diff gcc/ada/libgnarl/s-taprop__solaris.adb @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/ada/libgnarl/s-taprop__solaris.adb	Fri Oct 27 22:46:09 2017 +0900
@@ -0,0 +1,2068 @@
+------------------------------------------------------------------------------
+--                                                                          --
+--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
+--                                                                          --
+--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
+--                                                                          --
+--                                  B o d y                                 --
+--                                                                          --
+--         Copyright (C) 1992-2017, Free Software Foundation, Inc.          --
+--                                                                          --
+-- GNARL is free software; you can  redistribute it  and/or modify it under --
+-- terms of the  GNU General Public License as published  by the Free Soft- --
+-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
+-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
+--                                                                          --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception,   --
+-- version 3.1, as published by the Free Software Foundation.               --
+--                                                                          --
+-- You should have received a copy of the GNU General Public License and    --
+-- a copy of the GCC Runtime Library Exception along with this program;     --
+-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
+-- <http://www.gnu.org/licenses/>.                                          --
+--                                                                          --
+-- GNARL was developed by the GNARL team at Florida State University.       --
+-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
+--                                                                          --
+------------------------------------------------------------------------------
+
+--  This is a Solaris (native) version of this package
+
+--  This package contains all the GNULL primitives that interface directly with
+--  the underlying OS.
+
+pragma Polling (Off);
+--  Turn off polling, we do not want ATC polling to take place during tasking
+--  operations. It causes infinite loops and other problems.
+
+with Interfaces.C;
+
+with System.Multiprocessors;
+with System.Tasking.Debug;
+with System.Interrupt_Management;
+with System.OS_Constants;
+with System.OS_Primitives;
+with System.Task_Info;
+
+pragma Warnings (Off);
+with System.OS_Lib;
+pragma Warnings (On);
+
+with System.Soft_Links;
+--  We use System.Soft_Links instead of System.Tasking.Initialization
+--  because the later is a higher level package that we shouldn't depend on.
+--  For example when using the restricted run time, it is replaced by
+--  System.Tasking.Restricted.Stages.
+
+package body System.Task_Primitives.Operations is
+
+   package OSC renames System.OS_Constants;
+   package SSL renames System.Soft_Links;
+
+   use System.Tasking.Debug;
+   use System.Tasking;
+   use Interfaces.C;
+   use System.OS_Interface;
+   use System.Parameters;
+   use System.OS_Primitives;
+
+   ----------------
+   -- Local Data --
+   ----------------
+
+   --  The following are logically constants, but need to be initialized
+   --  at run time.
+
+   Environment_Task_Id : Task_Id;
+   --  A variable to hold Task_Id for the environment task.
+   --  If we use this variable to get the Task_Id, we need the following
+   --  ATCB_Key only for non-Ada threads.
+
+   Unblocked_Signal_Mask : aliased sigset_t;
+   --  The set of signals that should unblocked in all tasks
+
+   ATCB_Key : aliased thread_key_t;
+   --  Key used to find the Ada Task_Id associated with a thread,
+   --  at least for C threads unknown to the Ada run-time system.
+
+   Single_RTS_Lock : aliased RTS_Lock;
+   --  This is a lock to allow only one thread of control in the RTS at
+   --  a time; it is used to execute in mutual exclusion from all other tasks.
+   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
+
+   Next_Serial_Number : Task_Serial_Number := 100;
+   --  We start at 100, to reserve some special values for
+   --  using in error checking.
+   --  The following are internal configuration constants needed.
+
+   Abort_Handler_Installed : Boolean := False;
+   --  True if a handler for the abort signal is installed
+
+   Null_Thread_Id : constant Thread_Id := Thread_Id'Last;
+   --  Constant to indicate that the thread identifier has not yet been
+   --  initialized.
+
+   ----------------------
+   -- Priority Support --
+   ----------------------
+
+   Priority_Ceiling_Emulation : constant Boolean := True;
+   --  controls whether we emulate priority ceiling locking
+
+   --  To get a scheduling close to annex D requirements, we use the real-time
+   --  class provided for LWPs and map each task/thread to a specific and
+   --  unique LWP (there is 1 thread per LWP, and 1 LWP per thread).
+
+   --  The real time class can only be set when the process has root
+   --  privileges, so in the other cases, we use the normal thread scheduling
+   --  and priority handling.
+
+   Using_Real_Time_Class : Boolean := False;
+   --  indicates whether the real time class is being used (i.e. the process
+   --  has root privileges).
+
+   Prio_Param : aliased struct_pcparms;
+   --  Hold priority info (Real_Time) initialized during the package
+   --  elaboration.
+
+   -----------------------------------
+   -- External Configuration Values --
+   -----------------------------------
+
+   Time_Slice_Val : Integer;
+   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
+
+   Locking_Policy : Character;
+   pragma Import (C, Locking_Policy, "__gl_locking_policy");
+
+   Dispatching_Policy : Character;
+   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
+
+   Foreign_Task_Elaborated : aliased Boolean := True;
+   --  Used to identified fake tasks (i.e., non-Ada Threads)
+
+   -----------------------
+   -- Local Subprograms --
+   -----------------------
+
+   function sysconf (name : System.OS_Interface.int) return processorid_t;
+   pragma Import (C, sysconf, "sysconf");
+
+   SC_NPROCESSORS_CONF : constant System.OS_Interface.int := 14;
+
+   function Num_Procs
+     (name : System.OS_Interface.int := SC_NPROCESSORS_CONF)
+      return processorid_t renames sysconf;
+
+   procedure Abort_Handler
+     (Sig     : Signal;
+      Code    : not null access siginfo_t;
+      Context : not null access ucontext_t);
+   --  Target-dependent binding of inter-thread Abort signal to
+   --  the raising of the Abort_Signal exception.
+   --  See also comments in 7staprop.adb
+
+   ------------
+   -- Checks --
+   ------------
+
+   function Check_Initialize_Lock
+     (L     : Lock_Ptr;
+      Level : Lock_Level) return Boolean;
+   pragma Inline (Check_Initialize_Lock);
+
+   function Check_Lock (L : Lock_Ptr) return Boolean;
+   pragma Inline (Check_Lock);
+
+   function Record_Lock (L : Lock_Ptr) return Boolean;
+   pragma Inline (Record_Lock);
+
+   function Check_Sleep (Reason : Task_States) return Boolean;
+   pragma Inline (Check_Sleep);
+
+   function Record_Wakeup
+     (L      : Lock_Ptr;
+      Reason : Task_States) return Boolean;
+   pragma Inline (Record_Wakeup);
+
+   function Check_Wakeup
+     (T      : Task_Id;
+      Reason : Task_States) return Boolean;
+   pragma Inline (Check_Wakeup);
+
+   function Check_Unlock (L : Lock_Ptr) return Boolean;
+   pragma Inline (Check_Unlock);
+
+   function Check_Finalize_Lock (L : Lock_Ptr) return Boolean;
+   pragma Inline (Check_Finalize_Lock);
+
+   --------------------
+   -- Local Packages --
+   --------------------
+
+   package Specific is
+
+      procedure Initialize (Environment_Task : Task_Id);
+      pragma Inline (Initialize);
+      --  Initialize various data needed by this package
+
+      function Is_Valid_Task return Boolean;
+      pragma Inline (Is_Valid_Task);
+      --  Does executing thread have a TCB?
