diff gcc/ada/libgnat/g-pehage.adb @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/ada/libgnat/g-pehage.adb	Fri Oct 27 22:46:09 2017 +0900
@@ -0,0 +1,2600 @@
+------------------------------------------------------------------------------
+--                                                                          --
+--                         GNAT COMPILER COMPONENTS                         --
+--                                                                          --
+--        G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S           --
+--                                                                          --
+--                                 B o d y                                  --
+--                                                                          --
+--                     Copyright (C) 2002-2017, AdaCore                     --
+--                                                                          --
+-- GNAT is free software;  you can  redistribute it  and/or modify it under --
+-- terms of the  GNU General Public License as published  by the Free Soft- --
+-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
+-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
+--                                                                          --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception,   --
+-- version 3.1, as published by the Free Software Foundation.               --
+--                                                                          --
+-- You should have received a copy of the GNU General Public License and    --
+-- a copy of the GCC Runtime Library Exception along with this program;     --
+-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
+-- <http://www.gnu.org/licenses/>.                                          --
+--                                                                          --
+-- GNAT was originally developed  by the GNAT team at  New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc.      --
+--                                                                          --
+------------------------------------------------------------------------------
+
+with Ada.IO_Exceptions;       use Ada.IO_Exceptions;
+with Ada.Characters.Handling; use Ada.Characters.Handling;
+with Ada.Directories;
+
+with GNAT.Heap_Sort_G;
+with GNAT.OS_Lib;      use GNAT.OS_Lib;
+with GNAT.Table;
+
+package body GNAT.Perfect_Hash_Generators is
+
+   --  We are using the algorithm of J. Czech as described in Zbigniew J.
+   --  Czech, George Havas, and Bohdan S. Majewski ``An Optimal Algorithm for
+   --  Generating Minimal Perfect Hash Functions'', Information Processing
+   --  Letters, 43(1992) pp.257-264, Oct.1992
+
+   --  This minimal perfect hash function generator is based on random graphs
+   --  and produces a hash function of the form:
+
+   --             h (w) = (g (f1 (w)) + g (f2 (w))) mod m
+
+   --  where f1 and f2 are functions that map strings into integers, and g is
+   --  a function that maps integers into [0, m-1]. h can be order preserving.
+   --  For instance, let W = {w_0, ..., w_i, ..., w_m-1}, h can be defined
+   --  such that h (w_i) = i.
+
+   --  This algorithm defines two possible constructions of f1 and f2. Method
+   --  b) stores the hash function in less memory space at the expense of
+   --  greater CPU time.
+
+   --  a) fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
+
+   --     size (Tk) = max (for w in W) (length (w)) * size (used char set)
+
+   --  b) fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
+
+   --     size (Tk) = max (for w in W) (length (w)) but the table lookups are
+   --     replaced by multiplications.
+
+   --  where Tk values are randomly generated. n is defined later on but the
+   --  algorithm recommends to use a value a little bit greater than 2m. Note
+   --  that for large values of m, the main memory space requirements comes
+   --  from the memory space for storing function g (>= 2m entries).
+
+   --  Random graphs are frequently used to solve difficult problems that do
+   --  not have polynomial solutions. This algorithm is based on a weighted
+   --  undirected graph. It comprises two steps: mapping and assignment.
+
+   --  In the mapping step, a graph G = (V, E) is constructed, where = {0, 1,
+   --  ..., n-1} and E = {(for w in W) (f1 (w), f2 (w))}. In order for the
+   --  assignment step to be successful, G has to be acyclic. To have a high
+   --  probability of generating an acyclic graph, n >= 2m. If it is not
+   --  acyclic, Tk have to be regenerated.
+
+   --  In the assignment step, the algorithm builds function g. As G is
+   --  acyclic, there is a vertex v1 with only one neighbor v2. Let w_i be
+   --  the word such that v1 = f1 (w_i) and v2 = f2 (w_i). Let g (v1) = 0 by
+   --  construction and g (v2) = (i - g (v1)) mod n (or h (i) - g (v1) mod n).
+   --  If word w_j is such that v2 = f1 (w_j) and v3 = f2 (w_j), g (v3) = (j -
+   --  g (v2)) mod (or to be general, (h (j) - g (v2)) mod n). If w_i has no
+   --  neighbor, then another vertex is selected. The algorithm traverses G to
+   --  assign values to all the vertices. It cannot assign a value to an
+   --  already assigned vertex as G is acyclic.
+
+   subtype Word_Id   is Integer;
+   subtype Key_Id    is Integer;
+   subtype Vertex_Id is Integer;
+   subtype Edge_Id   is Integer;
+   subtype Table_Id  is Integer;
+
+   No_Vertex : constant Vertex_Id := -1;
+   No_Edge   : constant Edge_Id   := -1;
+   No_Table  : constant Table_Id  := -1;
+
+   type Word_Type is new String_Access;
+   procedure Free_Word (W : in out Word_Type) renames Free;
+   function New_Word (S : String) return Word_Type;
+
+   procedure Resize_Word (W : in out Word_Type; Len : Natural);
+   --  Resize string W to have a length Len
+
+   type Key_Type is record
+      Edge : Edge_Id;
+   end record;
+   --  A key corresponds to an edge in the algorithm graph
+
+   type Vertex_Type is record
+      First : Edge_Id;
+      Last  : Edge_Id;
+   end record;
+   --  A vertex can be involved in several edges. First and Last are the bounds
+   --  of an array of edges stored in a global edge table.
+
+   type Edge_Type is record
+      X   : Vertex_Id;
+      Y   : Vertex_Id;
+      Key : Key_Id;
+   end record;
+   --  An edge is a peer of vertices. In the algorithm, a key is associated to
+   --  an edge.
+
+   package WT is new GNAT.Table (Word_Type, Word_Id, 0, 32, 32);
+   package IT is new GNAT.Table (Integer, Integer, 0, 32, 32);
+   --  The two main tables. WT is used to store the words in their initial
+   --  version and in their reduced version (that is words reduced to their
+   --  significant characters). As an instance of GNAT.Table, WT does not
+   --  initialize string pointers to null. This initialization has to be done
+   --  manually when the table is allocated. IT is used to store several
+   --  tables of components containing only integers.
+
+   function Image (Int : Integer; W : Natural := 0) return String;
+   function Image (Str : String;  W : Natural := 0) return String;
+   --  Return a string which includes string Str or integer Int preceded by
+   --  leading spaces if required by width W.
+
+   function Trim_Trailing_Nuls (Str : String) return String;
+   --  Return Str with trailing NUL characters removed
+
+   Output : File_Descriptor renames GNAT.OS_Lib.Standout;
+   --  Shortcuts
+
+   EOL : constant Character := ASCII.LF;
+
+   Max  : constant := 78;
+   Last : Natural  := 0;
+   Line : String (1 .. Max);
+   --  Use this line to provide buffered IO
+
+   procedure Add (C : Character);
+   procedure Add (S : String);
+   --  Add a character or a string in Line and update Last
+
+   procedure Put
+     (F  : File_Descriptor;
+      S  : String;
+      F1 : Natural;
+      L1 : Natural;
+      C1 : Natural;
+      F2 : Natural;
+      L2 : Natural;
+      C2 : Natural);
+   --  Write string S into file F as a element of an array of one or two
+   --  dimensions. Fk (resp. Lk and Ck) indicates the first (resp last and
+   --  current) index in the k-th dimension. If F1 = L1 the array is considered
+   --  as a one dimension array. This dimension is described by F2 and L2. This
+   --  routine takes care of all the parenthesis, spaces and commas needed to
+   --  format correctly the array. Moreover, the array is well indented and is
+   --  wrapped to fit in a 80 col line. When the line is full, the routine
+   --  writes it into file F. When the array is completed, the routine adds
+   --  semi-colon and writes the line into file F.
+
+   procedure New_Line (File : File_Descriptor);
+   --  Simulate Ada.Text_IO.New_Line with GNAT.OS_Lib
+
+   procedure Put (File : File_Descriptor; Str : String);
+   --  Simulate Ada.Text_IO.Put with GNAT.OS_Lib
+
+   procedure Put_Used_Char_Set (File : File_Descriptor; Title : String);
+   --  Output a title and a used character set
+
+   procedure Put_Int_Vector
+     (File   : File_Descriptor;
+      Title  : String;
+      Vector : Integer;
+      Length : Natural);
+   --  Output a title and a vector
+
+   procedure Put_Int_Matrix
+     (File  : File_Descriptor;
+      Title : String;
+      Table : Table_Id;
+      Len_1 : Natural;
+      Len_2 : Natural);
+   --  Output a title and a matrix. When the matrix has only one non-empty
+   --  dimension (Len_2 = 0), output a vector.
+
+   procedure Put_Edges (File : File_Descriptor; Title : String);
+   --  Output a title and an edge table
+
+   procedure Put_Initial_Keys (File : File_Descriptor; Title : String);
+   --  Output a title and a key table
+
+   procedure Put_Reduced_Keys (File : File_Descriptor; Title : String);
+   --  Output a title and a key table
+
+   procedure Put_Vertex_Table (File : File_Descriptor; Title : String);
+   --  Output a title and a vertex table
+
+   function Ada_File_Base_Name (Pkg_Name : String) return String;
+   --  Return the base file name (i.e. without .ads/.adb extension) for an
+   --  Ada source file containing the named package, using the standard GNAT
+   --  file-naming convention. For example, if Pkg_Name is "Parent.Child", we
+   --  return "parent-child".
