diff gcc/ada/libgnat/s-rannum.adb @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/ada/libgnat/s-rannum.adb	Fri Oct 27 22:46:09 2017 +0900
@@ -0,0 +1,693 @@
+------------------------------------------------------------------------------
+--                                                                          --
+--                         GNAT RUN-TIME COMPONENTS                         --
+--                                                                          --
+--                S Y S T E M . R A N D O M _ N U M B E R S                 --
+--                                                                          --
+--                                 B o d y                                  --
+--                                                                          --
+--          Copyright (C) 2007-2017, Free Software Foundation, Inc.         --
+--                                                                          --
+-- GNAT is free software;  you can  redistribute it  and/or modify it under --
+-- terms of the  GNU General Public License as published  by the Free Soft- --
+-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
+-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
+--                                                                          --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception,   --
+-- version 3.1, as published by the Free Software Foundation.               --
+--                                                                          --
+-- You should have received a copy of the GNU General Public License and    --
+-- a copy of the GCC Runtime Library Exception along with this program;     --
+-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
+-- <http://www.gnu.org/licenses/>.                                          --
+--                                                                          --
+-- GNAT was originally developed  by the GNAT team at  New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc.      --
+--                                                                          --
+------------------------------------------------------------------------------
+
+------------------------------------------------------------------------------
+--                                                                          --
+-- The implementation here is derived from a C-program for MT19937, with    --
+-- initialization improved 2002/1/26. As required, the following notice is  --
+-- copied from the original program.                                        --
+--                                                                          --
+-- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,        --
+-- All rights reserved.                                                     --
+--                                                                          --
+-- Redistribution and use in source and binary forms, with or without       --
+-- modification, are permitted provided that the following conditions       --
+-- are met:                                                                 --
+--                                                                          --
+--   1. Redistributions of source code must retain the above copyright      --
+--      notice, this list of conditions and the following disclaimer.       --
+--                                                                          --
+--   2. Redistributions in binary form must reproduce the above copyright   --
+--      notice, this list of conditions and the following disclaimer in the --
+--      documentation and/or other materials provided with the distribution.--
+--                                                                          --
+--   3. The names of its contributors may not be used to endorse or promote --
+--      products derived from this software without specific prior written  --
+--      permission.                                                         --
+--                                                                          --
+-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS      --
+-- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT        --
+-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR    --
+-- A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT    --
+-- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    --
+-- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
+-- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR   --
+-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF   --
+-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING     --
+-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS       --
+-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.             --
+--                                                                          --
+------------------------------------------------------------------------------
+
+------------------------------------------------------------------------------
+--                                                                          --
+-- This is an implementation of the Mersenne Twister, twisted generalized   --
+-- feedback shift register of rational normal form, with state-bit          --
+-- reflection and tempering. This version generates 32-bit integers with a  --
+-- period of 2**19937 - 1 (a Mersenne prime, hence the name). For           --
+-- applications requiring more than 32 bits (up to 64), we concatenate two  --
+-- 32-bit numbers.                                                          --
+--                                                                          --
+-- See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for         --
+-- details.                                                                 --
+--                                                                          --
+-- In contrast to the original code, we do not generate random numbers in   --
+-- batches of N. Measurement seems to show this has very little if any      --
+-- effect on performance, and it may be marginally better for real-time     --
+-- applications with hard deadlines.                                        --
+--                                                                          --
+------------------------------------------------------------------------------
+
+with Ada.Unchecked_Conversion;
+
+with System.Random_Seed;
+
+with Interfaces; use Interfaces;
+
+use Ada;
+
+package body System.Random_Numbers with
+  SPARK_Mode => Off
+is
+   Image_Numeral_Length : constant := Max_Image_Width / N;
+
+   subtype Image_String is String (1 .. Max_Image_Width);
+
+   ----------------------------
+   -- Algorithmic Parameters --
+   ----------------------------
+
+   Lower_Mask : constant := 2**31 - 1;
+   Upper_Mask : constant := 2**31;
+
+   Matrix_A   : constant array (State_Val range 0 .. 1) of State_Val
+     := (0, 16#9908b0df#);
+   --  The twist transformation is represented by a matrix of the form
+   --
+   --               [  0    I(31) ]
+   --               [    _a       ]
+   --
+   --  where 0 is a 31x31 block of 0s, I(31) is the 31x31 identity matrix and
+   --  _a is a particular bit row-vector, represented here by a 32-bit integer.
