diff gcc/ada/exp_pakd.adb @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/ada/exp_pakd.adb	Fri Oct 27 22:46:09 2017 +0900
@@ -0,0 +1,2523 @@
+------------------------------------------------------------------------------
+--                                                                          --
+--                         GNAT COMPILER COMPONENTS                         --
+--                                                                          --
+--                             E X P _ P A K D                              --
+--                                                                          --
+--                                 B o d y                                  --
+--                                                                          --
+--          Copyright (C) 1992-2017, Free Software Foundation, Inc.         --
+--                                                                          --
+-- GNAT is free software;  you can  redistribute it  and/or modify it under --
+-- terms of the  GNU General Public License as published  by the Free Soft- --
+-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
+-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
+-- for  more details.  You should have  received  a copy of the GNU General --
+-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license.          --
+--                                                                          --
+-- GNAT was originally developed  by the GNAT team at  New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc.      --
+--                                                                          --
+------------------------------------------------------------------------------
+
+with Atree;    use Atree;
+with Checks;   use Checks;
+with Einfo;    use Einfo;
+with Errout;   use Errout;
+with Exp_Dbug; use Exp_Dbug;
+with Exp_Util; use Exp_Util;
+with Layout;   use Layout;
+with Lib.Xref; use Lib.Xref;
+with Namet;    use Namet;
+with Nlists;   use Nlists;
+with Nmake;    use Nmake;
+with Opt;      use Opt;
+with Sem;      use Sem;
+with Sem_Aux;  use Sem_Aux;
+with Sem_Ch3;  use Sem_Ch3;
+with Sem_Ch8;  use Sem_Ch8;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res;  use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sinfo;    use Sinfo;
+with Snames;   use Snames;
+with Stand;    use Stand;
+with Targparm; use Targparm;
+with Tbuild;   use Tbuild;
+with Ttypes;   use Ttypes;
+with Uintp;    use Uintp;
+
+package body Exp_Pakd is
+
+   ---------------------------
+   -- Endian Considerations --
+   ---------------------------
+
+   --  As described in the specification, bit numbering in a packed array
+   --  is consistent with bit numbering in a record representation clause,
+   --  and hence dependent on the endianness of the machine:
+
+   --    For little-endian machines, element zero is at the right hand end
+   --    (low order end) of a bit field.
+
+   --    For big-endian machines, element zero is at the left hand end
+   --    (high order end) of a bit field.
+
+   --  The shifts that are used to right justify a field therefore differ in
+   --  the two cases. For the little-endian case, we can simply use the bit
+   --  number (i.e. the element number * element size) as the count for a right
+   --  shift. For the big-endian case, we have to subtract the shift count from
+   --  an appropriate constant to use in the right shift. We use rotates
+   --  instead of shifts (which is necessary in the store case to preserve
+   --  other fields), and we expect that the backend will be able to change the
+   --  right rotate into a left rotate, avoiding the subtract, if the machine
+   --  architecture provides such an instruction.
+
+   -----------------------
+   -- Local Subprograms --
+   -----------------------
+
+   procedure Compute_Linear_Subscript
+     (Atyp   : Entity_Id;
+      N      : Node_Id;
+      Subscr : out Node_Id);
+   --  Given a constrained array type Atyp, and an indexed component node N
+   --  referencing an array object of this type, build an expression of type
+   --  Standard.Integer representing the zero-based linear subscript value.
+   --  This expression includes any required range checks.
+
+   function Compute_Number_Components
+      (N   : Node_Id;
+       Typ : Entity_Id) return Node_Id;
+   --  Build an expression that multiplies the length of the dimensions of the
+   --  array, used to control array equality checks.
+
+   procedure Convert_To_PAT_Type (Aexp : Node_Id);
+   --  Given an expression of a packed array type, builds a corresponding
+   --  expression whose type is the implementation type used to represent
+   --  the packed array. Aexp is analyzed and resolved on entry and on exit.
+
+   procedure Get_Base_And_Bit_Offset
+     (N      : Node_Id;
+      Base   : out Node_Id;
+      Offset : out Node_Id);
+   --  Given a node N for a name which involves a packed array reference,
+   --  return the base object of the reference and build an expression of
+   --  type Standard.Integer representing the zero-based offset in bits
+   --  from Base'Address to the first bit of the reference.
+
+   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
+   --  There are two versions of the Set routines, the ones used when the
+   --  object is known to be sufficiently well aligned given the number of
+   --  bits, and the ones used when the object is not known to be aligned.
+   --  This routine is used to determine which set to use. Obj is a reference
+   --  to the object, and Csiz is the component size of the packed array.
+   --  True is returned if the alignment of object is known to be sufficient,
+   --  defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
+   --  2 otherwise.
+
+   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
+   --  Build a left shift node, checking for the case of a shift count of zero
+
+   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
+   --  Build a right shift node, checking for the case of a shift count of zero
+
+   function RJ_Unchecked_Convert_To
+     (Typ  : Entity_Id;
+      Expr : Node_Id) return Node_Id;
+   --  The packed array code does unchecked conversions which in some cases
+   --  may involve non-discrete types with differing sizes. The semantics of
+   --  such conversions is potentially endianness dependent, and the effect
+   --  we want here for such a conversion is to do the conversion in size as
+   --  though numeric items are involved, and we extend or truncate on the
+   --  left side. This happens naturally in the little-endian case, but in
+   --  the big endian case we can get left justification, when what we want
+   --  is right justification. This routine does the unchecked conversion in
+   --  a stepwise manner to ensure that it gives the expected result. Hence
+   --  the name (RJ = Right justified). The parameters Typ and Expr are as
+   --  for the case of a normal Unchecked_Convert_To call.
+
+   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
+   --  This routine is called in the Get and Set case for arrays that are
+   --  packed but not bit-packed, meaning that they have at least one
+   --  subscript that is of an enumeration type with a non-standard
+   --  representation. This routine modifies the given node to properly
+   --  reference the corresponding packed array type.
+
+   procedure Setup_Inline_Packed_Array_Reference
+     (N      : Node_Id;
+      Atyp   : Entity_Id;
+      Obj    : in out Node_Id;
+      Cmask  : out Uint;
+      Shift  : out Node_Id);
+   --  This procedure performs common processing on the N_Indexed_Component
+   --  parameter given as N, whose prefix is a reference to a packed array.
+   --  This is used for the get and set when the component size is 1, 2, 4,
+   --  or for other component sizes when the packed array type is a modular
+   --  type (i.e. the cases that are handled with inline code).
+   --
+   --  On entry:
+   --
+   --    N is the N_Indexed_Component node for the packed array reference
+   --
+   --    Atyp is the constrained array type (the actual subtype has been
+   --    computed if necessary to obtain the constraints, but this is still
+   --    the original array type, not the Packed_Array_Impl_Type value).
+   --
+   --    Obj is the object which is to be indexed. It is always of type Atyp.
+   --
+   --  On return:
+   --
+   --    Obj is the object containing the desired bit field. It is of type
+   --    Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
+   --    entire value, for the small static case, or the proper selected byte
+   --    from the array in the large or dynamic case. This node is analyzed
+   --    and resolved on return.
+   --
+   --    Shift is a node representing the shift count to be used in the
+   --    rotate right instruction that positions the field for access.
+   --    This node is analyzed and resolved on return.
+   --
+   --    Cmask is a mask corresponding to the width of the component field.
+   --    Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
+   --
+   --  Note: in some cases the call to this routine may generate actions
+   --  (for handling multi-use references and the generation of the packed
+   --  array type on the fly). Such actions are inserted into the tree
+   --  directly using Insert_Action.
+
+   function Revert_Storage_Order (N : Node_Id) return Node_Id;
+   --  Perform appropriate justification and byte ordering adjustments for N,
+   --  an element of a packed array type, when both the component type and
+   --  the enclosing packed array type have reverse scalar storage order.
+   --  On little-endian targets, the value is left justified before byte
+   --  swapping. The Etype of the returned expression is an integer type of
+   --  an appropriate power-of-2 size.
+
+   --------------------------
+   -- Revert_Storage_Order --
+   --------------------------
+
+   function Revert_Storage_Order (N : Node_Id) return Node_Id is
+      Loc     : constant Source_Ptr := Sloc (N);
+      T       : constant Entity_Id := Etype (N);
+      T_Size  : constant Uint := RM_Size (T);
+
+      Swap_RE : RE_Id;
+      Swap_F  : Entity_Id;
+      Swap_T  : Entity_Id;
+      --  Swapping function
+
+      Arg      : Node_Id;
+      Adjusted : Node_Id;
+      Shift    : Uint;
+
+   begin
+      if T_Size <= 8 then
+
+         --  Array component size is less than a byte: no swapping needed
+
+         Swap_F := Empty;
+         Swap_T := RTE (RE_Unsigned_8);
+
+      else
+         --  Select byte swapping function depending on array component size
+
+         if T_Size <= 16 then
+            Swap_RE := RE_Bswap_16;
+
+         elsif T_Size <= 32 then
+            Swap_RE := RE_Bswap_32;
+
+         else pragma Assert (T_Size <= 64);
+            Swap_RE := RE_Bswap_64;
+         end if;
+
+         Swap_F := RTE (Swap_RE);
+         Swap_T := Etype (Swap_F);
+
+      end if;
+
+      Shift := Esize (Swap_T) - T_Size;
+
+      Arg := RJ_Unchecked_Convert_To (Swap_T, N);
+
+      if not Bytes_Big_Endian and then Shift > Uint_0 then
+         Arg :=
+           Make_Op_Shift_Left (Loc,
+             Left_Opnd  => Arg,
+             Right_Opnd => Make_Integer_Literal (Loc, Shift));
+      end if;
+
+      if Present (Swap_F) then
+         Adjusted :=
+           Make_Function_Call (Loc,
+             Name                   => New_Occurrence_Of (Swap_F, Loc),
+             Parameter_Associations => New_List (Arg));
+      else
+         Adjusted := Arg;
+      end if;
+
+      Set_Etype (Adjusted, Swap_T);
+      return Adjusted;
+   end Revert_Storage_Order;
+
+   ------------------------------
+   -- Compute_Linear_Subscript --
+   ------------------------------
+
+   procedure Compute_Linear_Subscript
+     (Atyp   : Entity_Id;
+      N      : Node_Id;
+      Subscr : out Node_Id)
+   is
+      Loc    : constant Source_Ptr := Sloc (N);
+      Oldsub : Node_Id;
+      Newsub : Node_Id;
+      Indx   : Node_Id;
+      Styp   : Entity_Id;
+
+   begin
+      Subscr := Empty;
+
+      --  Loop through dimensions
+
+      Indx   := First_Index (Atyp);
+      Oldsub := First (Expressions (N));
+
+      while Present (Indx) loop
+         Styp := Etype (Indx);
+         Newsub := Relocate_Node (Oldsub);
+
+         --  Get expression for the subscript value. First, if Do_Range_Check
+         --  is set on a subscript, then we must do a range check against the
+         --  original bounds (not the bounds of the packed array type). We do
+         --  this by introducing a subtype conversion.