+
+   ----------------------------------
+   -- Character Position Selection --
+   ----------------------------------
+
+   --  We reduce the maximum key size by selecting representative positions
+   --  in these keys. We build a matrix with one word per line. We fill the
+   --  remaining space of a line with ASCII.NUL. The heuristic selects the
+   --  position that induces the minimum number of collisions. If there are
+   --  collisions, select another position on the reduced key set responsible
+   --  of the collisions. Apply the heuristic until there is no more collision.
+
+   procedure Apply_Position_Selection;
+   --  Apply Position selection and build the reduced key table
+
+   procedure Parse_Position_Selection (Argument : String);
+   --  Parse Argument and compute the position set. Argument is list of
+   --  substrings separated by commas. Each substring represents a position
+   --  or a range of positions (like x-y).
+
+   procedure Select_Character_Set;
+   --  Define an optimized used character set like Character'Pos in order not
+   --  to allocate tables of 256 entries.
+
+   procedure Select_Char_Position;
+   --  Find a min char position set in order to reduce the max key length. The
+   --  heuristic selects the position that induces the minimum number of
+   --  collisions. If there are collisions, select another position on the
+   --  reduced key set responsible of the collisions. Apply the heuristic until
+   --  there is no collision.
+
+   -----------------------------
+   -- Random Graph Generation --
+   -----------------------------
+
+   procedure Random (Seed : in out Natural);
+   --  Simulate Ada.Discrete_Numerics.Random
+
+   procedure Generate_Mapping_Table
+     (Tab  : Table_Id;
+      L1   : Natural;
+      L2   : Natural;
+      Seed : in out Natural);
+   --  Random generation of the tables below. T is already allocated
+
+   procedure Generate_Mapping_Tables
+     (Opt  : Optimization;
+      Seed : in out Natural);
+   --  Generate the mapping tables T1 and T2. They are used to define fk (w) =
+   --  sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n. Keys, NK and Chars
+   --  are used to compute the matrix size.
+
+   ---------------------------
+   -- Algorithm Computation --
+   ---------------------------
+
+   procedure Compute_Edges_And_Vertices (Opt : Optimization);
+   --  Compute the edge and vertex tables. These are empty when a self loop is
+   --  detected (f1 (w) = f2 (w)). The edge table is sorted by X value and then
+   --  Y value. Keys is the key table and NK the number of keys. Chars is the
+   --  set of characters really used in Keys. NV is the number of vertices
+   --  recommended by the algorithm. T1 and T2 are the mapping tables needed to
+   --  compute f1 (w) and f2 (w).
+
+   function Acyclic return Boolean;
+   --  Return True when the graph is acyclic. Vertices is the current vertex
+   --  table and Edges the current edge table.
+
+   procedure Assign_Values_To_Vertices;
+   --  Execute the assignment step of the algorithm. Keys is the current key
+   --  table. Vertices and Edges represent the random graph. G is the result of
+   --  the assignment step such that:
+   --    h (w) = (g (f1 (w)) + g (f2 (w))) mod m
+
+   function Sum
+     (Word  : Word_Type;
+      Table : Table_Id;
+      Opt   : Optimization) return Natural;
+   --  For an optimization of CPU_Time return
+   --    fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
+   --  For an optimization of Memory_Space return
+   --    fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
+   --  Here NV = n
+
+   -------------------------------
+   -- Internal Table Management --
+   -------------------------------
+
+   function Allocate (N : Natural; S : Natural := 1) return Table_Id;
+   --  Allocate N * S ints from IT table
+
+   ----------
+   -- Keys --
+   ----------
+
+   Keys : Table_Id := No_Table;
+   NK   : Natural  := 0;
+   --  NK : Number of Keys
+
+   function Initial (K : Key_Id) return Word_Id;
+   pragma Inline (Initial);
+
+   function Reduced (K : Key_Id) return Word_Id;
+   pragma Inline (Reduced);
+
+   function  Get_Key (N : Key_Id) return Key_Type;
+   procedure Set_Key (N : Key_Id; Item : Key_Type);
+   --  Get or Set Nth element of Keys table
+
+   ------------------
+   -- Char_Pos_Set --
+   ------------------
+
+   Char_Pos_Set     : Table_Id := No_Table;
+   Char_Pos_Set_Len : Natural;
+   --  Character Selected Position Set
+
+   function  Get_Char_Pos (P : Natural) return Natural;
+   procedure Set_Char_Pos (P : Natural; Item : Natural);
+   --  Get or Set the string position of the Pth selected character
+
+   -------------------
+   -- Used_Char_Set --
+   -------------------
+
+   Used_Char_Set     : Table_Id := No_Table;
+   Used_Char_Set_Len : Natural;
+   --  Used Character Set : Define a new character mapping. When all the
+   --  characters are not present in the keys, in order to reduce the size
+   --  of some tables, we redefine the character mapping.
+
+   function  Get_Used_Char (C : Character) return Natural;
+   procedure Set_Used_Char (C : Character; Item : Natural);
+
+   ------------
+   -- Tables --
+   ------------
+
+   T1     : Table_Id := No_Table;
+   T2     : Table_Id := No_Table;
+   T1_Len : Natural;
+   T2_Len : Natural;
+   --  T1  : Values table to compute F1
+   --  T2  : Values table to compute F2
+
+   function  Get_Table (T : Integer; X, Y : Natural) return Natural;
+   procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural);
+
+   -----------
+   -- Graph --
+   -----------
+
+   G     : Table_Id := No_Table;
+   G_Len : Natural;
+   --  Values table to compute G
+
+   NT : Natural := Default_Tries;
+   --  Number of tries running the algorithm before raising an error
+
+   function  Get_Graph (N : Natural) return Integer;
+   procedure Set_Graph (N : Natural; Item : Integer);
+   --  Get or Set Nth element of graph
+
+   -----------
+   -- Edges --
+   -----------
+
+   Edge_Size : constant := 3;
+   Edges     : Table_Id := No_Table;
+   Edges_Len : Natural;
+   --  Edges  : Edge table of the random graph G
+
+   function  Get_Edges (F : Natural) return Edge_Type;
+   procedure Set_Edges (F : Natural; Item : Edge_Type);
+
+   --------------
+   -- Vertices --
+   --------------
+
+   Vertex_Size : constant := 2;
+
+   Vertices : Table_Id := No_Table;
+   --  Vertex table of the random graph G
+
+   NV : Natural;
+   --  Number of Vertices
+
+   function  Get_Vertices (F : Natural) return Vertex_Type;
+   procedure Set_Vertices (F : Natural; Item : Vertex_Type);
+   --  Comments needed ???
+
+   K2V : Float;
+   --  Ratio between Keys and Vertices (parameter of Czech's algorithm)
+
+   Opt : Optimization;
+   --  Optimization mode (memory vs CPU)
+
+   Max_Key_Len : Natural := 0;
+   Min_Key_Len : Natural := 0;
+   --  Maximum and minimum of all the word length
+
+   S : Natural;
+   --  Seed
+
+   function Type_Size (L : Natural) return Natural;
+   --  Given the last L of an unsigned integer type T, return its size
+
+   -------------
+   -- Acyclic --
+   -------------
+
+   function Acyclic return Boolean is
+      Marks : array (0 .. NV - 1) of Vertex_Id := (others => No_Vertex);
+
+      function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean;
+      --  Propagate Mark from X to Y. X is already marked. Mark Y and propagate
+      --  it to the edges of Y except the one representing the same key. Return
+      --  False when Y is marked with Mark.
+
+      --------------
+      -- Traverse --
+      --------------
+
+      function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean is
+         E : constant Edge_Type := Get_Edges (Edge);
+         K : constant Key_Id    := E.Key;
+         Y : constant Vertex_Id := E.Y;
+         M : constant Vertex_Id := Marks (E.Y);
+         V : Vertex_Type;
+
+      begin
+         if M = Mark then
+            return False;
+
+         elsif M = No_Vertex then
+            Marks (Y) := Mark;
+            V := Get_Vertices (Y);
+
+            for J in V.First .. V.Last loop
+
+               --  Do not propagate to the edge representing the same key
+
+               if Get_Edges (J).Key /= K
+                 and then not Traverse (J, Mark)
+               then
+                  return False;
+               end if;
+            end loop;
+         end if;
+
+         return True;
+      end Traverse;
+
+      Edge  : Edge_Type;
+
+   --  Start of processing for Acyclic
+
+   begin
+      --  Edges valid range is
+
+      for J in 1 .. Edges_Len - 1 loop
+
+         Edge := Get_Edges (J);
+
+         --  Mark X of E when it has not been already done
+
+         if Marks (Edge.X) = No_Vertex then
+            Marks (Edge.X) := Edge.X;
+         end if;
+
+         --  Traverse E when this has not already been done
+
+         if Marks (Edge.Y) = No_Vertex
+           and then not Traverse (J, Edge.X)
+         then
+            return False;
+         end if;
+      end loop;
+
+      return True;
+   end Acyclic;
+
+   ------------------------
+   -- Ada_File_Base_Name --
+   ------------------------
+
+   function Ada_File_Base_Name (Pkg_Name : String) return String is
+   begin
+      --  Convert to lower case, then replace '.' with '-'
+
+      return Result : String := To_Lower (Pkg_Name) do
+         for J in Result'Range loop
+            if Result (J) = '.' then
+               Result (J) := '-';
+            end if;
+         end loop;
+      end return;
+   end Ada_File_Base_Name;
+
+   ---------
+   -- Add --
+   ---------
+
+   procedure Add (C : Character) is
+      pragma Assert (C /= ASCII.NUL);
+   begin
+      Line (Last + 1) := C;
+      Last := Last + 1;
+   end Add;
+
+   ---------
+   -- Add --
+   ---------
+
+   procedure Add (S : String) is
+      Len : constant Natural := S'Length;
+   begin
+      for J in S'Range loop
+         pragma Assert (S (J) /= ASCII.NUL);
+         null;
+      end loop;
+
+      Line (Last + 1 .. Last + Len) := S;
+      Last := Last + Len;
+   end Add;
+
+   --------------
+   -- Allocate --
+   --------------
+
+   function Allocate (N : Natural; S : Natural := 1) return Table_Id is
+      L : constant Integer := IT.Last;
+   begin
+      IT.Set_Last (L + N * S);
+
+      --  Initialize, so debugging printouts don't trip over uninitialized
+      --  components.