+
+      procedure Set (Self_Id : Task_Id);
+      pragma Inline (Set);
+      --  Set the self id for the current task
+
+      function Self return Task_Id;
+      pragma Inline (Self);
+      --  Return a pointer to the Ada Task Control Block of the calling task
+
+   end Specific;
+
+   package body Specific is separate;
+   --  The body of this package is target specific
+
+   ----------------------------------
+   -- ATCB allocation/deallocation --
+   ----------------------------------
+
+   package body ATCB_Allocation is separate;
+   --  The body of this package is shared across several targets
+
+   ---------------------------------
+   -- Support for foreign threads --
+   ---------------------------------
+
+   function Register_Foreign_Thread
+     (Thread         : Thread_Id;
+      Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
+   --  Allocate and initialize a new ATCB for the current Thread. The size of
+   --  the secondary stack can be optionally specified.
+
+   function Register_Foreign_Thread
+     (Thread         : Thread_Id;
+      Sec_Stack_Size : Size_Type := Unspecified_Size)
+     return Task_Id is separate;
+
+   ------------
+   -- Checks --
+   ------------
+
+   Check_Count  : Integer := 0;
+   Lock_Count   : Integer := 0;
+   Unlock_Count : Integer := 0;
+
+   -------------------
+   -- Abort_Handler --
+   -------------------
+
+   procedure Abort_Handler
+     (Sig     : Signal;
+      Code    : not null access siginfo_t;
+      Context : not null access ucontext_t)
+   is
+      pragma Unreferenced (Sig);
+      pragma Unreferenced (Code);
+      pragma Unreferenced (Context);
+
+      Self_ID : constant Task_Id := Self;
+      Old_Set : aliased sigset_t;
+
+      Result : Interfaces.C.int;
+      pragma Warnings (Off, Result);
+
+   begin
+      --  It's not safe to raise an exception when using GCC ZCX mechanism.
+      --  Note that we still need to install a signal handler, since in some
+      --  cases (e.g. shutdown of the Server_Task in System.Interrupts) we
+      --  need to send the Abort signal to a task.
+
+      if ZCX_By_Default then
+         return;
+      end if;
+
+      if Self_ID.Deferral_Level = 0
+        and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
+        and then not Self_ID.Aborting
+      then
+         Self_ID.Aborting := True;
+
+         --  Make sure signals used for RTS internal purpose are unmasked
+
+         Result :=
+           thr_sigsetmask
+             (SIG_UNBLOCK,
+              Unblocked_Signal_Mask'Unchecked_Access,
+              Old_Set'Unchecked_Access);
+         pragma Assert (Result = 0);
+
+         raise Standard'Abort_Signal;
+      end if;
+   end Abort_Handler;
+
+   -----------------
+   -- Stack_Guard --
+   -----------------
+
+   --  The underlying thread system sets a guard page at the
+   --  bottom of a thread stack, so nothing is needed.
+
+   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
+      pragma Unreferenced (T);
+      pragma Unreferenced (On);
+   begin
+      null;
+   end Stack_Guard;
+
+   -------------------
+   -- Get_Thread_Id --
+   -------------------
+
+   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
+   begin
+      return T.Common.LL.Thread;
+   end Get_Thread_Id;
+
+   ----------------
+   -- Initialize --
+   ----------------
+
+   procedure Initialize (Environment_Task : ST.Task_Id) is
+      act     : aliased struct_sigaction;
+      old_act : aliased struct_sigaction;
+      Tmp_Set : aliased sigset_t;
+      Result  : Interfaces.C.int;
+
+      procedure Configure_Processors;
+      --  Processors configuration
+      --  The user can specify a processor which the program should run
+      --  on to emulate a single-processor system. This can be easily
+      --  done by setting environment variable GNAT_PROCESSOR to one of
+      --  the following :
+      --
+      --    -2 : use the default configuration (run the program on all
+      --         available processors) - this is the same as having
+      --         GNAT_PROCESSOR unset
+      --    -1 : let the RTS choose one processor and run the program on
+      --         that processor
+      --    0 .. Last_Proc : run the program on the specified processor
+      --
+      --  Last_Proc is equal to the value of the system variable
+      --  _SC_NPROCESSORS_CONF, minus one.
+
+      procedure Configure_Processors is
+         Proc_Acc  : constant System.OS_Lib.String_Access :=
+                       System.OS_Lib.Getenv ("GNAT_PROCESSOR");
+         Proc      : aliased processorid_t;  --  User processor #
+         Last_Proc : processorid_t;          --  Last processor #
+
+      begin
+         if Proc_Acc.all'Length /= 0 then
+
+            --  Environment variable is defined
+
+            Last_Proc := Num_Procs - 1;
+
+            if Last_Proc /= -1 then
+               Proc := processorid_t'Value (Proc_Acc.all);
+
+               if Proc <= -2  or else Proc > Last_Proc then
+
+                  --  Use the default configuration
+
+                  null;
+
+               elsif Proc = -1 then
+
+                  --  Choose a processor
+
+                  Result := 0;
+                  while Proc < Last_Proc loop
+                     Proc := Proc + 1;
+                     Result := p_online (Proc, PR_STATUS);
+                     exit when Result = PR_ONLINE;
+                  end loop;
+
+                  pragma Assert (Result = PR_ONLINE);
+                  Result := processor_bind (P_PID, P_MYID, Proc, null);
+                  pragma Assert (Result = 0);
+
+               else
+                  --  Use user processor
+
+                  Result := processor_bind (P_PID, P_MYID, Proc, null);
+                  pragma Assert (Result = 0);
+               end if;
+            end if;
+         end if;
+
+      exception
+         when Constraint_Error =>
+
+            --  Illegal environment variable GNAT_PROCESSOR - ignored
+
+            null;
+      end Configure_Processors;
+
+      function State
+        (Int : System.Interrupt_Management.Interrupt_ID) return Character;
+      pragma Import (C, State, "__gnat_get_interrupt_state");
+      --  Get interrupt state.  Defined in a-init.c
+      --  The input argument is the interrupt number,
+      --  and the result is one of the following:
+
+      Default : constant Character := 's';
+      --    'n'   this interrupt not set by any Interrupt_State pragma
+      --    'u'   Interrupt_State pragma set state to User
+      --    'r'   Interrupt_State pragma set state to Runtime
+      --    's'   Interrupt_State pragma set state to System (use "default"
+      --           system handler)
+
+   --  Start of processing for Initialize
+
+   begin
+      Environment_Task_Id := Environment_Task;
+
+      Interrupt_Management.Initialize;
+
+      --  Prepare the set of signals that should unblocked in all tasks
+
+      Result := sigemptyset (Unblocked_Signal_Mask'Access);
+      pragma Assert (Result = 0);
+
+      for J in Interrupt_Management.Interrupt_ID loop
+         if System.Interrupt_Management.Keep_Unmasked (J) then
+            Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
+            pragma Assert (Result = 0);
+         end if;
+      end loop;
+
+      if Dispatching_Policy = 'F' then
+         declare
+            Result      : Interfaces.C.long;
+            Class_Info  : aliased struct_pcinfo;
+            Secs, Nsecs : Interfaces.C.long;
+
+         begin
+            --  If a pragma Time_Slice is specified, takes the value in account
+
+            if Time_Slice_Val > 0 then
+
+               --  Convert Time_Slice_Val (microseconds) to seconds/nanosecs
+
+               Secs := Interfaces.C.long (Time_Slice_Val / 1_000_000);
+               Nsecs :=
+                 Interfaces.C.long ((Time_Slice_Val rem 1_000_000) * 1_000);
+
+            --  Otherwise, default to no time slicing (i.e run until blocked)
+
+            else
+               Secs := RT_TQINF;
+               Nsecs := RT_TQINF;
+            end if;
+
+            --  Get the real time class id
+
+            Class_Info.pc_clname (1) := 'R';
+            Class_Info.pc_clname (2) := 'T';
+            Class_Info.pc_clname (3) := ASCII.NUL;
+
+            Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_GETCID,
+              Class_Info'Address);
+
+            --  Request the real time class
+
+            Prio_Param.pc_cid := Class_Info.pc_cid;
+            Prio_Param.rt_pri := pri_t (Class_Info.rt_maxpri);
+            Prio_Param.rt_tqsecs := Secs;
+            Prio_Param.rt_tqnsecs := Nsecs;
+
+            Result :=
+              priocntl
+                (PC_VERSION, P_LWPID, P_MYID, PC_SETPARMS, Prio_Param'Address);
+
+            Using_Real_Time_Class := Result /= -1;
+         end;
+      end if;
+
+      Specific.Initialize (Environment_Task);
+
+      --  The following is done in Enter_Task, but this is too late for the
+      --  Environment Task, since we need to call Self in Check_Locks when
+      --  the run time is compiled with assertions on.