+
+         if Do_Range_Check (Newsub)
+           and then Etype (Newsub) /= Styp
+         then
+            Newsub := Convert_To (Styp, Newsub);
+         end if;
+
+         --  Now evolve the expression for the subscript. First convert
+         --  the subscript to be zero based and of an integer type.
+
+         --  Case of integer type, where we just subtract to get lower bound
+
+         if Is_Integer_Type (Styp) then
+
+            --  If length of integer type is smaller than standard integer,
+            --  then we convert to integer first, then do the subtract
+
+            --  Integer (subscript) - Integer (Styp'First)
+
+            if Esize (Styp) < Esize (Standard_Integer) then
+               Newsub :=
+                 Make_Op_Subtract (Loc,
+                   Left_Opnd => Convert_To (Standard_Integer, Newsub),
+                 Right_Opnd =>
+                   Convert_To (Standard_Integer,
+                     Make_Attribute_Reference (Loc,
+                       Prefix         => New_Occurrence_Of (Styp, Loc),
+                       Attribute_Name => Name_First)));
+
+            --  For larger integer types, subtract first, then convert to
+            --  integer, this deals with strange long long integer bounds.
+
+            --    Integer (subscript - Styp'First)
+
+            else
+               Newsub :=
+                 Convert_To (Standard_Integer,
+                   Make_Op_Subtract (Loc,
+                     Left_Opnd => Newsub,
+                   Right_Opnd =>
+                     Make_Attribute_Reference (Loc,
+                       Prefix         => New_Occurrence_Of (Styp, Loc),
+                       Attribute_Name => Name_First)));
+            end if;
+
+         --  For the enumeration case, we have to use 'Pos to get the value
+         --  to work with before subtracting the lower bound.
+
+         --    Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
+
+         --  This is not quite right for bizarre cases where the size of the
+         --  enumeration type is > Integer'Size bits due to rep clause ???
+
+         else
+            pragma Assert (Is_Enumeration_Type (Styp));
+
+            Newsub :=
+              Make_Op_Subtract (Loc,
+                Left_Opnd => Convert_To (Standard_Integer,
+                  Make_Attribute_Reference (Loc,
+                    Prefix         => New_Occurrence_Of (Styp, Loc),
+                    Attribute_Name => Name_Pos,
+                    Expressions    => New_List (Newsub))),
+
+                Right_Opnd =>
+                  Convert_To (Standard_Integer,
+                    Make_Attribute_Reference (Loc,
+                      Prefix         => New_Occurrence_Of (Styp, Loc),
+                      Attribute_Name => Name_Pos,
+                      Expressions    => New_List (
+                        Make_Attribute_Reference (Loc,
+                          Prefix         => New_Occurrence_Of (Styp, Loc),
+                          Attribute_Name => Name_First)))));
+         end if;
+
+         Set_Paren_Count (Newsub, 1);
+
+         --  For the first subscript, we just copy that subscript value
+
+         if No (Subscr) then
+            Subscr := Newsub;
+
+         --  Otherwise, we must multiply what we already have by the current
+         --  stride and then add in the new value to the evolving subscript.
+
+         else
+            Subscr :=
+              Make_Op_Add (Loc,
+                Left_Opnd =>
+                  Make_Op_Multiply (Loc,
+                    Left_Opnd  => Subscr,
+                    Right_Opnd =>
+                      Make_Attribute_Reference (Loc,
+                        Attribute_Name => Name_Range_Length,
+                        Prefix         => New_Occurrence_Of (Styp, Loc))),
+                Right_Opnd => Newsub);
+         end if;
+
+         --  Move to next subscript
+
+         Next_Index (Indx);
+         Next (Oldsub);
+      end loop;
+   end Compute_Linear_Subscript;
+
+   -------------------------------
+   -- Compute_Number_Components --
+   -------------------------------
+
+   function Compute_Number_Components
+      (N   : Node_Id;
+       Typ : Entity_Id) return Node_Id
+   is
+      Loc      : constant Source_Ptr := Sloc (N);
+      Len_Expr : Node_Id;
+
+   begin
+      Len_Expr :=
+        Make_Attribute_Reference (Loc,
+          Attribute_Name => Name_Length,
+          Prefix         => New_Occurrence_Of (Typ, Loc),
+          Expressions    => New_List (Make_Integer_Literal (Loc, 1)));
+
+      for J in 2 .. Number_Dimensions (Typ) loop
+         Len_Expr :=
+           Make_Op_Multiply (Loc,
+             Left_Opnd  => Len_Expr,
+             Right_Opnd =>
+               Make_Attribute_Reference (Loc,
+                Attribute_Name => Name_Length,
+                Prefix         => New_Occurrence_Of (Typ, Loc),
+                Expressions    => New_List (Make_Integer_Literal (Loc, J))));
+      end loop;
+
+      return Len_Expr;
+   end Compute_Number_Components;
+
+   -------------------------
+   -- Convert_To_PAT_Type --
+   -------------------------
+
+   --  The PAT is always obtained from the actual subtype
+
+   procedure Convert_To_PAT_Type (Aexp : Node_Id) is
+      Act_ST : Entity_Id;
+
+   begin
+      Convert_To_Actual_Subtype (Aexp);
+      Act_ST := Underlying_Type (Etype (Aexp));
+      Create_Packed_Array_Impl_Type (Act_ST);
+
+      --  Just replace the etype with the packed array type. This works because
+      --  the expression will not be further analyzed, and Gigi considers the
+      --  two types equivalent in any case.
+
+      --  This is not strictly the case ??? If the reference is an actual in
+      --  call, the expansion of the prefix is delayed, and must be reanalyzed,
+      --  see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
+      --  array reference, reanalysis can produce spurious type errors when the
+      --  PAT type is replaced again with the original type of the array. Same
+      --  for the case of a dereference. Ditto for function calls: expansion
+      --  may introduce additional actuals which will trigger errors if call is
+      --  reanalyzed. The following is correct and minimal, but the handling of
+      --  more complex packed expressions in actuals is confused. Probably the
+      --  problem only remains for actuals in calls.
+
+      Set_Etype (Aexp, Packed_Array_Impl_Type (Act_ST));
+
+      if Is_Entity_Name (Aexp)
+        or else
+           (Nkind (Aexp) = N_Indexed_Component
+             and then Is_Entity_Name (Prefix (Aexp)))
+        or else Nkind_In (Aexp, N_Explicit_Dereference, N_Function_Call)
+      then
+         Set_Analyzed (Aexp);
+      end if;
+   end Convert_To_PAT_Type;
+
+   -----------------------------------
+   -- Create_Packed_Array_Impl_Type --
+   -----------------------------------
+
+   procedure Create_Packed_Array_Impl_Type (Typ : Entity_Id) is
+      Loc      : constant Source_Ptr := Sloc (Typ);
+      Ctyp     : constant Entity_Id  := Component_Type (Typ);
+      Csize    : constant Uint       := Component_Size (Typ);
+
+      Ancest   : Entity_Id;
+      PB_Type  : Entity_Id;
+      PASize   : Uint;
+      Decl     : Node_Id;
+      PAT      : Entity_Id;
+      Len_Expr : Node_Id;
+      Len_Bits : Uint;
+      Bits_U1  : Node_Id;
+      PAT_High : Node_Id;
+      Btyp     : Entity_Id;
+      Lit      : Node_Id;
+
+      procedure Install_PAT;
+      --  This procedure is called with Decl set to the declaration for the
+      --  packed array type. It creates the type and installs it as required.
+
+      procedure Set_PB_Type;
+      --  Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
+      --  requirements (see documentation in the spec of this package).
+
+      -----------------
+      -- Install_PAT --
+      -----------------
+
+      procedure Install_PAT is
+         Pushed_Scope : Boolean := False;
+
+      begin
+         --  We do not want to put the declaration we have created in the tree
+         --  since it is often hard, and sometimes impossible to find a proper
+         --  place for it (the impossible case arises for a packed array type
+         --  with bounds depending on the discriminant, a declaration cannot
+         --  be put inside the record, and the reference to the discriminant
+         --  cannot be outside the record).
+
+         --  The solution is to analyze the declaration while temporarily
+         --  attached to the tree at an appropriate point, and then we install
+         --  the resulting type as an Itype in the packed array type field of
+         --  the original type, so that no explicit declaration is required.
+
+         --  Note: the packed type is created in the scope of its parent type.
+         --  There are at least some cases where the current scope is deeper,
+         --  and so when this is the case, we temporarily reset the scope
+         --  for the definition. This is clearly safe, since the first use
+         --  of the packed array type will be the implicit reference from
+         --  the corresponding unpacked type when it is elaborated.
+
+         if Is_Itype (Typ) then
+            Set_Parent (Decl, Associated_Node_For_Itype (Typ));
+         else
+            Set_Parent (Decl, Declaration_Node (Typ));
+         end if;
+
+         if Scope (Typ) /= Current_Scope then
+            Push_Scope (Scope (Typ));
+            Pushed_Scope := True;
+         end if;
+
+         Set_Is_Itype (PAT, True);
+         Set_Is_Packed_Array_Impl_Type (PAT, True);
+         Set_Packed_Array_Impl_Type (Typ, PAT);
+         Analyze (Decl, Suppress => All_Checks);
+
+         if Pushed_Scope then
+            Pop_Scope;
+         end if;
+
+         --  Set Esize and RM_Size to the actual size of the packed object
+         --  Do not reset RM_Size if already set, as happens in the case of
+         --  a modular type.
+
+         if Unknown_Esize (PAT) then
+            Set_Esize (PAT, PASize);
+         end if;
+
+         if Unknown_RM_Size (PAT) then
+            Set_RM_Size (PAT, PASize);
+         end if;
+
+         Adjust_Esize_Alignment (PAT);
+
+         --  Set remaining fields of packed array type
+
+         Init_Alignment                (PAT);
+         Set_Parent                    (PAT, Empty);
+         Set_Associated_Node_For_Itype (PAT, Typ);
+         Set_Original_Array_Type       (PAT, Typ);
+
+         --  Propagate representation aspects
+
+         Set_Is_Atomic               (PAT, Is_Atomic                (Typ));
+         Set_Is_Independent          (PAT, Is_Independent           (Typ));
+         Set_Is_Volatile             (PAT, Is_Volatile              (Typ));
+         Set_Is_Volatile_Full_Access (PAT, Is_Volatile_Full_Access  (Typ));
+         Set_Treat_As_Volatile       (PAT, Treat_As_Volatile        (Typ));
+
+         --  For a non-bit-packed array, propagate reverse storage order
+         --  flag from original base type to packed array base type.