+
+      for J in L + 1 .. IT.Last loop
+         IT.Table (J) := -1;
+      end loop;
+
+      return L + 1;
+   end Allocate;
+
+   ------------------------------
+   -- Apply_Position_Selection --
+   ------------------------------
+
+   procedure Apply_Position_Selection is
+   begin
+      for J in 0 .. NK - 1 loop
+         declare
+            IW : constant String := WT.Table (Initial (J)).all;
+            RW : String (1 .. IW'Length) := (others => ASCII.NUL);
+            N  : Natural := IW'First - 1;
+
+         begin
+            --  Select the characters of Word included in the position
+            --  selection.
+
+            for C in 0 .. Char_Pos_Set_Len - 1 loop
+               exit when IW (Get_Char_Pos (C)) = ASCII.NUL;
+               N := N + 1;
+               RW (N) := IW (Get_Char_Pos (C));
+            end loop;
+
+            --  Build the new table with the reduced word. Be careful
+            --  to deallocate the old version to avoid memory leaks.
+
+            Free_Word (WT.Table (Reduced (J)));
+            WT.Table (Reduced (J)) := New_Word (RW);
+            Set_Key (J, (Edge => No_Edge));
+         end;
+      end loop;
+   end Apply_Position_Selection;
+
+   -------------------------------
+   -- Assign_Values_To_Vertices --
+   -------------------------------
+
+   procedure Assign_Values_To_Vertices is
+      X : Vertex_Id;
+
+      procedure Assign (X : Vertex_Id);
+      --  Execute assignment on X's neighbors except the vertex that we are
+      --  coming from which is already assigned.
+
+      ------------
+      -- Assign --
+      ------------
+
+      procedure Assign (X : Vertex_Id) is
+         E : Edge_Type;
+         V : constant Vertex_Type := Get_Vertices (X);
+
+      begin
+         for J in V.First .. V.Last loop
+            E := Get_Edges (J);
+
+            if Get_Graph (E.Y) = -1 then
+               Set_Graph (E.Y, (E.Key - Get_Graph (X)) mod NK);
+               Assign (E.Y);
+            end if;
+         end loop;
+      end Assign;
+
+   --  Start of processing for Assign_Values_To_Vertices
+
+   begin
+      --  Value -1 denotes an uninitialized value as it is supposed to
+      --  be in the range 0 .. NK.
+
+      if G = No_Table then
+         G_Len := NV;
+         G := Allocate (G_Len, 1);
+      end if;
+
+      for J in 0 .. G_Len - 1 loop
+         Set_Graph (J, -1);
+      end loop;
+
+      for K in 0 .. NK - 1 loop
+         X := Get_Edges (Get_Key (K).Edge).X;
+
+         if Get_Graph (X) = -1 then
+            Set_Graph (X, 0);
+            Assign (X);
+         end if;
+      end loop;
+
+      for J in 0 .. G_Len - 1 loop
+         if Get_Graph (J) = -1 then
+            Set_Graph (J, 0);
+         end if;
+      end loop;
+
+      if Verbose then
+         Put_Int_Vector (Output, "Assign Values To Vertices", G, G_Len);
+      end if;
+   end Assign_Values_To_Vertices;
+
+   -------------
+   -- Compute --
+   -------------
+
+   procedure Compute (Position : String := Default_Position) is
+      Success : Boolean := False;
+
+   begin
+      if NK = 0 then
+         raise Program_Error with "keywords set cannot be empty";
+      end if;
+
+      if Verbose then
+         Put_Initial_Keys (Output, "Initial Key Table");
+      end if;
+
+      if Position'Length /= 0 then
+         Parse_Position_Selection (Position);
+      else
+         Select_Char_Position;
+      end if;
+
+      if Verbose then
+         Put_Int_Vector
+           (Output, "Char Position Set", Char_Pos_Set, Char_Pos_Set_Len);
+      end if;
+
+      Apply_Position_Selection;
+
+      if Verbose then
+         Put_Reduced_Keys (Output, "Reduced Keys Table");
+      end if;
+
+      Select_Character_Set;
+
+      if Verbose then
+         Put_Used_Char_Set (Output, "Character Position Table");
+      end if;
+
+      --  Perform Czech's algorithm
+
+      for J in 1 .. NT loop
+         Generate_Mapping_Tables (Opt, S);
+         Compute_Edges_And_Vertices (Opt);
+
+         --  When graph is not empty (no self-loop from previous operation) and
+         --  not acyclic.
+
+         if 0 < Edges_Len and then Acyclic then
+            Success := True;
+            exit;
+         end if;
+      end loop;
+
+      if not Success then
+         raise Too_Many_Tries;
+      end if;
+
+      Assign_Values_To_Vertices;
+   end Compute;
+
+   --------------------------------
+   -- Compute_Edges_And_Vertices --
+   --------------------------------
+
+   procedure Compute_Edges_And_Vertices (Opt : Optimization) is
+      X           : Natural;
+      Y           : Natural;
+      Key         : Key_Type;
+      Edge        : Edge_Type;
+      Vertex      : Vertex_Type;
+      Not_Acyclic : Boolean := False;
+
+      procedure Move (From : Natural; To : Natural);
+      function Lt (L, R : Natural) return Boolean;
+      --  Subprograms needed for GNAT.Heap_Sort_G
+
+      --------
+      -- Lt --
+      --------
+
+      function Lt (L, R : Natural) return Boolean is
+         EL : constant Edge_Type := Get_Edges (L);
+         ER : constant Edge_Type := Get_Edges (R);
+      begin
+         return EL.X < ER.X or else (EL.X = ER.X and then EL.Y < ER.Y);
+      end Lt;
+
+      ----------
+      -- Move --
+      ----------
+
+      procedure Move (From : Natural; To : Natural) is
+      begin
+         Set_Edges (To, Get_Edges (From));
+      end Move;
+
+      package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
+
+   --  Start of processing for Compute_Edges_And_Vertices
+
+   begin
+      --  We store edges from 1 to 2 * NK and leave zero alone in order to use
+      --  GNAT.Heap_Sort_G.
+
+      Edges_Len := 2 * NK + 1;
+
+      if Edges = No_Table then
+         Edges := Allocate (Edges_Len, Edge_Size);
+      end if;
+
+      if Vertices = No_Table then
+         Vertices := Allocate (NV, Vertex_Size);
+      end if;
+
+      for J in 0 .. NV - 1 loop
+         Set_Vertices (J, (No_Vertex, No_Vertex - 1));
+      end loop;
+
+      --  For each w, X = f1 (w) and Y = f2 (w)
+
+      for J in 0 .. NK - 1 loop
+         Key := Get_Key (J);
+         Key.Edge := No_Edge;
+         Set_Key (J, Key);
+
+         X := Sum (WT.Table (Reduced (J)), T1, Opt);
+         Y := Sum (WT.Table (Reduced (J)), T2, Opt);
+
+         --  Discard T1 and T2 as soon as we discover a self loop
+
+         if X = Y then
+            Not_Acyclic := True;
+            exit;
+         end if;
+
+         --  We store (X, Y) and (Y, X) to ease assignment step
+
+         Set_Edges (2 * J + 1, (X, Y, J));
+         Set_Edges (2 * J + 2, (Y, X, J));
+      end loop;
+
+      --  Return an empty graph when self loop detected
+
+      if Not_Acyclic then
+         Edges_Len := 0;
+
+      else
+         if Verbose then
+            Put_Edges      (Output, "Unsorted Edge Table");
+            Put_Int_Matrix (Output, "Function Table 1", T1,
+                            T1_Len, T2_Len);
+            Put_Int_Matrix (Output, "Function Table 2", T2,
+                            T1_Len, T2_Len);
+         end if;
+
+         --  Enforce consistency between edges and keys. Construct Vertices and
+         --  compute the list of neighbors of a vertex First .. Last as Edges
+         --  is sorted by X and then Y. To compute the neighbor list, sort the
+         --  edges.