+   --  If integer x represents a row vector of bits (with x(0), the units bit,
+   --  last), then
+   --           x * A = [0 x(31..1)] xor Matrix_A(x(0)).
+
+   U      : constant := 11;
+   S      : constant := 7;
+   B_Mask : constant := 16#9d2c5680#;
+   T      : constant := 15;
+   C_Mask : constant := 16#efc60000#;
+   L      : constant := 18;
+   --  The tempering shifts and bit masks, in the order applied
+
+   Seed0 : constant := 5489;
+   --  Default seed, used to initialize the state vector when Reset not called
+
+   Seed1 : constant := 19650218;
+   --  Seed used to initialize the state vector when calling Reset with an
+   --  initialization vector.
+
+   Mult0 : constant := 1812433253;
+   --  Multiplier for a modified linear congruential generator used to
+   --  initialize the state vector when calling Reset with a single integer
+   --  seed.
+
+   Mult1 : constant := 1664525;
+   Mult2 : constant := 1566083941;
+   --  Multipliers for two modified linear congruential generators used to
+   --  initialize the state vector when calling Reset with an initialization
+   --  vector.
+
+   -----------------------
+   -- Local Subprograms --
+   -----------------------
+
+   procedure Init (Gen : Generator; Initiator : Unsigned_32);
+   --  Perform a default initialization of the state of Gen. The resulting
+   --  state is identical for identical values of Initiator.
+
+   procedure Insert_Image
+     (S     : in out Image_String;
+      Index : Integer;
+      V     : State_Val);
+   --  Insert image of V into S, in the Index'th 11-character substring
+
+   function Extract_Value (S : String; Index : Integer) return State_Val;
+   --  Treat S as a sequence of 11-character decimal numerals and return
+   --  the result of converting numeral #Index (numbering from 0)
+
+   function To_Unsigned is
+     new Unchecked_Conversion (Integer_32, Unsigned_32);
+   function To_Unsigned is
+     new Unchecked_Conversion (Integer_64, Unsigned_64);
+
+   ------------
+   -- Random --
+   ------------
+
+   function Random (Gen : Generator) return Unsigned_32 is
+      G : Generator renames Gen.Writable.Self.all;
+      Y : State_Val;
+      I : Integer;      --  should avoid use of identifier I ???
+
+   begin
+      I := G.I;
+
+      if I < N - M then
+         Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
+         Y := G.S (I + M) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
+         I := I + 1;
+
+      elsif I < N - 1 then
+         Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
+         Y := G.S (I + (M - N))
+                xor Shift_Right (Y, 1)
+                xor Matrix_A (Y and 1);
+         I := I + 1;
+
+      elsif I = N - 1 then
+         Y := (G.S (I) and Upper_Mask) or (G.S (0) and Lower_Mask);
+         Y := G.S (M - 1) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
+         I := 0;
+
+      else
+         Init (G, Seed0);
+         return Random (Gen);
+      end if;
+
+      G.S (G.I) := Y;
+      G.I := I;
+
+      Y := Y xor Shift_Right (Y, U);
+      Y := Y xor (Shift_Left (Y, S) and B_Mask);
+      Y := Y xor (Shift_Left (Y, T) and C_Mask);
+      Y := Y xor Shift_Right (Y, L);
+
+      return Y;
+   end Random;
+
+   generic
+      type Unsigned is mod <>;
+      type Real is digits <>;
+      with function Random (G : Generator) return Unsigned is <>;
+   function Random_Float_Template (Gen : Generator) return Real;
+   pragma Inline (Random_Float_Template);
+   --  Template for a random-number generator implementation that delivers
+   --  values of type Real in the range [0 .. 1], using values from Gen,
+   --  assuming that Unsigned is large enough to hold the bits of a mantissa
+   --  for type Real.
