diff gcc/go/gofrontend/gogo.cc @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/go/gofrontend/gogo.cc	Fri Oct 27 22:46:09 2017 +0900
@@ -0,0 +1,8196 @@
+// gogo.cc -- Go frontend parsed representation.
+
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "go-system.h"
+
+#include <fstream>
+
+#include "filenames.h"
+
+#include "go-c.h"
+#include "go-diagnostics.h"
+#include "go-encode-id.h"
+#include "go-dump.h"
+#include "go-optimize.h"
+#include "lex.h"
+#include "types.h"
+#include "statements.h"
+#include "expressions.h"
+#include "runtime.h"
+#include "import.h"
+#include "export.h"
+#include "backend.h"
+#include "gogo.h"
+
+// Class Gogo.
+
+Gogo::Gogo(Backend* backend, Linemap* linemap, int, int pointer_size)
+  : backend_(backend),
+    linemap_(linemap),
+    package_(NULL),
+    functions_(),
+    globals_(new Bindings(NULL)),
+    file_block_names_(),
+    imports_(),
+    imported_unsafe_(false),
+    current_file_imported_unsafe_(false),
+    packages_(),
+    init_functions_(),
+    var_deps_(),
+    need_init_fn_(false),
+    init_fn_name_(),
+    imported_init_fns_(),
+    pkgpath_(),
+    pkgpath_symbol_(),
+    prefix_(),
+    pkgpath_set_(false),
+    pkgpath_from_option_(false),
+    prefix_from_option_(false),
+    relative_import_path_(),
+    c_header_(),
+    check_divide_by_zero_(true),
+    check_divide_overflow_(true),
+    compiling_runtime_(false),
+    debug_escape_level_(0),
+    verify_types_(),
+    interface_types_(),
+    specific_type_functions_(),
+    specific_type_functions_are_written_(false),
+    named_types_are_converted_(false),
+    analysis_sets_(),
+    gc_roots_()
+{
+  const Location loc = Linemap::predeclared_location();
+
+  Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
+						   RUNTIME_TYPE_KIND_UINT8);
+  this->add_named_type(uint8_type);
+  this->add_named_type(Type::make_integer_type("uint16", true,  16,
+					       RUNTIME_TYPE_KIND_UINT16));
+  this->add_named_type(Type::make_integer_type("uint32", true,  32,
+					       RUNTIME_TYPE_KIND_UINT32));
+  this->add_named_type(Type::make_integer_type("uint64", true,  64,
+					       RUNTIME_TYPE_KIND_UINT64));
+
+  this->add_named_type(Type::make_integer_type("int8",  false,   8,
+					       RUNTIME_TYPE_KIND_INT8));
+  this->add_named_type(Type::make_integer_type("int16", false,  16,
+					       RUNTIME_TYPE_KIND_INT16));
+  Named_type* int32_type = Type::make_integer_type("int32", false,  32,
+						   RUNTIME_TYPE_KIND_INT32);
+  this->add_named_type(int32_type);
+  this->add_named_type(Type::make_integer_type("int64", false,  64,
+					       RUNTIME_TYPE_KIND_INT64));
+
+  this->add_named_type(Type::make_float_type("float32", 32,
+					     RUNTIME_TYPE_KIND_FLOAT32));
+  this->add_named_type(Type::make_float_type("float64", 64,
+					     RUNTIME_TYPE_KIND_FLOAT64));
+
+  this->add_named_type(Type::make_complex_type("complex64", 64,
+					       RUNTIME_TYPE_KIND_COMPLEX64));
+  this->add_named_type(Type::make_complex_type("complex128", 128,
+					       RUNTIME_TYPE_KIND_COMPLEX128));
+
+  int int_type_size = pointer_size;
+  if (int_type_size < 32)
+    int_type_size = 32;
+  this->add_named_type(Type::make_integer_type("uint", true,
+					       int_type_size,
+					       RUNTIME_TYPE_KIND_UINT));
+  Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
+						 RUNTIME_TYPE_KIND_INT);
+  this->add_named_type(int_type);
+
+  this->add_named_type(Type::make_integer_type("uintptr", true,
+					       pointer_size,
+					       RUNTIME_TYPE_KIND_UINTPTR));
+
+  // "byte" is an alias for "uint8".
