+           Expression   => Relocate_Node (Lhs)));
+
+      --  Create an access type designating the function's result subtype
+
+      Ptr_Typ := Make_Temporary (Loc, 'A');
+
+      Ptr_Typ_Decl :=
+        Make_Full_Type_Declaration (Loc,
+          Defining_Identifier => Ptr_Typ,
+          Type_Definition     =>
+            Make_Access_To_Object_Definition (Loc,
+              All_Present        => True,
+              Subtype_Indication =>
+                New_Occurrence_Of (Result_Subt, Loc)));
+      Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
+
+      --  Finally, create an access object initialized to a reference to the
+      --  function call. We know this access value is non-null, so mark the
+      --  entity accordingly to suppress junk access checks.
+
+      New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
+
+      --  Add a conversion if it's the wrong type
+
+      if Etype (New_Expr) /= Ptr_Typ then
+         New_Expr :=
+           Make_Unchecked_Type_Conversion (Loc,
+             New_Occurrence_Of (Ptr_Typ, Loc), New_Expr);
+      end if;
+
+      Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
+      Set_Etype (Obj_Id, Ptr_Typ);
+      Set_Is_Known_Non_Null (Obj_Id);
+
+      Obj_Decl :=
+        Make_Object_Declaration (Loc,
+          Defining_Identifier => Obj_Id,
+          Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
+          Expression          => New_Expr);
+      Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
+
+      Rewrite (Assign, Make_Null_Statement (Loc));
+   end Make_Build_In_Place_Call_In_Assignment;
+
+   ----------------------------------------------------
+   -- Make_Build_In_Place_Call_In_Object_Declaration --
+   ----------------------------------------------------
+
+   procedure Make_Build_In_Place_Call_In_Object_Declaration
+     (Obj_Decl      : Node_Id;
+      Function_Call : Node_Id)
+   is
+      function Get_Function_Id (Func_Call : Node_Id) return Entity_Id;
+      --  Get the value of Function_Id, below
+
+      ---------------------
+      -- Get_Function_Id --
+      ---------------------
+
+      function Get_Function_Id (Func_Call : Node_Id) return Entity_Id is
+      begin
+         if Is_Entity_Name (Name (Func_Call)) then
+            return Entity (Name (Func_Call));
+
+         elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
+            return Etype (Name (Func_Call));
+
+         else
+            raise Program_Error;
+         end if;
+      end Get_Function_Id;
+
+      --  Local variables
+
+      Func_Call   : constant Node_Id    := Unqual_Conv (Function_Call);
+      Function_Id : constant Entity_Id  := Get_Function_Id (Func_Call);
+      Loc         : constant Source_Ptr := Sloc (Function_Call);
+      Obj_Loc     : constant Source_Ptr := Sloc (Obj_Decl);
+      Obj_Def_Id  : constant Entity_Id  := Defining_Identifier (Obj_Decl);
+      Obj_Typ     : constant Entity_Id  := Etype (Obj_Def_Id);
+      Encl_Func   : constant Entity_Id  := Enclosing_Subprogram (Obj_Def_Id);
+      Result_Subt : constant Entity_Id  := Etype (Function_Id);
+
+      Call_Deref      : Node_Id;
+      Caller_Object   : Node_Id;
+      Def_Id          : Entity_Id;
+      Designated_Type : Entity_Id;
+      Fmaster_Actual  : Node_Id := Empty;
+      Pool_Actual     : Node_Id;
+      Ptr_Typ         : Entity_Id;
+      Ptr_Typ_Decl    : Node_Id;
+      Pass_Caller_Acc : Boolean := False;
+      Res_Decl        : Node_Id;
+
+      Definite : constant Boolean :=
+                   Caller_Known_Size (Func_Call, Result_Subt)
+                     and then not Is_Class_Wide_Type (Obj_Typ);
+      --  In the case of "X : T'Class := F(...);", where F returns a
+      --  Caller_Known_Size (specific) tagged type, we treat it as
+      --  indefinite, because the code for the Definite case below sets the
+      --  initialization expression of the object to Empty, which would be
+      --  illegal Ada, and would cause gigi to misallocate X.
+
+   --  Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
+
+   begin
+      --  If the call has already been processed to add build-in-place actuals
+      --  then return.
+
+      if Is_Expanded_Build_In_Place_Call (Func_Call) then
+         return;
+      end if;
+
+      --  Mark the call as processed as a build-in-place call
+
+      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
+
+      --  Create an access type designating the function's result subtype.
+      --  We use the type of the original call because it may be a call to an
+      --  inherited operation, which the expansion has replaced with the parent
+      --  operation that yields the parent type. Note that this access type
+      --  must be declared before we establish a transient scope, so that it
+      --  receives the proper accessibility level.