+
+         if not Is_Bit_Packed_Array (Typ) then
+            Set_Reverse_Storage_Order
+              (Etype (PAT), Reverse_Storage_Order (Base_Type (Typ)));
+         end if;
+
+         --  We definitely do not want to delay freezing for packed array
+         --  types. This is of particular importance for the itypes that are
+         --  generated for record components depending on discriminants where
+         --  there is no place to put the freeze node.
+
+         Set_Has_Delayed_Freeze (PAT, False);
+         Set_Has_Delayed_Freeze (Etype (PAT), False);
+
+         --  If we did allocate a freeze node, then clear out the reference
+         --  since it is obsolete (should we delete the freeze node???)
+
+         Set_Freeze_Node (PAT, Empty);
+         Set_Freeze_Node (Etype (PAT), Empty);
+      end Install_PAT;
+
+      -----------------
+      -- Set_PB_Type --
+      -----------------
+
+      procedure Set_PB_Type is
+      begin
+         --  If the user has specified an explicit alignment for the
+         --  type or component, take it into account.
+
+         if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
+           or else Alignment (Typ) = 1
+           or else Component_Alignment (Typ) = Calign_Storage_Unit
+         then
+            PB_Type := RTE (RE_Packed_Bytes1);
+
+         elsif Csize mod 4 /= 0
+           or else Alignment (Typ) = 2
+         then
+            PB_Type := RTE (RE_Packed_Bytes2);
+
+         else
+            PB_Type := RTE (RE_Packed_Bytes4);
+         end if;
+      end Set_PB_Type;
+
+   --  Start of processing for Create_Packed_Array_Impl_Type
+
+   begin
+      --  If we already have a packed array type, nothing to do
+
+      if Present (Packed_Array_Impl_Type (Typ)) then
+         return;
+      end if;
+
+      --  If our immediate ancestor subtype is constrained, and it already
+      --  has a packed array type, then just share the same type, since the
+      --  bounds must be the same. If the ancestor is not an array type but
+      --  a private type, as can happen with multiple instantiations, create
+      --  a new packed type, to avoid privacy issues.
+
+      if Ekind (Typ) = E_Array_Subtype then
+         Ancest := Ancestor_Subtype (Typ);
+
+         if Present (Ancest)
+           and then Is_Array_Type (Ancest)
+           and then Is_Constrained (Ancest)
+           and then Present (Packed_Array_Impl_Type (Ancest))
+         then
+            Set_Packed_Array_Impl_Type (Typ, Packed_Array_Impl_Type (Ancest));
+            return;
+         end if;
+      end if;
+
+      --  We preset the result type size from the size of the original array
+      --  type, since this size clearly belongs to the packed array type. The
+      --  size of the conceptual unpacked type is always set to unknown.
+
+      PASize := RM_Size (Typ);
+
+      --  Case of an array where at least one index is of an enumeration
+      --  type with a non-standard representation, but the component size
+      --  is not appropriate for bit packing. This is the case where we
+      --  have Is_Packed set (we would never be in this unit otherwise),
+      --  but Is_Bit_Packed_Array is false.
+
+      --  Note that if the component size is appropriate for bit packing,
+      --  then the circuit for the computation of the subscript properly
+      --  deals with the non-standard enumeration type case by taking the
+      --  Pos anyway.
+
+      if not Is_Bit_Packed_Array (Typ) then
+
+         --  Here we build a declaration:
+
+         --    type tttP is array (index1, index2, ...) of component_type
+
+         --  where index1, index2, are the index types. These are the same
+         --  as the index types of the original array, except for the non-
+         --  standard representation enumeration type case, where we have
+         --  two subcases.
+
+         --  For the unconstrained array case, we use
+
+         --    Natural range <>
+
+         --  For the constrained case, we use
+
+         --    Natural range Enum_Type'Pos (Enum_Type'First) ..
+         --                  Enum_Type'Pos (Enum_Type'Last);
+
+         --  Note that tttP is created even if no index subtype is a non
+         --  standard enumeration, because we still need to remove padding
+         --  normally inserted for component alignment.
+
+         PAT :=
+           Make_Defining_Identifier (Loc,
+             Chars => New_External_Name (Chars (Typ), 'P'));
+
+         declare
+            Indexes   : constant List_Id := New_List;
+            Indx      : Node_Id;
+            Indx_Typ  : Entity_Id;
+            Enum_Case : Boolean;
+            Typedef   : Node_Id;
+
+         begin
+            Indx := First_Index (Typ);
+
+            while Present (Indx) loop
+               Indx_Typ := Etype (Indx);
+
+               Enum_Case := Is_Enumeration_Type (Indx_Typ)
+                              and then Has_Non_Standard_Rep (Indx_Typ);
+
+               --  Unconstrained case
+
+               if not Is_Constrained (Typ) then
+                  if Enum_Case then
+                     Indx_Typ := Standard_Natural;
+                  end if;
+
+                  Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
+
+               --  Constrained case
+
+               else
+                  if not Enum_Case then
+                     Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
+
+                  else
+                     Append_To (Indexes,
+                       Make_Subtype_Indication (Loc,
+                         Subtype_Mark =>
+                           New_Occurrence_Of (Standard_Natural, Loc),
+                         Constraint =>
+                           Make_Range_Constraint (Loc,
+                             Range_Expression =>
+                               Make_Range (Loc,
+                                 Low_Bound =>
+                                   Make_Attribute_Reference (Loc,
+                                     Prefix         =>
+                                       New_Occurrence_Of (Indx_Typ, Loc),
+                                     Attribute_Name => Name_Pos,
+                                     Expressions    => New_List (
+                                       Make_Attribute_Reference (Loc,
+                                         Prefix         =>
+                                           New_Occurrence_Of (Indx_Typ, Loc),
+                                         Attribute_Name => Name_First))),
+
+                                 High_Bound =>
+                                   Make_Attribute_Reference (Loc,
+                                     Prefix         =>
+                                       New_Occurrence_Of (Indx_Typ, Loc),
+                                     Attribute_Name => Name_Pos,
+                                     Expressions    => New_List (
+                                       Make_Attribute_Reference (Loc,
+                                         Prefix         =>
+                                           New_Occurrence_Of (Indx_Typ, Loc),
+                                         Attribute_Name => Name_Last)))))));
+
+                  end if;
+               end if;
+
+               Next_Index (Indx);
+            end loop;
+
+            if not Is_Constrained (Typ) then
+               Typedef :=
+                 Make_Unconstrained_Array_Definition (Loc,
+                   Subtype_Marks => Indexes,
+                   Component_Definition =>
+                     Make_Component_Definition (Loc,
+                       Aliased_Present    => False,
+                       Subtype_Indication =>
+                          New_Occurrence_Of (Ctyp, Loc)));
+
+            else
+               Typedef :=
+                  Make_Constrained_Array_Definition (Loc,
+                    Discrete_Subtype_Definitions => Indexes,
+                    Component_Definition =>
+                      Make_Component_Definition (Loc,
+                        Aliased_Present    => False,
+                        Subtype_Indication =>
+                          New_Occurrence_Of (Ctyp, Loc)));
+            end if;
+
+            Decl :=
+              Make_Full_Type_Declaration (Loc,
+                Defining_Identifier => PAT,
+                Type_Definition     => Typedef);
+         end;
+
+         Install_PAT;
+         return;
+
+      --  Case of bit-packing required for unconstrained array. We create
+      --  a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
+
+      elsif not Is_Constrained (Typ) then
+
+         --  When generating standard DWARF (i.e when GNAT_Encodings is
+         --  DWARF_GNAT_Encodings_Minimal), the ___XP suffix will be stripped
+         --  by the back-end but generate it anyway to ease compiler debugging.
+         --  This will help to distinguish implementation types from original
+         --  packed arrays.
+
+         PAT :=
+           Make_Defining_Identifier (Loc,
+             Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
+
+         Set_PB_Type;
+
+         Decl :=
+           Make_Subtype_Declaration (Loc,
+             Defining_Identifier => PAT,
+               Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
+
+         Install_PAT;
+         return;
+
+      --  Remaining code is for the case of bit-packing for constrained array
+
+      --  The name of the packed array subtype is
+
+      --    ttt___XPsss
+
+      --  where sss is the component size in bits and ttt is the name of
+      --  the parent packed type.
+
+      else
+         PAT :=
+           Make_Defining_Identifier (Loc,
+             Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
+
+         --  Build an expression for the length of the array in bits.
+         --  This is the product of the length of each of the dimensions
+
+         Len_Expr := Compute_Number_Components (Typ, Typ);
+
+         --  Temporarily attach the length expression to the tree and analyze
+         --  and resolve it, so that we can test its value. We assume that the
+         --  total length fits in type Integer. This expression may involve
+         --  discriminants, so we treat it as a default/per-object expression.
+
+         Set_Parent (Len_Expr, Typ);
+         Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
+
+         --  Use a modular type if possible. We can do this if we have
+         --  static bounds, and the length is small enough, and the length
+         --  is not zero. We exclude the zero length case because the size
+         --  of things is always at least one, and the zero length object
+         --  would have an anomalous size.
+
+         if Compile_Time_Known_Value (Len_Expr) then
+            Len_Bits := Expr_Value (Len_Expr) * Csize;
+
+            --  Check for size known to be too large
+
+            if Len_Bits >
+              Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
+            then
+               if System_Storage_Unit = 8 then
+                  Error_Msg_N
+                    ("packed array size cannot exceed " &
+                     "Integer''Last bytes", Typ);
+               else
+                  Error_Msg_N
+                    ("packed array size cannot exceed " &
+                     "Integer''Last storage units", Typ);
+               end if;
+
+               --  Reset length to arbitrary not too high value to continue
+
+               Len_Expr := Make_Integer_Literal (Loc, 65535);
+               Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
+            end if;
+
+            --  We normally consider small enough to mean no larger than the
+            --  value of System_Max_Binary_Modulus_Power, checking that in the
+            --  case of values longer than word size, we have long shifts.
