diff gcc/ada/libgnat/a-cimutr.adb @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/ada/libgnat/a-cimutr.adb	Fri Oct 27 22:46:09 2017 +0900
@@ -0,0 +1,2698 @@
+------------------------------------------------------------------------------
+--                                                                          --
+--                         GNAT LIBRARY COMPONENTS                          --
+--                                                                          --
+--                   ADA.CONTAINERS.INDEFINITE_MULTIWAY_TREES               --
+--                                                                          --
+--                                 B o d y                                  --
+--                                                                          --
+--          Copyright (C) 2004-2017, Free Software Foundation, Inc.         --
+--                                                                          --
+-- GNAT is free software;  you can  redistribute it  and/or modify it under --
+-- terms of the  GNU General Public License as published  by the Free Soft- --
+-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
+-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
+--                                                                          --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception,   --
+-- version 3.1, as published by the Free Software Foundation.               --
+--                                                                          --
+-- You should have received a copy of the GNU General Public License and    --
+-- a copy of the GCC Runtime Library Exception along with this program;     --
+-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
+-- <http://www.gnu.org/licenses/>.                                          --
+--                                                                          --
+-- This unit was originally developed by Matthew J Heaney.                  --
+------------------------------------------------------------------------------
+
+with Ada.Unchecked_Deallocation;
+
+with System; use type System.Address;
+
+package body Ada.Containers.Indefinite_Multiway_Trees is
+
+   pragma Warnings (Off, "variable ""Busy*"" is not referenced");
+   pragma Warnings (Off, "variable ""Lock*"" is not referenced");
+   --  See comment in Ada.Containers.Helpers
+
+   --------------------
+   --  Root_Iterator --
+   --------------------
+
+   type Root_Iterator is abstract new Limited_Controlled and
+     Tree_Iterator_Interfaces.Forward_Iterator with
+   record
+      Container : Tree_Access;
+      Subtree   : Tree_Node_Access;
+   end record;
+
+   overriding procedure Finalize (Object : in out Root_Iterator);
+
+   -----------------------
+   --  Subtree_Iterator --
+   -----------------------
+
+   type Subtree_Iterator is new Root_Iterator with null record;
+
+   overriding function First (Object : Subtree_Iterator) return Cursor;
+
+   overriding function Next
+     (Object   : Subtree_Iterator;
+      Position : Cursor) return Cursor;
+
+   ---------------------
+   --  Child_Iterator --
+   ---------------------
+
+   type Child_Iterator is new Root_Iterator and
+     Tree_Iterator_Interfaces.Reversible_Iterator with null record;
+
+   overriding function First (Object : Child_Iterator) return Cursor;
+
+   overriding function Next
+     (Object   : Child_Iterator;
+      Position : Cursor) return Cursor;
+
+   overriding function Last (Object : Child_Iterator) return Cursor;
+
+   overriding function Previous
+     (Object   : Child_Iterator;
+      Position : Cursor) return Cursor;
+
+   -----------------------
+   -- Local Subprograms --
+   -----------------------
+
+   function Root_Node (Container : Tree) return Tree_Node_Access;
+
+   procedure Free_Element is
+      new Ada.Unchecked_Deallocation (Element_Type, Element_Access);
+
+   procedure Deallocate_Node (X : in out Tree_Node_Access);
+
+   procedure Deallocate_Children
+     (Subtree : Tree_Node_Access;
+      Count   : in out Count_Type);
+
+   procedure Deallocate_Subtree
+     (Subtree : in out Tree_Node_Access;
+      Count   : in out Count_Type);
+
+   function Equal_Children
+     (Left_Subtree, Right_Subtree : Tree_Node_Access) return Boolean;
+
+   function Equal_Subtree
+     (Left_Subtree, Right_Subtree : Tree_Node_Access) return Boolean;
+
+   procedure Iterate_Children
+     (Container : Tree_Access;
+      Subtree   : Tree_Node_Access;
+      Process   : not null access procedure (Position : Cursor));
+
+   procedure Iterate_Subtree
+     (Container : Tree_Access;
+      Subtree   : Tree_Node_Access;
+      Process   : not null access procedure (Position : Cursor));
+
+   procedure Copy_Children
+     (Source : Children_Type;
+      Parent : Tree_Node_Access;
+      Count  : in out Count_Type);
+
+   procedure Copy_Subtree
+     (Source : Tree_Node_Access;
+      Parent : Tree_Node_Access;
+      Target : out Tree_Node_Access;
+      Count  : in out Count_Type);
+
+   function Find_In_Children
+     (Subtree : Tree_Node_Access;
+      Item    : Element_Type) return Tree_Node_Access;
+
+   function Find_In_Subtree
+     (Subtree : Tree_Node_Access;
+      Item    : Element_Type) return Tree_Node_Access;
+
+   function Child_Count (Children : Children_Type) return Count_Type;
+
+   function Subtree_Node_Count
+     (Subtree : Tree_Node_Access) return Count_Type;
+
+   function Is_Reachable (From, To : Tree_Node_Access) return Boolean;
+
+   procedure Remove_Subtree (Subtree : Tree_Node_Access);
+
+   procedure Insert_Subtree_Node
+     (Subtree : Tree_Node_Access;
+      Parent  : Tree_Node_Access;
+      Before  : Tree_Node_Access);
+
+   procedure Insert_Subtree_List
+     (First  : Tree_Node_Access;
+      Last   : Tree_Node_Access;
+      Parent : Tree_Node_Access;
+      Before : Tree_Node_Access);
+
+   procedure Splice_Children
+     (Target_Parent : Tree_Node_Access;
+      Before        : Tree_Node_Access;
+      Source_Parent : Tree_Node_Access);
+
+   ---------
+   -- "=" --
+   ---------
+
+   function "=" (Left, Right : Tree) return Boolean is
+   begin
+      return Equal_Children (Root_Node (Left), Root_Node (Right));
+   end "=";
+
+   ------------
+   -- Adjust --
+   ------------
+
+   procedure Adjust (Container : in out Tree) is
+      Source       : constant Children_Type := Container.Root.Children;
+      Source_Count : constant Count_Type := Container.Count;
+      Target_Count : Count_Type;
+
+   begin
+      --  We first restore the target container to its default-initialized
+      --  state, before we attempt any allocation, to ensure that invariants
+      --  are preserved in the event that the allocation fails.
+
+      Container.Root.Children := Children_Type'(others => null);
+      Zero_Counts (Container.TC);
+      Container.Count := 0;
+
+      --  Copy_Children returns a count of the number of nodes that it
+      --  allocates, but it works by incrementing the value that is passed in.
+      --  We must therefore initialize the count value before calling
+      --  Copy_Children.
+
+      Target_Count := 0;
+
+      --  Now we attempt the allocation of subtrees. The invariants are
+      --  satisfied even if the allocation fails.
+
+      Copy_Children (Source, Root_Node (Container), Target_Count);
+      pragma Assert (Target_Count = Source_Count);
+
+      Container.Count := Source_Count;
+   end Adjust;
+
+   -------------------
+   -- Ancestor_Find --
+   -------------------
+
+   function Ancestor_Find
+     (Position : Cursor;
+      Item     : Element_Type) return Cursor
+   is
+      R, N : Tree_Node_Access;
+
+   begin
+      if Checks and then Position = No_Element then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      --  Commented-out pending ARG ruling.  ???
+
+      --  if Checks and then
+      --     Position.Container /= Container'Unrestricted_Access
+      --  then
+      --     raise Program_Error with "Position cursor not in container";
+      --  end if;
+
+      --  AI-0136 says to raise PE if Position equals the root node. This does
+      --  not seem correct, as this value is just the limiting condition of the
+      --  search. For now we omit this check pending a ruling from the ARG.???
+
+      --  if Checks and then Is_Root (Position) then
+      --     raise Program_Error with "Position cursor designates root";
+      --  end if;
+
+      R := Root_Node (Position.Container.all);
+      N := Position.Node;
+      while N /= R loop
+         if N.Element.all = Item then
+            return Cursor'(Position.Container, N);
+         end if;
+
+         N := N.Parent;
+      end loop;
+
+      return No_Element;
+   end Ancestor_Find;
+
+   ------------------
+   -- Append_Child --
+   ------------------
+
+   procedure Append_Child
+     (Container : in out Tree;
+      Parent    : Cursor;
+      New_Item  : Element_Type;
+      Count     : Count_Type := 1)
+   is
+      First, Last : Tree_Node_Access;
+      Element     : Element_Access;
+
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      if Checks and then Parent.Container /= Container'Unrestricted_Access then
+         raise Program_Error with "Parent cursor not in container";
+      end if;
+
+      if Count = 0 then
+         return;
+      end if;
+
+      TC_Check (Container.TC);
+
+      declare
+         --  The element allocator may need an accessibility check in the case
+         --  the actual type is class-wide or has access discriminants (see
+         --  RM 4.8(10.1) and AI12-0035). We don't unsuppress the check on the
+         --  allocator in the loop below, because the one in this block would
+         --  have failed already.
+
+         pragma Unsuppress (Accessibility_Check);
+
+      begin
+         Element := new Element_Type'(New_Item);
+      end;
+
+      First := new Tree_Node_Type'(Parent  => Parent.Node,
+                                   Element => Element,
+                                   others  => <>);
+
+      Last := First;
+
+      for J in Count_Type'(2) .. Count loop
+
+         --  Reclaim other nodes if Storage_Error.  ???