+
+   ---------------------------
+   -- Random_Float_Template --
+   ---------------------------
+
+   function Random_Float_Template (Gen : Generator) return Real is
+
+      pragma Compile_Time_Error
+        (Unsigned'Last <= 2**(Real'Machine_Mantissa - 1),
+         "insufficiently large modular type used to hold mantissa");
+
+   begin
+      --  This code generates random floating-point numbers from unsigned
+      --  integers. Assuming that Real'Machine_Radix = 2, it can deliver all
+      --  machine values of type Real (as implied by Real'Machine_Mantissa and
+      --  Real'Machine_Emin), which is not true of the standard method (to
+      --  which we fall back for nonbinary radix): computing Real(<random
+      --  integer>) / (<max random integer>+1). To do so, we first extract an
+      --  (M-1)-bit significand (where M is Real'Machine_Mantissa), and then
+      --  decide on a normalized exponent by repeated coin flips, decrementing
+      --  from 0 as long as we flip heads (1 bits). This process yields the
+      --  proper geometric distribution for the exponent: in a uniformly
+      --  distributed set of floating-point numbers, 1/2 of them will be in
+      --  (0.5, 1], 1/4 will be in (0.25, 0.5], and so forth. It makes a
+      --  further adjustment at binade boundaries (see comments below) to give
+      --  the effect of selecting a uniformly distributed real deviate in
+      --  [0..1] and then rounding to the nearest representable floating-point
+      --  number.  The algorithm attempts to be stingy with random integers. In
+      --  the worst case, it can consume roughly -Real'Machine_Emin/32 32-bit
+      --  integers, but this case occurs with probability around
+      --  2**Machine_Emin, and the expected number of calls to integer-valued
+      --  Random is 1.  For another discussion of the issues addressed by this
+      --  process, see Allen Downey's unpublished paper at
+      --  http://allendowney.com/research/rand/downey07randfloat.pdf.
+
+      if Real'Machine_Radix /= 2 then
+         return Real'Machine
+           (Real (Unsigned'(Random (Gen))) * 2.0**(-Unsigned'Size));
+
+      else
+         declare
+            type Bit_Count is range 0 .. 4;
+
+            subtype T is Real'Base;
+
+            Trailing_Ones : constant array (Unsigned_32 range 0 .. 15)
+              of Bit_Count :=
+                  (2#00000# => 0, 2#00001# => 1, 2#00010# => 0, 2#00011# => 2,
+                   2#00100# => 0, 2#00101# => 1, 2#00110# => 0, 2#00111# => 3,
+                   2#01000# => 0, 2#01001# => 1, 2#01010# => 0, 2#01011# => 2,
+                   2#01100# => 0, 2#01101# => 1, 2#01110# => 0, 2#01111# => 4);
+
+            Pow_Tab : constant array (Bit_Count range 0 .. 3) of Real
+              := (0 => 2.0**(0 - T'Machine_Mantissa),
+                  1 => 2.0**(-1 - T'Machine_Mantissa),
+                  2 => 2.0**(-2 - T'Machine_Mantissa),
+                  3 => 2.0**(-3 - T'Machine_Mantissa));
+
+            Extra_Bits : constant Natural :=
+                         (Unsigned'Size - T'Machine_Mantissa + 1);
+            --  Random bits left over after selecting mantissa
+
+            Mantissa : Unsigned;
+
+            X      : Real;            --  Scaled mantissa
+            R      : Unsigned_32;     --  Supply of random bits
+            R_Bits : Natural;         --  Number of bits left in R
+            K      : Bit_Count;       --  Next decrement to exponent
+
+         begin
+            Mantissa := Random (Gen) / 2**Extra_Bits;
+            R := Unsigned_32 (Mantissa mod 2**Extra_Bits);
+            R_Bits := Extra_Bits;
+            X := Real (2**(T'Machine_Mantissa - 1) + Mantissa); -- Exact
+
+            if Extra_Bits < 4 and then R < 2 ** Extra_Bits - 1 then
+
+               --  We got lucky and got a zero in our few extra bits
+
+               K := Trailing_Ones (R);
+
+            else
+               Find_Zero : loop
+
+                  --  R has R_Bits unprocessed random bits, a multiple of 4.