+
+            if Len_Bits > 0
+              and then
+                (Len_Bits <= System_Word_Size
+                   or else (Len_Bits <= System_Max_Binary_Modulus_Power
+                              and then Support_Long_Shifts_On_Target))
+            then
+               --  We can use the modular type, it has the form:
+
+               --    subtype tttPn is btyp
+               --      range 0 .. 2 ** ((Typ'Length (1)
+               --                * ... * Typ'Length (n)) * Csize) - 1;
+
+               --  The bounds are statically known, and btyp is one of the
+               --  unsigned types, depending on the length.
+
+               if Len_Bits <= Standard_Short_Short_Integer_Size then
+                  Btyp := RTE (RE_Short_Short_Unsigned);
+
+               elsif Len_Bits <= Standard_Short_Integer_Size then
+                  Btyp := RTE (RE_Short_Unsigned);
+
+               elsif Len_Bits <= Standard_Integer_Size then
+                  Btyp := RTE (RE_Unsigned);
+
+               elsif Len_Bits <= Standard_Long_Integer_Size then
+                  Btyp := RTE (RE_Long_Unsigned);
+
+               else
+                  Btyp := RTE (RE_Long_Long_Unsigned);
+               end if;
+
+               Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
+               Set_Print_In_Hex (Lit);
+
+               Decl :=
+                 Make_Subtype_Declaration (Loc,
+                   Defining_Identifier => PAT,
+                     Subtype_Indication =>
+                       Make_Subtype_Indication (Loc,
+                         Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
+
+                         Constraint =>
+                           Make_Range_Constraint (Loc,
+                             Range_Expression =>
+                               Make_Range (Loc,
+                                 Low_Bound =>
+                                   Make_Integer_Literal (Loc, 0),
+                                 High_Bound => Lit))));
+
+               if PASize = Uint_0 then
+                  PASize := Len_Bits;
+               end if;
+
+               Install_PAT;
+
+               --  Propagate a given alignment to the modular type. This can
+               --  cause it to be under-aligned, but that's OK.
+
+               if Present (Alignment_Clause (Typ)) then
+                  Set_Alignment (PAT, Alignment (Typ));
+               end if;
+
+               return;
+            end if;
+         end if;
+
+         --  Could not use a modular type, for all other cases, we build
+         --  a packed array subtype:
+
+         --    subtype tttPn is
+         --      System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
+
+         --  Bits is the length of the array in bits
+
+         Set_PB_Type;
+
+         Bits_U1 :=
+           Make_Op_Add (Loc,
+             Left_Opnd =>
+               Make_Op_Multiply (Loc,
+                 Left_Opnd  =>
+                   Make_Integer_Literal (Loc, Csize),
+                 Right_Opnd => Len_Expr),
+
+             Right_Opnd =>
+               Make_Integer_Literal (Loc, 7));
+
+         Set_Paren_Count (Bits_U1, 1);
+
+         PAT_High :=
+           Make_Op_Subtract (Loc,
+             Left_Opnd =>
+               Make_Op_Divide (Loc,
+                 Left_Opnd => Bits_U1,
+                 Right_Opnd => Make_Integer_Literal (Loc, 8)),
+             Right_Opnd => Make_Integer_Literal (Loc, 1));
+
+         Decl :=
+           Make_Subtype_Declaration (Loc,
+             Defining_Identifier => PAT,
+               Subtype_Indication =>
+                 Make_Subtype_Indication (Loc,
+                   Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
+                   Constraint =>
+                     Make_Index_Or_Discriminant_Constraint (Loc,
+                       Constraints => New_List (
+                         Make_Range (Loc,
+                           Low_Bound =>
+                             Make_Integer_Literal (Loc, 0),
+                           High_Bound =>
+                             Convert_To (Standard_Integer, PAT_High))))));
+
+         Install_PAT;
+
+         --  Currently the code in this unit requires that packed arrays
+         --  represented by non-modular arrays of bytes be on a byte
+         --  boundary for bit sizes handled by System.Pack_nn units.
+         --  That's because these units assume the array being accessed
+         --  starts on a byte boundary.
+
+         if Get_Id (UI_To_Int (Csize)) /= RE_Null then
+            Set_Must_Be_On_Byte_Boundary (Typ);
+         end if;
+      end if;
+   end Create_Packed_Array_Impl_Type;
+
+   -----------------------------------
+   -- Expand_Bit_Packed_Element_Set --
+   -----------------------------------
+
+   procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
+      Loc : constant Source_Ptr := Sloc (N);
+      Lhs : constant Node_Id    := Name (N);
+
+      Ass_OK : constant Boolean := Assignment_OK (Lhs);
+      --  Used to preserve assignment OK status when assignment is rewritten
+
+      Rhs : Node_Id := Expression (N);
+      --  Initially Rhs is the right hand side value, it will be replaced
+      --  later by an appropriate unchecked conversion for the assignment.
+
+      Obj   : Node_Id;
+      Atyp  : Entity_Id;
+      PAT   : Entity_Id;
+      Ctyp  : Entity_Id;
+      Csiz  : Int;
+      Cmask : Uint;
+
+      Shift : Node_Id;
+      --  The expression for the shift value that is required
+
+      Shift_Used : Boolean := False;
+      --  Set True if Shift has been used in the generated code at least once,
+      --  so that it must be duplicated if used again.
+
+      New_Lhs : Node_Id;
+      New_Rhs : Node_Id;
+
+      Rhs_Val_Known : Boolean;
+      Rhs_Val       : Uint;
+      --  If the value of the right hand side as an integer constant is
+      --  known at compile time, Rhs_Val_Known is set True, and Rhs_Val
+      --  contains the value. Otherwise Rhs_Val_Known is set False, and
+      --  the Rhs_Val is undefined.
+
+      function Get_Shift return Node_Id;
+      --  Function used to get the value of Shift, making sure that it
+      --  gets duplicated if the function is called more than once.
+
+      ---------------
+      -- Get_Shift --
+      ---------------
+
+      function Get_Shift return Node_Id is
+      begin
+         --  If we used the shift value already, then duplicate it. We
+         --  set a temporary parent in case actions have to be inserted.
+
+         if Shift_Used then
+            Set_Parent (Shift, N);
+            return Duplicate_Subexpr_No_Checks (Shift);
+
+         --  If first time, use Shift unchanged, and set flag for first use
+
+         else
+            Shift_Used := True;
+            return Shift;
+         end if;
+      end Get_Shift;
+
+   --  Start of processing for Expand_Bit_Packed_Element_Set
+
+   begin
+      pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
+
+      Obj := Relocate_Node (Prefix (Lhs));
+      Convert_To_Actual_Subtype (Obj);
+      Atyp := Etype (Obj);
+      PAT  := Packed_Array_Impl_Type (Atyp);
+      Ctyp := Component_Type (Atyp);
+      Csiz := UI_To_Int (Component_Size (Atyp));
+
+      --  We remove side effects, in case the rhs modifies the lhs, because we
+      --  are about to transform the rhs into an expression that first READS
+      --  the lhs, so we can do the necessary shifting and masking. Example:
+      --  "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
+      --  will be lost.
+
+      Remove_Side_Effects (Rhs);
+
+      --  We convert the right hand side to the proper subtype to ensure
+      --  that an appropriate range check is made (since the normal range
+      --  check from assignment will be lost in the transformations). This
+      --  conversion is analyzed immediately so that subsequent processing
+      --  can work with an analyzed Rhs (and e.g. look at its Etype)
+
+      --  If the right-hand side is a string literal, create a temporary for
+      --  it, constant-folding is not ready to wrap the bit representation
+      --  of a string literal.
+
+      if Nkind (Rhs) = N_String_Literal then
+         declare
+            Decl : Node_Id;
+         begin
+            Decl :=
+              Make_Object_Declaration (Loc,
+                Defining_Identifier => Make_Temporary (Loc, 'T', Rhs),
+                Object_Definition   => New_Occurrence_Of (Ctyp, Loc),
+                Expression          => New_Copy_Tree (Rhs));
+
+            Insert_Actions (N, New_List (Decl));
+            Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
+         end;
+      end if;
+
+      Rhs := Convert_To (Ctyp, Rhs);
+      Set_Parent (Rhs, N);
+
+      --  If we are building the initialization procedure for a packed array,
+      --  and Initialize_Scalars is enabled, each component assignment is an
+      --  out-of-range value by design.  Compile this value without checks,
+      --  because a call to the array init_proc must not raise an exception.
+
+      --  Condition is not consistent with description above, Within_Init_Proc
+      --  is True also when we are building the IP for a record or protected
+      --  type that has a packed array component???
+
+      if Within_Init_Proc
+        and then Initialize_Scalars
+      then
+         Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
+      else
+         Analyze_And_Resolve (Rhs, Ctyp);
+      end if;
+
+      --  Case of component size 1,2,4 or any component size for the modular
+      --  case. These are the cases for which we can inline the code.
+
+      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
+        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
+      then
+         Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
+
+         --  The statement to be generated is:
+
+         --    Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
+
+         --  or in the case of a freestanding Reverse_Storage_Order object,
+
+         --    Obj := Swap (atyp!((Swap (Obj) and Mask1)
+         --                         or (shift_left (rhs, Shift))))
+
+         --      where Mask1 is obtained by shifting Cmask left Shift bits
+         --      and then complementing the result.
+
+         --      the "and Mask1" is omitted if rhs is constant and all 1 bits
+
+         --      the "or ..." is omitted if rhs is constant and all 0 bits
+
+         --      rhs is converted to the appropriate type
+
+         --      The result is converted back to the array type, since
+         --      otherwise we lose knowledge of the packed nature.
+
+         --  Determine if right side is all 0 bits or all 1 bits
+
+         if Compile_Time_Known_Value (Rhs) then
+            Rhs_Val       := Expr_Rep_Value (Rhs);
+            Rhs_Val_Known := True;
+
+         --  The following test catches the case of an unchecked conversion of
+         --  an integer literal. This results from optimizing aggregates of
+         --  packed types.
+
+         elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
+           and then Compile_Time_Known_Value (Expression (Rhs))
+         then
+            Rhs_Val       := Expr_Rep_Value (Expression (Rhs));
+            Rhs_Val_Known := True;
+
+         else
+            Rhs_Val       := No_Uint;
+            Rhs_Val_Known := False;
+         end if;
+
+         --  Some special checks for the case where the right hand value is
+         --  known at compile time. Basically we have to take care of the
+         --  implicit conversion to the subtype of the component object.
+
+         if Rhs_Val_Known then
+
+            --  If we have a biased component type then we must manually do the
+            --  biasing, since we are taking responsibility in this case for
+            --  constructing the exact bit pattern to be used.
+
+            if Has_Biased_Representation (Ctyp) then
+               Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
+            end if;
+
+            --  For a negative value, we manually convert the two's complement
+            --  value to a corresponding unsigned value, so that the proper
+            --  field width is maintained. If we did not do this, we would
+            --  get too many leading sign bits later on.