+
+         Element := new Element_Type'(New_Item);
+         Last.Next := new Tree_Node_Type'(Parent  => Parent.Node,
+                                          Prev    => Last,
+                                          Element => Element,
+                                          others  => <>);
+
+         Last := Last.Next;
+      end loop;
+
+      Insert_Subtree_List
+        (First  => First,
+         Last   => Last,
+         Parent => Parent.Node,
+         Before => null);  -- null means "insert at end of list"
+
+      --  In order for operation Node_Count to complete in O(1) time, we cache
+      --  the count value. Here we increment the total count by the number of
+      --  nodes we just inserted.
+
+      Container.Count := Container.Count + Count;
+   end Append_Child;
+
+   ------------
+   -- Assign --
+   ------------
+
+   procedure Assign (Target : in out Tree; Source : Tree) is
+      Source_Count : constant Count_Type := Source.Count;
+      Target_Count : Count_Type;
+
+   begin
+      if Target'Address = Source'Address then
+         return;
+      end if;
+
+      Target.Clear;  -- checks busy bit
+
+      --  Copy_Children returns the number of nodes that it allocates, but it
+      --  does this by incrementing the count value passed in, so we must
+      --  initialize the count before calling Copy_Children.
+
+      Target_Count := 0;
+
+      --  Note that Copy_Children inserts the newly-allocated children into
+      --  their parent list only after the allocation of all the children has
+      --  succeeded. This preserves invariants even if the allocation fails.
+
+      Copy_Children (Source.Root.Children, Root_Node (Target), Target_Count);
+      pragma Assert (Target_Count = Source_Count);
+
+      Target.Count := Source_Count;
+   end Assign;
+
+   -----------------
+   -- Child_Count --
+   -----------------
+
+   function Child_Count (Parent : Cursor) return Count_Type is
+   begin
+      if Parent = No_Element then
+         return 0;
+      else
+         return Child_Count (Parent.Node.Children);
+      end if;
+   end Child_Count;
+
+   function Child_Count (Children : Children_Type) return Count_Type is
+      Result : Count_Type;
+      Node   : Tree_Node_Access;
+
+   begin
+      Result := 0;
+      Node := Children.First;
+      while Node /= null loop
+         Result := Result + 1;
+         Node := Node.Next;
+      end loop;
+
+      return Result;
+   end Child_Count;
+
+   -----------------
+   -- Child_Depth --
+   -----------------
+
+   function Child_Depth (Parent, Child : Cursor) return Count_Type is
+      Result : Count_Type;
+      N      : Tree_Node_Access;
+
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      if Checks and then Child = No_Element then
+         raise Constraint_Error with "Child cursor has no element";
+      end if;
+
+      if Checks and then Parent.Container /= Child.Container then
+         raise Program_Error with "Parent and Child in different containers";
+      end if;
+
+      Result := 0;
+      N := Child.Node;
+      while N /= Parent.Node loop
+         Result := Result + 1;
+         N := N.Parent;
+
+         if Checks and then N = null then
+            raise Program_Error with "Parent is not ancestor of Child";
+         end if;
+      end loop;
+
+      return Result;
+   end Child_Depth;
+
+   -----------
+   -- Clear --
+   -----------
+
+   procedure Clear (Container : in out Tree) is
+      Container_Count : Count_Type;
+      Children_Count  : Count_Type;
+
+   begin
+      TC_Check (Container.TC);
+
+      --  We first set the container count to 0, in order to preserve
+      --  invariants in case the deallocation fails. (This works because
+      --  Deallocate_Children immediately removes the children from their
+      --  parent, and then does the actual deallocation.)
+
+      Container_Count := Container.Count;
+      Container.Count := 0;
+
+      --  Deallocate_Children returns the number of nodes that it deallocates,
+      --  but it does this by incrementing the count value that is passed in,
+      --  so we must first initialize the count return value before calling it.
+
+      Children_Count := 0;
+
+      --  See comment above. Deallocate_Children immediately removes the
+      --  children list from their parent node (here, the root of the tree),
+      --  and only after that does it attempt the actual deallocation. So even
+      --  if the deallocation fails, the representation invariants
+
+      Deallocate_Children (Root_Node (Container), Children_Count);
+      pragma Assert (Children_Count = Container_Count);
+   end Clear;
+
+   ------------------------
+   -- Constant_Reference --
+   ------------------------
+
+   function Constant_Reference
+     (Container : aliased Tree;
+      Position  : Cursor) return Constant_Reference_Type
+   is
+   begin
+      if Checks and then Position.Container = null then
+         raise Constraint_Error with
+           "Position cursor has no element";
+      end if;
+
+      if Checks and then Position.Container /= Container'Unrestricted_Access
+      then
+         raise Program_Error with
+           "Position cursor designates wrong container";
+      end if;
+
+      if Checks and then Position.Node = Root_Node (Container) then
+         raise Program_Error with "Position cursor designates root";
+      end if;
+
+      if Checks and then Position.Node.Element = null then
+         raise Program_Error with "Node has no element";
+      end if;
+
+      --  Implement Vet for multiway tree???
+      --  pragma Assert (Vet (Position),
+      --                 "Position cursor in Constant_Reference is bad");
+
+      declare
+         TC : constant Tamper_Counts_Access :=
+           Container.TC'Unrestricted_Access;
+      begin
+         return R : constant Constant_Reference_Type :=
+           (Element => Position.Node.Element.all'Access,
+            Control => (Controlled with TC))
+         do
+            Lock (TC.all);
+         end return;
+      end;
+   end Constant_Reference;
+
+   --------------
+   -- Contains --
+   --------------
+
+   function Contains
+     (Container : Tree;
+      Item      : Element_Type) return Boolean
+   is
+   begin
+      return Find (Container, Item) /= No_Element;
+   end Contains;
+
+   ----------
+   -- Copy --
+   ----------
+
+   function Copy (Source : Tree) return Tree is
+   begin
+      return Target : Tree do
+         Copy_Children
+           (Source => Source.Root.Children,
+            Parent => Root_Node (Target),
+            Count  => Target.Count);
+
+         pragma Assert (Target.Count = Source.Count);
+      end return;
+   end Copy;
+
+   -------------------
+   -- Copy_Children --
+   -------------------
+
+   procedure Copy_Children
+     (Source : Children_Type;
+      Parent : Tree_Node_Access;
+      Count  : in out Count_Type)
+   is
+      pragma Assert (Parent /= null);
+      pragma Assert (Parent.Children.First = null);
+      pragma Assert (Parent.Children.Last = null);
+
+      CC : Children_Type;
+      C  : Tree_Node_Access;
+
+   begin
+      --  We special-case the first allocation, in order to establish the
+      --  representation invariants for type Children_Type.
+
+      C := Source.First;
+
+      if C = null then
+         return;
+      end if;
+
+      Copy_Subtree
+        (Source => C,
+         Parent => Parent,
+         Target => CC.First,
+         Count  => Count);
+
+      CC.Last := CC.First;
+
+      --  The representation invariants for the Children_Type list have been
+      --  established, so we can now copy the remaining children of Source.
+
+      C := C.Next;
+      while C /= null loop
+         Copy_Subtree
+           (Source => C,
+            Parent => Parent,
+            Target => CC.Last.Next,
+            Count  => Count);
+
+         CC.Last.Next.Prev := CC.Last;
+         CC.Last := CC.Last.Next;
+
+         C := C.Next;
+      end loop;
+
+      --  We add the newly-allocated children to their parent list only after
+      --  the allocation has succeeded, in order to preserve invariants of the
+      --  parent.
+
+      Parent.Children := CC;
+   end Copy_Children;
+
+   ------------------
+   -- Copy_Subtree --
+   ------------------
+
+   procedure Copy_Subtree
+     (Target   : in out Tree;
+      Parent   : Cursor;
+      Before   : Cursor;
+      Source   : Cursor)
+   is
+      Target_Subtree : Tree_Node_Access;
+      Target_Count   : Count_Type;
+
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      if Checks and then Parent.Container /= Target'Unrestricted_Access then
+         raise Program_Error with "Parent cursor not in container";
+      end if;
+
+      if Before /= No_Element then
+         if Checks and then Before.Container /= Target'Unrestricted_Access then
+            raise Program_Error with "Before cursor not in container";
+         end if;
+
+         if Checks and then Before.Node.Parent /= Parent.Node then
+            raise Constraint_Error with "Before cursor not child of Parent";
+         end if;
+      end if;
+
+      if Source = No_Element then
+         return;
+      end if;
+
+      if Checks and then Is_Root (Source) then
+         raise Constraint_Error with "Source cursor designates root";
+      end if;
+
+      --  Copy_Subtree returns a count of the number of nodes that it
+      --  allocates, but it works by incrementing the value that is passed in.
+      --  We must therefore initialize the count value before calling
+      --  Copy_Subtree.