+
+      if Is_Class_Wide_Type (Obj_Typ)
+        and then not Is_Interface (Obj_Typ)
+        and then not Is_Class_Wide_Type (Etype (Function_Call))
+      then
+         Designated_Type := Obj_Typ;
+      else
+         Designated_Type := Etype (Function_Call);
+      end if;
+
+      Ptr_Typ := Make_Temporary (Loc, 'A');
+      Ptr_Typ_Decl :=
+        Make_Full_Type_Declaration (Loc,
+          Defining_Identifier => Ptr_Typ,
+          Type_Definition     =>
+            Make_Access_To_Object_Definition (Loc,
+              All_Present        => True,
+              Subtype_Indication =>
+                New_Occurrence_Of (Designated_Type, Loc)));
+
+      --  The access type and its accompanying object must be inserted after
+      --  the object declaration in the constrained case, so that the function
+      --  call can be passed access to the object. In the indefinite case, or
+      --  if the object declaration is for a return object, the access type and
+      --  object must be inserted before the object, since the object
+      --  declaration is rewritten to be a renaming of a dereference of the
+      --  access object. Note: we need to freeze Ptr_Typ explicitly, because
+      --  the result object is in a different (transient) scope, so won't cause
+      --  freezing.
+
+      if Definite and then not Is_Return_Object (Obj_Def_Id) then
+         Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
+      else
+         Insert_Action (Obj_Decl, Ptr_Typ_Decl);
+      end if;
+
+      --  Force immediate freezing of Ptr_Typ because Res_Decl will be
+      --  elaborated in an inner (transient) scope and thus won't cause
+      --  freezing by itself. It's not an itype, but it needs to be frozen
+      --  inside the current subprogram (see Freeze_Outside in freeze.adb).
+
+      Freeze_Itype (Ptr_Typ, Ptr_Typ_Decl);
+
+      --  If the object is a return object of an enclosing build-in-place
+      --  function, then the implicit build-in-place parameters of the
+      --  enclosing function are simply passed along to the called function.
+      --  (Unfortunately, this won't cover the case of extension aggregates
+      --  where the ancestor part is a build-in-place indefinite function
+      --  call that should be passed along the caller's parameters.
+      --  Currently those get mishandled by reassigning the result of the
+      --  call to the aggregate return object, when the call result should
+      --  really be directly built in place in the aggregate and not in a
+      --  temporary. ???)
+
+      if Is_Return_Object (Obj_Def_Id) then
+         Pass_Caller_Acc := True;
+
+         --  When the enclosing function has a BIP_Alloc_Form formal then we
+         --  pass it along to the callee (such as when the enclosing function
+         --  has an unconstrained or tagged result type).
+
+         if Needs_BIP_Alloc_Form (Encl_Func) then
+            if RTE_Available (RE_Root_Storage_Pool_Ptr) then
+               Pool_Actual :=
+                 New_Occurrence_Of
+                   (Build_In_Place_Formal
+                     (Encl_Func, BIP_Storage_Pool), Loc);
+
+            --  The build-in-place pool formal is not built on e.g. ZFP
+
+            else
+               Pool_Actual := Empty;
+            end if;
+
+            Add_Unconstrained_Actuals_To_Build_In_Place_Call
+              (Function_Call  => Func_Call,
+               Function_Id    => Function_Id,
+               Alloc_Form_Exp =>
+                 New_Occurrence_Of
+                   (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
+               Pool_Actual    => Pool_Actual);
+
+         --  Otherwise, if enclosing function has a definite result subtype,
+         --  then caller allocation will be used.
+
+         else
+            Add_Unconstrained_Actuals_To_Build_In_Place_Call
+              (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
+         end if;
+
+         if Needs_BIP_Finalization_Master (Encl_Func) then
+            Fmaster_Actual :=
+              New_Occurrence_Of
+                (Build_In_Place_Formal
+                   (Encl_Func, BIP_Finalization_Master), Loc);
+         end if;
+
+         --  Retrieve the BIPacc formal from the enclosing function and convert
+         --  it to the access type of the callee's BIP_Object_Access formal.
+
+         Caller_Object :=
+           Make_Unchecked_Type_Conversion (Loc,
+             Subtype_Mark =>
+               New_Occurrence_Of
+                 (Etype (Build_In_Place_Formal
+                    (Function_Id, BIP_Object_Access)),
+                  Loc),
+             Expression   =>
+               New_Occurrence_Of
+                 (Build_In_Place_Formal (Encl_Func, BIP_Object_Access),
+                  Loc));
+
+      --  In the definite case, add an implicit actual to the function call
+      --  that provides access to the declared object. An unchecked conversion
+      --  to the (specific) result type of the function is inserted to handle
+      --  the case where the object is declared with a class-wide type.
+
+      elsif Definite then
+         Caller_Object :=
+            Make_Unchecked_Type_Conversion (Loc,
+              Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
+              Expression   => New_Occurrence_Of (Obj_Def_Id, Loc));
+
+         --  When the function has a controlling result, an allocation-form
+         --  parameter must be passed indicating that the caller is allocating
+         --  the result object. This is needed because such a function can be
+         --  called as a dispatching operation and must be treated similarly to
+         --  functions with indefinite result subtypes.
+
+         Add_Unconstrained_Actuals_To_Build_In_Place_Call
+           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
+
+      --  The allocation for indefinite library-level objects occurs on the
+      --  heap as opposed to the secondary stack. This accommodates DLLs where
+      --  the secondary stack is destroyed after each library unload. This is a
+      --  hybrid mechanism where a stack-allocated object lives on the heap.