+
+         Sorting.Sort (Edges_Len - 1);
+
+         if Verbose then
+            Put_Edges      (Output, "Sorted Edge Table");
+            Put_Int_Matrix (Output, "Function Table 1", T1,
+                            T1_Len, T2_Len);
+            Put_Int_Matrix (Output, "Function Table 2", T2,
+                            T1_Len, T2_Len);
+         end if;
+
+         --  Edges valid range is 1 .. 2 * NK
+
+         for E in 1 .. Edges_Len - 1 loop
+            Edge := Get_Edges (E);
+            Key  := Get_Key (Edge.Key);
+
+            if Key.Edge = No_Edge then
+               Key.Edge := E;
+               Set_Key (Edge.Key, Key);
+            end if;
+
+            Vertex := Get_Vertices (Edge.X);
+
+            if Vertex.First = No_Edge then
+               Vertex.First := E;
+            end if;
+
+            Vertex.Last := E;
+            Set_Vertices (Edge.X, Vertex);
+         end loop;
+
+         if Verbose then
+            Put_Reduced_Keys (Output, "Key Table");
+            Put_Edges        (Output, "Edge Table");
+            Put_Vertex_Table (Output, "Vertex Table");
+         end if;
+      end if;
+   end Compute_Edges_And_Vertices;
+
+   ------------
+   -- Define --
+   ------------
+
+   procedure Define
+     (Name      : Table_Name;
+      Item_Size : out Natural;
+      Length_1  : out Natural;
+      Length_2  : out Natural)
+   is
+   begin
+      case Name is
+         when Character_Position =>
+            Item_Size := 8;
+            Length_1  := Char_Pos_Set_Len;
+            Length_2  := 0;
+
+         when Used_Character_Set =>
+            Item_Size := 8;
+            Length_1  := 256;
+            Length_2  := 0;
+
+         when Function_Table_1
+            | Function_Table_2
+         =>
+            Item_Size := Type_Size (NV);
+            Length_1  := T1_Len;
+            Length_2  := T2_Len;
+
+         when Graph_Table =>
+            Item_Size := Type_Size (NK);
+            Length_1  := NV;
+            Length_2  := 0;
+      end case;
+   end Define;
+
+   --------------
+   -- Finalize --
+   --------------
+
+   procedure Finalize is
+   begin
+      if Verbose then
+         Put (Output, "Finalize");
+         New_Line (Output);
+      end if;
+
+      --  Deallocate all the WT components (both initial and reduced ones) to
+      --  avoid memory leaks.
+
+      for W in 0 .. WT.Last loop
+
+         --  Note: WT.Table (NK) is a temporary variable, do not free it since
+         --  this would cause a double free.
+
+         if W /= NK then
+            Free_Word (WT.Table (W));
+         end if;
+      end loop;
+
+      WT.Release;
+      IT.Release;
+
+      --  Reset all variables for next usage
+
+      Keys := No_Table;
+
+      Char_Pos_Set     := No_Table;
+      Char_Pos_Set_Len := 0;
+
+      Used_Char_Set     := No_Table;
+      Used_Char_Set_Len := 0;
+
+      T1 := No_Table;
+      T2 := No_Table;
+
+      T1_Len := 0;
+      T2_Len := 0;
+
+      G     := No_Table;
+      G_Len := 0;
+
+      Edges     := No_Table;
+      Edges_Len := 0;
+
+      Vertices := No_Table;
+      NV       := 0;
+
+      NK := 0;
+      Max_Key_Len := 0;
+      Min_Key_Len := 0;
+   end Finalize;
+
+   ----------------------------
+   -- Generate_Mapping_Table --
+   ----------------------------
+
+   procedure Generate_Mapping_Table
+     (Tab  : Integer;
+      L1   : Natural;
+      L2   : Natural;
+      Seed : in out Natural)
+   is
+   begin
+      for J in 0 .. L1 - 1 loop
+         for K in 0 .. L2 - 1 loop
+            Random (Seed);
+            Set_Table (Tab, J, K, Seed mod NV);
+         end loop;
+      end loop;
+   end Generate_Mapping_Table;
+
+   -----------------------------
+   -- Generate_Mapping_Tables --
+   -----------------------------
+
+   procedure Generate_Mapping_Tables
+     (Opt  : Optimization;
+      Seed : in out Natural)
+   is
+   begin
+      --  If T1 and T2 are already allocated no need to do it twice. Reuse them
+      --  as their size has not changed.
+
+      if T1 = No_Table and then T2 = No_Table then
+         declare
+            Used_Char_Last : Natural := 0;
+            Used_Char      : Natural;
+
+         begin
+            if Opt = CPU_Time then
+               for P in reverse Character'Range loop
+                  Used_Char := Get_Used_Char (P);
+                  if Used_Char /= 0 then
+                     Used_Char_Last := Used_Char;
+                     exit;
+                  end if;
+               end loop;
+            end if;
+
+            T1_Len := Char_Pos_Set_Len;
+            T2_Len := Used_Char_Last + 1;
+            T1 := Allocate (T1_Len * T2_Len);
+            T2 := Allocate (T1_Len * T2_Len);
+         end;
+      end if;
+
+      Generate_Mapping_Table (T1, T1_Len, T2_Len, Seed);
+      Generate_Mapping_Table (T2, T1_Len, T2_Len, Seed);
+
+      if Verbose then
+         Put_Used_Char_Set (Output, "Used Character Set");
+         Put_Int_Matrix (Output, "Function Table 1", T1,
+                        T1_Len, T2_Len);
+         Put_Int_Matrix (Output, "Function Table 2", T2,
+                        T1_Len, T2_Len);
+      end if;
+   end Generate_Mapping_Tables;
+
+   ------------------
+   -- Get_Char_Pos --
+   ------------------
+
+   function Get_Char_Pos (P : Natural) return Natural is
+      N : constant Natural := Char_Pos_Set + P;
+   begin
+      return IT.Table (N);
+   end Get_Char_Pos;
+
+   ---------------
+   -- Get_Edges --
+   ---------------
+
+   function Get_Edges (F : Natural) return Edge_Type is
+      N : constant Natural := Edges + (F * Edge_Size);
+      E : Edge_Type;
+   begin
+      E.X   := IT.Table (N);
+      E.Y   := IT.Table (N + 1);
+      E.Key := IT.Table (N + 2);
+      return E;
+   end Get_Edges;
+
+   ---------------
+   -- Get_Graph --
+   ---------------
+
+   function Get_Graph (N : Natural) return Integer is
+   begin
+      return IT.Table (G + N);
+   end Get_Graph;
+
+   -------------
+   -- Get_Key --
+   -------------
+
+   function Get_Key (N : Key_Id) return Key_Type is
+      K : Key_Type;
+   begin
+      K.Edge := IT.Table (Keys + N);
+      return K;
+   end Get_Key;
+
+   ---------------
+   -- Get_Table --
+   ---------------
+
+   function Get_Table (T : Integer; X, Y : Natural) return Natural is
+      N : constant Natural := T + (Y * T1_Len) + X;
+   begin
+      return IT.Table (N);
+   end Get_Table;
+
+   -------------------
+   -- Get_Used_Char --
+   -------------------
+
+   function Get_Used_Char (C : Character) return Natural is
+      N : constant Natural := Used_Char_Set + Character'Pos (C);
+   begin
+      return IT.Table (N);
+   end Get_Used_Char;
+
+   ------------------
+   -- Get_Vertices --
+   ------------------
+
+   function Get_Vertices (F : Natural) return Vertex_Type is
+      N : constant Natural := Vertices + (F * Vertex_Size);
+      V : Vertex_Type;
+   begin
+      V.First := IT.Table (N);
+      V.Last  := IT.Table (N + 1);
+      return V;
+   end Get_Vertices;
+
+   -----------
+   -- Image --
+   -----------
+
+   function Image (Int : Integer; W : Natural := 0) return String is
+      B : String (1 .. 32);
+      L : Natural := 0;
+
+      procedure Img (V : Natural);
+      --  Compute image of V into B, starting at B (L), incrementing L
+
+      ---------
+      -- Img --
+      ---------
+
+      procedure Img (V : Natural) is
+      begin
+         if V > 9 then
+            Img (V / 10);
+         end if;
+
+         L := L + 1;
+         B (L) := Character'Val ((V mod 10) + Character'Pos ('0'));
+      end Img;
+
+   --  Start of processing for Image
+
+   begin
+      if Int < 0 then
+         L := L + 1;
+         B (L) := '-';
+         Img (-Int);
+      else
+         Img (Int);
+      end if;
+
+      return Image (B (1 .. L), W);
+   end Image;
+
+   -----------
+   -- Image --
+   -----------
+
+   function Image (Str : String; W : Natural := 0) return String is
+      Len : constant Natural := Str'Length;
+      Max : Natural := Len;
+
+   begin
+      if Max < W then
+         Max := W;
+      end if;
+
+      declare
+         Buf : String (1 .. Max) := (1 .. Max => ' ');
+
+      begin
+         for J in 0 .. Len - 1 loop
+            Buf (Max - Len + 1 + J) := Str (Str'First + J);
+         end loop;
+
+         return Buf;
+      end;
+   end Image;
+
+   -------------
+   -- Initial --
+   -------------
+
+   function Initial (K : Key_Id) return Word_Id is
+   begin
+      return K;
+   end Initial;
+
+   ----------------
+   -- Initialize --
+   ----------------
+
+   procedure Initialize
+     (Seed   : Natural;
+      K_To_V : Float        := Default_K_To_V;
+      Optim  : Optimization := Memory_Space;
+      Tries  : Positive     := Default_Tries)
+   is
+   begin
+      if Verbose then
+         Put (Output, "Initialize");
+         New_Line (Output);
+      end if;
+
+      --  Deallocate the part of the table concerning the reduced words.
+      --  Initial words are already present in the table. We may have reduced
+      --  words already there because a previous computation failed. We are
+      --  currently retrying and the reduced words have to be deallocated.
+
+      for W in Reduced (0) .. WT.Last loop
+         Free_Word (WT.Table (W));
+      end loop;
+
+      IT.Init;
+
+      --  Initialize of computation variables
+
+      Keys := No_Table;
+
+      Char_Pos_Set     := No_Table;
+      Char_Pos_Set_Len := 0;
+
+      Used_Char_Set     := No_Table;
+      Used_Char_Set_Len := 0;
+
+      T1 := No_Table;
+      T2 := No_Table;
+
+      T1_Len := 0;
+      T2_Len := 0;
+
+      G     := No_Table;
+      G_Len := 0;
+
+      Edges     := No_Table;
+      Edges_Len := 0;
+
+      Vertices := No_Table;
+      NV       := 0;
+
+      S    := Seed;
+      K2V  := K_To_V;
+      Opt  := Optim;
+      NT   := Tries;
+
+      if K2V <= 2.0 then
+         raise Program_Error with "K to V ratio cannot be lower than 2.0";
+      end if;
+
+      --  Do not accept a value of K2V too close to 2.0 such that once
+      --  rounded up, NV = 2 * NK because the algorithm would not converge.