+  uint8_type->integer_type()->set_is_byte();
+  Named_object* byte_type = Named_object::make_type("byte", NULL, uint8_type,
+						    loc);
+  byte_type->type_value()->set_is_alias();
+  this->add_named_type(byte_type->type_value());
+
+  // "rune" is an alias for "int32".
+  int32_type->integer_type()->set_is_rune();
+  Named_object* rune_type = Named_object::make_type("rune", NULL, int32_type,
+						    loc);
+  rune_type->type_value()->set_is_alias();
+  this->add_named_type(rune_type->type_value());
+
+  this->add_named_type(Type::make_named_bool_type());
+
+  this->add_named_type(Type::make_named_string_type());
+
+  // "error" is interface { Error() string }.
+  {
+    Typed_identifier_list *methods = new Typed_identifier_list;
+    Typed_identifier_list *results = new Typed_identifier_list;
+    results->push_back(Typed_identifier("", Type::lookup_string_type(), loc));
+    Type *method_type = Type::make_function_type(NULL, NULL, results, loc);
+    methods->push_back(Typed_identifier("Error", method_type, loc));
+    Interface_type *error_iface = Type::make_interface_type(methods, loc);
+    error_iface->finalize_methods();
+    Named_type *error_type = Named_object::make_type("error", NULL, error_iface, loc)->type_value();
+    this->add_named_type(error_type);
+  }
+
+  this->globals_->add_constant(Typed_identifier("true",
+						Type::make_boolean_type(),
+						loc),
+			       NULL,
+			       Expression::make_boolean(true, loc),
+			       0);
+  this->globals_->add_constant(Typed_identifier("false",
+						Type::make_boolean_type(),
+						loc),
+			       NULL,
+			       Expression::make_boolean(false, loc),
+			       0);
+
+  this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
+						loc),
+			       NULL,
+			       Expression::make_nil(loc),
+			       0);
+
+  Type* abstract_int_type = Type::make_abstract_integer_type();
+  this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
+						loc),
+			       NULL,
+			       Expression::make_iota(),
+			       0);
+
+  Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
+  new_type->set_is_varargs();
+  new_type->set_is_builtin();
+  this->globals_->add_function_declaration("new", NULL, new_type, loc);
+
+  Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
+  make_type->set_is_varargs();
+  make_type->set_is_builtin();
+  this->globals_->add_function_declaration("make", NULL, make_type, loc);
+
+  Typed_identifier_list* len_result = new Typed_identifier_list();
+  len_result->push_back(Typed_identifier("", int_type, loc));
+  Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
+						     loc);
+  len_type->set_is_builtin();
+  this->globals_->add_function_declaration("len", NULL, len_type, loc);
+
+  Typed_identifier_list* cap_result = new Typed_identifier_list();
+  cap_result->push_back(Typed_identifier("", int_type, loc));
+  Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
+						     loc);
+  cap_type->set_is_builtin();
+  this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
+
+  Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
+  print_type->set_is_varargs();
+  print_type->set_is_builtin();
+  this->globals_->add_function_declaration("print", NULL, print_type, loc);
+
+  print_type = Type::make_function_type(NULL, NULL, NULL, loc);
+  print_type->set_is_varargs();
+  print_type->set_is_builtin();
+  this->globals_->add_function_declaration("println", NULL, print_type, loc);
+
+  Type *empty = Type::make_empty_interface_type(loc);
+  Typed_identifier_list* panic_parms = new Typed_identifier_list();
+  panic_parms->push_back(Typed_identifier("e", empty, loc));
+  Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
+						       NULL, loc);
+  panic_type->set_is_builtin();
