diff gcc/fortran/trans-intrinsic.c @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/fortran/trans-intrinsic.c	Fri Oct 27 22:46:09 2017 +0900
@@ -0,0 +1,10668 @@
+/* Intrinsic translation
+   Copyright (C) 2002-2017 Free Software Foundation, Inc.
+   Contributed by Paul Brook <paul@nowt.org>
+   and Steven Bosscher <s.bosscher@student.tudelft.nl>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+/* trans-intrinsic.c-- generate GENERIC trees for calls to intrinsics.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "memmodel.h"
+#include "tm.h"		/* For UNITS_PER_WORD.  */
+#include "tree.h"
+#include "gfortran.h"
+#include "trans.h"
+#include "stringpool.h"
+#include "fold-const.h"
+#include "tree-nested.h"
+#include "stor-layout.h"
+#include "toplev.h"	/* For rest_of_decl_compilation.  */
+#include "arith.h"
+#include "trans-const.h"
+#include "trans-types.h"
+#include "trans-array.h"
+#include "dependency.h"	/* For CAF array alias analysis.  */
+/* Only for gfc_trans_assign and gfc_trans_pointer_assign.  */
+
+/* This maps Fortran intrinsic math functions to external library or GCC
+   builtin functions.  */
+typedef struct GTY(()) gfc_intrinsic_map_t {
+  /* The explicit enum is required to work around inadequacies in the
+     garbage collection/gengtype parsing mechanism.  */
+  enum gfc_isym_id id;
+
+  /* Enum value from the "language-independent", aka C-centric, part
+     of gcc, or END_BUILTINS of no such value set.  */
+  enum built_in_function float_built_in;
+  enum built_in_function double_built_in;
+  enum built_in_function long_double_built_in;
+  enum built_in_function complex_float_built_in;
+  enum built_in_function complex_double_built_in;
+  enum built_in_function complex_long_double_built_in;
+
+  /* True if the naming pattern is to prepend "c" for complex and
+     append "f" for kind=4.  False if the naming pattern is to
+     prepend "_gfortran_" and append "[rc](4|8|10|16)".  */
+  bool libm_name;
+
+  /* True if a complex version of the function exists.  */
+  bool complex_available;
+
+  /* True if the function should be marked const.  */
+  bool is_constant;
+
+  /* The base library name of this function.  */
+  const char *name;
+
+  /* Cache decls created for the various operand types.  */
+  tree real4_decl;
+  tree real8_decl;
+  tree real10_decl;
+  tree real16_decl;
+  tree complex4_decl;
+  tree complex8_decl;
+  tree complex10_decl;
+  tree complex16_decl;
+}
+gfc_intrinsic_map_t;
+
+/* ??? The NARGS==1 hack here is based on the fact that (c99 at least)
+   defines complex variants of all of the entries in mathbuiltins.def
+   except for atan2.  */
+#define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE) \
+  { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
+    BUILT_IN_ ## ID ## L, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
+    true, false, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \
+    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},
+
+#define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE) \
+  { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
+    BUILT_IN_ ## ID ## L, BUILT_IN_C ## ID ## F, BUILT_IN_C ## ID, \
+    BUILT_IN_C ## ID ## L, true, true, true, NAME, NULL_TREE, NULL_TREE, \
+    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},
+
+#define LIB_FUNCTION(ID, NAME, HAVE_COMPLEX) \
+  { GFC_ISYM_ ## ID, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
+    END_BUILTINS, END_BUILTINS, END_BUILTINS, \
+    false, HAVE_COMPLEX, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, \
+    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE }
+
+#define OTHER_BUILTIN(ID, NAME, TYPE, CONST) \
+  { GFC_ISYM_NONE, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
+    BUILT_IN_ ## ID ## L, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
+    true, false, CONST, NAME, NULL_TREE, NULL_TREE, \
+    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},
+
+static GTY(()) gfc_intrinsic_map_t gfc_intrinsic_map[] =
+{
+  /* Functions built into gcc itself (DEFINE_MATH_BUILTIN and
+     DEFINE_MATH_BUILTIN_C), then the built-ins that don't correspond
+     to any GFC_ISYM id directly, which use the OTHER_BUILTIN macro.  */
+#include "mathbuiltins.def"
+
+  /* Functions in libgfortran.  */
+  LIB_FUNCTION (ERFC_SCALED, "erfc_scaled", false),
+
+  /* End the list.  */
+  LIB_FUNCTION (NONE, NULL, false)
+
+};
+#undef OTHER_BUILTIN
+#undef LIB_FUNCTION
+#undef DEFINE_MATH_BUILTIN
+#undef DEFINE_MATH_BUILTIN_C
+
+
+enum rounding_mode { RND_ROUND, RND_TRUNC, RND_CEIL, RND_FLOOR };
+
+
+/* Find the correct variant of a given builtin from its argument.  */
+static tree
+builtin_decl_for_precision (enum built_in_function base_built_in,
+			    int precision)
+{
+  enum built_in_function i = END_BUILTINS;
+
+  gfc_intrinsic_map_t *m;
+  for (m = gfc_intrinsic_map; m->double_built_in != base_built_in ; m++)
+    ;
+
+  if (precision == TYPE_PRECISION (float_type_node))
+    i = m->float_built_in;
+  else if (precision == TYPE_PRECISION (double_type_node))
+    i = m->double_built_in;
+  else if (precision == TYPE_PRECISION (long_double_type_node))
+    i = m->long_double_built_in;
+  else if (precision == TYPE_PRECISION (gfc_float128_type_node))
+    {
+      /* Special treatment, because it is not exactly a built-in, but
+	 a library function.  */
+      return m->real16_decl;
+    }
+
+  return (i == END_BUILTINS ? NULL_TREE : builtin_decl_explicit (i));
+}
+
+
+tree
+gfc_builtin_decl_for_float_kind (enum built_in_function double_built_in,
+				 int kind)
+{
+  int i = gfc_validate_kind (BT_REAL, kind, false);
+
+  if (gfc_real_kinds[i].c_float128)
+    {
+      /* For __float128, the story is a bit different, because we return
+	 a decl to a library function rather than a built-in.  */
+      gfc_intrinsic_map_t *m;
+      for (m = gfc_intrinsic_map; m->double_built_in != double_built_in ; m++)
+	;
+
+      return m->real16_decl;
+    }
+
+  return builtin_decl_for_precision (double_built_in,
+				     gfc_real_kinds[i].mode_precision);
+}
+
+
+/* Evaluate the arguments to an intrinsic function.  The value
+   of NARGS may be less than the actual number of arguments in EXPR
+   to allow optional "KIND" arguments that are not included in the
+   generated code to be ignored.  */
+
+static void
+gfc_conv_intrinsic_function_args (gfc_se *se, gfc_expr *expr,
+				  tree *argarray, int nargs)
+{
+  gfc_actual_arglist *actual;
+  gfc_expr *e;
+  gfc_intrinsic_arg  *formal;
+  gfc_se argse;
+  int curr_arg;
+
+  formal = expr->value.function.isym->formal;
+  actual = expr->value.function.actual;
+
+   for (curr_arg = 0; curr_arg < nargs; curr_arg++,
+	actual = actual->next,
+	formal = formal ? formal->next : NULL)
+    {
+      gcc_assert (actual);
+      e = actual->expr;
+      /* Skip omitted optional arguments.  */
+      if (!e)
+	{
+	  --curr_arg;
+	  continue;
+	}
+
+      /* Evaluate the parameter.  This will substitute scalarized
+         references automatically.  */
+      gfc_init_se (&argse, se);
+
+      if (e->ts.type == BT_CHARACTER)
+	{
+	  gfc_conv_expr (&argse, e);
+	  gfc_conv_string_parameter (&argse);
+          argarray[curr_arg++] = argse.string_length;
+	  gcc_assert (curr_arg < nargs);
+	}
+      else
+        gfc_conv_expr_val (&argse, e);
+
+      /* If an optional argument is itself an optional dummy argument,
+	 check its presence and substitute a null if absent.  */
+      if (e->expr_type == EXPR_VARIABLE
+	    && e->symtree->n.sym->attr.optional
+	    && formal
+	    && formal->optional)
+	gfc_conv_missing_dummy (&argse, e, formal->ts, 0);
+
+      gfc_add_block_to_block (&se->pre, &argse.pre);
+      gfc_add_block_to_block (&se->post, &argse.post);
+      argarray[curr_arg] = argse.expr;
+    }
+}
+
+/* Count the number of actual arguments to the intrinsic function EXPR
+   including any "hidden" string length arguments.  */
+
+static unsigned int
+gfc_intrinsic_argument_list_length (gfc_expr *expr)
+{
+  int n = 0;
+  gfc_actual_arglist *actual;
+
+  for (actual = expr->value.function.actual; actual; actual = actual->next)
+    {
+      if (!actual->expr)
+	continue;
+
+      if (actual->expr->ts.type == BT_CHARACTER)
+	n += 2;
+      else
+	n++;
+    }
+
+  return n;
+}
+
+
+/* Conversions between different types are output by the frontend as
+   intrinsic functions.  We implement these directly with inline code.  */
+
+static void
+gfc_conv_intrinsic_conversion (gfc_se * se, gfc_expr * expr)
+{
+  tree type;
+  tree *args;
+  int nargs;
+
+  nargs = gfc_intrinsic_argument_list_length (expr);
+  args = XALLOCAVEC (tree, nargs);
+
+  /* Evaluate all the arguments passed. Whilst we're only interested in the
+     first one here, there are other parts of the front-end that assume this
+     and will trigger an ICE if it's not the case.  */
+  type = gfc_typenode_for_spec (&expr->ts);
+  gcc_assert (expr->value.function.actual->expr);
+  gfc_conv_intrinsic_function_args (se, expr, args, nargs);
+
+  /* Conversion between character kinds involves a call to a library
+     function.  */
+  if (expr->ts.type == BT_CHARACTER)
+    {
+      tree fndecl, var, addr, tmp;
+
+      if (expr->ts.kind == 1
+	  && expr->value.function.actual->expr->ts.kind == 4)
+	fndecl = gfor_fndecl_convert_char4_to_char1;
+      else if (expr->ts.kind == 4
+	       && expr->value.function.actual->expr->ts.kind == 1)
+	fndecl = gfor_fndecl_convert_char1_to_char4;
+      else
+	gcc_unreachable ();
+
+      /* Create the variable storing the converted value.  */
+      type = gfc_get_pchar_type (expr->ts.kind);
+      var = gfc_create_var (type, "str");
+      addr = gfc_build_addr_expr (build_pointer_type (type), var);
+
+      /* Call the library function that will perform the conversion.  */
+      gcc_assert (nargs >= 2);
+      tmp = build_call_expr_loc (input_location,
+			     fndecl, 3, addr, args[0], args[1]);
+      gfc_add_expr_to_block (&se->pre, tmp);
+
+      /* Free the temporary afterwards.  */
+      tmp = gfc_call_free (var);
+      gfc_add_expr_to_block (&se->post, tmp);
+
+      se->expr = var;
+      se->string_length = args[0];
+
+      return;
+    }
+
+  /* Conversion from complex to non-complex involves taking the real
+     component of the value.  */
+  if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
+      && expr->ts.type != BT_COMPLEX)
+    {
+      tree artype;
+
+      artype = TREE_TYPE (TREE_TYPE (args[0]));
+      args[0] = fold_build1_loc (input_location, REALPART_EXPR, artype,
+				 args[0]);
+    }
+
+  se->expr = convert (type, args[0]);
+}
+
+/* This is needed because the gcc backend only implements
+   FIX_TRUNC_EXPR, which is the same as INT() in Fortran.
+   FLOOR(x) = INT(x) <= x ? INT(x) : INT(x) - 1
+   Similarly for CEILING.  */
+
+static tree
+build_fixbound_expr (stmtblock_t * pblock, tree arg, tree type, int up)
+{
+  tree tmp;
+  tree cond;
+  tree argtype;
+  tree intval;
+
+  argtype = TREE_TYPE (arg);
+  arg = gfc_evaluate_now (arg, pblock);
+
+  intval = convert (type, arg);
+  intval = gfc_evaluate_now (intval, pblock);
+
+  tmp = convert (argtype, intval);
+  cond = fold_build2_loc (input_location, up ? GE_EXPR : LE_EXPR,
+			  boolean_type_node, tmp, arg);
+
+  tmp = fold_build2_loc (input_location, up ? PLUS_EXPR : MINUS_EXPR, type,
+			 intval, build_int_cst (type, 1));
+  tmp = fold_build3_loc (input_location, COND_EXPR, type, cond, intval, tmp);
+  return tmp;
+}
+
+
+/* Round to nearest integer, away from zero.  */
+
+static tree
+build_round_expr (tree arg, tree restype)
+{
+  tree argtype;
+  tree fn;
+  int argprec, resprec;
+
+  argtype = TREE_TYPE (arg);
+  argprec = TYPE_PRECISION (argtype);
+  resprec = TYPE_PRECISION (restype);
+
+  /* Depending on the type of the result, choose the int intrinsic
+     (iround, available only as a builtin, therefore cannot use it for
+     __float128), long int intrinsic (lround family) or long long
+     intrinsic (llround).  We might also need to convert the result
+     afterwards.  */
+  if (resprec <= INT_TYPE_SIZE && argprec <= LONG_DOUBLE_TYPE_SIZE)
+    fn = builtin_decl_for_precision (BUILT_IN_IROUND, argprec);
+  else if (resprec <= LONG_TYPE_SIZE)
+    fn = builtin_decl_for_precision (BUILT_IN_LROUND, argprec);
+  else if (resprec <= LONG_LONG_TYPE_SIZE)
+    fn = builtin_decl_for_precision (BUILT_IN_LLROUND, argprec);
+  else
+    gcc_unreachable ();
+
+  return fold_convert (restype, build_call_expr_loc (input_location,
+						 fn, 1, arg));
+}
+
+
+/* Convert a real to an integer using a specific rounding mode.
+   Ideally we would just build the corresponding GENERIC node,
+   however the RTL expander only actually supports FIX_TRUNC_EXPR.  */
+
+static tree
+build_fix_expr (stmtblock_t * pblock, tree arg, tree type,
+               enum rounding_mode op)
+{
+  switch (op)
+    {
+    case RND_FLOOR:
+      return build_fixbound_expr (pblock, arg, type, 0);
+
+    case RND_CEIL:
+      return build_fixbound_expr (pblock, arg, type, 1);
+
+    case RND_ROUND:
+      return build_round_expr (arg, type);
+
+    case RND_TRUNC:
+      return fold_build1_loc (input_location, FIX_TRUNC_EXPR, type, arg);
+
+    default:
+      gcc_unreachable ();
+    }
+}
+
+
+/* Round a real value using the specified rounding mode.
+   We use a temporary integer of that same kind size as the result.
+   Values larger than those that can be represented by this kind are
+   unchanged, as they will not be accurate enough to represent the
+   rounding.
+    huge = HUGE (KIND (a))
+    aint (a) = ((a > huge) || (a < -huge)) ? a : (real)(int)a
+   */
+
+static void
+gfc_conv_intrinsic_aint (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
+{
+  tree type;
+  tree itype;
+  tree arg[2];
+  tree tmp;
+  tree cond;
+  tree decl;
+  mpfr_t huge;
+  int n, nargs;
+  int kind;
+
+  kind = expr->ts.kind;
+  nargs = gfc_intrinsic_argument_list_length (expr);
+
+  decl = NULL_TREE;
+  /* We have builtin functions for some cases.  */
+  switch (op)
+    {
+    case RND_ROUND:
+      decl = gfc_builtin_decl_for_float_kind (BUILT_IN_ROUND, kind);
+      break;
+
+    case RND_TRUNC:
+      decl = gfc_builtin_decl_for_float_kind (BUILT_IN_TRUNC, kind);
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  /* Evaluate the argument.  */
+  gcc_assert (expr->value.function.actual->expr);
+  gfc_conv_intrinsic_function_args (se, expr, arg, nargs);
+
+  /* Use a builtin function if one exists.  */
+  if (decl != NULL_TREE)
+    {
+      se->expr = build_call_expr_loc (input_location, decl, 1, arg[0]);
+      return;
+    }
+
+  /* This code is probably redundant, but we'll keep it lying around just
+     in case.  */
+  type = gfc_typenode_for_spec (&expr->ts);
+  arg[0] = gfc_evaluate_now (arg[0], &se->pre);
+
+  /* Test if the value is too large to handle sensibly.  */
+  gfc_set_model_kind (kind);
+  mpfr_init (huge);
+  n = gfc_validate_kind (BT_INTEGER, kind, false);
+  mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE);
+  tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
+  cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, arg[0],
+			  tmp);
+
+  mpfr_neg (huge, huge, GFC_RND_MODE);
+  tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
+  tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, arg[0],
+			 tmp);
+  cond = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node,
+			  cond, tmp);
+  itype = gfc_get_int_type (kind);
+
+  tmp = build_fix_expr (&se->pre, arg[0], itype, op);
+  tmp = convert (type, tmp);
+  se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, tmp,
+			      arg[0]);
+  mpfr_clear (huge);
+}
+
+
+/* Convert to an integer using the specified rounding mode.  */
+
+static void
+gfc_conv_intrinsic_int (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
+{
+  tree type;
+  tree *args;
+  int nargs;
+
+  nargs = gfc_intrinsic_argument_list_length (expr);
+  args = XALLOCAVEC (tree, nargs);
+
+  /* Evaluate the argument, we process all arguments even though we only
+     use the first one for code generation purposes.  */
+  type = gfc_typenode_for_spec (&expr->ts);
+  gcc_assert (expr->value.function.actual->expr);
+  gfc_conv_intrinsic_function_args (se, expr, args, nargs);
+
+  if (TREE_CODE (TREE_TYPE (args[0])) == INTEGER_TYPE)
+    {
+      /* Conversion to a different integer kind.  */
+      se->expr = convert (type, args[0]);
+    }
+  else
+    {
+      /* Conversion from complex to non-complex involves taking the real
+         component of the value.  */
+      if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
+	  && expr->ts.type != BT_COMPLEX)
+	{
+	  tree artype;
+
+	  artype = TREE_TYPE (TREE_TYPE (args[0]));
+	  args[0] = fold_build1_loc (input_location, REALPART_EXPR, artype,
+				     args[0]);
+	}
+
+      se->expr = build_fix_expr (&se->pre, args[0], type, op);
+    }
+}
+
+
+/* Get the imaginary component of a value.  */
+
+static void
+gfc_conv_intrinsic_imagpart (gfc_se * se, gfc_expr * expr)
+{
+  tree arg;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  se->expr = fold_build1_loc (input_location, IMAGPART_EXPR,
+			      TREE_TYPE (TREE_TYPE (arg)), arg);
+}
+
+
+/* Get the complex conjugate of a value.  */
+
+static void
+gfc_conv_intrinsic_conjg (gfc_se * se, gfc_expr * expr)
+{
+  tree arg;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  se->expr = fold_build1_loc (input_location, CONJ_EXPR, TREE_TYPE (arg), arg);
+}
+
+
+
+static tree
+define_quad_builtin (const char *name, tree type, bool is_const)
+{
+  tree fndecl;
+  fndecl = build_decl (input_location, FUNCTION_DECL, get_identifier (name),
+		       type);
+
+  /* Mark the decl as external.  */
+  DECL_EXTERNAL (fndecl) = 1;
+  TREE_PUBLIC (fndecl) = 1;
+
+  /* Mark it __attribute__((const)).  */
+  TREE_READONLY (fndecl) = is_const;
+
+  rest_of_decl_compilation (fndecl, 1, 0);
+
+  return fndecl;
+}
+
+
+
+/* Initialize function decls for library functions.  The external functions
+   are created as required.  Builtin functions are added here.  */
+
+void
+gfc_build_intrinsic_lib_fndecls (void)
+{
+  gfc_intrinsic_map_t *m;
+  tree quad_decls[END_BUILTINS + 1];
+
+  if (gfc_real16_is_float128)
+  {
+    /* If we have soft-float types, we create the decls for their
+       C99-like library functions.  For now, we only handle __float128
+       q-suffixed functions.  */
+
+    tree type, complex_type, func_1, func_2, func_cabs, func_frexp;
+    tree func_iround, func_lround, func_llround, func_scalbn, func_cpow;
+
+    memset (quad_decls, 0, sizeof(tree) * (END_BUILTINS + 1));
+
+    type = gfc_float128_type_node;
+    complex_type = gfc_complex_float128_type_node;
+    /* type (*) (type) */
+    func_1 = build_function_type_list (type, type, NULL_TREE);
+    /* int (*) (type) */
+    func_iround = build_function_type_list (integer_type_node,
+					    type, NULL_TREE);
+    /* long (*) (type) */
+    func_lround = build_function_type_list (long_integer_type_node,
+					    type, NULL_TREE);
+    /* long long (*) (type) */
+    func_llround = build_function_type_list (long_long_integer_type_node,
+					     type, NULL_TREE);
+    /* type (*) (type, type) */
+    func_2 = build_function_type_list (type, type, type, NULL_TREE);
+    /* type (*) (type, &int) */
+    func_frexp
+      = build_function_type_list (type,
+				  type,
+				  build_pointer_type (integer_type_node),
+				  NULL_TREE);
+    /* type (*) (type, int) */
+    func_scalbn = build_function_type_list (type,
+					    type, integer_type_node, NULL_TREE);
+    /* type (*) (complex type) */
+    func_cabs = build_function_type_list (type, complex_type, NULL_TREE);
+    /* complex type (*) (complex type, complex type) */
+    func_cpow
+      = build_function_type_list (complex_type,
+				  complex_type, complex_type, NULL_TREE);
+
+#define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE)
+#define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE)
+#define LIB_FUNCTION(ID, NAME, HAVE_COMPLEX)
+
+    /* Only these built-ins are actually needed here. These are used directly
+       from the code, when calling builtin_decl_for_precision() or
+       builtin_decl_for_float_type(). The others are all constructed by
+       gfc_get_intrinsic_lib_fndecl().  */
+#define OTHER_BUILTIN(ID, NAME, TYPE, CONST) \
+  quad_decls[BUILT_IN_ ## ID] = define_quad_builtin (NAME "q", func_ ## TYPE, CONST);
+
+#include "mathbuiltins.def"
+
+#undef OTHER_BUILTIN
+#undef LIB_FUNCTION
+#undef DEFINE_MATH_BUILTIN
+#undef DEFINE_MATH_BUILTIN_C
+
+    /* There is one built-in we defined manually, because it gets called
+       with builtin_decl_for_precision() or builtin_decl_for_float_type()
+       even though it is not an OTHER_BUILTIN: it is SQRT.  */
+    quad_decls[BUILT_IN_SQRT] = define_quad_builtin ("sqrtq", func_1, true);
+
+  }
+
+  /* Add GCC builtin functions.  */
+  for (m = gfc_intrinsic_map;
+       m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++)
+    {
+      if (m->float_built_in != END_BUILTINS)
+	m->real4_decl = builtin_decl_explicit (m->float_built_in);
+      if (m->complex_float_built_in != END_BUILTINS)
+	m->complex4_decl = builtin_decl_explicit (m->complex_float_built_in);
+      if (m->double_built_in != END_BUILTINS)
+	m->real8_decl = builtin_decl_explicit (m->double_built_in);
+      if (m->complex_double_built_in != END_BUILTINS)
+	m->complex8_decl = builtin_decl_explicit (m->complex_double_built_in);
+
+      /* If real(kind=10) exists, it is always long double.  */
+      if (m->long_double_built_in != END_BUILTINS)
+	m->real10_decl = builtin_decl_explicit (m->long_double_built_in);
+      if (m->complex_long_double_built_in != END_BUILTINS)
+	m->complex10_decl
+	  = builtin_decl_explicit (m->complex_long_double_built_in);
+
+      if (!gfc_real16_is_float128)
+	{
+	  if (m->long_double_built_in != END_BUILTINS)
+	    m->real16_decl = builtin_decl_explicit (m->long_double_built_in);
+	  if (m->complex_long_double_built_in != END_BUILTINS)
+	    m->complex16_decl
+	      = builtin_decl_explicit (m->complex_long_double_built_in);
+	}
+      else if (quad_decls[m->double_built_in] != NULL_TREE)
+        {
+	  /* Quad-precision function calls are constructed when first
+	     needed by builtin_decl_for_precision(), except for those
+	     that will be used directly (define by OTHER_BUILTIN).  */
+	  m->real16_decl = quad_decls[m->double_built_in];
+	}
+      else if (quad_decls[m->complex_double_built_in] != NULL_TREE)
+        {
+	  /* Same thing for the complex ones.  */
+	  m->complex16_decl = quad_decls[m->double_built_in];
+	}
+    }
+}
+
+
+/* Create a fndecl for a simple intrinsic library function.  */
+
+static tree
+gfc_get_intrinsic_lib_fndecl (gfc_intrinsic_map_t * m, gfc_expr * expr)
+{
+  tree type;
+  vec<tree, va_gc> *argtypes;
+  tree fndecl;
+  gfc_actual_arglist *actual;
+  tree *pdecl;
+  gfc_typespec *ts;
+  char name[GFC_MAX_SYMBOL_LEN + 3];
+
+  ts = &expr->ts;
+  if (ts->type == BT_REAL)
+    {
+      switch (ts->kind)
+	{
+	case 4:
+	  pdecl = &m->real4_decl;
+	  break;
+	case 8:
+	  pdecl = &m->real8_decl;
+	  break;
+	case 10:
+	  pdecl = &m->real10_decl;
+	  break;
+	case 16:
+	  pdecl = &m->real16_decl;
+	  break;
+	default:
+	  gcc_unreachable ();
+	}
+    }
+  else if (ts->type == BT_COMPLEX)
+    {
+      gcc_assert (m->complex_available);
+
+      switch (ts->kind)
+	{
+	case 4:
+	  pdecl = &m->complex4_decl;
+	  break;
+	case 8:
+	  pdecl = &m->complex8_decl;
+	  break;
+	case 10:
+	  pdecl = &m->complex10_decl;
+	  break;
+	case 16:
+	  pdecl = &m->complex16_decl;
+	  break;
+	default:
+	  gcc_unreachable ();
+	}
+    }
+  else
+    gcc_unreachable ();
+
+  if (*pdecl)
+    return *pdecl;
+
+  if (m->libm_name)
+    {
+      int n = gfc_validate_kind (BT_REAL, ts->kind, false);
+      if (gfc_real_kinds[n].c_float)
+	snprintf (name, sizeof (name), "%s%s%s",
+		  ts->type == BT_COMPLEX ? "c" : "", m->name, "f");
+      else if (gfc_real_kinds[n].c_double)
+	snprintf (name, sizeof (name), "%s%s",
+		  ts->type == BT_COMPLEX ? "c" : "", m->name);
+      else if (gfc_real_kinds[n].c_long_double)
+	snprintf (name, sizeof (name), "%s%s%s",
+		  ts->type == BT_COMPLEX ? "c" : "", m->name, "l");
+      else if (gfc_real_kinds[n].c_float128)
+	snprintf (name, sizeof (name), "%s%s%s",
+		  ts->type == BT_COMPLEX ? "c" : "", m->name, "q");
+      else
+	gcc_unreachable ();
+    }
+  else
+    {
+      snprintf (name, sizeof (name), PREFIX ("%s_%c%d"), m->name,
+		ts->type == BT_COMPLEX ? 'c' : 'r',
+		ts->kind);
+    }
+
+  argtypes = NULL;
+  for (actual = expr->value.function.actual; actual; actual = actual->next)
+    {
+      type = gfc_typenode_for_spec (&actual->expr->ts);
+      vec_safe_push (argtypes, type);
+    }
+  type = build_function_type_vec (gfc_typenode_for_spec (ts), argtypes);
+  fndecl = build_decl (input_location,
+		       FUNCTION_DECL, get_identifier (name), type);
+
+  /* Mark the decl as external.  */
+  DECL_EXTERNAL (fndecl) = 1;
+  TREE_PUBLIC (fndecl) = 1;
+
+  /* Mark it __attribute__((const)), if possible.  */
+  TREE_READONLY (fndecl) = m->is_constant;
+
+  rest_of_decl_compilation (fndecl, 1, 0);
+
+  (*pdecl) = fndecl;
+  return fndecl;
+}
+
+
+/* Convert an intrinsic function into an external or builtin call.  */
+
+static void
+gfc_conv_intrinsic_lib_function (gfc_se * se, gfc_expr * expr)
+{
+  gfc_intrinsic_map_t *m;
+  tree fndecl;
+  tree rettype;
+  tree *args;
+  unsigned int num_args;
+  gfc_isym_id id;
+
+  id = expr->value.function.isym->id;
+  /* Find the entry for this function.  */
+  for (m = gfc_intrinsic_map;
+       m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++)
+    {
+      if (id == m->id)
+	break;
+    }
+
+  if (m->id == GFC_ISYM_NONE)
+    {
+      gfc_internal_error ("Intrinsic function %qs (%d) not recognized",
+			  expr->value.function.name, id);
+    }
+
+  /* Get the decl and generate the call.  */
+  num_args = gfc_intrinsic_argument_list_length (expr);
+  args = XALLOCAVEC (tree, num_args);
+
+  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
+  fndecl = gfc_get_intrinsic_lib_fndecl (m, expr);
+  rettype = TREE_TYPE (TREE_TYPE (fndecl));
+
+  fndecl = build_addr (fndecl);
+  se->expr = build_call_array_loc (input_location, rettype, fndecl, num_args, args);
+}
+
+
+/* If bounds-checking is enabled, create code to verify at runtime that the
+   string lengths for both expressions are the same (needed for e.g. MERGE).
+   If bounds-checking is not enabled, does nothing.  */
+
+void
+gfc_trans_same_strlen_check (const char* intr_name, locus* where,
+			     tree a, tree b, stmtblock_t* target)
+{
+  tree cond;
+  tree name;
+
+  /* If bounds-checking is disabled, do nothing.  */
+  if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS))
+    return;
+
+  /* Compare the two string lengths.  */
+  cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, a, b);
+
+  /* Output the runtime-check.  */
+  name = gfc_build_cstring_const (intr_name);
+  name = gfc_build_addr_expr (pchar_type_node, name);
+  gfc_trans_runtime_check (true, false, cond, target, where,
+			   "Unequal character lengths (%ld/%ld) in %s",
+			   fold_convert (long_integer_type_node, a),
+			   fold_convert (long_integer_type_node, b), name);
+}
+
+
+/* The EXPONENT(X) intrinsic function is translated into
+       int ret;
+       return isfinite(X) ? (frexp (X, &ret) , ret) : huge
+   so that if X is a NaN or infinity, the result is HUGE(0).
+ */
+
+static void
+gfc_conv_intrinsic_exponent (gfc_se *se, gfc_expr *expr)
+{
+  tree arg, type, res, tmp, frexp, cond, huge;
+  int i;
+
+  frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP,
+				       expr->value.function.actual->expr->ts.kind);
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  arg = gfc_evaluate_now (arg, &se->pre);
+
+  i = gfc_validate_kind (BT_INTEGER, gfc_c_int_kind, false);
+  huge = gfc_conv_mpz_to_tree (gfc_integer_kinds[i].huge, gfc_c_int_kind);
+  cond = build_call_expr_loc (input_location,
+			      builtin_decl_explicit (BUILT_IN_ISFINITE),
+			      1, arg);
+
+  res = gfc_create_var (integer_type_node, NULL);
+  tmp = build_call_expr_loc (input_location, frexp, 2, arg,
+			     gfc_build_addr_expr (NULL_TREE, res));
+  tmp = fold_build2_loc (input_location, COMPOUND_EXPR, integer_type_node,
+			 tmp, res);
+  se->expr = fold_build3_loc (input_location, COND_EXPR, integer_type_node,
+			      cond, tmp, huge);
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  se->expr = fold_convert (type, se->expr);
+}
+
+
+/* Fill in the following structure
+     struct caf_vector_t {
+       size_t nvec;  // size of the vector
+       union {
+         struct {
+           void *vector;
+           int kind;
+         } v;
+         struct {
+           ptrdiff_t lower_bound;
+           ptrdiff_t upper_bound;
+           ptrdiff_t stride;
+         } triplet;
+       } u;
+     }  */
+
+static void
+conv_caf_vector_subscript_elem (stmtblock_t *block, int i, tree desc,
+				tree lower, tree upper, tree stride,
+				tree vector, int kind, tree nvec)
+{
+  tree field, type, tmp;
+
+  desc = gfc_build_array_ref (desc, gfc_rank_cst[i], NULL_TREE);
+  type = TREE_TYPE (desc);
+
+  field = gfc_advance_chain (TYPE_FIELDS (type), 0);
+  tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
+			 desc, field, NULL_TREE);
+  gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), nvec));
+
+  /* Access union.  */
+  field = gfc_advance_chain (TYPE_FIELDS (type), 1);
+  desc = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
+			  desc, field, NULL_TREE);
+  type = TREE_TYPE (desc);
+
+  /* Access the inner struct.  */
+  field = gfc_advance_chain (TYPE_FIELDS (type), vector != NULL_TREE ? 0 : 1);
+  desc = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
+		      desc, field, NULL_TREE);
+  type = TREE_TYPE (desc);
+
+  if (vector != NULL_TREE)
+    {
+      /* Set vector and kind.  */
+      field = gfc_advance_chain (TYPE_FIELDS (type), 0);
+      tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
+			 desc, field, NULL_TREE);
+      gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), vector));
+      field = gfc_advance_chain (TYPE_FIELDS (type), 1);
+      tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
+			 desc, field, NULL_TREE);
+      gfc_add_modify (block, tmp, build_int_cst (integer_type_node, kind));
+    }
+  else
+    {
+      /* Set dim.lower/upper/stride.  */
+      field = gfc_advance_chain (TYPE_FIELDS (type), 0);
+      tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
+			     desc, field, NULL_TREE);
+      gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), lower));
+
+      field = gfc_advance_chain (TYPE_FIELDS (type), 1);
+      tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
+			     desc, field, NULL_TREE);
+      gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), upper));
+
+      field = gfc_advance_chain (TYPE_FIELDS (type), 2);
+      tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
+			     desc, field, NULL_TREE);
+      gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), stride));
+    }
+}
+
+
+static tree
+conv_caf_vector_subscript (stmtblock_t *block, tree desc, gfc_array_ref *ar)
+{
+  gfc_se argse;
+  tree var, lower, upper = NULL_TREE, stride = NULL_TREE, vector, nvec;
+  tree lbound, ubound, tmp;
+  int i;
+
+  var = gfc_create_var (gfc_get_caf_vector_type (ar->dimen), "vector");
+
+  for (i = 0; i < ar->dimen; i++)
+    switch (ar->dimen_type[i])
+      {
+      case DIMEN_RANGE:
+        if (ar->end[i])
+	  {
+	    gfc_init_se (&argse, NULL);
+	    gfc_conv_expr (&argse, ar->end[i]);
+	    gfc_add_block_to_block (block, &argse.pre);
+	    upper = gfc_evaluate_now (argse.expr, block);
+	  }
+        else
+	  upper = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[i]);
+	if (ar->stride[i])
+	  {
+	    gfc_init_se (&argse, NULL);
+	    gfc_conv_expr (&argse, ar->stride[i]);
+	    gfc_add_block_to_block (block, &argse.pre);
+	    stride = gfc_evaluate_now (argse.expr, block);
+	  }
+	else
+	  stride = gfc_index_one_node;
+
+	/* Fall through.  */
+      case DIMEN_ELEMENT:
+	if (ar->start[i])
+	  {
+	    gfc_init_se (&argse, NULL);
+	    gfc_conv_expr (&argse, ar->start[i]);
+	    gfc_add_block_to_block (block, &argse.pre);
+	    lower = gfc_evaluate_now (argse.expr, block);
+	  }
+	else
+	  lower = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[i]);
+	if (ar->dimen_type[i] == DIMEN_ELEMENT)
+	  {
+	    upper = lower;
+	    stride = gfc_index_one_node;
+	  }
+	vector = NULL_TREE;
+	nvec = size_zero_node;
+	conv_caf_vector_subscript_elem (block, i, var, lower, upper, stride,
+					vector, 0, nvec);
+	break;
+
+      case DIMEN_VECTOR:
+	gfc_init_se (&argse, NULL);
+	argse.descriptor_only = 1;
+	gfc_conv_expr_descriptor (&argse, ar->start[i]);
+	gfc_add_block_to_block (block, &argse.pre);
+	vector = argse.expr;
+	lbound = gfc_conv_descriptor_lbound_get (vector, gfc_rank_cst[0]);
+	ubound = gfc_conv_descriptor_ubound_get (vector, gfc_rank_cst[0]);
+	nvec = gfc_conv_array_extent_dim (lbound, ubound, NULL);
+        tmp = gfc_conv_descriptor_stride_get (vector, gfc_rank_cst[0]);
+	nvec = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
+				TREE_TYPE (nvec), nvec, tmp);
+	lower = gfc_index_zero_node;
+	upper = gfc_index_zero_node;
+	stride = gfc_index_zero_node;
+	vector = gfc_conv_descriptor_data_get (vector);
+	conv_caf_vector_subscript_elem (block, i, var, lower, upper, stride,
+					vector, ar->start[i]->ts.kind, nvec);
+	break;
+      default:
+	gcc_unreachable();
+    }
+  return gfc_build_addr_expr (NULL_TREE, var);
+}
+
+
+static tree
+compute_component_offset (tree field, tree type)
+{
+  tree tmp;
+  if (DECL_FIELD_BIT_OFFSET (field) != NULL_TREE
+      && !integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
+    {
+      tmp = fold_build2 (TRUNC_DIV_EXPR, type,
+			 DECL_FIELD_BIT_OFFSET (field),
+			 bitsize_unit_node);
+      return fold_build2 (PLUS_EXPR, type, DECL_FIELD_OFFSET (field), tmp);
+    }
+  else
+    return DECL_FIELD_OFFSET (field);
+}
+
+
+static tree
+conv_expr_ref_to_caf_ref (stmtblock_t *block, gfc_expr *expr)
+{
+  gfc_ref *ref = expr->ref, *last_comp_ref;
+  tree caf_ref = NULL_TREE, prev_caf_ref = NULL_TREE, reference_type, tmp, tmp2,
+      field, last_type, inner_struct, mode, mode_rhs, dim_array, dim, dim_type,
+      start, end, stride, vector, nvec;
+  gfc_se se;
+  bool ref_static_array = false;
+  tree last_component_ref_tree = NULL_TREE;
+  int i, last_type_n;
+
+  if (expr->symtree)
+    {
+      last_component_ref_tree = expr->symtree->n.sym->backend_decl;
+      ref_static_array = !expr->symtree->n.sym->attr.allocatable
+	  && !expr->symtree->n.sym->attr.pointer;
+    }
+
+  /* Prevent uninit-warning.  */
+  reference_type = NULL_TREE;
+
+  /* Skip refs upto the first coarray-ref.  */
+  last_comp_ref = NULL;
+  while (ref && (ref->type != REF_ARRAY || ref->u.ar.codimen == 0))
+    {
+      /* Remember the type of components skipped.  */
+      if (ref->type == REF_COMPONENT)
+	last_comp_ref = ref;
+      ref = ref->next;
+    }
+  /* When a component was skipped, get the type information of the last
+     component ref, else get the type from the symbol.  */
+  if (last_comp_ref)
+    {
+      last_type = gfc_typenode_for_spec (&last_comp_ref->u.c.component->ts);
+      last_type_n = last_comp_ref->u.c.component->ts.type;
+    }
+  else
+    {
+      last_type = gfc_typenode_for_spec (&expr->symtree->n.sym->ts);
+      last_type_n = expr->symtree->n.sym->ts.type;
+    }
+
+  while (ref)
+    {
+      if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0
+	  && ref->u.ar.dimen == 0)
+	{
+	  /* Skip pure coindexes.  */
+	  ref = ref->next;
+	  continue;
+	}
+      tmp = gfc_create_var (gfc_get_caf_reference_type (), "caf_ref");
+      reference_type = TREE_TYPE (tmp);
+
+      if (caf_ref == NULL_TREE)
+	caf_ref = tmp;
+
+      /* Construct the chain of refs.  */
+      if (prev_caf_ref != NULL_TREE)
+	{
+	  field = gfc_advance_chain (TYPE_FIELDS (reference_type), 0);
+	  tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
+				  TREE_TYPE (field), prev_caf_ref, field,
+				  NULL_TREE);
+	  gfc_add_modify (block, tmp2, gfc_build_addr_expr (TREE_TYPE (field),
+							    tmp));
+	}
+      prev_caf_ref = tmp;
+
+      switch (ref->type)
+	{
+	case REF_COMPONENT:
+	  last_type = gfc_typenode_for_spec (&ref->u.c.component->ts);
+	  last_type_n = ref->u.c.component->ts.type;
+	  /* Set the type of the ref.  */
+	  field = gfc_advance_chain (TYPE_FIELDS (reference_type), 1);
+	  tmp = fold_build3_loc (input_location, COMPONENT_REF,
+				 TREE_TYPE (field), prev_caf_ref, field,
+				 NULL_TREE);
+	  gfc_add_modify (block, tmp, build_int_cst (integer_type_node,
+						     GFC_CAF_REF_COMPONENT));
+
+	  /* Ref the c in union u.  */
+	  field = gfc_advance_chain (TYPE_FIELDS (reference_type), 3);
+	  tmp = fold_build3_loc (input_location, COMPONENT_REF,
+				 TREE_TYPE (field), prev_caf_ref, field,
+				 NULL_TREE);
+	  field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (field)), 0);
+	  inner_struct = fold_build3_loc (input_location, COMPONENT_REF,
+				       TREE_TYPE (field), tmp, field,
+				       NULL_TREE);
+
+	  /* Set the offset.  */
+	  field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 0);
+	  tmp = fold_build3_loc (input_location, COMPONENT_REF,
+				 TREE_TYPE (field), inner_struct, field,
+				 NULL_TREE);
+	  /* Computing the offset is somewhat harder.  The bit_offset has to be
+	     taken into account.  When the bit_offset in the field_decl is non-
+	     null, divide it by the bitsize_unit and add it to the regular
+	     offset.  */
+	  tmp2 = compute_component_offset (ref->u.c.component->backend_decl,
+					   TREE_TYPE (tmp));
+	  gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (tmp), tmp2));
+
+	  /* Set caf_token_offset.  */
+	  field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 1);
+	  tmp = fold_build3_loc (input_location, COMPONENT_REF,
+				 TREE_TYPE (field), inner_struct, field,
+				 NULL_TREE);
+	  if ((ref->u.c.component->attr.allocatable
+	       || ref->u.c.component->attr.pointer)
+	      && ref->u.c.component->attr.dimension)
+	    {
+	      tree arr_desc_token_offset;
+	      /* Get the token field from the descriptor.  */
+	      arr_desc_token_offset = TREE_OPERAND (
+		    gfc_conv_descriptor_token (ref->u.c.component->backend_decl), 1);
+	      arr_desc_token_offset
+		  = compute_component_offset (arr_desc_token_offset,
+					      TREE_TYPE (tmp));
+	      tmp2 = fold_build2_loc (input_location, PLUS_EXPR,
+				      TREE_TYPE (tmp2), tmp2,
+				      arr_desc_token_offset);
+	    }
+	  else if (ref->u.c.component->caf_token)
+	    tmp2 = compute_component_offset (ref->u.c.component->caf_token,
+					     TREE_TYPE (tmp));
+	  else
+	    tmp2 = integer_zero_node;
+	  gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (tmp), tmp2));
+
+	  /* Remember whether this ref was to a non-allocatable/non-pointer
+	     component so the next array ref can be tailored correctly.  */
+	  ref_static_array = !ref->u.c.component->attr.allocatable
+	      && !ref->u.c.component->attr.pointer;
+	  last_component_ref_tree = ref_static_array
+	      ? ref->u.c.component->backend_decl : NULL_TREE;
+	  break;
+	case REF_ARRAY:
+	  if (ref_static_array && ref->u.ar.as->type == AS_DEFERRED)
+	    ref_static_array = false;
+	  /* Set the type of the ref.  */
+	  field = gfc_advance_chain (TYPE_FIELDS (reference_type), 1);
+	  tmp = fold_build3_loc (input_location, COMPONENT_REF,
+				 TREE_TYPE (field), prev_caf_ref, field,
+				 NULL_TREE);
+	  gfc_add_modify (block, tmp, build_int_cst (integer_type_node,
+						     ref_static_array
+						     ? GFC_CAF_REF_STATIC_ARRAY
+						     : GFC_CAF_REF_ARRAY));
+
+	  /* Ref the a in union u.  */
+	  field = gfc_advance_chain (TYPE_FIELDS (reference_type), 3);
+	  tmp = fold_build3_loc (input_location, COMPONENT_REF,
+				 TREE_TYPE (field), prev_caf_ref, field,
+				 NULL_TREE);
+	  field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (field)), 1);
+	  inner_struct = fold_build3_loc (input_location, COMPONENT_REF,
+				       TREE_TYPE (field), tmp, field,
+				       NULL_TREE);
+
+	  /* Set the static_array_type in a for static arrays.  */
+	  if (ref_static_array)
+	    {
+	      field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)),
+					 1);
+	      tmp = fold_build3_loc (input_location, COMPONENT_REF,
+				     TREE_TYPE (field), inner_struct, field,
+				     NULL_TREE);
+	      gfc_add_modify (block, tmp, build_int_cst (TREE_TYPE (tmp),
+							 last_type_n));
+	    }
+	  /* Ref the mode in the inner_struct.  */
+	  field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 0);
+	  mode = fold_build3_loc (input_location, COMPONENT_REF,
+				  TREE_TYPE (field), inner_struct, field,
+				  NULL_TREE);
+	  /* Ref the dim in the inner_struct.  */
+	  field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 2);
+	  dim_array = fold_build3_loc (input_location, COMPONENT_REF,
+				       TREE_TYPE (field), inner_struct, field,
+				       NULL_TREE);
+	  for (i = 0; i < ref->u.ar.dimen; ++i)
+	    {
+	      /* Ref dim i.  */
+	      dim = gfc_build_array_ref (dim_array, gfc_rank_cst[i], NULL_TREE);
+	      dim_type = TREE_TYPE (dim);
+	      mode_rhs = start = end = stride = NULL_TREE;
+	      switch (ref->u.ar.dimen_type[i])
+		{
+		case DIMEN_RANGE:
+		  if (ref->u.ar.end[i])
+		    {
+		      gfc_init_se (&se, NULL);
+		      gfc_conv_expr (&se, ref->u.ar.end[i]);
+		      gfc_add_block_to_block (block, &se.pre);
+		      if (ref_static_array)
+			{
+			  /* Make the index zero-based, when reffing a static
+			     array.  */
+			  end = se.expr;
+			  gfc_init_se (&se, NULL);
+			  gfc_conv_expr (&se, ref->u.ar.as->lower[i]);
+			  gfc_add_block_to_block (block, &se.pre);
+			  se.expr = fold_build2 (MINUS_EXPR,
+						 gfc_array_index_type,
+						 end, fold_convert (
+						   gfc_array_index_type,
+						   se.expr));
+			}
+		      end = gfc_evaluate_now (fold_convert (
+						gfc_array_index_type,
+						se.expr),
+					      block);
+		    }
+		  else if (ref_static_array)
+		    end = fold_build2 (MINUS_EXPR,
+				       gfc_array_index_type,
+				       gfc_conv_array_ubound (
+					 last_component_ref_tree, i),
+				       gfc_conv_array_lbound (
+					 last_component_ref_tree, i));
+		  else
+		    {
+		      end = NULL_TREE;
+		      mode_rhs = build_int_cst (unsigned_char_type_node,
+						GFC_CAF_ARR_REF_OPEN_END);
+		    }
+		  if (ref->u.ar.stride[i])
+		    {
+		      gfc_init_se (&se, NULL);
+		      gfc_conv_expr (&se, ref->u.ar.stride[i]);
+		      gfc_add_block_to_block (block, &se.pre);
+		      stride = gfc_evaluate_now (fold_convert (
+						   gfc_array_index_type,
+						   se.expr),
+						 block);
+		      if (ref_static_array)
+			{
+			  /* Make the index zero-based, when reffing a static
+			     array.  */
+			  stride = fold_build2 (MULT_EXPR,
+						gfc_array_index_type,
+						gfc_conv_array_stride (
+						  last_component_ref_tree,
+						  i),
+						stride);
+			  gcc_assert (end != NULL_TREE);
+			  /* Multiply with the product of array's stride and
+			     the step of the ref to a virtual upper bound.