+
+      NV := Natural (Float (NK) * K2V);
+      if NV <= 2 * NK then
+         NV := 2 * NK + 1;
+      end if;
+
+      Keys := Allocate (NK);
+
+      --  Resize initial words to have all of them at the same size
+      --  (so the size of the largest one).
+
+      for K in 0 .. NK - 1 loop
+         Resize_Word (WT.Table (Initial (K)), Max_Key_Len);
+      end loop;
+
+      --  Allocated the table to store the reduced words. As WT is a
+      --  GNAT.Table (using C memory management), pointers have to be
+      --  explicitly initialized to null.
+
+      WT.Set_Last (Reduced (NK - 1));
+
+      --  Note: Reduced (0) = NK + 1
+
+      WT.Table (NK) := null;
+
+      for W in 0 .. NK - 1 loop
+         WT.Table (Reduced (W)) := null;
+      end loop;
+   end Initialize;
+
+   ------------
+   -- Insert --
+   ------------
+
+   procedure Insert (Value : String) is
+      Len  : constant Natural := Value'Length;
+
+   begin
+      if Verbose then
+         Put (Output, "Inserting """ & Value & """");
+         New_Line (Output);
+      end if;
+
+      for J in Value'Range loop
+         pragma Assert (Value (J) /= ASCII.NUL);
+         null;
+      end loop;
+
+      WT.Set_Last (NK);
+      WT.Table (NK) := New_Word (Value);
+      NK := NK + 1;
+
+      if Max_Key_Len < Len then
+         Max_Key_Len := Len;
+      end if;
+
+      if Min_Key_Len = 0 or else Len < Min_Key_Len then
+         Min_Key_Len := Len;
+      end if;
+   end Insert;
+
+   --------------
+   -- New_Line --
+   --------------
+
+   procedure New_Line (File : File_Descriptor) is
+   begin
+      if Write (File, EOL'Address, 1) /= 1 then
+         raise Program_Error;
+      end if;
+   end New_Line;
+
+   --------------
+   -- New_Word --
+   --------------
+
+   function New_Word (S : String) return Word_Type is
+   begin
+      return new String'(S);
+   end New_Word;
+
+   ------------------------------
+   -- Parse_Position_Selection --
+   ------------------------------
+
+   procedure Parse_Position_Selection (Argument : String) is
+      N : Natural          := Argument'First;
+      L : constant Natural := Argument'Last;
+      M : constant Natural := Max_Key_Len;
+
+      T : array (1 .. M) of Boolean := (others => False);
+
+      function Parse_Index return Natural;
+      --  Parse argument starting at index N to find an index
+
+      -----------------
+      -- Parse_Index --
+      -----------------
+
+      function Parse_Index return Natural is
+         C : Character := Argument (N);
+         V : Natural   := 0;
+
+      begin
+         if C = '$' then
+            N := N + 1;
+            return M;
+         end if;
+
+         if C not in '0' .. '9' then
+            raise Program_Error with "cannot read position argument";
+         end if;
+
+         while C in '0' .. '9' loop
+            V := V * 10 + (Character'Pos (C) - Character'Pos ('0'));
+            N := N + 1;
+            exit when L < N;
+            C := Argument (N);
+         end loop;
+
+         return V;
+      end Parse_Index;
+
+   --  Start of processing for Parse_Position_Selection
+
+   begin
+      --  Empty specification means all the positions
+
+      if L < N then
+         Char_Pos_Set_Len := M;
+         Char_Pos_Set := Allocate (Char_Pos_Set_Len);
+
+         for C in 0 .. Char_Pos_Set_Len - 1 loop
+            Set_Char_Pos (C, C + 1);
+         end loop;
+
+      else
+         loop
+            declare
+               First, Last : Natural;
+
+            begin
+               First := Parse_Index;
+               Last  := First;
+
+               --  Detect a range
+
+               if N <= L and then Argument (N) = '-' then
+                  N := N + 1;
+                  Last := Parse_Index;
+               end if;
+
+               --  Include the positions in the selection
+
+               for J in First .. Last loop
+                  T (J) := True;
+               end loop;
+            end;
+
+            exit when L < N;
+
+            if Argument (N) /= ',' then
+               raise Program_Error with "cannot read position argument";
+            end if;
+
+            N := N + 1;
+         end loop;
+
+         --  Compute position selection length
+
+         N := 0;
+         for J in T'Range loop
+            if T (J) then
+               N := N + 1;
+            end if;
+         end loop;
+
+         --  Fill position selection
+
+         Char_Pos_Set_Len := N;
+         Char_Pos_Set := Allocate (Char_Pos_Set_Len);
+
+         N := 0;
+         for J in T'Range loop
+            if T (J) then
+               Set_Char_Pos (N, J);
+               N := N + 1;
+            end if;
+         end loop;
+      end if;
+   end Parse_Position_Selection;
+
+   -------------
+   -- Produce --
+   -------------
+
+   procedure Produce
+     (Pkg_Name   : String  := Default_Pkg_Name;
+      Use_Stdout : Boolean := False)
+   is
+      File : File_Descriptor := Standout;
+
+      Status : Boolean;
+      --  For call to Close
+
+      function Array_Img (N, T, R1 : String; R2 : String := "") return String;
+      --  Return string "N : constant array (R1[, R2]) of T;"
+
+      function Range_Img (F, L : Natural; T : String := "") return String;
+      --  Return string "[T range ]F .. L"
+
+      function Type_Img (L : Natural) return String;
+      --  Return the larger unsigned type T such that T'Last < L
+
+      ---------------
+      -- Array_Img --
+      ---------------
+
+      function Array_Img
+        (N, T, R1 : String;
+         R2       : String := "") return String
+      is
+      begin
+         Last := 0;
+         Add ("   ");
+         Add (N);
+         Add (" : constant array (");
+         Add (R1);
+
+         if R2 /= "" then
+            Add (", ");
+            Add (R2);
+         end if;
+
+         Add (") of ");
+         Add (T);
+         Add (" :=");
+         return Line (1 .. Last);
+      end Array_Img;
+
+      ---------------
+      -- Range_Img --
+      ---------------
+
+      function Range_Img (F, L : Natural; T : String := "") return String is
+         FI  : constant String  := Image (F);
+         FL  : constant Natural := FI'Length;
+         LI  : constant String  := Image (L);
+         LL  : constant Natural := LI'Length;
+         TL  : constant Natural := T'Length;
+         RI  : String (1 .. TL + 7 + FL + 4 + LL);
+         Len : Natural := 0;
+
+      begin
+         if TL /= 0 then
+            RI (Len + 1 .. Len + TL) := T;
+            Len := Len + TL;
+            RI (Len + 1 .. Len + 7) := " range ";
+            Len := Len + 7;
+         end if;
+
+         RI (Len + 1 .. Len + FL) := FI;
+         Len := Len + FL;
+         RI (Len + 1 .. Len + 4) := " .. ";
+         Len := Len + 4;
+         RI (Len + 1 .. Len + LL) := LI;
+         Len := Len + LL;
+         return RI (1 .. Len);
+      end Range_Img;
+
+      --------------
+      -- Type_Img --
+      --------------
+
+      function Type_Img (L : Natural) return String is
+         S : constant String := Image (Type_Size (L));
+         U : String  := "Unsigned_  ";
+         N : Natural := 9;
+
+      begin
+         for J in S'Range loop
+            N := N + 1;
+            U (N) := S (J);
+         end loop;
+
+         return U (1 .. N);
+      end Type_Img;
+
+      F : Natural;
+      L : Natural;
+      P : Natural;
+
+      FName : String := Ada_File_Base_Name (Pkg_Name) & ".ads";
+      --  Initially, the name of the spec file, then modified to be the name of
+      --  the body file. Not used if Use_Stdout is True.