+
+            if Rhs_Val < 0 then
+               Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
+            end if;
+         end if;
+
+         --  Now create copies removing side effects. Note that in some complex
+         --  cases, this may cause the fact that we have already set a packed
+         --  array type on Obj to get lost. So we save the type of Obj, and
+         --  make sure it is reset properly.
+
+         New_Lhs := Duplicate_Subexpr (Obj, Name_Req => True);
+         New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
+
+         --  First we deal with the "and"
+
+         if not Rhs_Val_Known or else Rhs_Val /= Cmask then
+            declare
+               Mask1 : Node_Id;
+               Lit   : Node_Id;
+
+            begin
+               if Compile_Time_Known_Value (Shift) then
+                  Mask1 :=
+                    Make_Integer_Literal (Loc,
+                      Modulus (Etype (Obj)) - 1 -
+                                 (Cmask * (2 ** Expr_Value (Get_Shift))));
+                  Set_Print_In_Hex (Mask1);
+
+               else
+                  Lit := Make_Integer_Literal (Loc, Cmask);
+                  Set_Print_In_Hex (Lit);
+                  Mask1 :=
+                    Make_Op_Not (Loc,
+                      Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
+               end if;
+
+               New_Rhs :=
+                 Make_Op_And (Loc,
+                   Left_Opnd  => New_Rhs,
+                   Right_Opnd => Mask1);
+            end;
+         end if;
+
+         --  Then deal with the "or"
+
+         if not Rhs_Val_Known or else Rhs_Val /= 0 then
+            declare
+               Or_Rhs : Node_Id;
+
+               procedure Fixup_Rhs;
+               --  Adjust Rhs by bias if biased representation for components
+               --  or remove extraneous high order sign bits if signed.
+
+               procedure Fixup_Rhs is
+                  Etyp : constant Entity_Id := Etype (Rhs);
+
+               begin
+                  --  For biased case, do the required biasing by simply
+                  --  converting to the biased subtype (the conversion
+                  --  will generate the required bias).
+
+                  if Has_Biased_Representation (Ctyp) then
+                     Rhs := Convert_To (Ctyp, Rhs);
+
+                  --  For a signed integer type that is not biased, generate
+                  --  a conversion to unsigned to strip high order sign bits.
+
+                  elsif Is_Signed_Integer_Type (Ctyp) then
+                     Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
+                  end if;
+
+                  --  Set Etype, since it can be referenced before the node is
+                  --  completely analyzed.
+
+                  Set_Etype (Rhs, Etyp);
+
+                  --  We now need to do an unchecked conversion of the
+                  --  result to the target type, but it is important that
+                  --  this conversion be a right justified conversion and
+                  --  not a left justified conversion.
+
+                  Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
+               end Fixup_Rhs;
+
+            begin
+               if Rhs_Val_Known
+                 and then Compile_Time_Known_Value (Get_Shift)
+               then
+                  Or_Rhs :=
+                    Make_Integer_Literal (Loc,
+                      Rhs_Val * (2 ** Expr_Value (Get_Shift)));
+                  Set_Print_In_Hex (Or_Rhs);
+
+               else
+                  --  We have to convert the right hand side to Etype (Obj).
+                  --  A special case arises if what we have now is a Val
+                  --  attribute reference whose expression type is Etype (Obj).
+                  --  This happens for assignments of fields from the same
+                  --  array. In this case we get the required right hand side
+                  --  by simply removing the inner attribute reference.
+
+                  if Nkind (Rhs) = N_Attribute_Reference
+                    and then Attribute_Name (Rhs) = Name_Val
+                    and then Etype (First (Expressions (Rhs))) = Etype (Obj)
+                  then
+                     Rhs := Relocate_Node (First (Expressions (Rhs)));
+                     Fixup_Rhs;
+
+                  --  If the value of the right hand side is a known integer
+                  --  value, then just replace it by an untyped constant,
+                  --  which will be properly retyped when we analyze and
+                  --  resolve the expression.
+
+                  elsif Rhs_Val_Known then
+
+                     --  Note that Rhs_Val has already been normalized to
+                     --  be an unsigned value with the proper number of bits.
+
+                     Rhs := Make_Integer_Literal (Loc, Rhs_Val);
+
+                  --  Otherwise we need an unchecked conversion
+
+                  else
+                     Fixup_Rhs;
+                  end if;
+
+                  Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
+               end if;
+
+               if Nkind (New_Rhs) = N_Op_And then
+                  Set_Paren_Count (New_Rhs, 1);
+                  Set_Etype (New_Rhs, Etype (Left_Opnd (New_Rhs)));
+               end if;
+
+               New_Rhs :=
+                 Make_Op_Or (Loc,
+                   Left_Opnd  => New_Rhs,
+                   Right_Opnd => Or_Rhs);
+            end;
+         end if;
+
+         --  Now do the rewrite
+
+         Rewrite (N,
+           Make_Assignment_Statement (Loc,
+             Name       => New_Lhs,
+             Expression =>
+               Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
+         Set_Assignment_OK (Name (N), Ass_OK);
+
+      --  All other component sizes for non-modular case
+
+      else
+         --  We generate
+
+         --    Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
+
+         --  where Subscr is the computed linear subscript
+
+         declare
+            Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
+            Set_nn  : Entity_Id;
+            Subscr  : Node_Id;
+            Atyp    : Entity_Id;
+            Rev_SSO : Node_Id;
+
+         begin
+            if No (Bits_nn) then
+
+               --  Error, most likely High_Integrity_Mode restriction
+
+               return;
+            end if;
+
+            --  Acquire proper Set entity. We use the aligned or unaligned
+            --  case as appropriate.
+
+            if Known_Aligned_Enough (Obj, Csiz) then
+               Set_nn := RTE (Set_Id (Csiz));
+            else
+               Set_nn := RTE (SetU_Id (Csiz));
+            end if;
+
+            --  Now generate the set reference
+
+            Obj := Relocate_Node (Prefix (Lhs));
+            Convert_To_Actual_Subtype (Obj);
+            Atyp := Etype (Obj);
+            Compute_Linear_Subscript (Atyp, Lhs, Subscr);
+
+            --  Set indication of whether the packed array has reverse SSO
+
+            Rev_SSO :=
+              New_Occurrence_Of
+                (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
+
+            --  Below we must make the assumption that Obj is
+            --  at least byte aligned, since otherwise its address
+            --  cannot be taken. The assumption holds since the
+            --  only arrays that can be misaligned are small packed
+            --  arrays which are implemented as a modular type, and
+            --  that is not the case here.
+
+            Rewrite (N,
+              Make_Procedure_Call_Statement (Loc,
+                  Name => New_Occurrence_Of (Set_nn, Loc),
+                  Parameter_Associations => New_List (
+                    Make_Attribute_Reference (Loc,
+                      Prefix         => Obj,
+                      Attribute_Name => Name_Address),
+                    Subscr,
+                    Unchecked_Convert_To (Bits_nn, Convert_To (Ctyp, Rhs)),
+                    Rev_SSO)));
+
+         end;
+      end if;
+
+      Analyze (N, Suppress => All_Checks);
+   end Expand_Bit_Packed_Element_Set;
+
+   -------------------------------------
+   -- Expand_Packed_Address_Reference --
+   -------------------------------------
+
+   procedure Expand_Packed_Address_Reference (N : Node_Id) is
+      Loc    : constant Source_Ptr := Sloc (N);
+      Base   : Node_Id;
+      Offset : Node_Id;
+
+   begin
+      --  We build an expression that has the form
+
+      --    outer_object'Address
+      --      + (linear-subscript * component_size  for each array reference
+      --      +  field'Bit_Position                 for each record field
+      --      +  ...
+      --      +  ...) / Storage_Unit;
+
+      Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
+
+      Rewrite (N,
+        Unchecked_Convert_To (RTE (RE_Address),
+          Make_Op_Add (Loc,
+            Left_Opnd =>
+              Unchecked_Convert_To (RTE (RE_Integer_Address),
+                Make_Attribute_Reference (Loc,
+                  Prefix         => Base,
+                  Attribute_Name => Name_Address)),
+
+            Right_Opnd =>
+              Unchecked_Convert_To (RTE (RE_Integer_Address),
+                Make_Op_Divide (Loc,
+                  Left_Opnd => Offset,
+                  Right_Opnd =>
+                    Make_Integer_Literal (Loc, System_Storage_Unit))))));
+
+      Analyze_And_Resolve (N, RTE (RE_Address));
+   end Expand_Packed_Address_Reference;
+
+   ---------------------------------
+   -- Expand_Packed_Bit_Reference --
+   ---------------------------------
+
+   procedure Expand_Packed_Bit_Reference (N : Node_Id) is
+      Loc    : constant Source_Ptr := Sloc (N);
+      Base   : Node_Id;
+      Offset : Node_Id;
+
+   begin
+      --  We build an expression that has the form
+
+      --    (linear-subscript * component_size      for each array reference
+      --      +  field'Bit_Position                 for each record field
+      --      +  ...
+      --      +  ...) mod Storage_Unit;
+
+      Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
+
+      Rewrite (N,
+        Unchecked_Convert_To (Universal_Integer,
+          Make_Op_Mod (Loc,
+            Left_Opnd => Offset,
+            Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
+
+      Analyze_And_Resolve (N, Universal_Integer);
+   end Expand_Packed_Bit_Reference;
+
+   ------------------------------------
+   -- Expand_Packed_Boolean_Operator --
+   ------------------------------------
+
+   --  This routine expands "a op b" for the packed cases
+
+   procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
+      Loc : constant Source_Ptr := Sloc (N);
+      Typ : constant Entity_Id  := Etype (N);
+      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
+      R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
+
+      Ltyp : Entity_Id;
+      Rtyp : Entity_Id;
+      PAT  : Entity_Id;
+
+   begin
+      Convert_To_Actual_Subtype (L);
+      Convert_To_Actual_Subtype (R);
+
+      Ensure_Defined (Etype (L), N);
+      Ensure_Defined (Etype (R), N);
+
+      Apply_Length_Check (R, Etype (L));
+
+      Ltyp := Etype (L);
+      Rtyp := Etype (R);
+
+      --  Deal with silly case of XOR where the subcomponent has a range
+      --  True .. True where an exception must be raised.
+
+      if Nkind (N) = N_Op_Xor then
+         Silly_Boolean_Array_Xor_Test (N, Rtyp);
+      end if;
+
+      --  Now that that silliness is taken care of, get packed array type
+
+      Convert_To_PAT_Type (L);
+      Convert_To_PAT_Type (R);
+
+      PAT := Etype (L);
+
+      --  For the modular case, we expand a op b into
+
+      --    rtyp!(pat!(a) op pat!(b))
+
+      --  where rtyp is the Etype of the left operand. Note that we do not
+      --  convert to the base type, since this would be unconstrained, and
+      --  hence not have a corresponding packed array type set.