+			     We can not compute the actual upper bound here or
+			     the caflib would compute the extend
+			     incorrectly.  */
+			  end = fold_build2 (MULT_EXPR, gfc_array_index_type,
+					     end, gfc_conv_array_stride (
+					       last_component_ref_tree,
+					       i));
+			  end = gfc_evaluate_now (end, block);
+			  stride = gfc_evaluate_now (stride, block);
+			}
+		    }
+		  else if (ref_static_array)
+		    {
+		      stride = gfc_conv_array_stride (last_component_ref_tree,
+						      i);
+		      end = fold_build2 (MULT_EXPR, gfc_array_index_type,
+					 end, stride);
+		      end = gfc_evaluate_now (end, block);
+		    }
+		  else
+		    /* Always set a ref stride of one to make caflib's
+		       handling easier.  */
+		    stride = gfc_index_one_node;
+
+		  /* Fall through.  */
+		case DIMEN_ELEMENT:
+		  if (ref->u.ar.start[i])
+		    {
+		      gfc_init_se (&se, NULL);
+		      gfc_conv_expr (&se, ref->u.ar.start[i]);
+		      gfc_add_block_to_block (block, &se.pre);
+		      if (ref_static_array)
+			{
+			  /* Make the index zero-based, when reffing a static
+			     array.  */
+			  start = fold_convert (gfc_array_index_type, se.expr);
+			  gfc_init_se (&se, NULL);
+			  gfc_conv_expr (&se, ref->u.ar.as->lower[i]);
+			  gfc_add_block_to_block (block, &se.pre);
+			  se.expr = fold_build2 (MINUS_EXPR,
+						 gfc_array_index_type,
+						 start, fold_convert (
+						   gfc_array_index_type,
+						   se.expr));
+			  /* Multiply with the stride.  */
+			  se.expr = fold_build2 (MULT_EXPR,
+						 gfc_array_index_type,
+						 se.expr,
+						 gfc_conv_array_stride (
+						   last_component_ref_tree,
+						   i));
+			}
+		      start = gfc_evaluate_now (fold_convert (
+						  gfc_array_index_type,
+						  se.expr),
+						block);
+		      if (mode_rhs == NULL_TREE)
+			mode_rhs = build_int_cst (unsigned_char_type_node,
+						  ref->u.ar.dimen_type[i]
+						  == DIMEN_ELEMENT
+						  ? GFC_CAF_ARR_REF_SINGLE
+						  : GFC_CAF_ARR_REF_RANGE);
+		    }
+		  else if (ref_static_array)
+		    {
+		      start = integer_zero_node;
+		      mode_rhs = build_int_cst (unsigned_char_type_node,
+						ref->u.ar.start[i] == NULL
+						? GFC_CAF_ARR_REF_FULL
+						: GFC_CAF_ARR_REF_RANGE);
+		    }
+		  else if (end == NULL_TREE)
+		    mode_rhs = build_int_cst (unsigned_char_type_node,
+					      GFC_CAF_ARR_REF_FULL);
+		  else
+		    mode_rhs = build_int_cst (unsigned_char_type_node,
+					      GFC_CAF_ARR_REF_OPEN_START);
+
+		  /* Ref the s in dim.  */
+		  field = gfc_advance_chain (TYPE_FIELDS (dim_type), 0);
+		  tmp = fold_build3_loc (input_location, COMPONENT_REF,
+					 TREE_TYPE (field), dim, field,
+					 NULL_TREE);
+
+		  /* Set start in s.  */
+		  if (start != NULL_TREE)
+		    {
+		      field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)),
+						 0);
+		      tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
+					      TREE_TYPE (field), tmp, field,
+					      NULL_TREE);
+		      gfc_add_modify (block, tmp2,
+				      fold_convert (TREE_TYPE (tmp2), start));
+		    }
+
+		  /* Set end in s.  */
+		  if (end != NULL_TREE)
+		    {
+		      field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)),
+						 1);
+		      tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
+					      TREE_TYPE (field), tmp, field,
+					      NULL_TREE);
+		      gfc_add_modify (block, tmp2,
+				      fold_convert (TREE_TYPE (tmp2), end));
+		    }
+
+		  /* Set end in s.  */
+		  if (stride != NULL_TREE)
+		    {
+		      field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)),
+						 2);
+		      tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
+					      TREE_TYPE (field), tmp, field,
+					      NULL_TREE);
+		      gfc_add_modify (block, tmp2,
+				      fold_convert (TREE_TYPE (tmp2), stride));
+		    }
+		  break;
+		case DIMEN_VECTOR:
+		  /* TODO: In case of static array.  */
+		  gcc_assert (!ref_static_array);
+		  mode_rhs = build_int_cst (unsigned_char_type_node,
+					    GFC_CAF_ARR_REF_VECTOR);
+		  gfc_init_se (&se, NULL);
+		  se.descriptor_only = 1;
+		  gfc_conv_expr_descriptor (&se, ref->u.ar.start[i]);
+		  gfc_add_block_to_block (block, &se.pre);
+		  vector = se.expr;
+		  tmp = gfc_conv_descriptor_lbound_get (vector,
+							gfc_rank_cst[0]);
+		  tmp2 = gfc_conv_descriptor_ubound_get (vector,
+							 gfc_rank_cst[0]);
+		  nvec = gfc_conv_array_extent_dim (tmp, tmp2, NULL);
+		  tmp = gfc_conv_descriptor_stride_get (vector,
+							gfc_rank_cst[0]);
+		  nvec = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
+					  TREE_TYPE (nvec), nvec, tmp);
+		  vector = gfc_conv_descriptor_data_get (vector);
+
+		  /* Ref the v in dim.  */
+		  field = gfc_advance_chain (TYPE_FIELDS (dim_type), 1);
+		  tmp = fold_build3_loc (input_location, COMPONENT_REF,
+					 TREE_TYPE (field), dim, field,
+					 NULL_TREE);
+
+		  /* Set vector in v.  */
+		  field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), 0);
+		  tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
+					  TREE_TYPE (field), tmp, field,
+					  NULL_TREE);
+		  gfc_add_modify (block, tmp2, fold_convert (TREE_TYPE (tmp2),
+							     vector));
+
+		  /* Set nvec in v.  */
+		  field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), 1);
+		  tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
+					  TREE_TYPE (field), tmp, field,
+					  NULL_TREE);
+		  gfc_add_modify (block, tmp2, fold_convert (TREE_TYPE (tmp2),
+							     nvec));
+
+		  /* Set kind in v.  */
+		  field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), 2);
+		  tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
+					  TREE_TYPE (field), tmp, field,
+					  NULL_TREE);
+		  gfc_add_modify (block, tmp2, build_int_cst (integer_type_node,
+						  ref->u.ar.start[i]->ts.kind));
+		  break;
+		default:
+		  gcc_unreachable ();
+		}
+	      /* Set the mode for dim i.  */
+	      tmp = gfc_build_array_ref (mode, gfc_rank_cst[i], NULL_TREE);
+	      gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (tmp),
+							mode_rhs));
+	    }
+
+	  /* Set the mode for dim i+1 to GFC_ARR_REF_NONE.  */
+	  if (i < GFC_MAX_DIMENSIONS)
+	    {
+	      tmp = gfc_build_array_ref (mode, gfc_rank_cst[i], NULL_TREE);
+	      gfc_add_modify (block, tmp,
+			      build_int_cst (unsigned_char_type_node,
+					     GFC_CAF_ARR_REF_NONE));
+	    }
+	  break;
+	default:
+	  gcc_unreachable ();
+	}
+
+      /* Set the size of the current type.  */
+      field = gfc_advance_chain (TYPE_FIELDS (reference_type), 2);
+      tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
+			     prev_caf_ref, field, NULL_TREE);
+      gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field),
+						TYPE_SIZE_UNIT (last_type)));
+
+      ref = ref->next;
+    }
+
+  if (prev_caf_ref != NULL_TREE)
+    {
+      field = gfc_advance_chain (TYPE_FIELDS (reference_type), 0);
+      tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
+			     prev_caf_ref, field, NULL_TREE);
+      gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field),
+						  null_pointer_node));
+    }
+  return caf_ref != NULL_TREE ? gfc_build_addr_expr (NULL_TREE, caf_ref)
+			      : NULL_TREE;
+}
+
+/* Get data from a remote coarray.  */
+
+static void
+gfc_conv_intrinsic_caf_get (gfc_se *se, gfc_expr *expr, tree lhs, tree lhs_kind,
+			    tree may_require_tmp, bool may_realloc,
+			    symbol_attribute *caf_attr)
+{
+  gfc_expr *array_expr, *tmp_stat;
+  gfc_se argse;
+  tree caf_decl, token, offset, image_index, tmp;
+  tree res_var, dst_var, type, kind, vec, stat;
+  tree caf_reference;
+  symbol_attribute caf_attr_store;
+
+  gcc_assert (flag_coarray == GFC_FCOARRAY_LIB);
+
+  if (se->ss && se->ss->info->useflags)
+    {
+       /* Access the previously obtained result.  */
+       gfc_conv_tmp_array_ref (se);
+       return;
+    }
+
+  /* If lhs is set, the CAF_GET intrinsic has already been stripped.  */
+  array_expr = (lhs == NULL_TREE) ? expr->value.function.actual->expr : expr;
+  type = gfc_typenode_for_spec (&array_expr->ts);
+
+  if (caf_attr == NULL)
+    {
+      caf_attr_store = gfc_caf_attr (array_expr);
+      caf_attr = &caf_attr_store;
+    }
+
+  res_var = lhs;
+  dst_var = lhs;
+
+  vec = null_pointer_node;
+  tmp_stat = gfc_find_stat_co (expr);
+
+  if (tmp_stat)
+    {
+      gfc_se stat_se;
+      gfc_init_se (&stat_se, NULL);
+      gfc_conv_expr_reference (&stat_se, tmp_stat);
+      stat = stat_se.expr;
+      gfc_add_block_to_block (&se->pre, &stat_se.pre);
+      gfc_add_block_to_block (&se->post, &stat_se.post);
+    }
+  else
+    stat = null_pointer_node;
+
+  /* Only use the new get_by_ref () where it is necessary.  I.e., when the lhs
+     is reallocatable or the right-hand side has allocatable components.  */
+  if (caf_attr->alloc_comp || caf_attr->pointer_comp || may_realloc)
+    {
+      /* Get using caf_get_by_ref.  */
+      caf_reference = conv_expr_ref_to_caf_ref (&se->pre, array_expr);
+
+      if (caf_reference != NULL_TREE)
+	{
+	  if (lhs == NULL_TREE)
+	    {
+	      if (array_expr->ts.type == BT_CHARACTER)
+		gfc_init_se (&argse, NULL);
+	      if (array_expr->rank == 0)
+		{
+		  symbol_attribute attr;
+		  gfc_clear_attr (&attr);
+		  if (array_expr->ts.type == BT_CHARACTER)
+		    {
+		      res_var = gfc_conv_string_tmp (se,
+						     build_pointer_type (type),
+					     array_expr->ts.u.cl->backend_decl);
+		      argse.string_length = array_expr->ts.u.cl->backend_decl;
+		    }
+		  else
+		    res_var = gfc_create_var (type, "caf_res");
+		  dst_var = gfc_conv_scalar_to_descriptor (se, res_var, attr);
+		  dst_var = gfc_build_addr_expr (NULL_TREE, dst_var);
+		}
+	      else
+		{
+		  /* Create temporary.  */
+		  if (array_expr->ts.type == BT_CHARACTER)
+		    gfc_conv_expr_descriptor (&argse, array_expr);
+		  may_realloc = gfc_trans_create_temp_array (&se->pre,
+							     &se->post,
+							     se->ss, type,
+							     NULL_TREE, false,
+							     false, false,
+							     &array_expr->where)
+		      == NULL_TREE;
+		  res_var = se->ss->info->data.array.descriptor;
+		  dst_var = gfc_build_addr_expr (NULL_TREE, res_var);
+		  if (may_realloc)
+		    {
+		      tmp = gfc_conv_descriptor_data_get (res_var);
+		      tmp = gfc_deallocate_with_status (tmp, NULL_TREE,
+							NULL_TREE, NULL_TREE,
+							NULL_TREE, true,
+							NULL,
+						     GFC_CAF_COARRAY_NOCOARRAY);
+		      gfc_add_expr_to_block (&se->post, tmp);
+		    }
+		}
+	    }
+
+	  kind = build_int_cst (integer_type_node, expr->ts.kind);
+	  if (lhs_kind == NULL_TREE)
+	    lhs_kind = kind;
+
+	  caf_decl = gfc_get_tree_for_caf_expr (array_expr);
+	  if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
+	    caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
+	  image_index = gfc_caf_get_image_index (&se->pre, array_expr,
+						 caf_decl);
+	  gfc_get_caf_token_offset (se, &token, NULL, caf_decl, NULL,
+				    array_expr);
+
+	  /* No overlap possible as we have generated a temporary.  */
+	  if (lhs == NULL_TREE)
+	    may_require_tmp = boolean_false_node;
+
+	  /* It guarantees memory consistency within the same segment.  */
+	  tmp = gfc_build_string_const (strlen ("memory") + 1, "memory");
+	  tmp = build5_loc (input_location, ASM_EXPR, void_type_node,
+			    gfc_build_string_const (1, ""), NULL_TREE,
+			    NULL_TREE, tree_cons (NULL_TREE, tmp, NULL_TREE),
+			    NULL_TREE);
+	  ASM_VOLATILE_P (tmp) = 1;
+	  gfc_add_expr_to_block (&se->pre, tmp);
+
+	  tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_get_by_ref,
+				     9, token, image_index, dst_var,
+				     caf_reference, lhs_kind, kind,
+				     may_require_tmp,
+				     may_realloc ? boolean_true_node :
+						   boolean_false_node,
+				     stat);
+
+	  gfc_add_expr_to_block (&se->pre, tmp);
+
+	  if (se->ss)
+	    gfc_advance_se_ss_chain (se);
+
+	  se->expr = res_var;
+	  if (array_expr->ts.type == BT_CHARACTER)
+	    se->string_length = argse.string_length;
+
+	  return;
+	}
+    }
+
+  gfc_init_se (&argse, NULL);
+  if (array_expr->rank == 0)
+    {
+      symbol_attribute attr;
+
+      gfc_clear_attr (&attr);
+      gfc_conv_expr (&argse, array_expr);
+
+      if (lhs == NULL_TREE)
+	{
+	  gfc_clear_attr (&attr);
+	  if (array_expr->ts.type == BT_CHARACTER)
+	    res_var = gfc_conv_string_tmp (se, build_pointer_type (type),
+					   argse.string_length);
+	  else
+	    res_var = gfc_create_var (type, "caf_res");
+	  dst_var = gfc_conv_scalar_to_descriptor (&argse, res_var, attr);
+	  dst_var = gfc_build_addr_expr (NULL_TREE, dst_var);
+	}
+      argse.expr = gfc_conv_scalar_to_descriptor (&argse, argse.expr, attr);
+      argse.expr = gfc_build_addr_expr (NULL_TREE, argse.expr);
+    }
+  else
+    {
+      /* If has_vector, pass descriptor for whole array and the
+         vector bounds separately.  */
+      gfc_array_ref *ar, ar2;
+      bool has_vector = false;
+
+      if (gfc_is_coindexed (expr) && gfc_has_vector_subscript (expr))
+	{
+          has_vector = true;
+          ar = gfc_find_array_ref (expr);
+	  ar2 = *ar;
+	  memset (ar, '\0', sizeof (*ar));
+	  ar->as = ar2.as;
+	  ar->type = AR_FULL;
+	}
+      // TODO: Check whether argse.want_coarray = 1 can help with the below.
+      gfc_conv_expr_descriptor (&argse, array_expr);
+      /* Using gfc_conv_expr_descriptor, we only get the descriptor, but that
+	 has the wrong type if component references are done.  */
+      gfc_add_modify (&argse.pre, gfc_conv_descriptor_dtype (argse.expr),
+		      gfc_get_dtype_rank_type (has_vector ? ar2.dimen
+							  : array_expr->rank,
+					       type));
+      if (has_vector)
+	{
+	  vec = conv_caf_vector_subscript (&argse.pre, argse.expr, &ar2);
+	  *ar = ar2;
+	}
+
+      if (lhs == NULL_TREE)
+	{
+	  /* Create temporary.  */
+	  for (int n = 0; n < se->ss->loop->dimen; n++)
+	    if (se->loop->to[n] == NULL_TREE)
+	      {
+		se->loop->from[n] = gfc_conv_descriptor_lbound_get (argse.expr,
+							       gfc_rank_cst[n]);
+		se->loop->to[n] = gfc_conv_descriptor_ubound_get (argse.expr,
+							       gfc_rank_cst[n]);
+	      }
+	  gfc_trans_create_temp_array (&argse.pre, &argse.post, se->ss, type,
+				       NULL_TREE, false, true, false,
+				       &array_expr->where);
+	  res_var = se->ss->info->data.array.descriptor;
+	  dst_var = gfc_build_addr_expr (NULL_TREE, res_var);
+	}
+      argse.expr = gfc_build_addr_expr (NULL_TREE, argse.expr);
+    }
+
+  kind = build_int_cst (integer_type_node, expr->ts.kind);
+  if (lhs_kind == NULL_TREE)
+    lhs_kind = kind;
+
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+  gfc_add_block_to_block (&se->post, &argse.post);
+
+  caf_decl = gfc_get_tree_for_caf_expr (array_expr);
+  if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
+    caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
+  image_index = gfc_caf_get_image_index (&se->pre, array_expr, caf_decl);
+  gfc_get_caf_token_offset (se, &token, &offset, caf_decl, argse.expr,
+			    array_expr);
+
+  /* No overlap possible as we have generated a temporary.  */
+  if (lhs == NULL_TREE)
+    may_require_tmp = boolean_false_node;
+
+  /* It guarantees memory consistency within the same segment.  */
+  tmp = gfc_build_string_const (strlen ("memory") + 1, "memory");
+  tmp = build5_loc (input_location, ASM_EXPR, void_type_node,
+		    gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE,
+		    tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE);
+  ASM_VOLATILE_P (tmp) = 1;
+  gfc_add_expr_to_block (&se->pre, tmp);
+
+  tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_get, 10,
+			     token, offset, image_index, argse.expr, vec,
+			     dst_var, kind, lhs_kind, may_require_tmp, stat);
+
+  gfc_add_expr_to_block (&se->pre, tmp);
+
+  if (se->ss)
+    gfc_advance_se_ss_chain (se);
+
+  se->expr = res_var;
+  if (array_expr->ts.type == BT_CHARACTER)
+    se->string_length = argse.string_length;
+}
+
+
+/* Send data to a remote coarray.  */
+
+static tree
+conv_caf_send (gfc_code *code) {
+  gfc_expr *lhs_expr, *rhs_expr, *tmp_stat;
+  gfc_se lhs_se, rhs_se;
+  stmtblock_t block;
+  tree caf_decl, token, offset, image_index, tmp, lhs_kind, rhs_kind;
+  tree may_require_tmp, src_stat, dst_stat;
+  tree lhs_type = NULL_TREE;
+  tree vec = null_pointer_node, rhs_vec = null_pointer_node;
+  symbol_attribute lhs_caf_attr, rhs_caf_attr;
+
+  gcc_assert (flag_coarray == GFC_FCOARRAY_LIB);
+
+  lhs_expr = code->ext.actual->expr;
+  rhs_expr = code->ext.actual->next->expr;
+  may_require_tmp = gfc_check_dependency (lhs_expr, rhs_expr, false) == 0
+		    ? boolean_false_node : boolean_true_node;
+  gfc_init_block (&block);
+
+  lhs_caf_attr = gfc_caf_attr (lhs_expr);
+  rhs_caf_attr = gfc_caf_attr (rhs_expr);
+  src_stat = dst_stat = null_pointer_node;
+
+  /* LHS.  */
+  gfc_init_se (&lhs_se, NULL);
+  if (lhs_expr->rank == 0)
+    {
+      symbol_attribute attr;
+      gfc_clear_attr (&attr);
+      gfc_conv_expr (&lhs_se, lhs_expr);
+      lhs_type = TREE_TYPE (lhs_se.expr);
+      lhs_se.expr = gfc_conv_scalar_to_descriptor (&lhs_se, lhs_se.expr, attr);
+      lhs_se.expr = gfc_build_addr_expr (NULL_TREE, lhs_se.expr);
+    }
+  else if ((lhs_caf_attr.alloc_comp || lhs_caf_attr.pointer_comp)
+	   && lhs_caf_attr.codimension)
+    {
+      lhs_se.want_pointer = 1;
+      gfc_conv_expr_descriptor (&lhs_se, lhs_expr);
+      /* Using gfc_conv_expr_descriptor, we only get the descriptor, but that
+	 has the wrong type if component references are done.  */
+      lhs_type = gfc_typenode_for_spec (&lhs_expr->ts);
+      tmp = build_fold_indirect_ref_loc (input_location, lhs_se.expr);
+      gfc_add_modify (&lhs_se.pre, gfc_conv_descriptor_dtype (tmp),
+		      gfc_get_dtype_rank_type (
+			gfc_has_vector_subscript (lhs_expr)
+			? gfc_find_array_ref (lhs_expr)->dimen
+			: lhs_expr->rank,
+		      lhs_type));
+    }
+  else
+    {
+      /* If has_vector, pass descriptor for whole array and the
+         vector bounds separately.  */
+      gfc_array_ref *ar, ar2;
+      bool has_vector = false;
+
+      if (gfc_is_coindexed (lhs_expr) && gfc_has_vector_subscript (lhs_expr))
+	{
+          has_vector = true;
+          ar = gfc_find_array_ref (lhs_expr);
+	  ar2 = *ar;
+	  memset (ar, '\0', sizeof (*ar));
+	  ar->as = ar2.as;
+	  ar->type = AR_FULL;
+	}
+      lhs_se.want_pointer = 1;
+      gfc_conv_expr_descriptor (&lhs_se, lhs_expr);
+      /* Using gfc_conv_expr_descriptor, we only get the descriptor, but that
+         has the wrong type if component references are done.  */
+      lhs_type = gfc_typenode_for_spec (&lhs_expr->ts);
+      tmp = build_fold_indirect_ref_loc (input_location, lhs_se.expr);
+      gfc_add_modify (&lhs_se.pre, gfc_conv_descriptor_dtype (tmp),
+                      gfc_get_dtype_rank_type (has_vector ? ar2.dimen
+							  : lhs_expr->rank,
+		      lhs_type));
+      if (has_vector)
+	{
+	  vec = conv_caf_vector_subscript (&block, lhs_se.expr, &ar2);
+	  *ar = ar2;
+	}
+    }
+
+  lhs_kind = build_int_cst (integer_type_node, lhs_expr->ts.kind);
+
+  /* Special case: RHS is a coarray but LHS is not; this code path avoids a
+     temporary and a loop.  */
+  if (!gfc_is_coindexed (lhs_expr)
+      && (!lhs_caf_attr.codimension
+	  || !(lhs_expr->rank > 0
+	       && (lhs_caf_attr.allocatable || lhs_caf_attr.pointer))))
+    {
+      bool lhs_may_realloc = lhs_expr->rank > 0 && lhs_caf_attr.allocatable;
+      gcc_assert (gfc_is_coindexed (rhs_expr));
+      gfc_init_se (&rhs_se, NULL);
+      if (lhs_expr->rank == 0 && lhs_caf_attr.allocatable)
+	{
+	  gfc_se scal_se;
+	  gfc_init_se (&scal_se, NULL);
+	  scal_se.want_pointer = 1;
+	  gfc_conv_expr (&scal_se, lhs_expr);
+	  /* Ensure scalar on lhs is allocated.  */
+	  gfc_add_block_to_block (&block, &scal_se.pre);
+
+	  gfc_allocate_using_malloc (&scal_se.pre, scal_se.expr,
+				    TYPE_SIZE_UNIT (
+				       gfc_typenode_for_spec (&lhs_expr->ts)),
+				    NULL_TREE);
+	  tmp = fold_build2 (EQ_EXPR, boolean_type_node, scal_se.expr,
+			     null_pointer_node);
+	  tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
+				 tmp, gfc_finish_block (&scal_se.pre),
+				 build_empty_stmt (input_location));
+	  gfc_add_expr_to_block (&block, tmp);
+	}
+      else
+	lhs_may_realloc = lhs_may_realloc
+	    && gfc_full_array_ref_p (lhs_expr->ref, NULL);
+      gfc_add_block_to_block (&block, &lhs_se.pre);
+      gfc_conv_intrinsic_caf_get (&rhs_se, rhs_expr, lhs_se.expr, lhs_kind,
+				  may_require_tmp, lhs_may_realloc,
+				  &rhs_caf_attr);
+      gfc_add_block_to_block (&block, &rhs_se.pre);
+      gfc_add_block_to_block (&block, &rhs_se.post);
+      gfc_add_block_to_block (&block, &lhs_se.post);
+      return gfc_finish_block (&block);
+    }
+
+  gfc_add_block_to_block (&block, &lhs_se.pre);
+
+  /* Obtain token, offset and image index for the LHS.  */
+  caf_decl = gfc_get_tree_for_caf_expr (lhs_expr);
+  if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
+    caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
+  image_index = gfc_caf_get_image_index (&block, lhs_expr, caf_decl);
+  tmp = lhs_se.expr;
+  if (lhs_caf_attr.alloc_comp)
+    gfc_get_caf_token_offset (&lhs_se, &token, NULL, caf_decl, NULL_TREE,
+			      NULL);
+  else
+    gfc_get_caf_token_offset (&lhs_se, &token, &offset, caf_decl, tmp,
+			      lhs_expr);
+  lhs_se.expr = tmp;
+
+  /* RHS.  */
+  gfc_init_se (&rhs_se, NULL);
+  if (rhs_expr->expr_type == EXPR_FUNCTION && rhs_expr->value.function.isym
+      && rhs_expr->value.function.isym->id == GFC_ISYM_CONVERSION)
+    rhs_expr = rhs_expr->value.function.actual->expr;
+  if (rhs_expr->rank == 0)
+    {
+      symbol_attribute attr;
+      gfc_clear_attr (&attr);
+      gfc_conv_expr (&rhs_se, rhs_expr);
+      rhs_se.expr = gfc_conv_scalar_to_descriptor (&rhs_se, rhs_se.expr, attr);
+      rhs_se.expr = gfc_build_addr_expr (NULL_TREE, rhs_se.expr);
+    }
+  else if ((rhs_caf_attr.alloc_comp || rhs_caf_attr.pointer_comp)
+	   && rhs_caf_attr.codimension)
+    {
+      tree tmp2;
+      rhs_se.want_pointer = 1;
+      gfc_conv_expr_descriptor (&rhs_se, rhs_expr);
+      /* Using gfc_conv_expr_descriptor, we only get the descriptor, but that
+	 has the wrong type if component references are done.  */
+      tmp2 = gfc_typenode_for_spec (&rhs_expr->ts);
+      tmp = build_fold_indirect_ref_loc (input_location, rhs_se.expr);
+      gfc_add_modify (&rhs_se.pre, gfc_conv_descriptor_dtype (tmp),
+		      gfc_get_dtype_rank_type (
+			gfc_has_vector_subscript (rhs_expr)
+			? gfc_find_array_ref (rhs_expr)->dimen
+			: rhs_expr->rank,
+		      tmp2));
+    }
+  else
+    {
+      /* If has_vector, pass descriptor for whole array and the
+         vector bounds separately.  */
+      gfc_array_ref *ar, ar2;
+      bool has_vector = false;
+      tree tmp2;
+
+      if (gfc_is_coindexed (rhs_expr) && gfc_has_vector_subscript (rhs_expr))
+	{
+          has_vector = true;
+          ar = gfc_find_array_ref (rhs_expr);
+	  ar2 = *ar;
+	  memset (ar, '\0', sizeof (*ar));
+	  ar->as = ar2.as;
+	  ar->type = AR_FULL;
+	}
+      rhs_se.want_pointer = 1;
+      gfc_conv_expr_descriptor (&rhs_se, rhs_expr);
+      /* Using gfc_conv_expr_descriptor, we only get the descriptor, but that
+         has the wrong type if component references are done.  */
+      tmp = build_fold_indirect_ref_loc (input_location, rhs_se.expr);
+      tmp2 = gfc_typenode_for_spec (&rhs_expr->ts);
+      gfc_add_modify (&rhs_se.pre, gfc_conv_descriptor_dtype (tmp),
+                      gfc_get_dtype_rank_type (has_vector ? ar2.dimen
+							  : rhs_expr->rank,
+		      tmp2));
+      if (has_vector)
+	{
+	  rhs_vec = conv_caf_vector_subscript (&block, rhs_se.expr, &ar2);
+	  *ar = ar2;
+	}
+    }
+
+  gfc_add_block_to_block (&block, &rhs_se.pre);
+
+  rhs_kind = build_int_cst (integer_type_node, rhs_expr->ts.kind);
+
+  tmp_stat = gfc_find_stat_co (lhs_expr);
+
+  if (tmp_stat)
+    {
+      gfc_se stat_se;
+      gfc_init_se (&stat_se, NULL);
+      gfc_conv_expr_reference (&stat_se, tmp_stat);
+      dst_stat = stat_se.expr;
+      gfc_add_block_to_block (&block, &stat_se.pre);
+      gfc_add_block_to_block (&block, &stat_se.post);
+    }
+
+  if (!gfc_is_coindexed (rhs_expr))
+    {
+      if (lhs_caf_attr.alloc_comp || lhs_caf_attr.pointer_comp)
+	{
+	  tree reference, dst_realloc;
+	  reference = conv_expr_ref_to_caf_ref (&block, lhs_expr);
+	  dst_realloc = lhs_caf_attr.allocatable ? boolean_true_node
+					     : boolean_false_node;
+	  tmp = build_call_expr_loc (input_location,
+				     gfor_fndecl_caf_send_by_ref,
+				     9, token, image_index, rhs_se.expr,
+				     reference, lhs_kind, rhs_kind,
+				     may_require_tmp, dst_realloc, src_stat);
+	  }
+      else
+	tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_send, 10,
+				   token, offset, image_index, lhs_se.expr, vec,
+				   rhs_se.expr, lhs_kind, rhs_kind,
+				   may_require_tmp, src_stat);
+    }
+  else
+    {
+      tree rhs_token, rhs_offset, rhs_image_index;
+
+      /* It guarantees memory consistency within the same segment.  */
+      tmp = gfc_build_string_const (strlen ("memory") + 1, "memory");
+      tmp = build5_loc (input_location, ASM_EXPR, void_type_node,
+			  gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE,
+			  tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE);
+      ASM_VOLATILE_P (tmp) = 1;
+      gfc_add_expr_to_block (&block, tmp);
+
+      caf_decl = gfc_get_tree_for_caf_expr (rhs_expr);
+      if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
+	caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
+      rhs_image_index = gfc_caf_get_image_index (&block, rhs_expr, caf_decl);
+      tmp = rhs_se.expr;
+      if (rhs_caf_attr.alloc_comp || rhs_caf_attr.pointer_comp)
+	{
+	  tmp_stat = gfc_find_stat_co (lhs_expr);
+
+	  if (tmp_stat)
+	    {
+	      gfc_se stat_se;
+	      gfc_init_se (&stat_se, NULL);
+	      gfc_conv_expr_reference (&stat_se, tmp_stat);
+	      src_stat = stat_se.expr;
+	      gfc_add_block_to_block (&block, &stat_se.pre);
+	      gfc_add_block_to_block (&block, &stat_se.post);
+	    }
+
+	  gfc_get_caf_token_offset (&rhs_se, &rhs_token, NULL, caf_decl,
+				    NULL_TREE, NULL);
+	  tree lhs_reference, rhs_reference;
+	  lhs_reference = conv_expr_ref_to_caf_ref (&block, lhs_expr);
+	  rhs_reference = conv_expr_ref_to_caf_ref (&block, rhs_expr);
+	  tmp = build_call_expr_loc (input_location,
+				     gfor_fndecl_caf_sendget_by_ref, 11,
+				     token, image_index, lhs_reference,
+				     rhs_token, rhs_image_index, rhs_reference,
+				     lhs_kind, rhs_kind, may_require_tmp,
+				     dst_stat, src_stat);
+	}
+      else
+	{
+	  gfc_get_caf_token_offset (&rhs_se, &rhs_token, &rhs_offset, caf_decl,
+				    tmp, rhs_expr);
+	  tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_sendget,
+				     14, token, offset, image_index,
+				     lhs_se.expr, vec, rhs_token, rhs_offset,
+				     rhs_image_index, tmp, rhs_vec, lhs_kind,
+				     rhs_kind, may_require_tmp, src_stat);
+	}
+    }
+  gfc_add_expr_to_block (&block, tmp);
+  gfc_add_block_to_block (&block, &lhs_se.post);
+  gfc_add_block_to_block (&block, &rhs_se.post);
+
+  /* It guarantees memory consistency within the same segment.  */
+  tmp = gfc_build_string_const (strlen ("memory") + 1, "memory");
+  tmp = build5_loc (input_location, ASM_EXPR, void_type_node,
+		    gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE,
+		    tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE);
+  ASM_VOLATILE_P (tmp) = 1;
+  gfc_add_expr_to_block (&block, tmp);
+
+  return gfc_finish_block (&block);
+}
+
+
+static void
+trans_this_image (gfc_se * se, gfc_expr *expr)
+{
+  stmtblock_t loop;
+  tree type, desc, dim_arg, cond, tmp, m, loop_var, exit_label, min_var,
+       lbound, ubound, extent, ml;
+  gfc_se argse;
+  int rank, corank;
+  gfc_expr *distance = expr->value.function.actual->next->next->expr;
+
+  if (expr->value.function.actual->expr
+      && !gfc_is_coarray (expr->value.function.actual->expr))
+    distance = expr->value.function.actual->expr;
+
+  /* The case -fcoarray=single is handled elsewhere.  */
+  gcc_assert (flag_coarray != GFC_FCOARRAY_SINGLE);
+
+  /* Argument-free version: THIS_IMAGE().  */
+  if (distance || expr->value.function.actual->expr == NULL)
+    {
+      if (distance)
+	{
+	  gfc_init_se (&argse, NULL);
+	  gfc_conv_expr_val (&argse, distance);
+	  gfc_add_block_to_block (&se->pre, &argse.pre);
+	  gfc_add_block_to_block (&se->post, &argse.post);
+	  tmp = fold_convert (integer_type_node, argse.expr);
+	}
+      else
+	tmp = integer_zero_node;
+      tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_this_image, 1,
+				 tmp);
+      se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind),
+			       tmp);
+      return;
+    }
+
+  /* Coarray-argument version: THIS_IMAGE(coarray [, dim]).  */
+
+  type = gfc_get_int_type (gfc_default_integer_kind);
+  corank = gfc_get_corank (expr->value.function.actual->expr);
+  rank = expr->value.function.actual->expr->rank;
+
+  /* Obtain the descriptor of the COARRAY.  */
+  gfc_init_se (&argse, NULL);
+  argse.want_coarray = 1;
+  gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr);
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+  gfc_add_block_to_block (&se->post, &argse.post);
+  desc = argse.expr;
+
+  if (se->ss)
+    {
+      /* Create an implicit second parameter from the loop variable.  */
+      gcc_assert (!expr->value.function.actual->next->expr);
+      gcc_assert (corank > 0);
+      gcc_assert (se->loop->dimen == 1);
+      gcc_assert (se->ss->info->expr == expr);
+
+      dim_arg = se->loop->loopvar[0];
+      dim_arg = fold_build2_loc (input_location, PLUS_EXPR,
+				 gfc_array_index_type, dim_arg,
+				 build_int_cst (TREE_TYPE (dim_arg), 1));
+      gfc_advance_se_ss_chain (se);
+    }
+  else
+    {
+      /* Use the passed DIM= argument.  */
+      gcc_assert (expr->value.function.actual->next->expr);
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr_type (&argse, expr->value.function.actual->next->expr,
+			  gfc_array_index_type);
+      gfc_add_block_to_block (&se->pre, &argse.pre);
+      dim_arg = argse.expr;
+
+      if (INTEGER_CST_P (dim_arg))
+	{
+	  if (wi::ltu_p (wi::to_wide (dim_arg), 1)
+	      || wi::gtu_p (wi::to_wide (dim_arg),
+			    GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc))))
+	    gfc_error ("%<dim%> argument of %s intrinsic at %L is not a valid "
+		       "dimension index", expr->value.function.isym->name,
+		       &expr->where);
+	}
+     else if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
+	{
+	  dim_arg = gfc_evaluate_now (dim_arg, &se->pre);
+	  cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
+				  dim_arg,
+				  build_int_cst (TREE_TYPE (dim_arg), 1));
+	  tmp = gfc_rank_cst[GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc))];
+	  tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
+				 dim_arg, tmp);
+	  cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR,
+				  boolean_type_node, cond, tmp);
+	  gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
+			           gfc_msg_fault);
+	}
+    }
+
+  /* Used algorithm; cf. Fortran 2008, C.10. Note, due to the scalarizer,
+     one always has a dim_arg argument.
+
+     m = this_image() - 1
+     if (corank == 1)
+       {
+	 sub(1) = m + lcobound(corank)
+	 return;
+       }
+     i = rank
+     min_var = min (rank + corank - 2, rank + dim_arg - 1)
+     for (;;)
+       {
+	 extent = gfc_extent(i)
+	 ml = m
+	 m  = m/extent
+	 if (i >= min_var)
+	   goto exit_label
+	 i++
+       }
+     exit_label:
+     sub(dim_arg) = (dim_arg < corank) ? ml - m*extent + lcobound(dim_arg)
+				       : m + lcobound(corank)
+  */
+
+  /* this_image () - 1.  */
+  tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_this_image, 1,
+			     integer_zero_node);
+  tmp = fold_build2_loc (input_location, MINUS_EXPR, type,
+			 fold_convert (type, tmp), build_int_cst (type, 1));
+  if (corank == 1)
+    {
+      /* sub(1) = m + lcobound(corank).  */
+      lbound = gfc_conv_descriptor_lbound_get (desc,
+			build_int_cst (TREE_TYPE (gfc_array_index_type),
+				       corank+rank-1));
+      lbound = fold_convert (type, lbound);
+      tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp, lbound);
+
+      se->expr = tmp;
+      return;
+    }
+
+  m = gfc_create_var (type, NULL);
+  ml = gfc_create_var (type, NULL);
+  loop_var = gfc_create_var (integer_type_node, NULL);
+  min_var = gfc_create_var (integer_type_node, NULL);
+
+  /* m = this_image () - 1.  */
+  gfc_add_modify (&se->pre, m, tmp);
+
+  /* min_var = min (rank + corank-2, rank + dim_arg - 1).  */
+  tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
+			 fold_convert (integer_type_node, dim_arg),
+			 build_int_cst (integer_type_node, rank - 1));
+  tmp = fold_build2_loc (input_location, MIN_EXPR, integer_type_node,
+			 build_int_cst (integer_type_node, rank + corank - 2),
+			 tmp);
+  gfc_add_modify (&se->pre, min_var, tmp);
+
+  /* i = rank.  */
+  tmp = build_int_cst (integer_type_node, rank);
+  gfc_add_modify (&se->pre, loop_var, tmp);
+
+  exit_label = gfc_build_label_decl (NULL_TREE);
+  TREE_USED (exit_label) = 1;
+
+  /* Loop body.  */
+  gfc_init_block (&loop);
+
+  /* ml = m.  */
+  gfc_add_modify (&loop, ml, m);
+
+  /* extent = ...  */
+  lbound = gfc_conv_descriptor_lbound_get (desc, loop_var);
+  ubound = gfc_conv_descriptor_ubound_get (desc, loop_var);
+  extent = gfc_conv_array_extent_dim (lbound, ubound, NULL);
+  extent = fold_convert (type, extent);
+
+  /* m = m/extent.  */
+  gfc_add_modify (&loop, m,
+		  fold_build2_loc (input_location, TRUNC_DIV_EXPR, type,
+			  m, extent));
+
+  /* Exit condition:  if (i >= min_var) goto exit_label.  */
+  cond = fold_build2_loc (input_location, GE_EXPR, boolean_type_node, loop_var,
+		  min_var);
+  tmp = build1_v (GOTO_EXPR, exit_label);
+  tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp,
+                         build_empty_stmt (input_location));
+  gfc_add_expr_to_block (&loop, tmp);
+
+  /* Increment loop variable: i++.  */
+  gfc_add_modify (&loop, loop_var,
+                  fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
+				   loop_var,
+				   build_int_cst (integer_type_node, 1)));
+
+  /* Making the loop... actually loop!  */
+  tmp = gfc_finish_block (&loop);
+  tmp = build1_v (LOOP_EXPR, tmp);
+  gfc_add_expr_to_block (&se->pre, tmp);
+
+  /* The exit label.  */
+  tmp = build1_v (LABEL_EXPR, exit_label);
+  gfc_add_expr_to_block (&se->pre, tmp);
+
+  /*  sub(co_dim) = (co_dim < corank) ? ml - m*extent + lcobound(dim_arg)
+				      : m + lcobound(corank) */
+
+  cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, dim_arg,
+			  build_int_cst (TREE_TYPE (dim_arg), corank));
+
+  lbound = gfc_conv_descriptor_lbound_get (desc,
+		fold_build2_loc (input_location, PLUS_EXPR,
+				 gfc_array_index_type, dim_arg,
+				 build_int_cst (TREE_TYPE (dim_arg), rank-1)));
+  lbound = fold_convert (type, lbound);
+
+  tmp = fold_build2_loc (input_location, MINUS_EXPR, type, ml,
+			 fold_build2_loc (input_location, MULT_EXPR, type,
+					  m, extent));
+  tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp, lbound);
+
+  se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, tmp,
+			      fold_build2_loc (input_location, PLUS_EXPR, type,
+					       m, lbound));
+}
+
+
+/* Convert a call to image_status.  */
+
+static void
+conv_intrinsic_image_status (gfc_se *se, gfc_expr *expr)
+{
+  unsigned int num_args;
+  tree *args, tmp;
+
+  num_args = gfc_intrinsic_argument_list_length (expr);
+  args = XALLOCAVEC (tree, num_args);
+  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
+  /* In args[0] the number of the image the status is desired for has to be
+     given.  */
+
+  if (flag_coarray == GFC_FCOARRAY_SINGLE)
+    {
+      tree arg;
+      arg = gfc_evaluate_now (args[0], &se->pre);
+      tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
+			     fold_convert (integer_type_node, arg),
+			     integer_one_node);
+      tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node,
+			     tmp, integer_zero_node,
+			     build_int_cst (integer_type_node,
+					    GFC_STAT_STOPPED_IMAGE));
+    }
+  else if (flag_coarray == GFC_FCOARRAY_LIB)
+    tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_image_status, 2,
+			       args[0], build_int_cst (integer_type_node, -1));
+  else
+    gcc_unreachable ();
+
+  se->expr = tmp;
+}
+
+
+static void
+trans_image_index (gfc_se * se, gfc_expr *expr)
+{
+  tree num_images, cond, coindex, type, lbound, ubound, desc, subdesc,
+       tmp, invalid_bound;
+  gfc_se argse, subse;
+  int rank, corank, codim;
+
+  type = gfc_get_int_type (gfc_default_integer_kind);
+  corank = gfc_get_corank (expr->value.function.actual->expr);
+  rank = expr->value.function.actual->expr->rank;
+
+  /* Obtain the descriptor of the COARRAY.  */
+  gfc_init_se (&argse, NULL);
+  argse.want_coarray = 1;
+  gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr);
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+  gfc_add_block_to_block (&se->post, &argse.post);
+  desc = argse.expr;
+
+  /* Obtain a handle to the SUB argument.  */
+  gfc_init_se (&subse, NULL);
+  gfc_conv_expr_descriptor (&subse, expr->value.function.actual->next->expr);
+  gfc_add_block_to_block (&se->pre, &subse.pre);
+  gfc_add_block_to_block (&se->post, &subse.post);
+  subdesc = build_fold_indirect_ref_loc (input_location,
+			gfc_conv_descriptor_data_get (subse.expr));
+
+  /* Fortran 2008 does not require that the values remain in the cobounds,
+     thus we need explicitly check this - and return 0 if they are exceeded.  */
+
+  lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[rank+corank-1]);
+  tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[corank-1], NULL);
+  invalid_bound = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
+				 fold_convert (gfc_array_index_type, tmp),
+				 lbound);
+
+  for (codim = corank + rank - 2; codim >= rank; codim--)
+    {
+      lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]);
+      ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[codim]);
+      tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[codim-rank], NULL);
+      cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
+			      fold_convert (gfc_array_index_type, tmp),
+			      lbound);
+      invalid_bound = fold_build2_loc (input_location, TRUTH_OR_EXPR,
+				       boolean_type_node, invalid_bound, cond);
+      cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
+			      fold_convert (gfc_array_index_type, tmp),
+			      ubound);
+      invalid_bound = fold_build2_loc (input_location, TRUTH_OR_EXPR,
+				       boolean_type_node, invalid_bound, cond);
+    }
+
+  invalid_bound = gfc_unlikely (invalid_bound, PRED_FORTRAN_INVALID_BOUND);
+
+  /* See Fortran 2008, C.10 for the following algorithm.  */
+
+  /* coindex = sub(corank) - lcobound(n).  */
+  coindex = fold_convert (gfc_array_index_type,
+			  gfc_build_array_ref (subdesc, gfc_rank_cst[corank-1],
+					       NULL));
+  lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[rank+corank-1]);
+  coindex = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
+			     fold_convert (gfc_array_index_type, coindex),
+			     lbound);
+
+  for (codim = corank + rank - 2; codim >= rank; codim--)
+    {
+      tree extent, ubound;
+
+      /* coindex = coindex*extent(codim) + sub(codim) - lcobound(codim).  */
+      lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]);
+      ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[codim]);
+      extent = gfc_conv_array_extent_dim (lbound, ubound, NULL);
+
+      /* coindex *= extent.  */
+      coindex = fold_build2_loc (input_location, MULT_EXPR,
+				 gfc_array_index_type, coindex, extent);
+
+      /* coindex += sub(codim).  */
+      tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[codim-rank], NULL);
+      coindex = fold_build2_loc (input_location, PLUS_EXPR,
+				 gfc_array_index_type, coindex,
+				 fold_convert (gfc_array_index_type, tmp));
+
+      /* coindex -= lbound(codim).  */
+      lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]);
+      coindex = fold_build2_loc (input_location, MINUS_EXPR,
+				 gfc_array_index_type, coindex, lbound);
+    }
+
+  coindex = fold_build2_loc (input_location, PLUS_EXPR, type,
+			     fold_convert(type, coindex),
+			     build_int_cst (type, 1));
+
+  /* Return 0 if "coindex" exceeds num_images().  */
+
+  if (flag_coarray == GFC_FCOARRAY_SINGLE)
+    num_images = build_int_cst (type, 1);
+  else
+    {
+      tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_num_images, 2,
+				 integer_zero_node,
+				 build_int_cst (integer_type_node, -1));
+      num_images = fold_convert (type, tmp);
+    }
+
+  tmp = gfc_create_var (type, NULL);
+  gfc_add_modify (&se->pre, tmp, coindex);
+
+  cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, tmp,
+			  num_images);
+  cond = fold_build2_loc (input_location, TRUTH_OR_EXPR, boolean_type_node,
+			  cond,
+			  fold_convert (boolean_type_node, invalid_bound));
+  se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond,
+			      build_int_cst (type, 0), tmp);
+}
+
+
+static void
+trans_num_images (gfc_se * se, gfc_expr *expr)
+{
+  tree tmp, distance, failed;
+  gfc_se argse;
+
+  if (expr->value.function.actual->expr)
+    {
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr_val (&argse, expr->value.function.actual->expr);
+      gfc_add_block_to_block (&se->pre, &argse.pre);
+      gfc_add_block_to_block (&se->post, &argse.post);
+      distance = fold_convert (integer_type_node, argse.expr);
+    }
+  else
+    distance = integer_zero_node;
+
+  if (expr->value.function.actual->next->expr)
+    {
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr_val (&argse, expr->value.function.actual->next->expr);
+      gfc_add_block_to_block (&se->pre, &argse.pre);
+      gfc_add_block_to_block (&se->post, &argse.post);
+      failed = fold_convert (integer_type_node, argse.expr);
+    }
+  else
+    failed = build_int_cst (integer_type_node, -1);
+
+  tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_num_images, 2,
+			     distance, failed);
+  se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind), tmp);
+}
+
+
+static void
+gfc_conv_intrinsic_rank (gfc_se *se, gfc_expr *expr)
+{
+  gfc_se argse;
+
+  gfc_init_se (&argse, NULL);
+  argse.data_not_needed = 1;
+  argse.descriptor_only = 1;
+
+  gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr);
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+  gfc_add_block_to_block (&se->post, &argse.post);
+
+  se->expr = gfc_conv_descriptor_rank (argse.expr);
+}
+
+
+/* Evaluate a single upper or lower bound.  */
+/* TODO: bound intrinsic generates way too much unnecessary code.  */
+
+static void
+gfc_conv_intrinsic_bound (gfc_se * se, gfc_expr * expr, int upper)
+{
+  gfc_actual_arglist *arg;
+  gfc_actual_arglist *arg2;
+  tree desc;
+  tree type;
+  tree bound;
+  tree tmp;
+  tree cond, cond1, cond3, cond4, size;
+  tree ubound;
+  tree lbound;
+  gfc_se argse;
+  gfc_array_spec * as;
+  bool assumed_rank_lb_one;
+
+  arg = expr->value.function.actual;
+  arg2 = arg->next;
+
+  if (se->ss)
+    {
+      /* Create an implicit second parameter from the loop variable.  */
+      gcc_assert (!arg2->expr);
+      gcc_assert (se->loop->dimen == 1);
+      gcc_assert (se->ss->info->expr == expr);
+      gfc_advance_se_ss_chain (se);
+      bound = se->loop->loopvar[0];
+      bound = fold_build2_loc (input_location, MINUS_EXPR,
+			       gfc_array_index_type, bound,
+			       se->loop->from[0]);
+    }
+  else
+    {
+      /* use the passed argument.  */
+      gcc_assert (arg2->expr);
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr_type (&argse, arg2->expr, gfc_array_index_type);
+      gfc_add_block_to_block (&se->pre, &argse.pre);
+      bound = argse.expr;
+      /* Convert from one based to zero based.  */
+      bound = fold_build2_loc (input_location, MINUS_EXPR,
+			       gfc_array_index_type, bound,
+			       gfc_index_one_node);
+    }
+
+  /* TODO: don't re-evaluate the descriptor on each iteration.  */
+  /* Get a descriptor for the first parameter.  */
+  gfc_init_se (&argse, NULL);
+  gfc_conv_expr_descriptor (&argse, arg->expr);
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+  gfc_add_block_to_block (&se->post, &argse.post);
+
+  desc = argse.expr;
+
+  as = gfc_get_full_arrayspec_from_expr (arg->expr);
+
+  if (INTEGER_CST_P (bound))
+    {
+      if (((!as || as->type != AS_ASSUMED_RANK)
+	   && wi::geu_p (wi::to_wide (bound),
+			 GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc))))
+	  || wi::gtu_p (wi::to_wide (bound), GFC_MAX_DIMENSIONS))
+	gfc_error ("%<dim%> argument of %s intrinsic at %L is not a valid "
+		   "dimension index", upper ? "UBOUND" : "LBOUND",
+		   &expr->where);
+    }
+
+  if (!INTEGER_CST_P (bound) || (as && as->type == AS_ASSUMED_RANK))
+    {
+      if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
+        {
+          bound = gfc_evaluate_now (bound, &se->pre);
+          cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
+				  bound, build_int_cst (TREE_TYPE (bound), 0));
+	  if (as && as->type == AS_ASSUMED_RANK)
+	    tmp = gfc_conv_descriptor_rank (desc);
+	  else
+	    tmp = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc))];
+          tmp = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
+				 bound, fold_convert(TREE_TYPE (bound), tmp));
+          cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR,
+				  boolean_type_node, cond, tmp);
+          gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
+				   gfc_msg_fault);
+        }
+    }
+
+  /* Take care of the lbound shift for assumed-rank arrays, which are
+     nonallocatable and nonpointers. Those has a lbound of 1.  */
+  assumed_rank_lb_one = as && as->type == AS_ASSUMED_RANK
+			&& ((arg->expr->ts.type != BT_CLASS
+			     && !arg->expr->symtree->n.sym->attr.allocatable
+			     && !arg->expr->symtree->n.sym->attr.pointer)
+			    || (arg->expr->ts.type == BT_CLASS
+			     && !CLASS_DATA (arg->expr)->attr.allocatable
+			     && !CLASS_DATA (arg->expr)->attr.class_pointer));
+
+  ubound = gfc_conv_descriptor_ubound_get (desc, bound);
+  lbound = gfc_conv_descriptor_lbound_get (desc, bound);
+
+  /* 13.14.53: Result value for LBOUND
+
+     Case (i): For an array section or for an array expression other than a
+               whole array or array structure component, LBOUND(ARRAY, DIM)
+               has the value 1.  For a whole array or array structure
+               component, LBOUND(ARRAY, DIM) has the value:
+                 (a) equal to the lower bound for subscript DIM of ARRAY if
+                     dimension DIM of ARRAY does not have extent zero
+                     or if ARRAY is an assumed-size array of rank DIM,
+              or (b) 1 otherwise.