+  this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
+
+  Typed_identifier_list* recover_result = new Typed_identifier_list();
+  recover_result->push_back(Typed_identifier("", empty, loc));
+  Function_type* recover_type = Type::make_function_type(NULL, NULL,
+							 recover_result,
+							 loc);
+  recover_type->set_is_builtin();
+  this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
+
+  Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
+  close_type->set_is_varargs();
+  close_type->set_is_builtin();
+  this->globals_->add_function_declaration("close", NULL, close_type, loc);
+
+  Typed_identifier_list* copy_result = new Typed_identifier_list();
+  copy_result->push_back(Typed_identifier("", int_type, loc));
+  Function_type* copy_type = Type::make_function_type(NULL, NULL,
+						      copy_result, loc);
+  copy_type->set_is_varargs();
+  copy_type->set_is_builtin();
+  this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
+
+  Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
+  append_type->set_is_varargs();
+  append_type->set_is_builtin();
+  this->globals_->add_function_declaration("append", NULL, append_type, loc);
+
+  Function_type* complex_type = Type::make_function_type(NULL, NULL, NULL, loc);
+  complex_type->set_is_varargs();
+  complex_type->set_is_builtin();
+  this->globals_->add_function_declaration("complex", NULL, complex_type, loc);
+
+  Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
+  real_type->set_is_varargs();
+  real_type->set_is_builtin();
+  this->globals_->add_function_declaration("real", NULL, real_type, loc);
+
+  Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
+  imag_type->set_is_varargs();
+  imag_type->set_is_builtin();
+  this->globals_->add_function_declaration("imag", NULL, imag_type, loc);
+
+  Function_type* delete_type = Type::make_function_type(NULL, NULL, NULL, loc);
+  delete_type->set_is_varargs();
+  delete_type->set_is_builtin();
+  this->globals_->add_function_declaration("delete", NULL, delete_type, loc);
+}
+
+// Convert a pkgpath into a string suitable for a symbol.  Note that
+// this transformation is convenient but imperfect.  A -fgo-pkgpath
+// option of a/b_c will conflict with a -fgo-pkgpath option of a_b/c,
+// possibly leading to link time errors.
+
+std::string
+Gogo::pkgpath_for_symbol(const std::string& pkgpath)
+{
+  std::string s = pkgpath;
+  for (size_t i = 0; i < s.length(); ++i)
+    {
+      char c = s[i];
+      if ((c >= 'a' && c <= 'z')
+	  || (c >= 'A' && c <= 'Z')
+	  || (c >= '0' && c <= '9'))
+	;
+      else
+	s[i] = '_';
+    }
+  return s;
+}
+
+// Get the package path to use for type reflection data.  This should
+// ideally be unique across the entire link.
+
+const std::string&
+Gogo::pkgpath() const
+{
+  go_assert(this->pkgpath_set_);
+  return this->pkgpath_;
+}
+
+// Set the package path from the -fgo-pkgpath command line option.
+
+void
+Gogo::set_pkgpath(const std::string& arg)
+{
+  go_assert(!this->pkgpath_set_);
+  this->pkgpath_ = arg;
+  this->pkgpath_set_ = true;
+  this->pkgpath_from_option_ = true;
+}
+
+// Get the package path to use for symbol names.
+
+const std::string&
+Gogo::pkgpath_symbol() const
+{
+  go_assert(this->pkgpath_set_);
+  return this->pkgpath_symbol_;
+}
+
+// Set the unique prefix to use to determine the package path, from
+// the -fgo-prefix command line option.
+
+void
+Gogo::set_prefix(const std::string& arg)
+{
+  go_assert(!this->prefix_from_option_);
+  this->prefix_ = arg;
+  this->prefix_from_option_ = true;
+}
+
+// Munge name for use in an error message.
+
+std::string
+Gogo::message_name(const std::string& name)
+{
+  return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
+}
+
+// Get the package name.