+
+      Target_Count := 0;
+
+      Copy_Subtree
+        (Source => Source.Node,
+         Parent => Parent.Node,
+         Target => Target_Subtree,
+         Count  => Target_Count);
+
+      pragma Assert (Target_Subtree /= null);
+      pragma Assert (Target_Subtree.Parent = Parent.Node);
+      pragma Assert (Target_Count >= 1);
+
+      Insert_Subtree_Node
+        (Subtree => Target_Subtree,
+         Parent  => Parent.Node,
+         Before  => Before.Node);
+
+      --  In order for operation Node_Count to complete in O(1) time, we cache
+      --  the count value. Here we increment the total count by the number of
+      --  nodes we just inserted.
+
+      Target.Count := Target.Count + Target_Count;
+   end Copy_Subtree;
+
+   procedure Copy_Subtree
+     (Source : Tree_Node_Access;
+      Parent : Tree_Node_Access;
+      Target : out Tree_Node_Access;
+      Count  : in out Count_Type)
+   is
+      E : constant Element_Access := new Element_Type'(Source.Element.all);
+
+   begin
+      Target := new Tree_Node_Type'(Element => E,
+                                    Parent  => Parent,
+                                    others  => <>);
+
+      Count := Count + 1;
+
+      Copy_Children
+        (Source => Source.Children,
+         Parent => Target,
+         Count  => Count);
+   end Copy_Subtree;
+
+   -------------------------
+   -- Deallocate_Children --
+   -------------------------
+
+   procedure Deallocate_Children
+     (Subtree : Tree_Node_Access;
+      Count   : in out Count_Type)
+   is
+      pragma Assert (Subtree /= null);
+
+      CC : Children_Type := Subtree.Children;
+      C  : Tree_Node_Access;
+
+   begin
+      --  We immediately remove the children from their parent, in order to
+      --  preserve invariants in case the deallocation fails.
+
+      Subtree.Children := Children_Type'(others => null);
+
+      while CC.First /= null loop
+         C := CC.First;
+         CC.First := C.Next;
+
+         Deallocate_Subtree (C, Count);
+      end loop;
+   end Deallocate_Children;
+
+   ---------------------
+   -- Deallocate_Node --
+   ---------------------
+
+   procedure Deallocate_Node (X : in out Tree_Node_Access) is
+      procedure Free_Node is
+         new Ada.Unchecked_Deallocation (Tree_Node_Type, Tree_Node_Access);
+
+   --  Start of processing for Deallocate_Node
+
+   begin
+      if X /= null then
+         Free_Element (X.Element);
+         Free_Node (X);
+      end if;
+   end Deallocate_Node;
+
+   ------------------------
+   -- Deallocate_Subtree --
+   ------------------------
+
+   procedure Deallocate_Subtree
+     (Subtree : in out Tree_Node_Access;
+      Count   : in out Count_Type)
+   is
+   begin
+      Deallocate_Children (Subtree, Count);
+      Deallocate_Node (Subtree);
+      Count := Count + 1;
+   end Deallocate_Subtree;
+
+   ---------------------
+   -- Delete_Children --
+   ---------------------
+
+   procedure Delete_Children
+     (Container : in out Tree;
+      Parent    : Cursor)
+   is
+      Count : Count_Type;
+
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      if Checks and then Parent.Container /= Container'Unrestricted_Access then
+         raise Program_Error with "Parent cursor not in container";
+      end if;
+
+      TC_Check (Container.TC);
+
+      --  Deallocate_Children returns a count of the number of nodes
+      --  that it deallocates, but it works by incrementing the
+      --  value that is passed in. We must therefore initialize
+      --  the count value before calling Deallocate_Children.
+
+      Count := 0;
+
+      Deallocate_Children (Parent.Node, Count);
+      pragma Assert (Count <= Container.Count);
+
+      Container.Count := Container.Count - Count;
+   end Delete_Children;
+
+   -----------------
+   -- Delete_Leaf --
+   -----------------
+
+   procedure Delete_Leaf
+     (Container : in out Tree;
+      Position  : in out Cursor)
+   is
+      X : Tree_Node_Access;
+
+   begin
+      if Checks and then Position = No_Element then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      if Checks and then Position.Container /= Container'Unrestricted_Access
+      then
+         raise Program_Error with "Position cursor not in container";
+      end if;
+
+      if Checks and then Is_Root (Position) then
+         raise Program_Error with "Position cursor designates root";
+      end if;
+
+      if Checks and then not Is_Leaf (Position) then
+         raise Constraint_Error with "Position cursor does not designate leaf";
+      end if;
+
+      TC_Check (Container.TC);
+
+      X := Position.Node;
+      Position := No_Element;
+
+      --  Restore represention invariants before attempting the actual
+      --  deallocation.
+
+      Remove_Subtree (X);
+      Container.Count := Container.Count - 1;
+
+      --  It is now safe to attempt the deallocation. This leaf node has been
+      --  disassociated from the tree, so even if the deallocation fails,
+      --  representation invariants will remain satisfied.
+
+      Deallocate_Node (X);
+   end Delete_Leaf;
+
+   --------------------
+   -- Delete_Subtree --
+   --------------------
+
+   procedure Delete_Subtree
+     (Container : in out Tree;
+      Position  : in out Cursor)
+   is
+      X     : Tree_Node_Access;
+      Count : Count_Type;
+
+   begin
+      if Checks and then Position = No_Element then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      if Checks and then Position.Container /= Container'Unrestricted_Access
+      then
+         raise Program_Error with "Position cursor not in container";
+      end if;
+
+      if Checks and then Is_Root (Position) then
+         raise Program_Error with "Position cursor designates root";
+      end if;
+
+      TC_Check (Container.TC);
+
+      X := Position.Node;
+      Position := No_Element;
+
+      --  Here is one case where a deallocation failure can result in the
+      --  violation of a representation invariant. We disassociate the subtree
+      --  from the tree now, but we only decrement the total node count after
+      --  we attempt the deallocation. However, if the deallocation fails, the
+      --  total node count will not get decremented.
+
+      --  One way around this dilemma is to count the nodes in the subtree
+      --  before attempt to delete the subtree, but that is an O(n) operation,
+      --  so it does not seem worth it.
+
+      --  Perhaps this is much ado about nothing, since the only way
+      --  deallocation can fail is if Controlled Finalization fails: this
+      --  propagates Program_Error so all bets are off anyway. ???
+
+      Remove_Subtree (X);
+
+      --  Deallocate_Subtree returns a count of the number of nodes that it
+      --  deallocates, but it works by incrementing the value that is passed
+      --  in. We must therefore initialize the count value before calling
+      --  Deallocate_Subtree.
+
+      Count := 0;
+
+      Deallocate_Subtree (X, Count);
+      pragma Assert (Count <= Container.Count);
+
+      --  See comments above. We would prefer to do this sooner, but there's no
+      --  way to satisfy that goal without an potentially severe execution
+      --  penalty.