+
+     13.14.113: Result value for UBOUND
+
+     Case (i): For an array section or for an array expression other than a
+               whole array or array structure component, UBOUND(ARRAY, DIM)
+               has the value equal to the number of elements in the given
+               dimension; otherwise, it has a value equal to the upper bound
+               for subscript DIM of ARRAY if dimension DIM of ARRAY does
+               not have size zero and has value zero if dimension DIM has
+               size zero.  */
+
+  if (!upper && assumed_rank_lb_one)
+    se->expr = gfc_index_one_node;
+  else if (as)
+    {
+      tree stride = gfc_conv_descriptor_stride_get (desc, bound);
+
+      cond1 = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
+			       ubound, lbound);
+      cond3 = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
+			       stride, gfc_index_zero_node);
+      cond3 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
+			       boolean_type_node, cond3, cond1);
+      cond4 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
+			       stride, gfc_index_zero_node);
+
+      if (upper)
+	{
+	  tree cond5;
+	  cond = fold_build2_loc (input_location, TRUTH_OR_EXPR,
+				  boolean_type_node, cond3, cond4);
+	  cond5 = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
+				   gfc_index_one_node, lbound);
+	  cond5 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
+				   boolean_type_node, cond4, cond5);
+
+	  cond = fold_build2_loc (input_location, TRUTH_OR_EXPR,
+				  boolean_type_node, cond, cond5);
+
+	  if (assumed_rank_lb_one)
+	    {
+	      tmp = fold_build2_loc (input_location, MINUS_EXPR,
+			       gfc_array_index_type, ubound, lbound);
+	      tmp = fold_build2_loc (input_location, PLUS_EXPR,
+			       gfc_array_index_type, tmp, gfc_index_one_node);
+	    }
+          else
+            tmp = ubound;
+
+	  se->expr = fold_build3_loc (input_location, COND_EXPR,
+				      gfc_array_index_type, cond,
+				      tmp, gfc_index_zero_node);
+	}
+      else
+	{
+	  if (as->type == AS_ASSUMED_SIZE)
+	    cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
+				    bound, build_int_cst (TREE_TYPE (bound),
+							  arg->expr->rank - 1));
+	  else
+	    cond = boolean_false_node;
+
+	  cond1 = fold_build2_loc (input_location, TRUTH_OR_EXPR,
+				   boolean_type_node, cond3, cond4);
+	  cond = fold_build2_loc (input_location, TRUTH_OR_EXPR,
+				  boolean_type_node, cond, cond1);
+
+	  se->expr = fold_build3_loc (input_location, COND_EXPR,
+				      gfc_array_index_type, cond,
+				      lbound, gfc_index_one_node);
+	}
+    }
+  else
+    {
+      if (upper)
+        {
+	  size = fold_build2_loc (input_location, MINUS_EXPR,
+				  gfc_array_index_type, ubound, lbound);
+	  se->expr = fold_build2_loc (input_location, PLUS_EXPR,
+				      gfc_array_index_type, size,
+				  gfc_index_one_node);
+	  se->expr = fold_build2_loc (input_location, MAX_EXPR,
+				      gfc_array_index_type, se->expr,
+				      gfc_index_zero_node);
+	}
+      else
+	se->expr = gfc_index_one_node;
+    }
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  se->expr = convert (type, se->expr);
+}
+
+
+static void
+conv_intrinsic_cobound (gfc_se * se, gfc_expr * expr)
+{
+  gfc_actual_arglist *arg;
+  gfc_actual_arglist *arg2;
+  gfc_se argse;
+  tree bound, resbound, resbound2, desc, cond, tmp;
+  tree type;
+  int corank;
+
+  gcc_assert (expr->value.function.isym->id == GFC_ISYM_LCOBOUND
+	      || expr->value.function.isym->id == GFC_ISYM_UCOBOUND
+	      || expr->value.function.isym->id == GFC_ISYM_THIS_IMAGE);
+
+  arg = expr->value.function.actual;
+  arg2 = arg->next;
+
+  gcc_assert (arg->expr->expr_type == EXPR_VARIABLE);
+  corank = gfc_get_corank (arg->expr);
+
+  gfc_init_se (&argse, NULL);
+  argse.want_coarray = 1;
+
+  gfc_conv_expr_descriptor (&argse, arg->expr);
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+  gfc_add_block_to_block (&se->post, &argse.post);
+  desc = argse.expr;
+
+  if (se->ss)
+    {
+      /* Create an implicit second parameter from the loop variable.  */
+      gcc_assert (!arg2->expr);
+      gcc_assert (corank > 0);
+      gcc_assert (se->loop->dimen == 1);
+      gcc_assert (se->ss->info->expr == expr);
+
+      bound = se->loop->loopvar[0];
+      bound = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
+			       bound, gfc_rank_cst[arg->expr->rank]);
+      gfc_advance_se_ss_chain (se);
+    }
+  else
+    {
+      /* use the passed argument.  */
+      gcc_assert (arg2->expr);
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr_type (&argse, arg2->expr, gfc_array_index_type);
+      gfc_add_block_to_block (&se->pre, &argse.pre);
+      bound = argse.expr;
+
+      if (INTEGER_CST_P (bound))
+	{
+	  if (wi::ltu_p (wi::to_wide (bound), 1)
+	      || wi::gtu_p (wi::to_wide (bound),
+			    GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc))))
+	    gfc_error ("%<dim%> argument of %s intrinsic at %L is not a valid "
+		       "dimension index", expr->value.function.isym->name,
+		       &expr->where);
+	}
+      else if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
+        {
+	  bound = gfc_evaluate_now (bound, &se->pre);
+	  cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
+				  bound, build_int_cst (TREE_TYPE (bound), 1));
+	  tmp = gfc_rank_cst[GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc))];
+	  tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
+				 bound, tmp);
+	  cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR,
+				  boolean_type_node, cond, tmp);
+	  gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
+				   gfc_msg_fault);
+	}
+
+
+      /* Subtract 1 to get to zero based and add dimensions.  */
+      switch (arg->expr->rank)
+	{
+	case 0:
+	  bound = fold_build2_loc (input_location, MINUS_EXPR,
+				   gfc_array_index_type, bound,
+				   gfc_index_one_node);
+	case 1:
+	  break;
+	default:
+	  bound = fold_build2_loc (input_location, PLUS_EXPR,
+				   gfc_array_index_type, bound,
+				   gfc_rank_cst[arg->expr->rank - 1]);
+	}
+    }
+
+  resbound = gfc_conv_descriptor_lbound_get (desc, bound);
+
+  /* Handle UCOBOUND with special handling of the last codimension.  */
+  if (expr->value.function.isym->id == GFC_ISYM_UCOBOUND)
+    {
+      /* Last codimension: For -fcoarray=single just return
+	 the lcobound - otherwise add
+	   ceiling (real (num_images ()) / real (size)) - 1
+	 = (num_images () + size - 1) / size - 1
+	 = (num_images - 1) / size(),
+         where size is the product of the extent of all but the last
+	 codimension.  */
+
+      if (flag_coarray != GFC_FCOARRAY_SINGLE && corank > 1)
+	{
+          tree cosize;
+
+	  cosize = gfc_conv_descriptor_cosize (desc, arg->expr->rank, corank);
+	  tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_num_images,
+				     2, integer_zero_node,
+				     build_int_cst (integer_type_node, -1));
+	  tmp = fold_build2_loc (input_location, MINUS_EXPR,
+				 gfc_array_index_type,
+				 fold_convert (gfc_array_index_type, tmp),
+				 build_int_cst (gfc_array_index_type, 1));
+	  tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
+				 gfc_array_index_type, tmp,
+				 fold_convert (gfc_array_index_type, cosize));
+	  resbound = fold_build2_loc (input_location, PLUS_EXPR,
+				      gfc_array_index_type, resbound, tmp);
+	}
+      else if (flag_coarray != GFC_FCOARRAY_SINGLE)
+	{
+	  /* ubound = lbound + num_images() - 1.  */
+	  tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_num_images,
+				     2, integer_zero_node,
+				     build_int_cst (integer_type_node, -1));
+	  tmp = fold_build2_loc (input_location, MINUS_EXPR,
+				 gfc_array_index_type,
+				 fold_convert (gfc_array_index_type, tmp),
+				 build_int_cst (gfc_array_index_type, 1));
+	  resbound = fold_build2_loc (input_location, PLUS_EXPR,
+				      gfc_array_index_type, resbound, tmp);
+	}
+
+      if (corank > 1)
+	{
+	  cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
+				  bound,
+				  build_int_cst (TREE_TYPE (bound),
+						 arg->expr->rank + corank - 1));
+
+	  resbound2 = gfc_conv_descriptor_ubound_get (desc, bound);
+	  se->expr = fold_build3_loc (input_location, COND_EXPR,
+				      gfc_array_index_type, cond,
+				      resbound, resbound2);
+	}
+      else
+	se->expr = resbound;
+    }
+  else
+    se->expr = resbound;
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  se->expr = convert (type, se->expr);
+}
+
+
+static void
+conv_intrinsic_stride (gfc_se * se, gfc_expr * expr)
+{
+  gfc_actual_arglist *array_arg;
+  gfc_actual_arglist *dim_arg;
+  gfc_se argse;
+  tree desc, tmp;
+
+  array_arg = expr->value.function.actual;
+  dim_arg = array_arg->next;
+
+  gcc_assert (array_arg->expr->expr_type == EXPR_VARIABLE);
+
+  gfc_init_se (&argse, NULL);
+  gfc_conv_expr_descriptor (&argse, array_arg->expr);
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+  gfc_add_block_to_block (&se->post, &argse.post);
+  desc = argse.expr;
+
+  gcc_assert (dim_arg->expr);
+  gfc_init_se (&argse, NULL);
+  gfc_conv_expr_type (&argse, dim_arg->expr, gfc_array_index_type);
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+  tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
+			 argse.expr, gfc_index_one_node);
+  se->expr = gfc_conv_descriptor_stride_get (desc, tmp);
+}
+
+
+static void
+gfc_conv_intrinsic_abs (gfc_se * se, gfc_expr * expr)
+{
+  tree arg, cabs;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+
+  switch (expr->value.function.actual->expr->ts.type)
+    {
+    case BT_INTEGER:
+    case BT_REAL:
+      se->expr = fold_build1_loc (input_location, ABS_EXPR, TREE_TYPE (arg),
+				  arg);
+      break;
+
+    case BT_COMPLEX:
+      cabs = gfc_builtin_decl_for_float_kind (BUILT_IN_CABS, expr->ts.kind);
+      se->expr = build_call_expr_loc (input_location, cabs, 1, arg);
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+}
+
+
+/* Create a complex value from one or two real components.  */
+
+static void
+gfc_conv_intrinsic_cmplx (gfc_se * se, gfc_expr * expr, int both)
+{
+  tree real;
+  tree imag;
+  tree type;
+  tree *args;
+  unsigned int num_args;
+
+  num_args = gfc_intrinsic_argument_list_length (expr);
+  args = XALLOCAVEC (tree, num_args);
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
+  real = convert (TREE_TYPE (type), args[0]);
+  if (both)
+    imag = convert (TREE_TYPE (type), args[1]);
+  else if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE)
+    {
+      imag = fold_build1_loc (input_location, IMAGPART_EXPR,
+			      TREE_TYPE (TREE_TYPE (args[0])), args[0]);
+      imag = convert (TREE_TYPE (type), imag);
+    }
+  else
+    imag = build_real_from_int_cst (TREE_TYPE (type), integer_zero_node);
+
+  se->expr = fold_build2_loc (input_location, COMPLEX_EXPR, type, real, imag);
+}
+
+
+/* Remainder function MOD(A, P) = A - INT(A / P) * P
+                      MODULO(A, P) = A - FLOOR (A / P) * P
+
+   The obvious algorithms above are numerically instable for large
+   arguments, hence these intrinsics are instead implemented via calls
+   to the fmod family of functions.  It is the responsibility of the
+   user to ensure that the second argument is non-zero.  */
+
+static void
+gfc_conv_intrinsic_mod (gfc_se * se, gfc_expr * expr, int modulo)
+{
+  tree type;
+  tree tmp;
+  tree test;
+  tree test2;
+  tree fmod;
+  tree zero;
+  tree args[2];
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+
+  switch (expr->ts.type)
+    {
+    case BT_INTEGER:
+      /* Integer case is easy, we've got a builtin op.  */
+      type = TREE_TYPE (args[0]);
+
+      if (modulo)
+       se->expr = fold_build2_loc (input_location, FLOOR_MOD_EXPR, type,
+				   args[0], args[1]);
+      else
+       se->expr = fold_build2_loc (input_location, TRUNC_MOD_EXPR, type,
+				   args[0], args[1]);
+      break;
+
+    case BT_REAL:
+      fmod = NULL_TREE;
+      /* Check if we have a builtin fmod.  */
+      fmod = gfc_builtin_decl_for_float_kind (BUILT_IN_FMOD, expr->ts.kind);
+
+      /* The builtin should always be available.  */
+      gcc_assert (fmod != NULL_TREE);
+
+      tmp = build_addr (fmod);
+      se->expr = build_call_array_loc (input_location,
+				       TREE_TYPE (TREE_TYPE (fmod)),
+                                       tmp, 2, args);
+      if (modulo == 0)
+	return;
+
+      type = TREE_TYPE (args[0]);
+
+      args[0] = gfc_evaluate_now (args[0], &se->pre);
+      args[1] = gfc_evaluate_now (args[1], &se->pre);
+
+      /* Definition:
+	 modulo = arg - floor (arg/arg2) * arg2
+
+	 In order to calculate the result accurately, we use the fmod
+	 function as follows.
+
+	 res = fmod (arg, arg2);
+	 if (res)
+	   {
+	     if ((arg < 0) xor (arg2 < 0))
+	       res += arg2;
+	   }
+	 else
+	   res = copysign (0., arg2);
+
+	 => As two nested ternary exprs:
+
+	 res = res ? (((arg < 0) xor (arg2 < 0)) ? res + arg2 : res)
+	       : copysign (0., arg2);
+
+      */
+
+      zero = gfc_build_const (type, integer_zero_node);
+      tmp = gfc_evaluate_now (se->expr, &se->pre);
+      if (!flag_signed_zeros)
+	{
+	  test = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
+				  args[0], zero);
+	  test2 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
+				   args[1], zero);
+	  test2 = fold_build2_loc (input_location, TRUTH_XOR_EXPR,
+				   boolean_type_node, test, test2);
+	  test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+				  tmp, zero);
+	  test = fold_build2_loc (input_location, TRUTH_AND_EXPR,
+				  boolean_type_node, test, test2);
+	  test = gfc_evaluate_now (test, &se->pre);
+	  se->expr = fold_build3_loc (input_location, COND_EXPR, type, test,
+				      fold_build2_loc (input_location,
+						       PLUS_EXPR,
+						       type, tmp, args[1]),
+				      tmp);
+	}
+      else
+	{
+	  tree expr1, copysign, cscall;
+	  copysign = gfc_builtin_decl_for_float_kind (BUILT_IN_COPYSIGN,
+						      expr->ts.kind);
+	  test = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
+				  args[0], zero);
+	  test2 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
+				   args[1], zero);
+	  test2 = fold_build2_loc (input_location, TRUTH_XOR_EXPR,
+				   boolean_type_node, test, test2);
+	  expr1 = fold_build3_loc (input_location, COND_EXPR, type, test2,
+				   fold_build2_loc (input_location,
+						    PLUS_EXPR,
+						    type, tmp, args[1]),
+				   tmp);
+	  test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+				  tmp, zero);
+	  cscall = build_call_expr_loc (input_location, copysign, 2, zero,
+					args[1]);
+	  se->expr = fold_build3_loc (input_location, COND_EXPR, type, test,
+				      expr1, cscall);
+	}
+      return;
+
+    default:
+      gcc_unreachable ();
+    }
+}
+
+/* DSHIFTL(I,J,S) = (I << S) | (J >> (BITSIZE(J) - S))
+   DSHIFTR(I,J,S) = (I << (BITSIZE(I) - S)) | (J >> S)
+   where the right shifts are logical (i.e. 0's are shifted in).
+   Because SHIFT_EXPR's want shifts strictly smaller than the integral
+   type width, we have to special-case both S == 0 and S == BITSIZE(J):
+     DSHIFTL(I,J,0) = I
+     DSHIFTL(I,J,BITSIZE) = J
+     DSHIFTR(I,J,0) = J
+     DSHIFTR(I,J,BITSIZE) = I.  */
+
+static void
+gfc_conv_intrinsic_dshift (gfc_se * se, gfc_expr * expr, bool dshiftl)
+{
+  tree type, utype, stype, arg1, arg2, shift, res, left, right;
+  tree args[3], cond, tmp;
+  int bitsize;
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 3);
+
+  gcc_assert (TREE_TYPE (args[0]) == TREE_TYPE (args[1]));
+  type = TREE_TYPE (args[0]);
+  bitsize = TYPE_PRECISION (type);
+  utype = unsigned_type_for (type);
+  stype = TREE_TYPE (args[2]);
+
+  arg1 = gfc_evaluate_now (args[0], &se->pre);
+  arg2 = gfc_evaluate_now (args[1], &se->pre);
+  shift = gfc_evaluate_now (args[2], &se->pre);
+
+  /* The generic case.  */
+  tmp = fold_build2_loc (input_location, MINUS_EXPR, stype,
+			 build_int_cst (stype, bitsize), shift);
+  left = fold_build2_loc (input_location, LSHIFT_EXPR, type,
+			  arg1, dshiftl ? shift : tmp);
+
+  right = fold_build2_loc (input_location, RSHIFT_EXPR, utype,
+			   fold_convert (utype, arg2), dshiftl ? tmp : shift);
+  right = fold_convert (type, right);
+
+  res = fold_build2_loc (input_location, BIT_IOR_EXPR, type, left, right);
+
+  /* Special cases.  */
+  cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, shift,
+			  build_int_cst (stype, 0));
+  res = fold_build3_loc (input_location, COND_EXPR, type, cond,
+			 dshiftl ? arg1 : arg2, res);
+
+  cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, shift,
+			  build_int_cst (stype, bitsize));
+  res = fold_build3_loc (input_location, COND_EXPR, type, cond,
+			 dshiftl ? arg2 : arg1, res);
+
+  se->expr = res;
+}
+
+
+/* Positive difference DIM (x, y) = ((x - y) < 0) ? 0 : x - y.  */
+
+static void
+gfc_conv_intrinsic_dim (gfc_se * se, gfc_expr * expr)
+{
+  tree val;
+  tree tmp;
+  tree type;
+  tree zero;
+  tree args[2];
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+  type = TREE_TYPE (args[0]);
+
+  val = fold_build2_loc (input_location, MINUS_EXPR, type, args[0], args[1]);
+  val = gfc_evaluate_now (val, &se->pre);
+
+  zero = gfc_build_const (type, integer_zero_node);
+  tmp = fold_build2_loc (input_location, LE_EXPR, boolean_type_node, val, zero);
+  se->expr = fold_build3_loc (input_location, COND_EXPR, type, tmp, zero, val);
+}
+
+
+/* SIGN(A, B) is absolute value of A times sign of B.
+   The real value versions use library functions to ensure the correct
+   handling of negative zero.  Integer case implemented as:
+   SIGN(A, B) = { tmp = (A ^ B) >> C; (A + tmp) ^ tmp }
+  */
+
+static void
+gfc_conv_intrinsic_sign (gfc_se * se, gfc_expr * expr)
+{
+  tree tmp;
+  tree type;
+  tree args[2];
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+  if (expr->ts.type == BT_REAL)
+    {
+      tree abs;
+
+      tmp = gfc_builtin_decl_for_float_kind (BUILT_IN_COPYSIGN, expr->ts.kind);
+      abs = gfc_builtin_decl_for_float_kind (BUILT_IN_FABS, expr->ts.kind);
+
+      /* We explicitly have to ignore the minus sign. We do so by using
+	 result = (arg1 == 0) ? abs(arg0) : copysign(arg0, arg1).  */
+      if (!flag_sign_zero
+	  && MODE_HAS_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (args[1]))))
+	{
+	  tree cond, zero;
+	  zero = build_real_from_int_cst (TREE_TYPE (args[1]), integer_zero_node);
+	  cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
+				  args[1], zero);
+	  se->expr = fold_build3_loc (input_location, COND_EXPR,
+				  TREE_TYPE (args[0]), cond,
+				  build_call_expr_loc (input_location, abs, 1,
+						       args[0]),
+				  build_call_expr_loc (input_location, tmp, 2,
+						       args[0], args[1]));
+	}
+      else
+        se->expr = build_call_expr_loc (input_location, tmp, 2,
+					args[0], args[1]);
+      return;
+    }
+
+  /* Having excluded floating point types, we know we are now dealing
+     with signed integer types.  */
+  type = TREE_TYPE (args[0]);
+
+  /* Args[0] is used multiple times below.  */
+  args[0] = gfc_evaluate_now (args[0], &se->pre);
+
+  /* Construct (A ^ B) >> 31, which generates a bit mask of all zeros if
+     the signs of A and B are the same, and of all ones if they differ.  */
+  tmp = fold_build2_loc (input_location, BIT_XOR_EXPR, type, args[0], args[1]);
+  tmp = fold_build2_loc (input_location, RSHIFT_EXPR, type, tmp,
+			 build_int_cst (type, TYPE_PRECISION (type) - 1));
+  tmp = gfc_evaluate_now (tmp, &se->pre);
+
+  /* Construct (A + tmp) ^ tmp, which is A if tmp is zero, and -A if tmp]
+     is all ones (i.e. -1).  */
+  se->expr = fold_build2_loc (input_location, BIT_XOR_EXPR, type,
+			      fold_build2_loc (input_location, PLUS_EXPR,
+					       type, args[0], tmp), tmp);
+}
+
+
+/* Test for the presence of an optional argument.  */
+
+static void
+gfc_conv_intrinsic_present (gfc_se * se, gfc_expr * expr)
+{
+  gfc_expr *arg;
+
+  arg = expr->value.function.actual->expr;
+  gcc_assert (arg->expr_type == EXPR_VARIABLE);
+  se->expr = gfc_conv_expr_present (arg->symtree->n.sym);
+  se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr);
+}
+
+
+/* Calculate the double precision product of two single precision values.  */
+
+static void
+gfc_conv_intrinsic_dprod (gfc_se * se, gfc_expr * expr)
+{
+  tree type;
+  tree args[2];
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+
+  /* Convert the args to double precision before multiplying.  */
+  type = gfc_typenode_for_spec (&expr->ts);
+  args[0] = convert (type, args[0]);
+  args[1] = convert (type, args[1]);
+  se->expr = fold_build2_loc (input_location, MULT_EXPR, type, args[0],
+			      args[1]);
+}
+
+
+/* Return a length one character string containing an ascii character.  */
+
+static void
+gfc_conv_intrinsic_char (gfc_se * se, gfc_expr * expr)
+{
+  tree arg[2];
+  tree var;
+  tree type;
+  unsigned int num_args;
+
+  num_args = gfc_intrinsic_argument_list_length (expr);
+  gfc_conv_intrinsic_function_args (se, expr, arg, num_args);
+
+  type = gfc_get_char_type (expr->ts.kind);
+  var = gfc_create_var (type, "char");
+
+  arg[0] = fold_build1_loc (input_location, NOP_EXPR, type, arg[0]);
+  gfc_add_modify (&se->pre, var, arg[0]);
+  se->expr = gfc_build_addr_expr (build_pointer_type (type), var);
+  se->string_length = build_int_cst (gfc_charlen_type_node, 1);
+}
+
+
+static void
+gfc_conv_intrinsic_ctime (gfc_se * se, gfc_expr * expr)
+{
+  tree var;
+  tree len;
+  tree tmp;
+  tree cond;
+  tree fndecl;
+  tree *args;
+  unsigned int num_args;
+
+  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
+  args = XALLOCAVEC (tree, num_args);
+
+  var = gfc_create_var (pchar_type_node, "pstr");
+  len = gfc_create_var (gfc_charlen_type_node, "len");
+
+  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
+  args[0] = gfc_build_addr_expr (NULL_TREE, var);
+  args[1] = gfc_build_addr_expr (NULL_TREE, len);
+
+  fndecl = build_addr (gfor_fndecl_ctime);
+  tmp = build_call_array_loc (input_location,
+			  TREE_TYPE (TREE_TYPE (gfor_fndecl_ctime)),
+			  fndecl, num_args, args);
+  gfc_add_expr_to_block (&se->pre, tmp);
+
+  /* Free the temporary afterwards, if necessary.  */
+  cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
+			  len, build_int_cst (TREE_TYPE (len), 0));
+  tmp = gfc_call_free (var);
+  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
+  gfc_add_expr_to_block (&se->post, tmp);
+
+  se->expr = var;
+  se->string_length = len;
+}
+
+
+static void
+gfc_conv_intrinsic_fdate (gfc_se * se, gfc_expr * expr)
+{
+  tree var;
+  tree len;
+  tree tmp;
+  tree cond;
+  tree fndecl;
+  tree *args;
+  unsigned int num_args;
+
+  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
+  args = XALLOCAVEC (tree, num_args);
+
+  var = gfc_create_var (pchar_type_node, "pstr");
+  len = gfc_create_var (gfc_charlen_type_node, "len");
+
+  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
+  args[0] = gfc_build_addr_expr (NULL_TREE, var);
+  args[1] = gfc_build_addr_expr (NULL_TREE, len);
+
+  fndecl = build_addr (gfor_fndecl_fdate);
+  tmp = build_call_array_loc (input_location,
+			  TREE_TYPE (TREE_TYPE (gfor_fndecl_fdate)),
+			  fndecl, num_args, args);
+  gfc_add_expr_to_block (&se->pre, tmp);
+
+  /* Free the temporary afterwards, if necessary.  */
+  cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
+			  len, build_int_cst (TREE_TYPE (len), 0));
+  tmp = gfc_call_free (var);
+  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
+  gfc_add_expr_to_block (&se->post, tmp);
+
+  se->expr = var;
+  se->string_length = len;
+}
+
+
+/* Generate a direct call to free() for the FREE subroutine.  */
+
+static tree
+conv_intrinsic_free (gfc_code *code)
+{
+  stmtblock_t block;
+  gfc_se argse;
+  tree arg, call;
+
+  gfc_init_se (&argse, NULL);
+  gfc_conv_expr (&argse, code->ext.actual->expr);
+  arg = fold_convert (ptr_type_node, argse.expr);
+
+  gfc_init_block (&block);
+  call = build_call_expr_loc (input_location,
+			      builtin_decl_explicit (BUILT_IN_FREE), 1, arg);
+  gfc_add_expr_to_block (&block, call);
+  return gfc_finish_block (&block);
+}
+
+
+/* Call the SYSTEM_CLOCK library functions, handling the type and kind
+   conversions.  */
+
+static tree
+conv_intrinsic_system_clock (gfc_code *code)
+{
+  stmtblock_t block;
+  gfc_se count_se, count_rate_se, count_max_se;
+  tree arg1 = NULL_TREE, arg2 = NULL_TREE, arg3 = NULL_TREE;
+  tree tmp;
+  int least;
+
+  gfc_expr *count = code->ext.actual->expr;
+  gfc_expr *count_rate = code->ext.actual->next->expr;
+  gfc_expr *count_max = code->ext.actual->next->next->expr;
+
+  /* Evaluate our arguments.  */
+  if (count)
+    {
+      gfc_init_se (&count_se, NULL);
+      gfc_conv_expr (&count_se, count);
+    }
+
+  if (count_rate)
+    {
+      gfc_init_se (&count_rate_se, NULL);
+      gfc_conv_expr (&count_rate_se, count_rate);
+    }
+
+  if (count_max)
+    {
+      gfc_init_se (&count_max_se, NULL);
+      gfc_conv_expr (&count_max_se, count_max);
+    }
+
+  /* Find the smallest kind found of the arguments.  */
+  least = 16;
+  least = (count && count->ts.kind < least) ? count->ts.kind : least;
+  least = (count_rate && count_rate->ts.kind < least) ? count_rate->ts.kind
+						      : least;
+  least = (count_max && count_max->ts.kind < least) ? count_max->ts.kind
+						    : least;
+
+  /* Prepare temporary variables.  */
+
+  if (count)
+    {
+      if (least >= 8)
+	arg1 = gfc_create_var (gfc_get_int_type (8), "count");
+      else if (least == 4)
+	arg1 = gfc_create_var (gfc_get_int_type (4), "count");
+      else if (count->ts.kind == 1)
+        arg1 = gfc_conv_mpz_to_tree (gfc_integer_kinds[0].pedantic_min_int,
+				     count->ts.kind);
+      else
+        arg1 = gfc_conv_mpz_to_tree (gfc_integer_kinds[1].pedantic_min_int,
+				     count->ts.kind);
+    }
+
+  if (count_rate)
+    {
+      if (least >= 8)
+	arg2 = gfc_create_var (gfc_get_int_type (8), "count_rate");
+      else if (least == 4)
+	arg2 = gfc_create_var (gfc_get_int_type (4), "count_rate");
+      else
+        arg2 = integer_zero_node;
+    }
+
+  if (count_max)
+    {
+      if (least >= 8)
+	arg3 = gfc_create_var (gfc_get_int_type (8), "count_max");
+      else if (least == 4)
+	arg3 = gfc_create_var (gfc_get_int_type (4), "count_max");
+      else
+        arg3 = integer_zero_node;
+    }
+
+  /* Make the function call.  */
+  gfc_init_block (&block);
+
+if (least <= 2)
+  {
+    if (least == 1)
+      {
+	arg1 ? gfc_build_addr_expr (NULL_TREE, arg1)
+	       : null_pointer_node;
+	arg2 ? gfc_build_addr_expr (NULL_TREE, arg2)
+	       : null_pointer_node;
+	arg3 ? gfc_build_addr_expr (NULL_TREE, arg3)
+	       : null_pointer_node;
+      }
+
+    if (least == 2)
+      {
+	arg1 ? gfc_build_addr_expr (NULL_TREE, arg1)
+	       : null_pointer_node;
+	arg2 ? gfc_build_addr_expr (NULL_TREE, arg2)
+	       : null_pointer_node;
+	arg3 ? gfc_build_addr_expr (NULL_TREE, arg3)
+	       : null_pointer_node;
+      }
+  }
+else
+  {
+    if (least == 4)
+      {
+	tmp = build_call_expr_loc (input_location,
+		gfor_fndecl_system_clock4, 3,
+		arg1 ? gfc_build_addr_expr (NULL_TREE, arg1)
+		       : null_pointer_node,
+		arg2 ? gfc_build_addr_expr (NULL_TREE, arg2)
+		       : null_pointer_node,
+		arg3 ? gfc_build_addr_expr (NULL_TREE, arg3)
+		       : null_pointer_node);
+	gfc_add_expr_to_block (&block, tmp);
+      }
+    /* Handle kind>=8, 10, or 16 arguments */
+    if (least >= 8)
+      {
+	tmp = build_call_expr_loc (input_location,
+		gfor_fndecl_system_clock8, 3,
+		arg1 ? gfc_build_addr_expr (NULL_TREE, arg1)
+		       : null_pointer_node,
+		arg2 ? gfc_build_addr_expr (NULL_TREE, arg2)
+		       : null_pointer_node,
+		arg3 ? gfc_build_addr_expr (NULL_TREE, arg3)
+		       : null_pointer_node);
+	gfc_add_expr_to_block (&block, tmp);
+      }
+  }
+
+  /* And store values back if needed.  */
+  if (arg1 && arg1 != count_se.expr)
+    gfc_add_modify (&block, count_se.expr,
+		    fold_convert (TREE_TYPE (count_se.expr), arg1));
+  if (arg2 && arg2 != count_rate_se.expr)
+    gfc_add_modify (&block, count_rate_se.expr,
+		    fold_convert (TREE_TYPE (count_rate_se.expr), arg2));
+  if (arg3 && arg3 != count_max_se.expr)
+    gfc_add_modify (&block, count_max_se.expr,
+		    fold_convert (TREE_TYPE (count_max_se.expr), arg3));
+
+  return gfc_finish_block (&block);
+}
+
+
+/* Return a character string containing the tty name.  */
+
+static void
+gfc_conv_intrinsic_ttynam (gfc_se * se, gfc_expr * expr)
+{
+  tree var;
+  tree len;
+  tree tmp;
+  tree cond;
+  tree fndecl;
+  tree *args;
+  unsigned int num_args;
+
+  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
+  args = XALLOCAVEC (tree, num_args);
+
+  var = gfc_create_var (pchar_type_node, "pstr");
+  len = gfc_create_var (gfc_charlen_type_node, "len");
+
+  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
+  args[0] = gfc_build_addr_expr (NULL_TREE, var);
+  args[1] = gfc_build_addr_expr (NULL_TREE, len);
+
+  fndecl = build_addr (gfor_fndecl_ttynam);
+  tmp = build_call_array_loc (input_location,
+			  TREE_TYPE (TREE_TYPE (gfor_fndecl_ttynam)),
+			  fndecl, num_args, args);
+  gfc_add_expr_to_block (&se->pre, tmp);
+
+  /* Free the temporary afterwards, if necessary.  */
+  cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
+			  len, build_int_cst (TREE_TYPE (len), 0));
+  tmp = gfc_call_free (var);
+  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
+  gfc_add_expr_to_block (&se->post, tmp);
+
+  se->expr = var;
+  se->string_length = len;
+}
+
+
+/* Get the minimum/maximum value of all the parameters.
+    minmax (a1, a2, a3, ...)
+    {
+      mvar = a1;
+      if (a2 .op. mvar || isnan (mvar))
+        mvar = a2;
+      if (a3 .op. mvar || isnan (mvar))
+        mvar = a3;
+      ...
+      return mvar
+    }
+ */
+
+/* TODO: Mismatching types can occur when specific names are used.
+   These should be handled during resolution.  */
+static void
+gfc_conv_intrinsic_minmax (gfc_se * se, gfc_expr * expr, enum tree_code op)
+{
+  tree tmp;
+  tree mvar;
+  tree val;
+  tree thencase;
+  tree *args;
+  tree type;
+  gfc_actual_arglist *argexpr;
+  unsigned int i, nargs;
+
+  nargs = gfc_intrinsic_argument_list_length (expr);
+  args = XALLOCAVEC (tree, nargs);
+
+  gfc_conv_intrinsic_function_args (se, expr, args, nargs);
+  type = gfc_typenode_for_spec (&expr->ts);
+
+  argexpr = expr->value.function.actual;
+  if (TREE_TYPE (args[0]) != type)
+    args[0] = convert (type, args[0]);
+  /* Only evaluate the argument once.  */
+  if (!VAR_P (args[0]) && !TREE_CONSTANT (args[0]))
+    args[0] = gfc_evaluate_now (args[0], &se->pre);
+
+  mvar = gfc_create_var (type, "M");
+  gfc_add_modify (&se->pre, mvar, args[0]);
+  for (i = 1, argexpr = argexpr->next; i < nargs; i++)
+    {
+      tree cond, isnan;
+
+      val = args[i];
+
+      /* Handle absent optional arguments by ignoring the comparison.  */
+      if (argexpr->expr->expr_type == EXPR_VARIABLE
+	  && argexpr->expr->symtree->n.sym->attr.optional
+	  && TREE_CODE (val) == INDIRECT_REF)
+	cond = fold_build2_loc (input_location,
+				NE_EXPR, boolean_type_node,
+				TREE_OPERAND (val, 0),
+			build_int_cst (TREE_TYPE (TREE_OPERAND (val, 0)), 0));
+      else
+      {
+	cond = NULL_TREE;
+
+	/* Only evaluate the argument once.  */
+	if (!VAR_P (val) && !TREE_CONSTANT (val))
+	  val = gfc_evaluate_now (val, &se->pre);
+      }
+
+      thencase = build2_v (MODIFY_EXPR, mvar, convert (type, val));
+
+      tmp = fold_build2_loc (input_location, op, boolean_type_node,
+			     convert (type, val), mvar);
+
+      /* FIXME: When the IEEE_ARITHMETIC module is implemented, the call to
+	 __builtin_isnan might be made dependent on that module being loaded,
+	 to help performance of programs that don't rely on IEEE semantics.  */
+      if (FLOAT_TYPE_P (TREE_TYPE (mvar)))
+	{
+	  isnan = build_call_expr_loc (input_location,
+				       builtin_decl_explicit (BUILT_IN_ISNAN),
+				       1, mvar);
+	  tmp = fold_build2_loc (input_location, TRUTH_OR_EXPR,
+				 boolean_type_node, tmp,
+				 fold_convert (boolean_type_node, isnan));
+	}
+      tmp = build3_v (COND_EXPR, tmp, thencase,
+		      build_empty_stmt (input_location));
+
+      if (cond != NULL_TREE)
+	tmp = build3_v (COND_EXPR, cond, tmp,
+			build_empty_stmt (input_location));
+
+      gfc_add_expr_to_block (&se->pre, tmp);
+      argexpr = argexpr->next;
+    }
+  se->expr = mvar;
+}
+
+
+/* Generate library calls for MIN and MAX intrinsics for character
+   variables.  */
+static void
+gfc_conv_intrinsic_minmax_char (gfc_se * se, gfc_expr * expr, int op)
+{
+  tree *args;
+  tree var, len, fndecl, tmp, cond, function;
+  unsigned int nargs;
+
+  nargs = gfc_intrinsic_argument_list_length (expr);
+  args = XALLOCAVEC (tree, nargs + 4);
+  gfc_conv_intrinsic_function_args (se, expr, &args[4], nargs);
+
+  /* Create the result variables.  */
+  len = gfc_create_var (gfc_charlen_type_node, "len");
+  args[0] = gfc_build_addr_expr (NULL_TREE, len);
+  var = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), "pstr");
+  args[1] = gfc_build_addr_expr (ppvoid_type_node, var);
+  args[2] = build_int_cst (integer_type_node, op);
+  args[3] = build_int_cst (integer_type_node, nargs / 2);
+
+  if (expr->ts.kind == 1)
+    function = gfor_fndecl_string_minmax;
+  else if (expr->ts.kind == 4)
+    function = gfor_fndecl_string_minmax_char4;
+  else
+    gcc_unreachable ();
+
+  /* Make the function call.  */
+  fndecl = build_addr (function);
+  tmp = build_call_array_loc (input_location,
+			  TREE_TYPE (TREE_TYPE (function)), fndecl,
+			  nargs + 4, args);
+  gfc_add_expr_to_block (&se->pre, tmp);
+
+  /* Free the temporary afterwards, if necessary.  */
+  cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
+			  len, build_int_cst (TREE_TYPE (len), 0));
+  tmp = gfc_call_free (var);
+  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
+  gfc_add_expr_to_block (&se->post, tmp);
+
+  se->expr = var;
+  se->string_length = len;
+}
+
+
+/* Create a symbol node for this intrinsic.  The symbol from the frontend
+   has the generic name.  */
+
+static gfc_symbol *
+gfc_get_symbol_for_expr (gfc_expr * expr, bool ignore_optional)
+{
+  gfc_symbol *sym;
+
+  /* TODO: Add symbols for intrinsic function to the global namespace.  */
+  gcc_assert (strlen (expr->value.function.name) <= GFC_MAX_SYMBOL_LEN - 5);
+  sym = gfc_new_symbol (expr->value.function.name, NULL);
+
+  sym->ts = expr->ts;
+  sym->attr.external = 1;
+  sym->attr.function = 1;
+  sym->attr.always_explicit = 1;
+  sym->attr.proc = PROC_INTRINSIC;
+  sym->attr.flavor = FL_PROCEDURE;
+  sym->result = sym;
+  if (expr->rank > 0)
+    {
+      sym->attr.dimension = 1;
+      sym->as = gfc_get_array_spec ();
+      sym->as->type = AS_ASSUMED_SHAPE;
+      sym->as->rank = expr->rank;
+    }
+
+  gfc_copy_formal_args_intr (sym, expr->value.function.isym,
+			     ignore_optional ? expr->value.function.actual
+					     : NULL);
+
+  return sym;
+}
+
+/* Generate a call to an external intrinsic function.  */
+static void
+gfc_conv_intrinsic_funcall (gfc_se * se, gfc_expr * expr)
+{
+  gfc_symbol *sym;
+  vec<tree, va_gc> *append_args;
+
+  gcc_assert (!se->ss || se->ss->info->expr == expr);
+
+  if (se->ss)
+    gcc_assert (expr->rank > 0);
+  else
+    gcc_assert (expr->rank == 0);
+
+  sym = gfc_get_symbol_for_expr (expr, se->ignore_optional);
+
+  /* Calls to libgfortran_matmul need to be appended special arguments,
+     to be able to call the BLAS ?gemm functions if required and possible.  */
+  append_args = NULL;
+  if (expr->value.function.isym->id == GFC_ISYM_MATMUL
+      && sym->ts.type != BT_LOGICAL)
+    {
+      tree cint = gfc_get_int_type (gfc_c_int_kind);
+
+      if (flag_external_blas
+	  && (sym->ts.type == BT_REAL || sym->ts.type == BT_COMPLEX)
+	  && (sym->ts.kind == 4 || sym->ts.kind == 8))
+	{
+	  tree gemm_fndecl;
+
+	  if (sym->ts.type == BT_REAL)
+	    {
+	      if (sym->ts.kind == 4)
+		gemm_fndecl = gfor_fndecl_sgemm;
+	      else
+		gemm_fndecl = gfor_fndecl_dgemm;
+	    }
+	  else
+	    {
+	      if (sym->ts.kind == 4)
+		gemm_fndecl = gfor_fndecl_cgemm;
+	      else
+		gemm_fndecl = gfor_fndecl_zgemm;
+	    }
+
+	  vec_alloc (append_args, 3);
+	  append_args->quick_push (build_int_cst (cint, 1));
+	  append_args->quick_push (build_int_cst (cint,
+						  flag_blas_matmul_limit));
+	  append_args->quick_push (gfc_build_addr_expr (NULL_TREE,
+							gemm_fndecl));
+	}
+      else
+	{
+	  vec_alloc (append_args, 3);
+	  append_args->quick_push (build_int_cst (cint, 0));
+	  append_args->quick_push (build_int_cst (cint, 0));
+	  append_args->quick_push (null_pointer_node);
+	}
+    }
+
+  gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr,
+			  append_args);
+  gfc_free_symbol (sym);
+}
+
+/* ANY and ALL intrinsics. ANY->op == NE_EXPR, ALL->op == EQ_EXPR.
+   Implemented as
+    any(a)
+    {
+      forall (i=...)
+        if (a[i] != 0)
+          return 1
+      end forall
+      return 0
+    }
+    all(a)
+    {
+      forall (i=...)