+
+      Specific.Set (Environment_Task);
+
+      --  Initialize the lock used to synchronize chain of all ATCBs
+
+      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
+
+      --  Make environment task known here because it doesn't go through
+      --  Activate_Tasks, which does it for all other tasks.
+
+      Known_Tasks (Known_Tasks'First) := Environment_Task;
+      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
+
+      Enter_Task (Environment_Task);
+
+      Configure_Processors;
+
+      if State
+          (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
+      then
+         --  Set sa_flags to SA_NODEFER so that during the handler execution
+         --  we do not change the Signal_Mask to be masked for the Abort_Signal
+         --  This is a temporary fix to the problem that the Signal_Mask is
+         --  not restored after the exception (longjmp) from the handler.
+         --  The right fix should be made in sigsetjmp so that we save
+         --  the Signal_Set and restore it after a longjmp.
+         --  In that case, this field should be changed back to 0. ???
+
+         act.sa_flags := 16;
+
+         act.sa_handler := Abort_Handler'Address;
+         Result := sigemptyset (Tmp_Set'Access);
+         pragma Assert (Result = 0);
+         act.sa_mask := Tmp_Set;
+
+         Result :=
+           sigaction
+             (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
+              act'Unchecked_Access,
+              old_act'Unchecked_Access);
+         pragma Assert (Result = 0);
+         Abort_Handler_Installed := True;
+      end if;
+   end Initialize;
+
+   ---------------------
+   -- Initialize_Lock --
+   ---------------------
+
+   --  Note: mutexes and cond_variables needed per-task basis are initialized
+   --  in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
+   --  as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
+   --  status change of RTS. Therefore raising Storage_Error in the following
+   --  routines should be able to be handled safely.
+
+   procedure Initialize_Lock
+     (Prio : System.Any_Priority;
+      L    : not null access Lock)
+   is
+      Result : Interfaces.C.int;
+
+   begin
+      pragma Assert (Check_Initialize_Lock (Lock_Ptr (L), PO_Level));
+
+      if Priority_Ceiling_Emulation then
+         L.Ceiling := Prio;
+      end if;
+
+      Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
+      pragma Assert (Result = 0 or else Result = ENOMEM);
+
+      if Result = ENOMEM then
+         raise Storage_Error with "Failed to allocate a lock";
+      end if;
+   end Initialize_Lock;
+
+   procedure Initialize_Lock
+     (L     : not null access RTS_Lock;
+      Level : Lock_Level)
+   is
+      Result : Interfaces.C.int;
+
+   begin
+      pragma Assert
+        (Check_Initialize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)), Level));
+      Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
+      pragma Assert (Result = 0 or else Result = ENOMEM);
+
+      if Result = ENOMEM then
+         raise Storage_Error with "Failed to allocate a lock";
+      end if;
+   end Initialize_Lock;
+
+   -------------------
+   -- Finalize_Lock --
+   -------------------
+
+   procedure Finalize_Lock (L : not null access Lock) is
+      Result : Interfaces.C.int;
+   begin
+      pragma Assert (Check_Finalize_Lock (Lock_Ptr (L)));
+      Result := mutex_destroy (L.L'Access);
+      pragma Assert (Result = 0);
+   end Finalize_Lock;
+
+   procedure Finalize_Lock (L : not null access RTS_Lock) is
+      Result : Interfaces.C.int;
+   begin
+      pragma Assert (Check_Finalize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
+      Result := mutex_destroy (L.L'Access);
+      pragma Assert (Result = 0);
+   end Finalize_Lock;
+
+   ----------------
+   -- Write_Lock --
+   ----------------
+
+   procedure Write_Lock
+     (L                 : not null access Lock;
+      Ceiling_Violation : out Boolean)
+   is
+      Result : Interfaces.C.int;
+
+   begin
+      pragma Assert (Check_Lock (Lock_Ptr (L)));
+
+      if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
+         declare
+            Self_Id        : constant Task_Id := Self;
+            Saved_Priority : System.Any_Priority;
+
+         begin
+            if Self_Id.Common.LL.Active_Priority > L.Ceiling then
+               Ceiling_Violation := True;
+               return;
+            end if;
+
+            Saved_Priority := Self_Id.Common.LL.Active_Priority;
+
+            if Self_Id.Common.LL.Active_Priority < L.Ceiling then
+               Set_Priority (Self_Id, L.Ceiling);
+            end if;
+
+            Result := mutex_lock (L.L'Access);
+            pragma Assert (Result = 0);
+            Ceiling_Violation := False;
+
+            L.Saved_Priority := Saved_Priority;
+         end;
+
+      else
+         Result := mutex_lock (L.L'Access);
+         pragma Assert (Result = 0);
+         Ceiling_Violation := False;
+      end if;
+
+      pragma Assert (Record_Lock (Lock_Ptr (L)));
+   end Write_Lock;
+
+   procedure Write_Lock
+     (L          : not null access RTS_Lock;
+     Global_Lock : Boolean := False)
+   is
+      Result : Interfaces.C.int;
+   begin
+      if not Single_Lock or else Global_Lock then
+         pragma Assert (Check_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
+         Result := mutex_lock (L.L'Access);
+         pragma Assert (Result = 0);
+         pragma Assert (Record_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
+      end if;
+   end Write_Lock;
+
+   procedure Write_Lock (T : Task_Id) is
+      Result : Interfaces.C.int;
+   begin
+      if not Single_Lock then
+         pragma Assert (Check_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
+         Result := mutex_lock (T.Common.LL.L.L'Access);
+         pragma Assert (Result = 0);
+         pragma Assert (Record_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
+      end if;
+   end Write_Lock;
+
+   ---------------
+   -- Read_Lock --
+   ---------------
+
+   procedure Read_Lock
+     (L                 : not null access Lock;
+      Ceiling_Violation : out Boolean) is
+   begin
+      Write_Lock (L, Ceiling_Violation);
+   end Read_Lock;
+
+   ------------
+   -- Unlock --
+   ------------
+
+   procedure Unlock (L : not null access Lock) is
+      Result : Interfaces.C.int;
+
+   begin
+      pragma Assert (Check_Unlock (Lock_Ptr (L)));
+
+      if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
+         declare
+            Self_Id : constant Task_Id := Self;
+
+         begin
+            Result := mutex_unlock (L.L'Access);
+            pragma Assert (Result = 0);
+
+            if Self_Id.Common.LL.Active_Priority > L.Saved_Priority then
+               Set_Priority (Self_Id, L.Saved_Priority);
+            end if;
+         end;
+      else
+         Result := mutex_unlock (L.L'Access);
+         pragma Assert (Result = 0);
+      end if;
+   end Unlock;
+
+   procedure Unlock
+     (L           : not null access RTS_Lock;
+      Global_Lock : Boolean := False)
+   is
+      Result : Interfaces.C.int;
+   begin
+      if not Single_Lock or else Global_Lock then
+         pragma Assert (Check_Unlock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
+         Result := mutex_unlock (L.L'Access);
+         pragma Assert (Result = 0);
+      end if;
+   end Unlock;
+
+   procedure Unlock (T : Task_Id) is
+      Result : Interfaces.C.int;
+   begin
+      if not Single_Lock then
+         pragma Assert (Check_Unlock (To_Lock_Ptr (T.Common.LL.L'Access)));
+         Result := mutex_unlock (T.Common.LL.L.L'Access);
+         pragma Assert (Result = 0);
+      end if;
+   end Unlock;
+
+   -----------------
+   -- Set_Ceiling --
+   -----------------
+
+   --  Dynamic priority ceilings are not supported by the underlying system
+
+   procedure Set_Ceiling
+     (L    : not null access Lock;
+      Prio : System.Any_Priority)
+   is
+      pragma Unreferenced (L, Prio);
+   begin
+      null;
+   end Set_Ceiling;
+
+   --  For the time delay implementation, we need to make sure we
+   --  achieve following criteria:
+
+   --  1) We have to delay at least for the amount requested.