+
+      Container.Count := Container.Count - Count;
+   end Delete_Subtree;
+
+   -----------
+   -- Depth --
+   -----------
+
+   function Depth (Position : Cursor) return Count_Type is
+      Result : Count_Type;
+      N      : Tree_Node_Access;
+
+   begin
+      Result := 0;
+      N := Position.Node;
+      while N /= null loop
+         N := N.Parent;
+         Result := Result + 1;
+      end loop;
+
+      return Result;
+   end Depth;
+
+   -------------
+   -- Element --
+   -------------
+
+   function Element (Position : Cursor) return Element_Type is
+   begin
+      if Checks and then Position.Container = null then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      if Checks and then Position.Node = Root_Node (Position.Container.all)
+      then
+         raise Program_Error with "Position cursor designates root";
+      end if;
+
+      return Position.Node.Element.all;
+   end Element;
+
+   --------------------
+   -- Equal_Children --
+   --------------------
+
+   function Equal_Children
+     (Left_Subtree  : Tree_Node_Access;
+      Right_Subtree : Tree_Node_Access) return Boolean
+   is
+      Left_Children  : Children_Type renames Left_Subtree.Children;
+      Right_Children : Children_Type renames Right_Subtree.Children;
+
+      L, R : Tree_Node_Access;
+
+   begin
+      if Child_Count (Left_Children) /= Child_Count (Right_Children) then
+         return False;
+      end if;
+
+      L := Left_Children.First;
+      R := Right_Children.First;
+      while L /= null loop
+         if not Equal_Subtree (L, R) then
+            return False;
+         end if;
+
+         L := L.Next;
+         R := R.Next;
+      end loop;
+
+      return True;
+   end Equal_Children;
+
+   -------------------
+   -- Equal_Subtree --
+   -------------------
+
+   function Equal_Subtree
+     (Left_Position  : Cursor;
+      Right_Position : Cursor) return Boolean
+   is
+   begin
+      if Checks and then Left_Position = No_Element then
+         raise Constraint_Error with "Left cursor has no element";
+      end if;
+
+      if Checks and then Right_Position = No_Element then
+         raise Constraint_Error with "Right cursor has no element";
+      end if;
+
+      if Left_Position = Right_Position then
+         return True;
+      end if;
+
+      if Is_Root (Left_Position) then
+         if not Is_Root (Right_Position) then
+            return False;
+         end if;
+
+         return Equal_Children (Left_Position.Node, Right_Position.Node);
+      end if;
+
+      if Is_Root (Right_Position) then
+         return False;
+      end if;
+
+      return Equal_Subtree (Left_Position.Node, Right_Position.Node);
+   end Equal_Subtree;
+
+   function Equal_Subtree
+     (Left_Subtree  : Tree_Node_Access;
+      Right_Subtree : Tree_Node_Access) return Boolean
+   is
+   begin
+      if Left_Subtree.Element.all /= Right_Subtree.Element.all then
+         return False;
+      end if;
+
+      return Equal_Children (Left_Subtree, Right_Subtree);
+   end Equal_Subtree;
+
+   --------------
+   -- Finalize --
+   --------------
+
+   procedure Finalize (Object : in out Root_Iterator) is
+   begin
+      Unbusy (Object.Container.TC);
+   end Finalize;
+
+   ----------
+   -- Find --
+   ----------
+
+   function Find
+     (Container : Tree;
+      Item      : Element_Type) return Cursor
+   is
+      N : constant Tree_Node_Access :=
+        Find_In_Children (Root_Node (Container), Item);
+
+   begin
+      if N = null then
+         return No_Element;
+      end if;
+
+      return Cursor'(Container'Unrestricted_Access, N);
+   end Find;
+
+   -----------
+   -- First --
+   -----------
+
+   overriding function First (Object : Subtree_Iterator) return Cursor is
+   begin
+      if Object.Subtree = Root_Node (Object.Container.all) then
+         return First_Child (Root (Object.Container.all));
+      else
+         return Cursor'(Object.Container, Object.Subtree);
+      end if;
+   end First;
+
+   overriding function First (Object : Child_Iterator) return Cursor is
+   begin
+      return First_Child (Cursor'(Object.Container, Object.Subtree));
+   end First;
+
+   -----------------
+   -- First_Child --
+   -----------------
+
+   function First_Child (Parent : Cursor) return Cursor is
+      Node : Tree_Node_Access;
+
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      Node := Parent.Node.Children.First;
+
+      if Node = null then
+         return No_Element;
+      end if;
+
+      return Cursor'(Parent.Container, Node);
+   end First_Child;
+
+   -------------------------
+   -- First_Child_Element --
+   -------------------------
+
+   function First_Child_Element (Parent : Cursor) return Element_Type is
+   begin
+      return Element (First_Child (Parent));
+   end First_Child_Element;
+
+   ----------------------
+   -- Find_In_Children --
+   ----------------------
+
+   function Find_In_Children
+     (Subtree : Tree_Node_Access;
+      Item    : Element_Type) return Tree_Node_Access
+   is
+      N, Result : Tree_Node_Access;
+
+   begin
+      N := Subtree.Children.First;
+      while N /= null loop
+         Result := Find_In_Subtree (N, Item);
+
+         if Result /= null then
+            return Result;
+         end if;
+
+         N := N.Next;
+      end loop;
+
+      return null;
+   end Find_In_Children;
+
+   ---------------------
+   -- Find_In_Subtree --
+   ---------------------
+
+   function Find_In_Subtree
+     (Position : Cursor;
+      Item     : Element_Type) return Cursor
+   is
+      Result : Tree_Node_Access;
+
+   begin
+      if Checks and then Position = No_Element then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      --  Commented-out pending ruling from ARG.  ???
+
+      --  if Checks and then
+      --    Position.Container /= Container'Unrestricted_Access
+      --  then
+      --     raise Program_Error with "Position cursor not in container";
+      --  end if;
+
+      if Is_Root (Position) then
+         Result := Find_In_Children (Position.Node, Item);
+
+      else
+         Result := Find_In_Subtree (Position.Node, Item);
+      end if;
+
+      if Result = null then
+         return No_Element;
+      end if;
+
+      return Cursor'(Position.Container, Result);
+   end Find_In_Subtree;
+
+   function Find_In_Subtree
+     (Subtree : Tree_Node_Access;
+      Item    : Element_Type) return Tree_Node_Access
+   is
+   begin
+      if Subtree.Element.all = Item then
+         return Subtree;
+      end if;
+
+      return Find_In_Children (Subtree, Item);
+   end Find_In_Subtree;
+
+   ------------------------
+   -- Get_Element_Access --
+   ------------------------
+
+   function Get_Element_Access
+     (Position : Cursor) return not null Element_Access is
+   begin
+      return Position.Node.Element;
+   end Get_Element_Access;
+
+   -----------------
+   -- Has_Element --
+   -----------------
+
+   function Has_Element (Position : Cursor) return Boolean is
+   begin
+      if Position = No_Element then
+         return False;
+      end if;
+
+      return Position.Node.Parent /= null;
+   end Has_Element;
+
+   ------------------
+   -- Insert_Child --
+   ------------------
+
+   procedure Insert_Child
+     (Container : in out Tree;
+      Parent    : Cursor;
+      Before    : Cursor;
+      New_Item  : Element_Type;
+      Count     : Count_Type := 1)
+   is
+      Position : Cursor;
+      pragma Unreferenced (Position);
+
+   begin
+      Insert_Child (Container, Parent, Before, New_Item, Position, Count);
+   end Insert_Child;
+
+   procedure Insert_Child
+     (Container : in out Tree;
+      Parent    : Cursor;
+      Before    : Cursor;
+      New_Item  : Element_Type;
+      Position  : out Cursor;
+      Count     : Count_Type := 1)
+   is
+      First   : Tree_Node_Access;
+      Last    : Tree_Node_Access;
+      Element : Element_Access;
+
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      if Checks and then Parent.Container /= Container'Unrestricted_Access then
+         raise Program_Error with "Parent cursor not in container";
+      end if;
+
+      if Before /= No_Element then
+         if Checks and then Before.Container /= Container'Unrestricted_Access
+         then
+            raise Program_Error with "Before cursor not in container";
+         end if;
+
+         if Checks and then Before.Node.Parent /= Parent.Node then
+            raise Constraint_Error with "Parent cursor not parent of Before";
+         end if;
+      end if;
+
+      if Count = 0 then
+         Position := No_Element;  -- Need ruling from ARG ???
+         return;
+      end if;
+
+      TC_Check (Container.TC);
+
+      declare
+         --  The element allocator may need an accessibility check in the case
+         --  the actual type is class-wide or has access discriminants (see
+         --  RM 4.8(10.1) and AI12-0035). We don't unsuppress the check on the
+         --  allocator in the loop below, because the one in this block would
+         --  have failed already.
+
+         pragma Unsuppress (Accessibility_Check);
+
+      begin
+         Element := new Element_Type'(New_Item);
+      end;
+
+      First := new Tree_Node_Type'(Parent  => Parent.Node,
+                                   Element => Element,
+                                   others  => <>);
+
+      Last := First;
+      for J in Count_Type'(2) .. Count loop
+
+         --  Reclaim other nodes if Storage_Error.  ???
+
+         Element   := new Element_Type'(New_Item);
+         Last.Next := new Tree_Node_Type'(Parent  => Parent.Node,
+                                          Prev    => Last,
+                                          Element => Element,
+                                          others  => <>);
+
+         Last := Last.Next;
+      end loop;
+
+      Insert_Subtree_List
+        (First  => First,
+         Last   => Last,
+         Parent => Parent.Node,
+         Before => Before.Node);
+
+      --  In order for operation Node_Count to complete in O(1) time, we cache
+      --  the count value. Here we increment the total count by the number of
+      --  nodes we just inserted.
+
+      Container.Count := Container.Count + Count;
+
+      Position := Cursor'(Parent.Container, First);
+   end Insert_Child;
+
+   -------------------------
+   -- Insert_Subtree_List --
+   -------------------------
+
+   procedure Insert_Subtree_List
+     (First  : Tree_Node_Access;
+      Last   : Tree_Node_Access;
+      Parent : Tree_Node_Access;
+      Before : Tree_Node_Access)
+   is
+      pragma Assert (Parent /= null);
+      C : Children_Type renames Parent.Children;
+
+   begin
+      --  This is a simple utility operation to insert a list of nodes (from
+      --  First..Last) as children of Parent. The Before node specifies where
+      --  the new children should be inserted relative to the existing
+      --  children.
+
+      if First = null then
+         pragma Assert (Last = null);
+         return;
+      end if;
+
+      pragma Assert (Last /= null);
+      pragma Assert (Before = null or else Before.Parent = Parent);
+
+      if C.First = null then
+         C.First := First;
+         C.First.Prev := null;
+         C.Last := Last;
+         C.Last.Next := null;
+
+      elsif Before = null then  -- means "insert after existing nodes"
+         C.Last.Next := First;
+         First.Prev := C.Last;
+         C.Last := Last;
+         C.Last.Next := null;
+
+      elsif Before = C.First then
+         Last.Next := C.First;
+         C.First.Prev := Last;
+         C.First := First;
+         C.First.Prev := null;
+
+      else
+         Before.Prev.Next := First;
+         First.Prev := Before.Prev;
+         Last.Next := Before;
+         Before.Prev := Last;
+      end if;
+   end Insert_Subtree_List;
+
+   -------------------------
+   -- Insert_Subtree_Node --
+   -------------------------
+
+   procedure Insert_Subtree_Node
+     (Subtree : Tree_Node_Access;
+      Parent  : Tree_Node_Access;
+      Before  : Tree_Node_Access)
+   is
+   begin
+      --  This is a simple wrapper operation to insert a single child into the
+      --  Parent's children list.