+
+const std::string&
+Gogo::package_name() const
+{
+  go_assert(this->package_ != NULL);
+  return this->package_->package_name();
+}
+
+// Set the package name.
+
+void
+Gogo::set_package_name(const std::string& package_name,
+		       Location location)
+{
+  if (this->package_ != NULL)
+    {
+      if (this->package_->package_name() != package_name)
+	go_error_at(location, "expected package %<%s%>",
+		    Gogo::message_name(this->package_->package_name()).c_str());
+      return;
+    }
+
+  // Now that we know the name of the package we are compiling, set
+  // the package path to use for reflect.Type.PkgPath and global
+  // symbol names.
+  if (this->pkgpath_set_)
+    this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(this->pkgpath_);
+  else
+    {
+      if (!this->prefix_from_option_ && package_name == "main")
+	{
+	  this->pkgpath_ = package_name;
+	  this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(package_name);
+	}
+      else
+	{
+	  if (!this->prefix_from_option_)
+	    this->prefix_ = "go";
+	  this->pkgpath_ = this->prefix_ + '.' + package_name;
+	  this->pkgpath_symbol_ = (Gogo::pkgpath_for_symbol(this->prefix_) + '.'
+				   + Gogo::pkgpath_for_symbol(package_name));
+	}
+      this->pkgpath_set_ = true;
+    }
+
+  this->package_ = this->register_package(this->pkgpath_,
+					  this->pkgpath_symbol_, location);
+  this->package_->set_package_name(package_name, location);
+
+  if (this->is_main_package())
+    {
+      // Declare "main" as a function which takes no parameters and
+      // returns no value.
+      Location uloc = Linemap::unknown_location();
+      this->declare_function(Gogo::pack_hidden_name("main", false),
+			     Type::make_function_type (NULL, NULL, NULL, uloc),
+			     uloc);
+    }
+}
+
+// Return whether this is the "main" package.  This is not true if
+// -fgo-pkgpath or -fgo-prefix was used.
+
+bool
+Gogo::is_main_package() const
+{
+  return (this->package_name() == "main"
+	  && !this->pkgpath_from_option_
+	  && !this->prefix_from_option_);
+}
+
+// Import a package.
+
+void
+Gogo::import_package(const std::string& filename,
+		     const std::string& local_name,
+		     bool is_local_name_exported,
+		     bool must_exist,
+		     Location location)
+{
+  if (filename.empty())
+    {
+      go_error_at(location, "import path is empty");
+      return;
+    }
+
+  const char *pf = filename.data();
+  const char *pend = pf + filename.length();
+  while (pf < pend)
+    {
+      unsigned int c;
+      int adv = Lex::fetch_char(pf, &c);
+      if (adv == 0)
+	{
+	  go_error_at(location, "import path contains invalid UTF-8 sequence");
+	  return;
+	}
+      if (c == '\0')
+	{
+	  go_error_at(location, "import path contains NUL");
+	  return;
+	}
+      if (c < 0x20 || c == 0x7f)
+	{
+	  go_error_at(location, "import path contains control character");
+	  return;
+	}
+      if (c == '\\')
+	{
+	  go_error_at(location, "import path contains backslash; use slash");
+	  return;
+	}
+      if (Lex::is_unicode_space(c))
+	{
+	  go_error_at(location, "import path contains space character");
+	  return;
+	}
+      if (c < 0x7f && strchr("!\"#$%&'()*,:;<=>?[]^`{|}", c) != NULL)
+	{
+	  go_error_at(location,
+                      "import path contains invalid character '%c'", c);
+	  return;
+	}
+      pf += adv;
+    }
+
+  if (IS_ABSOLUTE_PATH(filename.c_str()))
+    {
+      go_error_at(location, "import path cannot be absolute path");
+      return;
+    }
+
+  if (local_name == "init")
+    go_error_at(location, "cannot import package as init");
+
+  if (filename == "unsafe")
+    {
+      this->import_unsafe(local_name, is_local_name_exported, location);
+      this->current_file_imported_unsafe_ = true;
+      return;
+    }
+
+  Imports::const_iterator p = this->imports_.find(filename);
+  if (p != this->imports_.end())
+    {
+      Package* package = p->second;
+      package->set_location(location);
+      std::string ln = local_name;
+      bool is_ln_exported = is_local_name_exported;
+      if (ln.empty())
+	{
+	  ln = package->package_name();
+	  go_assert(!ln.empty());
+	  is_ln_exported = Lex::is_exported_name(ln);
+	}
+      if (ln == "_")
+        ;
+      else if (ln == ".")