+   --  2) We have to give up CPU even though the actual delay does not
+   --     result in blocking.
+   --  3) Except for restricted run-time systems that do not support
+   --     ATC or task abort, the delay must be interrupted by the
+   --     abort_task operation.
+   --  4) The implementation has to be efficient so that the delay overhead
+   --     is relatively cheap.
+   --  (1)-(3) are Ada requirements. Even though (2) is an Annex-D
+   --     requirement we still want to provide the effect in all cases.
+   --     The reason is that users may want to use short delays to implement
+   --     their own scheduling effect in the absence of language provided
+   --     scheduling policies.
+
+   ---------------------
+   -- Monotonic_Clock --
+   ---------------------
+
+   function Monotonic_Clock return Duration is
+      TS     : aliased timespec;
+      Result : Interfaces.C.int;
+   begin
+      Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
+      pragma Assert (Result = 0);
+      return To_Duration (TS);
+   end Monotonic_Clock;
+
+   -------------------
+   -- RT_Resolution --
+   -------------------
+
+   function RT_Resolution return Duration is
+      TS     : aliased timespec;
+      Result : Interfaces.C.int;
+   begin
+      Result := clock_getres (OSC.CLOCK_REALTIME, TS'Unchecked_Access);
+      pragma Assert (Result = 0);
+
+      return To_Duration (TS);
+   end RT_Resolution;
+
+   -----------
+   -- Yield --
+   -----------
+
+   procedure Yield (Do_Yield : Boolean := True) is
+   begin
+      if Do_Yield then
+         System.OS_Interface.thr_yield;
+      end if;
+   end Yield;
+
+   -----------
+   -- Self ---
+   -----------
+
+   function Self return Task_Id renames Specific.Self;
+
+   ------------------
+   -- Set_Priority --
+   ------------------
+
+   procedure Set_Priority
+     (T                   : Task_Id;
+      Prio                : System.Any_Priority;
+      Loss_Of_Inheritance : Boolean := False)
+   is
+      pragma Unreferenced (Loss_Of_Inheritance);
+
+      Result : Interfaces.C.int;
+      pragma Unreferenced (Result);
+
+      Param : aliased struct_pcparms;
+
+      use Task_Info;
+
+   begin
+      T.Common.Current_Priority := Prio;
+
+      if Priority_Ceiling_Emulation then
+         T.Common.LL.Active_Priority := Prio;
+      end if;
+
+      if Using_Real_Time_Class then
+         Param.pc_cid := Prio_Param.pc_cid;
+         Param.rt_pri := pri_t (Prio);
+         Param.rt_tqsecs := Prio_Param.rt_tqsecs;
+         Param.rt_tqnsecs := Prio_Param.rt_tqnsecs;
+
+         Result := Interfaces.C.int (
+           priocntl (PC_VERSION, P_LWPID, T.Common.LL.LWP, PC_SETPARMS,
+             Param'Address));
+
+      else
+         if T.Common.Task_Info /= null
+           and then not T.Common.Task_Info.Bound_To_LWP
+         then
+            --  The task is not bound to a LWP, so use thr_setprio
+
+            Result :=
+              thr_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio));
+
+         else
+            --  The task is bound to a LWP, use priocntl
+            --  ??? TBD
+
+            null;
+         end if;
+      end if;
+   end Set_Priority;
+
+   ------------------
+   -- Get_Priority --
+   ------------------
+
+   function Get_Priority (T : Task_Id) return System.Any_Priority is
+   begin
+      return T.Common.Current_Priority;
+   end Get_Priority;
+
+   ----------------
+   -- Enter_Task --
+   ----------------
+
+   procedure Enter_Task (Self_ID : Task_Id) is
+   begin
+      Self_ID.Common.LL.Thread := thr_self;
+      Self_ID.Common.LL.LWP    := lwp_self;
+
+      Set_Task_Affinity (Self_ID);
+      Specific.Set (Self_ID);
+
+      --  We need the above code even if we do direct fetch of Task_Id in Self
+      --  for the main task on Sun, x86 Solaris and for gcc 2.7.2.
+   end Enter_Task;
+
+   -------------------
+   -- Is_Valid_Task --
+   -------------------
+
+   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
+
+   -----------------------------
+   -- Register_Foreign_Thread --
+   -----------------------------
+
+   function Register_Foreign_Thread return Task_Id is
+   begin
+      if Is_Valid_Task then
+         return Self;
+      else
+         return Register_Foreign_Thread (thr_self);
+      end if;
+   end Register_Foreign_Thread;
+
+   --------------------
+   -- Initialize_TCB --
+   --------------------
+
+   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
+      Result : Interfaces.C.int := 0;
+
+   begin
+      --  Give the task a unique serial number
+
+      Self_ID.Serial_Number := Next_Serial_Number;
+      Next_Serial_Number := Next_Serial_Number + 1;
+      pragma Assert (Next_Serial_Number /= 0);
+
+      Self_ID.Common.LL.Thread := Null_Thread_Id;
+
+      if not Single_Lock then
+         Result :=
+           mutex_init
+             (Self_ID.Common.LL.L.L'Access, USYNC_THREAD, System.Null_Address);
+         Self_ID.Common.LL.L.Level :=
+           Private_Task_Serial_Number (Self_ID.Serial_Number);
+         pragma Assert (Result = 0 or else Result = ENOMEM);
+      end if;
+
+      if Result = 0 then
+         Result := cond_init (Self_ID.Common.LL.CV'Access, USYNC_THREAD, 0);
+         pragma Assert (Result = 0 or else Result = ENOMEM);
+      end if;
+
+      if Result = 0 then
+         Succeeded := True;
+      else
+         if not Single_Lock then
+            Result := mutex_destroy (Self_ID.Common.LL.L.L'Access);
+            pragma Assert (Result = 0);
+         end if;
+
+         Succeeded := False;
+      end if;
+   end Initialize_TCB;
+
+   -----------------
+   -- Create_Task --
+   -----------------
+
+   procedure Create_Task
+     (T          : Task_Id;
+      Wrapper    : System.Address;
+      Stack_Size : System.Parameters.Size_Type;
+      Priority   : System.Any_Priority;
+      Succeeded  : out Boolean)
+   is
+      pragma Unreferenced (Priority);
+
+      Result              : Interfaces.C.int;
+      Adjusted_Stack_Size : Interfaces.C.size_t;
+      Opts                : Interfaces.C.int := THR_DETACHED;
+
+      Page_Size           : constant System.Parameters.Size_Type := 4096;
+      --  This constant is for reserving extra space at the
+      --  end of the stack, which can be used by the stack
+      --  checking as guard page. The idea is that we need
+      --  to have at least Stack_Size bytes available for
+      --  actual use.