+
+   --  Start of processing for Produce
+
+   begin
+
+      if Verbose and then not Use_Stdout then
+         Put (Output,
+              "Producing " & Ada.Directories.Current_Directory & "/" & FName);
+         New_Line (Output);
+      end if;
+
+      if not Use_Stdout then
+         File := Create_File (FName, Binary);
+
+         if File = Invalid_FD then
+            raise Program_Error with "cannot create: " & FName;
+         end if;
+      end if;
+
+      Put      (File, "package ");
+      Put      (File, Pkg_Name);
+      Put      (File, " is");
+      New_Line (File);
+      Put      (File, "   function Hash (S : String) return Natural;");
+      New_Line (File);
+      Put      (File, "end ");
+      Put      (File, Pkg_Name);
+      Put      (File, ";");
+      New_Line (File);
+
+      if not Use_Stdout then
+         Close (File, Status);
+
+         if not Status then
+            raise Device_Error;
+         end if;
+      end if;
+
+      if not Use_Stdout then
+
+         --  Set to body file name
+
+         FName (FName'Last) := 'b';
+
+         File := Create_File (FName, Binary);
+
+         if File = Invalid_FD then
+            raise Program_Error with "cannot create: " & FName;
+         end if;
+      end if;
+
+      Put      (File, "with Interfaces; use Interfaces;");
+      New_Line (File);
+      New_Line (File);
+      Put      (File, "package body ");
+      Put      (File, Pkg_Name);
+      Put      (File, " is");
+      New_Line (File);
+      New_Line (File);
+
+      if Opt = CPU_Time then
+         Put      (File, Array_Img ("C", Type_Img (256), "Character"));
+         New_Line (File);
+
+         F := Character'Pos (Character'First);
+         L := Character'Pos (Character'Last);
+
+         for J in Character'Range loop
+            P := Get_Used_Char (J);
+            Put (File, Image (P), 1, 0, 1, F, L, Character'Pos (J));
+         end loop;
+
+         New_Line (File);
+      end if;
+
+      F := 0;
+      L := Char_Pos_Set_Len - 1;
+
+      Put      (File, Array_Img ("P", "Natural", Range_Img (F, L)));
+      New_Line (File);
+
+      for J in F .. L loop
+         Put (File, Image (Get_Char_Pos (J)), 1, 0, 1, F, L, J);
+      end loop;
+
+      New_Line (File);
+
+      case Opt is
+         when CPU_Time =>
+            Put_Int_Matrix
+              (File,
+               Array_Img ("T1", Type_Img (NV),
+                          Range_Img (0, T1_Len - 1),
+                          Range_Img (0, T2_Len - 1, Type_Img (256))),
+               T1, T1_Len, T2_Len);
+
+         when Memory_Space =>
+            Put_Int_Matrix
+              (File,
+               Array_Img ("T1", Type_Img (NV),
+                          Range_Img (0, T1_Len - 1)),
+               T1, T1_Len, 0);
+      end case;
+
+      New_Line (File);
+
+      case Opt is
+         when CPU_Time =>
+            Put_Int_Matrix
+              (File,
+               Array_Img ("T2", Type_Img (NV),
+                          Range_Img (0, T1_Len - 1),
+                          Range_Img (0, T2_Len - 1, Type_Img (256))),
+               T2, T1_Len, T2_Len);
+
+         when Memory_Space =>
+            Put_Int_Matrix
+              (File,
+               Array_Img ("T2", Type_Img (NV),
+                          Range_Img (0, T1_Len - 1)),
+               T2, T1_Len, 0);
+      end case;
+
+      New_Line (File);
+
+      Put_Int_Vector
+        (File,
+         Array_Img ("G", Type_Img (NK),
+                    Range_Img (0, G_Len - 1)),
+         G, G_Len);
+      New_Line (File);
+
+      Put      (File, "   function Hash (S : String) return Natural is");
+      New_Line (File);
+      Put      (File, "      F : constant Natural := S'First - 1;");
+      New_Line (File);
+      Put      (File, "      L : constant Natural := S'Length;");
+      New_Line (File);
+      Put      (File, "      F1, F2 : Natural := 0;");
+      New_Line (File);
+
+      Put (File, "      J : ");
+
+      case Opt is
+         when CPU_Time =>
+            Put (File, Type_Img (256));
+
+         when Memory_Space =>
+            Put (File, "Natural");
+      end case;
+
+      Put (File, ";");
+      New_Line (File);
+
+      Put      (File, "   begin");
+      New_Line (File);
+      Put      (File, "      for K in P'Range loop");
+      New_Line (File);
+      Put      (File, "         exit when L < P (K);");
+      New_Line (File);
+      Put      (File, "         J  := ");
+
+      case Opt is
+         when CPU_Time =>
+            Put (File, "C");
+
+         when Memory_Space =>
+            Put (File, "Character'Pos");
+      end case;
+
+      Put      (File, " (S (P (K) + F));");
+      New_Line (File);
+
+      Put (File, "         F1 := (F1 + Natural (T1 (K");
+
+      if Opt = CPU_Time then
+         Put (File, ", J");
+      end if;
+
+      Put (File, "))");
+
+      if Opt = Memory_Space then
+         Put (File, " * J");
+      end if;
+
+      Put      (File, ") mod ");
+      Put      (File, Image (NV));
+      Put      (File, ";");
+      New_Line (File);
+
+      Put (File, "         F2 := (F2 + Natural (T2 (K");
+
+      if Opt = CPU_Time then
+         Put (File, ", J");
+      end if;
+
+      Put (File, "))");
+
+      if Opt = Memory_Space then
+         Put (File, " * J");
+      end if;
+
+      Put      (File, ") mod ");
+      Put      (File, Image (NV));
+      Put      (File, ";");
+      New_Line (File);
+
+      Put      (File, "      end loop;");
+      New_Line (File);
+
+      Put      (File,
+                "      return (Natural (G (F1)) + Natural (G (F2))) mod ");
+
+      Put      (File, Image (NK));
+      Put      (File, ";");
+      New_Line (File);
+      Put      (File, "   end Hash;");
+      New_Line (File);
+      New_Line (File);
+      Put      (File, "end ");
+      Put      (File, Pkg_Name);
+      Put      (File, ";");
+      New_Line (File);
+
+      if not Use_Stdout then
+         Close (File, Status);
+
+         if not Status then
+            raise Device_Error;
+         end if;
+      end if;
+   end Produce;
+
+   ---------
+   -- Put --
+   ---------
+
+   procedure Put (File : File_Descriptor; Str : String) is
+      Len : constant Natural := Str'Length;
+   begin
+      for J in Str'Range loop
+         pragma Assert (Str (J) /= ASCII.NUL);
+         null;
+      end loop;
+
+      if Write (File, Str'Address, Len) /= Len then
+         raise Program_Error;
+      end if;
+   end Put;
+
+   ---------
+   -- Put --
+   ---------
+
+   procedure Put
+     (F  : File_Descriptor;
+      S  : String;
+      F1 : Natural;
+      L1 : Natural;
+      C1 : Natural;
+      F2 : Natural;
+      L2 : Natural;
+      C2 : Natural)
+   is
+      Len : constant Natural := S'Length;
+
+      procedure Flush;
+      --  Write current line, followed by LF
+
+      -----------
+      -- Flush --
+      -----------
+
+      procedure Flush is
+      begin
+         Put (F, Line (1 .. Last));
+         New_Line (F);
+         Last := 0;
+      end Flush;
+
+   --  Start of processing for Put
+
+   begin
+      if C1 = F1 and then C2 = F2 then
+         Last := 0;
+      end if;
+
+      if Last + Len + 3 >= Max then
+         Flush;
+      end if;
+
+      if Last = 0 then
+         Add ("     ");
+
+         if F1 <= L1 then
+            if C1 = F1 and then C2 = F2 then
+               Add ('(');
+
+               if F1 = L1 then
+                  Add ("0 .. 0 => ");
+               end if;
+
+            else
+               Add (' ');
+            end if;
+         end if;
+      end if;
+
+      if C2 = F2 then
+         Add ('(');
+
+         if F2 = L2 then
+            Add ("0 .. 0 => ");
+         end if;
+
+      else
+         Add (' ');
+      end if;
+
+      Add (S);
+
+      if C2 = L2 then
+         Add (')');
+
+         if F1 > L1 then
+            Add (';');
+            Flush;
+
+         elsif C1 /= L1 then
+            Add (',');
+            Flush;
+
+         else
+            Add (')');
+            Add (';');
+            Flush;
+         end if;
+
+      else
+         Add (',');
+      end if;
+   end Put;
+
+   ---------------
+   -- Put_Edges --
+   ---------------
+
+   procedure Put_Edges (File  : File_Descriptor; Title : String) is
+      E  : Edge_Type;
+      F1 : constant Natural := 1;
+      L1 : constant Natural := Edges_Len - 1;
+      M  : constant Natural := Max / 5;
+
+   begin
+      Put (File, Title);
+      New_Line (File);
+
+      --  Edges valid range is 1 .. Edge_Len - 1
+
+      for J in F1 .. L1 loop
+         E := Get_Edges (J);
+         Put (File, Image (J, M),     F1, L1, J, 1, 4, 1);
+         Put (File, Image (E.X, M),   F1, L1, J, 1, 4, 2);
+         Put (File, Image (E.Y, M),   F1, L1, J, 1, 4, 3);
+         Put (File, Image (E.Key, M), F1, L1, J, 1, 4, 4);
+      end loop;
+   end Put_Edges;
+
+   ----------------------
+   -- Put_Initial_Keys --
+   ----------------------
+
+   procedure Put_Initial_Keys (File : File_Descriptor; Title : String) is
+      F1 : constant Natural := 0;
+      L1 : constant Natural := NK - 1;
+      M  : constant Natural := Max / 5;
+      K  : Key_Type;
+
+   begin
+      Put (File, Title);
+      New_Line (File);
+
+      for J in F1 .. L1 loop
+         K := Get_Key (J);
+         Put (File, Image (J, M),           F1, L1, J, 1, 3, 1);
+         Put (File, Image (K.Edge, M),      F1, L1, J, 1, 3, 2);
+         Put (File, Trim_Trailing_Nuls (WT.Table (Initial (J)).all),
+                    F1, L1, J, 1, 3, 3);
+      end loop;
+   end Put_Initial_Keys;
+
+   --------------------
+   -- Put_Int_Matrix --
+   --------------------
+
+   procedure Put_Int_Matrix
+     (File   : File_Descriptor;
+      Title  : String;
+      Table  : Integer;
+      Len_1  : Natural;
+      Len_2  : Natural)
+   is
+      F1 : constant Integer := 0;
+      L1 : constant Integer := Len_1 - 1;
+      F2 : constant Integer := 0;
+      L2 : constant Integer := Len_2 - 1;