+	{
+	  Bindings* bindings = package->bindings();
+	  for (Bindings::const_declarations_iterator p =
+		 bindings->begin_declarations();
+	       p != bindings->end_declarations();
+	       ++p)
+	    this->add_dot_import_object(p->second);
+          std::string dot_alias = "." + package->package_name();
+          package->add_alias(dot_alias, location);
+	}
+      else
+	{
+          package->add_alias(ln, location);
+	  ln = this->pack_hidden_name(ln, is_ln_exported);
+	  this->package_->bindings()->add_package(ln, package);
+	}
+      return;
+    }
+
+  Import::Stream* stream = Import::open_package(filename, location,
+						this->relative_import_path_);
+  if (stream == NULL)
+    {
+      if (must_exist)
+	go_error_at(location, "import file %qs not found", filename.c_str());
+      return;
+    }
+
+  Import imp(stream, location);
+  imp.register_builtin_types(this);
+  Package* package = imp.import(this, local_name, is_local_name_exported);
+  if (package != NULL)
+    {
+      if (package->pkgpath() == this->pkgpath())
+	go_error_at(location,
+		    ("imported package uses same package path as package "
+		     "being compiled (see -fgo-pkgpath option)"));
+
+      this->imports_.insert(std::make_pair(filename, package));
+    }
+
+  delete stream;
+}
+
+Import_init *
+Gogo::lookup_init(const std::string& init_name)
+{
+  Import_init tmp("", init_name, -1);
+  Import_init_set::iterator it = this->imported_init_fns_.find(&tmp);
+  return (it != this->imported_init_fns_.end()) ? *it : NULL;
+}
+
+// Add an import control function for an imported package to the list.
+
+void
+Gogo::add_import_init_fn(const std::string& package_name,
+			 const std::string& init_name, int prio)
+{
+  for (Import_init_set::iterator p =
+	 this->imported_init_fns_.begin();
+       p != this->imported_init_fns_.end();
+       ++p)
+    {
+      Import_init *ii = (*p);
+      if (ii->init_name() == init_name)
+	{
+	  // If a test of package P1, built as part of package P1,
+	  // imports package P2, and P2 imports P1 (perhaps
+	  // indirectly), then we will see the same import name with
+	  // different import priorities.  That is OK, so don't give
+	  // an error about it.
+	  if (ii->package_name() != package_name)
+	    {
+	      go_error_at(Linemap::unknown_location(),
+		       "duplicate package initialization name %qs",
+		       Gogo::message_name(init_name).c_str());
+	      go_inform(Linemap::unknown_location(), "used by package %qs",
+			Gogo::message_name(ii->package_name()).c_str());
+	      go_inform(Linemap::unknown_location(), " and by package %qs",
+			Gogo::message_name(package_name).c_str());
+	    }
+          ii->set_priority(prio);
+          return;
+	}
+    }
+
+  Import_init* nii = new Import_init(package_name, init_name, prio);
+  this->imported_init_fns_.insert(nii);
+}
+
+// Return whether we are at the global binding level.
+
+bool
+Gogo::in_global_scope() const
+{
+  return this->functions_.empty();
+}
+
+// Return the current binding contour.