+
+      use System.Task_Info;
+      use type System.Multiprocessors.CPU_Range;
+
+   begin
+      --  Check whether both Dispatching_Domain and CPU are specified for the
+      --  task, and the CPU value is not contained within the range of
+      --  processors for the domain.
+
+      if T.Common.Domain /= null
+        and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
+        and then
+          (T.Common.Base_CPU not in T.Common.Domain'Range
+            or else not T.Common.Domain (T.Common.Base_CPU))
+      then
+         Succeeded := False;
+         return;
+      end if;
+
+      Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size + Page_Size);
+
+      --  Since the initial signal mask of a thread is inherited from the
+      --  creator, and the Environment task has all its signals masked, we
+      --  do not need to manipulate caller's signal mask at this point.
+      --  All tasks in RTS will have All_Tasks_Mask initially.
+
+      if T.Common.Task_Info /= null then
+         if T.Common.Task_Info.New_LWP then
+            Opts := Opts + THR_NEW_LWP;
+         end if;
+
+         if T.Common.Task_Info.Bound_To_LWP then
+            Opts := Opts + THR_BOUND;
+         end if;
+
+      else
+         Opts := THR_DETACHED + THR_BOUND;
+      end if;
+
+      --  Note: the use of Unrestricted_Access in the following call is needed
+      --  because otherwise we have an error of getting a access-to-volatile
+      --  value which points to a non-volatile object. But in this case it is
+      --  safe to do this, since we know we have no problems with aliasing and
+      --  Unrestricted_Access bypasses this check.
+
+      Result :=
+        thr_create
+          (System.Null_Address,
+           Adjusted_Stack_Size,
+           Thread_Body_Access (Wrapper),
+           To_Address (T),
+           Opts,
+           T.Common.LL.Thread'Unrestricted_Access);
+
+      Succeeded := Result = 0;
+      pragma Assert
+        (Result = 0
+          or else Result = ENOMEM
+          or else Result = EAGAIN);
+   end Create_Task;
+
+   ------------------
+   -- Finalize_TCB --
+   ------------------
+
+   procedure Finalize_TCB (T : Task_Id) is
+      Result : Interfaces.C.int;
+
+   begin
+      T.Common.LL.Thread := Null_Thread_Id;
+
+      if not Single_Lock then
+         Result := mutex_destroy (T.Common.LL.L.L'Access);
+         pragma Assert (Result = 0);
+      end if;
+
+      Result := cond_destroy (T.Common.LL.CV'Access);
+      pragma Assert (Result = 0);
+
+      if T.Known_Tasks_Index /= -1 then
+         Known_Tasks (T.Known_Tasks_Index) := null;
+      end if;
+
+      ATCB_Allocation.Free_ATCB (T);
+   end Finalize_TCB;
+
+   ---------------
+   -- Exit_Task --
+   ---------------
+
+   --  This procedure must be called with abort deferred. It can no longer
+   --  call Self or access the current task's ATCB, since the ATCB has been
+   --  deallocated.
+
+   procedure Exit_Task is
+   begin
+      Specific.Set (null);
+   end Exit_Task;
+
+   ----------------
+   -- Abort_Task --
+   ----------------
+
+   procedure Abort_Task (T : Task_Id) is
+      Result : Interfaces.C.int;
+   begin
+      if Abort_Handler_Installed then
+         pragma Assert (T /= Self);
+         Result :=
+           thr_kill
+             (T.Common.LL.Thread,
+              Signal (System.Interrupt_Management.Abort_Task_Interrupt));
+         pragma Assert (Result = 0);
+      end if;
+   end Abort_Task;
+
+   -----------
+   -- Sleep --
+   -----------
+
+   procedure Sleep
+     (Self_ID : Task_Id;
+      Reason  : Task_States)
+   is
+      Result : Interfaces.C.int;
+
+   begin
+      pragma Assert (Check_Sleep (Reason));
+
+      if Single_Lock then
+         Result :=
+           cond_wait
+             (Self_ID.Common.LL.CV'Access, Single_RTS_Lock.L'Access);
+      else
+         Result :=
+           cond_wait
+             (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L.L'Access);
+      end if;
+
+      pragma Assert
+        (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
+      pragma Assert (Result = 0 or else Result = EINTR);
+   end Sleep;
+
+   --  Note that we are relying heavily here on GNAT representing
+   --  Calendar.Time, System.Real_Time.Time, Duration,
+   --  System.Real_Time.Time_Span in the same way, i.e., as a 64-bit count of
+   --  nanoseconds.
+
+   --  This allows us to always pass the timeout value as a Duration
+
+   --  ???
+   --  We are taking liberties here with the semantics of the delays. That is,
+   --  we make no distinction between delays on the Calendar clock and delays
+   --  on the Real_Time clock. That is technically incorrect, if the Calendar
+   --  clock happens to be reset or adjusted. To solve this defect will require
+   --  modification to the compiler interface, so that it can pass through more
+   --  information, to tell us here which clock to use.
+
+   --  cond_timedwait will return if any of the following happens:
+   --  1) some other task did cond_signal on this condition variable
+   --     In this case, the return value is 0
+   --  2) the call just returned, for no good reason
+   --     This is called a "spurious wakeup".
+   --     In this case, the return value may also be 0.
+   --  3) the time delay expires
+   --     In this case, the return value is ETIME
+   --  4) this task received a signal, which was handled by some
+   --     handler procedure, and now the thread is resuming execution
+   --     UNIX calls this an "interrupted" system call.
+   --     In this case, the return value is EINTR
+
+   --  If the cond_timedwait returns 0 or EINTR, it is still possible that the
+   --  time has actually expired, and by chance a signal or cond_signal
+   --  occurred at around the same time.
+
+   --  We have also observed that on some OS's the value ETIME will be
+   --  returned, but the clock will show that the full delay has not yet
+   --  expired.
+
+   --  For these reasons, we need to check the clock after return from
+   --  cond_timedwait. If the time has expired, we will set Timedout = True.
+
+   --  This check might be omitted for systems on which the cond_timedwait()
+   --  never returns early or wakes up spuriously.
+
+   --  Annex D requires that completion of a delay cause the task to go to the
+   --  end of its priority queue, regardless of whether the task actually was
+   --  suspended by the delay. Since cond_timedwait does not do this on
+   --  Solaris, we add a call to thr_yield at the end. We might do this at the
+   --  beginning, instead, but then the round-robin effect would not be the
+   --  same; the delayed task would be ahead of other tasks of the same
+   --  priority that awoke while it was sleeping.
+
+   --  For Timed_Sleep, we are expecting possible cond_signals to indicate
+   --  other events (e.g., completion of a RV or completion of the abortable
+   --  part of an async. select), we want to always return if interrupted. The
+   --  caller will be responsible for checking the task state to see whether
+   --  the wakeup was spurious, and to go back to sleep again in that case. We
+   --  don't need to check for pending abort or priority change on the way in
+   --  our out; that is the caller's responsibility.
+
+   --  For Timed_Delay, we are not expecting any cond_signals or other
+   --  interruptions, except for priority changes and aborts. Therefore, we
+   --  don't want to return unless the delay has actually expired, or the call
+   --  has been aborted. In this case, since we want to implement the entire
+   --  delay statement semantics, we do need to check for pending abort and
+   --  priority changes. We can quietly handle priority changes inside the
+   --  procedure, since there is no entry-queue reordering involved.