+                  --  X needs to be halved for each trailing one bit. The
+                  --  process stops as soon as a 0 bit is found. If R_Bits
+                  --  becomes zero, reload R.
+
+                  --  Process 4 bits at a time for speed: the two iterations
+                  --  on average with three tests each was still too slow,
+                  --  probably because the branches are not predictable.
+                  --  This loop now will only execute once 94% of the cases,
+                  --  doing more bits at a time will not help.
+
+                  while R_Bits >= 4 loop
+                     K := Trailing_Ones (R mod 16);
+
+                     exit Find_Zero when K < 4; -- Exits 94% of the time
+
+                     R_Bits := R_Bits - 4;
+                     X := X / 16.0;
+                     R := R / 16;
+                  end loop;
+
+                  --  Do not allow us to loop endlessly even in the (very
+                  --  unlikely) case that Random (Gen) keeps yielding all ones.
+
+                  exit Find_Zero when X = 0.0;
+                  R := Random (Gen);
+                  R_Bits := 32;
+               end loop Find_Zero;
+            end if;
+
+            --  K has the count of trailing ones not reflected yet in X. The
+            --  following multiplication takes care of that, as well as the
+            --  correction to move the radix point to the left of the mantissa.
+            --  Doing it at the end avoids repeated rounding errors in the
+            --  exceedingly unlikely case of ever having a subnormal result.
+
+            X := X * Pow_Tab (K);
+
+            --  The smallest value in each binade is rounded to by 0.75 of
+            --  the span of real numbers as its next larger neighbor, and
+            --  1.0 is rounded to by half of the span of real numbers as its
+            --  next smaller neighbor. To account for this, when we encounter
+            --  the smallest number in a binade, we substitute the smallest
+            --  value in the next larger binade with probability 1/2.
+
+            if Mantissa = 0 and then Unsigned_32'(Random (Gen)) mod 2 = 0 then
+               X := 2.0 * X;
+            end if;
+
+            return X;
+         end;
+      end if;
+   end Random_Float_Template;
+
+   ------------
+   -- Random --
+   ------------
+
+   function Random (Gen : Generator) return Float is
+      function F is new Random_Float_Template (Unsigned_32, Float);
+   begin
+      return F (Gen);
+   end Random;
+
+   function Random (Gen : Generator) return Long_Float is
+      function F is new Random_Float_Template (Unsigned_64, Long_Float);
+   begin
+      return F (Gen);
+   end Random;
+
+   function Random (Gen : Generator) return Unsigned_64 is
+   begin
+      return Shift_Left (Unsigned_64 (Unsigned_32'(Random (Gen))), 32)
+        or Unsigned_64 (Unsigned_32'(Random (Gen)));
+   end Random;
+
+   ---------------------
+   -- Random_Discrete --
+   ---------------------
+
+   function Random_Discrete
+     (Gen : Generator;
+      Min : Result_Subtype := Default_Min;
+      Max : Result_Subtype := Result_Subtype'Last) return Result_Subtype
+   is
+   begin
+      if Max = Min then
+         return Max;
+
+      elsif Max < Min then
+         raise Constraint_Error;
+
+      elsif Result_Subtype'Base'Size > 32 then
+         declare
+            --  In the 64-bit case, we have to be careful, since not all 64-bit
+            --  unsigned values are representable in GNAT's root_integer type.
+            --  Ignore different-size warnings here since GNAT's handling
+            --  is correct.