+        if (a[i] == 0)
+          return 0
+      end forall
+      return 1
+    }
+ */
+static void
+gfc_conv_intrinsic_anyall (gfc_se * se, gfc_expr * expr, enum tree_code op)
+{
+  tree resvar;
+  stmtblock_t block;
+  stmtblock_t body;
+  tree type;
+  tree tmp;
+  tree found;
+  gfc_loopinfo loop;
+  gfc_actual_arglist *actual;
+  gfc_ss *arrayss;
+  gfc_se arrayse;
+  tree exit_label;
+
+  if (se->ss)
+    {
+      gfc_conv_intrinsic_funcall (se, expr);
+      return;
+    }
+
+  actual = expr->value.function.actual;
+  type = gfc_typenode_for_spec (&expr->ts);
+  /* Initialize the result.  */
+  resvar = gfc_create_var (type, "test");
+  if (op == EQ_EXPR)
+    tmp = convert (type, boolean_true_node);
+  else
+    tmp = convert (type, boolean_false_node);
+  gfc_add_modify (&se->pre, resvar, tmp);
+
+  /* Walk the arguments.  */
+  arrayss = gfc_walk_expr (actual->expr);
+  gcc_assert (arrayss != gfc_ss_terminator);
+
+  /* Initialize the scalarizer.  */
+  gfc_init_loopinfo (&loop);
+  exit_label = gfc_build_label_decl (NULL_TREE);
+  TREE_USED (exit_label) = 1;
+  gfc_add_ss_to_loop (&loop, arrayss);
+
+  /* Initialize the loop.  */
+  gfc_conv_ss_startstride (&loop);
+  gfc_conv_loop_setup (&loop, &expr->where);
+
+  gfc_mark_ss_chain_used (arrayss, 1);
+  /* Generate the loop body.  */
+  gfc_start_scalarized_body (&loop, &body);
+
+  /* If the condition matches then set the return value.  */
+  gfc_start_block (&block);
+  if (op == EQ_EXPR)
+    tmp = convert (type, boolean_false_node);
+  else
+    tmp = convert (type, boolean_true_node);
+  gfc_add_modify (&block, resvar, tmp);
+
+  /* And break out of the loop.  */
+  tmp = build1_v (GOTO_EXPR, exit_label);
+  gfc_add_expr_to_block (&block, tmp);
+
+  found = gfc_finish_block (&block);
+
+  /* Check this element.  */
+  gfc_init_se (&arrayse, NULL);
+  gfc_copy_loopinfo_to_se (&arrayse, &loop);
+  arrayse.ss = arrayss;
+  gfc_conv_expr_val (&arrayse, actual->expr);
+
+  gfc_add_block_to_block (&body, &arrayse.pre);
+  tmp = fold_build2_loc (input_location, op, boolean_type_node, arrayse.expr,
+			 build_int_cst (TREE_TYPE (arrayse.expr), 0));
+  tmp = build3_v (COND_EXPR, tmp, found, build_empty_stmt (input_location));
+  gfc_add_expr_to_block (&body, tmp);
+  gfc_add_block_to_block (&body, &arrayse.post);
+
+  gfc_trans_scalarizing_loops (&loop, &body);
+
+  /* Add the exit label.  */
+  tmp = build1_v (LABEL_EXPR, exit_label);
+  gfc_add_expr_to_block (&loop.pre, tmp);
+
+  gfc_add_block_to_block (&se->pre, &loop.pre);
+  gfc_add_block_to_block (&se->pre, &loop.post);
+  gfc_cleanup_loop (&loop);
+
+  se->expr = resvar;
+}
+
+/* COUNT(A) = Number of true elements in A.  */
+static void
+gfc_conv_intrinsic_count (gfc_se * se, gfc_expr * expr)
+{
+  tree resvar;
+  tree type;
+  stmtblock_t body;
+  tree tmp;
+  gfc_loopinfo loop;
+  gfc_actual_arglist *actual;
+  gfc_ss *arrayss;
+  gfc_se arrayse;
+
+  if (se->ss)
+    {
+      gfc_conv_intrinsic_funcall (se, expr);
+      return;
+    }
+
+  actual = expr->value.function.actual;
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  /* Initialize the result.  */
+  resvar = gfc_create_var (type, "count");
+  gfc_add_modify (&se->pre, resvar, build_int_cst (type, 0));
+
+  /* Walk the arguments.  */
+  arrayss = gfc_walk_expr (actual->expr);
+  gcc_assert (arrayss != gfc_ss_terminator);
+
+  /* Initialize the scalarizer.  */
+  gfc_init_loopinfo (&loop);
+  gfc_add_ss_to_loop (&loop, arrayss);
+
+  /* Initialize the loop.  */
+  gfc_conv_ss_startstride (&loop);
+  gfc_conv_loop_setup (&loop, &expr->where);
+
+  gfc_mark_ss_chain_used (arrayss, 1);
+  /* Generate the loop body.  */
+  gfc_start_scalarized_body (&loop, &body);
+
+  tmp = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (resvar),
+			 resvar, build_int_cst (TREE_TYPE (resvar), 1));
+  tmp = build2_v (MODIFY_EXPR, resvar, tmp);
+
+  gfc_init_se (&arrayse, NULL);
+  gfc_copy_loopinfo_to_se (&arrayse, &loop);
+  arrayse.ss = arrayss;
+  gfc_conv_expr_val (&arrayse, actual->expr);
+  tmp = build3_v (COND_EXPR, arrayse.expr, tmp,
+		  build_empty_stmt (input_location));
+
+  gfc_add_block_to_block (&body, &arrayse.pre);
+  gfc_add_expr_to_block (&body, tmp);
+  gfc_add_block_to_block (&body, &arrayse.post);
+
+  gfc_trans_scalarizing_loops (&loop, &body);
+
+  gfc_add_block_to_block (&se->pre, &loop.pre);
+  gfc_add_block_to_block (&se->pre, &loop.post);
+  gfc_cleanup_loop (&loop);
+
+  se->expr = resvar;
+}
+
+
+/* Update given gfc_se to have ss component pointing to the nested gfc_ss
+   struct and return the corresponding loopinfo.  */
+
+static gfc_loopinfo *
+enter_nested_loop (gfc_se *se)
+{
+  se->ss = se->ss->nested_ss;
+  gcc_assert (se->ss == se->ss->loop->ss);
+
+  return se->ss->loop;
+}
+
+
+/* Inline implementation of the sum and product intrinsics.  */
+static void
+gfc_conv_intrinsic_arith (gfc_se * se, gfc_expr * expr, enum tree_code op,
+			  bool norm2)
+{
+  tree resvar;
+  tree scale = NULL_TREE;
+  tree type;
+  stmtblock_t body;
+  stmtblock_t block;
+  tree tmp;
+  gfc_loopinfo loop, *ploop;
+  gfc_actual_arglist *arg_array, *arg_mask;
+  gfc_ss *arrayss = NULL;
+  gfc_ss *maskss = NULL;
+  gfc_se arrayse;
+  gfc_se maskse;
+  gfc_se *parent_se;
+  gfc_expr *arrayexpr;
+  gfc_expr *maskexpr;
+
+  if (expr->rank > 0)
+    {
+      gcc_assert (gfc_inline_intrinsic_function_p (expr));
+      parent_se = se;
+    }
+  else
+    parent_se = NULL;
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  /* Initialize the result.  */
+  resvar = gfc_create_var (type, "val");
+  if (norm2)
+    {
+      /* result = 0.0;
+	 scale = 1.0.  */
+      scale = gfc_create_var (type, "scale");
+      gfc_add_modify (&se->pre, scale,
+		      gfc_build_const (type, integer_one_node));
+      tmp = gfc_build_const (type, integer_zero_node);
+    }
+  else if (op == PLUS_EXPR || op == BIT_IOR_EXPR || op == BIT_XOR_EXPR)
+    tmp = gfc_build_const (type, integer_zero_node);
+  else if (op == NE_EXPR)
+    /* PARITY.  */
+    tmp = convert (type, boolean_false_node);
+  else if (op == BIT_AND_EXPR)
+    tmp = gfc_build_const (type, fold_build1_loc (input_location, NEGATE_EXPR,
+						  type, integer_one_node));
+  else
+    tmp = gfc_build_const (type, integer_one_node);
+
+  gfc_add_modify (&se->pre, resvar, tmp);
+
+  arg_array = expr->value.function.actual;
+
+  arrayexpr = arg_array->expr;
+
+  if (op == NE_EXPR || norm2)
+    /* PARITY and NORM2.  */
+    maskexpr = NULL;
+  else
+    {
+      arg_mask  = arg_array->next->next;
+      gcc_assert (arg_mask != NULL);
+      maskexpr = arg_mask->expr;
+    }
+
+  if (expr->rank == 0)
+    {
+      /* Walk the arguments.  */
+      arrayss = gfc_walk_expr (arrayexpr);
+      gcc_assert (arrayss != gfc_ss_terminator);
+
+      if (maskexpr && maskexpr->rank > 0)
+	{
+	  maskss = gfc_walk_expr (maskexpr);
+	  gcc_assert (maskss != gfc_ss_terminator);
+	}
+      else
+	maskss = NULL;
+
+      /* Initialize the scalarizer.  */
+      gfc_init_loopinfo (&loop);
+      gfc_add_ss_to_loop (&loop, arrayss);
+      if (maskexpr && maskexpr->rank > 0)
+	gfc_add_ss_to_loop (&loop, maskss);
+
+      /* Initialize the loop.  */
+      gfc_conv_ss_startstride (&loop);
+      gfc_conv_loop_setup (&loop, &expr->where);
+
+      gfc_mark_ss_chain_used (arrayss, 1);
+      if (maskexpr && maskexpr->rank > 0)
+	gfc_mark_ss_chain_used (maskss, 1);
+
+      ploop = &loop;
+    }
+  else
+    /* All the work has been done in the parent loops.  */
+    ploop = enter_nested_loop (se);
+
+  gcc_assert (ploop);
+
+  /* Generate the loop body.  */
+  gfc_start_scalarized_body (ploop, &body);
+
+  /* If we have a mask, only add this element if the mask is set.  */
+  if (maskexpr && maskexpr->rank > 0)
+    {
+      gfc_init_se (&maskse, parent_se);
+      gfc_copy_loopinfo_to_se (&maskse, ploop);
+      if (expr->rank == 0)
+	maskse.ss = maskss;
+      gfc_conv_expr_val (&maskse, maskexpr);
+      gfc_add_block_to_block (&body, &maskse.pre);
+
+      gfc_start_block (&block);
+    }
+  else
+    gfc_init_block (&block);
+
+  /* Do the actual summation/product.  */
+  gfc_init_se (&arrayse, parent_se);
+  gfc_copy_loopinfo_to_se (&arrayse, ploop);
+  if (expr->rank == 0)
+    arrayse.ss = arrayss;
+  gfc_conv_expr_val (&arrayse, arrayexpr);
+  gfc_add_block_to_block (&block, &arrayse.pre);
+
+  if (norm2)
+    {
+      /* if (x (i) != 0.0)
+	   {
+	     absX = abs(x(i))
+	     if (absX > scale)
+	       {
+                 val = scale/absX;
+		 result = 1.0 + result * val * val;
+		 scale = absX;
+	       }
+	     else
+	       {
+                 val = absX/scale;
+	         result += val * val;
+	       }
+	   }  */
+      tree res1, res2, cond, absX, val;
+      stmtblock_t ifblock1, ifblock2, ifblock3;
+
+      gfc_init_block (&ifblock1);
+
+      absX = gfc_create_var (type, "absX");
+      gfc_add_modify (&ifblock1, absX,
+		      fold_build1_loc (input_location, ABS_EXPR, type,
+				       arrayse.expr));
+      val = gfc_create_var (type, "val");
+      gfc_add_expr_to_block (&ifblock1, val);
+
+      gfc_init_block (&ifblock2);
+      gfc_add_modify (&ifblock2, val,
+		      fold_build2_loc (input_location, RDIV_EXPR, type, scale,
+				       absX));
+      res1 = fold_build2_loc (input_location, MULT_EXPR, type, val, val);
+      res1 = fold_build2_loc (input_location, MULT_EXPR, type, resvar, res1);
+      res1 = fold_build2_loc (input_location, PLUS_EXPR, type, res1,
+			      gfc_build_const (type, integer_one_node));
+      gfc_add_modify (&ifblock2, resvar, res1);
+      gfc_add_modify (&ifblock2, scale, absX);
+      res1 = gfc_finish_block (&ifblock2);
+
+      gfc_init_block (&ifblock3);
+      gfc_add_modify (&ifblock3, val,
+		      fold_build2_loc (input_location, RDIV_EXPR, type, absX,
+				       scale));
+      res2 = fold_build2_loc (input_location, MULT_EXPR, type, val, val);
+      res2 = fold_build2_loc (input_location, PLUS_EXPR, type, resvar, res2);
+      gfc_add_modify (&ifblock3, resvar, res2);
+      res2 = gfc_finish_block (&ifblock3);
+
+      cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
+			      absX, scale);
+      tmp = build3_v (COND_EXPR, cond, res1, res2);
+      gfc_add_expr_to_block (&ifblock1, tmp);
+      tmp = gfc_finish_block (&ifblock1);
+
+      cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+			      arrayse.expr,
+			      gfc_build_const (type, integer_zero_node));
+
+      tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
+      gfc_add_expr_to_block (&block, tmp);
+    }
+  else
+    {
+      tmp = fold_build2_loc (input_location, op, type, resvar, arrayse.expr);
+      gfc_add_modify (&block, resvar, tmp);
+    }
+
+  gfc_add_block_to_block (&block, &arrayse.post);
+
+  if (maskexpr && maskexpr->rank > 0)
+    {
+      /* We enclose the above in if (mask) {...} .  */
+
+      tmp = gfc_finish_block (&block);
+      tmp = build3_v (COND_EXPR, maskse.expr, tmp,
+		      build_empty_stmt (input_location));
+    }
+  else
+    tmp = gfc_finish_block (&block);
+  gfc_add_expr_to_block (&body, tmp);
+
+  gfc_trans_scalarizing_loops (ploop, &body);
+
+  /* For a scalar mask, enclose the loop in an if statement.  */
+  if (maskexpr && maskexpr->rank == 0)
+    {
+      gfc_init_block (&block);
+      gfc_add_block_to_block (&block, &ploop->pre);
+      gfc_add_block_to_block (&block, &ploop->post);
+      tmp = gfc_finish_block (&block);
+
+      if (expr->rank > 0)
+	{
+	  tmp = build3_v (COND_EXPR, se->ss->info->data.scalar.value, tmp,
+			  build_empty_stmt (input_location));
+	  gfc_advance_se_ss_chain (se);
+	}
+      else
+	{
+	  gcc_assert (expr->rank == 0);
+	  gfc_init_se (&maskse, NULL);
+	  gfc_conv_expr_val (&maskse, maskexpr);
+	  tmp = build3_v (COND_EXPR, maskse.expr, tmp,
+			  build_empty_stmt (input_location));
+	}
+
+      gfc_add_expr_to_block (&block, tmp);
+      gfc_add_block_to_block (&se->pre, &block);
+      gcc_assert (se->post.head == NULL);
+    }
+  else
+    {
+      gfc_add_block_to_block (&se->pre, &ploop->pre);
+      gfc_add_block_to_block (&se->pre, &ploop->post);
+    }
+
+  if (expr->rank == 0)
+    gfc_cleanup_loop (ploop);
+
+  if (norm2)
+    {
+      /* result = scale * sqrt(result).  */
+      tree sqrt;
+      sqrt = gfc_builtin_decl_for_float_kind (BUILT_IN_SQRT, expr->ts.kind);
+      resvar = build_call_expr_loc (input_location,
+				    sqrt, 1, resvar);
+      resvar = fold_build2_loc (input_location, MULT_EXPR, type, scale, resvar);
+    }
+
+  se->expr = resvar;
+}
+
+
+/* Inline implementation of the dot_product intrinsic. This function
+   is based on gfc_conv_intrinsic_arith (the previous function).  */
+static void
+gfc_conv_intrinsic_dot_product (gfc_se * se, gfc_expr * expr)
+{
+  tree resvar;
+  tree type;
+  stmtblock_t body;
+  stmtblock_t block;
+  tree tmp;
+  gfc_loopinfo loop;
+  gfc_actual_arglist *actual;
+  gfc_ss *arrayss1, *arrayss2;
+  gfc_se arrayse1, arrayse2;
+  gfc_expr *arrayexpr1, *arrayexpr2;
+
+  type = gfc_typenode_for_spec (&expr->ts);
+
+  /* Initialize the result.  */
+  resvar = gfc_create_var (type, "val");
+  if (expr->ts.type == BT_LOGICAL)
+    tmp = build_int_cst (type, 0);
+  else
+    tmp = gfc_build_const (type, integer_zero_node);
+
+  gfc_add_modify (&se->pre, resvar, tmp);
+
+  /* Walk argument #1.  */
+  actual = expr->value.function.actual;
+  arrayexpr1 = actual->expr;
+  arrayss1 = gfc_walk_expr (arrayexpr1);
+  gcc_assert (arrayss1 != gfc_ss_terminator);
+
+  /* Walk argument #2.  */
+  actual = actual->next;
+  arrayexpr2 = actual->expr;
+  arrayss2 = gfc_walk_expr (arrayexpr2);
+  gcc_assert (arrayss2 != gfc_ss_terminator);
+
+  /* Initialize the scalarizer.  */
+  gfc_init_loopinfo (&loop);
+  gfc_add_ss_to_loop (&loop, arrayss1);
+  gfc_add_ss_to_loop (&loop, arrayss2);
+
+  /* Initialize the loop.  */
+  gfc_conv_ss_startstride (&loop);
+  gfc_conv_loop_setup (&loop, &expr->where);
+
+  gfc_mark_ss_chain_used (arrayss1, 1);
+  gfc_mark_ss_chain_used (arrayss2, 1);
+
+  /* Generate the loop body.  */
+  gfc_start_scalarized_body (&loop, &body);
+  gfc_init_block (&block);
+
+  /* Make the tree expression for [conjg(]array1[)].  */
+  gfc_init_se (&arrayse1, NULL);
+  gfc_copy_loopinfo_to_se (&arrayse1, &loop);
+  arrayse1.ss = arrayss1;
+  gfc_conv_expr_val (&arrayse1, arrayexpr1);
+  if (expr->ts.type == BT_COMPLEX)
+    arrayse1.expr = fold_build1_loc (input_location, CONJ_EXPR, type,
+				     arrayse1.expr);
+  gfc_add_block_to_block (&block, &arrayse1.pre);
+
+  /* Make the tree expression for array2.  */
+  gfc_init_se (&arrayse2, NULL);
+  gfc_copy_loopinfo_to_se (&arrayse2, &loop);
+  arrayse2.ss = arrayss2;
+  gfc_conv_expr_val (&arrayse2, arrayexpr2);
+  gfc_add_block_to_block (&block, &arrayse2.pre);
+
+  /* Do the actual product and sum.  */
+  if (expr->ts.type == BT_LOGICAL)
+    {
+      tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR, type,
+			     arrayse1.expr, arrayse2.expr);
+      tmp = fold_build2_loc (input_location, TRUTH_OR_EXPR, type, resvar, tmp);
+    }
+  else
+    {
+      tmp = fold_build2_loc (input_location, MULT_EXPR, type, arrayse1.expr,
+			     arrayse2.expr);
+      tmp = fold_build2_loc (input_location, PLUS_EXPR, type, resvar, tmp);
+    }
+  gfc_add_modify (&block, resvar, tmp);
+
+  /* Finish up the loop block and the loop.  */
+  tmp = gfc_finish_block (&block);
+  gfc_add_expr_to_block (&body, tmp);
+
+  gfc_trans_scalarizing_loops (&loop, &body);
+  gfc_add_block_to_block (&se->pre, &loop.pre);
+  gfc_add_block_to_block (&se->pre, &loop.post);
+  gfc_cleanup_loop (&loop);
+
+  se->expr = resvar;
+}
+
+
+/* Emit code for minloc or maxloc intrinsic.  There are many different cases
+   we need to handle.  For performance reasons we sometimes create two
+   loops instead of one, where the second one is much simpler.
+   Examples for minloc intrinsic:
+   1) Result is an array, a call is generated
+   2) Array mask is used and NaNs need to be supported:
+      limit = Infinity;
+      pos = 0;
+      S = from;
+      while (S <= to) {
+	if (mask[S]) {
+	  if (pos == 0) pos = S + (1 - from);
+	  if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; }
+	}
+	S++;
+      }
+      goto lab2;
+      lab1:;
+      while (S <= to) {
+	if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
+	S++;
+      }
+      lab2:;
+   3) NaNs need to be supported, but it is known at compile time or cheaply
+      at runtime whether array is nonempty or not:
+      limit = Infinity;
+      pos = 0;
+      S = from;
+      while (S <= to) {
+	if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; }
+	S++;
+      }
+      if (from <= to) pos = 1;
+      goto lab2;
+      lab1:;
+      while (S <= to) {
+	if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
+	S++;
+      }
+      lab2:;
+   4) NaNs aren't supported, array mask is used:
+      limit = infinities_supported ? Infinity : huge (limit);
+      pos = 0;
+      S = from;
+      while (S <= to) {
+	if (mask[S]) { limit = a[S]; pos = S + (1 - from); goto lab1; }
+	S++;
+      }
+      goto lab2;
+      lab1:;
+      while (S <= to) {
+	if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
+	S++;
+      }
+      lab2:;
+   5) Same without array mask:
+      limit = infinities_supported ? Infinity : huge (limit);
+      pos = (from <= to) ? 1 : 0;
+      S = from;
+      while (S <= to) {
+	if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
+	S++;
+      }
+   For 3) and 5), if mask is scalar, this all goes into a conditional,
+   setting pos = 0; in the else branch.  */
+
+static void
+gfc_conv_intrinsic_minmaxloc (gfc_se * se, gfc_expr * expr, enum tree_code op)
+{
+  stmtblock_t body;
+  stmtblock_t block;
+  stmtblock_t ifblock;
+  stmtblock_t elseblock;
+  tree limit;
+  tree type;
+  tree tmp;
+  tree cond;
+  tree elsetmp;
+  tree ifbody;
+  tree offset;
+  tree nonempty;
+  tree lab1, lab2;
+  gfc_loopinfo loop;
+  gfc_actual_arglist *actual;
+  gfc_ss *arrayss;
+  gfc_ss *maskss;
+  gfc_se arrayse;
+  gfc_se maskse;
+  gfc_expr *arrayexpr;
+  gfc_expr *maskexpr;
+  tree pos;
+  int n;
+
+  if (se->ss)
+    {
+      gfc_conv_intrinsic_funcall (se, expr);
+      return;
+    }
+
+  /* Initialize the result.  */
+  pos = gfc_create_var (gfc_array_index_type, "pos");
+  offset = gfc_create_var (gfc_array_index_type, "offset");
+  type = gfc_typenode_for_spec (&expr->ts);
+
+  /* Walk the arguments.  */
+  actual = expr->value.function.actual;
+  arrayexpr = actual->expr;
+  arrayss = gfc_walk_expr (arrayexpr);
+  gcc_assert (arrayss != gfc_ss_terminator);
+
+  actual = actual->next->next;
+  gcc_assert (actual);
+  maskexpr = actual->expr;
+  nonempty = NULL;
+  if (maskexpr && maskexpr->rank != 0)
+    {
+      maskss = gfc_walk_expr (maskexpr);
+      gcc_assert (maskss != gfc_ss_terminator);
+    }
+  else
+    {
+      mpz_t asize;
+      if (gfc_array_size (arrayexpr, &asize))
+	{
+	  nonempty = gfc_conv_mpz_to_tree (asize, gfc_index_integer_kind);
+	  mpz_clear (asize);
+	  nonempty = fold_build2_loc (input_location, GT_EXPR,
+				      boolean_type_node, nonempty,
+				      gfc_index_zero_node);
+	}
+      maskss = NULL;
+    }
+
+  limit = gfc_create_var (gfc_typenode_for_spec (&arrayexpr->ts), "limit");
+  switch (arrayexpr->ts.type)
+    {
+    case BT_REAL:
+      tmp = gfc_build_inf_or_huge (TREE_TYPE (limit), arrayexpr->ts.kind);
+      break;
+
+    case BT_INTEGER:
+      n = gfc_validate_kind (arrayexpr->ts.type, arrayexpr->ts.kind, false);
+      tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge,
+				  arrayexpr->ts.kind);
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  /* We start with the most negative possible value for MAXLOC, and the most
+     positive possible value for MINLOC. The most negative possible value is
+     -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive
+     possible value is HUGE in both cases.  */
+  if (op == GT_EXPR)
+    tmp = fold_build1_loc (input_location, NEGATE_EXPR, TREE_TYPE (tmp), tmp);
+  if (op == GT_EXPR && arrayexpr->ts.type == BT_INTEGER)
+    tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (tmp), tmp,
+			   build_int_cst (TREE_TYPE (tmp), 1));
+
+  gfc_add_modify (&se->pre, limit, tmp);
+
+  /* Initialize the scalarizer.  */
+  gfc_init_loopinfo (&loop);
+  gfc_add_ss_to_loop (&loop, arrayss);
+  if (maskss)
+    gfc_add_ss_to_loop (&loop, maskss);
+
+  /* Initialize the loop.  */
+  gfc_conv_ss_startstride (&loop);
+
+  /* The code generated can have more than one loop in sequence (see the
+     comment at the function header).  This doesn't work well with the
+     scalarizer, which changes arrays' offset when the scalarization loops
+     are generated (see gfc_trans_preloop_setup).  Fortunately, {min,max}loc
+     are  currently inlined in the scalar case only (for which loop is of rank
+     one).  As there is no dependency to care about in that case, there is no
+     temporary, so that we can use the scalarizer temporary code to handle
+     multiple loops.  Thus, we set temp_dim here, we call gfc_mark_ss_chain_used
+     with flag=3 later, and we use gfc_trans_scalarized_loop_boundary even later
+     to restore offset.
+     TODO: this prevents inlining of rank > 0 minmaxloc calls, so this
+     should eventually go away.  We could either create two loops properly,
+     or find another way to save/restore the array offsets between the two
+     loops (without conflicting with temporary management), or use a single
+     loop minmaxloc implementation.  See PR 31067.  */
+  loop.temp_dim = loop.dimen;
+  gfc_conv_loop_setup (&loop, &expr->where);
+
+  gcc_assert (loop.dimen == 1);
+  if (nonempty == NULL && maskss == NULL && loop.from[0] && loop.to[0])
+    nonempty = fold_build2_loc (input_location, LE_EXPR, boolean_type_node,
+				loop.from[0], loop.to[0]);
+
+  lab1 = NULL;
+  lab2 = NULL;
+  /* Initialize the position to zero, following Fortran 2003.  We are free
+     to do this because Fortran 95 allows the result of an entirely false
+     mask to be processor dependent.  If we know at compile time the array
+     is non-empty and no MASK is used, we can initialize to 1 to simplify
+     the inner loop.  */
+  if (nonempty != NULL && !HONOR_NANS (DECL_MODE (limit)))
+    gfc_add_modify (&loop.pre, pos,
+		    fold_build3_loc (input_location, COND_EXPR,
+				     gfc_array_index_type,
+				     nonempty, gfc_index_one_node,
+				     gfc_index_zero_node));
+  else
+    {
+      gfc_add_modify (&loop.pre, pos, gfc_index_zero_node);
+      lab1 = gfc_build_label_decl (NULL_TREE);
+      TREE_USED (lab1) = 1;
+      lab2 = gfc_build_label_decl (NULL_TREE);
+      TREE_USED (lab2) = 1;
+    }
+
+  /* An offset must be added to the loop
+     counter to obtain the required position.  */
+  gcc_assert (loop.from[0]);
+
+  tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
+			 gfc_index_one_node, loop.from[0]);
+  gfc_add_modify (&loop.pre, offset, tmp);
+
+  gfc_mark_ss_chain_used (arrayss, lab1 ? 3 : 1);
+  if (maskss)
+    gfc_mark_ss_chain_used (maskss, lab1 ? 3 : 1);
+  /* Generate the loop body.  */
+  gfc_start_scalarized_body (&loop, &body);
+
+  /* If we have a mask, only check this element if the mask is set.  */
+  if (maskss)
+    {
+      gfc_init_se (&maskse, NULL);
+      gfc_copy_loopinfo_to_se (&maskse, &loop);
+      maskse.ss = maskss;
+      gfc_conv_expr_val (&maskse, maskexpr);
+      gfc_add_block_to_block (&body, &maskse.pre);
+
+      gfc_start_block (&block);
+    }
+  else
+    gfc_init_block (&block);
+
+  /* Compare with the current limit.  */
+  gfc_init_se (&arrayse, NULL);
+  gfc_copy_loopinfo_to_se (&arrayse, &loop);
+  arrayse.ss = arrayss;
+  gfc_conv_expr_val (&arrayse, arrayexpr);
+  gfc_add_block_to_block (&block, &arrayse.pre);
+
+  /* We do the following if this is a more extreme value.  */
+  gfc_start_block (&ifblock);
+
+  /* Assign the value to the limit...  */
+  gfc_add_modify (&ifblock, limit, arrayse.expr);
+
+  if (nonempty == NULL && HONOR_NANS (DECL_MODE (limit)))
+    {
+      stmtblock_t ifblock2;
+      tree ifbody2;
+
+      gfc_start_block (&ifblock2);
+      tmp = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (pos),
+			     loop.loopvar[0], offset);
+      gfc_add_modify (&ifblock2, pos, tmp);
+      ifbody2 = gfc_finish_block (&ifblock2);
+      cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, pos,
+			      gfc_index_zero_node);
+      tmp = build3_v (COND_EXPR, cond, ifbody2,
+		      build_empty_stmt (input_location));
+      gfc_add_expr_to_block (&block, tmp);
+    }
+
+  tmp = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (pos),
+			 loop.loopvar[0], offset);
+  gfc_add_modify (&ifblock, pos, tmp);
+
+  if (lab1)
+    gfc_add_expr_to_block (&ifblock, build1_v (GOTO_EXPR, lab1));
+
+  ifbody = gfc_finish_block (&ifblock);
+
+  if (!lab1 || HONOR_NANS (DECL_MODE (limit)))
+    {
+      if (lab1)
+	cond = fold_build2_loc (input_location,
+				op == GT_EXPR ? GE_EXPR : LE_EXPR,
+				boolean_type_node, arrayse.expr, limit);
+      else
+	cond = fold_build2_loc (input_location, op, boolean_type_node,
+				arrayse.expr, limit);
+
+      ifbody = build3_v (COND_EXPR, cond, ifbody,
+			 build_empty_stmt (input_location));
+    }
+  gfc_add_expr_to_block (&block, ifbody);
+
+  if (maskss)
+    {
+      /* We enclose the above in if (mask) {...}.  */
+      tmp = gfc_finish_block (&block);
+
+      tmp = build3_v (COND_EXPR, maskse.expr, tmp,
+		      build_empty_stmt (input_location));
+    }
+  else
+    tmp = gfc_finish_block (&block);
+  gfc_add_expr_to_block (&body, tmp);
+
+  if (lab1)
+    {
+      gfc_trans_scalarized_loop_boundary (&loop, &body);
+
+      if (HONOR_NANS (DECL_MODE (limit)))
+	{
+	  if (nonempty != NULL)
+	    {
+	      ifbody = build2_v (MODIFY_EXPR, pos, gfc_index_one_node);
+	      tmp = build3_v (COND_EXPR, nonempty, ifbody,
+			      build_empty_stmt (input_location));
+	      gfc_add_expr_to_block (&loop.code[0], tmp);
+	    }
+	}
+
+      gfc_add_expr_to_block (&loop.code[0], build1_v (GOTO_EXPR, lab2));
+      gfc_add_expr_to_block (&loop.code[0], build1_v (LABEL_EXPR, lab1));
+
+      /* If we have a mask, only check this element if the mask is set.  */
+      if (maskss)
+	{
+	  gfc_init_se (&maskse, NULL);
+	  gfc_copy_loopinfo_to_se (&maskse, &loop);
+	  maskse.ss = maskss;
+	  gfc_conv_expr_val (&maskse, maskexpr);
+	  gfc_add_block_to_block (&body, &maskse.pre);
+
+	  gfc_start_block (&block);
+	}
+      else
+	gfc_init_block (&block);
+
+      /* Compare with the current limit.  */
+      gfc_init_se (&arrayse, NULL);
+      gfc_copy_loopinfo_to_se (&arrayse, &loop);
+      arrayse.ss = arrayss;
+      gfc_conv_expr_val (&arrayse, arrayexpr);
+      gfc_add_block_to_block (&block, &arrayse.pre);
+
+      /* We do the following if this is a more extreme value.  */
+      gfc_start_block (&ifblock);
+
+      /* Assign the value to the limit...  */
+      gfc_add_modify (&ifblock, limit, arrayse.expr);
+
+      tmp = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (pos),
+			     loop.loopvar[0], offset);
+      gfc_add_modify (&ifblock, pos, tmp);
+
+      ifbody = gfc_finish_block (&ifblock);
+
+      cond = fold_build2_loc (input_location, op, boolean_type_node,
+			      arrayse.expr, limit);
+
+      tmp = build3_v (COND_EXPR, cond, ifbody,
+		      build_empty_stmt (input_location));
+      gfc_add_expr_to_block (&block, tmp);
+
+      if (maskss)
+	{
+	  /* We enclose the above in if (mask) {...}.  */
+	  tmp = gfc_finish_block (&block);
+
+	  tmp = build3_v (COND_EXPR, maskse.expr, tmp,
+			  build_empty_stmt (input_location));
+	}
+      else
+	tmp = gfc_finish_block (&block);
+      gfc_add_expr_to_block (&body, tmp);
+      /* Avoid initializing loopvar[0] again, it should be left where
+	 it finished by the first loop.  */
+      loop.from[0] = loop.loopvar[0];
+    }
+
+  gfc_trans_scalarizing_loops (&loop, &body);
+
+  if (lab2)
+    gfc_add_expr_to_block (&loop.pre, build1_v (LABEL_EXPR, lab2));
+
+  /* For a scalar mask, enclose the loop in an if statement.  */
+  if (maskexpr && maskss == NULL)
+    {
+      gfc_init_se (&maskse, NULL);
+      gfc_conv_expr_val (&maskse, maskexpr);
+      gfc_init_block (&block);
+      gfc_add_block_to_block (&block, &loop.pre);
+      gfc_add_block_to_block (&block, &loop.post);
+      tmp = gfc_finish_block (&block);
+
+      /* For the else part of the scalar mask, just initialize
+	 the pos variable the same way as above.  */
+
+      gfc_init_block (&elseblock);
+      gfc_add_modify (&elseblock, pos, gfc_index_zero_node);
+      elsetmp = gfc_finish_block (&elseblock);
+
+      tmp = build3_v (COND_EXPR, maskse.expr, tmp, elsetmp);
+      gfc_add_expr_to_block (&block, tmp);
+      gfc_add_block_to_block (&se->pre, &block);
+    }
+  else
+    {
+      gfc_add_block_to_block (&se->pre, &loop.pre);
+      gfc_add_block_to_block (&se->pre, &loop.post);
+    }
+  gfc_cleanup_loop (&loop);
+
+  se->expr = convert (type, pos);
+}
+
+/* Emit code for minval or maxval intrinsic.  There are many different cases
+   we need to handle.  For performance reasons we sometimes create two
+   loops instead of one, where the second one is much simpler.
+   Examples for minval intrinsic:
+   1) Result is an array, a call is generated
+   2) Array mask is used and NaNs need to be supported, rank 1:
+      limit = Infinity;
+      nonempty = false;
+      S = from;
+      while (S <= to) {
+	if (mask[S]) { nonempty = true; if (a[S] <= limit) goto lab; }
+	S++;
+      }
+      limit = nonempty ? NaN : huge (limit);
+      lab:
+      while (S <= to) { if(mask[S]) limit = min (a[S], limit); S++; }
+   3) NaNs need to be supported, but it is known at compile time or cheaply
+      at runtime whether array is nonempty or not, rank 1:
+      limit = Infinity;
+      S = from;
+      while (S <= to) { if (a[S] <= limit) goto lab; S++; }
+      limit = (from <= to) ? NaN : huge (limit);
+      lab:
+      while (S <= to) { limit = min (a[S], limit); S++; }
+   4) Array mask is used and NaNs need to be supported, rank > 1:
+      limit = Infinity;
+      nonempty = false;
+      fast = false;
+      S1 = from1;
+      while (S1 <= to1) {
+	S2 = from2;
+	while (S2 <= to2) {
+	  if (mask[S1][S2]) {
+	    if (fast) limit = min (a[S1][S2], limit);
+	    else {
+	      nonempty = true;
+	      if (a[S1][S2] <= limit) {
+		limit = a[S1][S2];
+		fast = true;
+	      }
+	    }
+	  }
+	  S2++;
+	}
+	S1++;
+      }
+      if (!fast)
+	limit = nonempty ? NaN : huge (limit);
+   5) NaNs need to be supported, but it is known at compile time or cheaply
+      at runtime whether array is nonempty or not, rank > 1:
+      limit = Infinity;
+      fast = false;
+      S1 = from1;
+      while (S1 <= to1) {
+	S2 = from2;
+	while (S2 <= to2) {
+	  if (fast) limit = min (a[S1][S2], limit);
+	  else {
+	    if (a[S1][S2] <= limit) {
+	      limit = a[S1][S2];
+	      fast = true;
+	    }
+	  }
+	  S2++;
+	}
+	S1++;
+      }
+      if (!fast)
+	limit = (nonempty_array) ? NaN : huge (limit);
+   6) NaNs aren't supported, but infinities are.  Array mask is used:
+      limit = Infinity;
+      nonempty = false;
+      S = from;
+      while (S <= to) {
+	if (mask[S]) { nonempty = true; limit = min (a[S], limit); }
+	S++;
+      }
+      limit = nonempty ? limit : huge (limit);
+   7) Same without array mask:
+      limit = Infinity;
+      S = from;
+      while (S <= to) { limit = min (a[S], limit); S++; }
+      limit = (from <= to) ? limit : huge (limit);
+   8) Neither NaNs nor infinities are supported (-ffast-math or BT_INTEGER):
+      limit = huge (limit);
+      S = from;
+      while (S <= to) { limit = min (a[S], limit); S++); }
+      (or
+      while (S <= to) { if (mask[S]) limit = min (a[S], limit); S++; }
+      with array mask instead).
+   For 3), 5), 7) and 8), if mask is scalar, this all goes into a conditional,
+   setting limit = huge (limit); in the else branch.  */
+
+static void
+gfc_conv_intrinsic_minmaxval (gfc_se * se, gfc_expr * expr, enum tree_code op)
+{
+  tree limit;
+  tree type;
+  tree tmp;
+  tree ifbody;
+  tree nonempty;
+  tree nonempty_var;
+  tree lab;
+  tree fast;
+  tree huge_cst = NULL, nan_cst = NULL;
+  stmtblock_t body;
+  stmtblock_t block, block2;
+  gfc_loopinfo loop;
+  gfc_actual_arglist *actual;
+  gfc_ss *arrayss;
+  gfc_ss *maskss;
+  gfc_se arrayse;
+  gfc_se maskse;
+  gfc_expr *arrayexpr;
+  gfc_expr *maskexpr;
+  int n;
+
+  if (se->ss)
+    {
+      gfc_conv_intrinsic_funcall (se, expr);
+      return;
+    }
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  /* Initialize the result.  */
+  limit = gfc_create_var (type, "limit");
+  n = gfc_validate_kind (expr->ts.type, expr->ts.kind, false);
+  switch (expr->ts.type)
+    {
+    case BT_REAL:
+      huge_cst = gfc_conv_mpfr_to_tree (gfc_real_kinds[n].huge,
+					expr->ts.kind, 0);
+      if (HONOR_INFINITIES (DECL_MODE (limit)))
+	{
+	  REAL_VALUE_TYPE real;
+	  real_inf (&real);
+	  tmp = build_real (type, real);
+	}
+      else
+	tmp = huge_cst;
+      if (HONOR_NANS (DECL_MODE (limit)))
+	nan_cst = gfc_build_nan (type, "");
+      break;
+
+    case BT_INTEGER:
+      tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge, expr->ts.kind);
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  /* We start with the most negative possible value for MAXVAL, and the most
+     positive possible value for MINVAL. The most negative possible value is
+     -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive
+     possible value is HUGE in both cases.  */
+  if (op == GT_EXPR)
+    {
+      tmp = fold_build1_loc (input_location, NEGATE_EXPR, TREE_TYPE (tmp), tmp);
+      if (huge_cst)
+	huge_cst = fold_build1_loc (input_location, NEGATE_EXPR,
+				    TREE_TYPE (huge_cst), huge_cst);
+    }
+
+  if (op == GT_EXPR && expr->ts.type == BT_INTEGER)
+    tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (tmp),
+			   tmp, build_int_cst (type, 1));
+
+  gfc_add_modify (&se->pre, limit, tmp);
+
+  /* Walk the arguments.  */
+  actual = expr->value.function.actual;
+  arrayexpr = actual->expr;
+  arrayss = gfc_walk_expr (arrayexpr);
+  gcc_assert (arrayss != gfc_ss_terminator);
+
+  actual = actual->next->next;
+  gcc_assert (actual);
+  maskexpr = actual->expr;
+  nonempty = NULL;
+  if (maskexpr && maskexpr->rank != 0)
+    {
+      maskss = gfc_walk_expr (maskexpr);
+      gcc_assert (maskss != gfc_ss_terminator);
+    }
+  else
+    {
+      mpz_t asize;
+      if (gfc_array_size (arrayexpr, &asize))
+	{
+	  nonempty = gfc_conv_mpz_to_tree (asize, gfc_index_integer_kind);
+	  mpz_clear (asize);
+	  nonempty = fold_build2_loc (input_location, GT_EXPR,
+				      boolean_type_node, nonempty,
+				      gfc_index_zero_node);
+	}
+      maskss = NULL;
+    }
+
+  /* Initialize the scalarizer.  */
+  gfc_init_loopinfo (&loop);
+  gfc_add_ss_to_loop (&loop, arrayss);
+  if (maskss)
+    gfc_add_ss_to_loop (&loop, maskss);
+
+  /* Initialize the loop.  */
+  gfc_conv_ss_startstride (&loop);
+
+  /* The code generated can have more than one loop in sequence (see the
+     comment at the function header).  This doesn't work well with the
+     scalarizer, which changes arrays' offset when the scalarization loops
+     are generated (see gfc_trans_preloop_setup).  Fortunately, {min,max}val
+     are  currently inlined in the scalar case only.  As there is no dependency
+     to care about in that case, there is no temporary, so that we can use the
+     scalarizer temporary code to handle multiple loops.  Thus, we set temp_dim
+     here, we call gfc_mark_ss_chain_used with flag=3 later, and we use
+     gfc_trans_scalarized_loop_boundary even later to restore offset.
+     TODO: this prevents inlining of rank > 0 minmaxval calls, so this
+     should eventually go away.  We could either create two loops properly,
+     or find another way to save/restore the array offsets between the two
+     loops (without conflicting with temporary management), or use a single
+     loop minmaxval implementation.  See PR 31067.  */
+  loop.temp_dim = loop.dimen;
+  gfc_conv_loop_setup (&loop, &expr->where);
+
+  if (nonempty == NULL && maskss == NULL
+      && loop.dimen == 1 && loop.from[0] && loop.to[0])
+    nonempty = fold_build2_loc (input_location, LE_EXPR, boolean_type_node,
+				loop.from[0], loop.to[0]);
+  nonempty_var = NULL;
+  if (nonempty == NULL
+      && (HONOR_INFINITIES (DECL_MODE (limit))
+	  || HONOR_NANS (DECL_MODE (limit))))
+    {
+      nonempty_var = gfc_create_var (boolean_type_node, "nonempty");
+      gfc_add_modify (&se->pre, nonempty_var, boolean_false_node);
+      nonempty = nonempty_var;
+    }
+  lab = NULL;
+  fast = NULL;
+  if (HONOR_NANS (DECL_MODE (limit)))
+    {
+      if (loop.dimen == 1)
+	{
+	  lab = gfc_build_label_decl (NULL_TREE);
+	  TREE_USED (lab) = 1;
+	}
+      else
+	{
+	  fast = gfc_create_var (boolean_type_node, "fast");
+	  gfc_add_modify (&se->pre, fast, boolean_false_node);
+	}
+    }
+
+  gfc_mark_ss_chain_used (arrayss, lab ? 3 : 1);
+  if (maskss)
+    gfc_mark_ss_chain_used (maskss, lab ? 3 : 1);
+  /* Generate the loop body.  */
+  gfc_start_scalarized_body (&loop, &body);
+
+  /* If we have a mask, only add this element if the mask is set.  */
+  if (maskss)
+    {
+      gfc_init_se (&maskse, NULL);
+      gfc_copy_loopinfo_to_se (&maskse, &loop);
+      maskse.ss = maskss;
+      gfc_conv_expr_val (&maskse, maskexpr);
+      gfc_add_block_to_block (&body, &maskse.pre);
+
+      gfc_start_block (&block);
+    }
+  else
+    gfc_init_block (&block);
+
+  /* Compare with the current limit.  */
+  gfc_init_se (&arrayse, NULL);
+  gfc_copy_loopinfo_to_se (&arrayse, &loop);
+  arrayse.ss = arrayss;
+  gfc_conv_expr_val (&arrayse, arrayexpr);
+  gfc_add_block_to_block (&block, &arrayse.pre);
+
+  gfc_init_block (&block2);
+
+  if (nonempty_var)
+    gfc_add_modify (&block2, nonempty_var, boolean_true_node);
+
+  if (HONOR_NANS (DECL_MODE (limit)))
+    {
+      tmp = fold_build2_loc (input_location, op == GT_EXPR ? GE_EXPR : LE_EXPR,
+			     boolean_type_node, arrayse.expr, limit);
+      if (lab)
+	ifbody = build1_v (GOTO_EXPR, lab);
+      else
+	{
+	  stmtblock_t ifblock;
+
+	  gfc_init_block (&ifblock);
+	  gfc_add_modify (&ifblock, limit, arrayse.expr);
+	  gfc_add_modify (&ifblock, fast, boolean_true_node);
+	  ifbody = gfc_finish_block (&ifblock);
+	}
+      tmp = build3_v (COND_EXPR, tmp, ifbody,
+		      build_empty_stmt (input_location));
+      gfc_add_expr_to_block (&block2, tmp);
+    }
+  else
+    {
+      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
+	 signed zeros.  */
+      if (HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
+	{
+	  tmp = fold_build2_loc (input_location, op, boolean_type_node,
+				 arrayse.expr, limit);
+	  ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
+	  tmp = build3_v (COND_EXPR, tmp, ifbody,
+			  build_empty_stmt (input_location));
+	  gfc_add_expr_to_block (&block2, tmp);
+	}
+      else
+	{
+	  tmp = fold_build2_loc (input_location,
+				 op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
+				 type, arrayse.expr, limit);
+	  gfc_add_modify (&block2, limit, tmp);
+	}
+    }
+
+  if (fast)
+    {
+      tree elsebody = gfc_finish_block (&block2);
+
+      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
+	 signed zeros.  */
+      if (HONOR_NANS (DECL_MODE (limit))
+	  || HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
+	{
+	  tmp = fold_build2_loc (input_location, op, boolean_type_node,
+				 arrayse.expr, limit);
+	  ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
+	  ifbody = build3_v (COND_EXPR, tmp, ifbody,
+			     build_empty_stmt (input_location));
+	}
+      else
+	{
+	  tmp = fold_build2_loc (input_location,
+				 op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
+				 type, arrayse.expr, limit);
+	  ifbody = build2_v (MODIFY_EXPR, limit, tmp);
+	}
+      tmp = build3_v (COND_EXPR, fast, ifbody, elsebody);
+      gfc_add_expr_to_block (&block, tmp);
+    }
+  else
+    gfc_add_block_to_block (&block, &block2);
+
+  gfc_add_block_to_block (&block, &arrayse.post);
+
+  tmp = gfc_finish_block (&block);
+  if (maskss)
+    /* We enclose the above in if (mask) {...}.  */
+    tmp = build3_v (COND_EXPR, maskse.expr, tmp,
+		    build_empty_stmt (input_location));
+  gfc_add_expr_to_block (&body, tmp);
+
+  if (lab)
+    {
+      gfc_trans_scalarized_loop_boundary (&loop, &body);
+
+      tmp = fold_build3_loc (input_location, COND_EXPR, type, nonempty,
+			     nan_cst, huge_cst);
+      gfc_add_modify (&loop.code[0], limit, tmp);
+      gfc_add_expr_to_block (&loop.code[0], build1_v (LABEL_EXPR, lab));
+
+      /* If we have a mask, only add this element if the mask is set.  */
+      if (maskss)
+	{
+	  gfc_init_se (&maskse, NULL);
+	  gfc_copy_loopinfo_to_se (&maskse, &loop);
+	  maskse.ss = maskss;
+	  gfc_conv_expr_val (&maskse, maskexpr);
+	  gfc_add_block_to_block (&body, &maskse.pre);
+
+	  gfc_start_block (&block);
+	}
+      else
+	gfc_init_block (&block);
+
+      /* Compare with the current limit.  */
+      gfc_init_se (&arrayse, NULL);
+      gfc_copy_loopinfo_to_se (&arrayse, &loop);
+      arrayse.ss = arrayss;
+      gfc_conv_expr_val (&arrayse, arrayexpr);
+      gfc_add_block_to_block (&block, &arrayse.pre);
+
+      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
+	 signed zeros.  */
+      if (HONOR_NANS (DECL_MODE (limit))
+	  || HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
+	{
+	  tmp = fold_build2_loc (input_location, op, boolean_type_node,
+				 arrayse.expr, limit);
+	  ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
+	  tmp = build3_v (COND_EXPR, tmp, ifbody,
+			  build_empty_stmt (input_location));
+	  gfc_add_expr_to_block (&block, tmp);
+	}
+      else
+	{
+	  tmp = fold_build2_loc (input_location,
+				 op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
+				 type, arrayse.expr, limit);
+	  gfc_add_modify (&block, limit, tmp);
+	}
+
+      gfc_add_block_to_block (&block, &arrayse.post);
+
+      tmp = gfc_finish_block (&block);
+      if (maskss)
+	/* We enclose the above in if (mask) {...}.  */
+	tmp = build3_v (COND_EXPR, maskse.expr, tmp,
+			build_empty_stmt (input_location));
+      gfc_add_expr_to_block (&body, tmp);
+      /* Avoid initializing loopvar[0] again, it should be left where
+	 it finished by the first loop.  */
+      loop.from[0] = loop.loopvar[0];
+    }
+  gfc_trans_scalarizing_loops (&loop, &body);
+
+  if (fast)
+    {
+      tmp = fold_build3_loc (input_location, COND_EXPR, type, nonempty,
+			     nan_cst, huge_cst);
+      ifbody = build2_v (MODIFY_EXPR, limit, tmp);
+      tmp = build3_v (COND_EXPR, fast, build_empty_stmt (input_location),
+		      ifbody);
+      gfc_add_expr_to_block (&loop.pre, tmp);
+    }
+  else if (HONOR_INFINITIES (DECL_MODE (limit)) && !lab)
+    {
+      tmp = fold_build3_loc (input_location, COND_EXPR, type, nonempty, limit,
+			     huge_cst);
+      gfc_add_modify (&loop.pre, limit, tmp);
+    }
+
+  /* For a scalar mask, enclose the loop in an if statement.  */
+  if (maskexpr && maskss == NULL)
+    {
+      tree else_stmt;
+
+      gfc_init_se (&maskse, NULL);
+      gfc_conv_expr_val (&maskse, maskexpr);
+      gfc_init_block (&block);
+      gfc_add_block_to_block (&block, &loop.pre);
+      gfc_add_block_to_block (&block, &loop.post);
+      tmp = gfc_finish_block (&block);
+
+      if (HONOR_INFINITIES (DECL_MODE (limit)))
+	else_stmt = build2_v (MODIFY_EXPR, limit, huge_cst);
+      else
+	else_stmt = build_empty_stmt (input_location);
+      tmp = build3_v (COND_EXPR, maskse.expr, tmp, else_stmt);
+      gfc_add_expr_to_block (&block, tmp);
+      gfc_add_block_to_block (&se->pre, &block);
+    }
+  else
+    {
+      gfc_add_block_to_block (&se->pre, &loop.pre);
+      gfc_add_block_to_block (&se->pre, &loop.post);
+    }
+
+  gfc_cleanup_loop (&loop);
+
+  se->expr = limit;
+}
+
+/* BTEST (i, pos) = (i & (1 << pos)) != 0.  */
+static void
+gfc_conv_intrinsic_btest (gfc_se * se, gfc_expr * expr)
+{
+  tree args[2];
+  tree type;
+  tree tmp;
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+  type = TREE_TYPE (args[0]);
+
+  tmp = fold_build2_loc (input_location, LSHIFT_EXPR, type,
+			 build_int_cst (type, 1), args[1]);
+  tmp = fold_build2_loc (input_location, BIT_AND_EXPR, type, args[0], tmp);
+  tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp,
+			 build_int_cst (type, 0));
+  type = gfc_typenode_for_spec (&expr->ts);
+  se->expr = convert (type, tmp);
+}
+
+
+/* Generate code for BGE, BGT, BLE and BLT intrinsics.  */
+static void
+gfc_conv_intrinsic_bitcomp (gfc_se * se, gfc_expr * expr, enum tree_code op)
+{
+  tree args[2];
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+
+  /* Convert both arguments to the unsigned type of the same size.  */
+  args[0] = fold_convert (unsigned_type_for (TREE_TYPE (args[0])), args[0]);
+  args[1] = fold_convert (unsigned_type_for (TREE_TYPE (args[1])), args[1]);
+
+  /* If they have unequal type size, convert to the larger one.  */
+  if (TYPE_PRECISION (TREE_TYPE (args[0]))
+      > TYPE_PRECISION (TREE_TYPE (args[1])))
+    args[1] = fold_convert (TREE_TYPE (args[0]), args[1]);
+  else if (TYPE_PRECISION (TREE_TYPE (args[1]))
+	   > TYPE_PRECISION (TREE_TYPE (args[0])))
+    args[0] = fold_convert (TREE_TYPE (args[1]), args[0]);
+
+  /* Now, we compare them.  */
+  se->expr = fold_build2_loc (input_location, op, boolean_type_node,
+			      args[0], args[1]);
+}
+
+
+/* Generate code to perform the specified operation.  */
+static void
+gfc_conv_intrinsic_bitop (gfc_se * se, gfc_expr * expr, enum tree_code op)
+{
+  tree args[2];
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+  se->expr = fold_build2_loc (input_location, op, TREE_TYPE (args[0]),
+			      args[0], args[1]);
+}
+
+/* Bitwise not.  */
+static void
+gfc_conv_intrinsic_not (gfc_se * se, gfc_expr * expr)
+{
+  tree arg;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  se->expr = fold_build1_loc (input_location, BIT_NOT_EXPR,
+			      TREE_TYPE (arg), arg);
+}
+
+/* Set or clear a single bit.  */
+static void
+gfc_conv_intrinsic_singlebitop (gfc_se * se, gfc_expr * expr, int set)
+{
+  tree args[2];
+  tree type;
+  tree tmp;
+  enum tree_code op;
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+  type = TREE_TYPE (args[0]);
+
+  tmp = fold_build2_loc (input_location, LSHIFT_EXPR, type,
+			 build_int_cst (type, 1), args[1]);
+  if (set)
+    op = BIT_IOR_EXPR;
+  else
+    {
+      op = BIT_AND_EXPR;
+      tmp = fold_build1_loc (input_location, BIT_NOT_EXPR, type, tmp);
+    }
+  se->expr = fold_build2_loc (input_location, op, type, args[0], tmp);
+}
+
+/* Extract a sequence of bits.