+
+      elsif Is_Library_Level_Entity (Obj_Def_Id)
+        and then not Restriction_Active (No_Implicit_Heap_Allocations)
+      then
+         Add_Unconstrained_Actuals_To_Build_In_Place_Call
+           (Func_Call, Function_Id, Alloc_Form => Global_Heap);
+         Caller_Object := Empty;
+
+         --  Create a finalization master for the access result type to ensure
+         --  that the heap allocation can properly chain the object and later
+         --  finalize it when the library unit goes out of scope.
+
+         if Needs_Finalization (Etype (Func_Call)) then
+            Build_Finalization_Master
+              (Typ            => Ptr_Typ,
+               For_Lib_Level  => True,
+               Insertion_Node => Ptr_Typ_Decl);
+
+            Fmaster_Actual :=
+              Make_Attribute_Reference (Loc,
+                Prefix         =>
+                  New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
+                Attribute_Name => Name_Unrestricted_Access);
+         end if;
+
+      --  In other indefinite cases, pass an indication to do the allocation on
+      --  the secondary stack and set Caller_Object to Empty so that a null
+      --  value will be passed for the caller's object address. A transient
+      --  scope is established to ensure eventual cleanup of the result.
+
+      else
+         Add_Unconstrained_Actuals_To_Build_In_Place_Call
+           (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
+         Caller_Object := Empty;
+
+         Establish_Transient_Scope (Obj_Decl, Sec_Stack => True);
+      end if;
+
+      --  Pass along any finalization master actual, which is needed in the
+      --  case where the called function initializes a return object of an
+      --  enclosing build-in-place function.
+
+      Add_Finalization_Master_Actual_To_Build_In_Place_Call
+        (Func_Call  => Func_Call,
+         Func_Id    => Function_Id,
+         Master_Exp => Fmaster_Actual);
+
+      if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
+        and then Has_Task (Result_Subt)
+      then
+         --  Here we're passing along the master that was passed in to this
+         --  function.
+
+         Add_Task_Actuals_To_Build_In_Place_Call
+           (Func_Call, Function_Id,
+            Master_Actual =>
+              New_Occurrence_Of
+                (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
+
+      else
+         Add_Task_Actuals_To_Build_In_Place_Call
+           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
+      end if;
+
+      Add_Access_Actual_To_Build_In_Place_Call
+        (Func_Call,
+         Function_Id,
+         Caller_Object,
+         Is_Access => Pass_Caller_Acc);
+
+      --  Finally, create an access object initialized to a reference to the
+      --  function call. We know this access value cannot be null, so mark the
+      --  entity accordingly to suppress the access check.
+
+      Def_Id := Make_Temporary (Loc, 'R', Func_Call);
+      Set_Etype (Def_Id, Ptr_Typ);
+      Set_Is_Known_Non_Null (Def_Id);
+
+      if Nkind_In (Function_Call, N_Type_Conversion,
+                                  N_Unchecked_Type_Conversion)
+      then
+         Res_Decl :=
+           Make_Object_Declaration (Loc,
+             Defining_Identifier => Def_Id,
+             Constant_Present    => True,
+             Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
+             Expression          =>
+               Make_Unchecked_Type_Conversion (Loc,
+                 New_Occurrence_Of (Ptr_Typ, Loc),
+                 Make_Reference (Loc, Relocate_Node (Func_Call))));
+      else
+         Res_Decl :=
+           Make_Object_Declaration (Loc,
+             Defining_Identifier => Def_Id,
+             Constant_Present    => True,
+             Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
+             Expression          =>
+               Make_Reference (Loc, Relocate_Node (Func_Call)));
+      end if;
+
+      Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
+
+      --  If the result subtype of the called function is definite and is not
+      --  itself the return expression of an enclosing BIP function, then mark
+      --  the object as having no initialization.
+
+      if Definite and then not Is_Return_Object (Obj_Def_Id) then
+
+         --  The related object declaration is encased in a transient block
+         --  because the build-in-place function call contains at least one
+         --  nested function call that produces a controlled transient
+         --  temporary:
+
+         --    Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
+
+         --  Since the build-in-place expansion decouples the call from the
+         --  object declaration, the finalization machinery lacks the context
+         --  which prompted the generation of the transient block. To resolve
+         --  this scenario, store the build-in-place call.
+
+         if Scope_Is_Transient and then Node_To_Be_Wrapped = Obj_Decl then
+            Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
+         end if;
+
+         Set_Expression (Obj_Decl, Empty);
+         Set_No_Initialization (Obj_Decl);
+
+      --  In case of an indefinite result subtype, or if the call is the
+      --  return expression of an enclosing BIP function, rewrite the object
+      --  declaration as an object renaming where the renamed object is a
+      --  dereference of <function_Call>'reference:
+      --
+      --      Obj : Subt renames <function_call>'Ref.all;
+
+      else
+         Call_Deref :=
+           Make_Explicit_Dereference (Obj_Loc,
+             Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
+
+         Rewrite (Obj_Decl,
+           Make_Object_Renaming_Declaration (Obj_Loc,
+             Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
+             Subtype_Mark        =>
+               New_Occurrence_Of (Designated_Type, Obj_Loc),
+             Name                => Call_Deref));
+
+         --  At this point, Defining_Identifier (Obj_Decl) is no longer equal
+         --  to Obj_Def_Id.