+      Ix : Natural;
+
+   begin
+      Put (File, Title);
+      New_Line (File);
+
+      if Len_2 = 0 then
+         for J in F1 .. L1 loop
+            Ix := IT.Table (Table + J);
+            Put (File, Image (Ix), 1, 0, 1, F1, L1, J);
+         end loop;
+
+      else
+         for J in F1 .. L1 loop
+            for K in F2 .. L2 loop
+               Ix := IT.Table (Table + J + K * Len_1);
+               Put (File, Image (Ix), F1, L1, J, F2, L2, K);
+            end loop;
+         end loop;
+      end if;
+   end Put_Int_Matrix;
+
+   --------------------
+   -- Put_Int_Vector --
+   --------------------
+
+   procedure Put_Int_Vector
+     (File   : File_Descriptor;
+      Title  : String;
+      Vector : Integer;
+      Length : Natural)
+   is
+      F2 : constant Natural := 0;
+      L2 : constant Natural := Length - 1;
+
+   begin
+      Put (File, Title);
+      New_Line (File);
+
+      for J in F2 .. L2 loop
+         Put (File, Image (IT.Table (Vector + J)), 1, 0, 1, F2, L2, J);
+      end loop;
+   end Put_Int_Vector;
+
+   ----------------------
+   -- Put_Reduced_Keys --
+   ----------------------
+
+   procedure Put_Reduced_Keys (File : File_Descriptor; Title : String) is
+      F1 : constant Natural := 0;
+      L1 : constant Natural := NK - 1;
+      M  : constant Natural := Max / 5;
+      K  : Key_Type;
+
+   begin
+      Put (File, Title);
+      New_Line (File);
+
+      for J in F1 .. L1 loop
+         K := Get_Key (J);
+         Put (File, Image (J, M),           F1, L1, J, 1, 3, 1);
+         Put (File, Image (K.Edge, M),      F1, L1, J, 1, 3, 2);
+         Put (File, Trim_Trailing_Nuls (WT.Table (Reduced (J)).all),
+                    F1, L1, J, 1, 3, 3);
+      end loop;
+   end Put_Reduced_Keys;
+
+   -----------------------
+   -- Put_Used_Char_Set --
+   -----------------------
+
+   procedure Put_Used_Char_Set (File : File_Descriptor; Title : String) is
+      F : constant Natural := Character'Pos (Character'First);
+      L : constant Natural := Character'Pos (Character'Last);
+
+   begin
+      Put (File, Title);
+      New_Line (File);
+
+      for J in Character'Range loop
+         Put
+           (File, Image (Get_Used_Char (J)), 1, 0, 1, F, L, Character'Pos (J));
+      end loop;
+   end Put_Used_Char_Set;
+
+   ----------------------
+   -- Put_Vertex_Table --
+   ----------------------
+
+   procedure Put_Vertex_Table (File : File_Descriptor; Title : String) is
+      F1 : constant Natural := 0;
+      L1 : constant Natural := NV - 1;
+      M  : constant Natural := Max / 4;
+      V  : Vertex_Type;
+
+   begin
+      Put (File, Title);
+      New_Line (File);
+
+      for J in F1 .. L1 loop
+         V := Get_Vertices (J);
+         Put (File, Image (J, M),       F1, L1, J, 1, 3, 1);
+         Put (File, Image (V.First, M), F1, L1, J, 1, 3, 2);
+         Put (File, Image (V.Last, M),  F1, L1, J, 1, 3, 3);
+      end loop;
+   end Put_Vertex_Table;
+
+   ------------
+   -- Random --
+   ------------
+
+   procedure Random (Seed : in out Natural) is
+
+      --  Park & Miller Standard Minimal using Schrage's algorithm to avoid
+      --  overflow: Xn+1 = 16807 * Xn mod (2 ** 31 - 1)
+
+      R : Natural;
+      Q : Natural;
+      X : Integer;
+
+   begin
+      R := Seed mod 127773;
+      Q := Seed / 127773;
+      X := 16807 * R - 2836 * Q;
+
+      Seed := (if X < 0 then X + 2147483647 else X);
+   end Random;
+
+   -------------
+   -- Reduced --
+   -------------
+
+   function Reduced (K : Key_Id) return Word_Id is
+   begin
+      return K + NK + 1;
+   end Reduced;
+
+   -----------------
+   -- Resize_Word --
+   -----------------
+
+   procedure Resize_Word (W : in out Word_Type; Len : Natural) is
+      S1 : constant String := W.all;
+      S2 : String (1 .. Len) := (others => ASCII.NUL);
+      L  : constant Natural := S1'Length;
+   begin
+      if L /= Len then
+         Free_Word (W);
+         S2 (1 .. L) := S1;
+         W := New_Word (S2);
+      end if;
+   end Resize_Word;
+
+   --------------------------
+   -- Select_Char_Position --
+   --------------------------
+
+   procedure Select_Char_Position is
+
+      type Vertex_Table_Type is array (Natural range <>) of Vertex_Type;
+
+      procedure Build_Identical_Keys_Sets
+        (Table : in out Vertex_Table_Type;
+         Last  : in out Natural;
+         Pos   : Natural);
+      --  Build a list of keys subsets that are identical with the current
+      --  position selection plus Pos. Once this routine is called, reduced
+      --  words are sorted by subsets and each item (First, Last) in Sets
+      --  defines the range of identical keys.
+      --  Need comment saying exactly what Last is ???
+
+      function Count_Different_Keys
+        (Table : Vertex_Table_Type;
+         Last  : Natural;
+         Pos   : Natural) return Natural;
+      --  For each subset in Sets, count the number of different keys if we add
+      --  Pos to the current position selection.
+
+      Sel_Position : IT.Table_Type (1 .. Max_Key_Len);
+      Last_Sel_Pos : Natural := 0;
+      Max_Sel_Pos  : Natural := 0;
+
+      -------------------------------
+      -- Build_Identical_Keys_Sets --
+      -------------------------------
+
+      procedure Build_Identical_Keys_Sets
+        (Table : in out Vertex_Table_Type;
+         Last  : in out Natural;
+         Pos   : Natural)
+      is
+         S : constant Vertex_Table_Type := Table (Table'First .. Last);
+         C : constant Natural           := Pos;
+         --  Shortcuts (why are these not renames ???)
+
+         F : Integer;
+         L : Integer;
+         --  First and last words of a subset
+
+         Offset : Natural;
+         --  GNAT.Heap_Sort assumes that the first array index is 1. Offset
+         --  defines the translation to operate.
+
+         function Lt (L, R : Natural) return Boolean;
+         procedure Move (From : Natural; To : Natural);
+         --  Subprograms needed by GNAT.Heap_Sort_G
+
+         --------
+         -- Lt --
+         --------
+
+         function Lt (L, R : Natural) return Boolean is
+            C     : constant Natural := Pos;
+            Left  : Natural;
+            Right : Natural;
+
+         begin
+            if L = 0 then
+               Left  := NK;
+               Right := Offset + R;
+            elsif R = 0 then
+               Left  := Offset + L;
+               Right := NK;
+            else
+               Left  := Offset + L;
+               Right := Offset + R;
+            end if;
+
+            return WT.Table (Left)(C) < WT.Table (Right)(C);
+         end Lt;
+
+         ----------
+         -- Move --
+         ----------
+
+         procedure Move (From : Natural; To : Natural) is
+            Target, Source : Natural;
+
+         begin
+            if From = 0 then
+               Source := NK;
+               Target := Offset + To;
+            elsif To = 0 then
+               Source := Offset + From;
+               Target := NK;
+            else
+               Source := Offset + From;
+               Target := Offset + To;
+            end if;
+
+            WT.Table (Target) := WT.Table (Source);
+            WT.Table (Source) := null;
+         end Move;
+
+         package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
+
+      --  Start of processing for Build_Identical_Key_Sets
+
+      begin
+         Last := 0;
+
+         --  For each subset in S, extract the new subsets we have by adding C
+         --  in the position selection.
+
+         for J in S'Range loop
+            if S (J).First = S (J).Last then
+               F := S (J).First;
+               L := S (J).Last;
+               Last := Last + 1;
+               Table (Last) := (F, L);
+
+            else
+               Offset := Reduced (S (J).First) - 1;
+               Sorting.Sort (S (J).Last - S (J).First + 1);
+
+               F := S (J).First;
+               L := F;
+               for N in S (J).First .. S (J).Last loop
+
+                  --  For the last item, close the last subset
+
+                  if N = S (J).Last then
+                     Last := Last + 1;
+                     Table (Last) := (F, N);
+
+                  --  Two contiguous words are identical when they have the
+                  --  same Cth character.
+
+                  elsif WT.Table (Reduced (N))(C) =
+                        WT.Table (Reduced (N + 1))(C)
+                  then
+                     L := N + 1;
+
+                  --  Find a new subset of identical keys. Store the current
+                  --  one and create a new subset.
+
+                  else
+                     Last := Last + 1;
+                     Table (Last) := (F, L);
+                     F := N + 1;
+                     L := F;
+                  end if;
+               end loop;
+            end if;
+         end loop;
+      end Build_Identical_Keys_Sets;
+
+      --------------------------
+      -- Count_Different_Keys --
+      --------------------------
+
+      function Count_Different_Keys
+        (Table : Vertex_Table_Type;
+         Last  : Natural;
+         Pos   : Natural) return Natural
+      is
+         N : array (Character) of Natural;
+         C : Character;
+         T : Natural := 0;
+
+      begin
+         --  For each subset, count the number of words that are still
+         --  different when we include Pos in the position selection. Only
+         --  focus on this position as the other positions already produce
+         --  identical keys.
+
+         for S in 1 .. Last loop
+
+            --  Count the occurrences of the different characters
+
+            N := (others => 0);
+            for K in Table (S).First .. Table (S).Last loop
+               C := WT.Table (Reduced (K))(Pos);
+               N (C) := N (C) + 1;
+            end loop;
+
+            --  Update the number of different keys. Each character used
+            --  denotes a different key.