+    IBITS(I, POS, LEN) = (I >> POS) & ~((~0) << LEN).  */
+static void
+gfc_conv_intrinsic_ibits (gfc_se * se, gfc_expr * expr)
+{
+  tree args[3];
+  tree type;
+  tree tmp;
+  tree mask;
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 3);
+  type = TREE_TYPE (args[0]);
+
+  mask = build_int_cst (type, -1);
+  mask = fold_build2_loc (input_location, LSHIFT_EXPR, type, mask, args[2]);
+  mask = fold_build1_loc (input_location, BIT_NOT_EXPR, type, mask);
+
+  tmp = fold_build2_loc (input_location, RSHIFT_EXPR, type, args[0], args[1]);
+
+  se->expr = fold_build2_loc (input_location, BIT_AND_EXPR, type, tmp, mask);
+}
+
+static void
+gfc_conv_intrinsic_shift (gfc_se * se, gfc_expr * expr, bool right_shift,
+			  bool arithmetic)
+{
+  tree args[2], type, num_bits, cond;
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+
+  args[0] = gfc_evaluate_now (args[0], &se->pre);
+  args[1] = gfc_evaluate_now (args[1], &se->pre);
+  type = TREE_TYPE (args[0]);
+
+  if (!arithmetic)
+    args[0] = fold_convert (unsigned_type_for (type), args[0]);
+  else
+    gcc_assert (right_shift);
+
+  se->expr = fold_build2_loc (input_location,
+			      right_shift ? RSHIFT_EXPR : LSHIFT_EXPR,
+			      TREE_TYPE (args[0]), args[0], args[1]);
+
+  if (!arithmetic)
+    se->expr = fold_convert (type, se->expr);
+
+  /* The Fortran standard allows shift widths <= BIT_SIZE(I), whereas
+     gcc requires a shift width < BIT_SIZE(I), so we have to catch this
+     special case.  */
+  num_bits = build_int_cst (TREE_TYPE (args[1]), TYPE_PRECISION (type));
+  cond = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
+			  args[1], num_bits);
+
+  se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond,
+			      build_int_cst (type, 0), se->expr);
+}
+
+/* ISHFT (I, SHIFT) = (abs (shift) >= BIT_SIZE (i))
+                        ? 0
+	 	        : ((shift >= 0) ? i << shift : i >> -shift)
+   where all shifts are logical shifts.  */
+static void
+gfc_conv_intrinsic_ishft (gfc_se * se, gfc_expr * expr)
+{
+  tree args[2];
+  tree type;
+  tree utype;
+  tree tmp;
+  tree width;
+  tree num_bits;
+  tree cond;
+  tree lshift;
+  tree rshift;
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+
+  args[0] = gfc_evaluate_now (args[0], &se->pre);
+  args[1] = gfc_evaluate_now (args[1], &se->pre);
+
+  type = TREE_TYPE (args[0]);
+  utype = unsigned_type_for (type);
+
+  width = fold_build1_loc (input_location, ABS_EXPR, TREE_TYPE (args[1]),
+			   args[1]);
+
+  /* Left shift if positive.  */
+  lshift = fold_build2_loc (input_location, LSHIFT_EXPR, type, args[0], width);
+
+  /* Right shift if negative.
+     We convert to an unsigned type because we want a logical shift.
+     The standard doesn't define the case of shifting negative
+     numbers, and we try to be compatible with other compilers, most
+     notably g77, here.  */
+  rshift = fold_convert (type, fold_build2_loc (input_location, RSHIFT_EXPR,
+				    utype, convert (utype, args[0]), width));
+
+  tmp = fold_build2_loc (input_location, GE_EXPR, boolean_type_node, args[1],
+			 build_int_cst (TREE_TYPE (args[1]), 0));
+  tmp = fold_build3_loc (input_location, COND_EXPR, type, tmp, lshift, rshift);
+
+  /* The Fortran standard allows shift widths <= BIT_SIZE(I), whereas
+     gcc requires a shift width < BIT_SIZE(I), so we have to catch this
+     special case.  */
+  num_bits = build_int_cst (TREE_TYPE (args[1]), TYPE_PRECISION (type));
+  cond = fold_build2_loc (input_location, GE_EXPR, boolean_type_node, width,
+			  num_bits);
+  se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond,
+			      build_int_cst (type, 0), tmp);
+}
+
+
+/* Circular shift.  AKA rotate or barrel shift.  */
+
+static void
+gfc_conv_intrinsic_ishftc (gfc_se * se, gfc_expr * expr)
+{
+  tree *args;
+  tree type;
+  tree tmp;
+  tree lrot;
+  tree rrot;
+  tree zero;
+  unsigned int num_args;
+
+  num_args = gfc_intrinsic_argument_list_length (expr);
+  args = XALLOCAVEC (tree, num_args);
+
+  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
+
+  if (num_args == 3)
+    {
+      /* Use a library function for the 3 parameter version.  */
+      tree int4type = gfc_get_int_type (4);
+
+      type = TREE_TYPE (args[0]);
+      /* We convert the first argument to at least 4 bytes, and
+	 convert back afterwards.  This removes the need for library
+	 functions for all argument sizes, and function will be
+	 aligned to at least 32 bits, so there's no loss.  */
+      if (expr->ts.kind < 4)
+	args[0] = convert (int4type, args[0]);
+
+      /* Convert the SHIFT and SIZE args to INTEGER*4 otherwise we would
+         need loads of library  functions.  They cannot have values >
+	 BIT_SIZE (I) so the conversion is safe.  */
+      args[1] = convert (int4type, args[1]);
+      args[2] = convert (int4type, args[2]);
+
+      switch (expr->ts.kind)
+	{
+	case 1:
+	case 2:
+	case 4:
+	  tmp = gfor_fndecl_math_ishftc4;
+	  break;
+	case 8:
+	  tmp = gfor_fndecl_math_ishftc8;
+	  break;
+	case 16:
+	  tmp = gfor_fndecl_math_ishftc16;
+	  break;
+	default:
+	  gcc_unreachable ();
+	}
+      se->expr = build_call_expr_loc (input_location,
+				      tmp, 3, args[0], args[1], args[2]);
+      /* Convert the result back to the original type, if we extended
+	 the first argument's width above.  */
+      if (expr->ts.kind < 4)
+	se->expr = convert (type, se->expr);
+
+      return;
+    }
+  type = TREE_TYPE (args[0]);
+
+  /* Evaluate arguments only once.  */
+  args[0] = gfc_evaluate_now (args[0], &se->pre);
+  args[1] = gfc_evaluate_now (args[1], &se->pre);
+
+  /* Rotate left if positive.  */
+  lrot = fold_build2_loc (input_location, LROTATE_EXPR, type, args[0], args[1]);
+
+  /* Rotate right if negative.  */
+  tmp = fold_build1_loc (input_location, NEGATE_EXPR, TREE_TYPE (args[1]),
+			 args[1]);
+  rrot = fold_build2_loc (input_location,RROTATE_EXPR, type, args[0], tmp);
+
+  zero = build_int_cst (TREE_TYPE (args[1]), 0);
+  tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, args[1],
+			 zero);
+  rrot = fold_build3_loc (input_location, COND_EXPR, type, tmp, lrot, rrot);
+
+  /* Do nothing if shift == 0.  */
+  tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, args[1],
+			 zero);
+  se->expr = fold_build3_loc (input_location, COND_EXPR, type, tmp, args[0],
+			      rrot);
+}
+
+
+/* LEADZ (i) = (i == 0) ? BIT_SIZE (i)
+			: __builtin_clz(i) - (BIT_SIZE('int') - BIT_SIZE(i))
+
+   The conditional expression is necessary because the result of LEADZ(0)
+   is defined, but the result of __builtin_clz(0) is undefined for most
+   targets.
+
+   For INTEGER kinds smaller than the C 'int' type, we have to subtract the
+   difference in bit size between the argument of LEADZ and the C int.  */
+
+static void
+gfc_conv_intrinsic_leadz (gfc_se * se, gfc_expr * expr)
+{
+  tree arg;
+  tree arg_type;
+  tree cond;
+  tree result_type;
+  tree leadz;
+  tree bit_size;
+  tree tmp;
+  tree func;
+  int s, argsize;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  argsize = TYPE_PRECISION (TREE_TYPE (arg));
+
+  /* Which variant of __builtin_clz* should we call?  */
+  if (argsize <= INT_TYPE_SIZE)
+    {
+      arg_type = unsigned_type_node;
+      func = builtin_decl_explicit (BUILT_IN_CLZ);
+    }
+  else if (argsize <= LONG_TYPE_SIZE)
+    {
+      arg_type = long_unsigned_type_node;
+      func = builtin_decl_explicit (BUILT_IN_CLZL);
+    }
+  else if (argsize <= LONG_LONG_TYPE_SIZE)
+    {
+      arg_type = long_long_unsigned_type_node;
+      func = builtin_decl_explicit (BUILT_IN_CLZLL);
+    }
+  else
+    {
+      gcc_assert (argsize == 2 * LONG_LONG_TYPE_SIZE);
+      arg_type = gfc_build_uint_type (argsize);
+      func = NULL_TREE;
+    }
+
+  /* Convert the actual argument twice: first, to the unsigned type of the
+     same size; then, to the proper argument type for the built-in
+     function.  But the return type is of the default INTEGER kind.  */
+  arg = fold_convert (gfc_build_uint_type (argsize), arg);
+  arg = fold_convert (arg_type, arg);
+  arg = gfc_evaluate_now (arg, &se->pre);
+  result_type = gfc_get_int_type (gfc_default_integer_kind);
+
+  /* Compute LEADZ for the case i .ne. 0.  */
+  if (func)
+    {
+      s = TYPE_PRECISION (arg_type) - argsize;
+      tmp = fold_convert (result_type,
+			  build_call_expr_loc (input_location, func,
+					       1, arg));
+      leadz = fold_build2_loc (input_location, MINUS_EXPR, result_type,
+			       tmp, build_int_cst (result_type, s));
+    }
+  else
+    {
+      /* We end up here if the argument type is larger than 'long long'.
+	 We generate this code:
+
+	    if (x & (ULL_MAX << ULL_SIZE) != 0)
+	      return clzll ((unsigned long long) (x >> ULLSIZE));
+	    else
+	      return ULL_SIZE + clzll ((unsigned long long) x);
+	 where ULL_MAX is the largest value that a ULL_MAX can hold
+	 (0xFFFFFFFFFFFFFFFF for a 64-bit long long type), and ULLSIZE
+	 is the bit-size of the long long type (64 in this example).  */
+      tree ullsize, ullmax, tmp1, tmp2, btmp;
+
+      ullsize = build_int_cst (result_type, LONG_LONG_TYPE_SIZE);
+      ullmax = fold_build1_loc (input_location, BIT_NOT_EXPR,
+				long_long_unsigned_type_node,
+				build_int_cst (long_long_unsigned_type_node,
+					       0));
+
+      cond = fold_build2_loc (input_location, LSHIFT_EXPR, arg_type,
+			      fold_convert (arg_type, ullmax), ullsize);
+      cond = fold_build2_loc (input_location, BIT_AND_EXPR, arg_type,
+			      arg, cond);
+      cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+			      cond, build_int_cst (arg_type, 0));
+
+      tmp1 = fold_build2_loc (input_location, RSHIFT_EXPR, arg_type,
+			      arg, ullsize);
+      tmp1 = fold_convert (long_long_unsigned_type_node, tmp1);
+      btmp = builtin_decl_explicit (BUILT_IN_CLZLL);
+      tmp1 = fold_convert (result_type,
+			   build_call_expr_loc (input_location, btmp, 1, tmp1));
+
+      tmp2 = fold_convert (long_long_unsigned_type_node, arg);
+      btmp = builtin_decl_explicit (BUILT_IN_CLZLL);
+      tmp2 = fold_convert (result_type,
+			   build_call_expr_loc (input_location, btmp, 1, tmp2));
+      tmp2 = fold_build2_loc (input_location, PLUS_EXPR, result_type,
+			      tmp2, ullsize);
+
+      leadz = fold_build3_loc (input_location, COND_EXPR, result_type,
+			       cond, tmp1, tmp2);
+    }
+
+  /* Build BIT_SIZE.  */
+  bit_size = build_int_cst (result_type, argsize);
+
+  cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
+			  arg, build_int_cst (arg_type, 0));
+  se->expr = fold_build3_loc (input_location, COND_EXPR, result_type, cond,
+			      bit_size, leadz);
+}
+
+
+/* TRAILZ(i) = (i == 0) ? BIT_SIZE (i) : __builtin_ctz(i)
+
+   The conditional expression is necessary because the result of TRAILZ(0)
+   is defined, but the result of __builtin_ctz(0) is undefined for most
+   targets.  */
+
+static void
+gfc_conv_intrinsic_trailz (gfc_se * se, gfc_expr *expr)
+{
+  tree arg;
+  tree arg_type;
+  tree cond;
+  tree result_type;
+  tree trailz;
+  tree bit_size;
+  tree func;
+  int argsize;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  argsize = TYPE_PRECISION (TREE_TYPE (arg));
+
+  /* Which variant of __builtin_ctz* should we call?  */
+  if (argsize <= INT_TYPE_SIZE)
+    {
+      arg_type = unsigned_type_node;
+      func = builtin_decl_explicit (BUILT_IN_CTZ);
+    }
+  else if (argsize <= LONG_TYPE_SIZE)
+    {
+      arg_type = long_unsigned_type_node;
+      func = builtin_decl_explicit (BUILT_IN_CTZL);
+    }
+  else if (argsize <= LONG_LONG_TYPE_SIZE)
+    {
+      arg_type = long_long_unsigned_type_node;
+      func = builtin_decl_explicit (BUILT_IN_CTZLL);
+    }
+  else
+    {
+      gcc_assert (argsize == 2 * LONG_LONG_TYPE_SIZE);
+      arg_type = gfc_build_uint_type (argsize);
+      func = NULL_TREE;
+    }
+
+  /* Convert the actual argument twice: first, to the unsigned type of the
+     same size; then, to the proper argument type for the built-in
+     function.  But the return type is of the default INTEGER kind.  */
+  arg = fold_convert (gfc_build_uint_type (argsize), arg);
+  arg = fold_convert (arg_type, arg);
+  arg = gfc_evaluate_now (arg, &se->pre);
+  result_type = gfc_get_int_type (gfc_default_integer_kind);
+
+  /* Compute TRAILZ for the case i .ne. 0.  */
+  if (func)
+    trailz = fold_convert (result_type, build_call_expr_loc (input_location,
+							     func, 1, arg));
+  else
+    {
+      /* We end up here if the argument type is larger than 'long long'.
+	 We generate this code:
+
+	    if ((x & ULL_MAX) == 0)
+	      return ULL_SIZE + ctzll ((unsigned long long) (x >> ULLSIZE));
+	    else
+	      return ctzll ((unsigned long long) x);
+
+	 where ULL_MAX is the largest value that a ULL_MAX can hold
+	 (0xFFFFFFFFFFFFFFFF for a 64-bit long long type), and ULLSIZE
+	 is the bit-size of the long long type (64 in this example).  */
+      tree ullsize, ullmax, tmp1, tmp2, btmp;
+
+      ullsize = build_int_cst (result_type, LONG_LONG_TYPE_SIZE);
+      ullmax = fold_build1_loc (input_location, BIT_NOT_EXPR,
+				long_long_unsigned_type_node,
+				build_int_cst (long_long_unsigned_type_node, 0));
+
+      cond = fold_build2_loc (input_location, BIT_AND_EXPR, arg_type, arg,
+			      fold_convert (arg_type, ullmax));
+      cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, cond,
+			      build_int_cst (arg_type, 0));
+
+      tmp1 = fold_build2_loc (input_location, RSHIFT_EXPR, arg_type,
+			      arg, ullsize);
+      tmp1 = fold_convert (long_long_unsigned_type_node, tmp1);
+      btmp = builtin_decl_explicit (BUILT_IN_CTZLL);
+      tmp1 = fold_convert (result_type,
+			   build_call_expr_loc (input_location, btmp, 1, tmp1));
+      tmp1 = fold_build2_loc (input_location, PLUS_EXPR, result_type,
+			      tmp1, ullsize);
+
+      tmp2 = fold_convert (long_long_unsigned_type_node, arg);
+      btmp = builtin_decl_explicit (BUILT_IN_CTZLL);
+      tmp2 = fold_convert (result_type,
+			   build_call_expr_loc (input_location, btmp, 1, tmp2));
+
+      trailz = fold_build3_loc (input_location, COND_EXPR, result_type,
+				cond, tmp1, tmp2);
+    }
+
+  /* Build BIT_SIZE.  */
+  bit_size = build_int_cst (result_type, argsize);
+
+  cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
+			  arg, build_int_cst (arg_type, 0));
+  se->expr = fold_build3_loc (input_location, COND_EXPR, result_type, cond,
+			      bit_size, trailz);
+}
+
+/* Using __builtin_popcount for POPCNT and __builtin_parity for POPPAR;
+   for types larger than "long long", we call the long long built-in for
+   the lower and higher bits and combine the result.  */
+
+static void
+gfc_conv_intrinsic_popcnt_poppar (gfc_se * se, gfc_expr *expr, int parity)
+{
+  tree arg;
+  tree arg_type;
+  tree result_type;
+  tree func;
+  int argsize;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  argsize = TYPE_PRECISION (TREE_TYPE (arg));
+  result_type = gfc_get_int_type (gfc_default_integer_kind);
+
+  /* Which variant of the builtin should we call?  */
+  if (argsize <= INT_TYPE_SIZE)
+    {
+      arg_type = unsigned_type_node;
+      func = builtin_decl_explicit (parity
+				    ? BUILT_IN_PARITY
+				    : BUILT_IN_POPCOUNT);
+    }
+  else if (argsize <= LONG_TYPE_SIZE)
+    {
+      arg_type = long_unsigned_type_node;
+      func = builtin_decl_explicit (parity
+				    ? BUILT_IN_PARITYL
+				    : BUILT_IN_POPCOUNTL);
+    }
+  else if (argsize <= LONG_LONG_TYPE_SIZE)
+    {
+      arg_type = long_long_unsigned_type_node;
+      func = builtin_decl_explicit (parity
+				    ? BUILT_IN_PARITYLL
+				    : BUILT_IN_POPCOUNTLL);
+    }
+  else
+    {
+      /* Our argument type is larger than 'long long', which mean none
+	 of the POPCOUNT builtins covers it.  We thus call the 'long long'
+	 variant multiple times, and add the results.  */
+      tree utype, arg2, call1, call2;
+
+      /* For now, we only cover the case where argsize is twice as large
+	 as 'long long'.  */
+      gcc_assert (argsize == 2 * LONG_LONG_TYPE_SIZE);
+
+      func = builtin_decl_explicit (parity
+				    ? BUILT_IN_PARITYLL
+				    : BUILT_IN_POPCOUNTLL);
+
+      /* Convert it to an integer, and store into a variable.  */
+      utype = gfc_build_uint_type (argsize);
+      arg = fold_convert (utype, arg);
+      arg = gfc_evaluate_now (arg, &se->pre);
+
+      /* Call the builtin twice.  */
+      call1 = build_call_expr_loc (input_location, func, 1,
+				   fold_convert (long_long_unsigned_type_node,
+						 arg));
+
+      arg2 = fold_build2_loc (input_location, RSHIFT_EXPR, utype, arg,
+			      build_int_cst (utype, LONG_LONG_TYPE_SIZE));
+      call2 = build_call_expr_loc (input_location, func, 1,
+				   fold_convert (long_long_unsigned_type_node,
+						 arg2));
+
+      /* Combine the results.  */
+      if (parity)
+	se->expr = fold_build2_loc (input_location, BIT_XOR_EXPR, result_type,
+				    call1, call2);
+      else
+	se->expr = fold_build2_loc (input_location, PLUS_EXPR, result_type,
+				    call1, call2);
+
+      return;
+    }
+
+  /* Convert the actual argument twice: first, to the unsigned type of the
+     same size; then, to the proper argument type for the built-in
+     function.  */
+  arg = fold_convert (gfc_build_uint_type (argsize), arg);
+  arg = fold_convert (arg_type, arg);
+
+  se->expr = fold_convert (result_type,
+			   build_call_expr_loc (input_location, func, 1, arg));
+}
+
+
+/* Process an intrinsic with unspecified argument-types that has an optional
+   argument (which could be of type character), e.g. EOSHIFT.  For those, we
+   need to append the string length of the optional argument if it is not
+   present and the type is really character.
+   primary specifies the position (starting at 1) of the non-optional argument
+   specifying the type and optional gives the position of the optional
+   argument in the arglist.  */
+
+static void
+conv_generic_with_optional_char_arg (gfc_se* se, gfc_expr* expr,
+				     unsigned primary, unsigned optional)
+{
+  gfc_actual_arglist* prim_arg;
+  gfc_actual_arglist* opt_arg;
+  unsigned cur_pos;
+  gfc_actual_arglist* arg;
+  gfc_symbol* sym;
+  vec<tree, va_gc> *append_args;
+
+  /* Find the two arguments given as position.  */
+  cur_pos = 0;
+  prim_arg = NULL;
+  opt_arg = NULL;
+  for (arg = expr->value.function.actual; arg; arg = arg->next)
+    {
+      ++cur_pos;
+
+      if (cur_pos == primary)
+	prim_arg = arg;
+      if (cur_pos == optional)
+	opt_arg = arg;
+
+      if (cur_pos >= primary && cur_pos >= optional)
+	break;
+    }
+  gcc_assert (prim_arg);
+  gcc_assert (prim_arg->expr);
+  gcc_assert (opt_arg);
+
+  /* If we do have type CHARACTER and the optional argument is really absent,
+     append a dummy 0 as string length.  */
+  append_args = NULL;
+  if (prim_arg->expr->ts.type == BT_CHARACTER && !opt_arg->expr)
+    {
+      tree dummy;
+
+      dummy = build_int_cst (gfc_charlen_type_node, 0);
+      vec_alloc (append_args, 1);
+      append_args->quick_push (dummy);
+    }
+
+  /* Build the call itself.  */
+  gcc_assert (!se->ignore_optional);
+  sym = gfc_get_symbol_for_expr (expr, false);
+  gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr,
+			  append_args);
+  gfc_free_symbol (sym);
+}
+
+
+/* The length of a character string.  */
+static void
+gfc_conv_intrinsic_len (gfc_se * se, gfc_expr * expr)
+{
+  tree len;
+  tree type;
+  tree decl;
+  gfc_symbol *sym;
+  gfc_se argse;
+  gfc_expr *arg;
+
+  gcc_assert (!se->ss);
+
+  arg = expr->value.function.actual->expr;
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  switch (arg->expr_type)
+    {
+    case EXPR_CONSTANT:
+      len = build_int_cst (gfc_charlen_type_node, arg->value.character.length);
+      break;
+
+    case EXPR_ARRAY:
+      /* Obtain the string length from the function used by
+         trans-array.c(gfc_trans_array_constructor).  */
+      len = NULL_TREE;
+      get_array_ctor_strlen (&se->pre, arg->value.constructor, &len);
+      break;
+
+    case EXPR_VARIABLE:
+      if (arg->ref == NULL
+	    || (arg->ref->next == NULL && arg->ref->type == REF_ARRAY))
+	{
+	  /* This doesn't catch all cases.
+	     See http://gcc.gnu.org/ml/fortran/2004-06/msg00165.html
+	     and the surrounding thread.  */
+	  sym = arg->symtree->n.sym;
+	  decl = gfc_get_symbol_decl (sym);
+	  if (decl == current_function_decl && sym->attr.function
+		&& (sym->result == sym))
+	    decl = gfc_get_fake_result_decl (sym, 0);
+
+	  len = sym->ts.u.cl->backend_decl;
+	  gcc_assert (len);
+	  break;
+	}
+
+      /* Fall through.  */
+
+    default:
+      /* Anybody stupid enough to do this deserves inefficient code.  */
+      gfc_init_se (&argse, se);
+      if (arg->rank == 0)
+	gfc_conv_expr (&argse, arg);
+      else
+	gfc_conv_expr_descriptor (&argse, arg);
+      gfc_add_block_to_block (&se->pre, &argse.pre);
+      gfc_add_block_to_block (&se->post, &argse.post);
+      len = argse.string_length;
+      break;
+    }
+  se->expr = convert (type, len);
+}
+
+/* The length of a character string not including trailing blanks.  */
+static void
+gfc_conv_intrinsic_len_trim (gfc_se * se, gfc_expr * expr)
+{
+  int kind = expr->value.function.actual->expr->ts.kind;
+  tree args[2], type, fndecl;
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+  type = gfc_typenode_for_spec (&expr->ts);
+
+  if (kind == 1)
+    fndecl = gfor_fndecl_string_len_trim;
+  else if (kind == 4)
+    fndecl = gfor_fndecl_string_len_trim_char4;
+  else
+    gcc_unreachable ();
+
+  se->expr = build_call_expr_loc (input_location,
+			      fndecl, 2, args[0], args[1]);
+  se->expr = convert (type, se->expr);
+}
+
+
+/* Returns the starting position of a substring within a string.  */
+
+static void
+gfc_conv_intrinsic_index_scan_verify (gfc_se * se, gfc_expr * expr,
+				      tree function)
+{
+  tree logical4_type_node = gfc_get_logical_type (4);
+  tree type;
+  tree fndecl;
+  tree *args;
+  unsigned int num_args;
+
+  args = XALLOCAVEC (tree, 5);
+
+  /* Get number of arguments; characters count double due to the
+     string length argument. Kind= is not passed to the library
+     and thus ignored.  */
+  if (expr->value.function.actual->next->next->expr == NULL)
+    num_args = 4;
+  else
+    num_args = 5;
+
+  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
+  type = gfc_typenode_for_spec (&expr->ts);
+
+  if (num_args == 4)
+    args[4] = build_int_cst (logical4_type_node, 0);
+  else
+    args[4] = convert (logical4_type_node, args[4]);
+
+  fndecl = build_addr (function);
+  se->expr = build_call_array_loc (input_location,
+			       TREE_TYPE (TREE_TYPE (function)), fndecl,
+			       5, args);
+  se->expr = convert (type, se->expr);
+
+}
+
+/* The ascii value for a single character.  */
+static void
+gfc_conv_intrinsic_ichar (gfc_se * se, gfc_expr * expr)
+{
+  tree args[3], type, pchartype;
+  int nargs;
+
+  nargs = gfc_intrinsic_argument_list_length (expr);
+  gfc_conv_intrinsic_function_args (se, expr, args, nargs);
+  gcc_assert (POINTER_TYPE_P (TREE_TYPE (args[1])));
+  pchartype = gfc_get_pchar_type (expr->value.function.actual->expr->ts.kind);
+  args[1] = fold_build1_loc (input_location, NOP_EXPR, pchartype, args[1]);
+  type = gfc_typenode_for_spec (&expr->ts);
+
+  se->expr = build_fold_indirect_ref_loc (input_location,
+				      args[1]);
+  se->expr = convert (type, se->expr);
+}
+
+
+/* Intrinsic ISNAN calls __builtin_isnan.  */
+
+static void
+gfc_conv_intrinsic_isnan (gfc_se * se, gfc_expr * expr)
+{
+  tree arg;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  se->expr = build_call_expr_loc (input_location,
+				  builtin_decl_explicit (BUILT_IN_ISNAN),
+				  1, arg);
+  STRIP_TYPE_NOPS (se->expr);
+  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
+}
+
+
+/* Intrinsics IS_IOSTAT_END and IS_IOSTAT_EOR just need to compare
+   their argument against a constant integer value.  */
+
+static void
+gfc_conv_has_intvalue (gfc_se * se, gfc_expr * expr, const int value)
+{
+  tree arg;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  se->expr = fold_build2_loc (input_location, EQ_EXPR,
+			      gfc_typenode_for_spec (&expr->ts),
+			      arg, build_int_cst (TREE_TYPE (arg), value));
+}
+
+
+
+/* MERGE (tsource, fsource, mask) = mask ? tsource : fsource.  */
+
+static void
+gfc_conv_intrinsic_merge (gfc_se * se, gfc_expr * expr)
+{
+  tree tsource;
+  tree fsource;
+  tree mask;
+  tree type;
+  tree len, len2;
+  tree *args;
+  unsigned int num_args;
+
+  num_args = gfc_intrinsic_argument_list_length (expr);
+  args = XALLOCAVEC (tree, num_args);
+
+  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
+  if (expr->ts.type != BT_CHARACTER)
+    {
+      tsource = args[0];
+      fsource = args[1];
+      mask = args[2];
+    }
+  else
+    {
+      /* We do the same as in the non-character case, but the argument
+	 list is different because of the string length arguments. We
+	 also have to set the string length for the result.  */
+      len = args[0];
+      tsource = args[1];
+      len2 = args[2];
+      fsource = args[3];
+      mask = args[4];
+
+      gfc_trans_same_strlen_check ("MERGE intrinsic", &expr->where, len, len2,
+				   &se->pre);
+      se->string_length = len;
+    }
+  type = TREE_TYPE (tsource);
+  se->expr = fold_build3_loc (input_location, COND_EXPR, type, mask, tsource,
+			      fold_convert (type, fsource));
+}
+
+
+/* MERGE_BITS (I, J, MASK) = (I & MASK) | (I & (~MASK)).  */
+
+static void
+gfc_conv_intrinsic_merge_bits (gfc_se * se, gfc_expr * expr)
+{
+  tree args[3], mask, type;
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 3);
+  mask = gfc_evaluate_now (args[2], &se->pre);
+
+  type = TREE_TYPE (args[0]);
+  gcc_assert (TREE_TYPE (args[1]) == type);
+  gcc_assert (TREE_TYPE (mask) == type);
+
+  args[0] = fold_build2_loc (input_location, BIT_AND_EXPR, type, args[0], mask);
+  args[1] = fold_build2_loc (input_location, BIT_AND_EXPR, type, args[1],
+			     fold_build1_loc (input_location, BIT_NOT_EXPR,
+					      type, mask));
+  se->expr = fold_build2_loc (input_location, BIT_IOR_EXPR, type,
+			      args[0], args[1]);
+}
+
+
+/* MASKL(n)  =  n == 0 ? 0 : (~0) << (BIT_SIZE - n)
+   MASKR(n)  =  n == BIT_SIZE ? ~0 : ~((~0) << n)  */
+
+static void
+gfc_conv_intrinsic_mask (gfc_se * se, gfc_expr * expr, int left)
+{
+  tree arg, allones, type, utype, res, cond, bitsize;
+  int i;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  arg = gfc_evaluate_now (arg, &se->pre);
+
+  type = gfc_get_int_type (expr->ts.kind);
+  utype = unsigned_type_for (type);
+
+  i = gfc_validate_kind (BT_INTEGER, expr->ts.kind, false);
+  bitsize = build_int_cst (TREE_TYPE (arg), gfc_integer_kinds[i].bit_size);
+
+  allones = fold_build1_loc (input_location, BIT_NOT_EXPR, utype,
+			     build_int_cst (utype, 0));
+
+  if (left)
+    {
+      /* Left-justified mask.  */
+      res = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (arg),
+			     bitsize, arg);
+      res = fold_build2_loc (input_location, LSHIFT_EXPR, utype, allones,
+			     fold_convert (utype, res));
+
+      /* Special case arg == 0, because SHIFT_EXPR wants a shift strictly
+	 smaller than type width.  */
+      cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, arg,
+			      build_int_cst (TREE_TYPE (arg), 0));
+      res = fold_build3_loc (input_location, COND_EXPR, utype, cond,
+			     build_int_cst (utype, 0), res);
+    }
+  else
+    {
+      /* Right-justified mask.  */
+      res = fold_build2_loc (input_location, LSHIFT_EXPR, utype, allones,
+			     fold_convert (utype, arg));
+      res = fold_build1_loc (input_location, BIT_NOT_EXPR, utype, res);
+
+      /* Special case agr == bit_size, because SHIFT_EXPR wants a shift
+	 strictly smaller than type width.  */
+      cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
+			      arg, bitsize);
+      res = fold_build3_loc (input_location, COND_EXPR, utype,
+			     cond, allones, res);
+    }
+
+  se->expr = fold_convert (type, res);
+}
+
+
+/* FRACTION (s) is translated into:
+     isfinite (s) ? frexp (s, &dummy_int) : NaN  */
+static void
+gfc_conv_intrinsic_fraction (gfc_se * se, gfc_expr * expr)
+{
+  tree arg, type, tmp, res, frexp, cond;
+
+  frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP, expr->ts.kind);
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  arg = gfc_evaluate_now (arg, &se->pre);
+
+  cond = build_call_expr_loc (input_location,
+			      builtin_decl_explicit (BUILT_IN_ISFINITE),
+			      1, arg);
+
+  tmp = gfc_create_var (integer_type_node, NULL);
+  res = build_call_expr_loc (input_location, frexp, 2,
+			     fold_convert (type, arg),
+			     gfc_build_addr_expr (NULL_TREE, tmp));
+  res = fold_convert (type, res);
+
+  se->expr = fold_build3_loc (input_location, COND_EXPR, type,
+			      cond, res, gfc_build_nan (type, ""));
+}
+
+
+/* NEAREST (s, dir) is translated into
+     tmp = copysign (HUGE_VAL, dir);
+     return nextafter (s, tmp);
+ */
+static void
+gfc_conv_intrinsic_nearest (gfc_se * se, gfc_expr * expr)
+{
+  tree args[2], type, tmp, nextafter, copysign, huge_val;
+
+  nextafter = gfc_builtin_decl_for_float_kind (BUILT_IN_NEXTAFTER, expr->ts.kind);
+  copysign = gfc_builtin_decl_for_float_kind (BUILT_IN_COPYSIGN, expr->ts.kind);
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+
+  huge_val = gfc_build_inf_or_huge (type, expr->ts.kind);
+  tmp = build_call_expr_loc (input_location, copysign, 2, huge_val,
+			     fold_convert (type, args[1]));
+  se->expr = build_call_expr_loc (input_location, nextafter, 2,
+				  fold_convert (type, args[0]), tmp);
+  se->expr = fold_convert (type, se->expr);
+}
+
+
+/* SPACING (s) is translated into
+    int e;
+    if (!isfinite (s))
+      res = NaN;
+    else if (s == 0)
+      res = tiny;
+    else
+    {
+      frexp (s, &e);
+      e = e - prec;
+      e = MAX_EXPR (e, emin);
+      res = scalbn (1., e);
+    }
+    return res;
+
+ where prec is the precision of s, gfc_real_kinds[k].digits,
+       emin is min_exponent - 1, gfc_real_kinds[k].min_exponent - 1,
+   and tiny is tiny(s), gfc_real_kinds[k].tiny.  */
+
+static void
+gfc_conv_intrinsic_spacing (gfc_se * se, gfc_expr * expr)
+{
+  tree arg, type, prec, emin, tiny, res, e;
+  tree cond, nan, tmp, frexp, scalbn;
+  int k;
+  stmtblock_t block;
+
+  k = gfc_validate_kind (BT_REAL, expr->ts.kind, false);
+  prec = build_int_cst (integer_type_node, gfc_real_kinds[k].digits);
+  emin = build_int_cst (integer_type_node, gfc_real_kinds[k].min_exponent - 1);
+  tiny = gfc_conv_mpfr_to_tree (gfc_real_kinds[k].tiny, expr->ts.kind, 0);
+
+  frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP, expr->ts.kind);
+  scalbn = gfc_builtin_decl_for_float_kind (BUILT_IN_SCALBN, expr->ts.kind);
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  arg = gfc_evaluate_now (arg, &se->pre);
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  e = gfc_create_var (integer_type_node, NULL);
+  res = gfc_create_var (type, NULL);
+
+
+  /* Build the block for s /= 0.  */
+  gfc_start_block (&block);
+  tmp = build_call_expr_loc (input_location, frexp, 2, arg,
+			     gfc_build_addr_expr (NULL_TREE, e));
+  gfc_add_expr_to_block (&block, tmp);
+
+  tmp = fold_build2_loc (input_location, MINUS_EXPR, integer_type_node, e,
+			 prec);
+  gfc_add_modify (&block, e, fold_build2_loc (input_location, MAX_EXPR,
+					      integer_type_node, tmp, emin));
+
+  tmp = build_call_expr_loc (input_location, scalbn, 2,
+			 build_real_from_int_cst (type, integer_one_node), e);
+  gfc_add_modify (&block, res, tmp);
+
+  /* Finish by building the IF statement for value zero.  */
+  cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, arg,
+			  build_real_from_int_cst (type, integer_zero_node));
+  tmp = build3_v (COND_EXPR, cond, build2_v (MODIFY_EXPR, res, tiny),
+		  gfc_finish_block (&block));
+
+  /* And deal with infinities and NaNs.  */
+  cond = build_call_expr_loc (input_location,
+			      builtin_decl_explicit (BUILT_IN_ISFINITE),
+			      1, arg);
+  nan = gfc_build_nan (type, "");
+  tmp = build3_v (COND_EXPR, cond, tmp, build2_v (MODIFY_EXPR, res, nan));
+
+  gfc_add_expr_to_block (&se->pre, tmp);
+  se->expr = res;
+}
+
+
+/* RRSPACING (s) is translated into
+      int e;
+      real x;
+      x = fabs (s);
+      if (isfinite (x))
+      {
+	if (x != 0)
+	{
+	  frexp (s, &e);
+	  x = scalbn (x, precision - e);
+	}
+      }
+      else
+        x = NaN;
+      return x;
+
+ where precision is gfc_real_kinds[k].digits.  */
+
+static void
+gfc_conv_intrinsic_rrspacing (gfc_se * se, gfc_expr * expr)
+{
+  tree arg, type, e, x, cond, nan, stmt, tmp, frexp, scalbn, fabs;
+  int prec, k;
+  stmtblock_t block;
+
+  k = gfc_validate_kind (BT_REAL, expr->ts.kind, false);
+  prec = gfc_real_kinds[k].digits;
+
+  frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP, expr->ts.kind);
+  scalbn = gfc_builtin_decl_for_float_kind (BUILT_IN_SCALBN, expr->ts.kind);
+  fabs = gfc_builtin_decl_for_float_kind (BUILT_IN_FABS, expr->ts.kind);
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  arg = gfc_evaluate_now (arg, &se->pre);
+
+  e = gfc_create_var (integer_type_node, NULL);
+  x = gfc_create_var (type, NULL);
+  gfc_add_modify (&se->pre, x,
+		  build_call_expr_loc (input_location, fabs, 1, arg));
+
+
+  gfc_start_block (&block);
+  tmp = build_call_expr_loc (input_location, frexp, 2, arg,
+			     gfc_build_addr_expr (NULL_TREE, e));
+  gfc_add_expr_to_block (&block, tmp);
+
+  tmp = fold_build2_loc (input_location, MINUS_EXPR, integer_type_node,
+			 build_int_cst (integer_type_node, prec), e);
+  tmp = build_call_expr_loc (input_location, scalbn, 2, x, tmp);
+  gfc_add_modify (&block, x, tmp);
+  stmt = gfc_finish_block (&block);
+
+  /* if (x != 0) */
+  cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, x,
+			  build_real_from_int_cst (type, integer_zero_node));
+  tmp = build3_v (COND_EXPR, cond, stmt, build_empty_stmt (input_location));
+
+  /* And deal with infinities and NaNs.  */
+  cond = build_call_expr_loc (input_location,
+			      builtin_decl_explicit (BUILT_IN_ISFINITE),
+			      1, x);
+  nan = gfc_build_nan (type, "");
+  tmp = build3_v (COND_EXPR, cond, tmp, build2_v (MODIFY_EXPR, x, nan));
+
+  gfc_add_expr_to_block (&se->pre, tmp);
+  se->expr = fold_convert (type, x);
+}
+
+
+/* SCALE (s, i) is translated into scalbn (s, i).  */
+static void
+gfc_conv_intrinsic_scale (gfc_se * se, gfc_expr * expr)
+{
+  tree args[2], type, scalbn;
+
+  scalbn = gfc_builtin_decl_for_float_kind (BUILT_IN_SCALBN, expr->ts.kind);
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+  se->expr = build_call_expr_loc (input_location, scalbn, 2,
+				  fold_convert (type, args[0]),
+				  fold_convert (integer_type_node, args[1]));
+  se->expr = fold_convert (type, se->expr);
+}
+
+
+/* SET_EXPONENT (s, i) is translated into
+   isfinite(s) ? scalbn (frexp (s, &dummy_int), i) : NaN  */
+static void
+gfc_conv_intrinsic_set_exponent (gfc_se * se, gfc_expr * expr)
+{
+  tree args[2], type, tmp, frexp, scalbn, cond, nan, res;
+
+  frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP, expr->ts.kind);
+  scalbn = gfc_builtin_decl_for_float_kind (BUILT_IN_SCALBN, expr->ts.kind);
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+  args[0] = gfc_evaluate_now (args[0], &se->pre);
+
+  tmp = gfc_create_var (integer_type_node, NULL);
+  tmp = build_call_expr_loc (input_location, frexp, 2,
+			     fold_convert (type, args[0]),
+			     gfc_build_addr_expr (NULL_TREE, tmp));
+  res = build_call_expr_loc (input_location, scalbn, 2, tmp,
+			     fold_convert (integer_type_node, args[1]));
+  res = fold_convert (type, res);
+
+  /* Call to isfinite */
+  cond = build_call_expr_loc (input_location,
+			      builtin_decl_explicit (BUILT_IN_ISFINITE),
+			      1, args[0]);
+  nan = gfc_build_nan (type, "");
+
+  se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond,
+			      res, nan);
+}
+
+
+static void
+gfc_conv_intrinsic_size (gfc_se * se, gfc_expr * expr)
+{
+  gfc_actual_arglist *actual;
+  tree arg1;
+  tree type;
+  tree fncall0;
+  tree fncall1;
+  gfc_se argse;
+
+  gfc_init_se (&argse, NULL);
+  actual = expr->value.function.actual;
+
+  if (actual->expr->ts.type == BT_CLASS)
+    gfc_add_class_array_ref (actual->expr);
+
+  argse.data_not_needed = 1;
+  if (gfc_is_alloc_class_array_function (actual->expr))
+    {
+      /* For functions that return a class array conv_expr_descriptor is not
+	 able to get the descriptor right.  Therefore this special case.  */
+      gfc_conv_expr_reference (&argse, actual->expr);
+      argse.expr = gfc_build_addr_expr (NULL_TREE,
+					gfc_class_data_get (argse.expr));
+    }
+  else
+    {
+      argse.want_pointer = 1;
+      gfc_conv_expr_descriptor (&argse, actual->expr);
+    }
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+  gfc_add_block_to_block (&se->post, &argse.post);
+  arg1 = gfc_evaluate_now (argse.expr, &se->pre);
+
+  /* Build the call to size0.  */
+  fncall0 = build_call_expr_loc (input_location,
+			     gfor_fndecl_size0, 1, arg1);
+
+  actual = actual->next;
+
+  if (actual->expr)
+    {
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr_type (&argse, actual->expr,
+			  gfc_array_index_type);
+      gfc_add_block_to_block (&se->pre, &argse.pre);
+
+      /* Unusually, for an intrinsic, size does not exclude
+	 an optional arg2, so we must test for it.  */
+      if (actual->expr->expr_type == EXPR_VARIABLE
+	    && actual->expr->symtree->n.sym->attr.dummy
+	    && actual->expr->symtree->n.sym->attr.optional)
+	{
+	  tree tmp;
+	  /* Build the call to size1.  */
+	  fncall1 = build_call_expr_loc (input_location,
+				     gfor_fndecl_size1, 2,
+				     arg1, argse.expr);
+
+	  gfc_init_se (&argse, NULL);
+	  argse.want_pointer = 1;
+	  argse.data_not_needed = 1;
+	  gfc_conv_expr (&argse, actual->expr);
+	  gfc_add_block_to_block (&se->pre, &argse.pre);
+	  tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+				 argse.expr, null_pointer_node);
+	  tmp = gfc_evaluate_now (tmp, &se->pre);
+	  se->expr = fold_build3_loc (input_location, COND_EXPR,
+				      pvoid_type_node, tmp, fncall1, fncall0);
+	}
+      else
+	{
+	  se->expr = NULL_TREE;
+	  argse.expr = fold_build2_loc (input_location, MINUS_EXPR,
+					gfc_array_index_type,
+					argse.expr, gfc_index_one_node);
+	}
+    }
+  else if (expr->value.function.actual->expr->rank == 1)
+    {
+      argse.expr = gfc_index_zero_node;
+      se->expr = NULL_TREE;
+    }
+  else
+    se->expr = fncall0;
+
+  if (se->expr == NULL_TREE)
+    {
+      tree ubound, lbound;
+
+      arg1 = build_fold_indirect_ref_loc (input_location,
+				      arg1);
+      ubound = gfc_conv_descriptor_ubound_get (arg1, argse.expr);
+      lbound = gfc_conv_descriptor_lbound_get (arg1, argse.expr);
+      se->expr = fold_build2_loc (input_location, MINUS_EXPR,
+				  gfc_array_index_type, ubound, lbound);
+      se->expr = fold_build2_loc (input_location, PLUS_EXPR,
+				  gfc_array_index_type,
+				  se->expr, gfc_index_one_node);
+      se->expr = fold_build2_loc (input_location, MAX_EXPR,
+				  gfc_array_index_type, se->expr,
+				  gfc_index_zero_node);
+    }
+
+  type = gfc_typenode_for_spec (&expr->ts);
+  se->expr = convert (type, se->expr);
+}
+
+
+/* Helper function to compute the size of a character variable,
+   excluding the terminating null characters.  The result has
+   gfc_array_index_type type.  */
+
+tree
+size_of_string_in_bytes (int kind, tree string_length)
+{
+  tree bytesize;
+  int i = gfc_validate_kind (BT_CHARACTER, kind, false);
+
+  bytesize = build_int_cst (gfc_array_index_type,
+			    gfc_character_kinds[i].bit_size / 8);
+
+  return fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
+			  bytesize,
+			  fold_convert (gfc_array_index_type, string_length));
+}
+
+
+static void
+gfc_conv_intrinsic_sizeof (gfc_se *se, gfc_expr *expr)
+{
+  gfc_expr *arg;
+  gfc_se argse;
+  tree source_bytes;
+  tree tmp;
+  tree lower;
+  tree upper;
+  tree byte_size;
+  int n;
+
+  gfc_init_se (&argse, NULL);
+  arg = expr->value.function.actual->expr;
+
+  if (arg->rank || arg->ts.type == BT_ASSUMED)
+    gfc_conv_expr_descriptor (&argse, arg);
+  else
+    gfc_conv_expr_reference (&argse, arg);
+
+  if (arg->ts.type == BT_ASSUMED)
+    {
+      /* This only works if an array descriptor has been passed; thus, extract
+	 the size from the descriptor.  */
+      gcc_assert (TYPE_PRECISION (gfc_array_index_type)
+		  == TYPE_PRECISION (size_type_node));
+      tmp = arg->symtree->n.sym->backend_decl;
+      tmp = DECL_LANG_SPECIFIC (tmp)
+	    && GFC_DECL_SAVED_DESCRIPTOR (tmp) != NULL_TREE
+	    ? GFC_DECL_SAVED_DESCRIPTOR (tmp) : tmp;
+      if (POINTER_TYPE_P (TREE_TYPE (tmp)))
+	tmp = build_fold_indirect_ref_loc (input_location, tmp);
+      tmp = fold_convert (size_type_node, gfc_conv_descriptor_dtype (tmp));
+      tmp = fold_build2_loc (input_location, RSHIFT_EXPR, TREE_TYPE (tmp), tmp,
+			     build_int_cst (TREE_TYPE (tmp),
+					    GFC_DTYPE_SIZE_SHIFT));
+      byte_size = fold_convert (gfc_array_index_type, tmp);
+    }
+  else if (arg->ts.type == BT_CLASS)
+    {
+      /* Conv_expr_descriptor returns a component_ref to _data component of the
+	 class object.  The class object may be a non-pointer object, e.g.