+
+   -----------------
+   -- Timed_Sleep --
+   -----------------
+
+   procedure Timed_Sleep
+     (Self_ID  : Task_Id;
+      Time     : Duration;
+      Mode     : ST.Delay_Modes;
+      Reason   : System.Tasking.Task_States;
+      Timedout : out Boolean;
+      Yielded  : out Boolean)
+   is
+      Base_Time  : constant Duration := Monotonic_Clock;
+      Check_Time : Duration := Base_Time;
+      Abs_Time   : Duration;
+      Request    : aliased timespec;
+      Result     : Interfaces.C.int;
+
+   begin
+      pragma Assert (Check_Sleep (Reason));
+      Timedout := True;
+      Yielded := False;
+
+      Abs_Time :=
+        (if Mode = Relative
+         then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
+         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
+
+      if Abs_Time > Check_Time then
+         Request := To_Timespec (Abs_Time);
+         loop
+            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+            if Single_Lock then
+               Result :=
+                 cond_timedwait
+                   (Self_ID.Common.LL.CV'Access,
+                    Single_RTS_Lock.L'Access, Request'Access);
+            else
+               Result :=
+                 cond_timedwait
+                   (Self_ID.Common.LL.CV'Access,
+                    Self_ID.Common.LL.L.L'Access, Request'Access);
+            end if;
+
+            Yielded := True;
+
+            Check_Time := Monotonic_Clock;
+            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
+
+            if Result = 0 or Result = EINTR then
+
+               --  Somebody may have called Wakeup for us
+
+               Timedout := False;
+               exit;
+            end if;
+
+            pragma Assert (Result = ETIME);
+         end loop;
+      end if;
+
+      pragma Assert
+        (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
+   end Timed_Sleep;
+
+   -----------------
+   -- Timed_Delay --
+   -----------------
+
+   procedure Timed_Delay
+     (Self_ID : Task_Id;
+      Time    : Duration;
+      Mode    : ST.Delay_Modes)
+   is
+      Base_Time  : constant Duration := Monotonic_Clock;
+      Check_Time : Duration := Base_Time;
+      Abs_Time   : Duration;
+      Request    : aliased timespec;
+      Result     : Interfaces.C.int;
+      Yielded    : Boolean := False;
+
+   begin
+      if Single_Lock then
+         Lock_RTS;
+      end if;
+
+      Write_Lock (Self_ID);
+
+      Abs_Time :=
+        (if Mode = Relative
+         then Time + Check_Time
+         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
+
+      if Abs_Time > Check_Time then
+         Request := To_Timespec (Abs_Time);
+         Self_ID.Common.State := Delay_Sleep;
+
+         pragma Assert (Check_Sleep (Delay_Sleep));
+
+         loop
+            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+            if Single_Lock then
+               Result :=
+                 cond_timedwait
+                   (Self_ID.Common.LL.CV'Access,
+                    Single_RTS_Lock.L'Access,
+                    Request'Access);
+            else
+               Result :=
+                 cond_timedwait
+                   (Self_ID.Common.LL.CV'Access,
+                    Self_ID.Common.LL.L.L'Access,
+                    Request'Access);
+            end if;
+
+            Yielded := True;
+
+            Check_Time := Monotonic_Clock;
+            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
+
+            pragma Assert
+              (Result = 0     or else
+               Result = ETIME or else
+               Result = EINTR);
+         end loop;
+
+         pragma Assert
+           (Record_Wakeup
+              (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Delay_Sleep));
+
+         Self_ID.Common.State := Runnable;
+      end if;
+
+      Unlock (Self_ID);
+
+      if Single_Lock then
+         Unlock_RTS;
+      end if;
+
+      if not Yielded then
+         thr_yield;
+      end if;
+   end Timed_Delay;
+
+   ------------
+   -- Wakeup --
+   ------------
+
+   procedure Wakeup
+     (T : Task_Id;
+      Reason : Task_States)
+   is
+      Result : Interfaces.C.int;
+   begin
+      pragma Assert (Check_Wakeup (T, Reason));
+      Result := cond_signal (T.Common.LL.CV'Access);
+      pragma Assert (Result = 0);
+   end Wakeup;
+
+   ---------------------------
+   -- Check_Initialize_Lock --
+   ---------------------------
+
+   --  The following code is intended to check some of the invariant assertions
+   --  related to lock usage, on which we depend.
+
+   function Check_Initialize_Lock
+     (L     : Lock_Ptr;
+      Level : Lock_Level) return Boolean
+   is
+      Self_ID : constant Task_Id := Self;
+
+   begin
+      --  Check that caller is abort-deferred
+
+      if Self_ID.Deferral_Level = 0 then
+         return False;
+      end if;
+
+      --  Check that the lock is not yet initialized
+
+      if L.Level /= 0 then
+         return False;
+      end if;
+
+      L.Level := Lock_Level'Pos (Level) + 1;
+      return True;
+   end Check_Initialize_Lock;
+
+   ----------------
+   -- Check_Lock --
+   ----------------
+
+   function Check_Lock (L : Lock_Ptr) return Boolean is
+      Self_ID : constant Task_Id := Self;
+      P       : Lock_Ptr;
+
+   begin
+      --  Check that the argument is not null
+
+      if L = null then
+         return False;
+      end if;
+
+      --  Check that L is not frozen
+
+      if L.Frozen then
+         return False;
+      end if;
+
+      --  Check that caller is abort-deferred
+
+      if Self_ID.Deferral_Level = 0 then
+         return False;
+      end if;
+
+      --  Check that caller is not holding this lock already
+
+      if L.Owner = To_Owner_ID (To_Address (Self_ID)) then
+         return False;
+      end if;
+
+      if Single_Lock then
+         return True;
+      end if;
+
+      --  Check that TCB lock order rules are satisfied
+
+      P := Self_ID.Common.LL.Locks;
+      if P /= null then
+         if P.Level >= L.Level
+           and then (P.Level > 2 or else L.Level > 2)
+         then
+            return False;
+         end if;
+      end if;
+
+      return True;
+   end Check_Lock;
+
+   -----------------
+   -- Record_Lock --
+   -----------------
+
+   function Record_Lock (L : Lock_Ptr) return Boolean is
+      Self_ID : constant Task_Id := Self;
+      P       : Lock_Ptr;
+
+   begin
+      Lock_Count := Lock_Count + 1;
+
+      --  There should be no owner for this lock at this point
+
+      if L.Owner /= null then
+         return False;
+      end if;
+
+      --  Record new owner
+
+      L.Owner := To_Owner_ID (To_Address (Self_ID));
+
+      if Single_Lock then
+         return True;
+      end if;
+
+      --  Check that TCB lock order rules are satisfied
+
+      P := Self_ID.Common.LL.Locks;
+
+      if P /= null then
+         L.Next := P;
+      end if;
+
+      Self_ID.Common.LL.Locking := null;
+      Self_ID.Common.LL.Locks := L;
+      return True;
+   end Record_Lock;
+
+   -----------------
+   -- Check_Sleep --
+   -----------------
+
+   function Check_Sleep (Reason : Task_States) return Boolean is
+      pragma Unreferenced (Reason);
+
+      Self_ID : constant Task_Id := Self;
+      P       : Lock_Ptr;
+
+   begin
+      --  Check that caller is abort-deferred
+
+      if Self_ID.Deferral_Level = 0 then
+         return False;
+      end if;
+
+      if Single_Lock then
+         return True;
+      end if;
+
+      --  Check that caller is holding own lock, on top of list
+
+      if Self_ID.Common.LL.Locks /=
+        To_Lock_Ptr (Self_ID.Common.LL.L'Access)
+      then
+         return False;
+      end if;
+
+      --  Check that TCB lock order rules are satisfied
+
+      if Self_ID.Common.LL.Locks.Next /= null then
+         return False;
+      end if;
+
+      Self_ID.Common.LL.L.Owner := null;
+      P := Self_ID.Common.LL.Locks;
+      Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
+      P.Next := null;
+      return True;
+   end Check_Sleep;
+
+   -------------------
+   -- Record_Wakeup --
+   -------------------
+
+   function Record_Wakeup
+     (L      : Lock_Ptr;
+      Reason : Task_States) return Boolean
+   is
+      pragma Unreferenced (Reason);
+
+      Self_ID : constant Task_Id := Self;
+      P       : Lock_Ptr;
+
+   begin
+      --  Record new owner
+
+      L.Owner := To_Owner_ID (To_Address (Self_ID));
+
+      if Single_Lock then
+         return True;
+      end if;
+
+      --  Check that TCB lock order rules are satisfied
+
+      P := Self_ID.Common.LL.Locks;
+
+      if P /= null then
+         L.Next := P;
+      end if;
+
+      Self_ID.Common.LL.Locking := null;
+      Self_ID.Common.LL.Locks := L;
+      return True;
+   end Record_Wakeup;
+
+   ------------------
+   -- Check_Wakeup --
+   ------------------
+
+   function Check_Wakeup
+     (T      : Task_Id;
+      Reason : Task_States) return Boolean
+   is
+      Self_ID : constant Task_Id := Self;
+
+   begin
+      --  Is caller holding T's lock?