+
+            for J in N'Range loop
+               if N (J) > 0 then
+                  T := T + 1;
+               end if;
+            end loop;
+         end loop;
+
+         return T;
+      end Count_Different_Keys;
+
+   --  Start of processing for Select_Char_Position
+
+   begin
+      --  Initialize the reduced words set
+
+      for K in 0 .. NK - 1 loop
+         WT.Table (Reduced (K)) := New_Word (WT.Table (Initial (K)).all);
+      end loop;
+
+      declare
+         Differences          : Natural;
+         Max_Differences      : Natural := 0;
+         Old_Differences      : Natural;
+         Max_Diff_Sel_Pos     : Natural := 0; -- init to kill warning
+         Max_Diff_Sel_Pos_Idx : Natural := 0; -- init to kill warning
+         Same_Keys_Sets_Table : Vertex_Table_Type (1 .. NK);
+         Same_Keys_Sets_Last  : Natural := 1;
+
+      begin
+         for C in Sel_Position'Range loop
+            Sel_Position (C) := C;
+         end loop;
+
+         Same_Keys_Sets_Table (1) := (0, NK - 1);
+
+         loop
+            --  Preserve maximum number of different keys and check later on
+            --  that this value is strictly incrementing. Otherwise, it means
+            --  that two keys are strictly identical.
+
+            Old_Differences := Max_Differences;
+
+            --  The first position should not exceed the minimum key length.
+            --  Otherwise, we may end up with an empty word once reduced.
+
+            Max_Sel_Pos :=
+              (if Last_Sel_Pos = 0 then Min_Key_Len else Max_Key_Len);
+
+            --  Find which position increases more the number of differences
+
+            for J in Last_Sel_Pos + 1 .. Max_Sel_Pos loop
+               Differences := Count_Different_Keys
+                 (Same_Keys_Sets_Table,
+                  Same_Keys_Sets_Last,
+                  Sel_Position (J));
+
+               if Verbose then
+                  Put (Output,
+                       "Selecting position" & Sel_Position (J)'Img &
+                         " results in" & Differences'Img &
+                         " differences");
+                  New_Line (Output);
+               end if;
+
+               if Differences > Max_Differences then
+                  Max_Differences      := Differences;
+                  Max_Diff_Sel_Pos     := Sel_Position (J);
+                  Max_Diff_Sel_Pos_Idx := J;
+               end if;
+            end loop;
+
+            if Old_Differences = Max_Differences then
+               raise Program_Error with "some keys are identical";
+            end if;
+
+            --  Insert selected position and sort Sel_Position table
+
+            Last_Sel_Pos := Last_Sel_Pos + 1;
+            Sel_Position (Last_Sel_Pos + 1 .. Max_Diff_Sel_Pos_Idx) :=
+              Sel_Position (Last_Sel_Pos .. Max_Diff_Sel_Pos_Idx - 1);
+            Sel_Position (Last_Sel_Pos) := Max_Diff_Sel_Pos;
+
+            for P in 1 .. Last_Sel_Pos - 1 loop
+               if Max_Diff_Sel_Pos < Sel_Position (P) then
+                  Sel_Position (P + 1 .. Last_Sel_Pos) :=
+                    Sel_Position (P .. Last_Sel_Pos - 1);
+                  Sel_Position (P) := Max_Diff_Sel_Pos;
+                  exit;
+               end if;
+            end loop;
+
+            exit when Max_Differences = NK;
+
+            Build_Identical_Keys_Sets
+              (Same_Keys_Sets_Table,
+               Same_Keys_Sets_Last,
+               Max_Diff_Sel_Pos);
+
+            if Verbose then
+               Put (Output,
+                    "Selecting position" & Max_Diff_Sel_Pos'Img &
+                      " results in" & Max_Differences'Img &
+                      " differences");
+               New_Line (Output);
+               Put (Output, "--");
+               New_Line (Output);
+               for J in 1 .. Same_Keys_Sets_Last loop
+                  for K in
+                    Same_Keys_Sets_Table (J).First ..
+                    Same_Keys_Sets_Table (J).Last
+                  loop
+                     Put (Output,
+                          Trim_Trailing_Nuls (WT.Table (Reduced (K)).all));
+                     New_Line (Output);
+                  end loop;
+                  Put (Output, "--");
+                  New_Line (Output);
+               end loop;
+            end if;
+         end loop;
+      end;
+
+      Char_Pos_Set_Len := Last_Sel_Pos;
+      Char_Pos_Set := Allocate (Char_Pos_Set_Len);
+
+      for C in 1 .. Last_Sel_Pos loop
+         Set_Char_Pos (C - 1, Sel_Position (C));
+      end loop;
+   end Select_Char_Position;
+
+   --------------------------
+   -- Select_Character_Set --
+   --------------------------
+
+   procedure Select_Character_Set is
+      Last : Natural := 0;
+      Used : array (Character) of Boolean := (others => False);
+      Char : Character;
+
+   begin
+      for J in 0 .. NK - 1 loop
+         for K in 0 .. Char_Pos_Set_Len - 1 loop
+            Char := WT.Table (Initial (J))(Get_Char_Pos (K));
+            exit when Char = ASCII.NUL;
+            Used (Char) := True;
+         end loop;
+      end loop;
+
+      Used_Char_Set_Len := 256;
+      Used_Char_Set := Allocate (Used_Char_Set_Len);
+
+      for J in Used'Range loop
+         if Used (J) then
+            Set_Used_Char (J, Last);
+            Last := Last + 1;
+         else
+            Set_Used_Char (J, 0);
+         end if;
+      end loop;
+   end Select_Character_Set;
+
+   ------------------
+   -- Set_Char_Pos --
+   ------------------
+
+   procedure Set_Char_Pos (P : Natural; Item : Natural) is
+      N : constant Natural := Char_Pos_Set + P;
+   begin
+      IT.Table (N) := Item;
+   end Set_Char_Pos;
+
+   ---------------
+   -- Set_Edges --
+   ---------------
+
+   procedure Set_Edges (F : Natural; Item : Edge_Type) is
+      N : constant Natural := Edges + (F * Edge_Size);
+   begin
+      IT.Table (N)     := Item.X;
+      IT.Table (N + 1) := Item.Y;
+      IT.Table (N + 2) := Item.Key;
+   end Set_Edges;
+
+   ---------------
+   -- Set_Graph --
+   ---------------
+
+   procedure Set_Graph (N : Natural; Item : Integer) is
+   begin
+      IT.Table (G + N) := Item;
+   end Set_Graph;
+
+   -------------
+   -- Set_Key --
+   -------------
+
+   procedure Set_Key (N : Key_Id; Item : Key_Type) is
+   begin
+      IT.Table (Keys + N) := Item.Edge;
+   end Set_Key;
+
+   ---------------
+   -- Set_Table --
+   ---------------
+
+   procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural) is
+      N : constant Natural := T + ((Y * T1_Len) + X);
+   begin
+      IT.Table (N) := Item;
+   end Set_Table;
+
+   -------------------
+   -- Set_Used_Char --
+   -------------------
+
+   procedure Set_Used_Char (C : Character; Item : Natural) is
+      N : constant Natural := Used_Char_Set + Character'Pos (C);
+   begin
+      IT.Table (N) := Item;
+   end Set_Used_Char;
+
+   ------------------
+   -- Set_Vertices --
+   ------------------
+
+   procedure Set_Vertices (F : Natural; Item : Vertex_Type) is
+      N : constant Natural := Vertices + (F * Vertex_Size);
+   begin
+      IT.Table (N)     := Item.First;
+      IT.Table (N + 1) := Item.Last;
+   end Set_Vertices;
+
+   ---------
+   -- Sum --
+   ---------
+
+   function Sum
+     (Word  : Word_Type;
+      Table : Table_Id;
+      Opt   : Optimization) return Natural
+   is
+      S : Natural := 0;
+      R : Natural;
+
+   begin
+      case Opt is
+         when CPU_Time =>
+            for J in 0 .. T1_Len - 1 loop
+               exit when Word (J + 1) = ASCII.NUL;
+               R := Get_Table (Table, J, Get_Used_Char (Word (J + 1)));
+               S := (S + R) mod NV;
+            end loop;
+
+         when Memory_Space =>
+            for J in 0 .. T1_Len - 1 loop
+               exit when Word (J + 1) = ASCII.NUL;
+               R := Get_Table (Table, J, 0);
+               S := (S + R * Character'Pos (Word (J + 1))) mod NV;
+            end loop;
+      end case;
+
+      return S;
+   end Sum;
+
+   ------------------------
+   -- Trim_Trailing_Nuls --
+   ------------------------
+
+   function Trim_Trailing_Nuls (Str : String) return String is
+   begin
+      for J in reverse Str'Range loop
+         if Str (J) /= ASCII.NUL then
+            return Str (Str'First .. J);
+         end if;
+      end loop;
+
+      return Str;
+   end Trim_Trailing_Nuls;
+
+   ---------------
+   -- Type_Size --
+   ---------------
+
+   function Type_Size (L : Natural) return Natural is
+   begin
+      if L <= 2 ** 8 then
+         return 8;
+      elsif L <= 2 ** 16 then
+         return 16;
+      else
+         return 32;
+      end if;
+   end Type_Size;
+
+   -----------
+   -- Value --
+   -----------
+
+   function Value
+     (Name : Table_Name;
+      J    : Natural;
+      K    : Natural := 0) return Natural
+   is
+   begin
+      case Name is
+         when Character_Position =>
+            return Get_Char_Pos (J);
+
+         when Used_Character_Set =>
+            return Get_Used_Char (Character'Val (J));
+
+         when Function_Table_1 =>
+            return Get_Table (T1, J, K);
+
+         when Function_Table_2 =>
+            return Get_Table (T2, J, K);
+
+         when Graph_Table =>
+            return Get_Graph (J);
+      end case;
+   end Value;
+
+end GNAT.Perfect_Hash_Generators;