+
+         Set_Renamed_Object (Defining_Identifier (Obj_Decl), Call_Deref);
+
+         --  If the original entity comes from source, then mark the new
+         --  entity as needing debug information, even though it's defined
+         --  by a generated renaming that does not come from source, so that
+         --  the Materialize_Entity flag will be set on the entity when
+         --  Debug_Renaming_Declaration is called during analysis.
+
+         if Comes_From_Source (Obj_Def_Id) then
+            Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
+         end if;
+
+         Analyze (Obj_Decl);
+         Replace_Renaming_Declaration_Id
+           (Obj_Decl, Original_Node (Obj_Decl));
+      end if;
+   end Make_Build_In_Place_Call_In_Object_Declaration;
+
+   -------------------------------------------------
+   -- Make_Build_In_Place_Iface_Call_In_Allocator --
+   -------------------------------------------------
+
+   procedure Make_Build_In_Place_Iface_Call_In_Allocator
+     (Allocator     : Node_Id;
+      Function_Call : Node_Id)
+   is
+      BIP_Func_Call : constant Node_Id :=
+                        Unqual_BIP_Iface_Function_Call (Function_Call);
+      Loc           : constant Source_Ptr := Sloc (Function_Call);
+
+      Anon_Type : Entity_Id;
+      Tmp_Decl  : Node_Id;
+      Tmp_Id    : Entity_Id;
+
+   begin
+      --  No action of the call has already been processed
+
+      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
+         return;
+      end if;
+
+      Tmp_Id := Make_Temporary (Loc, 'D');
+
+      --  Insert a temporary before N initialized with the BIP function call
+      --  without its enclosing type conversions and analyze it without its
+      --  expansion. This temporary facilitates us reusing the BIP machinery,
+      --  which takes care of adding the extra build-in-place actuals and
+      --  transforms this object declaration into an object renaming
+      --  declaration.
+
+      Anon_Type := Create_Itype (E_Anonymous_Access_Type, Function_Call);
+      Set_Directly_Designated_Type (Anon_Type, Etype (BIP_Func_Call));
+      Set_Etype (Anon_Type, Anon_Type);
+
+      Tmp_Decl :=
+        Make_Object_Declaration (Loc,
+          Defining_Identifier => Tmp_Id,
+          Object_Definition   => New_Occurrence_Of (Anon_Type, Loc),
+          Expression          =>
+            Make_Allocator (Loc,
+              Expression =>
+                Make_Qualified_Expression (Loc,
+                  Subtype_Mark =>
+                    New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
+                  Expression   => New_Copy_Tree (BIP_Func_Call))));
+
+      Expander_Mode_Save_And_Set (False);
+      Insert_Action (Allocator, Tmp_Decl);
+      Expander_Mode_Restore;
+
+      Make_Build_In_Place_Call_In_Allocator
+        (Allocator     => Expression (Tmp_Decl),
+         Function_Call => Expression (Expression (Tmp_Decl)));
+
+      Rewrite (Allocator, New_Occurrence_Of (Tmp_Id, Loc));
+   end Make_Build_In_Place_Iface_Call_In_Allocator;
+
+   ---------------------------------------------------------
+   -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
+   ---------------------------------------------------------
+
+   procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
+     (Function_Call : Node_Id)
+   is
+      BIP_Func_Call : constant Node_Id :=
+                        Unqual_BIP_Iface_Function_Call (Function_Call);
+      Loc           : constant Source_Ptr := Sloc (Function_Call);
+
+      Tmp_Decl : Node_Id;
+      Tmp_Id   : Entity_Id;
+
+   begin
+      --  No action of the call has already been processed
+
+      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
+         return;
+      end if;
+
+      pragma Assert (Needs_Finalization (Etype (BIP_Func_Call)));
+
+      --  Insert a temporary before the call initialized with function call to
+      --  reuse the BIP machinery which takes care of adding the extra build-in
+      --  place actuals and transforms this object declaration into an object
+      --  renaming declaration.
+
+      Tmp_Id := Make_Temporary (Loc, 'D');
+
+      Tmp_Decl :=
+        Make_Object_Declaration (Loc,
+          Defining_Identifier => Tmp_Id,
+          Object_Definition   =>
+            New_Occurrence_Of (Etype (Function_Call), Loc),
+          Expression          => Relocate_Node (Function_Call));
+
+      Expander_Mode_Save_And_Set (False);
+      Insert_Action (Function_Call, Tmp_Decl);
+      Expander_Mode_Restore;
+
+      Make_Build_In_Place_Iface_Call_In_Object_Declaration
+        (Obj_Decl      => Tmp_Decl,
+         Function_Call => Expression (Tmp_Decl));
+   end Make_Build_In_Place_Iface_Call_In_Anonymous_Context;
+
+   ----------------------------------------------------------
+   -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
+   ----------------------------------------------------------
+
+   procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
+     (Obj_Decl      : Node_Id;
+      Function_Call : Node_Id)
+   is
+      BIP_Func_Call : constant Node_Id :=
+                        Unqual_BIP_Iface_Function_Call (Function_Call);
+      Loc           : constant Source_Ptr := Sloc (Function_Call);
+      Obj_Id        : constant Entity_Id := Defining_Entity (Obj_Decl);
+
+      Tmp_Decl : Node_Id;
+      Tmp_Id   : Entity_Id;
+
+   begin
+      --  No action of the call has already been processed
+
+      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
+         return;
+      end if;
+
+      Tmp_Id := Make_Temporary (Loc, 'D');
+
+      --  Insert a temporary before N initialized with the BIP function call
+      --  without its enclosing type conversions and analyze it without its
+      --  expansion. This temporary facilitates us reusing the BIP machinery,
+      --  which takes care of adding the extra build-in-place actuals and
+      --  transforms this object declaration into an object renaming
+      --  declaration.