+	 located on the stack, or a memory location pointed to, e.g. a
+	 parameter, i.e., an indirect_ref.  */
+      if (arg->rank < 0
+	  || (arg->rank > 0 && !VAR_P (argse.expr)
+	      && ((INDIRECT_REF_P (TREE_OPERAND (argse.expr, 0))
+		   && GFC_DECL_CLASS (TREE_OPERAND (
+					TREE_OPERAND (argse.expr, 0), 0)))
+		  || GFC_DECL_CLASS (TREE_OPERAND (argse.expr, 0)))))
+	byte_size = gfc_class_vtab_size_get (TREE_OPERAND (argse.expr, 0));
+      else if (arg->rank > 0
+	       || (arg->rank == 0
+		   && arg->ref && arg->ref->type == REF_COMPONENT))
+	/* The scalarizer added an additional temp.  To get the class' vptr
+	   one has to look at the original backend_decl.  */
+	byte_size = gfc_class_vtab_size_get (
+	      GFC_DECL_SAVED_DESCRIPTOR (arg->symtree->n.sym->backend_decl));
+      else
+	byte_size = gfc_class_vtab_size_get (argse.expr);
+    }
+  else
+    {
+      if (arg->ts.type == BT_CHARACTER)
+	byte_size = size_of_string_in_bytes (arg->ts.kind, argse.string_length);
+      else
+	{
+	  if (arg->rank == 0)
+	    byte_size = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
+								argse.expr));
+	  else
+	    byte_size = gfc_get_element_type (TREE_TYPE (argse.expr));
+	  byte_size = fold_convert (gfc_array_index_type,
+				    size_in_bytes (byte_size));
+	}
+    }
+
+  if (arg->rank == 0)
+    se->expr = byte_size;
+  else
+    {
+      source_bytes = gfc_create_var (gfc_array_index_type, "bytes");
+      gfc_add_modify (&argse.pre, source_bytes, byte_size);
+
+      if (arg->rank == -1)
+	{
+	  tree cond, loop_var, exit_label;
+          stmtblock_t body;
+
+	  tmp = fold_convert (gfc_array_index_type,
+			      gfc_conv_descriptor_rank (argse.expr));
+	  loop_var = gfc_create_var (gfc_array_index_type, "i");
+	  gfc_add_modify (&argse.pre, loop_var, gfc_index_zero_node);
+          exit_label = gfc_build_label_decl (NULL_TREE);
+
+	  /* Create loop:
+	     for (;;)
+		{
+		  if (i >= rank)
+		    goto exit;
+		  source_bytes = source_bytes * array.dim[i].extent;
+		  i = i + 1;
+		}
+	      exit:  */
+	  gfc_start_block (&body);
+	  cond = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
+				  loop_var, tmp);
+	  tmp = build1_v (GOTO_EXPR, exit_label);
+	  tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
+				 cond, tmp, build_empty_stmt (input_location));
+	  gfc_add_expr_to_block (&body, tmp);
+
+	  lower = gfc_conv_descriptor_lbound_get (argse.expr, loop_var);
+	  upper = gfc_conv_descriptor_ubound_get (argse.expr, loop_var);
+	  tmp = gfc_conv_array_extent_dim (lower, upper, NULL);
+	  tmp = fold_build2_loc (input_location, MULT_EXPR,
+				 gfc_array_index_type, tmp, source_bytes);
+	  gfc_add_modify (&body, source_bytes, tmp);
+
+	  tmp = fold_build2_loc (input_location, PLUS_EXPR,
+				 gfc_array_index_type, loop_var,
+				 gfc_index_one_node);
+	  gfc_add_modify_loc (input_location, &body, loop_var, tmp);
+
+	  tmp = gfc_finish_block (&body);
+
+	  tmp = fold_build1_loc (input_location, LOOP_EXPR, void_type_node,
+				 tmp);
+	  gfc_add_expr_to_block (&argse.pre, tmp);
+
+	  tmp = build1_v (LABEL_EXPR, exit_label);
+	  gfc_add_expr_to_block (&argse.pre, tmp);
+	}
+      else
+	{
+	  /* Obtain the size of the array in bytes.  */
+	  for (n = 0; n < arg->rank; n++)
+	    {
+	      tree idx;
+	      idx = gfc_rank_cst[n];
+	      lower = gfc_conv_descriptor_lbound_get (argse.expr, idx);
+	      upper = gfc_conv_descriptor_ubound_get (argse.expr, idx);
+	      tmp = gfc_conv_array_extent_dim (lower, upper, NULL);
+	      tmp = fold_build2_loc (input_location, MULT_EXPR,
+				     gfc_array_index_type, tmp, source_bytes);
+	      gfc_add_modify (&argse.pre, source_bytes, tmp);
+	    }
+	}
+      se->expr = source_bytes;
+    }
+
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+}
+
+
+static void
+gfc_conv_intrinsic_storage_size (gfc_se *se, gfc_expr *expr)
+{
+  gfc_expr *arg;
+  gfc_se argse;
+  tree type, result_type, tmp;
+
+  arg = expr->value.function.actual->expr;
+
+  gfc_init_se (&argse, NULL);
+  result_type = gfc_get_int_type (expr->ts.kind);
+
+  if (arg->rank == 0)
+    {
+      if (arg->ts.type == BT_CLASS)
+	{
+	  gfc_add_vptr_component (arg);
+	  gfc_add_size_component (arg);
+	  gfc_conv_expr (&argse, arg);
+	  tmp = fold_convert (result_type, argse.expr);
+	  goto done;
+	}
+
+      gfc_conv_expr_reference (&argse, arg);
+      type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
+						     argse.expr));
+    }
+  else
+    {
+      argse.want_pointer = 0;
+      gfc_conv_expr_descriptor (&argse, arg);
+      if (arg->ts.type == BT_CLASS)
+	{
+	  if (arg->rank > 0)
+	    tmp = gfc_class_vtab_size_get (
+		 GFC_DECL_SAVED_DESCRIPTOR (arg->symtree->n.sym->backend_decl));
+	  else
+	    tmp = gfc_class_vtab_size_get (TREE_OPERAND (argse.expr, 0));
+	  tmp = fold_convert (result_type, tmp);
+	  goto done;
+	}
+      type = gfc_get_element_type (TREE_TYPE (argse.expr));
+    }
+
+  /* Obtain the argument's word length.  */
+  if (arg->ts.type == BT_CHARACTER)
+    tmp = size_of_string_in_bytes (arg->ts.kind, argse.string_length);
+  else
+    tmp = size_in_bytes (type);
+  tmp = fold_convert (result_type, tmp);
+
+done:
+  se->expr = fold_build2_loc (input_location, MULT_EXPR, result_type, tmp,
+			      build_int_cst (result_type, BITS_PER_UNIT));
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+}
+
+
+/* Intrinsic string comparison functions.  */
+
+static void
+gfc_conv_intrinsic_strcmp (gfc_se * se, gfc_expr * expr, enum tree_code op)
+{
+  tree args[4];
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 4);
+
+  se->expr
+    = gfc_build_compare_string (args[0], args[1], args[2], args[3],
+				expr->value.function.actual->expr->ts.kind,
+				op);
+  se->expr = fold_build2_loc (input_location, op,
+			      gfc_typenode_for_spec (&expr->ts), se->expr,
+			      build_int_cst (TREE_TYPE (se->expr), 0));
+}
+
+/* Generate a call to the adjustl/adjustr library function.  */
+static void
+gfc_conv_intrinsic_adjust (gfc_se * se, gfc_expr * expr, tree fndecl)
+{
+  tree args[3];
+  tree len;
+  tree type;
+  tree var;
+  tree tmp;
+
+  gfc_conv_intrinsic_function_args (se, expr, &args[1], 2);
+  len = args[1];
+
+  type = TREE_TYPE (args[2]);
+  var = gfc_conv_string_tmp (se, type, len);
+  args[0] = var;
+
+  tmp = build_call_expr_loc (input_location,
+			 fndecl, 3, args[0], args[1], args[2]);
+  gfc_add_expr_to_block (&se->pre, tmp);
+  se->expr = var;
+  se->string_length = len;
+}
+
+
+/* Generate code for the TRANSFER intrinsic:
+	For scalar results:
+	  DEST = TRANSFER (SOURCE, MOLD)
+	where:
+	  typeof<DEST> = typeof<MOLD>
+	and:
+	  MOLD is scalar.
+
+	For array results:
+	  DEST(1:N) = TRANSFER (SOURCE, MOLD[, SIZE])
+	where:
+	  typeof<DEST> = typeof<MOLD>
+	and:
+	  N = min (sizeof (SOURCE(:)), sizeof (DEST(:)),
+	      sizeof (DEST(0) * SIZE).  */
+static void
+gfc_conv_intrinsic_transfer (gfc_se * se, gfc_expr * expr)
+{
+  tree tmp;
+  tree tmpdecl;
+  tree ptr;
+  tree extent;
+  tree source;
+  tree source_type;
+  tree source_bytes;
+  tree mold_type;
+  tree dest_word_len;
+  tree size_words;
+  tree size_bytes;
+  tree upper;
+  tree lower;
+  tree stmt;
+  gfc_actual_arglist *arg;
+  gfc_se argse;
+  gfc_array_info *info;
+  stmtblock_t block;
+  int n;
+  bool scalar_mold;
+  gfc_expr *source_expr, *mold_expr;
+
+  info = NULL;
+  if (se->loop)
+    info = &se->ss->info->data.array;
+
+  /* Convert SOURCE.  The output from this stage is:-
+	source_bytes = length of the source in bytes
+	source = pointer to the source data.  */
+  arg = expr->value.function.actual;
+  source_expr = arg->expr;
+
+  /* Ensure double transfer through LOGICAL preserves all
+     the needed bits.  */
+  if (arg->expr->expr_type == EXPR_FUNCTION
+	&& arg->expr->value.function.esym == NULL
+	&& arg->expr->value.function.isym != NULL
+	&& arg->expr->value.function.isym->id == GFC_ISYM_TRANSFER
+	&& arg->expr->ts.type == BT_LOGICAL
+	&& expr->ts.type != arg->expr->ts.type)
+    arg->expr->value.function.name = "__transfer_in_transfer";
+
+  gfc_init_se (&argse, NULL);
+
+  source_bytes = gfc_create_var (gfc_array_index_type, NULL);
+
+  /* Obtain the pointer to source and the length of source in bytes.  */
+  if (arg->expr->rank == 0)
+    {
+      gfc_conv_expr_reference (&argse, arg->expr);
+      if (arg->expr->ts.type == BT_CLASS)
+	source = gfc_class_data_get (argse.expr);
+      else
+	source = argse.expr;
+
+      /* Obtain the source word length.  */
+      switch (arg->expr->ts.type)
+	{
+	case BT_CHARACTER:
+	  tmp = size_of_string_in_bytes (arg->expr->ts.kind,
+					 argse.string_length);
+	  break;
+	case BT_CLASS:
+	  tmp = gfc_class_vtab_size_get (argse.expr);
+	  break;
+	default:
+	  source_type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
+								source));
+	  tmp = fold_convert (gfc_array_index_type,
+			      size_in_bytes (source_type));
+	  break;
+	}
+    }
+  else
+    {
+      argse.want_pointer = 0;
+      gfc_conv_expr_descriptor (&argse, arg->expr);
+      source = gfc_conv_descriptor_data_get (argse.expr);
+      source_type = gfc_get_element_type (TREE_TYPE (argse.expr));
+
+      /* Repack the source if not simply contiguous.  */
+      if (!gfc_is_simply_contiguous (arg->expr, false, true))
+	{
+	  tmp = gfc_build_addr_expr (NULL_TREE, argse.expr);
+
+	  if (warn_array_temporaries)
+	    gfc_warning (OPT_Warray_temporaries,
+			 "Creating array temporary at %L", &expr->where);
+
+	  source = build_call_expr_loc (input_location,
+				    gfor_fndecl_in_pack, 1, tmp);
+	  source = gfc_evaluate_now (source, &argse.pre);
+
+	  /* Free the temporary.  */
+	  gfc_start_block (&block);
+	  tmp = gfc_call_free (source);
+	  gfc_add_expr_to_block (&block, tmp);
+	  stmt = gfc_finish_block (&block);
+
+	  /* Clean up if it was repacked.  */
+	  gfc_init_block (&block);
+	  tmp = gfc_conv_array_data (argse.expr);
+	  tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+				 source, tmp);
+	  tmp = build3_v (COND_EXPR, tmp, stmt,
+			  build_empty_stmt (input_location));
+	  gfc_add_expr_to_block (&block, tmp);
+	  gfc_add_block_to_block (&block, &se->post);
+	  gfc_init_block (&se->post);
+	  gfc_add_block_to_block (&se->post, &block);
+	}
+
+      /* Obtain the source word length.  */
+      if (arg->expr->ts.type == BT_CHARACTER)
+	tmp = size_of_string_in_bytes (arg->expr->ts.kind,
+				       argse.string_length);
+      else
+	tmp = fold_convert (gfc_array_index_type,
+			    size_in_bytes (source_type));
+
+      /* Obtain the size of the array in bytes.  */
+      extent = gfc_create_var (gfc_array_index_type, NULL);
+      for (n = 0; n < arg->expr->rank; n++)
+	{
+	  tree idx;
+	  idx = gfc_rank_cst[n];
+	  gfc_add_modify (&argse.pre, source_bytes, tmp);
+	  lower = gfc_conv_descriptor_lbound_get (argse.expr, idx);
+	  upper = gfc_conv_descriptor_ubound_get (argse.expr, idx);
+	  tmp = fold_build2_loc (input_location, MINUS_EXPR,
+				 gfc_array_index_type, upper, lower);
+	  gfc_add_modify (&argse.pre, extent, tmp);
+	  tmp = fold_build2_loc (input_location, PLUS_EXPR,
+				 gfc_array_index_type, extent,
+				 gfc_index_one_node);
+	  tmp = fold_build2_loc (input_location, MULT_EXPR,
+				 gfc_array_index_type, tmp, source_bytes);
+	}
+    }
+
+  gfc_add_modify (&argse.pre, source_bytes, tmp);
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+  gfc_add_block_to_block (&se->post, &argse.post);
+
+  /* Now convert MOLD.  The outputs are:
+	mold_type = the TREE type of MOLD
+	dest_word_len = destination word length in bytes.  */
+  arg = arg->next;
+  mold_expr = arg->expr;
+
+  gfc_init_se (&argse, NULL);
+
+  scalar_mold = arg->expr->rank == 0;
+
+  if (arg->expr->rank == 0)
+    {
+      gfc_conv_expr_reference (&argse, arg->expr);
+      mold_type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
+							  argse.expr));
+    }
+  else
+    {
+      gfc_init_se (&argse, NULL);
+      argse.want_pointer = 0;
+      gfc_conv_expr_descriptor (&argse, arg->expr);
+      mold_type = gfc_get_element_type (TREE_TYPE (argse.expr));
+    }
+
+  gfc_add_block_to_block (&se->pre, &argse.pre);
+  gfc_add_block_to_block (&se->post, &argse.post);
+
+  if (strcmp (expr->value.function.name, "__transfer_in_transfer") == 0)
+    {
+      /* If this TRANSFER is nested in another TRANSFER, use a type
+	 that preserves all bits.  */
+      if (arg->expr->ts.type == BT_LOGICAL)
+	mold_type = gfc_get_int_type (arg->expr->ts.kind);
+    }
+
+  /* Obtain the destination word length.  */
+  switch (arg->expr->ts.type)
+    {
+    case BT_CHARACTER:
+      tmp = size_of_string_in_bytes (arg->expr->ts.kind, argse.string_length);
+      mold_type = gfc_get_character_type_len (arg->expr->ts.kind, tmp);
+      break;
+    case BT_CLASS:
+      tmp = gfc_class_vtab_size_get (argse.expr);
+      break;
+    default:
+      tmp = fold_convert (gfc_array_index_type, size_in_bytes (mold_type));
+      break;
+    }
+  dest_word_len = gfc_create_var (gfc_array_index_type, NULL);
+  gfc_add_modify (&se->pre, dest_word_len, tmp);
+
+  /* Finally convert SIZE, if it is present.  */
+  arg = arg->next;
+  size_words = gfc_create_var (gfc_array_index_type, NULL);
+
+  if (arg->expr)
+    {
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr_reference (&argse, arg->expr);
+      tmp = convert (gfc_array_index_type,
+		     build_fold_indirect_ref_loc (input_location,
+					      argse.expr));
+      gfc_add_block_to_block (&se->pre, &argse.pre);
+      gfc_add_block_to_block (&se->post, &argse.post);
+    }
+  else
+    tmp = NULL_TREE;
+
+  /* Separate array and scalar results.  */
+  if (scalar_mold && tmp == NULL_TREE)
+    goto scalar_transfer;
+
+  size_bytes = gfc_create_var (gfc_array_index_type, NULL);
+  if (tmp != NULL_TREE)
+    tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
+			   tmp, dest_word_len);
+  else
+    tmp = source_bytes;
+
+  gfc_add_modify (&se->pre, size_bytes, tmp);
+  gfc_add_modify (&se->pre, size_words,
+		       fold_build2_loc (input_location, CEIL_DIV_EXPR,
+					gfc_array_index_type,
+					size_bytes, dest_word_len));
+
+  /* Evaluate the bounds of the result.  If the loop range exists, we have
+     to check if it is too large.  If so, we modify loop->to be consistent
+     with min(size, size(source)).  Otherwise, size is made consistent with
+     the loop range, so that the right number of bytes is transferred.*/
+  n = se->loop->order[0];
+  if (se->loop->to[n] != NULL_TREE)
+    {
+      tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
+			     se->loop->to[n], se->loop->from[n]);
+      tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
+			     tmp, gfc_index_one_node);
+      tmp = fold_build2_loc (input_location, MIN_EXPR, gfc_array_index_type,
+			 tmp, size_words);
+      gfc_add_modify (&se->pre, size_words, tmp);
+      gfc_add_modify (&se->pre, size_bytes,
+			   fold_build2_loc (input_location, MULT_EXPR,
+					    gfc_array_index_type,
+					    size_words, dest_word_len));
+      upper = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
+			       size_words, se->loop->from[n]);
+      upper = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
+			       upper, gfc_index_one_node);
+    }
+  else
+    {
+      upper = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
+			       size_words, gfc_index_one_node);
+      se->loop->from[n] = gfc_index_zero_node;
+    }
+
+  se->loop->to[n] = upper;
+
+  /* Build a destination descriptor, using the pointer, source, as the
+     data field.  */
+  gfc_trans_create_temp_array (&se->pre, &se->post, se->ss, mold_type,
+			       NULL_TREE, false, true, false, &expr->where);
+
+  /* Cast the pointer to the result.  */
+  tmp = gfc_conv_descriptor_data_get (info->descriptor);
+  tmp = fold_convert (pvoid_type_node, tmp);
+
+  /* Use memcpy to do the transfer.  */
+  tmp
+    = build_call_expr_loc (input_location,
+			   builtin_decl_explicit (BUILT_IN_MEMCPY), 3, tmp,
+			   fold_convert (pvoid_type_node, source),
+			   fold_convert (size_type_node,
+					 fold_build2_loc (input_location,
+							  MIN_EXPR,
+							  gfc_array_index_type,
+							  size_bytes,
+							  source_bytes)));
+  gfc_add_expr_to_block (&se->pre, tmp);
+
+  se->expr = info->descriptor;
+  if (expr->ts.type == BT_CHARACTER)
+    se->string_length = fold_convert (gfc_charlen_type_node, dest_word_len);
+
+  return;
+
+/* Deal with scalar results.  */
+scalar_transfer:
+  extent = fold_build2_loc (input_location, MIN_EXPR, gfc_array_index_type,
+			    dest_word_len, source_bytes);
+  extent = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type,
+			    extent, gfc_index_zero_node);
+
+  if (expr->ts.type == BT_CHARACTER)
+    {
+      tree direct, indirect, free;
+
+      ptr = convert (gfc_get_pchar_type (expr->ts.kind), source);
+      tmpdecl = gfc_create_var (gfc_get_pchar_type (expr->ts.kind),
+				"transfer");
+
+      /* If source is longer than the destination, use a pointer to
+	 the source directly.  */
+      gfc_init_block (&block);
+      gfc_add_modify (&block, tmpdecl, ptr);
+      direct = gfc_finish_block (&block);
+
+      /* Otherwise, allocate a string with the length of the destination
+	 and copy the source into it.  */
+      gfc_init_block (&block);
+      tmp = gfc_get_pchar_type (expr->ts.kind);
+      tmp = gfc_call_malloc (&block, tmp, dest_word_len);
+      gfc_add_modify (&block, tmpdecl,
+		      fold_convert (TREE_TYPE (ptr), tmp));
+      tmp = build_call_expr_loc (input_location,
+			     builtin_decl_explicit (BUILT_IN_MEMCPY), 3,
+			     fold_convert (pvoid_type_node, tmpdecl),
+			     fold_convert (pvoid_type_node, ptr),
+			     fold_convert (size_type_node, extent));
+      gfc_add_expr_to_block (&block, tmp);
+      indirect = gfc_finish_block (&block);
+
+      /* Wrap it up with the condition.  */
+      tmp = fold_build2_loc (input_location, LE_EXPR, boolean_type_node,
+			     dest_word_len, source_bytes);
+      tmp = build3_v (COND_EXPR, tmp, direct, indirect);
+      gfc_add_expr_to_block (&se->pre, tmp);
+
+      /* Free the temporary string, if necessary.  */
+      free = gfc_call_free (tmpdecl);
+      tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
+			     dest_word_len, source_bytes);
+      tmp = build3_v (COND_EXPR, tmp, free, build_empty_stmt (input_location));
+      gfc_add_expr_to_block (&se->post, tmp);
+
+      se->expr = tmpdecl;
+      se->string_length = fold_convert (gfc_charlen_type_node, dest_word_len);
+    }
+  else
+    {
+      tmpdecl = gfc_create_var (mold_type, "transfer");
+
+      ptr = convert (build_pointer_type (mold_type), source);
+
+      /* For CLASS results, allocate the needed memory first.  */
+      if (mold_expr->ts.type == BT_CLASS)
+	{
+	  tree cdata;
+	  cdata = gfc_class_data_get (tmpdecl);
+	  tmp = gfc_call_malloc (&se->pre, TREE_TYPE (cdata), dest_word_len);
+	  gfc_add_modify (&se->pre, cdata, tmp);
+	}
+
+      /* Use memcpy to do the transfer.  */
+      if (mold_expr->ts.type == BT_CLASS)
+	tmp = gfc_class_data_get (tmpdecl);
+      else
+	tmp = gfc_build_addr_expr (NULL_TREE, tmpdecl);
+
+      tmp = build_call_expr_loc (input_location,
+			     builtin_decl_explicit (BUILT_IN_MEMCPY), 3,
+			     fold_convert (pvoid_type_node, tmp),
+			     fold_convert (pvoid_type_node, ptr),
+			     fold_convert (size_type_node, extent));
+      gfc_add_expr_to_block (&se->pre, tmp);
+
+      /* For CLASS results, set the _vptr.  */
+      if (mold_expr->ts.type == BT_CLASS)
+	{
+	  tree vptr;
+	  gfc_symbol *vtab;
+	  vptr = gfc_class_vptr_get (tmpdecl);
+	  vtab = gfc_find_derived_vtab (source_expr->ts.u.derived);
+	  gcc_assert (vtab);
+	  tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab));
+	  gfc_add_modify (&se->pre, vptr, fold_convert (TREE_TYPE (vptr), tmp));
+	}
+
+      se->expr = tmpdecl;
+    }
+}
+
+
+/* Generate a call to caf_is_present.  */
+
+static tree
+trans_caf_is_present (gfc_se *se, gfc_expr *expr)
+{
+  tree caf_reference, caf_decl, token, image_index;
+
+  /* Compile the reference chain.  */
+  caf_reference = conv_expr_ref_to_caf_ref (&se->pre, expr);
+  gcc_assert (caf_reference != NULL_TREE);
+
+  caf_decl = gfc_get_tree_for_caf_expr (expr);
+  if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
+    caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
+  image_index = gfc_caf_get_image_index (&se->pre, expr, caf_decl);
+  gfc_get_caf_token_offset (se, &token, NULL, caf_decl, NULL,
+			    expr);
+
+  return build_call_expr_loc (input_location, gfor_fndecl_caf_is_present,
+			      3, token, image_index, caf_reference);
+}
+
+
+/* Test whether this ref-chain refs this image only.  */
+
+static bool
+caf_this_image_ref (gfc_ref *ref)
+{
+  for ( ; ref; ref = ref->next)
+    if (ref->type == REF_ARRAY && ref->u.ar.codimen)
+      return ref->u.ar.dimen_type[ref->u.ar.dimen] == DIMEN_THIS_IMAGE;
+
+  return false;
+}
+
+
+/* Generate code for the ALLOCATED intrinsic.
+   Generate inline code that directly check the address of the argument.  */
+
+static void
+gfc_conv_allocated (gfc_se *se, gfc_expr *expr)
+{
+  gfc_actual_arglist *arg1;
+  gfc_se arg1se;
+  tree tmp;
+  symbol_attribute caf_attr;
+
+  gfc_init_se (&arg1se, NULL);
+  arg1 = expr->value.function.actual;
+
+  if (arg1->expr->ts.type == BT_CLASS)
+    {
+      /* Make sure that class array expressions have both a _data
+	 component reference and an array reference....  */
+      if (CLASS_DATA (arg1->expr)->attr.dimension)
+	gfc_add_class_array_ref (arg1->expr);
+      /* .... whilst scalars only need the _data component.  */
+      else
+	gfc_add_data_component (arg1->expr);
+    }
+
+  /* When arg1 references an allocatable component in a coarray, then call
+     the caf-library function caf_is_present ().  */
+  if (flag_coarray == GFC_FCOARRAY_LIB && arg1->expr->expr_type == EXPR_FUNCTION
+      && arg1->expr->value.function.isym
+      && arg1->expr->value.function.isym->id == GFC_ISYM_CAF_GET)
+    caf_attr = gfc_caf_attr (arg1->expr->value.function.actual->expr);
+  else
+    gfc_clear_attr (&caf_attr);
+  if (flag_coarray == GFC_FCOARRAY_LIB && caf_attr.codimension
+      && !caf_this_image_ref (arg1->expr->value.function.actual->expr->ref))
+    tmp = trans_caf_is_present (se, arg1->expr->value.function.actual->expr);
+  else
+    {
+      if (arg1->expr->rank == 0)
+	{
+	  /* Allocatable scalar.  */
+	  arg1se.want_pointer = 1;
+	  gfc_conv_expr (&arg1se, arg1->expr);
+	  tmp = arg1se.expr;
+	}
+      else
+	{
+	  /* Allocatable array.  */
+	  arg1se.descriptor_only = 1;
+	  gfc_conv_expr_descriptor (&arg1se, arg1->expr);
+	  tmp = gfc_conv_descriptor_data_get (arg1se.expr);
+	}
+
+      tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp,
+			     fold_convert (TREE_TYPE (tmp), null_pointer_node));
+    }
+  se->expr = convert (gfc_typenode_for_spec (&expr->ts), tmp);
+}
+
+
+/* Generate code for the ASSOCIATED intrinsic.
+   If both POINTER and TARGET are arrays, generate a call to library function
+   _gfor_associated, and pass descriptors of POINTER and TARGET to it.
+   In other cases, generate inline code that directly compare the address of
+   POINTER with the address of TARGET.  */
+
+static void
+gfc_conv_associated (gfc_se *se, gfc_expr *expr)
+{
+  gfc_actual_arglist *arg1;
+  gfc_actual_arglist *arg2;
+  gfc_se arg1se;
+  gfc_se arg2se;
+  tree tmp2;
+  tree tmp;
+  tree nonzero_charlen;
+  tree nonzero_arraylen;
+  gfc_ss *ss;
+  bool scalar;
+
+  gfc_init_se (&arg1se, NULL);
+  gfc_init_se (&arg2se, NULL);
+  arg1 = expr->value.function.actual;
+  arg2 = arg1->next;
+
+  /* Check whether the expression is a scalar or not; we cannot use
+     arg1->expr->rank as it can be nonzero for proc pointers.  */
+  ss = gfc_walk_expr (arg1->expr);
+  scalar = ss == gfc_ss_terminator;
+  if (!scalar)
+    gfc_free_ss_chain (ss);
+
+  if (!arg2->expr)
+    {
+      /* No optional target.  */
+      if (scalar)
+        {
+	  /* A pointer to a scalar.  */
+	  arg1se.want_pointer = 1;
+	  gfc_conv_expr (&arg1se, arg1->expr);
+	  if (arg1->expr->symtree->n.sym->attr.proc_pointer
+	      && arg1->expr->symtree->n.sym->attr.dummy)
+	    arg1se.expr = build_fold_indirect_ref_loc (input_location,
+						       arg1se.expr);
+  	  if (arg1->expr->ts.type == BT_CLASS)
+	    {
+	      tmp2 = gfc_class_data_get (arg1se.expr);
+	      if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (tmp2)))
+		tmp2 = gfc_conv_descriptor_data_get (tmp2);
+	    }
+	  else
+	    tmp2 = arg1se.expr;
+        }
+      else
+        {
+          /* A pointer to an array.  */
+          gfc_conv_expr_descriptor (&arg1se, arg1->expr);
+          tmp2 = gfc_conv_descriptor_data_get (arg1se.expr);
+        }
+      gfc_add_block_to_block (&se->pre, &arg1se.pre);
+      gfc_add_block_to_block (&se->post, &arg1se.post);
+      tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp2,
+			     fold_convert (TREE_TYPE (tmp2), null_pointer_node));
+      se->expr = tmp;
+    }
+  else
+    {
+      /* An optional target.  */
+      if (arg2->expr->ts.type == BT_CLASS)
+	gfc_add_data_component (arg2->expr);
+
+      nonzero_charlen = NULL_TREE;
+      if (arg1->expr->ts.type == BT_CHARACTER)
+	nonzero_charlen = fold_build2_loc (input_location, NE_EXPR,
+					   boolean_type_node,
+					   arg1->expr->ts.u.cl->backend_decl,
+					   integer_zero_node);
+      if (scalar)
+        {
+	  /* A pointer to a scalar.  */
+	  arg1se.want_pointer = 1;
+	  gfc_conv_expr (&arg1se, arg1->expr);
+	  if (arg1->expr->symtree->n.sym->attr.proc_pointer
+	      && arg1->expr->symtree->n.sym->attr.dummy)
+	    arg1se.expr = build_fold_indirect_ref_loc (input_location,
+						       arg1se.expr);
+	  if (arg1->expr->ts.type == BT_CLASS)
+	    arg1se.expr = gfc_class_data_get (arg1se.expr);
+
+	  arg2se.want_pointer = 1;
+	  gfc_conv_expr (&arg2se, arg2->expr);
+	  if (arg2->expr->symtree->n.sym->attr.proc_pointer
+	      && arg2->expr->symtree->n.sym->attr.dummy)
+	    arg2se.expr = build_fold_indirect_ref_loc (input_location,
+						       arg2se.expr);
+	  gfc_add_block_to_block (&se->pre, &arg1se.pre);
+	  gfc_add_block_to_block (&se->post, &arg1se.post);
+	  gfc_add_block_to_block (&se->pre, &arg2se.pre);
+	  gfc_add_block_to_block (&se->post, &arg2se.post);
+          tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
+				 arg1se.expr, arg2se.expr);
+          tmp2 = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+				  arg1se.expr, null_pointer_node);
+          se->expr = fold_build2_loc (input_location, TRUTH_AND_EXPR,
+				      boolean_type_node, tmp, tmp2);
+        }
+      else
+        {
+	  /* An array pointer of zero length is not associated if target is
+	     present.  */
+	  arg1se.descriptor_only = 1;
+	  gfc_conv_expr_lhs (&arg1se, arg1->expr);
+	  if (arg1->expr->rank == -1)
+	    {
+	      tmp = gfc_conv_descriptor_rank (arg1se.expr);
+	      tmp = fold_build2_loc (input_location, MINUS_EXPR,
+				     TREE_TYPE (tmp), tmp, gfc_index_one_node);
+	    }
+	  else
+	    tmp = gfc_rank_cst[arg1->expr->rank - 1];
+	  tmp = gfc_conv_descriptor_stride_get (arg1se.expr, tmp);
+	  nonzero_arraylen = fold_build2_loc (input_location, NE_EXPR,
+					      boolean_type_node, tmp,
+					      build_int_cst (TREE_TYPE (tmp), 0));
+
+          /* A pointer to an array, call library function _gfor_associated.  */
+          arg1se.want_pointer = 1;
+          gfc_conv_expr_descriptor (&arg1se, arg1->expr);
+
+          arg2se.want_pointer = 1;
+          gfc_conv_expr_descriptor (&arg2se, arg2->expr);
+          gfc_add_block_to_block (&se->pre, &arg2se.pre);
+          gfc_add_block_to_block (&se->post, &arg2se.post);
+          se->expr = build_call_expr_loc (input_location,
+				      gfor_fndecl_associated, 2,
+				      arg1se.expr, arg2se.expr);
+	  se->expr = convert (boolean_type_node, se->expr);
+	  se->expr = fold_build2_loc (input_location, TRUTH_AND_EXPR,
+				      boolean_type_node, se->expr,
+				      nonzero_arraylen);
+        }
+
+      /* If target is present zero character length pointers cannot
+	 be associated.  */
+      if (nonzero_charlen != NULL_TREE)
+	se->expr = fold_build2_loc (input_location, TRUTH_AND_EXPR,
+				    boolean_type_node,
+				    se->expr, nonzero_charlen);
+    }
+
+  se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr);
+}
+
+
+/* Generate code for the SAME_TYPE_AS intrinsic.
+   Generate inline code that directly checks the vindices.  */
+
+static void
+gfc_conv_same_type_as (gfc_se *se, gfc_expr *expr)
+{
+  gfc_expr *a, *b;
+  gfc_se se1, se2;
+  tree tmp;
+  tree conda = NULL_TREE, condb = NULL_TREE;
+
+  gfc_init_se (&se1, NULL);
+  gfc_init_se (&se2, NULL);
+
+  a = expr->value.function.actual->expr;
+  b = expr->value.function.actual->next->expr;
+
+  if (UNLIMITED_POLY (a))
+    {
+      tmp = gfc_class_vptr_get (a->symtree->n.sym->backend_decl);
+      conda = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+			       tmp, build_int_cst (TREE_TYPE (tmp), 0));
+    }
+
+  if (UNLIMITED_POLY (b))
+    {
+      tmp = gfc_class_vptr_get (b->symtree->n.sym->backend_decl);
+      condb = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+			       tmp, build_int_cst (TREE_TYPE (tmp), 0));
+    }
+
+  if (a->ts.type == BT_CLASS)
+    {
+      gfc_add_vptr_component (a);
+      gfc_add_hash_component (a);
+    }
+  else if (a->ts.type == BT_DERIVED)
+    a = gfc_get_int_expr (gfc_default_integer_kind, NULL,
+			  a->ts.u.derived->hash_value);
+
+  if (b->ts.type == BT_CLASS)
+    {
+      gfc_add_vptr_component (b);
+      gfc_add_hash_component (b);
+    }
+  else if (b->ts.type == BT_DERIVED)
+    b = gfc_get_int_expr (gfc_default_integer_kind, NULL,
+			  b->ts.u.derived->hash_value);
+
+  gfc_conv_expr (&se1, a);
+  gfc_conv_expr (&se2, b);
+
+  tmp = fold_build2_loc (input_location, EQ_EXPR,
+			 boolean_type_node, se1.expr,
+			 fold_convert (TREE_TYPE (se1.expr), se2.expr));
+
+  if (conda)
+    tmp = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR,
+			   boolean_type_node, conda, tmp);
+
+  if (condb)
+    tmp = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR,
+			   boolean_type_node, condb, tmp);
+
+  se->expr = convert (gfc_typenode_for_spec (&expr->ts), tmp);
+}
+
+
+/* Generate code for SELECTED_CHAR_KIND (NAME) intrinsic function.  */
+
+static void
+gfc_conv_intrinsic_sc_kind (gfc_se *se, gfc_expr *expr)
+{
+  tree args[2];
+
+  gfc_conv_intrinsic_function_args (se, expr, args, 2);
+  se->expr = build_call_expr_loc (input_location,
+			      gfor_fndecl_sc_kind, 2, args[0], args[1]);
+  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
+}
+
+
+/* Generate code for SELECTED_INT_KIND (R) intrinsic function.  */
+
+static void
+gfc_conv_intrinsic_si_kind (gfc_se *se, gfc_expr *expr)
+{
+  tree arg, type;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+
+  /* The argument to SELECTED_INT_KIND is INTEGER(4).  */
+  type = gfc_get_int_type (4);
+  arg = gfc_build_addr_expr (NULL_TREE, fold_convert (type, arg));
+
+  /* Convert it to the required type.  */
+  type = gfc_typenode_for_spec (&expr->ts);
+  se->expr = build_call_expr_loc (input_location,
+			      gfor_fndecl_si_kind, 1, arg);
+  se->expr = fold_convert (type, se->expr);
+}
+
+
+/* Generate code for SELECTED_REAL_KIND (P, R, RADIX) intrinsic function.  */
+
+static void
+gfc_conv_intrinsic_sr_kind (gfc_se *se, gfc_expr *expr)
+{
+  gfc_actual_arglist *actual;
+  tree type;
+  gfc_se argse;
+  vec<tree, va_gc> *args = NULL;
+
+  for (actual = expr->value.function.actual; actual; actual = actual->next)
+    {
+      gfc_init_se (&argse, se);
+
+      /* Pass a NULL pointer for an absent arg.  */
+      if (actual->expr == NULL)
+        argse.expr = null_pointer_node;
+      else
+	{
+	  gfc_typespec ts;
+          gfc_clear_ts (&ts);
+
+	  if (actual->expr->ts.kind != gfc_c_int_kind)
+	    {
+  	      /* The arguments to SELECTED_REAL_KIND are INTEGER(4).  */
+	      ts.type = BT_INTEGER;
+	      ts.kind = gfc_c_int_kind;
+	      gfc_convert_type (actual->expr, &ts, 2);
+	    }
+	  gfc_conv_expr_reference (&argse, actual->expr);
+	}
+
+      gfc_add_block_to_block (&se->pre, &argse.pre);
+      gfc_add_block_to_block (&se->post, &argse.post);
+      vec_safe_push (args, argse.expr);
+    }
+
+  /* Convert it to the required type.  */
+  type = gfc_typenode_for_spec (&expr->ts);
+  se->expr = build_call_expr_loc_vec (input_location,
+				      gfor_fndecl_sr_kind, args);
+  se->expr = fold_convert (type, se->expr);
+}
+
+
+/* Generate code for TRIM (A) intrinsic function.  */
+
+static void
+gfc_conv_intrinsic_trim (gfc_se * se, gfc_expr * expr)
+{
+  tree var;
+  tree len;
+  tree addr;
+  tree tmp;
+  tree cond;
+  tree fndecl;
+  tree function;
+  tree *args;
+  unsigned int num_args;
+
+  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
+  args = XALLOCAVEC (tree, num_args);
+
+  var = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), "pstr");
+  addr = gfc_build_addr_expr (ppvoid_type_node, var);
+  len = gfc_create_var (gfc_charlen_type_node, "len");
+
+  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
+  args[0] = gfc_build_addr_expr (NULL_TREE, len);
+  args[1] = addr;
+
+  if (expr->ts.kind == 1)
+    function = gfor_fndecl_string_trim;
+  else if (expr->ts.kind == 4)
+    function = gfor_fndecl_string_trim_char4;
+  else
+    gcc_unreachable ();
+
+  fndecl = build_addr (function);
+  tmp = build_call_array_loc (input_location,
+			  TREE_TYPE (TREE_TYPE (function)), fndecl,
+			  num_args, args);
+  gfc_add_expr_to_block (&se->pre, tmp);
+
+  /* Free the temporary afterwards, if necessary.  */
+  cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
+			  len, build_int_cst (TREE_TYPE (len), 0));
+  tmp = gfc_call_free (var);
+  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
+  gfc_add_expr_to_block (&se->post, tmp);
+
+  se->expr = var;
+  se->string_length = len;
+}
+
+
+/* Generate code for REPEAT (STRING, NCOPIES) intrinsic function.  */
+
+static void
+gfc_conv_intrinsic_repeat (gfc_se * se, gfc_expr * expr)
+{
+  tree args[3], ncopies, dest, dlen, src, slen, ncopies_type;
+  tree type, cond, tmp, count, exit_label, n, max, largest;
+  tree size;
+  stmtblock_t block, body;
+  int i;
+
+  /* We store in charsize the size of a character.  */
+  i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false);
+  size = build_int_cst (size_type_node, gfc_character_kinds[i].bit_size / 8);
+
+  /* Get the arguments.  */
+  gfc_conv_intrinsic_function_args (se, expr, args, 3);
+  slen = fold_convert (size_type_node, gfc_evaluate_now (args[0], &se->pre));
+  src = args[1];
+  ncopies = gfc_evaluate_now (args[2], &se->pre);
+  ncopies_type = TREE_TYPE (ncopies);
+
+  /* Check that NCOPIES is not negative.  */
+  cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, ncopies,
+			  build_int_cst (ncopies_type, 0));
+  gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
+			   "Argument NCOPIES of REPEAT intrinsic is negative "
+			   "(its value is %ld)",
+			   fold_convert (long_integer_type_node, ncopies));
+
+  /* If the source length is zero, any non negative value of NCOPIES
+     is valid, and nothing happens.  */
+  n = gfc_create_var (ncopies_type, "ncopies");
+  cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, slen,
+			  build_int_cst (size_type_node, 0));
+  tmp = fold_build3_loc (input_location, COND_EXPR, ncopies_type, cond,
+			 build_int_cst (ncopies_type, 0), ncopies);
+  gfc_add_modify (&se->pre, n, tmp);
+  ncopies = n;
+
+  /* Check that ncopies is not too large: ncopies should be less than
+     (or equal to) MAX / slen, where MAX is the maximal integer of
+     the gfc_charlen_type_node type.  If slen == 0, we need a special
+     case to avoid the division by zero.  */
+  i = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
+  max = gfc_conv_mpz_to_tree (gfc_integer_kinds[i].huge, gfc_charlen_int_kind);
+  max = fold_build2_loc (input_location, TRUNC_DIV_EXPR, size_type_node,
+			  fold_convert (size_type_node, max), slen);
+  largest = TYPE_PRECISION (size_type_node) > TYPE_PRECISION (ncopies_type)
+	      ? size_type_node : ncopies_type;
+  cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
+			  fold_convert (largest, ncopies),
+			  fold_convert (largest, max));
+  tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, slen,
+			 build_int_cst (size_type_node, 0));
+  cond = fold_build3_loc (input_location, COND_EXPR, boolean_type_node, tmp,
+			  boolean_false_node, cond);
+  gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
+			   "Argument NCOPIES of REPEAT intrinsic is too large");
+
+  /* Compute the destination length.  */
+  dlen = fold_build2_loc (input_location, MULT_EXPR, gfc_charlen_type_node,
+			  fold_convert (gfc_charlen_type_node, slen),
+			  fold_convert (gfc_charlen_type_node, ncopies));
+  type = gfc_get_character_type (expr->ts.kind, expr->ts.u.cl);
+  dest = gfc_conv_string_tmp (se, build_pointer_type (type), dlen);
+
+  /* Generate the code to do the repeat operation:
+       for (i = 0; i < ncopies; i++)
+         memmove (dest + (i * slen * size), src, slen*size);  */
+  gfc_start_block (&block);
+  count = gfc_create_var (ncopies_type, "count");
+  gfc_add_modify (&block, count, build_int_cst (ncopies_type, 0));
+  exit_label = gfc_build_label_decl (NULL_TREE);
+
+  /* Start the loop body.  */
+  gfc_start_block (&body);
+
+  /* Exit the loop if count >= ncopies.  */
+  cond = fold_build2_loc (input_location, GE_EXPR, boolean_type_node, count,
+			  ncopies);
+  tmp = build1_v (GOTO_EXPR, exit_label);
+  TREE_USED (exit_label) = 1;
+  tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp,
+			 build_empty_stmt (input_location));
+  gfc_add_expr_to_block (&body, tmp);
+
+  /* Call memmove (dest + (i*slen*size), src, slen*size).  */
+  tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_charlen_type_node,
+			 fold_convert (gfc_charlen_type_node, slen),
+			 fold_convert (gfc_charlen_type_node, count));
+  tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_charlen_type_node,
+			 tmp, fold_convert (gfc_charlen_type_node, size));
+  tmp = fold_build_pointer_plus_loc (input_location,
+				     fold_convert (pvoid_type_node, dest), tmp);
+  tmp = build_call_expr_loc (input_location,
+			     builtin_decl_explicit (BUILT_IN_MEMMOVE),
+			     3, tmp, src,
+			     fold_build2_loc (input_location, MULT_EXPR,
+					      size_type_node, slen,
+					      fold_convert (size_type_node,
+							    size)));
+  gfc_add_expr_to_block (&body, tmp);
+
+  /* Increment count.  */
+  tmp = fold_build2_loc (input_location, PLUS_EXPR, ncopies_type,
+			 count, build_int_cst (TREE_TYPE (count), 1));
+  gfc_add_modify (&body, count, tmp);
+
+  /* Build the loop.  */
+  tmp = build1_v (LOOP_EXPR, gfc_finish_block (&body));
+  gfc_add_expr_to_block (&block, tmp);
+
+  /* Add the exit label.  */
+  tmp = build1_v (LABEL_EXPR, exit_label);
+  gfc_add_expr_to_block (&block, tmp);
+
+  /* Finish the block.  */
+  tmp = gfc_finish_block (&block);
+  gfc_add_expr_to_block (&se->pre, tmp);
+
+  /* Set the result value.  */
+  se->expr = dest;
+  se->string_length = dlen;
+}
+
+
+/* Generate code for the IARGC intrinsic.  */
+
+static void
+gfc_conv_intrinsic_iargc (gfc_se * se, gfc_expr * expr)
+{
+  tree tmp;
+  tree fndecl;
+  tree type;
+
+  /* Call the library function.  This always returns an INTEGER(4).  */
+  fndecl = gfor_fndecl_iargc;
+  tmp = build_call_expr_loc (input_location,
+			 fndecl, 0);
+
+  /* Convert it to the required type.  */
+  type = gfc_typenode_for_spec (&expr->ts);
+  tmp = fold_convert (type, tmp);
+
+  se->expr = tmp;
+}
+
+
+/* The loc intrinsic returns the address of its argument as
+   gfc_index_integer_kind integer.  */
+
+static void
+gfc_conv_intrinsic_loc (gfc_se * se, gfc_expr * expr)
+{
+  tree temp_var;
+  gfc_expr *arg_expr;
+
+  gcc_assert (!se->ss);
+
+  arg_expr = expr->value.function.actual->expr;
+  if (arg_expr->rank == 0)
+    {
+      if (arg_expr->ts.type == BT_CLASS)
+	gfc_add_data_component (arg_expr);
+      gfc_conv_expr_reference (se, arg_expr);
+    }
+  else
+    gfc_conv_array_parameter (se, arg_expr, true, NULL, NULL, NULL);
+  se->expr = convert (gfc_get_int_type (gfc_index_integer_kind), se->expr);
+
+  /* Create a temporary variable for loc return value.  Without this,
+     we get an error an ICE in gcc/expr.c(expand_expr_addr_expr_1).  */
+  temp_var = gfc_create_var (gfc_get_int_type (gfc_index_integer_kind), NULL);
+  gfc_add_modify (&se->pre, temp_var, se->expr);
+  se->expr = temp_var;
+}
+
+
+/* The following routine generates code for the intrinsic
+   functions from the ISO_C_BINDING module:
+    * C_LOC
+    * C_FUNLOC
+    * C_ASSOCIATED  */
+
+static void
+conv_isocbinding_function (gfc_se *se, gfc_expr *expr)
+{
+  gfc_actual_arglist *arg = expr->value.function.actual;
+
+  if (expr->value.function.isym->id == GFC_ISYM_C_LOC)
+    {
+      if (arg->expr->rank == 0)
+	gfc_conv_expr_reference (se, arg->expr);
+      else if (gfc_is_simply_contiguous (arg->expr, false, false))
+	gfc_conv_array_parameter (se, arg->expr, true, NULL, NULL, NULL);
+      else
+	{
+	  gfc_conv_expr_descriptor (se, arg->expr);
+	  se->expr = gfc_conv_descriptor_data_get (se->expr);
+	}
+
+      /* TODO -- the following two lines shouldn't be necessary, but if
+	 they're removed, a bug is exposed later in the code path.