+
+      if T.Common.LL.L.Owner /= To_Owner_ID (To_Address (Self_ID)) then
+         return False;
+      end if;
+
+      --  Are reasons for wakeup and sleep consistent?
+
+      if T.Common.State /= Reason then
+         return False;
+      end if;
+
+      return True;
+   end Check_Wakeup;
+
+   ------------------
+   -- Check_Unlock --
+   ------------------
+
+   function Check_Unlock (L : Lock_Ptr) return Boolean is
+      Self_ID : constant Task_Id := Self;
+      P       : Lock_Ptr;
+
+   begin
+      Unlock_Count := Unlock_Count + 1;
+
+      if L = null then
+         return False;
+      end if;
+
+      if L.Buddy /= null then
+         return False;
+      end if;
+
+      --  Magic constant 4???
+
+      if L.Level = 4 then
+         Check_Count := Unlock_Count;
+      end if;
+
+      --  Magic constant 1000???
+
+      if Unlock_Count - Check_Count > 1000 then
+         Check_Count := Unlock_Count;
+      end if;
+
+      --  Check that caller is abort-deferred
+
+      if Self_ID.Deferral_Level = 0 then
+         return False;
+      end if;
+
+      --  Check that caller is holding this lock, on top of list
+
+      if Self_ID.Common.LL.Locks /= L then
+         return False;
+      end if;
+
+      --  Record there is no owner now
+
+      L.Owner := null;
+      P := Self_ID.Common.LL.Locks;
+      Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
+      P.Next := null;
+      return True;
+   end Check_Unlock;
+
+   --------------------
+   -- Check_Finalize --
+   --------------------
+
+   function Check_Finalize_Lock (L : Lock_Ptr) return Boolean is
+      Self_ID : constant Task_Id := Self;
+
+   begin
+      --  Check that caller is abort-deferred
+
+      if Self_ID.Deferral_Level = 0 then
+         return False;
+      end if;
+
+      --  Check that no one is holding this lock
+
+      if L.Owner /= null then
+         return False;
+      end if;
+
+      L.Frozen := True;
+      return True;
+   end Check_Finalize_Lock;
+
+   ----------------
+   -- Initialize --
+   ----------------
+
+   procedure Initialize (S : in out Suspension_Object) is
+      Result : Interfaces.C.int;
+
+   begin
+      --  Initialize internal state (always to zero (RM D.10(6)))
+
+      S.State := False;
+      S.Waiting := False;
+
+      --  Initialize internal mutex
+
+      Result := mutex_init (S.L'Access, USYNC_THREAD, System.Null_Address);
+      pragma Assert (Result = 0 or else Result = ENOMEM);
+
+      if Result = ENOMEM then
+         raise Storage_Error with "Failed to allocate a lock";
+      end if;
+
+      --  Initialize internal condition variable
+
+      Result := cond_init (S.CV'Access, USYNC_THREAD, 0);
+      pragma Assert (Result = 0 or else Result = ENOMEM);
+
+      if Result /= 0 then
+         Result := mutex_destroy (S.L'Access);
+         pragma Assert (Result = 0);
+
+         if Result = ENOMEM then
+            raise Storage_Error;
+         end if;
+      end if;
+   end Initialize;
+
+   --------------
+   -- Finalize --
+   --------------
+
+   procedure Finalize (S : in out Suspension_Object) is
+      Result  : Interfaces.C.int;
+
+   begin
+      --  Destroy internal mutex
+
+      Result := mutex_destroy (S.L'Access);
+      pragma Assert (Result = 0);
+
+      --  Destroy internal condition variable
+
+      Result := cond_destroy (S.CV'Access);
+      pragma Assert (Result = 0);
+   end Finalize;
+
+   -------------------
+   -- Current_State --
+   -------------------
+
+   function Current_State (S : Suspension_Object) return Boolean is
+   begin
+      --  We do not want to use lock on this read operation. State is marked
+      --  as Atomic so that we ensure that the value retrieved is correct.
+
+      return S.State;
+   end Current_State;
+
+   ---------------
+   -- Set_False --
+   ---------------
+
+   procedure Set_False (S : in out Suspension_Object) is
+      Result  : Interfaces.C.int;
+
+   begin
+      SSL.Abort_Defer.all;
+
+      Result := mutex_lock (S.L'Access);
+      pragma Assert (Result = 0);
+
+      S.State := False;
+
+      Result := mutex_unlock (S.L'Access);
+      pragma Assert (Result = 0);
+
+      SSL.Abort_Undefer.all;
+   end Set_False;
+
+   --------------
+   -- Set_True --
+   --------------
+
+   procedure Set_True (S : in out Suspension_Object) is
+      Result : Interfaces.C.int;
+
+   begin
+      SSL.Abort_Defer.all;
+
+      Result := mutex_lock (S.L'Access);
+      pragma Assert (Result = 0);
+
+      --  If there is already a task waiting on this suspension object then
+      --  we resume it, leaving the state of the suspension object to False,
+      --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
+      --  the state to True.
+
+      if S.Waiting then
+         S.Waiting := False;
+         S.State := False;
+
+         Result := cond_signal (S.CV'Access);
+         pragma Assert (Result = 0);
+
+      else
+         S.State := True;
+      end if;
+
+      Result := mutex_unlock (S.L'Access);
+      pragma Assert (Result = 0);
+
+      SSL.Abort_Undefer.all;
+   end Set_True;
+
+   ------------------------
+   -- Suspend_Until_True --
+   ------------------------
+
+   procedure Suspend_Until_True (S : in out Suspension_Object) is
+      Result : Interfaces.C.int;
+
+   begin
+      SSL.Abort_Defer.all;
+
+      Result := mutex_lock (S.L'Access);
+      pragma Assert (Result = 0);
+
+      if S.Waiting then
+
+         --  Program_Error must be raised upon calling Suspend_Until_True
+         --  if another task is already waiting on that suspension object
+         --  (RM D.10(10)).