+
+            pragma Warnings ("Z");
+            function Conv_To_Unsigned is
+               new Unchecked_Conversion (Result_Subtype'Base, Unsigned_64);
+            function Conv_To_Result is
+               new Unchecked_Conversion (Unsigned_64, Result_Subtype'Base);
+            pragma Warnings ("z");
+
+            N : constant Unsigned_64 :=
+                  Conv_To_Unsigned (Max) - Conv_To_Unsigned (Min) + 1;
+
+            X, Slop : Unsigned_64;
+
+         begin
+            if N = 0 then
+               return Conv_To_Result (Conv_To_Unsigned (Min) + Random (Gen));
+
+            else
+               Slop := Unsigned_64'Last rem N + 1;
+
+               loop
+                  X := Random (Gen);
+                  exit when Slop = N or else X <= Unsigned_64'Last - Slop;
+               end loop;
+
+               return Conv_To_Result (Conv_To_Unsigned (Min) + X rem N);
+            end if;
+         end;
+
+      elsif Result_Subtype'Pos (Max) - Result_Subtype'Pos (Min) =
+                                                         2 ** 32 - 1
+      then
+         return Result_Subtype'Val
+           (Result_Subtype'Pos (Min) + Unsigned_32'Pos (Random (Gen)));
+      else
+         declare
+            N    : constant Unsigned_32 :=
+                     Unsigned_32 (Result_Subtype'Pos (Max) -
+                                    Result_Subtype'Pos (Min) + 1);
+            Slop : constant Unsigned_32 := Unsigned_32'Last rem N + 1;
+            X    : Unsigned_32;
+
+         begin
+            loop
+               X := Random (Gen);
+               exit when Slop = N or else X <= Unsigned_32'Last - Slop;
+            end loop;
+
+            return
+              Result_Subtype'Val
+                (Result_Subtype'Pos (Min) + Unsigned_32'Pos (X rem N));
+         end;
+      end if;
+   end Random_Discrete;
+
+   ------------------
+   -- Random_Float --
+   ------------------
+
+   function Random_Float (Gen : Generator) return Result_Subtype is
+   begin
+      if Result_Subtype'Base'Digits > Float'Digits then
+         return Result_Subtype'Machine (Result_Subtype
+                                         (Long_Float'(Random (Gen))));
+      else
+         return Result_Subtype'Machine (Result_Subtype
+                                         (Float'(Random (Gen))));
+      end if;
+   end Random_Float;
+
+   -----------
+   -- Reset --
+   -----------
+
+   procedure Reset (Gen : Generator) is
+   begin
+      Init (Gen, Unsigned_32'Mod (Random_Seed.Get_Seed));
+   end Reset;
+
+   procedure Reset (Gen : Generator; Initiator : Integer_32) is
+   begin
+      Init (Gen, To_Unsigned (Initiator));
+   end Reset;
+
+   procedure Reset (Gen : Generator; Initiator : Unsigned_32) is
+   begin
+      Init (Gen, Initiator);
+   end Reset;
+
+   procedure Reset (Gen : Generator; Initiator : Integer) is
+   begin
+      --  This is probably an unnecessary precaution against future change, but
+      --  since the test is a static expression, no extra code is involved.
+
+      if Integer'Size <= 32 then
+         Init (Gen, To_Unsigned (Integer_32 (Initiator)));
+
+      else
+         declare
+            Initiator1 : constant Unsigned_64 :=
+                           To_Unsigned (Integer_64 (Initiator));
+            Init0      : constant Unsigned_32 :=
+                           Unsigned_32 (Initiator1 mod 2 ** 32);
+            Init1      : constant Unsigned_32 :=
+                           Unsigned_32 (Shift_Right (Initiator1, 32));
+         begin
+            Reset (Gen, Initialization_Vector'(Init0, Init1));
+         end;
+      end if;
+   end Reset;
+
+   procedure Reset (Gen : Generator; Initiator : Initialization_Vector) is
+      G    : Generator renames Gen.Writable.Self.all;
+      I, J : Integer;
+
+   begin
+      Init (G, Seed1);
+      I := 1;
+      J := 0;
+
+      if Initiator'Length > 0 then
+         for K in reverse 1 .. Integer'Max (N, Initiator'Length) loop