+	 This workaround was thus introduced, but will have to be
+	 removed; please see PR 35150 for details about the issue.  */
+      se->expr = convert (pvoid_type_node, se->expr);
+      se->expr = gfc_evaluate_now (se->expr, &se->pre);
+    }
+  else if (expr->value.function.isym->id == GFC_ISYM_C_FUNLOC)
+    gfc_conv_expr_reference (se, arg->expr);
+  else if (expr->value.function.isym->id == GFC_ISYM_C_ASSOCIATED)
+    {
+      gfc_se arg1se;
+      gfc_se arg2se;
+
+      /* Build the addr_expr for the first argument.  The argument is
+	 already an *address* so we don't need to set want_pointer in
+	 the gfc_se.  */
+      gfc_init_se (&arg1se, NULL);
+      gfc_conv_expr (&arg1se, arg->expr);
+      gfc_add_block_to_block (&se->pre, &arg1se.pre);
+      gfc_add_block_to_block (&se->post, &arg1se.post);
+
+      /* See if we were given two arguments.  */
+      if (arg->next->expr == NULL)
+	/* Only given one arg so generate a null and do a
+	   not-equal comparison against the first arg.  */
+	se->expr = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+				    arg1se.expr,
+				    fold_convert (TREE_TYPE (arg1se.expr),
+						  null_pointer_node));
+      else
+	{
+	  tree eq_expr;
+	  tree not_null_expr;
+
+	  /* Given two arguments so build the arg2se from second arg.  */
+	  gfc_init_se (&arg2se, NULL);
+	  gfc_conv_expr (&arg2se, arg->next->expr);
+	  gfc_add_block_to_block (&se->pre, &arg2se.pre);
+	  gfc_add_block_to_block (&se->post, &arg2se.post);
+
+	  /* Generate test to compare that the two args are equal.  */
+	  eq_expr = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
+				     arg1se.expr, arg2se.expr);
+	  /* Generate test to ensure that the first arg is not null.  */
+	  not_null_expr = fold_build2_loc (input_location, NE_EXPR,
+					   boolean_type_node,
+					   arg1se.expr, null_pointer_node);
+
+	  /* Finally, the generated test must check that both arg1 is not
+	     NULL and that it is equal to the second arg.  */
+	  se->expr = fold_build2_loc (input_location, TRUTH_AND_EXPR,
+				      boolean_type_node,
+				      not_null_expr, eq_expr);
+	}
+    }
+  else
+    gcc_unreachable ();
+}
+
+
+/* The following routine generates code for the intrinsic
+   subroutines from the ISO_C_BINDING module:
+    * C_F_POINTER
+    * C_F_PROCPOINTER.  */
+
+static tree
+conv_isocbinding_subroutine (gfc_code *code)
+{
+  gfc_se se;
+  gfc_se cptrse;
+  gfc_se fptrse;
+  gfc_se shapese;
+  gfc_ss *shape_ss;
+  tree desc, dim, tmp, stride, offset;
+  stmtblock_t body, block;
+  gfc_loopinfo loop;
+  gfc_actual_arglist *arg = code->ext.actual;
+
+  gfc_init_se (&se, NULL);
+  gfc_init_se (&cptrse, NULL);
+  gfc_conv_expr (&cptrse, arg->expr);
+  gfc_add_block_to_block (&se.pre, &cptrse.pre);
+  gfc_add_block_to_block (&se.post, &cptrse.post);
+
+  gfc_init_se (&fptrse, NULL);
+  if (arg->next->expr->rank == 0)
+    {
+      fptrse.want_pointer = 1;
+      gfc_conv_expr (&fptrse, arg->next->expr);
+      gfc_add_block_to_block (&se.pre, &fptrse.pre);
+      gfc_add_block_to_block (&se.post, &fptrse.post);
+      if (arg->next->expr->symtree->n.sym->attr.proc_pointer
+	  && arg->next->expr->symtree->n.sym->attr.dummy)
+	fptrse.expr = build_fold_indirect_ref_loc (input_location,
+						       fptrse.expr);
+      se.expr = fold_build2_loc (input_location, MODIFY_EXPR,
+				 TREE_TYPE (fptrse.expr),
+				 fptrse.expr,
+				 fold_convert (TREE_TYPE (fptrse.expr),
+					       cptrse.expr));
+      gfc_add_expr_to_block (&se.pre, se.expr);
+      gfc_add_block_to_block (&se.pre, &se.post);
+      return gfc_finish_block (&se.pre);
+    }
+
+  gfc_start_block (&block);
+
+  /* Get the descriptor of the Fortran pointer.  */
+  fptrse.descriptor_only = 1;
+  gfc_conv_expr_descriptor (&fptrse, arg->next->expr);
+  gfc_add_block_to_block (&block, &fptrse.pre);
+  desc = fptrse.expr;
+
+  /* Set the span field.  */
+  tmp = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc)));
+  tmp = fold_convert (gfc_array_index_type, tmp);
+  gfc_conv_descriptor_span_set (&block, desc, tmp);
+
+  /* Set data value, dtype, and offset.  */
+  tmp = GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (desc));
+  gfc_conv_descriptor_data_set (&block, desc, fold_convert (tmp, cptrse.expr));
+  gfc_add_modify (&block, gfc_conv_descriptor_dtype (desc),
+		  gfc_get_dtype (TREE_TYPE (desc)));
+
+  /* Start scalarization of the bounds, using the shape argument.  */
+
+  shape_ss = gfc_walk_expr (arg->next->next->expr);
+  gcc_assert (shape_ss != gfc_ss_terminator);
+  gfc_init_se (&shapese, NULL);
+
+  gfc_init_loopinfo (&loop);
+  gfc_add_ss_to_loop (&loop, shape_ss);
+  gfc_conv_ss_startstride (&loop);
+  gfc_conv_loop_setup (&loop, &arg->next->expr->where);
+  gfc_mark_ss_chain_used (shape_ss, 1);
+
+  gfc_copy_loopinfo_to_se (&shapese, &loop);
+  shapese.ss = shape_ss;
+
+  stride = gfc_create_var (gfc_array_index_type, "stride");
+  offset = gfc_create_var (gfc_array_index_type, "offset");
+  gfc_add_modify (&block, stride, gfc_index_one_node);
+  gfc_add_modify (&block, offset, gfc_index_zero_node);
+
+  /* Loop body.  */
+  gfc_start_scalarized_body (&loop, &body);
+
+  dim = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
+			     loop.loopvar[0], loop.from[0]);
+
+  /* Set bounds and stride.  */
+  gfc_conv_descriptor_lbound_set (&body, desc, dim, gfc_index_one_node);
+  gfc_conv_descriptor_stride_set (&body, desc, dim, stride);
+
+  gfc_conv_expr (&shapese, arg->next->next->expr);
+  gfc_add_block_to_block (&body, &shapese.pre);
+  gfc_conv_descriptor_ubound_set (&body, desc, dim, shapese.expr);
+  gfc_add_block_to_block (&body, &shapese.post);
+
+  /* Calculate offset.  */
+  gfc_add_modify (&body, offset,
+		  fold_build2_loc (input_location, PLUS_EXPR,
+				   gfc_array_index_type, offset, stride));
+  /* Update stride.  */
+  gfc_add_modify (&body, stride,
+		  fold_build2_loc (input_location, MULT_EXPR,
+				   gfc_array_index_type, stride,
+				   fold_convert (gfc_array_index_type,
+						 shapese.expr)));
+  /* Finish scalarization loop.  */
+  gfc_trans_scalarizing_loops (&loop, &body);
+  gfc_add_block_to_block (&block, &loop.pre);
+  gfc_add_block_to_block (&block, &loop.post);
+  gfc_add_block_to_block (&block, &fptrse.post);
+  gfc_cleanup_loop (&loop);
+
+  gfc_add_modify (&block, offset,
+		  fold_build1_loc (input_location, NEGATE_EXPR,
+				   gfc_array_index_type, offset));
+  gfc_conv_descriptor_offset_set (&block, desc, offset);
+
+  gfc_add_expr_to_block (&se.pre, gfc_finish_block (&block));
+  gfc_add_block_to_block (&se.pre, &se.post);
+  return gfc_finish_block (&se.pre);
+}
+
+
+/* Save and restore floating-point state.  */
+
+tree
+gfc_save_fp_state (stmtblock_t *block)
+{
+  tree type, fpstate, tmp;
+
+  type = build_array_type (char_type_node,
+	                   build_range_type (size_type_node, size_zero_node,
+					     size_int (GFC_FPE_STATE_BUFFER_SIZE)));
+  fpstate = gfc_create_var (type, "fpstate");
+  fpstate = gfc_build_addr_expr (pvoid_type_node, fpstate);
+
+  tmp = build_call_expr_loc (input_location, gfor_fndecl_ieee_procedure_entry,
+			     1, fpstate);
+  gfc_add_expr_to_block (block, tmp);
+
+  return fpstate;
+}
+
+
+void
+gfc_restore_fp_state (stmtblock_t *block, tree fpstate)
+{
+  tree tmp;
+
+  tmp = build_call_expr_loc (input_location, gfor_fndecl_ieee_procedure_exit,
+			     1, fpstate);
+  gfc_add_expr_to_block (block, tmp);
+}
+
+
+/* Generate code for arguments of IEEE functions.  */
+
+static void
+conv_ieee_function_args (gfc_se *se, gfc_expr *expr, tree *argarray,
+			 int nargs)
+{
+  gfc_actual_arglist *actual;
+  gfc_expr *e;
+  gfc_se argse;
+  int arg;
+
+  actual = expr->value.function.actual;
+  for (arg = 0; arg < nargs; arg++, actual = actual->next)
+    {
+      gcc_assert (actual);
+      e = actual->expr;
+
+      gfc_init_se (&argse, se);
+      gfc_conv_expr_val (&argse, e);
+
+      gfc_add_block_to_block (&se->pre, &argse.pre);
+      gfc_add_block_to_block (&se->post, &argse.post);
+      argarray[arg] = argse.expr;
+    }
+}
+
+
+/* Generate code for intrinsics IEEE_IS_NAN, IEEE_IS_FINITE,
+   and IEEE_UNORDERED, which translate directly to GCC type-generic
+   built-ins.  */
+
+static void
+conv_intrinsic_ieee_builtin (gfc_se * se, gfc_expr * expr,
+			     enum built_in_function code, int nargs)
+{
+  tree args[2];
+  gcc_assert ((unsigned) nargs <= sizeof(args)/sizeof(args[0]));
+
+  conv_ieee_function_args (se, expr, args, nargs);
+  se->expr = build_call_expr_loc_array (input_location,
+					builtin_decl_explicit (code),
+					nargs, args);
+  STRIP_TYPE_NOPS (se->expr);
+  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
+}
+
+
+/* Generate code for IEEE_IS_NORMAL intrinsic:
+     IEEE_IS_NORMAL(x) --> (__builtin_isnormal(x) || x == 0)  */
+
+static void
+conv_intrinsic_ieee_is_normal (gfc_se * se, gfc_expr * expr)
+{
+  tree arg, isnormal, iszero;
+
+  /* Convert arg, evaluate it only once.  */
+  conv_ieee_function_args (se, expr, &arg, 1);
+  arg = gfc_evaluate_now (arg, &se->pre);
+
+  isnormal = build_call_expr_loc (input_location,
+				  builtin_decl_explicit (BUILT_IN_ISNORMAL),
+				  1, arg);
+  iszero = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, arg,
+			    build_real_from_int_cst (TREE_TYPE (arg),
+						     integer_zero_node));
+  se->expr = fold_build2_loc (input_location, TRUTH_OR_EXPR,
+			      boolean_type_node, isnormal, iszero);
+  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
+}
+
+
+/* Generate code for IEEE_IS_NEGATIVE intrinsic:
+     IEEE_IS_NEGATIVE(x) --> (__builtin_signbit(x) && !__builtin_isnan(x))  */
+
+static void
+conv_intrinsic_ieee_is_negative (gfc_se * se, gfc_expr * expr)
+{
+  tree arg, signbit, isnan;
+
+  /* Convert arg, evaluate it only once.  */
+  conv_ieee_function_args (se, expr, &arg, 1);
+  arg = gfc_evaluate_now (arg, &se->pre);
+
+  isnan = build_call_expr_loc (input_location,
+			       builtin_decl_explicit (BUILT_IN_ISNAN),
+			       1, arg);
+  STRIP_TYPE_NOPS (isnan);
+
+  signbit = build_call_expr_loc (input_location,
+				 builtin_decl_explicit (BUILT_IN_SIGNBIT),
+				 1, arg);
+  signbit = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+			     signbit, integer_zero_node);
+
+  se->expr = fold_build2_loc (input_location, TRUTH_AND_EXPR,
+			      boolean_type_node, signbit,
+			      fold_build1_loc (input_location, TRUTH_NOT_EXPR,
+					       TREE_TYPE(isnan), isnan));
+
+  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
+}
+
+
+/* Generate code for IEEE_LOGB and IEEE_RINT.  */
+
+static void
+conv_intrinsic_ieee_logb_rint (gfc_se * se, gfc_expr * expr,
+			       enum built_in_function code)
+{
+  tree arg, decl, call, fpstate;
+  int argprec;
+
+  conv_ieee_function_args (se, expr, &arg, 1);
+  argprec = TYPE_PRECISION (TREE_TYPE (arg));
+  decl = builtin_decl_for_precision (code, argprec);
+
+  /* Save floating-point state.  */
+  fpstate = gfc_save_fp_state (&se->pre);
+
+  /* Make the function call.  */
+  call = build_call_expr_loc (input_location, decl, 1, arg);
+  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), call);
+
+  /* Restore floating-point state.  */
+  gfc_restore_fp_state (&se->post, fpstate);
+}
+
+
+/* Generate code for IEEE_REM.  */
+
+static void
+conv_intrinsic_ieee_rem (gfc_se * se, gfc_expr * expr)
+{
+  tree args[2], decl, call, fpstate;
+  int argprec;
+
+  conv_ieee_function_args (se, expr, args, 2);
+
+  /* If arguments have unequal size, convert them to the larger.  */
+  if (TYPE_PRECISION (TREE_TYPE (args[0]))
+      > TYPE_PRECISION (TREE_TYPE (args[1])))
+    args[1] = fold_convert (TREE_TYPE (args[0]), args[1]);
+  else if (TYPE_PRECISION (TREE_TYPE (args[1]))
+	   > TYPE_PRECISION (TREE_TYPE (args[0])))
+    args[0] = fold_convert (TREE_TYPE (args[1]), args[0]);
+
+  argprec = TYPE_PRECISION (TREE_TYPE (args[0]));
+  decl = builtin_decl_for_precision (BUILT_IN_REMAINDER, argprec);
+
+  /* Save floating-point state.  */
+  fpstate = gfc_save_fp_state (&se->pre);
+
+  /* Make the function call.  */
+  call = build_call_expr_loc_array (input_location, decl, 2, args);
+  se->expr = fold_convert (TREE_TYPE (args[0]), call);
+
+  /* Restore floating-point state.  */
+  gfc_restore_fp_state (&se->post, fpstate);
+}
+
+
+/* Generate code for IEEE_NEXT_AFTER.  */
+
+static void
+conv_intrinsic_ieee_next_after (gfc_se * se, gfc_expr * expr)
+{
+  tree args[2], decl, call, fpstate;
+  int argprec;
+
+  conv_ieee_function_args (se, expr, args, 2);
+
+  /* Result has the characteristics of first argument.  */
+  args[1] = fold_convert (TREE_TYPE (args[0]), args[1]);
+  argprec = TYPE_PRECISION (TREE_TYPE (args[0]));
+  decl = builtin_decl_for_precision (BUILT_IN_NEXTAFTER, argprec);
+
+  /* Save floating-point state.  */
+  fpstate = gfc_save_fp_state (&se->pre);
+
+  /* Make the function call.  */
+  call = build_call_expr_loc_array (input_location, decl, 2, args);
+  se->expr = fold_convert (TREE_TYPE (args[0]), call);
+
+  /* Restore floating-point state.  */
+  gfc_restore_fp_state (&se->post, fpstate);
+}
+
+
+/* Generate code for IEEE_SCALB.  */
+
+static void
+conv_intrinsic_ieee_scalb (gfc_se * se, gfc_expr * expr)
+{
+  tree args[2], decl, call, huge, type;
+  int argprec, n;
+
+  conv_ieee_function_args (se, expr, args, 2);
+
+  /* Result has the characteristics of first argument.  */
+  argprec = TYPE_PRECISION (TREE_TYPE (args[0]));
+  decl = builtin_decl_for_precision (BUILT_IN_SCALBN, argprec);
+
+  if (TYPE_PRECISION (TREE_TYPE (args[1])) > TYPE_PRECISION (integer_type_node))
+    {
+      /* We need to fold the integer into the range of a C int.  */
+      args[1] = gfc_evaluate_now (args[1], &se->pre);
+      type = TREE_TYPE (args[1]);
+
+      n = gfc_validate_kind (BT_INTEGER, gfc_c_int_kind, false);
+      huge = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge,
+				   gfc_c_int_kind);
+      huge = fold_convert (type, huge);
+      args[1] = fold_build2_loc (input_location, MIN_EXPR, type, args[1],
+				 huge);
+      args[1] = fold_build2_loc (input_location, MAX_EXPR, type, args[1],
+				 fold_build1_loc (input_location, NEGATE_EXPR,
+						  type, huge));
+    }
+
+  args[1] = fold_convert (integer_type_node, args[1]);
+
+  /* Make the function call.  */
+  call = build_call_expr_loc_array (input_location, decl, 2, args);
+  se->expr = fold_convert (TREE_TYPE (args[0]), call);
+}
+
+
+/* Generate code for IEEE_COPY_SIGN.  */
+
+static void
+conv_intrinsic_ieee_copy_sign (gfc_se * se, gfc_expr * expr)
+{
+  tree args[2], decl, sign;
+  int argprec;
+
+  conv_ieee_function_args (se, expr, args, 2);
+
+  /* Get the sign of the second argument.  */
+  sign = build_call_expr_loc (input_location,
+			      builtin_decl_explicit (BUILT_IN_SIGNBIT),
+			      1, args[1]);
+  sign = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+			  sign, integer_zero_node);
+
+  /* Create a value of one, with the right sign.  */
+  sign = fold_build3_loc (input_location, COND_EXPR, integer_type_node,
+			  sign,
+			  fold_build1_loc (input_location, NEGATE_EXPR,
+					   integer_type_node,
+					   integer_one_node),
+			  integer_one_node);
+  args[1] = fold_convert (TREE_TYPE (args[0]), sign);
+
+  argprec = TYPE_PRECISION (TREE_TYPE (args[0]));
+  decl = builtin_decl_for_precision (BUILT_IN_COPYSIGN, argprec);
+
+  se->expr = build_call_expr_loc_array (input_location, decl, 2, args);
+}
+
+
+/* Generate code for an intrinsic function from the IEEE_ARITHMETIC
+   module.  */
+
+bool
+gfc_conv_ieee_arithmetic_function (gfc_se * se, gfc_expr * expr)
+{
+  const char *name = expr->value.function.name;
+
+#define STARTS_WITH(A,B) (strncmp((A), (B), strlen(B)) == 0)
+
+  if (STARTS_WITH (name, "_gfortran_ieee_is_nan"))
+    conv_intrinsic_ieee_builtin (se, expr, BUILT_IN_ISNAN, 1);
+  else if (STARTS_WITH (name, "_gfortran_ieee_is_finite"))
+    conv_intrinsic_ieee_builtin (se, expr, BUILT_IN_ISFINITE, 1);
+  else if (STARTS_WITH (name, "_gfortran_ieee_unordered"))
+    conv_intrinsic_ieee_builtin (se, expr, BUILT_IN_ISUNORDERED, 2);
+  else if (STARTS_WITH (name, "_gfortran_ieee_is_normal"))
+    conv_intrinsic_ieee_is_normal (se, expr);
+  else if (STARTS_WITH (name, "_gfortran_ieee_is_negative"))
+    conv_intrinsic_ieee_is_negative (se, expr);
+  else if (STARTS_WITH (name, "_gfortran_ieee_copy_sign"))
+    conv_intrinsic_ieee_copy_sign (se, expr);
+  else if (STARTS_WITH (name, "_gfortran_ieee_scalb"))
+    conv_intrinsic_ieee_scalb (se, expr);
+  else if (STARTS_WITH (name, "_gfortran_ieee_next_after"))
+    conv_intrinsic_ieee_next_after (se, expr);
+  else if (STARTS_WITH (name, "_gfortran_ieee_rem"))
+    conv_intrinsic_ieee_rem (se, expr);
+  else if (STARTS_WITH (name, "_gfortran_ieee_logb"))
+    conv_intrinsic_ieee_logb_rint (se, expr, BUILT_IN_LOGB);
+  else if (STARTS_WITH (name, "_gfortran_ieee_rint"))
+    conv_intrinsic_ieee_logb_rint (se, expr, BUILT_IN_RINT);
+  else
+    /* It is not among the functions we translate directly.  We return
+       false, so a library function call is emitted.  */
+    return false;
+
+#undef STARTS_WITH
+
+  return true;
+}
+
+
+/* Generate a direct call to malloc() for the MALLOC intrinsic.  */
+
+static void
+gfc_conv_intrinsic_malloc (gfc_se * se, gfc_expr * expr)
+{
+  tree arg, res, restype;
+
+  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+  arg = fold_convert (size_type_node, arg);
+  res = build_call_expr_loc (input_location,
+			     builtin_decl_explicit (BUILT_IN_MALLOC), 1, arg);
+  restype = gfc_typenode_for_spec (&expr->ts);
+  se->expr = fold_convert (restype, res);
+}
+
+
+/* Generate code for an intrinsic function.  Some map directly to library
+   calls, others get special handling.  In some cases the name of the function
+   used depends on the type specifiers.  */
+
+void
+gfc_conv_intrinsic_function (gfc_se * se, gfc_expr * expr)
+{
+  const char *name;
+  int lib, kind;
+  tree fndecl;
+
+  name = &expr->value.function.name[2];
+
+  if (expr->rank > 0)
+    {
+      lib = gfc_is_intrinsic_libcall (expr);
+      if (lib != 0)
+	{
+	  if (lib == 1)
+	    se->ignore_optional = 1;
+
+	  switch (expr->value.function.isym->id)
+	    {
+	    case GFC_ISYM_EOSHIFT:
+	    case GFC_ISYM_PACK:
+	    case GFC_ISYM_RESHAPE:
+	      /* For all of those the first argument specifies the type and the
+		 third is optional.  */
+	      conv_generic_with_optional_char_arg (se, expr, 1, 3);
+	      break;
+
+	    default:
+	      gfc_conv_intrinsic_funcall (se, expr);
+	      break;
+	    }
+
+	  return;
+	}
+    }
+
+  switch (expr->value.function.isym->id)
+    {
+    case GFC_ISYM_NONE:
+      gcc_unreachable ();
+
+    case GFC_ISYM_REPEAT:
+      gfc_conv_intrinsic_repeat (se, expr);
+      break;
+
+    case GFC_ISYM_TRIM:
+      gfc_conv_intrinsic_trim (se, expr);
+      break;
+
+    case GFC_ISYM_SC_KIND:
+      gfc_conv_intrinsic_sc_kind (se, expr);
+      break;
+
+    case GFC_ISYM_SI_KIND:
+      gfc_conv_intrinsic_si_kind (se, expr);
+      break;
+
+    case GFC_ISYM_SR_KIND:
+      gfc_conv_intrinsic_sr_kind (se, expr);
+      break;
+
+    case GFC_ISYM_EXPONENT:
+      gfc_conv_intrinsic_exponent (se, expr);
+      break;
+
+    case GFC_ISYM_SCAN:
+      kind = expr->value.function.actual->expr->ts.kind;
+      if (kind == 1)
+       fndecl = gfor_fndecl_string_scan;
+      else if (kind == 4)
+       fndecl = gfor_fndecl_string_scan_char4;
+      else
+       gcc_unreachable ();
+
+      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
+      break;
+
+    case GFC_ISYM_VERIFY:
+      kind = expr->value.function.actual->expr->ts.kind;
+      if (kind == 1)
+       fndecl = gfor_fndecl_string_verify;
+      else if (kind == 4)
+       fndecl = gfor_fndecl_string_verify_char4;
+      else
+       gcc_unreachable ();
+
+      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
+      break;
+
+    case GFC_ISYM_ALLOCATED:
+      gfc_conv_allocated (se, expr);
+      break;
+
+    case GFC_ISYM_ASSOCIATED:
+      gfc_conv_associated(se, expr);
+      break;
+
+    case GFC_ISYM_SAME_TYPE_AS:
+      gfc_conv_same_type_as (se, expr);
+      break;
+
+    case GFC_ISYM_ABS:
+      gfc_conv_intrinsic_abs (se, expr);
+      break;
+
+    case GFC_ISYM_ADJUSTL:
+      if (expr->ts.kind == 1)
+       fndecl = gfor_fndecl_adjustl;
+      else if (expr->ts.kind == 4)
+       fndecl = gfor_fndecl_adjustl_char4;
+      else
+       gcc_unreachable ();
+
+      gfc_conv_intrinsic_adjust (se, expr, fndecl);
+      break;
+
+    case GFC_ISYM_ADJUSTR:
+      if (expr->ts.kind == 1)
+       fndecl = gfor_fndecl_adjustr;
+      else if (expr->ts.kind == 4)
+       fndecl = gfor_fndecl_adjustr_char4;
+      else
+       gcc_unreachable ();
+
+      gfc_conv_intrinsic_adjust (se, expr, fndecl);
+      break;
+
+    case GFC_ISYM_AIMAG:
+      gfc_conv_intrinsic_imagpart (se, expr);
+      break;
+
+    case GFC_ISYM_AINT:
+      gfc_conv_intrinsic_aint (se, expr, RND_TRUNC);
+      break;
+
+    case GFC_ISYM_ALL:
+      gfc_conv_intrinsic_anyall (se, expr, EQ_EXPR);
+      break;
+
+    case GFC_ISYM_ANINT:
+      gfc_conv_intrinsic_aint (se, expr, RND_ROUND);
+      break;
+
+    case GFC_ISYM_AND:
+      gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR);
+      break;
+
+    case GFC_ISYM_ANY:
+      gfc_conv_intrinsic_anyall (se, expr, NE_EXPR);
+      break;
+
+    case GFC_ISYM_BTEST:
+      gfc_conv_intrinsic_btest (se, expr);
+      break;
+
+    case GFC_ISYM_BGE:
+      gfc_conv_intrinsic_bitcomp (se, expr, GE_EXPR);
+      break;
+
+    case GFC_ISYM_BGT:
+      gfc_conv_intrinsic_bitcomp (se, expr, GT_EXPR);
+      break;
+
+    case GFC_ISYM_BLE:
+      gfc_conv_intrinsic_bitcomp (se, expr, LE_EXPR);
+      break;
+
+    case GFC_ISYM_BLT:
+      gfc_conv_intrinsic_bitcomp (se, expr, LT_EXPR);
+      break;
+
+    case GFC_ISYM_C_ASSOCIATED:
+    case GFC_ISYM_C_FUNLOC:
+    case GFC_ISYM_C_LOC:
+      conv_isocbinding_function (se, expr);
+      break;
+
+    case GFC_ISYM_ACHAR:
+    case GFC_ISYM_CHAR:
+      gfc_conv_intrinsic_char (se, expr);
+      break;
+
+    case GFC_ISYM_CONVERSION:
+    case GFC_ISYM_REAL:
+    case GFC_ISYM_LOGICAL:
+    case GFC_ISYM_DBLE:
+      gfc_conv_intrinsic_conversion (se, expr);
+      break;
+
+      /* Integer conversions are handled separately to make sure we get the
+         correct rounding mode.  */
+    case GFC_ISYM_INT:
+    case GFC_ISYM_INT2:
+    case GFC_ISYM_INT8:
+    case GFC_ISYM_LONG:
+      gfc_conv_intrinsic_int (se, expr, RND_TRUNC);
+      break;
+
+    case GFC_ISYM_NINT:
+      gfc_conv_intrinsic_int (se, expr, RND_ROUND);
+      break;
+
+    case GFC_ISYM_CEILING:
+      gfc_conv_intrinsic_int (se, expr, RND_CEIL);
+      break;
+
+    case GFC_ISYM_FLOOR:
+      gfc_conv_intrinsic_int (se, expr, RND_FLOOR);
+      break;
+
+    case GFC_ISYM_MOD:
+      gfc_conv_intrinsic_mod (se, expr, 0);
+      break;
+
+    case GFC_ISYM_MODULO:
+      gfc_conv_intrinsic_mod (se, expr, 1);
+      break;
+
+    case GFC_ISYM_CAF_GET:
+      gfc_conv_intrinsic_caf_get (se, expr, NULL_TREE, NULL_TREE, NULL_TREE,
+				  false, NULL);
+      break;
+
+    case GFC_ISYM_CMPLX:
+      gfc_conv_intrinsic_cmplx (se, expr, name[5] == '1');
+      break;
+
+    case GFC_ISYM_COMMAND_ARGUMENT_COUNT:
+      gfc_conv_intrinsic_iargc (se, expr);
+      break;
+
+    case GFC_ISYM_COMPLEX:
+      gfc_conv_intrinsic_cmplx (se, expr, 1);
+      break;
+
+    case GFC_ISYM_CONJG:
+      gfc_conv_intrinsic_conjg (se, expr);
+      break;
+
+    case GFC_ISYM_COUNT:
+      gfc_conv_intrinsic_count (se, expr);
+      break;
+
+    case GFC_ISYM_CTIME:
+      gfc_conv_intrinsic_ctime (se, expr);
+      break;
+
+    case GFC_ISYM_DIM:
+      gfc_conv_intrinsic_dim (se, expr);
+      break;
+
+    case GFC_ISYM_DOT_PRODUCT:
+      gfc_conv_intrinsic_dot_product (se, expr);
+      break;
+
+    case GFC_ISYM_DPROD:
+      gfc_conv_intrinsic_dprod (se, expr);
+      break;
+
+    case GFC_ISYM_DSHIFTL:
+      gfc_conv_intrinsic_dshift (se, expr, true);
+      break;
+
+    case GFC_ISYM_DSHIFTR:
+      gfc_conv_intrinsic_dshift (se, expr, false);
+      break;
+
+    case GFC_ISYM_FDATE:
+      gfc_conv_intrinsic_fdate (se, expr);
+      break;
+
+    case GFC_ISYM_FRACTION:
+      gfc_conv_intrinsic_fraction (se, expr);
+      break;
+
+    case GFC_ISYM_IALL:
+      gfc_conv_intrinsic_arith (se, expr, BIT_AND_EXPR, false);
+      break;
+
+    case GFC_ISYM_IAND:
+      gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR);
+      break;
+
+    case GFC_ISYM_IANY:
+      gfc_conv_intrinsic_arith (se, expr, BIT_IOR_EXPR, false);
+      break;
+
+    case GFC_ISYM_IBCLR:
+      gfc_conv_intrinsic_singlebitop (se, expr, 0);
+      break;
+
+    case GFC_ISYM_IBITS:
+      gfc_conv_intrinsic_ibits (se, expr);
+      break;
+
+    case GFC_ISYM_IBSET:
+      gfc_conv_intrinsic_singlebitop (se, expr, 1);
+      break;
+
+    case GFC_ISYM_IACHAR:
+    case GFC_ISYM_ICHAR:
+      /* We assume ASCII character sequence.  */
+      gfc_conv_intrinsic_ichar (se, expr);
+      break;
+
+    case GFC_ISYM_IARGC:
+      gfc_conv_intrinsic_iargc (se, expr);
+      break;
+
+    case GFC_ISYM_IEOR:
+      gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR);
+      break;
+
+    case GFC_ISYM_INDEX:
+      kind = expr->value.function.actual->expr->ts.kind;
+      if (kind == 1)
+       fndecl = gfor_fndecl_string_index;
+      else if (kind == 4)
+       fndecl = gfor_fndecl_string_index_char4;
+      else
+       gcc_unreachable ();
+
+      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
+      break;
+
+    case GFC_ISYM_IOR:
+      gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR);
+      break;
+
+    case GFC_ISYM_IPARITY:
+      gfc_conv_intrinsic_arith (se, expr, BIT_XOR_EXPR, false);
+      break;
+
+    case GFC_ISYM_IS_IOSTAT_END:
+      gfc_conv_has_intvalue (se, expr, LIBERROR_END);
+      break;
+
+    case GFC_ISYM_IS_IOSTAT_EOR:
+      gfc_conv_has_intvalue (se, expr, LIBERROR_EOR);
+      break;
+
+    case GFC_ISYM_ISNAN:
+      gfc_conv_intrinsic_isnan (se, expr);
+      break;
+
+    case GFC_ISYM_LSHIFT:
+      gfc_conv_intrinsic_shift (se, expr, false, false);
+      break;
+
+    case GFC_ISYM_RSHIFT:
+      gfc_conv_intrinsic_shift (se, expr, true, true);
+      break;
+
+    case GFC_ISYM_SHIFTA:
+      gfc_conv_intrinsic_shift (se, expr, true, true);
+      break;
+
+    case GFC_ISYM_SHIFTL:
+      gfc_conv_intrinsic_shift (se, expr, false, false);
+      break;
+
+    case GFC_ISYM_SHIFTR:
+      gfc_conv_intrinsic_shift (se, expr, true, false);
+      break;
+
+    case GFC_ISYM_ISHFT:
+      gfc_conv_intrinsic_ishft (se, expr);
+      break;
+
+    case GFC_ISYM_ISHFTC:
+      gfc_conv_intrinsic_ishftc (se, expr);
+      break;
+
+    case GFC_ISYM_LEADZ:
+      gfc_conv_intrinsic_leadz (se, expr);
+      break;
+
+    case GFC_ISYM_TRAILZ:
+      gfc_conv_intrinsic_trailz (se, expr);
+      break;
+
+    case GFC_ISYM_POPCNT:
+      gfc_conv_intrinsic_popcnt_poppar (se, expr, 0);
+      break;
+
+    case GFC_ISYM_POPPAR:
+      gfc_conv_intrinsic_popcnt_poppar (se, expr, 1);
+      break;
+
+    case GFC_ISYM_LBOUND:
+      gfc_conv_intrinsic_bound (se, expr, 0);
+      break;
+
+    case GFC_ISYM_LCOBOUND:
+      conv_intrinsic_cobound (se, expr);
+      break;
+
+    case GFC_ISYM_TRANSPOSE:
+      /* The scalarizer has already been set up for reversed dimension access
+	 order ; now we just get the argument value normally.  */
+      gfc_conv_expr (se, expr->value.function.actual->expr);
+      break;
+
+    case GFC_ISYM_LEN:
+      gfc_conv_intrinsic_len (se, expr);
+      break;
+
+    case GFC_ISYM_LEN_TRIM:
+      gfc_conv_intrinsic_len_trim (se, expr);
+      break;
+
+    case GFC_ISYM_LGE:
+      gfc_conv_intrinsic_strcmp (se, expr, GE_EXPR);
+      break;
+
+    case GFC_ISYM_LGT:
+      gfc_conv_intrinsic_strcmp (se, expr, GT_EXPR);
+      break;
+
+    case GFC_ISYM_LLE:
+      gfc_conv_intrinsic_strcmp (se, expr, LE_EXPR);
+      break;
+
+    case GFC_ISYM_LLT:
+      gfc_conv_intrinsic_strcmp (se, expr, LT_EXPR);
+      break;
+
+    case GFC_ISYM_MALLOC:
+      gfc_conv_intrinsic_malloc (se, expr);
+      break;
+
+    case GFC_ISYM_MASKL:
+      gfc_conv_intrinsic_mask (se, expr, 1);
+      break;
+
+    case GFC_ISYM_MASKR:
+      gfc_conv_intrinsic_mask (se, expr, 0);
+      break;
+
+    case GFC_ISYM_MAX:
+      if (expr->ts.type == BT_CHARACTER)
+	gfc_conv_intrinsic_minmax_char (se, expr, 1);
+      else
+	gfc_conv_intrinsic_minmax (se, expr, GT_EXPR);
+      break;
+
+    case GFC_ISYM_MAXLOC:
+      gfc_conv_intrinsic_minmaxloc (se, expr, GT_EXPR);
+      break;
+
+    case GFC_ISYM_MAXVAL:
+      gfc_conv_intrinsic_minmaxval (se, expr, GT_EXPR);
+      break;
+
+    case GFC_ISYM_MERGE:
+      gfc_conv_intrinsic_merge (se, expr);
+      break;
+
+    case GFC_ISYM_MERGE_BITS:
+      gfc_conv_intrinsic_merge_bits (se, expr);
+      break;
+
+    case GFC_ISYM_MIN:
+      if (expr->ts.type == BT_CHARACTER)
+	gfc_conv_intrinsic_minmax_char (se, expr, -1);
+      else
+	gfc_conv_intrinsic_minmax (se, expr, LT_EXPR);
+      break;
+
+    case GFC_ISYM_MINLOC:
+      gfc_conv_intrinsic_minmaxloc (se, expr, LT_EXPR);
+      break;
+
+    case GFC_ISYM_MINVAL:
+      gfc_conv_intrinsic_minmaxval (se, expr, LT_EXPR);
+      break;
+
+    case GFC_ISYM_NEAREST:
+      gfc_conv_intrinsic_nearest (se, expr);
+      break;
+
+    case GFC_ISYM_NORM2:
+      gfc_conv_intrinsic_arith (se, expr, PLUS_EXPR, true);
+      break;
+
+    case GFC_ISYM_NOT:
+      gfc_conv_intrinsic_not (se, expr);
+      break;
+
+    case GFC_ISYM_OR:
+      gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR);
+      break;
+
+    case GFC_ISYM_PARITY:
+      gfc_conv_intrinsic_arith (se, expr, NE_EXPR, false);
+      break;
+
+    case GFC_ISYM_PRESENT:
+      gfc_conv_intrinsic_present (se, expr);
+      break;
+
+    case GFC_ISYM_PRODUCT:
+      gfc_conv_intrinsic_arith (se, expr, MULT_EXPR, false);
+      break;
+
+    case GFC_ISYM_RANK:
+      gfc_conv_intrinsic_rank (se, expr);
+      break;
+
+    case GFC_ISYM_RRSPACING:
+      gfc_conv_intrinsic_rrspacing (se, expr);
+      break;
+
+    case GFC_ISYM_SET_EXPONENT:
+      gfc_conv_intrinsic_set_exponent (se, expr);
+      break;
+
+    case GFC_ISYM_SCALE:
+      gfc_conv_intrinsic_scale (se, expr);
+      break;
+
+    case GFC_ISYM_SIGN:
+      gfc_conv_intrinsic_sign (se, expr);
+      break;
+
+    case GFC_ISYM_SIZE:
+      gfc_conv_intrinsic_size (se, expr);
+      break;
+
+    case GFC_ISYM_SIZEOF:
+    case GFC_ISYM_C_SIZEOF:
+      gfc_conv_intrinsic_sizeof (se, expr);
+      break;
+
+    case GFC_ISYM_STORAGE_SIZE:
+      gfc_conv_intrinsic_storage_size (se, expr);
+      break;
+
+    case GFC_ISYM_SPACING:
+      gfc_conv_intrinsic_spacing (se, expr);
+      break;
+
+    case GFC_ISYM_STRIDE:
+      conv_intrinsic_stride (se, expr);
+      break;
+
+    case GFC_ISYM_SUM:
+      gfc_conv_intrinsic_arith (se, expr, PLUS_EXPR, false);
+      break;
+
+    case GFC_ISYM_TRANSFER:
+      if (se->ss && se->ss->info->useflags)
+	/* Access the previously obtained result.  */
+	gfc_conv_tmp_array_ref (se);
+      else
+	gfc_conv_intrinsic_transfer (se, expr);
+      break;
+
+    case GFC_ISYM_TTYNAM:
+      gfc_conv_intrinsic_ttynam (se, expr);
+      break;
+
+    case GFC_ISYM_UBOUND:
+      gfc_conv_intrinsic_bound (se, expr, 1);
+      break;
+
+    case GFC_ISYM_UCOBOUND:
+      conv_intrinsic_cobound (se, expr);
+      break;
+
+    case GFC_ISYM_XOR:
+      gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR);
+      break;
+
+    case GFC_ISYM_LOC:
+      gfc_conv_intrinsic_loc (se, expr);
+      break;
+
+    case GFC_ISYM_THIS_IMAGE:
+      /* For num_images() == 1, handle as LCOBOUND.  */
+      if (expr->value.function.actual->expr
+	  && flag_coarray == GFC_FCOARRAY_SINGLE)
+	conv_intrinsic_cobound (se, expr);
+      else
+	trans_this_image (se, expr);
+      break;
+
+    case GFC_ISYM_IMAGE_INDEX:
+      trans_image_index (se, expr);
+      break;
+
+    case GFC_ISYM_IMAGE_STATUS:
+      conv_intrinsic_image_status (se, expr);
+      break;
+
+    case GFC_ISYM_NUM_IMAGES:
+      trans_num_images (se, expr);
+      break;
+
+    case GFC_ISYM_ACCESS:
+    case GFC_ISYM_CHDIR:
+    case GFC_ISYM_CHMOD:
+    case GFC_ISYM_DTIME:
+    case GFC_ISYM_ETIME:
+    case GFC_ISYM_EXTENDS_TYPE_OF:
+    case GFC_ISYM_FGET:
+    case GFC_ISYM_FGETC:
+    case GFC_ISYM_FNUM:
+    case GFC_ISYM_FPUT:
+    case GFC_ISYM_FPUTC:
+    case GFC_ISYM_FSTAT:
+    case GFC_ISYM_FTELL:
+    case GFC_ISYM_GETCWD:
+    case GFC_ISYM_GETGID:
+    case GFC_ISYM_GETPID:
+    case GFC_ISYM_GETUID:
+    case GFC_ISYM_HOSTNM:
+    case GFC_ISYM_KILL:
+    case GFC_ISYM_IERRNO:
+    case GFC_ISYM_IRAND:
+    case GFC_ISYM_ISATTY:
+    case GFC_ISYM_JN2:
+    case GFC_ISYM_LINK:
+    case GFC_ISYM_LSTAT:
+    case GFC_ISYM_MATMUL:
+    case GFC_ISYM_MCLOCK:
+    case GFC_ISYM_MCLOCK8:
+    case GFC_ISYM_RAND:
+    case GFC_ISYM_RENAME:
+    case GFC_ISYM_SECOND:
+    case GFC_ISYM_SECNDS:
+    case GFC_ISYM_SIGNAL:
+    case GFC_ISYM_STAT:
+    case GFC_ISYM_SYMLNK:
+    case GFC_ISYM_SYSTEM:
+    case GFC_ISYM_TIME:
+    case GFC_ISYM_TIME8:
+    case GFC_ISYM_UMASK:
+    case GFC_ISYM_UNLINK:
+    case GFC_ISYM_YN2:
+      gfc_conv_intrinsic_funcall (se, expr);
+      break;
+
+    case GFC_ISYM_EOSHIFT:
+    case GFC_ISYM_PACK:
+    case GFC_ISYM_RESHAPE:
+      /* For those, expr->rank should always be >0 and thus the if above the
+	 switch should have matched.  */
+      gcc_unreachable ();
+      break;
+
+    default:
+      gfc_conv_intrinsic_lib_function (se, expr);
+      break;
+    }
+}
+
+
+static gfc_ss *
+walk_inline_intrinsic_transpose (gfc_ss *ss, gfc_expr *expr)
+{
+  gfc_ss *arg_ss, *tmp_ss;
+  gfc_actual_arglist *arg;
+
+  arg = expr->value.function.actual;
+
+  gcc_assert (arg->expr);
+
+  arg_ss = gfc_walk_subexpr (gfc_ss_terminator, arg->expr);
+  gcc_assert (arg_ss != gfc_ss_terminator);
+
+  for (tmp_ss = arg_ss; ; tmp_ss = tmp_ss->next)
+    {
+      if (tmp_ss->info->type != GFC_SS_SCALAR
+	  && tmp_ss->info->type != GFC_SS_REFERENCE)
+	{
+	  gcc_assert (tmp_ss->dimen == 2);
+
+	  /* We just invert dimensions.  */
+	  std::swap (tmp_ss->dim[0], tmp_ss->dim[1]);
+	}
+
+      /* Stop when tmp_ss points to the last valid element of the chain...  */
+      if (tmp_ss->next == gfc_ss_terminator)
+	break;
+    }
+
+  /* ... so that we can attach the rest of the chain to it.  */
+  tmp_ss->next = ss;
+
+  return arg_ss;
+}
+
+
+/* Move the given dimension of the given gfc_ss list to a nested gfc_ss list.
+   This has the side effect of reversing the nested list, so there is no
+   need to call gfc_reverse_ss on it (the given list is assumed not to be
+   reversed yet).   */
+
+static gfc_ss *
+nest_loop_dimension (gfc_ss *ss, int dim)
+{
+  int ss_dim, i;
+  gfc_ss *new_ss, *prev_ss = gfc_ss_terminator;
+  gfc_loopinfo *new_loop;
+
+  gcc_assert (ss != gfc_ss_terminator);
+
+  for (; ss != gfc_ss_terminator; ss = ss->next)
+    {
+      new_ss = gfc_get_ss ();
+      new_ss->next = prev_ss;
+      new_ss->parent = ss;
+      new_ss->info = ss->info;
+      new_ss->info->refcount++;
+      if (ss->dimen != 0)
+	{
+	  gcc_assert (ss->info->type != GFC_SS_SCALAR
+		      && ss->info->type != GFC_SS_REFERENCE);
+
+	  new_ss->dimen = 1;
+	  new_ss->dim[0] = ss->dim[dim];
+
+	  gcc_assert (dim < ss->dimen);
+
+	  ss_dim = --ss->dimen;
+	  for (i = dim; i < ss_dim; i++)
+	    ss->dim[i] = ss->dim[i + 1];
+
+	  ss->dim[ss_dim] = 0;
+	}
+      prev_ss = new_ss;
+
+      if (ss->nested_ss)
+	{
+	  ss->nested_ss->parent = new_ss;
+	  new_ss->nested_ss = ss->nested_ss;
+	}
+      ss->nested_ss = new_ss;
+    }
+
+  new_loop = gfc_get_loopinfo ();
+  gfc_init_loopinfo (new_loop);
+
+  gcc_assert (prev_ss != NULL);
+  gcc_assert (prev_ss != gfc_ss_terminator);
+  gfc_add_ss_to_loop (new_loop, prev_ss);
+  return new_ss->parent;
+}
+
+
+/* Create the gfc_ss list for the SUM/PRODUCT arguments when the function
+   is to be inlined.  */
+
+static gfc_ss *
+walk_inline_intrinsic_arith (gfc_ss *ss, gfc_expr *expr)
+{
+  gfc_ss *tmp_ss, *tail, *array_ss;
+  gfc_actual_arglist *arg1, *arg2, *arg3;
+  int sum_dim;
+  bool scalar_mask = false;
+
+  /* The rank of the result will be determined later.  */
+  arg1 = expr->value.function.actual;
+  arg2 = arg1->next;
+  arg3 = arg2->next;
+  gcc_assert (arg3 != NULL);
+
+  if (expr->rank == 0)
+    return ss;
+
+  tmp_ss = gfc_ss_terminator;
+
+  if (arg3->expr)
+    {
+      gfc_ss *mask_ss;
+
+      mask_ss = gfc_walk_subexpr (tmp_ss, arg3->expr);
+      if (mask_ss == tmp_ss)
+	scalar_mask = 1;
+
+      tmp_ss = mask_ss;
+    }
+
+  array_ss = gfc_walk_subexpr (tmp_ss, arg1->expr);
+  gcc_assert (array_ss != tmp_ss);
+
+  /* Odd thing: If the mask is scalar, it is used by the frontend after
+     the array (to make an if around the nested loop). Thus it shall
+     be after array_ss once the gfc_ss list is reversed.  */
+  if (scalar_mask)
+    tmp_ss = gfc_get_scalar_ss (array_ss, arg3->expr);
+  else
+    tmp_ss = array_ss;
+
+  /* "Hide" the dimension on which we will sum in the first arg's scalarization
+     chain.  */
+  sum_dim = mpz_get_si (arg2->expr->value.integer) - 1;
+  tail = nest_loop_dimension (tmp_ss, sum_dim);
+  tail->next = ss;
+
+  return tmp_ss;
+}
+
+
+static gfc_ss *
+walk_inline_intrinsic_function (gfc_ss * ss, gfc_expr * expr)
+{
+
+  switch (expr->value.function.isym->id)
+    {
+      case GFC_ISYM_PRODUCT:
+      case GFC_ISYM_SUM:
+	return walk_inline_intrinsic_arith (ss, expr);
+
+      case GFC_ISYM_TRANSPOSE:
+	return walk_inline_intrinsic_transpose (ss, expr);
+
+      default:
+	gcc_unreachable ();
+    }
+  gcc_unreachable ();
+}
+
+
+/* This generates code to execute before entering the scalarization loop.