+
+      Insert_Subtree_List
+        (First  => Subtree,
+         Last   => Subtree,
+         Parent => Parent,
+         Before => Before);
+   end Insert_Subtree_Node;
+
+   --------------
+   -- Is_Empty --
+   --------------
+
+   function Is_Empty (Container : Tree) return Boolean is
+   begin
+      return Container.Root.Children.First = null;
+   end Is_Empty;
+
+   -------------
+   -- Is_Leaf --
+   -------------
+
+   function Is_Leaf (Position : Cursor) return Boolean is
+   begin
+      if Position = No_Element then
+         return False;
+      end if;
+
+      return Position.Node.Children.First = null;
+   end Is_Leaf;
+
+   ------------------
+   -- Is_Reachable --
+   ------------------
+
+   function Is_Reachable (From, To : Tree_Node_Access) return Boolean is
+      pragma Assert (From /= null);
+      pragma Assert (To /= null);
+
+      N : Tree_Node_Access;
+
+   begin
+      N := From;
+      while N /= null loop
+         if N = To then
+            return True;
+         end if;
+
+         N := N.Parent;
+      end loop;
+
+      return False;
+   end Is_Reachable;
+
+   -------------
+   -- Is_Root --
+   -------------
+
+   function Is_Root (Position : Cursor) return Boolean is
+   begin
+      if Position.Container = null then
+         return False;
+      end if;
+
+      return Position = Root (Position.Container.all);
+   end Is_Root;
+
+   -------------
+   -- Iterate --
+   -------------
+
+   procedure Iterate
+     (Container : Tree;
+      Process   : not null access procedure (Position : Cursor))
+   is
+      Busy : With_Busy (Container.TC'Unrestricted_Access);
+   begin
+      Iterate_Children
+        (Container => Container'Unrestricted_Access,
+         Subtree   => Root_Node (Container),
+         Process   => Process);
+   end Iterate;
+
+   function Iterate (Container : Tree)
+     return Tree_Iterator_Interfaces.Forward_Iterator'Class
+   is
+   begin
+      return Iterate_Subtree (Root (Container));
+   end Iterate;
+
+   ----------------------
+   -- Iterate_Children --
+   ----------------------
+
+   procedure Iterate_Children
+     (Parent  : Cursor;
+      Process : not null access procedure (Position : Cursor))
+   is
+      C : Tree_Node_Access;
+      Busy : With_Busy (Parent.Container.TC'Unrestricted_Access);
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      C := Parent.Node.Children.First;
+      while C /= null loop
+         Process (Position => Cursor'(Parent.Container, Node => C));
+         C := C.Next;
+      end loop;
+   end Iterate_Children;
+
+   procedure Iterate_Children
+     (Container : Tree_Access;
+      Subtree   : Tree_Node_Access;
+      Process   : not null access procedure (Position : Cursor))
+   is
+      Node : Tree_Node_Access;
+
+   begin
+      --  This is a helper function to recursively iterate over all the nodes
+      --  in a subtree, in depth-first fashion. This particular helper just
+      --  visits the children of this subtree, not the root of the subtree node
+      --  itself. This is useful when starting from the ultimate root of the
+      --  entire tree (see Iterate), as that root does not have an element.
+
+      Node := Subtree.Children.First;
+      while Node /= null loop
+         Iterate_Subtree (Container, Node, Process);
+         Node := Node.Next;
+      end loop;
+   end Iterate_Children;
+
+   function Iterate_Children
+     (Container : Tree;
+      Parent    : Cursor)
+     return Tree_Iterator_Interfaces.Reversible_Iterator'Class
+   is
+      C : constant Tree_Access := Container'Unrestricted_Access;
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      if Checks and then Parent.Container /= C then
+         raise Program_Error with "Parent cursor not in container";
+      end if;
+
+      return It : constant Child_Iterator :=
+        Child_Iterator'(Limited_Controlled with
+                          Container => C,
+                          Subtree   => Parent.Node)
+      do
+         Busy (C.TC);
+      end return;
+   end Iterate_Children;
+
+   ---------------------
+   -- Iterate_Subtree --
+   ---------------------
+
+   function Iterate_Subtree
+     (Position : Cursor)
+      return Tree_Iterator_Interfaces.Forward_Iterator'Class
+   is
+      C : constant Tree_Access := Position.Container;
+   begin
+      if Checks and then Position = No_Element then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      --  Implement Vet for multiway trees???
+      --  pragma Assert (Vet (Position), "bad subtree cursor");
+
+      return It : constant Subtree_Iterator :=
+        (Limited_Controlled with
+           Container => Position.Container,
+           Subtree   => Position.Node)
+      do
+         Busy (C.TC);
+      end return;
+   end Iterate_Subtree;
+
+   procedure Iterate_Subtree
+     (Position  : Cursor;
+      Process   : not null access procedure (Position : Cursor))
+   is
+      Busy : With_Busy (Position.Container.TC'Unrestricted_Access);
+   begin
+      if Checks and then Position = No_Element then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      if Is_Root (Position) then
+         Iterate_Children (Position.Container, Position.Node, Process);
+      else
+         Iterate_Subtree (Position.Container, Position.Node, Process);
+      end if;
+   end Iterate_Subtree;
+
+   procedure Iterate_Subtree
+     (Container : Tree_Access;
+      Subtree   : Tree_Node_Access;
+      Process   : not null access procedure (Position : Cursor))
+   is
+   begin
+      --  This is a helper function to recursively iterate over all the nodes
+      --  in a subtree, in depth-first fashion. It first visits the root of the
+      --  subtree, then visits its children.
+
+      Process (Cursor'(Container, Subtree));
+      Iterate_Children (Container, Subtree, Process);
+   end Iterate_Subtree;
+
+   ----------
+   -- Last --
+   ----------
+
+   overriding function Last (Object : Child_Iterator) return Cursor is
+   begin
+      return Last_Child (Cursor'(Object.Container, Object.Subtree));
+   end Last;
+
+   ----------------
+   -- Last_Child --
+   ----------------
+
+   function Last_Child (Parent : Cursor) return Cursor is
+      Node : Tree_Node_Access;
+
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      Node := Parent.Node.Children.Last;
+
+      if Node = null then
+         return No_Element;
+      end if;
+
+      return (Parent.Container, Node);
+   end Last_Child;
+
+   ------------------------
+   -- Last_Child_Element --
+   ------------------------
+
+   function Last_Child_Element (Parent : Cursor) return Element_Type is
+   begin
+      return Element (Last_Child (Parent));
+   end Last_Child_Element;
+
+   ----------
+   -- Move --
+   ----------
+
+   procedure Move (Target : in out Tree; Source : in out Tree) is
+      Node : Tree_Node_Access;
+
+   begin
+      if Target'Address = Source'Address then
+         return;
+      end if;
+
+      TC_Check (Source.TC);
+
+      Target.Clear;  -- checks busy bit
+
+      Target.Root.Children := Source.Root.Children;
+      Source.Root.Children := Children_Type'(others => null);
+
+      Node := Target.Root.Children.First;
+      while Node /= null loop
+         Node.Parent := Root_Node (Target);
+         Node := Node.Next;
+      end loop;
+
+      Target.Count := Source.Count;
+      Source.Count := 0;
+   end Move;
+
+   ----------
+   -- Next --
+   ----------
+
+   function Next
+     (Object   : Subtree_Iterator;
+      Position : Cursor) return Cursor
+   is
+      Node : Tree_Node_Access;
+
+   begin
+      if Position.Container = null then
+         return No_Element;
+      end if;
+
+      if Checks and then Position.Container /= Object.Container then
+         raise Program_Error with
+           "Position cursor of Next designates wrong tree";
+      end if;
+
+      Node := Position.Node;
+
+      if Node.Children.First /= null then
+         return Cursor'(Object.Container, Node.Children.First);
+      end if;
+
+      while Node /= Object.Subtree loop
+         if Node.Next /= null then
+            return Cursor'(Object.Container, Node.Next);
+         end if;
+
+         Node := Node.Parent;
+      end loop;
+
+      return No_Element;
+   end Next;
+
+   function Next
+     (Object   : Child_Iterator;
+      Position : Cursor) return Cursor
+   is
+   begin
+      if Position.Container = null then
+         return No_Element;
+      end if;
+
+      if Checks and then Position.Container /= Object.Container then
+         raise Program_Error with
+           "Position cursor of Next designates wrong tree";
+      end if;
+
+      return Next_Sibling (Position);
+   end Next;
+
+   ------------------
+   -- Next_Sibling --
+   ------------------
+
+   function Next_Sibling (Position : Cursor) return Cursor is
+   begin
+      if Position = No_Element then
+         return No_Element;
+      end if;
+
+      if Position.Node.Next = null then
+         return No_Element;
+      end if;
+
+      return Cursor'(Position.Container, Position.Node.Next);
+   end Next_Sibling;
+
+   procedure Next_Sibling (Position : in out Cursor) is
+   begin
+      Position := Next_Sibling (Position);
+   end Next_Sibling;
+
+   ----------------
+   -- Node_Count --
+   ----------------
+
+   function Node_Count (Container : Tree) return Count_Type is
+   begin
+      --  Container.Count is the number of nodes we have actually allocated. We
+      --  cache the value specifically so this Node_Count operation can execute
+      --  in O(1) time, which makes it behave similarly to how the Length
+      --  selector function behaves for other containers.