+
+      --  Note that both operands must be modular for this code to be used
+
+      if Is_Modular_Integer_Type (PAT)
+           and then
+         Is_Modular_Integer_Type (Etype (R))
+      then
+         declare
+            P : Node_Id;
+
+         begin
+            if Nkind (N) = N_Op_And then
+               P := Make_Op_And (Loc, L, R);
+
+            elsif Nkind (N) = N_Op_Or then
+               P := Make_Op_Or  (Loc, L, R);
+
+            else -- Nkind (N) = N_Op_Xor
+               P := Make_Op_Xor (Loc, L, R);
+            end if;
+
+            Rewrite (N, Unchecked_Convert_To (Ltyp, P));
+         end;
+
+      --  For the array case, we insert the actions
+
+      --    Result : Ltype;
+
+      --    System.Bit_Ops.Bit_And/Or/Xor
+      --     (Left'Address,
+      --      Ltype'Length * Ltype'Component_Size;
+      --      Right'Address,
+      --      Rtype'Length * Rtype'Component_Size
+      --      Result'Address);
+
+      --  where Left and Right are the Packed_Bytes{1,2,4} operands and
+      --  the second argument and fourth arguments are the lengths of the
+      --  operands in bits. Then we replace the expression by a reference
+      --  to Result.
+
+      --  Note that if we are mixing a modular and array operand, everything
+      --  works fine, since we ensure that the modular representation has the
+      --  same physical layout as the array representation (that's what the
+      --  left justified modular stuff in the big-endian case is about).
+
+      else
+         declare
+            Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
+            E_Id       : RE_Id;
+
+         begin
+            if Nkind (N) = N_Op_And then
+               E_Id := RE_Bit_And;
+
+            elsif Nkind (N) = N_Op_Or then
+               E_Id := RE_Bit_Or;
+
+            else -- Nkind (N) = N_Op_Xor
+               E_Id := RE_Bit_Xor;
+            end if;
+
+            Insert_Actions (N, New_List (
+
+              Make_Object_Declaration (Loc,
+                Defining_Identifier => Result_Ent,
+                Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
+
+              Make_Procedure_Call_Statement (Loc,
+                Name => New_Occurrence_Of (RTE (E_Id), Loc),
+                  Parameter_Associations => New_List (
+
+                    Make_Byte_Aligned_Attribute_Reference (Loc,
+                      Prefix         => L,
+                      Attribute_Name => Name_Address),
+
+                    Make_Op_Multiply (Loc,
+                      Left_Opnd =>
+                        Make_Attribute_Reference (Loc,
+                          Prefix         =>
+                            New_Occurrence_Of
+                              (Etype (First_Index (Ltyp)), Loc),
+                          Attribute_Name => Name_Range_Length),
+
+                      Right_Opnd =>
+                        Make_Integer_Literal (Loc, Component_Size (Ltyp))),
+
+                    Make_Byte_Aligned_Attribute_Reference (Loc,
+                      Prefix         => R,
+                      Attribute_Name => Name_Address),
+
+                    Make_Op_Multiply (Loc,
+                      Left_Opnd =>
+                        Make_Attribute_Reference (Loc,
+                          Prefix         =>
+                            New_Occurrence_Of
+                              (Etype (First_Index (Rtyp)), Loc),
+                          Attribute_Name => Name_Range_Length),
+
+                      Right_Opnd =>
+                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
+
+                    Make_Byte_Aligned_Attribute_Reference (Loc,
+                      Prefix => New_Occurrence_Of (Result_Ent, Loc),
+                      Attribute_Name => Name_Address)))));
+
+            Rewrite (N,
+              New_Occurrence_Of (Result_Ent, Loc));
+         end;
+      end if;
+
+      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
+   end Expand_Packed_Boolean_Operator;
+
+   -------------------------------------
+   -- Expand_Packed_Element_Reference --
+   -------------------------------------
+
+   procedure Expand_Packed_Element_Reference (N : Node_Id) is
+      Loc   : constant Source_Ptr := Sloc (N);
+      Obj   : Node_Id;
+      Atyp  : Entity_Id;
+      PAT   : Entity_Id;
+      Ctyp  : Entity_Id;
+      Csiz  : Int;
+      Shift : Node_Id;
+      Cmask : Uint;
+      Lit   : Node_Id;
+      Arg   : Node_Id;
+
+   begin
+      --  If the node is an actual in a call, the prefix has not been fully
+      --  expanded, to account for the additional expansion for in-out actuals
+      --  (see expand_actuals for details). If the prefix itself is a packed
+      --  reference as well, we have to recurse to complete the transformation
+      --  of the prefix.
+
+      if Nkind (Prefix (N)) = N_Indexed_Component
+        and then not Analyzed (Prefix (N))
+        and then Is_Bit_Packed_Array (Etype (Prefix (Prefix (N))))
+      then
+         Expand_Packed_Element_Reference (Prefix (N));
+      end if;
+
+      --  The prefix may be rewritten below as a conversion. If it is a source
+      --  entity generate reference to it now, to prevent spurious warnings
+      --  about unused entities.
+
+      if Is_Entity_Name (Prefix (N))
+        and then Comes_From_Source (Prefix (N))
+      then
+         Generate_Reference (Entity (Prefix (N)), Prefix (N), 'r');
+      end if;
+
+      --  If not bit packed, we have the enumeration case, which is easily
+      --  dealt with (just adjust the subscripts of the indexed component)
+
+      --  Note: this leaves the result as an indexed component, which is
+      --  still a variable, so can be used in the assignment case, as is
+      --  required in the enumeration case.
+
+      if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
+         Setup_Enumeration_Packed_Array_Reference (N);
+         return;
+      end if;
+
+      --  Remaining processing is for the bit-packed case
+
+      Obj := Relocate_Node (Prefix (N));
+      Convert_To_Actual_Subtype (Obj);
+      Atyp := Etype (Obj);
+      PAT  := Packed_Array_Impl_Type (Atyp);
+      Ctyp := Component_Type (Atyp);
+      Csiz := UI_To_Int (Component_Size (Atyp));
+
+      --  Case of component size 1,2,4 or any component size for the modular
+      --  case. These are the cases for which we can inline the code.
+
+      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
+        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
+      then
+         Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
+         Lit := Make_Integer_Literal (Loc, Cmask);
+         Set_Print_In_Hex (Lit);
+
+         --  We generate a shift right to position the field, followed by a
+         --  masking operation to extract the bit field, and we finally do an
+         --  unchecked conversion to convert the result to the required target.
+
+         --  Note that the unchecked conversion automatically deals with the
+         --  bias if we are dealing with a biased representation. What will
+         --  happen is that we temporarily generate the biased representation,
+         --  but almost immediately that will be converted to the original
+         --  unbiased component type, and the bias will disappear.
+
+         Arg :=
+           Make_Op_And (Loc,
+             Left_Opnd  => Make_Shift_Right (Obj, Shift),
+             Right_Opnd => Lit);
+         Set_Etype (Arg, Ctyp);
+
+         --  Component extraction is performed on a native endianness scalar
+         --  value: if Atyp has reverse storage order, then it has been byte
+         --  swapped, and if the component being extracted is itself of a
+         --  composite type with reverse storage order, then we need to swap
+         --  it back to its expected endianness after extraction.
+
+         if Reverse_Storage_Order (Atyp)
+           and then (Is_Record_Type (Ctyp) or else Is_Array_Type (Ctyp))
+           and then Reverse_Storage_Order (Ctyp)
+         then
+            Arg := Revert_Storage_Order (Arg);
+         end if;
+
+         --  We needed to analyze this before we do the unchecked convert
+         --  below, but we need it temporarily attached to the tree for
+         --  this analysis (hence the temporary Set_Parent call).
+
+         Set_Parent (Arg, Parent (N));
+         Analyze_And_Resolve (Arg);
+
+         Rewrite (N, RJ_Unchecked_Convert_To (Ctyp, Arg));
+
+      --  All other component sizes for non-modular case
+
+      else
+         --  We generate
+
+         --    Component_Type!(Get_nn (Arr'address, Subscr))
+
+         --  where Subscr is the computed linear subscript
+
+         declare
+            Get_nn  : Entity_Id;
+            Subscr  : Node_Id;
+            Rev_SSO : constant Node_Id :=
+              New_Occurrence_Of
+                (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
+
+         begin
+            --  Acquire proper Get entity. We use the aligned or unaligned
+            --  case as appropriate.
+
+            if Known_Aligned_Enough (Obj, Csiz) then
+               Get_nn := RTE (Get_Id (Csiz));
+            else
+               Get_nn := RTE (GetU_Id (Csiz));
+            end if;
+
+            --  Now generate the get reference
+
+            Compute_Linear_Subscript (Atyp, N, Subscr);
+
+            --  Below we make the assumption that Obj is at least byte
+            --  aligned, since otherwise its address cannot be taken.
+            --  The assumption holds since the only arrays that can be
+            --  misaligned are small packed arrays which are implemented
+            --  as a modular type, and that is not the case here.
+
+            Rewrite (N,
+              Unchecked_Convert_To (Ctyp,
+                Make_Function_Call (Loc,
+                  Name => New_Occurrence_Of (Get_nn, Loc),
+                  Parameter_Associations => New_List (
+                    Make_Attribute_Reference (Loc,
+                      Prefix         => Obj,
+                      Attribute_Name => Name_Address),
+                    Subscr,
+                    Rev_SSO))));
+         end;
+      end if;
+
+      Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
+   end Expand_Packed_Element_Reference;
+
+   ----------------------
+   -- Expand_Packed_Eq --
+   ----------------------
+
+   --  Handles expansion of "=" on packed array types
+
+   procedure Expand_Packed_Eq (N : Node_Id) is
+      Loc : constant Source_Ptr := Sloc (N);
+      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
+      R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
+
+      LLexpr : Node_Id;
+      RLexpr : Node_Id;
+
+      Ltyp : Entity_Id;
+      Rtyp : Entity_Id;
+      PAT  : Entity_Id;
+
+   begin
+      Convert_To_Actual_Subtype (L);
+      Convert_To_Actual_Subtype (R);
+      Ltyp := Underlying_Type (Etype (L));
+      Rtyp := Underlying_Type (Etype (R));
+
+      Convert_To_PAT_Type (L);
+      Convert_To_PAT_Type (R);
+      PAT := Etype (L);
+
+      LLexpr :=
+        Make_Op_Multiply (Loc,
+          Left_Opnd  => Compute_Number_Components (N, Ltyp),
+          Right_Opnd => Make_Integer_Literal (Loc, Component_Size (Ltyp)));
+
+      RLexpr :=
+        Make_Op_Multiply (Loc,
+          Left_Opnd  => Compute_Number_Components (N, Rtyp),
+          Right_Opnd => Make_Integer_Literal (Loc, Component_Size (Rtyp)));
+
+      --  For the modular case, we transform the comparison to:
+
+      --    Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
+
+      --  where PAT is the packed array type. This works fine, since in the
+      --  modular case we guarantee that the unused bits are always zeroes.