+   Currently does nothing.  */
+
+void
+gfc_add_intrinsic_ss_code (gfc_loopinfo * loop ATTRIBUTE_UNUSED, gfc_ss * ss)
+{
+  switch (ss->info->expr->value.function.isym->id)
+    {
+    case GFC_ISYM_UBOUND:
+    case GFC_ISYM_LBOUND:
+    case GFC_ISYM_UCOBOUND:
+    case GFC_ISYM_LCOBOUND:
+    case GFC_ISYM_THIS_IMAGE:
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+}
+
+
+/* The LBOUND, LCOBOUND, UBOUND and UCOBOUND intrinsics with one parameter
+   are expanded into code inside the scalarization loop.  */
+
+static gfc_ss *
+gfc_walk_intrinsic_bound (gfc_ss * ss, gfc_expr * expr)
+{
+  if (expr->value.function.actual->expr->ts.type == BT_CLASS)
+    gfc_add_class_array_ref (expr->value.function.actual->expr);
+
+  /* The two argument version returns a scalar.  */
+  if (expr->value.function.actual->next->expr)
+    return ss;
+
+  return gfc_get_array_ss (ss, expr, 1, GFC_SS_INTRINSIC);
+}
+
+
+/* Walk an intrinsic array libcall.  */
+
+static gfc_ss *
+gfc_walk_intrinsic_libfunc (gfc_ss * ss, gfc_expr * expr)
+{
+  gcc_assert (expr->rank > 0);
+  return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_FUNCTION);
+}
+
+
+/* Return whether the function call expression EXPR will be expanded
+   inline by gfc_conv_intrinsic_function.  */
+
+bool
+gfc_inline_intrinsic_function_p (gfc_expr *expr)
+{
+  gfc_actual_arglist *args;
+
+  if (!expr->value.function.isym)
+    return false;
+
+  switch (expr->value.function.isym->id)
+    {
+    case GFC_ISYM_PRODUCT:
+    case GFC_ISYM_SUM:
+      /* Disable inline expansion if code size matters.  */
+      if (optimize_size)
+	return false;
+
+      args = expr->value.function.actual;
+      /* We need to be able to subset the SUM argument at compile-time.  */
+      if (args->next->expr && args->next->expr->expr_type != EXPR_CONSTANT)
+	return false;
+
+      return true;
+
+    case GFC_ISYM_TRANSPOSE:
+      return true;
+
+    default:
+      return false;
+    }
+}
+
+
+/* Returns nonzero if the specified intrinsic function call maps directly to
+   an external library call.  Should only be used for functions that return
+   arrays.  */
+
+int
+gfc_is_intrinsic_libcall (gfc_expr * expr)
+{
+  gcc_assert (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym);
+  gcc_assert (expr->rank > 0);
+
+  if (gfc_inline_intrinsic_function_p (expr))
+    return 0;
+
+  switch (expr->value.function.isym->id)
+    {
+    case GFC_ISYM_ALL:
+    case GFC_ISYM_ANY:
+    case GFC_ISYM_COUNT:
+    case GFC_ISYM_JN2:
+    case GFC_ISYM_IANY:
+    case GFC_ISYM_IALL:
+    case GFC_ISYM_IPARITY:
+    case GFC_ISYM_MATMUL:
+    case GFC_ISYM_MAXLOC:
+    case GFC_ISYM_MAXVAL:
+    case GFC_ISYM_MINLOC:
+    case GFC_ISYM_MINVAL:
+    case GFC_ISYM_NORM2:
+    case GFC_ISYM_PARITY:
+    case GFC_ISYM_PRODUCT:
+    case GFC_ISYM_SUM:
+    case GFC_ISYM_SHAPE:
+    case GFC_ISYM_SPREAD:
+    case GFC_ISYM_YN2:
+      /* Ignore absent optional parameters.  */
+      return 1;
+
+    case GFC_ISYM_CSHIFT:
+    case GFC_ISYM_EOSHIFT:
+    case GFC_ISYM_FAILED_IMAGES:
+    case GFC_ISYM_STOPPED_IMAGES:
+    case GFC_ISYM_PACK:
+    case GFC_ISYM_RESHAPE:
+    case GFC_ISYM_UNPACK:
+      /* Pass absent optional parameters.  */
+      return 2;
+
+    default:
+      return 0;
+    }
+}
+
+/* Walk an intrinsic function.  */
+gfc_ss *
+gfc_walk_intrinsic_function (gfc_ss * ss, gfc_expr * expr,
+			     gfc_intrinsic_sym * isym)
+{
+  gcc_assert (isym);
+
+  if (isym->elemental)
+    return gfc_walk_elemental_function_args (ss, expr->value.function.actual,
+					     NULL, GFC_SS_SCALAR);
+
+  if (expr->rank == 0)
+    return ss;
+
+  if (gfc_inline_intrinsic_function_p (expr))
+    return walk_inline_intrinsic_function (ss, expr);
+
+  if (gfc_is_intrinsic_libcall (expr))
+    return gfc_walk_intrinsic_libfunc (ss, expr);
+
+  /* Special cases.  */
+  switch (isym->id)
+    {
+    case GFC_ISYM_LBOUND:
+    case GFC_ISYM_LCOBOUND:
+    case GFC_ISYM_UBOUND:
+    case GFC_ISYM_UCOBOUND:
+    case GFC_ISYM_THIS_IMAGE:
+      return gfc_walk_intrinsic_bound (ss, expr);
+
+    case GFC_ISYM_TRANSFER:
+    case GFC_ISYM_CAF_GET:
+      return gfc_walk_intrinsic_libfunc (ss, expr);
+
+    default:
+      /* This probably meant someone forgot to add an intrinsic to the above
+         list(s) when they implemented it, or something's gone horribly
+	 wrong.  */
+      gcc_unreachable ();
+    }
+}
+
+
+static tree
+conv_co_collective (gfc_code *code)
+{
+  gfc_se argse;
+  stmtblock_t block, post_block;
+  tree fndecl, array, strlen, image_index, stat, errmsg, errmsg_len;
+  gfc_expr *image_idx_expr, *stat_expr, *errmsg_expr, *opr_expr;
+
+  gfc_start_block (&block);
+  gfc_init_block (&post_block);
+
+  if (code->resolved_isym->id == GFC_ISYM_CO_REDUCE)
+    {
+      opr_expr = code->ext.actual->next->expr;
+      image_idx_expr = code->ext.actual->next->next->expr;
+      stat_expr = code->ext.actual->next->next->next->expr;
+      errmsg_expr = code->ext.actual->next->next->next->next->expr;
+    }
+  else
+    {
+      opr_expr = NULL;
+      image_idx_expr = code->ext.actual->next->expr;
+      stat_expr = code->ext.actual->next->next->expr;
+      errmsg_expr = code->ext.actual->next->next->next->expr;
+    }
+
+  /* stat.  */
+  if (stat_expr)
+    {
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr (&argse, stat_expr);
+      gfc_add_block_to_block (&block, &argse.pre);
+      gfc_add_block_to_block (&post_block, &argse.post);
+      stat = argse.expr;
+      if (flag_coarray != GFC_FCOARRAY_SINGLE)
+	stat = gfc_build_addr_expr (NULL_TREE, stat);
+    }
+  else if (flag_coarray == GFC_FCOARRAY_SINGLE)
+    stat = NULL_TREE;
+  else
+    stat = null_pointer_node;
+
+  /* Early exit for GFC_FCOARRAY_SINGLE.  */
+  if (flag_coarray == GFC_FCOARRAY_SINGLE)
+    {
+      if (stat != NULL_TREE)
+	gfc_add_modify (&block, stat,
+			fold_convert (TREE_TYPE (stat), integer_zero_node));
+      return gfc_finish_block (&block);
+    }
+
+  /* Handle the array.  */
+  gfc_init_se (&argse, NULL);
+  if (code->ext.actual->expr->rank == 0)
+    {
+      symbol_attribute attr;
+      gfc_clear_attr (&attr);
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr (&argse, code->ext.actual->expr);
+      gfc_add_block_to_block (&block, &argse.pre);
+      gfc_add_block_to_block (&post_block, &argse.post);
+      array = gfc_conv_scalar_to_descriptor (&argse, argse.expr, attr);
+      array = gfc_build_addr_expr (NULL_TREE, array);
+    }
+  else
+    {
+      argse.want_pointer = 1;
+      gfc_conv_expr_descriptor (&argse, code->ext.actual->expr);
+      array = argse.expr;
+    }
+  gfc_add_block_to_block (&block, &argse.pre);
+  gfc_add_block_to_block (&post_block, &argse.post);
+
+  if (code->ext.actual->expr->ts.type == BT_CHARACTER)
+    strlen = argse.string_length;
+  else
+    strlen = integer_zero_node;
+
+  /* image_index.  */
+  if (image_idx_expr)
+    {
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr (&argse, image_idx_expr);
+      gfc_add_block_to_block (&block, &argse.pre);
+      gfc_add_block_to_block (&post_block, &argse.post);
+      image_index = fold_convert (integer_type_node, argse.expr);
+    }
+  else
+    image_index = integer_zero_node;
+
+  /* errmsg.  */
+  if (errmsg_expr)
+    {
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr (&argse, errmsg_expr);
+      gfc_add_block_to_block (&block, &argse.pre);
+      gfc_add_block_to_block (&post_block, &argse.post);
+      errmsg = argse.expr;
+      errmsg_len = fold_convert (integer_type_node, argse.string_length);
+    }
+  else
+    {
+      errmsg = null_pointer_node;
+      errmsg_len = integer_zero_node;
+    }
+
+  /* Generate the function call.  */
+  switch (code->resolved_isym->id)
+    {
+    case GFC_ISYM_CO_BROADCAST:
+      fndecl = gfor_fndecl_co_broadcast;
+      break;
+    case GFC_ISYM_CO_MAX:
+      fndecl = gfor_fndecl_co_max;
+      break;
+    case GFC_ISYM_CO_MIN:
+      fndecl = gfor_fndecl_co_min;
+      break;
+    case GFC_ISYM_CO_REDUCE:
+      fndecl = gfor_fndecl_co_reduce;
+      break;
+    case GFC_ISYM_CO_SUM:
+      fndecl = gfor_fndecl_co_sum;
+      break;
+    default:
+      gcc_unreachable ();
+    }
+
+  if (code->resolved_isym->id == GFC_ISYM_CO_SUM
+      || code->resolved_isym->id == GFC_ISYM_CO_BROADCAST)
+    fndecl = build_call_expr_loc (input_location, fndecl, 5, array,
+				  image_index, stat, errmsg, errmsg_len);
+  else if (code->resolved_isym->id != GFC_ISYM_CO_REDUCE)
+    fndecl = build_call_expr_loc (input_location, fndecl, 6, array, image_index,
+				  stat, errmsg, strlen, errmsg_len);
+  else
+    {
+      tree opr, opr_flags;
+
+      // FIXME: Handle TS29113's bind(C) strings with descriptor.
+      int opr_flag_int;
+      if (gfc_is_proc_ptr_comp (opr_expr))
+	{
+	  gfc_symbol *sym = gfc_get_proc_ptr_comp (opr_expr)->ts.interface;
+	  opr_flag_int = sym->attr.dimension
+			 || (sym->ts.type == BT_CHARACTER
+			     && !sym->attr.is_bind_c)
+			 ? GFC_CAF_BYREF : 0;
+	  opr_flag_int |= opr_expr->ts.type == BT_CHARACTER
+			  && !sym->attr.is_bind_c
+			  ? GFC_CAF_HIDDENLEN : 0;
+	  opr_flag_int |= sym->formal->sym->attr.value ? GFC_CAF_ARG_VALUE : 0;
+	}
+      else
+	{
+	  opr_flag_int = gfc_return_by_reference (opr_expr->symtree->n.sym)
+			 ? GFC_CAF_BYREF : 0;
+	  opr_flag_int |= opr_expr->ts.type == BT_CHARACTER
+			  && !opr_expr->symtree->n.sym->attr.is_bind_c
+			  ? GFC_CAF_HIDDENLEN : 0;
+	  opr_flag_int |= opr_expr->symtree->n.sym->formal->sym->attr.value
+			  ? GFC_CAF_ARG_VALUE : 0;
+	}
+      opr_flags = build_int_cst (integer_type_node, opr_flag_int);
+      gfc_conv_expr (&argse, opr_expr);
+      opr = argse.expr;
+      fndecl = build_call_expr_loc (input_location, fndecl, 8, array, opr, opr_flags,
+				    image_index, stat, errmsg, strlen, errmsg_len);
+    }
+
+  gfc_add_expr_to_block (&block, fndecl);
+  gfc_add_block_to_block (&block, &post_block);
+
+  return gfc_finish_block (&block);
+}
+
+
+static tree
+conv_intrinsic_atomic_op (gfc_code *code)
+{
+  gfc_se argse;
+  tree tmp, atom, value, old = NULL_TREE, stat = NULL_TREE;
+  stmtblock_t block, post_block;
+  gfc_expr *atom_expr = code->ext.actual->expr;
+  gfc_expr *stat_expr;
+  built_in_function fn;
+
+  if (atom_expr->expr_type == EXPR_FUNCTION
+      && atom_expr->value.function.isym
+      && atom_expr->value.function.isym->id == GFC_ISYM_CAF_GET)
+    atom_expr = atom_expr->value.function.actual->expr;
+
+  gfc_start_block (&block);
+  gfc_init_block (&post_block);
+
+  gfc_init_se (&argse, NULL);
+  argse.want_pointer = 1;
+  gfc_conv_expr (&argse, atom_expr);
+  gfc_add_block_to_block (&block, &argse.pre);
+  gfc_add_block_to_block (&post_block, &argse.post);
+  atom = argse.expr;
+
+  gfc_init_se (&argse, NULL);
+  if (flag_coarray == GFC_FCOARRAY_LIB
+      && code->ext.actual->next->expr->ts.kind == atom_expr->ts.kind)
+    argse.want_pointer = 1;
+  gfc_conv_expr (&argse, code->ext.actual->next->expr);
+  gfc_add_block_to_block (&block, &argse.pre);
+  gfc_add_block_to_block (&post_block, &argse.post);
+  value = argse.expr;
+
+  switch (code->resolved_isym->id)
+    {
+    case GFC_ISYM_ATOMIC_ADD:
+    case GFC_ISYM_ATOMIC_AND:
+    case GFC_ISYM_ATOMIC_DEF:
+    case GFC_ISYM_ATOMIC_OR:
+    case GFC_ISYM_ATOMIC_XOR:
+      stat_expr = code->ext.actual->next->next->expr;
+      if (flag_coarray == GFC_FCOARRAY_LIB)
+	old = null_pointer_node;
+      break;
+    default:
+      gfc_init_se (&argse, NULL);
+      if (flag_coarray == GFC_FCOARRAY_LIB)
+	argse.want_pointer = 1;
+      gfc_conv_expr (&argse, code->ext.actual->next->next->expr);
+      gfc_add_block_to_block (&block, &argse.pre);
+      gfc_add_block_to_block (&post_block, &argse.post);
+      old = argse.expr;
+      stat_expr = code->ext.actual->next->next->next->expr;
+    }
+
+  /* STAT=  */
+  if (stat_expr != NULL)
+    {
+      gcc_assert (stat_expr->expr_type == EXPR_VARIABLE);
+      gfc_init_se (&argse, NULL);
+      if (flag_coarray == GFC_FCOARRAY_LIB)
+	argse.want_pointer = 1;
+      gfc_conv_expr_val (&argse, stat_expr);
+      gfc_add_block_to_block (&block, &argse.pre);
+      gfc_add_block_to_block (&post_block, &argse.post);
+      stat = argse.expr;
+    }
+  else if (flag_coarray == GFC_FCOARRAY_LIB)
+    stat = null_pointer_node;
+
+  if (flag_coarray == GFC_FCOARRAY_LIB)
+    {
+      tree image_index, caf_decl, offset, token;
+      int op;
+
+      switch (code->resolved_isym->id)
+	{
+	case GFC_ISYM_ATOMIC_ADD:
+	case GFC_ISYM_ATOMIC_FETCH_ADD:
+	  op = (int) GFC_CAF_ATOMIC_ADD;
+	  break;
+	case GFC_ISYM_ATOMIC_AND:
+	case GFC_ISYM_ATOMIC_FETCH_AND:
+	  op = (int) GFC_CAF_ATOMIC_AND;
+	  break;
+	case GFC_ISYM_ATOMIC_OR:
+	case GFC_ISYM_ATOMIC_FETCH_OR:
+	  op = (int) GFC_CAF_ATOMIC_OR;
+	  break;
+	case GFC_ISYM_ATOMIC_XOR:
+	case GFC_ISYM_ATOMIC_FETCH_XOR:
+	  op = (int) GFC_CAF_ATOMIC_XOR;
+	  break;
+	case GFC_ISYM_ATOMIC_DEF:
+	  op = 0;  /* Unused.  */
+	  break;
+	default:
+	  gcc_unreachable ();
+	}
+
+      caf_decl = gfc_get_tree_for_caf_expr (atom_expr);
+      if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
+	caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
+
+      if (gfc_is_coindexed (atom_expr))
+	image_index = gfc_caf_get_image_index (&block, atom_expr, caf_decl);
+      else
+	image_index = integer_zero_node;
+
+      if (!POINTER_TYPE_P (TREE_TYPE (value)))
+	{
+	  tmp = gfc_create_var (TREE_TYPE (TREE_TYPE (atom)), "value");
+	  gfc_add_modify (&block, tmp, fold_convert (TREE_TYPE (tmp), value));
+          value = gfc_build_addr_expr (NULL_TREE, tmp);
+	}
+
+      gfc_init_se (&argse, NULL);
+      gfc_get_caf_token_offset (&argse, &token, &offset, caf_decl, atom,
+				atom_expr);
+
+      gfc_add_block_to_block (&block, &argse.pre);
+      if (code->resolved_isym->id == GFC_ISYM_ATOMIC_DEF)
+	tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_atomic_def, 7,
+				   token, offset, image_index, value, stat,
+				   build_int_cst (integer_type_node,
+						  (int) atom_expr->ts.type),
+				   build_int_cst (integer_type_node,
+						  (int) atom_expr->ts.kind));
+      else
+	tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_atomic_op, 9,
+				   build_int_cst (integer_type_node, op),
+				   token, offset, image_index, value, old, stat,
+				   build_int_cst (integer_type_node,
+						  (int) atom_expr->ts.type),
+				   build_int_cst (integer_type_node,
+						  (int) atom_expr->ts.kind));
+
+      gfc_add_expr_to_block (&block, tmp);
+      gfc_add_block_to_block (&block, &argse.post);
+      gfc_add_block_to_block (&block, &post_block);
+      return gfc_finish_block (&block);
+    }
+
+
+  switch (code->resolved_isym->id)
+    {
+    case GFC_ISYM_ATOMIC_ADD:
+    case GFC_ISYM_ATOMIC_FETCH_ADD:
+      fn = BUILT_IN_ATOMIC_FETCH_ADD_N;
+      break;
+    case GFC_ISYM_ATOMIC_AND:
+    case GFC_ISYM_ATOMIC_FETCH_AND:
+      fn = BUILT_IN_ATOMIC_FETCH_AND_N;
+      break;
+    case GFC_ISYM_ATOMIC_DEF:
+      fn = BUILT_IN_ATOMIC_STORE_N;
+      break;
+    case GFC_ISYM_ATOMIC_OR:
+    case GFC_ISYM_ATOMIC_FETCH_OR:
+      fn = BUILT_IN_ATOMIC_FETCH_OR_N;
+      break;
+    case GFC_ISYM_ATOMIC_XOR:
+    case GFC_ISYM_ATOMIC_FETCH_XOR:
+      fn = BUILT_IN_ATOMIC_FETCH_XOR_N;
+      break;
+    default:
+      gcc_unreachable ();
+    }
+
+  tmp = TREE_TYPE (TREE_TYPE (atom));
+  fn = (built_in_function) ((int) fn
+			    + exact_log2 (tree_to_uhwi (TYPE_SIZE_UNIT (tmp)))
+			    + 1);
+  tmp = builtin_decl_explicit (fn);
+  tree itype = TREE_TYPE (TREE_TYPE (atom));
+  tmp = builtin_decl_explicit (fn);
+
+  switch (code->resolved_isym->id)
+    {
+    case GFC_ISYM_ATOMIC_ADD:
+    case GFC_ISYM_ATOMIC_AND:
+    case GFC_ISYM_ATOMIC_DEF:
+    case GFC_ISYM_ATOMIC_OR:
+    case GFC_ISYM_ATOMIC_XOR:
+      tmp = build_call_expr_loc (input_location, tmp, 3, atom,
+				 fold_convert (itype, value),
+				 build_int_cst (NULL, MEMMODEL_RELAXED));
+      gfc_add_expr_to_block (&block, tmp);
+      break;
+    default:
+      tmp = build_call_expr_loc (input_location, tmp, 3, atom,
+				 fold_convert (itype, value),
+				 build_int_cst (NULL, MEMMODEL_RELAXED));
+      gfc_add_modify (&block, old, fold_convert (TREE_TYPE (old), tmp));
+      break;
+    }
+
+  if (stat != NULL_TREE)
+    gfc_add_modify (&block, stat, build_int_cst (TREE_TYPE (stat), 0));
+  gfc_add_block_to_block (&block, &post_block);
+  return gfc_finish_block (&block);
+}
+
+
+static tree
+conv_intrinsic_atomic_ref (gfc_code *code)
+{
+  gfc_se argse;
+  tree tmp, atom, value, stat = NULL_TREE;
+  stmtblock_t block, post_block;
+  built_in_function fn;
+  gfc_expr *atom_expr = code->ext.actual->next->expr;
+
+  if (atom_expr->expr_type == EXPR_FUNCTION
+      && atom_expr->value.function.isym
+      && atom_expr->value.function.isym->id == GFC_ISYM_CAF_GET)
+    atom_expr = atom_expr->value.function.actual->expr;
+
+  gfc_start_block (&block);
+  gfc_init_block (&post_block);
+  gfc_init_se (&argse, NULL);
+  argse.want_pointer = 1;
+  gfc_conv_expr (&argse, atom_expr);
+  gfc_add_block_to_block (&block, &argse.pre);
+  gfc_add_block_to_block (&post_block, &argse.post);
+  atom = argse.expr;
+
+  gfc_init_se (&argse, NULL);
+  if (flag_coarray == GFC_FCOARRAY_LIB
+      && code->ext.actual->expr->ts.kind == atom_expr->ts.kind)
+    argse.want_pointer = 1;
+  gfc_conv_expr (&argse, code->ext.actual->expr);
+  gfc_add_block_to_block (&block, &argse.pre);
+  gfc_add_block_to_block (&post_block, &argse.post);
+  value = argse.expr;
+
+  /* STAT=  */
+  if (code->ext.actual->next->next->expr != NULL)
+    {
+      gcc_assert (code->ext.actual->next->next->expr->expr_type
+		  == EXPR_VARIABLE);
+      gfc_init_se (&argse, NULL);
+      if (flag_coarray == GFC_FCOARRAY_LIB)
+	argse.want_pointer = 1;
+      gfc_conv_expr_val (&argse, code->ext.actual->next->next->expr);
+      gfc_add_block_to_block (&block, &argse.pre);
+      gfc_add_block_to_block (&post_block, &argse.post);
+      stat = argse.expr;
+    }
+  else if (flag_coarray == GFC_FCOARRAY_LIB)
+    stat = null_pointer_node;
+
+  if (flag_coarray == GFC_FCOARRAY_LIB)
+    {
+      tree image_index, caf_decl, offset, token;
+      tree orig_value = NULL_TREE, vardecl = NULL_TREE;
+
+      caf_decl = gfc_get_tree_for_caf_expr (atom_expr);
+      if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
+	caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
+
+      if (gfc_is_coindexed (atom_expr))
+	image_index = gfc_caf_get_image_index (&block, atom_expr, caf_decl);
+      else
+	image_index = integer_zero_node;
+
+      gfc_init_se (&argse, NULL);
+      gfc_get_caf_token_offset (&argse, &token, &offset, caf_decl, atom,
+				atom_expr);
+      gfc_add_block_to_block (&block, &argse.pre);
+
+      /* Different type, need type conversion.  */
+      if (!POINTER_TYPE_P (TREE_TYPE (value)))
+	{
+	  vardecl = gfc_create_var (TREE_TYPE (TREE_TYPE (atom)), "value");
+          orig_value = value;
+          value = gfc_build_addr_expr (NULL_TREE, vardecl);
+	}
+
+      tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_atomic_ref, 7,
+				 token, offset, image_index, value, stat,
+				 build_int_cst (integer_type_node,
+						(int) atom_expr->ts.type),
+				 build_int_cst (integer_type_node,
+						(int) atom_expr->ts.kind));
+      gfc_add_expr_to_block (&block, tmp);
+      if (vardecl != NULL_TREE)
+	gfc_add_modify (&block, orig_value,
+			fold_convert (TREE_TYPE (orig_value), vardecl));
+      gfc_add_block_to_block (&block, &argse.post);
+      gfc_add_block_to_block (&block, &post_block);
+      return gfc_finish_block (&block);
+    }
+
+  tmp = TREE_TYPE (TREE_TYPE (atom));
+  fn = (built_in_function) ((int) BUILT_IN_ATOMIC_LOAD_N
+			    + exact_log2 (tree_to_uhwi (TYPE_SIZE_UNIT (tmp)))
+			    + 1);
+  tmp = builtin_decl_explicit (fn);
+  tmp = build_call_expr_loc (input_location, tmp, 2, atom,
+			     build_int_cst (integer_type_node,
+					    MEMMODEL_RELAXED));
+  gfc_add_modify (&block, value, fold_convert (TREE_TYPE (value), tmp));
+
+  if (stat != NULL_TREE)
+    gfc_add_modify (&block, stat, build_int_cst (TREE_TYPE (stat), 0));
+  gfc_add_block_to_block (&block, &post_block);
+  return gfc_finish_block (&block);
+}
+
+
+static tree
+conv_intrinsic_atomic_cas (gfc_code *code)
+{
+  gfc_se argse;
+  tree tmp, atom, old, new_val, comp, stat = NULL_TREE;
+  stmtblock_t block, post_block;
+  built_in_function fn;
+  gfc_expr *atom_expr = code->ext.actual->expr;
+
+  if (atom_expr->expr_type == EXPR_FUNCTION
+      && atom_expr->value.function.isym
+      && atom_expr->value.function.isym->id == GFC_ISYM_CAF_GET)
+    atom_expr = atom_expr->value.function.actual->expr;
+
+  gfc_init_block (&block);
+  gfc_init_block (&post_block);
+  gfc_init_se (&argse, NULL);
+  argse.want_pointer = 1;
+  gfc_conv_expr (&argse, atom_expr);
+  atom = argse.expr;
+
+  gfc_init_se (&argse, NULL);
+  if (flag_coarray == GFC_FCOARRAY_LIB)
+    argse.want_pointer = 1;
+  gfc_conv_expr (&argse, code->ext.actual->next->expr);
+  gfc_add_block_to_block (&block, &argse.pre);
+  gfc_add_block_to_block (&post_block, &argse.post);
+  old = argse.expr;
+
+  gfc_init_se (&argse, NULL);
+  if (flag_coarray == GFC_FCOARRAY_LIB)
+    argse.want_pointer = 1;
+  gfc_conv_expr (&argse, code->ext.actual->next->next->expr);
+  gfc_add_block_to_block (&block, &argse.pre);
+  gfc_add_block_to_block (&post_block, &argse.post);
+  comp = argse.expr;
+
+  gfc_init_se (&argse, NULL);
+  if (flag_coarray == GFC_FCOARRAY_LIB
+      && code->ext.actual->next->next->next->expr->ts.kind
+	 == atom_expr->ts.kind)
+    argse.want_pointer = 1;
+  gfc_conv_expr (&argse, code->ext.actual->next->next->next->expr);
+  gfc_add_block_to_block (&block, &argse.pre);
+  gfc_add_block_to_block (&post_block, &argse.post);
+  new_val = argse.expr;
+
+  /* STAT=  */
+  if (code->ext.actual->next->next->next->next->expr != NULL)
+    {
+      gcc_assert (code->ext.actual->next->next->next->next->expr->expr_type
+		  == EXPR_VARIABLE);
+      gfc_init_se (&argse, NULL);
+      if (flag_coarray == GFC_FCOARRAY_LIB)
+	argse.want_pointer = 1;
+      gfc_conv_expr_val (&argse,
+			 code->ext.actual->next->next->next->next->expr);
+      gfc_add_block_to_block (&block, &argse.pre);
+      gfc_add_block_to_block (&post_block, &argse.post);
+      stat = argse.expr;
+    }
+  else if (flag_coarray == GFC_FCOARRAY_LIB)
+    stat = null_pointer_node;
+
+  if (flag_coarray == GFC_FCOARRAY_LIB)
+    {
+      tree image_index, caf_decl, offset, token;
+
+      caf_decl = gfc_get_tree_for_caf_expr (atom_expr);
+      if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
+	caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
+
+      if (gfc_is_coindexed (atom_expr))
+	image_index = gfc_caf_get_image_index (&block, atom_expr, caf_decl);
+      else
+	image_index = integer_zero_node;
+
+      if (TREE_TYPE (TREE_TYPE (new_val)) != TREE_TYPE (TREE_TYPE (old)))
+	{
+	  tmp = gfc_create_var (TREE_TYPE (TREE_TYPE (old)), "new");
+	  gfc_add_modify (&block, tmp, fold_convert (TREE_TYPE (tmp), new_val));
+          new_val = gfc_build_addr_expr (NULL_TREE, tmp);
+	}
+
+      /* Convert a constant to a pointer.  */
+      if (!POINTER_TYPE_P (TREE_TYPE (comp)))
+	{
+	  tmp = gfc_create_var (TREE_TYPE (TREE_TYPE (old)), "comp");
+	  gfc_add_modify (&block, tmp, fold_convert (TREE_TYPE (tmp), comp));
+          comp = gfc_build_addr_expr (NULL_TREE, tmp);
+	}
+
+      gfc_init_se (&argse, NULL);
+      gfc_get_caf_token_offset (&argse, &token, &offset, caf_decl, atom,
+				atom_expr);
+      gfc_add_block_to_block (&block, &argse.pre);
+
+      tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_atomic_cas, 9,
+				 token, offset, image_index, old, comp, new_val,
+				 stat, build_int_cst (integer_type_node,
+						      (int) atom_expr->ts.type),
+				 build_int_cst (integer_type_node,
+						(int) atom_expr->ts.kind));
+      gfc_add_expr_to_block (&block, tmp);
+      gfc_add_block_to_block (&block, &argse.post);
+      gfc_add_block_to_block (&block, &post_block);
+      return gfc_finish_block (&block);
+    }
+
+  tmp = TREE_TYPE (TREE_TYPE (atom));
+  fn = (built_in_function) ((int) BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N
+			    + exact_log2 (tree_to_uhwi (TYPE_SIZE_UNIT (tmp)))
+			    + 1);
+  tmp = builtin_decl_explicit (fn);
+
+  gfc_add_modify (&block, old, comp);
+  tmp = build_call_expr_loc (input_location, tmp, 6, atom,
+			     gfc_build_addr_expr (NULL, old),
+			     fold_convert (TREE_TYPE (old), new_val),
+			     boolean_false_node,
+			     build_int_cst (NULL, MEMMODEL_RELAXED),
+			     build_int_cst (NULL, MEMMODEL_RELAXED));
+  gfc_add_expr_to_block (&block, tmp);
+
+  if (stat != NULL_TREE)
+    gfc_add_modify (&block, stat, build_int_cst (TREE_TYPE (stat), 0));
+  gfc_add_block_to_block (&block, &post_block);
+  return gfc_finish_block (&block);
+}
+
+static tree
+conv_intrinsic_event_query (gfc_code *code)
+{
+  gfc_se se, argse;
+  tree stat = NULL_TREE, stat2 = NULL_TREE;
+  tree count = NULL_TREE, count2 = NULL_TREE;
+
+  gfc_expr *event_expr = code->ext.actual->expr;
+
+  if (code->ext.actual->next->next->expr)
+    {
+      gcc_assert (code->ext.actual->next->next->expr->expr_type
+		  == EXPR_VARIABLE);
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr_val (&argse, code->ext.actual->next->next->expr);
+      stat = argse.expr;
+    }
+  else if (flag_coarray == GFC_FCOARRAY_LIB)
+    stat = null_pointer_node;
+
+  if (code->ext.actual->next->expr)
+    {
+      gcc_assert (code->ext.actual->next->expr->expr_type == EXPR_VARIABLE);
+      gfc_init_se (&argse, NULL);
+      gfc_conv_expr_val (&argse, code->ext.actual->next->expr);
+      count = argse.expr;
+    }
+
+  gfc_start_block (&se.pre);
+  if (flag_coarray == GFC_FCOARRAY_LIB)
+    {
+      tree tmp, token, image_index;
+      tree index = size_zero_node;
+
+      if (event_expr->expr_type == EXPR_FUNCTION
+	  && event_expr->value.function.isym
+	  && event_expr->value.function.isym->id == GFC_ISYM_CAF_GET)
+	event_expr = event_expr->value.function.actual->expr;
+
+      tree caf_decl = gfc_get_tree_for_caf_expr (event_expr);
+
+      if (event_expr->symtree->n.sym->ts.type != BT_DERIVED
+	  || event_expr->symtree->n.sym->ts.u.derived->from_intmod
+	     != INTMOD_ISO_FORTRAN_ENV
+	  || event_expr->symtree->n.sym->ts.u.derived->intmod_sym_id
+	     != ISOFORTRAN_EVENT_TYPE)
+	{
+	  gfc_error ("Sorry, the event component of derived type at %L is not "
+		     "yet supported", &event_expr->where);
+	  return NULL_TREE;
+	}
+
+      if (gfc_is_coindexed (event_expr))
+	{
+	  gfc_error ("The event variable at %L shall not be coindexed",
+		     &event_expr->where);
+          return NULL_TREE;
+	}
+
+      image_index = integer_zero_node;
+
+      gfc_get_caf_token_offset (&se, &token, NULL, caf_decl, NULL_TREE,
+				event_expr);
+
+      /* For arrays, obtain the array index.  */
+      if (gfc_expr_attr (event_expr).dimension)
+	{
+	  tree desc, tmp, extent, lbound, ubound;
+          gfc_array_ref *ar, ar2;
+          int i;
+
+	  /* TODO: Extend this, once DT components are supported.  */
+	  ar = &event_expr->ref->u.ar;
+	  ar2 = *ar;
+	  memset (ar, '\0', sizeof (*ar));
+	  ar->as = ar2.as;
+	  ar->type = AR_FULL;
+
+	  gfc_init_se (&argse, NULL);
+	  argse.descriptor_only = 1;
+	  gfc_conv_expr_descriptor (&argse, event_expr);
+	  gfc_add_block_to_block (&se.pre, &argse.pre);
+	  desc = argse.expr;
+	  *ar = ar2;
+
+	  extent = integer_one_node;
+	  for (i = 0; i < ar->dimen; i++)
+	    {
+	      gfc_init_se (&argse, NULL);
+	      gfc_conv_expr_type (&argse, ar->start[i], integer_type_node);
+	      gfc_add_block_to_block (&argse.pre, &argse.pre);
+	      lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[i]);
+	      tmp = fold_build2_loc (input_location, MINUS_EXPR,
+				     integer_type_node, argse.expr,
+				     fold_convert(integer_type_node, lbound));
+	      tmp = fold_build2_loc (input_location, MULT_EXPR,
+				     integer_type_node, extent, tmp);
+	      index = fold_build2_loc (input_location, PLUS_EXPR,
+				       integer_type_node, index, tmp);
+	      if (i < ar->dimen - 1)
+		{
+		  ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[i]);
+		  tmp = gfc_conv_array_extent_dim (lbound, ubound, NULL);
+		  tmp = fold_convert (integer_type_node, tmp);
+		  extent = fold_build2_loc (input_location, MULT_EXPR,
+					    integer_type_node, extent, tmp);
+		}
+	    }
+	}
+
+      if (count != null_pointer_node && TREE_TYPE (count) != integer_type_node)
+	{
+	  count2 = count;
+	  count = gfc_create_var (integer_type_node, "count");
+	}
+
+      if (stat != null_pointer_node && TREE_TYPE (stat) != integer_type_node)
+	{
+	  stat2 = stat;
+	  stat = gfc_create_var (integer_type_node, "stat");
+	}
+
+      tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_event_query, 5,
+                                   token, index, image_index, count
+				   ? gfc_build_addr_expr (NULL, count) : count,
+				   stat != null_pointer_node
+				   ? gfc_build_addr_expr (NULL, stat) : stat);
+      gfc_add_expr_to_block (&se.pre, tmp);
+
+      if (count2 != NULL_TREE)
+	gfc_add_modify (&se.pre, count2,
+			fold_convert (TREE_TYPE (count2), count));
+
+      if (stat2 != NULL_TREE)
+	gfc_add_modify (&se.pre, stat2,
+			fold_convert (TREE_TYPE (stat2), stat));
+
+      return gfc_finish_block (&se.pre);
+    }
+
+  gfc_init_se (&argse, NULL);
+  gfc_conv_expr_val (&argse, code->ext.actual->expr);
+  gfc_add_modify (&se.pre, count, fold_convert (TREE_TYPE (count), argse.expr));
+
+  if (stat != NULL_TREE)
+    gfc_add_modify (&se.pre, stat, build_int_cst (TREE_TYPE (stat), 0));
+
+  return gfc_finish_block (&se.pre);
+}
+
+static tree
+conv_intrinsic_move_alloc (gfc_code *code)
+{
+  stmtblock_t block;
+  gfc_expr *from_expr, *to_expr;
+  gfc_expr *to_expr2, *from_expr2 = NULL;
+  gfc_se from_se, to_se;
+  tree tmp;
+  bool coarray;
+
+  gfc_start_block (&block);
+
+  from_expr = code->ext.actual->expr;
+  to_expr = code->ext.actual->next->expr;
+
+  gfc_init_se (&from_se, NULL);
+  gfc_init_se (&to_se, NULL);
+
+  gcc_assert (from_expr->ts.type != BT_CLASS
+	      || to_expr->ts.type == BT_CLASS);
+  coarray = gfc_get_corank (from_expr) != 0;
+
+  if (from_expr->rank == 0 && !coarray)
+    {
+      if (from_expr->ts.type != BT_CLASS)
+	from_expr2 = from_expr;
+      else
+	{
+	  from_expr2 = gfc_copy_expr (from_expr);
+	  gfc_add_data_component (from_expr2);
+	}
+
+      if (to_expr->ts.type != BT_CLASS)
+	to_expr2 = to_expr;
+      else
+	{
+	  to_expr2 = gfc_copy_expr (to_expr);
+	  gfc_add_data_component (to_expr2);
+	}
+
+      from_se.want_pointer = 1;
+      to_se.want_pointer = 1;
+      gfc_conv_expr (&from_se, from_expr2);
+      gfc_conv_expr (&to_se, to_expr2);
+      gfc_add_block_to_block (&block, &from_se.pre);
+      gfc_add_block_to_block (&block, &to_se.pre);
+
+      /* Deallocate "to".  */
+      tmp = gfc_deallocate_scalar_with_status (to_se.expr, NULL_TREE, NULL_TREE,
+					       true, to_expr, to_expr->ts);
+      gfc_add_expr_to_block (&block, tmp);
+
+      /* Assign (_data) pointers.  */
+      gfc_add_modify_loc (input_location, &block, to_se.expr,
+			  fold_convert (TREE_TYPE (to_se.expr), from_se.expr));
+
+      /* Set "from" to NULL.  */
+      gfc_add_modify_loc (input_location, &block, from_se.expr,
+			  fold_convert (TREE_TYPE (from_se.expr), null_pointer_node));
+
+      gfc_add_block_to_block (&block, &from_se.post);
+      gfc_add_block_to_block (&block, &to_se.post);
+
+      /* Set _vptr.  */
+      if (to_expr->ts.type == BT_CLASS)
+	{
+	  gfc_symbol *vtab;
+
+	  gfc_free_expr (to_expr2);
+	  gfc_init_se (&to_se, NULL);
+	  to_se.want_pointer = 1;
+	  gfc_add_vptr_component (to_expr);
+	  gfc_conv_expr (&to_se, to_expr);
+
+	  if (from_expr->ts.type == BT_CLASS)
+	    {
+	      if (UNLIMITED_POLY (from_expr))
+		vtab = NULL;
+	      else
+		{
+		  vtab = gfc_find_derived_vtab (from_expr->ts.u.derived);
+		  gcc_assert (vtab);
+		}
+
+	      gfc_free_expr (from_expr2);
+	      gfc_init_se (&from_se, NULL);
+	      from_se.want_pointer = 1;
+	      gfc_add_vptr_component (from_expr);
+	      gfc_conv_expr (&from_se, from_expr);
+	      gfc_add_modify_loc (input_location, &block, to_se.expr,
+				  fold_convert (TREE_TYPE (to_se.expr),
+				  from_se.expr));
+
+              /* Reset _vptr component to declared type.  */
+	      if (vtab == NULL)
+		/* Unlimited polymorphic.  */
+		gfc_add_modify_loc (input_location, &block, from_se.expr,
+				    fold_convert (TREE_TYPE (from_se.expr),
+						  null_pointer_node));
+	      else
+		{
+		  tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab));
+		  gfc_add_modify_loc (input_location, &block, from_se.expr,
+				      fold_convert (TREE_TYPE (from_se.expr), tmp));
+		}
+	    }
+	  else
+	    {
+	      vtab = gfc_find_vtab (&from_expr->ts);
+	      gcc_assert (vtab);
+	      tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab));
+	      gfc_add_modify_loc (input_location, &block, to_se.expr,
+				  fold_convert (TREE_TYPE (to_se.expr), tmp));
+	    }
+	}
+
+      if (to_expr->ts.type == BT_CHARACTER && to_expr->ts.deferred)
+	{
+	  gfc_add_modify_loc (input_location, &block, to_se.string_length,
+			      fold_convert (TREE_TYPE (to_se.string_length),
+					    from_se.string_length));
+	  if (from_expr->ts.deferred)
+	    gfc_add_modify_loc (input_location, &block, from_se.string_length,
+			build_int_cst (TREE_TYPE (from_se.string_length), 0));
+	}
+
+      return gfc_finish_block (&block);
+    }
+
+  /* Update _vptr component.  */
+  if (to_expr->ts.type == BT_CLASS)
+    {
+      gfc_symbol *vtab;
+
+      to_se.want_pointer = 1;
+      to_expr2 = gfc_copy_expr (to_expr);
+      gfc_add_vptr_component (to_expr2);
+      gfc_conv_expr (&to_se, to_expr2);
+
+      if (from_expr->ts.type == BT_CLASS)
+	{
+	  if (UNLIMITED_POLY (from_expr))
+	    vtab = NULL;
+	  else
+	    {
+	      vtab = gfc_find_derived_vtab (from_expr->ts.u.derived);
+	      gcc_assert (vtab);
+	    }
+
+	  from_se.want_pointer = 1;
+	  from_expr2 = gfc_copy_expr (from_expr);
+	  gfc_add_vptr_component (from_expr2);
+	  gfc_conv_expr (&from_se, from_expr2);
+	  gfc_add_modify_loc (input_location, &block, to_se.expr,
+			      fold_convert (TREE_TYPE (to_se.expr),
+			      from_se.expr));
+
+	  /* Reset _vptr component to declared type.  */
+	  if (vtab == NULL)
+	    /* Unlimited polymorphic.  */
+	    gfc_add_modify_loc (input_location, &block, from_se.expr,
+				fold_convert (TREE_TYPE (from_se.expr),
+					      null_pointer_node));
+	  else
+	    {
+	      tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab));
+	      gfc_add_modify_loc (input_location, &block, from_se.expr,
+				  fold_convert (TREE_TYPE (from_se.expr), tmp));
+	    }
+	}
+      else
+	{
+	  vtab = gfc_find_vtab (&from_expr->ts);
+	  gcc_assert (vtab);
+	  tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab));
+	  gfc_add_modify_loc (input_location, &block, to_se.expr,
+			      fold_convert (TREE_TYPE (to_se.expr), tmp));
+	}
+
+      gfc_free_expr (to_expr2);
+      gfc_init_se (&to_se, NULL);
+
+      if (from_expr->ts.type == BT_CLASS)
+	{
+	  gfc_free_expr (from_expr2);
+	  gfc_init_se (&from_se, NULL);
+	}
+    }
+
+
+  /* Deallocate "to".  */
+  if (from_expr->rank == 0)
+    {
+      to_se.want_coarray = 1;
+      from_se.want_coarray = 1;
+    }
+  gfc_conv_expr_descriptor (&to_se, to_expr);
+  gfc_conv_expr_descriptor (&from_se, from_expr);
+
+  /* For coarrays, call SYNC ALL if TO is already deallocated as MOVE_ALLOC
+     is an image control "statement", cf. IR F08/0040 in 12-006A.  */
+  if (coarray && flag_coarray == GFC_FCOARRAY_LIB)
+    {
+      tree cond;
+
+      tmp = gfc_deallocate_with_status (to_se.expr, NULL_TREE, NULL_TREE,
+					NULL_TREE, NULL_TREE, true, to_expr,
+					GFC_CAF_COARRAY_DEALLOCATE_ONLY);
+      gfc_add_expr_to_block (&block, tmp);
+
+      tmp = gfc_conv_descriptor_data_get (to_se.expr);
+      cond = fold_build2_loc (input_location, EQ_EXPR,
+			      boolean_type_node, tmp,
+			      fold_convert (TREE_TYPE (tmp),
+					    null_pointer_node));
+      tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_sync_all,
+				 3, null_pointer_node, null_pointer_node,
+				 build_int_cst (integer_type_node, 0));
+
+      tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond,
+			     tmp, build_empty_stmt (input_location));
+      gfc_add_expr_to_block (&block, tmp);
+    }
+  else
+    {
+      if (to_expr->ts.type == BT_DERIVED
+	  && to_expr->ts.u.derived->attr.alloc_comp)
+	{
+	  tmp = gfc_deallocate_alloc_comp (to_expr->ts.u.derived,
+					   to_se.expr, to_expr->rank);
+	  gfc_add_expr_to_block (&block, tmp);
+	}
+
+      tmp = gfc_conv_descriptor_data_get (to_se.expr);
+      tmp = gfc_deallocate_with_status (tmp, NULL_TREE, NULL_TREE, NULL_TREE,
+					NULL_TREE, true, to_expr,
+					GFC_CAF_COARRAY_NOCOARRAY);
+      gfc_add_expr_to_block (&block, tmp);
+    }
+
+  /* Move the pointer and update the array descriptor data.  */
+  gfc_add_modify_loc (input_location, &block, to_se.expr, from_se.expr);
+
+  /* Set "from" to NULL.  */
+  tmp = gfc_conv_descriptor_data_get (from_se.expr);
+  gfc_add_modify_loc (input_location, &block, tmp,
+		      fold_convert (TREE_TYPE (tmp), null_pointer_node));
+
+
+  if (to_expr->ts.type == BT_CHARACTER && to_expr->ts.deferred)
+    {
+      gfc_add_modify_loc (input_location, &block, to_se.string_length,
+			  fold_convert (TREE_TYPE (to_se.string_length),
+					from_se.string_length));
+      if (from_expr->ts.deferred)
+        gfc_add_modify_loc (input_location, &block, from_se.string_length,
+			build_int_cst (TREE_TYPE (from_se.string_length), 0));
+    }
+
+  return gfc_finish_block (&block);
+}
+
+
+tree
+gfc_conv_intrinsic_subroutine (gfc_code *code)
+{
+  tree res;
+
+  gcc_assert (code->resolved_isym);
+
+  switch (code->resolved_isym->id)
+    {
+    case GFC_ISYM_MOVE_ALLOC:
+      res = conv_intrinsic_move_alloc (code);
+      break;
+
+    case GFC_ISYM_ATOMIC_CAS:
+      res = conv_intrinsic_atomic_cas (code);
+      break;
+
+    case GFC_ISYM_ATOMIC_ADD:
+    case GFC_ISYM_ATOMIC_AND:
+    case GFC_ISYM_ATOMIC_DEF:
+    case GFC_ISYM_ATOMIC_OR:
+    case GFC_ISYM_ATOMIC_XOR:
+    case GFC_ISYM_ATOMIC_FETCH_ADD:
+    case GFC_ISYM_ATOMIC_FETCH_AND:
+    case GFC_ISYM_ATOMIC_FETCH_OR:
+    case GFC_ISYM_ATOMIC_FETCH_XOR:
+      res = conv_intrinsic_atomic_op (code);
+      break;
+
+    case GFC_ISYM_ATOMIC_REF:
+      res = conv_intrinsic_atomic_ref (code);
+      break;
+
+    case GFC_ISYM_EVENT_QUERY:
+      res = conv_intrinsic_event_query (code);
+      break;
+
+    case GFC_ISYM_C_F_POINTER:
+    case GFC_ISYM_C_F_PROCPOINTER:
+      res = conv_isocbinding_subroutine (code);
+      break;
+
+    case GFC_ISYM_CAF_SEND:
+      res = conv_caf_send (code);
+      break;
+
+    case GFC_ISYM_CO_BROADCAST:
+    case GFC_ISYM_CO_MIN:
+    case GFC_ISYM_CO_MAX:
+    case GFC_ISYM_CO_REDUCE:
+    case GFC_ISYM_CO_SUM:
+      res = conv_co_collective (code);
+      break;
+
+    case GFC_ISYM_FREE:
+      res = conv_intrinsic_free (code);
+      break;
+
+    case GFC_ISYM_SYSTEM_CLOCK:
+      res = conv_intrinsic_system_clock (code);
+      break;
+
+    default:
+      res = NULL_TREE;
+      break;
+    }
+
+  return res;
+}
+
+#include "gt-fortran-trans-intrinsic.h"