+      --
+      --  The cached node count value only describes the nodes we have
+      --  allocated; the root node itself is not included in that count. The
+      --  Node_Count operation returns a value that includes the root node
+      --  (because the RM says so), so we must add 1 to our cached value.
+
+      return 1 + Container.Count;
+   end Node_Count;
+
+   ------------
+   -- Parent --
+   ------------
+
+   function Parent (Position : Cursor) return Cursor is
+   begin
+      if Position = No_Element then
+         return No_Element;
+      end if;
+
+      if Position.Node.Parent = null then
+         return No_Element;
+      end if;
+
+      return Cursor'(Position.Container, Position.Node.Parent);
+   end Parent;
+
+   -------------------
+   -- Prepent_Child --
+   -------------------
+
+   procedure Prepend_Child
+     (Container : in out Tree;
+      Parent    : Cursor;
+      New_Item  : Element_Type;
+      Count     : Count_Type := 1)
+   is
+      First, Last : Tree_Node_Access;
+      Element     : Element_Access;
+
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      if Checks and then Parent.Container /= Container'Unrestricted_Access then
+         raise Program_Error with "Parent cursor not in container";
+      end if;
+
+      if Count = 0 then
+         return;
+      end if;
+
+      TC_Check (Container.TC);
+
+      declare
+         --  The element allocator may need an accessibility check in the case
+         --  the actual type is class-wide or has access discriminants (see
+         --  RM 4.8(10.1) and AI12-0035). We don't unsuppress the check on the
+         --  allocator in the loop below, because the one in this block would
+         --  have failed already.
+
+         pragma Unsuppress (Accessibility_Check);
+
+      begin
+         Element := new Element_Type'(New_Item);
+      end;
+
+      First := new Tree_Node_Type'(Parent  => Parent.Node,
+                                   Element => Element,
+                                   others  => <>);
+
+      Last := First;
+
+      for J in Count_Type'(2) .. Count loop
+
+         --  Reclaim other nodes if Storage_Error.  ???
+
+         Element := new Element_Type'(New_Item);
+         Last.Next := new Tree_Node_Type'(Parent  => Parent.Node,
+                                          Prev    => Last,
+                                          Element => Element,
+                                          others  => <>);
+
+         Last := Last.Next;
+      end loop;
+
+      Insert_Subtree_List
+        (First  => First,
+         Last   => Last,
+         Parent => Parent.Node,
+         Before => Parent.Node.Children.First);
+
+      --  In order for operation Node_Count to complete in O(1) time, we cache
+      --  the count value. Here we increment the total count by the number of
+      --  nodes we just inserted.
+
+      Container.Count := Container.Count + Count;
+   end Prepend_Child;
+
+   --------------
+   -- Previous --
+   --------------
+
+   overriding function Previous
+     (Object   : Child_Iterator;
+      Position : Cursor) return Cursor
+   is
+   begin
+      if Position.Container = null then
+         return No_Element;
+      end if;
+
+      if Checks and then Position.Container /= Object.Container then
+         raise Program_Error with
+           "Position cursor of Previous designates wrong tree";
+      end if;
+
+      return Previous_Sibling (Position);
+   end Previous;
+
+   ----------------------
+   -- Previous_Sibling --
+   ----------------------
+
+   function Previous_Sibling (Position : Cursor) return Cursor is
+   begin
+      if Position = No_Element then
+         return No_Element;
+      end if;
+
+      if Position.Node.Prev = null then
+         return No_Element;
+      end if;
+
+      return Cursor'(Position.Container, Position.Node.Prev);
+   end Previous_Sibling;
+
+   procedure Previous_Sibling (Position : in out Cursor) is
+   begin
+      Position := Previous_Sibling (Position);
+   end Previous_Sibling;
+
+   ----------------------
+   -- Pseudo_Reference --
+   ----------------------
+
+   function Pseudo_Reference
+     (Container : aliased Tree'Class) return Reference_Control_Type
+   is
+      TC : constant Tamper_Counts_Access := Container.TC'Unrestricted_Access;
+   begin
+      return R : constant Reference_Control_Type := (Controlled with TC) do
+         Lock (TC.all);
+      end return;
+   end Pseudo_Reference;
+
+   -------------------
+   -- Query_Element --
+   -------------------
+
+   procedure Query_Element
+     (Position : Cursor;
+      Process  : not null access procedure (Element : Element_Type))
+   is
+      T : Tree renames Position.Container.all'Unrestricted_Access.all;
+      Lock : With_Lock (T.TC'Unrestricted_Access);
+   begin
+      if Checks and then Position = No_Element then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      if Checks and then Is_Root (Position) then
+         raise Program_Error with "Position cursor designates root";
+      end if;
+
+      Process (Position.Node.Element.all);
+   end Query_Element;
+
+   ----------
+   -- Read --
+   ----------
+
+   procedure Read
+     (Stream    : not null access Root_Stream_Type'Class;
+      Container : out Tree)
+   is
+      procedure Read_Children (Subtree : Tree_Node_Access);
+
+      function Read_Subtree
+        (Parent : Tree_Node_Access) return Tree_Node_Access;
+
+      Total_Count : Count_Type'Base;
+      --  Value read from the stream that says how many elements follow
+
+      Read_Count : Count_Type'Base;
+      --  Actual number of elements read from the stream
+
+      -------------------
+      -- Read_Children --
+      -------------------
+
+      procedure Read_Children (Subtree : Tree_Node_Access) is
+         pragma Assert (Subtree /= null);
+         pragma Assert (Subtree.Children.First = null);
+         pragma Assert (Subtree.Children.Last = null);
+
+         Count : Count_Type'Base;
+         --  Number of child subtrees
+
+         C : Children_Type;
+
+      begin
+         Count_Type'Read (Stream, Count);
+
+         if Checks and then Count < 0 then
+            raise Program_Error with "attempt to read from corrupt stream";
+         end if;
+
+         if Count = 0 then
+            return;
+         end if;
+
+         C.First := Read_Subtree (Parent => Subtree);
+         C.Last := C.First;
+
+         for J in Count_Type'(2) .. Count loop
+            C.Last.Next := Read_Subtree (Parent => Subtree);
+            C.Last.Next.Prev := C.Last;
+            C.Last := C.Last.Next;
+         end loop;
+
+         --  Now that the allocation and reads have completed successfully, it
+         --  is safe to link the children to their parent.
+
+         Subtree.Children := C;
+      end Read_Children;
+
+      ------------------
+      -- Read_Subtree --
+      ------------------
+
+      function Read_Subtree
+        (Parent : Tree_Node_Access) return Tree_Node_Access
+      is
+         Element : constant Element_Access :=
+           new Element_Type'(Element_Type'Input (Stream));
+
+         Subtree : constant Tree_Node_Access :=
+           new Tree_Node_Type'
+             (Parent  => Parent, Element => Element, others  => <>);
+
+      begin
+         Read_Count := Read_Count + 1;
+
+         Read_Children (Subtree);
+
+         return Subtree;
+      end Read_Subtree;
+
+   --  Start of processing for Read
+
+   begin
+      Container.Clear;  -- checks busy bit
+
+      Count_Type'Read (Stream, Total_Count);
+
+      if Checks and then Total_Count < 0 then
+         raise Program_Error with "attempt to read from corrupt stream";
+      end if;
+
+      if Total_Count = 0 then
+         return;
+      end if;
+
+      Read_Count := 0;
+
+      Read_Children (Root_Node (Container));
+
+      if Checks and then Read_Count /= Total_Count then
+         raise Program_Error with "attempt to read from corrupt stream";
+      end if;
+
+      Container.Count := Total_Count;
+   end Read;
+
+   procedure Read
+     (Stream   : not null access Root_Stream_Type'Class;
+      Position : out Cursor)
+   is
+   begin
+      raise Program_Error with "attempt to read tree cursor from stream";
+   end Read;
+
+   procedure Read
+     (Stream : not null access Root_Stream_Type'Class;
+      Item   : out Reference_Type)
+   is
+   begin
+      raise Program_Error with "attempt to stream reference";
+   end Read;
+
+   procedure Read
+     (Stream : not null access Root_Stream_Type'Class;
+      Item   : out Constant_Reference_Type)
+   is
+   begin
+      raise Program_Error with "attempt to stream reference";
+   end Read;
+
+   ---------------
+   -- Reference --
+   ---------------
+
+   function Reference
+     (Container : aliased in out Tree;
+      Position  : Cursor) return Reference_Type
+   is
+   begin
+      if Checks and then Position.Container = null then
+         raise Constraint_Error with
+           "Position cursor has no element";
+      end if;
+
+      if Checks and then Position.Container /= Container'Unrestricted_Access
+      then
+         raise Program_Error with
+           "Position cursor designates wrong container";
+      end if;
+
+      if Checks and then Position.Node = Root_Node (Container) then
+         raise Program_Error with "Position cursor designates root";
+      end if;
+
+      if Checks and then Position.Node.Element = null then
+         raise Program_Error with "Node has no element";
+      end if;
+
+      --  Implement Vet for multiway tree???