+      --  We do have to compare the lengths because we could be comparing
+      --  two different subtypes of the same base type.
+
+      if Is_Modular_Integer_Type (PAT) then
+         Rewrite (N,
+           Make_And_Then (Loc,
+             Left_Opnd =>
+               Make_Op_Eq (Loc,
+                 Left_Opnd  => LLexpr,
+                 Right_Opnd => RLexpr),
+
+             Right_Opnd =>
+               Make_Op_Eq (Loc,
+                 Left_Opnd => L,
+                 Right_Opnd => R)));
+
+      --  For the non-modular case, we call a runtime routine
+
+      --    System.Bit_Ops.Bit_Eq
+      --      (L'Address, L_Length, R'Address, R_Length)
+
+      --  where PAT is the packed array type, and the lengths are the lengths
+      --  in bits of the original packed arrays. This routine takes care of
+      --  not comparing the unused bits in the last byte.
+
+      else
+         Rewrite (N,
+           Make_Function_Call (Loc,
+             Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
+             Parameter_Associations => New_List (
+               Make_Byte_Aligned_Attribute_Reference (Loc,
+                 Prefix         => L,
+                 Attribute_Name => Name_Address),
+
+               LLexpr,
+
+               Make_Byte_Aligned_Attribute_Reference (Loc,
+                 Prefix         => R,
+                 Attribute_Name => Name_Address),
+
+               RLexpr)));
+      end if;
+
+      Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
+   end Expand_Packed_Eq;
+
+   -----------------------
+   -- Expand_Packed_Not --
+   -----------------------
+
+   --  Handles expansion of "not" on packed array types
+
+   procedure Expand_Packed_Not (N : Node_Id) is
+      Loc  : constant Source_Ptr := Sloc (N);
+      Typ  : constant Entity_Id  := Etype (N);
+      Opnd : constant Node_Id    := Relocate_Node (Right_Opnd (N));
+
+      Rtyp : Entity_Id;
+      PAT  : Entity_Id;
+      Lit  : Node_Id;
+
+   begin
+      Convert_To_Actual_Subtype (Opnd);
+      Rtyp := Etype (Opnd);
+
+      --  Deal with silly False..False and True..True subtype case
+
+      Silly_Boolean_Array_Not_Test (N, Rtyp);
+
+      --  Now that the silliness is taken care of, get packed array type
+
+      Convert_To_PAT_Type (Opnd);
+      PAT := Etype (Opnd);
+
+      --  For the case where the packed array type is a modular type, "not A"
+      --  expands simply into:
+
+      --     Rtyp!(PAT!(A) xor Mask)
+
+      --  where PAT is the packed array type, Mask is a mask of all 1 bits of
+      --  length equal to the size of this packed type, and Rtyp is the actual
+      --  actual subtype of the operand.
+
+      Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
+      Set_Print_In_Hex (Lit);
+
+      if not Is_Array_Type (PAT) then
+         Rewrite (N,
+           Unchecked_Convert_To (Rtyp,
+             Make_Op_Xor (Loc,
+               Left_Opnd  => Opnd,
+               Right_Opnd => Lit)));
+
+      --  For the array case, we insert the actions
+
+      --    Result : Typ;
+
+      --    System.Bit_Ops.Bit_Not
+      --     (Opnd'Address,
+      --      Typ'Length * Typ'Component_Size,
+      --      Result'Address);
+
+      --  where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
+      --  is the length of the operand in bits. We then replace the expression
+      --  with a reference to Result.
+
+      else
+         declare
+            Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
+
+         begin
+            Insert_Actions (N, New_List (
+              Make_Object_Declaration (Loc,
+                Defining_Identifier => Result_Ent,
+                Object_Definition   => New_Occurrence_Of (Rtyp, Loc)),
+
+              Make_Procedure_Call_Statement (Loc,
+                Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
+                  Parameter_Associations => New_List (
+                    Make_Byte_Aligned_Attribute_Reference (Loc,
+                      Prefix         => Opnd,
+                      Attribute_Name => Name_Address),
+
+                    Make_Op_Multiply (Loc,
+                      Left_Opnd =>
+                        Make_Attribute_Reference (Loc,
+                          Prefix         =>
+                            New_Occurrence_Of
+                              (Etype (First_Index (Rtyp)), Loc),
+                          Attribute_Name => Name_Range_Length),
+
+                      Right_Opnd =>
+                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
+
+                    Make_Byte_Aligned_Attribute_Reference (Loc,
+                      Prefix         => New_Occurrence_Of (Result_Ent, Loc),
+                      Attribute_Name => Name_Address)))));
+
+            Rewrite (N, New_Occurrence_Of (Result_Ent, Loc));
+         end;
+      end if;
+
+      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
+   end Expand_Packed_Not;
+
+   -----------------------------
+   -- Get_Base_And_Bit_Offset --
+   -----------------------------
+
+   procedure Get_Base_And_Bit_Offset
+     (N      : Node_Id;
+      Base   : out Node_Id;
+      Offset : out Node_Id)
+   is
+      Loc    : Source_Ptr;
+      Term   : Node_Id;
+      Atyp   : Entity_Id;
+      Subscr : Node_Id;
+
+   begin
+      Base   := N;
+      Offset := Empty;
+
+      --  We build up an expression serially that has the form
+
+      --    linear-subscript * component_size       for each array reference
+      --      +  field'Bit_Position                 for each record field
+      --      +  ...
+
+      loop
+         Loc := Sloc (Base);
+
+         if Nkind (Base) = N_Indexed_Component then
+            Convert_To_Actual_Subtype (Prefix (Base));
+            Atyp := Etype (Prefix (Base));
+            Compute_Linear_Subscript (Atyp, Base, Subscr);
+
+            Term :=
+              Make_Op_Multiply (Loc,
+                Left_Opnd => Subscr,
+                Right_Opnd =>
+                 Make_Attribute_Reference (Loc,
+                   Prefix         => New_Occurrence_Of (Atyp, Loc),
+                   Attribute_Name => Name_Component_Size));
+
+         elsif Nkind (Base) = N_Selected_Component then
+            Term :=
+              Make_Attribute_Reference (Loc,
+                Prefix         => Selector_Name (Base),
+                Attribute_Name => Name_Bit_Position);
+
+         else
+            return;
+         end if;
+
+         if No (Offset) then
+            Offset := Term;
+
+         else
+            Offset :=
+              Make_Op_Add (Loc,
+                Left_Opnd  => Offset,
+                Right_Opnd => Term);
+         end if;
+
+         Base := Prefix (Base);
+      end loop;
+   end Get_Base_And_Bit_Offset;
+
+   -------------------------------------
+   -- Involves_Packed_Array_Reference --
+   -------------------------------------
+
+   function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
+   begin
+      if Nkind (N) = N_Indexed_Component
+        and then Is_Bit_Packed_Array (Etype (Prefix (N)))
+      then
+         return True;
+
+      elsif Nkind (N) = N_Selected_Component then
+         return Involves_Packed_Array_Reference (Prefix (N));
+
+      else
+         return False;
+      end if;
+   end Involves_Packed_Array_Reference;
+
+   --------------------------
+   -- Known_Aligned_Enough --
+   --------------------------
+
+   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
+      Typ : constant Entity_Id := Etype (Obj);
+
+      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
+      --  If the component is in a record that contains previous packed
+      --  components, consider it unaligned because the back-end might
+      --  choose to pack the rest of the record. Lead to less efficient code,
+      --  but safer vis-a-vis of back-end choices.
+
+      --------------------------------
+      -- In_Partially_Packed_Record --
+      --------------------------------
+
+      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
+         Rec_Type  : constant Entity_Id := Scope (Comp);
+         Prev_Comp : Entity_Id;
+
+      begin
+         Prev_Comp := First_Entity (Rec_Type);
+         while Present (Prev_Comp) loop
+            if Is_Packed (Etype (Prev_Comp)) then
+               return True;
+
+            elsif Prev_Comp = Comp then
+               return False;
+            end if;
+
+            Next_Entity (Prev_Comp);
+         end loop;
+
+         return False;
+      end  In_Partially_Packed_Record;
+
+   --  Start of processing for Known_Aligned_Enough
+
+   begin
+      --  Odd bit sizes don't need alignment anyway
+
+      if Csiz mod 2 = 1 then
+         return True;
+
+      --  If we have a specified alignment, see if it is sufficient, if not
+      --  then we can't possibly be aligned enough in any case.
+
+      elsif Known_Alignment (Etype (Obj)) then
+         --  Alignment required is 4 if size is a multiple of 4, and
+         --  2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
+
+         if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
+            return False;
+         end if;
+      end if;
+
+      --  OK, alignment should be sufficient, if object is aligned
+
+      --  If object is strictly aligned, then it is definitely aligned
+
+      if Strict_Alignment (Typ) then
+         return True;
+
+      --  Case of subscripted array reference
+
+      elsif Nkind (Obj) = N_Indexed_Component then
+
+         --  If we have a pointer to an array, then this is definitely
+         --  aligned, because pointers always point to aligned versions.
+
+         if Is_Access_Type (Etype (Prefix (Obj))) then
+            return True;
+
+         --  Otherwise, go look at the prefix
+
+         else
+            return Known_Aligned_Enough (Prefix (Obj), Csiz);
+         end if;
+
+      --  Case of record field
+
+      elsif Nkind (Obj) = N_Selected_Component then
+
+         --  What is significant here is whether the record type is packed
+
+         if Is_Record_Type (Etype (Prefix (Obj)))
+           and then Is_Packed (Etype (Prefix (Obj)))
+         then
+            return False;
+
+         --  Or the component has a component clause which might cause
+         --  the component to become unaligned (we can't tell if the
+         --  backend is doing alignment computations).