+
+         Result := mutex_unlock (S.L'Access);
+         pragma Assert (Result = 0);
+
+         SSL.Abort_Undefer.all;
+
+         raise Program_Error;
+
+      else
+         --  Suspend the task if the state is False. Otherwise, the task
+         --  continues its execution, and the state of the suspension object
+         --  is set to False (ARM D.10 par. 9).
+
+         if S.State then
+            S.State := False;
+         else
+            S.Waiting := True;
+
+            loop
+               --  Loop in case pthread_cond_wait returns earlier than expected
+               --  (e.g. in case of EINTR caused by a signal).
+
+               Result := cond_wait (S.CV'Access, S.L'Access);
+               pragma Assert (Result = 0 or else Result = EINTR);
+
+               exit when not S.Waiting;
+            end loop;
+         end if;
+
+         Result := mutex_unlock (S.L'Access);
+         pragma Assert (Result = 0);
+
+         SSL.Abort_Undefer.all;
+      end if;
+   end Suspend_Until_True;
+
+   ----------------
+   -- Check_Exit --
+   ----------------
+
+   function Check_Exit (Self_ID : Task_Id) return Boolean is
+   begin
+      --  Check that caller is just holding Global_Task_Lock and no other locks
+
+      if Self_ID.Common.LL.Locks = null then
+         return False;
+      end if;
+
+      --  2 = Global_Task_Level
+
+      if Self_ID.Common.LL.Locks.Level /= 2 then
+         return False;
+      end if;
+
+      if Self_ID.Common.LL.Locks.Next /= null then
+         return False;
+      end if;
+
+      --  Check that caller is abort-deferred
+
+      if Self_ID.Deferral_Level = 0 then
+         return False;
+      end if;
+
+      return True;
+   end Check_Exit;
+
+   --------------------
+   -- Check_No_Locks --
+   --------------------
+
+   function Check_No_Locks (Self_ID : Task_Id) return Boolean is
+   begin
+      return Self_ID.Common.LL.Locks = null;
+   end Check_No_Locks;
+
+   ----------------------
+   -- Environment_Task --
+   ----------------------
+
+   function Environment_Task return Task_Id is
+   begin
+      return Environment_Task_Id;
+   end Environment_Task;
+
+   --------------
+   -- Lock_RTS --
+   --------------
+
+   procedure Lock_RTS is
+   begin
+      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
+   end Lock_RTS;
+
+   ----------------
+   -- Unlock_RTS --
+   ----------------
+
+   procedure Unlock_RTS is
+   begin
+      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
+   end Unlock_RTS;
+
+   ------------------
+   -- Suspend_Task --
+   ------------------
+
+   function Suspend_Task
+     (T           : ST.Task_Id;
+      Thread_Self : Thread_Id) return Boolean
+   is
+   begin
+      if T.Common.LL.Thread /= Thread_Self then
+         return thr_suspend (T.Common.LL.Thread) = 0;
+      else
+         return True;
+      end if;
+   end Suspend_Task;
+
+   -----------------
+   -- Resume_Task --
+   -----------------
+
+   function Resume_Task
+     (T           : ST.Task_Id;
+      Thread_Self : Thread_Id) return Boolean
+   is
+   begin
+      if T.Common.LL.Thread /= Thread_Self then
+         return thr_continue (T.Common.LL.Thread) = 0;
+      else
+         return True;
+      end if;
+   end Resume_Task;
+
+   --------------------
+   -- Stop_All_Tasks --
+   --------------------
+
+   procedure Stop_All_Tasks is
+   begin
+      null;
+   end Stop_All_Tasks;
+
+   ---------------
+   -- Stop_Task --
+   ---------------
+
+   function Stop_Task (T : ST.Task_Id) return Boolean is
+      pragma Unreferenced (T);
+   begin
+      return False;
+   end Stop_Task;
+
+   -------------------
+   -- Continue_Task --
+   -------------------
+
+   function Continue_Task (T : ST.Task_Id) return Boolean is
+      pragma Unreferenced (T);
+   begin
+      return False;
+   end Continue_Task;
+
+   -----------------------
+   -- Set_Task_Affinity --
+   -----------------------
+
+   procedure Set_Task_Affinity (T : ST.Task_Id) is
+      Result    : Interfaces.C.int;
+      Proc      : processorid_t;  --  User processor #
+      Last_Proc : processorid_t;  --  Last processor #
+
+      use System.Task_Info;
+      use type System.Multiprocessors.CPU_Range;
+
+   begin
+      --  Do nothing if the underlying thread has not yet been created. If the
+      --  thread has not yet been created then the proper affinity will be set
+      --  during its creation.
+
+      if T.Common.LL.Thread = Null_Thread_Id then
+         null;
+
+      --  pragma CPU
+
+      elsif T.Common.Base_CPU /=
+           System.Multiprocessors.Not_A_Specific_CPU
+      then
+         --  The CPU numbering in pragma CPU starts at 1 while the subprogram
+         --  to set the affinity starts at 0, therefore we must substract 1.
+
+         Result :=
+           processor_bind
+             (P_LWPID, id_t (T.Common.LL.LWP),
+              processorid_t (T.Common.Base_CPU) - 1, null);
+         pragma Assert (Result = 0);
+
+      --  Task_Info
+
+      elsif T.Common.Task_Info /= null then
+         if T.Common.Task_Info.New_LWP
+           and then T.Common.Task_Info.CPU /= CPU_UNCHANGED
+         then
+            Last_Proc := Num_Procs - 1;
+
+            if T.Common.Task_Info.CPU = ANY_CPU then
+               Result := 0;
+
+               Proc := 0;
+               while Proc < Last_Proc loop
+                  Result := p_online (Proc, PR_STATUS);
+                  exit when Result = PR_ONLINE;
+                  Proc := Proc + 1;
+               end loop;
+
+               Result :=
+                 processor_bind
+                   (P_LWPID, id_t (T.Common.LL.LWP), Proc, null);
+               pragma Assert (Result = 0);
+
+            else
+               --  Use specified processor
+
+               if T.Common.Task_Info.CPU < 0
+                 or else T.Common.Task_Info.CPU > Last_Proc
+               then
+                  raise Invalid_CPU_Number;
+               end if;
+
+               Result :=
+                 processor_bind
+                   (P_LWPID, id_t (T.Common.LL.LWP),
+                    T.Common.Task_Info.CPU, null);
+               pragma Assert (Result = 0);
+            end if;
+         end if;
+
+      --  Handle dispatching domains
+
+      elsif T.Common.Domain /= null
+        and then (T.Common.Domain /= ST.System_Domain
+                   or else T.Common.Domain.all /=
+                             (Multiprocessors.CPU'First ..
+                              Multiprocessors.Number_Of_CPUs => True))
+      then
+         declare
+            CPU_Set : aliased psetid_t;
+            Result  : int;
+
+         begin
+            Result := pset_create (CPU_Set'Access);
+            pragma Assert (Result = 0);
+
+            --  Set the affinity to all the processors belonging to the
+            --  dispatching domain.
+
+            for Proc in T.Common.Domain'Range loop
+
+               --  The Ada CPU numbering starts at 1 while the subprogram to
+               --  set the affinity starts at 0, therefore we must substract 1.
+
+               if T.Common.Domain (Proc) then
+                  Result :=
+                    pset_assign (CPU_Set, processorid_t (Proc) - 1, null);
+                  pragma Assert (Result = 0);
+               end if;
+            end loop;
+
+            Result :=
+              pset_bind (CPU_Set, P_LWPID, id_t (T.Common.LL.LWP), null);
+            pragma Assert (Result = 0);
+         end;
+      end if;
+   end Set_Task_Affinity;
+
+end System.Task_Primitives.Operations;