+      --  pragma Assert (Vet (Position),
+      --                 "Position cursor in Constant_Reference is bad");
+
+      declare
+         TC : constant Tamper_Counts_Access :=
+           Container.TC'Unrestricted_Access;
+      begin
+         return R : constant Reference_Type :=
+           (Element => Position.Node.Element.all'Access,
+            Control => (Controlled with TC))
+         do
+            Lock (TC.all);
+         end return;
+      end;
+   end Reference;
+
+   --------------------
+   -- Remove_Subtree --
+   --------------------
+
+   procedure Remove_Subtree (Subtree : Tree_Node_Access) is
+      C : Children_Type renames Subtree.Parent.Children;
+
+   begin
+      --  This is a utility operation to remove a subtree node from its
+      --  parent's list of children.
+
+      if C.First = Subtree then
+         pragma Assert (Subtree.Prev = null);
+
+         if C.Last = Subtree then
+            pragma Assert (Subtree.Next = null);
+            C.First := null;
+            C.Last := null;
+
+         else
+            C.First := Subtree.Next;
+            C.First.Prev := null;
+         end if;
+
+      elsif C.Last = Subtree then
+         pragma Assert (Subtree.Next = null);
+         C.Last := Subtree.Prev;
+         C.Last.Next := null;
+
+      else
+         Subtree.Prev.Next := Subtree.Next;
+         Subtree.Next.Prev := Subtree.Prev;
+      end if;
+   end Remove_Subtree;
+
+   ----------------------
+   -- Replace_Element --
+   ----------------------
+
+   procedure Replace_Element
+     (Container : in out Tree;
+      Position  : Cursor;
+      New_Item  : Element_Type)
+   is
+      E, X : Element_Access;
+
+   begin
+      if Checks and then Position = No_Element then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      if Checks and then Position.Container /= Container'Unrestricted_Access
+      then
+         raise Program_Error with "Position cursor not in container";
+      end if;
+
+      if Checks and then Is_Root (Position) then
+         raise Program_Error with "Position cursor designates root";
+      end if;
+
+      TE_Check (Container.TC);
+
+      declare
+         --  The element allocator may need an accessibility check in the case
+         --  the actual type is class-wide or has access discriminants (see
+         --  RM 4.8(10.1) and AI12-0035).
+
+         pragma Unsuppress (Accessibility_Check);
+
+      begin
+         E := new Element_Type'(New_Item);
+      end;
+
+      X := Position.Node.Element;
+      Position.Node.Element := E;
+
+      Free_Element (X);
+   end Replace_Element;
+
+   ------------------------------
+   -- Reverse_Iterate_Children --
+   ------------------------------
+
+   procedure Reverse_Iterate_Children
+     (Parent  : Cursor;
+      Process : not null access procedure (Position : Cursor))
+   is
+      C : Tree_Node_Access;
+      Busy : With_Busy (Parent.Container.TC'Unrestricted_Access);
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      C := Parent.Node.Children.Last;
+      while C /= null loop
+         Process (Position => Cursor'(Parent.Container, Node => C));
+         C := C.Prev;
+      end loop;
+   end Reverse_Iterate_Children;
+
+   ----------
+   -- Root --
+   ----------
+
+   function Root (Container : Tree) return Cursor is
+   begin
+      return (Container'Unrestricted_Access, Root_Node (Container));
+   end Root;
+
+   ---------------
+   -- Root_Node --
+   ---------------
+
+   function Root_Node (Container : Tree) return Tree_Node_Access is
+   begin
+      return Container.Root'Unrestricted_Access;
+   end Root_Node;
+
+   ---------------------
+   -- Splice_Children --
+   ---------------------
+
+   procedure Splice_Children
+     (Target          : in out Tree;
+      Target_Parent   : Cursor;
+      Before          : Cursor;
+      Source          : in out Tree;
+      Source_Parent   : Cursor)
+   is
+      Count : Count_Type;
+
+   begin
+      if Checks and then Target_Parent = No_Element then
+         raise Constraint_Error with "Target_Parent cursor has no element";
+      end if;
+
+      if Checks and then Target_Parent.Container /= Target'Unrestricted_Access
+      then
+         raise Program_Error
+           with "Target_Parent cursor not in Target container";
+      end if;
+
+      if Before /= No_Element then
+         if Checks and then Before.Container /= Target'Unrestricted_Access then
+            raise Program_Error
+              with "Before cursor not in Target container";
+         end if;
+
+         if Checks and then Before.Node.Parent /= Target_Parent.Node then
+            raise Constraint_Error
+              with "Before cursor not child of Target_Parent";
+         end if;
+      end if;
+
+      if Checks and then Source_Parent = No_Element then
+         raise Constraint_Error with "Source_Parent cursor has no element";
+      end if;
+
+      if Checks and then Source_Parent.Container /= Source'Unrestricted_Access
+      then
+         raise Program_Error
+           with "Source_Parent cursor not in Source container";
+      end if;
+
+      if Target'Address = Source'Address then
+         if Target_Parent = Source_Parent then
+            return;
+         end if;
+
+         TC_Check (Target.TC);
+
+         if Checks and then Is_Reachable (From => Target_Parent.Node,
+                          To   => Source_Parent.Node)
+         then
+            raise Constraint_Error
+              with "Source_Parent is ancestor of Target_Parent";
+         end if;
+
+         Splice_Children
+           (Target_Parent => Target_Parent.Node,
+            Before        => Before.Node,
+            Source_Parent => Source_Parent.Node);
+
+         return;
+      end if;
+
+      TC_Check (Target.TC);
+      TC_Check (Source.TC);
+
+      --  We cache the count of the nodes we have allocated, so that operation
+      --  Node_Count can execute in O(1) time. But that means we must count the
+      --  nodes in the subtree we remove from Source and insert into Target, in
+      --  order to keep the count accurate.
+
+      Count := Subtree_Node_Count (Source_Parent.Node);
+      pragma Assert (Count >= 1);
+
+      Count := Count - 1;  -- because Source_Parent node does not move
+
+      Splice_Children
+        (Target_Parent => Target_Parent.Node,
+         Before        => Before.Node,
+         Source_Parent => Source_Parent.Node);
+
+      Source.Count := Source.Count - Count;
+      Target.Count := Target.Count + Count;
+   end Splice_Children;
+
+   procedure Splice_Children
+     (Container       : in out Tree;
+      Target_Parent   : Cursor;
+      Before          : Cursor;
+      Source_Parent   : Cursor)
+   is
+   begin
+      if Checks and then Target_Parent = No_Element then
+         raise Constraint_Error with "Target_Parent cursor has no element";
+      end if;
+
+      if Checks and then
+        Target_Parent.Container /= Container'Unrestricted_Access
+      then
+         raise Program_Error
+           with "Target_Parent cursor not in container";
+      end if;
+
+      if Before /= No_Element then
+         if Checks and then Before.Container /= Container'Unrestricted_Access
+         then
+            raise Program_Error
+              with "Before cursor not in container";
+         end if;
+
+         if Checks and then Before.Node.Parent /= Target_Parent.Node then
+            raise Constraint_Error
+              with "Before cursor not child of Target_Parent";
+         end if;
+      end if;
+
+      if Checks and then Source_Parent = No_Element then
+         raise Constraint_Error with "Source_Parent cursor has no element";
+      end if;
+
+      if Checks and then
+        Source_Parent.Container /= Container'Unrestricted_Access
+      then
+         raise Program_Error
+           with "Source_Parent cursor not in container";
+      end if;
+
+      if Target_Parent = Source_Parent then
+         return;
+      end if;
+
+      TC_Check (Container.TC);
+
+      if Checks and then Is_Reachable (From => Target_Parent.Node,
+                       To   => Source_Parent.Node)
+      then
+         raise Constraint_Error
+           with "Source_Parent is ancestor of Target_Parent";
+      end if;
+
+      Splice_Children
+        (Target_Parent => Target_Parent.Node,
+         Before        => Before.Node,
+         Source_Parent => Source_Parent.Node);
+   end Splice_Children;
+
+   procedure Splice_Children
+     (Target_Parent : Tree_Node_Access;
+      Before        : Tree_Node_Access;
+      Source_Parent : Tree_Node_Access)
+   is
+      CC : constant Children_Type := Source_Parent.Children;
+      C  : Tree_Node_Access;
+
+   begin
+      --  This is a utility operation to remove the children from Source parent
+      --  and insert them into Target parent.
+
+      Source_Parent.Children := Children_Type'(others => null);
+
+      --  Fix up the Parent pointers of each child to designate its new Target
+      --  parent.