+
+      Tmp_Decl :=
+        Make_Object_Declaration (Loc,
+          Defining_Identifier => Tmp_Id,
+          Object_Definition   =>
+            New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
+          Expression          => New_Copy_Tree (BIP_Func_Call));
+
+      Expander_Mode_Save_And_Set (False);
+      Insert_Action (Obj_Decl, Tmp_Decl);
+      Expander_Mode_Restore;
+
+      Make_Build_In_Place_Call_In_Object_Declaration
+        (Obj_Decl      => Tmp_Decl,
+         Function_Call => Expression (Tmp_Decl));
+
+      pragma Assert (Nkind (Tmp_Decl) = N_Object_Renaming_Declaration);
+
+      --  Replace the original build-in-place function call by a reference to
+      --  the resulting temporary object renaming declaration. In this way,
+      --  all the interface conversions performed in the original Function_Call
+      --  on the build-in-place object are preserved.
+
+      Rewrite (BIP_Func_Call, New_Occurrence_Of (Tmp_Id, Loc));
+
+      --  Replace the original object declaration by an internal object
+      --  renaming declaration. This leaves the generated code more clean (the
+      --  build-in-place function call in an object renaming declaration and
+      --  displacements of the pointer to the build-in-place object in another
+      --  renaming declaration) and allows us to invoke the routine that takes
+      --  care of replacing the identifier of the renaming declaration (routine
+      --  originally developed for the regular build-in-place management).
+
+      Rewrite (Obj_Decl,
+        Make_Object_Renaming_Declaration (Loc,
+          Defining_Identifier => Make_Temporary (Loc, 'D'),
+          Subtype_Mark        => New_Occurrence_Of (Etype (Obj_Id), Loc),
+          Name                => Function_Call));
+      Analyze (Obj_Decl);
+
+      Replace_Renaming_Declaration_Id (Obj_Decl, Original_Node (Obj_Decl));
+   end Make_Build_In_Place_Iface_Call_In_Object_Declaration;
+
+   --------------------------------------------
+   -- Make_CPP_Constructor_Call_In_Allocator --
+   --------------------------------------------
+
+   procedure Make_CPP_Constructor_Call_In_Allocator
+     (Allocator     : Node_Id;
+      Function_Call : Node_Id)
+   is
+      Loc         : constant Source_Ptr := Sloc (Function_Call);
+      Acc_Type    : constant Entity_Id := Etype (Allocator);
+      Function_Id : constant Entity_Id := Entity (Name (Function_Call));
+      Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
+
+      New_Allocator     : Node_Id;
+      Return_Obj_Access : Entity_Id;
+      Tmp_Obj           : Node_Id;
+
+   begin
+      pragma Assert (Nkind (Allocator) = N_Allocator
+                      and then Nkind (Function_Call) = N_Function_Call);
+      pragma Assert (Convention (Function_Id) = Convention_CPP
+                      and then Is_Constructor (Function_Id));
+      pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
+
+      --  Replace the initialized allocator of form "new T'(Func (...))" with
+      --  an uninitialized allocator of form "new T", where T is the result
+      --  subtype of the called function. The call to the function is handled
+      --  separately further below.
+
+      New_Allocator :=
+        Make_Allocator (Loc,
+          Expression => New_Occurrence_Of (Result_Subt, Loc));
+      Set_No_Initialization (New_Allocator);
+
+      --  Copy attributes to new allocator. Note that the new allocator
+      --  logically comes from source if the original one did, so copy the
+      --  relevant flag. This ensures proper treatment of the restriction
+      --  No_Implicit_Heap_Allocations in this case.
+
+      Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
+      Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
+      Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
+
+      Rewrite (Allocator, New_Allocator);
+
+      --  Create a new access object and initialize it to the result of the
+      --  new uninitialized allocator. Note: we do not use Allocator as the
+      --  Related_Node of Return_Obj_Access in call to Make_Temporary below
+      --  as this would create a sort of infinite "recursion".
+
+      Return_Obj_Access := Make_Temporary (Loc, 'R');
+      Set_Etype (Return_Obj_Access, Acc_Type);
+
+      --  Generate:
+      --    Rnnn : constant ptr_T := new (T);
+      --    Init (Rnn.all,...);
+
+      Tmp_Obj :=
+        Make_Object_Declaration (Loc,
+          Defining_Identifier => Return_Obj_Access,
+          Constant_Present    => True,
+          Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
+          Expression          => Relocate_Node (Allocator));
+      Insert_Action (Allocator, Tmp_Obj);
+
+      Insert_List_After_And_Analyze (Tmp_Obj,
+        Build_Initialization_Call (Loc,
+          Id_Ref =>
+            Make_Explicit_Dereference (Loc,
+              Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
+          Typ => Etype (Function_Id),
+          Constructor_Ref => Function_Call));
+
+      --  Finally, replace the allocator node with a reference to the result of
+      --  the function call itself (which will effectively be an access to the
+      --  object created by the allocator).