+            G.S (I) :=
+              (G.S (I) xor ((G.S (I - 1)
+                               xor Shift_Right (G.S (I - 1), 30)) * Mult1))
+              + Initiator (J + Initiator'First) + Unsigned_32 (J);
+
+            I := I + 1;
+            J := J + 1;
+
+            if I >= N then
+               G.S (0) := G.S (N - 1);
+               I := 1;
+            end if;
+
+            if J >= Initiator'Length then
+               J := 0;
+            end if;
+         end loop;
+      end if;
+
+      for K in reverse 1 .. N - 1 loop
+         G.S (I) :=
+           (G.S (I) xor ((G.S (I - 1)
+                            xor Shift_Right (G.S (I - 1), 30)) * Mult2))
+           - Unsigned_32 (I);
+         I := I + 1;
+
+         if I >= N then
+            G.S (0) := G.S (N - 1);
+            I := 1;
+         end if;
+      end loop;
+
+      G.S (0) := Upper_Mask;
+   end Reset;
+
+   procedure Reset (Gen : Generator; From_State : Generator) is
+      G : Generator renames Gen.Writable.Self.all;
+   begin
+      G.S := From_State.S;
+      G.I := From_State.I;
+   end Reset;
+
+   procedure Reset (Gen : Generator; From_State : State) is
+      G : Generator renames Gen.Writable.Self.all;
+   begin
+      G.I := 0;
+      G.S := From_State;
+   end Reset;
+
+   procedure Reset (Gen : Generator; From_Image : String) is
+      G : Generator renames Gen.Writable.Self.all;
+   begin
+      G.I := 0;
+
+      for J in 0 .. N - 1 loop
+         G.S (J) := Extract_Value (From_Image, J);
+      end loop;
+   end Reset;
+
+   ----------
+   -- Save --
+   ----------
+
+   procedure Save (Gen : Generator; To_State : out State) is
+      Gen2 : Generator;
+
+   begin
+      if Gen.I = N then
+         Init (Gen2, 5489);
+         To_State := Gen2.S;
+
+      else
+         To_State (0 .. N - 1 - Gen.I) := Gen.S (Gen.I .. N - 1);
+         To_State (N - Gen.I .. N - 1) := Gen.S (0 .. Gen.I - 1);
+      end if;
+   end Save;
+
+   -----------
+   -- Image --
+   -----------
+
+   function Image (Of_State : State) return String is
+      Result : Image_String;
+
+   begin
+      Result := (others => ' ');
+
+      for J in Of_State'Range loop
+         Insert_Image (Result, J, Of_State (J));
+      end loop;
+
+      return Result;
+   end Image;
+
+   function Image (Gen : Generator) return String is
+      Result : Image_String;
+
+   begin
+      Result := (others => ' ');
+      for J in 0 .. N - 1 loop
+         Insert_Image (Result, J, Gen.S ((J + Gen.I) mod N));
+      end loop;
+
+      return Result;
+   end Image;
+
+   -----------
+   -- Value --
+   -----------
+
+   function Value (Coded_State : String) return State is
+      Gen : Generator;
+      S   : State;
+   begin
+      Reset (Gen, Coded_State);
+      Save (Gen, S);
+      return S;
+   end Value;
+
+   ----------
+   -- Init --
+   ----------
+
+   procedure Init (Gen : Generator; Initiator : Unsigned_32) is
+      G : Generator renames Gen.Writable.Self.all;
+   begin
+      G.S (0) := Initiator;
+
+      for I in 1 .. N - 1 loop
+         G.S (I) :=
+           (G.S (I - 1) xor Shift_Right (G.S (I - 1), 30)) * Mult0
+           + Unsigned_32 (I);
+      end loop;
+
+      G.I := 0;
+   end Init;
+
+   ------------------
+   -- Insert_Image --
+   ------------------
+
+   procedure Insert_Image
+     (S     : in out Image_String;
+      Index : Integer;
+      V     : State_Val)
+   is
+      Value : constant String := State_Val'Image (V);
+   begin
+      S (Index * 11 + 1 .. Index * 11 + Value'Length) := Value;
+   end Insert_Image;
+
+   -------------------
+   -- Extract_Value --
+   -------------------
+
+   function Extract_Value (S : String; Index : Integer) return State_Val is
+      Start : constant Integer := S'First + Index * Image_Numeral_Length;
+   begin
+      return State_Val'Value (S (Start .. Start + Image_Numeral_Length - 1));
+   end Extract_Value;
+
+end System.Random_Numbers;