+
+      C := CC.First;
+      while C /= null loop
+         C.Parent := Target_Parent;
+         C := C.Next;
+      end loop;
+
+      Insert_Subtree_List
+        (First  => CC.First,
+         Last   => CC.Last,
+         Parent => Target_Parent,
+         Before => Before);
+   end Splice_Children;
+
+   --------------------
+   -- Splice_Subtree --
+   --------------------
+
+   procedure Splice_Subtree
+     (Target   : in out Tree;
+      Parent   : Cursor;
+      Before   : Cursor;
+      Source   : in out Tree;
+      Position : in out Cursor)
+   is
+      Subtree_Count : Count_Type;
+
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      if Checks and then Parent.Container /= Target'Unrestricted_Access then
+         raise Program_Error with "Parent cursor not in Target container";
+      end if;
+
+      if Before /= No_Element then
+         if Checks and then Before.Container /= Target'Unrestricted_Access then
+            raise Program_Error with "Before cursor not in Target container";
+         end if;
+
+         if Checks and then Before.Node.Parent /= Parent.Node then
+            raise Constraint_Error with "Before cursor not child of Parent";
+         end if;
+      end if;
+
+      if Checks and then Position = No_Element then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      if Checks and then Position.Container /= Source'Unrestricted_Access then
+         raise Program_Error with "Position cursor not in Source container";
+      end if;
+
+      if Checks and then Is_Root (Position) then
+         raise Program_Error with "Position cursor designates root";
+      end if;
+
+      if Target'Address = Source'Address then
+         if Position.Node.Parent = Parent.Node then
+            if Position.Node = Before.Node then
+               return;
+            end if;
+
+            if Position.Node.Next = Before.Node then
+               return;
+            end if;
+         end if;
+
+         TC_Check (Target.TC);
+
+         if Checks and then
+           Is_Reachable (From => Parent.Node, To => Position.Node)
+         then
+            raise Constraint_Error with "Position is ancestor of Parent";
+         end if;
+
+         Remove_Subtree (Position.Node);
+
+         Position.Node.Parent := Parent.Node;
+         Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
+
+         return;
+      end if;
+
+      TC_Check (Target.TC);
+      TC_Check (Source.TC);
+
+      --  This is an unfortunate feature of this API: we must count the nodes
+      --  in the subtree that we remove from the source tree, which is an O(n)
+      --  operation. It would have been better if the Tree container did not
+      --  have a Node_Count selector; a user that wants the number of nodes in
+      --  the tree could simply call Subtree_Node_Count, with the understanding
+      --  that such an operation is O(n).
+      --
+      --  Of course, we could choose to implement the Node_Count selector as an
+      --  O(n) operation, which would turn this splice operation into an O(1)
+      --  operation. ???
+
+      Subtree_Count := Subtree_Node_Count (Position.Node);
+      pragma Assert (Subtree_Count <= Source.Count);
+
+      Remove_Subtree (Position.Node);
+      Source.Count := Source.Count - Subtree_Count;
+
+      Position.Node.Parent := Parent.Node;
+      Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
+
+      Target.Count := Target.Count + Subtree_Count;
+
+      Position.Container := Target'Unrestricted_Access;
+   end Splice_Subtree;
+
+   procedure Splice_Subtree
+     (Container : in out Tree;
+      Parent    : Cursor;
+      Before    : Cursor;
+      Position  : Cursor)
+   is
+   begin
+      if Checks and then Parent = No_Element then
+         raise Constraint_Error with "Parent cursor has no element";
+      end if;
+
+      if Checks and then Parent.Container /= Container'Unrestricted_Access then
+         raise Program_Error with "Parent cursor not in container";
+      end if;
+
+      if Before /= No_Element then
+         if Checks and then Before.Container /= Container'Unrestricted_Access
+         then
+            raise Program_Error with "Before cursor not in container";
+         end if;
+
+         if Checks and then Before.Node.Parent /= Parent.Node then
+            raise Constraint_Error with "Before cursor not child of Parent";
+         end if;
+      end if;
+
+      if Checks and then Position = No_Element then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      if Checks and then Position.Container /= Container'Unrestricted_Access
+      then
+         raise Program_Error with "Position cursor not in container";
+      end if;
+
+      if Checks and then Is_Root (Position) then
+
+         --  Should this be PE instead?  Need ARG confirmation.  ???
+
+         raise Constraint_Error with "Position cursor designates root";
+      end if;
+
+      if Position.Node.Parent = Parent.Node then
+         if Position.Node = Before.Node then
+            return;
+         end if;
+
+         if Position.Node.Next = Before.Node then
+            return;
+         end if;
+      end if;
+
+      TC_Check (Container.TC);
+
+      if Checks and then
+        Is_Reachable (From => Parent.Node, To => Position.Node)
+      then
+         raise Constraint_Error with "Position is ancestor of Parent";
+      end if;
+
+      Remove_Subtree (Position.Node);
+
+      Position.Node.Parent := Parent.Node;
+      Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
+   end Splice_Subtree;
+
+   ------------------------
+   -- Subtree_Node_Count --
+   ------------------------
+
+   function Subtree_Node_Count (Position : Cursor) return Count_Type is
+   begin
+      if Position = No_Element then
+         return 0;
+      end if;
+
+      return Subtree_Node_Count (Position.Node);
+   end Subtree_Node_Count;
+
+   function Subtree_Node_Count
+     (Subtree : Tree_Node_Access) return Count_Type
+   is
+      Result : Count_Type;
+      Node   : Tree_Node_Access;
+
+   begin
+      Result := 1;
+      Node := Subtree.Children.First;
+      while Node /= null loop
+         Result := Result + Subtree_Node_Count (Node);
+         Node := Node.Next;
+      end loop;
+
+      return Result;
+   end Subtree_Node_Count;
+
+   ----------
+   -- Swap --
+   ----------
+
+   procedure Swap
+     (Container : in out Tree;
+      I, J      : Cursor)
+   is
+   begin
+      if Checks and then I = No_Element then
+         raise Constraint_Error with "I cursor has no element";
+      end if;
+
+      if Checks and then I.Container /= Container'Unrestricted_Access then
+         raise Program_Error with "I cursor not in container";
+      end if;
+
+      if Checks and then Is_Root (I) then
+         raise Program_Error with "I cursor designates root";
+      end if;
+
+      if I = J then -- make this test sooner???
+         return;
+      end if;
+
+      if Checks and then J = No_Element then
+         raise Constraint_Error with "J cursor has no element";
+      end if;
+
+      if Checks and then J.Container /= Container'Unrestricted_Access then
+         raise Program_Error with "J cursor not in container";
+      end if;
+
+      if Checks and then Is_Root (J) then
+         raise Program_Error with "J cursor designates root";
+      end if;
+
+      TE_Check (Container.TC);
+
+      declare
+         EI : constant Element_Access := I.Node.Element;
+
+      begin
+         I.Node.Element := J.Node.Element;
+         J.Node.Element := EI;
+      end;
+   end Swap;
+
+   --------------------
+   -- Update_Element --
+   --------------------
+
+   procedure Update_Element
+     (Container : in out Tree;
+      Position  : Cursor;
+      Process   : not null access procedure (Element : in out Element_Type))
+   is
+      T : Tree renames Position.Container.all'Unrestricted_Access.all;
+      Lock : With_Lock (T.TC'Unrestricted_Access);
+   begin
+      if Checks and then Position = No_Element then
+         raise Constraint_Error with "Position cursor has no element";
+      end if;
+
+      if Checks and then Position.Container /= Container'Unrestricted_Access
+      then
+         raise Program_Error with "Position cursor not in container";
+      end if;
+
+      if Checks and then Is_Root (Position) then
+         raise Program_Error with "Position cursor designates root";
+      end if;
+
+      Process (Position.Node.Element.all);
+   end Update_Element;
+
+   -----------
+   -- Write --
+   -----------
+
+   procedure Write
+     (Stream    : not null access Root_Stream_Type'Class;
+      Container : Tree)
+   is
+      procedure Write_Children (Subtree : Tree_Node_Access);
+      procedure Write_Subtree (Subtree : Tree_Node_Access);
+
+      --------------------
+      -- Write_Children --
+      --------------------
+
+      procedure Write_Children (Subtree : Tree_Node_Access) is
+         CC : Children_Type renames Subtree.Children;
+         C  : Tree_Node_Access;
+
+      begin
+         Count_Type'Write (Stream, Child_Count (CC));
+
+         C := CC.First;
+         while C /= null loop
+            Write_Subtree (C);
+            C := C.Next;
+         end loop;
+      end Write_Children;
+
+      -------------------
+      -- Write_Subtree --
+      -------------------
+
+      procedure Write_Subtree (Subtree : Tree_Node_Access) is
+      begin
+         Element_Type'Output (Stream, Subtree.Element.all);
+         Write_Children (Subtree);
+      end Write_Subtree;
+
+   --  Start of processing for Write
+
+   begin
+      Count_Type'Write (Stream, Container.Count);
+
+      if Container.Count = 0 then
+         return;
+      end if;
+
+      Write_Children (Root_Node (Container));
+   end Write;
+
+   procedure Write
+     (Stream   : not null access Root_Stream_Type'Class;
+      Position : Cursor)
+   is
+   begin
+      raise Program_Error with "attempt to write tree cursor to stream";
+   end Write;
+
+   procedure Write
+     (Stream : not null access Root_Stream_Type'Class;
+      Item   : Reference_Type)
+   is
+   begin
+      raise Program_Error with "attempt to stream reference";
+   end Write;
+
+   procedure Write
+     (Stream : not null access Root_Stream_Type'Class;
+      Item   : Constant_Reference_Type)
+   is
+   begin
+      raise Program_Error with "attempt to stream reference";
+   end Write;
+
+end Ada.Containers.Indefinite_Multiway_Trees;