+
+      Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
+
+      --  Ada 2005 (AI-251): If the type of the allocator is an interface then
+      --  generate an implicit conversion to force displacement of the "this"
+      --  pointer.
+
+      if Is_Interface (Designated_Type (Acc_Type)) then
+         Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
+      end if;
+
+      Analyze_And_Resolve (Allocator, Acc_Type);
+   end Make_CPP_Constructor_Call_In_Allocator;
+
+   -----------------------------------
+   -- Needs_BIP_Finalization_Master --
+   -----------------------------------
+
+   function Needs_BIP_Finalization_Master
+     (Func_Id : Entity_Id) return Boolean
+   is
+      pragma Assert (Is_Build_In_Place_Function (Func_Id));
+      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
+   begin
+      --  A formal giving the finalization master is needed for build-in-place
+      --  functions whose result type needs finalization or is a tagged type.
+      --  Tagged primitive build-in-place functions need such a formal because
+      --  they can be called by a dispatching call, and extensions may require
+      --  finalization even if the root type doesn't. This means they're also
+      --  needed for tagged nonprimitive build-in-place functions with tagged
+      --  results, since such functions can be called via access-to-function
+      --  types, and those can be used to call primitives, so masters have to
+      --  be passed to all such build-in-place functions, primitive or not.
+
+      return
+        not Restriction_Active (No_Finalization)
+          and then (Needs_Finalization (Func_Typ)
+                     or else Is_Tagged_Type (Func_Typ));
+   end Needs_BIP_Finalization_Master;
+
+   --------------------------
+   -- Needs_BIP_Alloc_Form --
+   --------------------------
+
+   function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
+      pragma Assert (Is_Build_In_Place_Function (Func_Id));
+      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
+   begin
+      return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
+   end Needs_BIP_Alloc_Form;
+
+   --------------------------------------
+   -- Needs_Result_Accessibility_Level --
+   --------------------------------------
+
+   function Needs_Result_Accessibility_Level
+     (Func_Id : Entity_Id) return Boolean
+   is
+      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
+
+      function Has_Unconstrained_Access_Discriminant_Component
+        (Comp_Typ : Entity_Id) return Boolean;
+      --  Returns True if any component of the type has an unconstrained access
+      --  discriminant.
+
+      -----------------------------------------------------
+      -- Has_Unconstrained_Access_Discriminant_Component --
+      -----------------------------------------------------
+
+      function Has_Unconstrained_Access_Discriminant_Component
+        (Comp_Typ :  Entity_Id) return Boolean
+      is
+      begin
+         if not Is_Limited_Type (Comp_Typ) then
+            return False;
+
+            --  Only limited types can have access discriminants with
+            --  defaults.
+
+         elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
+            return True;
+
+         elsif Is_Array_Type (Comp_Typ) then
+            return Has_Unconstrained_Access_Discriminant_Component
+                     (Underlying_Type (Component_Type (Comp_Typ)));
+
+         elsif Is_Record_Type (Comp_Typ) then
+            declare
+               Comp : Entity_Id;
+
+            begin
+               Comp := First_Component (Comp_Typ);
+               while Present (Comp) loop
+                  if Has_Unconstrained_Access_Discriminant_Component
+                       (Underlying_Type (Etype (Comp)))
+                  then
+                     return True;
+                  end if;
+
+                  Next_Component (Comp);
+               end loop;
+            end;
+         end if;
+
+         return False;
+      end Has_Unconstrained_Access_Discriminant_Component;
+
+      Feature_Disabled : constant Boolean := True;
+      --  Temporary
+
+   --  Start of processing for Needs_Result_Accessibility_Level
+
+   begin
+      --  False if completion unavailable (how does this happen???)
+
+      if not Present (Func_Typ) then
+         return False;
+
+      elsif Feature_Disabled then
+         return False;
+
+      --  False if not a function, also handle enum-lit renames case
+
+      elsif Func_Typ = Standard_Void_Type
+        or else Is_Scalar_Type (Func_Typ)
+      then
+         return False;
+
+      --  Handle a corner case, a cross-dialect subp renaming. For example,
+      --  an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
+      --  an Ada 2005 (or earlier) unit references predefined run-time units.
+
+      elsif Present (Alias (Func_Id)) then
+
+         --  Unimplemented: a cross-dialect subp renaming which does not set
+         --  the Alias attribute (e.g., a rename of a dereference of an access
+         --  to subprogram value). ???
+
+         return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
+
+      --  Remaining cases require Ada 2012 mode
+
+      elsif Ada_Version < Ada_2012 then
+         return False;
+
+      elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
+        or else Is_Tagged_Type (Func_Typ)
+      then
+         --  In the case of, say, a null tagged record result type, the need
+         --  for this extra parameter might not be obvious. This function
+         --  returns True for all tagged types for compatibility reasons.
+         --  A function with, say, a tagged null controlling result type might
+         --  be overridden by a primitive of an extension having an access
+         --  discriminant and the overrider and overridden must have compatible
+         --  calling conventions (including implicitly declared parameters).
+         --  Similarly, values of one access-to-subprogram type might designate
+         --  both a primitive subprogram of a given type and a function
+         --  which is, for example, not a primitive subprogram of any type.