+
+         elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
+            return False;
+
+         elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
+            return False;
+
+         --  In all other cases, go look at prefix
+
+         else
+            return Known_Aligned_Enough (Prefix (Obj), Csiz);
+         end if;
+
+      elsif Nkind (Obj) = N_Type_Conversion then
+         return Known_Aligned_Enough (Expression (Obj), Csiz);
+
+      --  For a formal parameter, it is safer to assume that it is not
+      --  aligned, because the formal may be unconstrained while the actual
+      --  is constrained. In this situation, a small constrained packed
+      --  array, represented in modular form, may be unaligned.
+
+      elsif Is_Entity_Name (Obj) then
+         return not Is_Formal (Entity (Obj));
+      else
+
+      --  If none of the above, must be aligned
+         return True;
+      end if;
+   end Known_Aligned_Enough;
+
+   ---------------------
+   -- Make_Shift_Left --
+   ---------------------
+
+   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
+      Nod : Node_Id;
+
+   begin
+      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
+         return N;
+      else
+         Nod :=
+           Make_Op_Shift_Left (Sloc (N),
+             Left_Opnd  => N,
+             Right_Opnd => S);
+         Set_Shift_Count_OK (Nod, True);
+         return Nod;
+      end if;
+   end Make_Shift_Left;
+
+   ----------------------
+   -- Make_Shift_Right --
+   ----------------------
+
+   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
+      Nod : Node_Id;
+
+   begin
+      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
+         return N;
+      else
+         Nod :=
+           Make_Op_Shift_Right (Sloc (N),
+             Left_Opnd  => N,
+             Right_Opnd => S);
+         Set_Shift_Count_OK (Nod, True);
+         return Nod;
+      end if;
+   end Make_Shift_Right;
+
+   -----------------------------
+   -- RJ_Unchecked_Convert_To --
+   -----------------------------
+
+   function RJ_Unchecked_Convert_To
+     (Typ  : Entity_Id;
+      Expr : Node_Id) return Node_Id
+   is
+      Source_Typ : constant Entity_Id := Etype (Expr);
+      Target_Typ : constant Entity_Id := Typ;
+
+      Src : Node_Id := Expr;
+
+      Source_Siz : Nat;
+      Target_Siz : Nat;
+
+   begin
+      Source_Siz := UI_To_Int (RM_Size (Source_Typ));
+      Target_Siz := UI_To_Int (RM_Size (Target_Typ));
+
+      --  For a little-endian target type stored byte-swapped on a
+      --  big-endian machine, do not mask to Target_Siz bits.
+
+      if Bytes_Big_Endian
+           and then (Is_Record_Type (Target_Typ)
+                       or else
+                     Is_Array_Type (Target_Typ))
+           and then Reverse_Storage_Order (Target_Typ)
+      then
+         Source_Siz := Target_Siz;
+      end if;
+
+      --  First step, if the source type is not a discrete type, then we first
+      --  convert to a modular type of the source length, since otherwise, on
+      --  a big-endian machine, we get left-justification. We do it for little-
+      --  endian machines as well, because there might be junk bits that are
+      --  not cleared if the type is not numeric. This can be done only if the
+      --  source siz is different from 0 (i.e. known), otherwise we must trust
+      --  the type declarations (case of non-discrete components).
+
+      if Source_Siz /= 0
+        and then Source_Siz /= Target_Siz
+        and then not Is_Discrete_Type (Source_Typ)
+      then
+         Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
+      end if;
+
+      --  In the big endian case, if the lengths of the two types differ, then
+      --  we must worry about possible left justification in the conversion,
+      --  and avoiding that is what this is all about.
+
+      if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
+
+         --  Next step. If the target is not a discrete type, then we first
+         --  convert to a modular type of the target length, since otherwise,
+         --  on a big-endian machine, we get left-justification.
+
+         if not Is_Discrete_Type (Target_Typ) then
+            Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
+         end if;
+      end if;
+
+      --  And now we can do the final conversion to the target type
+
+      return Unchecked_Convert_To (Target_Typ, Src);
+   end RJ_Unchecked_Convert_To;
+
+   ----------------------------------------------
+   -- Setup_Enumeration_Packed_Array_Reference --
+   ----------------------------------------------
+
+   --  All we have to do here is to find the subscripts that correspond to the
+   --  index positions that have non-standard enumeration types and insert a
+   --  Pos attribute to get the proper subscript value.
+
+   --  Finally the prefix must be uncheck-converted to the corresponding packed
+   --  array type.
+
+   --  Note that the component type is unchanged, so we do not need to fiddle
+   --  with the types (Gigi always automatically takes the packed array type if
+   --  it is set, as it will be in this case).
+
+   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
+      Pfx   : constant Node_Id   := Prefix (N);
+      Typ   : constant Entity_Id := Etype (N);
+      Exprs : constant List_Id   := Expressions (N);
+      Expr  : Node_Id;
+
+   begin
+      --  If the array is unconstrained, then we replace the array reference
+      --  with its actual subtype. This actual subtype will have a packed array
+      --  type with appropriate bounds.
+
+      if not Is_Constrained (Packed_Array_Impl_Type (Etype (Pfx))) then
+         Convert_To_Actual_Subtype (Pfx);
+      end if;
+
+      Expr := First (Exprs);
+      while Present (Expr) loop
+         declare
+            Loc      : constant Source_Ptr := Sloc (Expr);
+            Expr_Typ : constant Entity_Id := Etype (Expr);
+
+         begin
+            if Is_Enumeration_Type (Expr_Typ)
+              and then Has_Non_Standard_Rep (Expr_Typ)
+            then
+               Rewrite (Expr,
+                 Make_Attribute_Reference (Loc,
+                   Prefix         => New_Occurrence_Of (Expr_Typ, Loc),
+                   Attribute_Name => Name_Pos,
+                   Expressions    => New_List (Relocate_Node (Expr))));
+               Analyze_And_Resolve (Expr, Standard_Natural);
+            end if;
+         end;
+
+         Next (Expr);
+      end loop;
+
+      Rewrite (N,
+        Make_Indexed_Component (Sloc (N),
+          Prefix      =>
+            Unchecked_Convert_To (Packed_Array_Impl_Type (Etype (Pfx)), Pfx),
+          Expressions => Exprs));
+
+      Analyze_And_Resolve (N, Typ);
+   end Setup_Enumeration_Packed_Array_Reference;
+
+   -----------------------------------------
+   -- Setup_Inline_Packed_Array_Reference --
+   -----------------------------------------
+
+   procedure Setup_Inline_Packed_Array_Reference
+     (N      : Node_Id;
+      Atyp   : Entity_Id;
+      Obj    : in out Node_Id;
+      Cmask  : out Uint;
+      Shift  : out Node_Id)
+   is
+      Loc  : constant Source_Ptr := Sloc (N);
+      PAT  : Entity_Id;
+      Otyp : Entity_Id;
+      Csiz : Uint;
+      Osiz : Uint;
+
+   begin
+      Csiz := Component_Size (Atyp);
+
+      Convert_To_PAT_Type (Obj);
+      PAT := Etype (Obj);
+
+      Cmask := 2 ** Csiz - 1;
+
+      if Is_Array_Type (PAT) then
+         Otyp := Component_Type (PAT);
+         Osiz := Component_Size (PAT);
+
+      else
+         Otyp := PAT;
+
+         --  In the case where the PAT is a modular type, we want the actual
+         --  size in bits of the modular value we use. This is neither the
+         --  Object_Size nor the Value_Size, either of which may have been
+         --  reset to strange values, but rather the minimum size. Note that
+         --  since this is a modular type with full range, the issue of
+         --  biased representation does not arise.
+
+         Osiz := UI_From_Int (Minimum_Size (Otyp));
+      end if;
+
+      Compute_Linear_Subscript (Atyp, N, Shift);
+
+      --  If the component size is not 1, then the subscript must be multiplied
+      --  by the component size to get the shift count.
+
+      if Csiz /= 1 then
+         Shift :=
+           Make_Op_Multiply (Loc,
+             Left_Opnd  => Make_Integer_Literal (Loc, Csiz),
+             Right_Opnd => Shift);
+      end if;
+
+      --  If we have the array case, then this shift count must be broken down
+      --  into a byte subscript, and a shift within the byte.
+
+      if Is_Array_Type (PAT) then
+
+         declare
+            New_Shift : Node_Id;
+
+         begin
+            --  We must analyze shift, since we will duplicate it
+
+            Set_Parent (Shift, N);
+            Analyze_And_Resolve
+              (Shift, Standard_Integer, Suppress => All_Checks);
+
+            --  The shift count within the word is
+            --    shift mod Osiz
+
+            New_Shift :=
+              Make_Op_Mod (Loc,
+                Left_Opnd  => Duplicate_Subexpr (Shift),
+                Right_Opnd => Make_Integer_Literal (Loc, Osiz));
+
+            --  The subscript to be used on the PAT array is
+            --    shift / Osiz
+
+            Obj :=
+              Make_Indexed_Component (Loc,
+                Prefix => Obj,
+                Expressions => New_List (
+                  Make_Op_Divide (Loc,
+                    Left_Opnd  => Duplicate_Subexpr (Shift),
+                    Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
+
+            Shift := New_Shift;
+         end;
+
+      --  For the modular integer case, the object to be manipulated is the
+      --  entire array, so Obj is unchanged. Note that we will reset its type
+      --  to PAT before returning to the caller.
+
+      else
+         null;
+      end if;
+
+      --  The one remaining step is to modify the shift count for the
+      --  big-endian case. Consider the following example in a byte:
+
+      --     xxxxxxxx  bits of byte
+      --     vvvvvvvv  bits of value
+      --     33221100  little-endian numbering
+      --     00112233  big-endian numbering
+
+      --  Here we have the case of 2-bit fields
+
+      --  For the little-endian case, we already have the proper shift count
+      --  set, e.g. for element 2, the shift count is 2*2 = 4.
+
+      --  For the big endian case, we have to adjust the shift count, computing
+      --  it as (N - F) - Shift, where N is the number of bits in an element of
+      --  the array used to implement the packed array, F is the number of bits
+      --  in a source array element, and Shift is the count so far computed.
+
+      --  We also have to adjust if the storage order is reversed
+
+      if Bytes_Big_Endian xor Reverse_Storage_Order (Base_Type (Atyp)) then
+         Shift :=
+           Make_Op_Subtract (Loc,
+             Left_Opnd  => Make_Integer_Literal (Loc, Osiz - Csiz),
+             Right_Opnd => Shift);
+      end if;
+
+      Set_Parent (Shift, N);
+      Set_Parent (Obj, N);
+      Analyze_And_Resolve (Obj,   Otyp,             Suppress => All_Checks);
+      Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
+
+      --  Make sure final type of object is the appropriate packed type
+
+      Set_Etype (Obj, Otyp);
+
+   end Setup_Inline_Packed_Array_Reference;
+
+end Exp_Pakd;