+         --  Again, this requires calling convention compatibility.
+         --  It might be possible to solve these issues by introducing
+         --  wrappers, but that is not the approach that was chosen.
+
+         return True;
+
+      elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
+         return True;
+
+      elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
+         return True;
+
+      --  False for all other cases
+
+      else
+         return False;
+      end if;
+   end Needs_Result_Accessibility_Level;
+
+   -------------------------------------
+   -- Replace_Renaming_Declaration_Id --
+   -------------------------------------
+
+   procedure Replace_Renaming_Declaration_Id
+      (New_Decl  : Node_Id;
+       Orig_Decl : Node_Id)
+   is
+      New_Id  : constant Entity_Id := Defining_Entity (New_Decl);
+      Orig_Id : constant Entity_Id := Defining_Entity (Orig_Decl);
+
+   begin
+      Set_Chars (New_Id, Chars (Orig_Id));
+
+      --  Swap next entity links in preparation for exchanging entities
+
+      declare
+         Next_Id : constant Entity_Id := Next_Entity (New_Id);
+      begin
+         Set_Next_Entity (New_Id, Next_Entity (Orig_Id));
+         Set_Next_Entity (Orig_Id, Next_Id);
+      end;
+
+      Set_Homonym (New_Id, Homonym (Orig_Id));
+      Exchange_Entities (New_Id, Orig_Id);
+
+      --  Preserve source indication of original declaration, so that xref
+      --  information is properly generated for the right entity.
+
+      Preserve_Comes_From_Source (New_Decl, Orig_Decl);
+      Preserve_Comes_From_Source (Orig_Id, Orig_Decl);
+
+      Set_Comes_From_Source (New_Id, False);
+   end Replace_Renaming_Declaration_Id;
+
+   ---------------------------------
+   -- Rewrite_Function_Call_For_C --
+   ---------------------------------
+
+   procedure Rewrite_Function_Call_For_C (N : Node_Id) is
+      Orig_Func   : constant Entity_Id  := Entity (Name (N));
+      Func_Id     : constant Entity_Id  := Ultimate_Alias (Orig_Func);
+      Par         : constant Node_Id    := Parent (N);
+      Proc_Id     : constant Entity_Id  := Corresponding_Procedure (Func_Id);
+      Loc         : constant Source_Ptr := Sloc (Par);
+      Actuals     : List_Id;
+      Last_Actual : Node_Id;
+      Last_Formal : Entity_Id;
+
+   --  Start of processing for Rewrite_Function_Call_For_C
+
+   begin
+      --  The actuals may be given by named associations, so the added actual
+      --  that is the target of the return value of the call must be a named
+      --  association as well, so we retrieve the name of the generated
+      --  out_formal.
+
+      Last_Formal := First_Formal (Proc_Id);
+      while Present (Next_Formal (Last_Formal)) loop
+         Last_Formal := Next_Formal (Last_Formal);
+      end loop;
+
+      Actuals := Parameter_Associations (N);
+
+      --  The original function may lack parameters
+
+      if No (Actuals) then
+         Actuals := New_List;
+      end if;
+
+      --  If the function call is the expression of an assignment statement,
+      --  transform the assignment into a procedure call. Generate:
+
+      --    LHS := Func_Call (...);
+
+      --    Proc_Call (..., LHS);
+
+      --  If function is inherited, a conversion may be necessary.
+
+      if Nkind (Par) = N_Assignment_Statement then
+         Last_Actual :=  Name (Par);
+
+         if not Comes_From_Source (Orig_Func)
+           and then Etype (Orig_Func) /= Etype (Func_Id)
+         then
+            Last_Actual :=
+              Make_Type_Conversion (Loc,
+                New_Occurrence_Of (Etype (Func_Id), Loc),
+                Last_Actual);
+         end if;
+
+         Append_To (Actuals,
+           Make_Parameter_Association (Loc,
+             Selector_Name             =>
+               Make_Identifier (Loc, Chars (Last_Formal)),
+             Explicit_Actual_Parameter => Last_Actual));
+
+         Rewrite (Par,
+           Make_Procedure_Call_Statement (Loc,
+             Name                   => New_Occurrence_Of (Proc_Id, Loc),
+             Parameter_Associations => Actuals));
+         Analyze (Par);
+
+      --  Otherwise the context is an expression. Generate a temporary and a
+      --  procedure call to obtain the function result. Generate:
+
+      --    ... Func_Call (...) ...
+
+      --    Temp : ...;
+      --    Proc_Call (..., Temp);
+      --    ... Temp ...
+
+      else
+         declare
+            Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
+            Call    : Node_Id;
+            Decl    : Node_Id;
+
+         begin
+            --  Generate:
+            --    Temp : ...;
+
+            Decl :=
+              Make_Object_Declaration (Loc,
+                Defining_Identifier => Temp_Id,
+                Object_Definition   =>
+                  New_Occurrence_Of (Etype (Func_Id), Loc));
+
+            --  Generate:
+            --    Proc_Call (..., Temp);
+
+            Append_To (Actuals,
+              Make_Parameter_Association (Loc,
+                Selector_Name             =>
+                  Make_Identifier (Loc, Chars (Last_Formal)),
+                Explicit_Actual_Parameter =>
+                  New_Occurrence_Of (Temp_Id, Loc)));
+
+            Call :=
+              Make_Procedure_Call_Statement (Loc,
+                Name                   => New_Occurrence_Of (Proc_Id, Loc),
+                Parameter_Associations => Actuals);
+
+            Insert_Actions (Par, New_List (Decl, Call));
+            Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
+         end;
+      end if;
+   end Rewrite_Function_Call_For_C;
+
+   ------------------------------------
+   -- Set_Enclosing_Sec_Stack_Return --
+   ------------------------------------
+
+   procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
+      P : Node_Id := N;
+
+   begin
+      --  Due to a possible mix of internally generated blocks, source blocks
+      --  and loops, the scope stack may not be contiguous as all labels are
+      --  inserted at the top level within the related function. Instead,
+      --  perform a parent-based traversal and mark all appropriate constructs.
+
+      while Present (P) loop
+
+         --  Mark the label of a source or internally generated block or
+         --  loop.
+
+         if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
+            Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
+
+         --  Mark the enclosing function
+
+         elsif Nkind (P) = N_Subprogram_Body then
+            if Present (Corresponding_Spec (P)) then
+               Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
+            else
+               Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
+            end if;
+
+            --  Do not go beyond the enclosing function
+
+            exit;
+         end if;
+
+         P := Parent (P);
+      end loop;
+   end Set_Enclosing_Sec_Stack_Return;
+
+   ------------------------------------
+   -- Unqual_BIP_Iface_Function_Call --
+   ------------------------------------
+
+   function Unqual_BIP_Iface_Function_Call (Expr : Node_Id) return Node_Id is
+      Has_Pointer_Displacement : Boolean := False;
+      On_Object_Declaration    : Boolean := False;
+      --  Remember if processing the renaming expressions on recursion we have
+      --  traversed an object declaration, since we can traverse many object
+      --  declaration renamings but just one regular object declaration.
+
+      function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id;
+      --  Search for a build-in-place function call skipping any qualification
+      --  including qualified expressions, type conversions, references, calls
+      --  to displace the pointer to the object, and renamings. Return Empty if
+      --  no build-in-place function call is found.
+
+      ------------------------------
+      -- Unqual_BIP_Function_Call --
+      ------------------------------
+
+      function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id is
+      begin
+         --  Recurse to handle case of multiple levels of qualification and/or
+         --  conversion.
+
+         if Nkind_In (Expr, N_Qualified_Expression,
+                            N_Type_Conversion,
+                            N_Unchecked_Type_Conversion)
+         then
+            return Unqual_BIP_Function_Call (Expression (Expr));
+
+         --  Recurse to handle case of multiple levels of references and
+         --  explicit dereferences.
+
+         elsif Nkind_In (Expr, N_Attribute_Reference,
+                               N_Explicit_Dereference,
+                               N_Reference)
+         then
+            return Unqual_BIP_Function_Call (Prefix (Expr));
+
+         --  Recurse on object renamings
+
+         elsif Nkind (Expr) = N_Identifier
+           and then Present (Entity (Expr))
+           and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
+           and then Nkind (Parent (Entity (Expr))) =
+                      N_Object_Renaming_Declaration
+           and then Present (Renamed_Object (Entity (Expr)))
+         then
+            return Unqual_BIP_Function_Call (Renamed_Object (Entity (Expr)));
+
+         --  Recurse on the initializing expression of the first reference of
+         --  an object declaration.
+
+         elsif not On_Object_Declaration
+           and then Nkind (Expr) = N_Identifier
+           and then Present (Entity (Expr))
+           and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
+           and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
+           and then Present (Expression (Parent (Entity (Expr))))
+         then
+            On_Object_Declaration := True;
+            return
+              Unqual_BIP_Function_Call (Expression (Parent (Entity (Expr))));
+
+         --  Recurse to handle calls to displace the pointer to the object to
+         --  reference a secondary dispatch table.
+
+         elsif Nkind (Expr) = N_Function_Call
+           and then Nkind (Name (Expr)) in N_Has_Entity
+           and then Present (Entity (Name (Expr)))
+           and then RTU_Loaded (Ada_Tags)
+           and then RTE_Available (RE_Displace)
+           and then Is_RTE (Entity (Name (Expr)), RE_Displace)
+         then
+            Has_Pointer_Displacement := True;
+            return
+              Unqual_BIP_Function_Call (First (Parameter_Associations (Expr)));
+
+         --  Normal case: check if the inner expression is a BIP function call
+         --  and the pointer to the object is displaced.
+
+         elsif Has_Pointer_Displacement
+           and then Is_Build_In_Place_Function_Call (Expr)
+         then
+            return Expr;
+
+         else
+            return Empty;
+         end if;
+      end Unqual_BIP_Function_Call;
+
+   --  Start of processing for Unqual_BIP_Iface_Function_Call
+
+   begin
+      if Nkind (Expr) = N_Identifier and then No (Entity (Expr)) then
+
+         --  Can happen for X'Elab_Spec in the binder-generated file
+
+         return Empty;
+      end if;
+
+      return Unqual_BIP_Function_Call (Expr);
+   end Unqual_BIP_Iface_Function_Call;
+
+end Exp_Ch6;