+
+Bindings*
+Gogo::current_bindings()
+{
+  if (!this->functions_.empty())
+    return this->functions_.back().blocks.back()->bindings();
+  else if (this->package_ != NULL)
+    return this->package_->bindings();
+  else
+    return this->globals_;
+}
+
+const Bindings*
+Gogo::current_bindings() const
+{
+  if (!this->functions_.empty())
+    return this->functions_.back().blocks.back()->bindings();
+  else if (this->package_ != NULL)
+    return this->package_->bindings();
+  else
+    return this->globals_;
+}
+
+void
+Gogo::update_init_priority(Import_init* ii,
+                           std::set<const Import_init *>* visited)
+{
+  visited->insert(ii);
+  int succ_prior = -1;
+
+  for (std::set<std::string>::const_iterator pci =
+           ii->precursors().begin();
+       pci != ii->precursors().end();
+       ++pci)
+    {
+      Import_init* succ = this->lookup_init(*pci);
+      if (visited->find(succ) == visited->end())
+        update_init_priority(succ, visited);
+      succ_prior = std::max(succ_prior, succ->priority());
+    }
+  if (ii->priority() <= succ_prior)
+    ii->set_priority(succ_prior + 1);
+}
+
+void
+Gogo::recompute_init_priorities()
+{
+  std::set<Import_init *> nonroots;
+
+  for (Import_init_set::const_iterator p =
+           this->imported_init_fns_.begin();
+       p != this->imported_init_fns_.end();
+       ++p)
+    {
+      const Import_init *ii = *p;
+      for (std::set<std::string>::const_iterator pci =
+               ii->precursors().begin();
+           pci != ii->precursors().end();
+           ++pci)
+        {
+          Import_init* ii = this->lookup_init(*pci);
+          nonroots.insert(ii);
+        }
+    }
+
+  // Recursively update priorities starting at roots.
+  std::set<const Import_init*> visited;
+  for (Import_init_set::iterator p =
+           this->imported_init_fns_.begin();
+       p != this->imported_init_fns_.end();
+       ++p)
+    {
+      Import_init* ii = *p;
+      if (nonroots.find(ii) != nonroots.end())
+        continue;
+      update_init_priority(ii, &visited);
+    }
+}
+
+// Add statements to INIT_STMTS which run the initialization
+// functions for imported packages.  This is only used for the "main"
+// package.
+
+void
+Gogo::init_imports(std::vector<Bstatement*>& init_stmts, Bfunction *bfunction)
+{
+  go_assert(this->is_main_package());
+
+  if (this->imported_init_fns_.empty())
+    return;
+
+  Location unknown_loc = Linemap::unknown_location();
+  Function_type* func_type =
+      Type::make_function_type(NULL, NULL, NULL, unknown_loc);
+  Btype* fntype = func_type->get_backend_fntype(this);
+
+  // Recompute init priorities based on a walk of the init graph.
+  recompute_init_priorities();
+
+  // We must call them in increasing priority order.
+  std::vector<const Import_init*> v;
+  for (Import_init_set::const_iterator p =
+	 this->imported_init_fns_.begin();
+       p != this->imported_init_fns_.end();
+       ++p)
+    {
+      if ((*p)->priority() < 0)
+	go_error_at(Linemap::unknown_location(),
+		    "internal error: failed to set init priority for %s",
+		    (*p)->package_name().c_str());
+      v.push_back(*p);
+    }
+  std::sort(v.begin(), v.end(), priority_compare);
+
+  // We build calls to the init functions, which take no arguments.
+  std::vector<Bexpression*> empty_args;
+  for (std::vector<const Import_init*>::const_iterator p = v.begin();
+       p != v.end();
+       ++p)
+    {
+      const Import_init* ii = *p;
+      std::string user_name = ii->package_name() + ".init";
+      const std::string& init_name(ii->init_name());
+
+      Bfunction* pfunc = this->backend()->function(fntype, user_name, init_name,
+                                                   true, true, true, false,
+                                                   false, unknown_loc);
+      Bexpression* pfunc_code =
+          this->backend()->function_code_expression(pfunc, unknown_loc);
+      Bexpression* pfunc_call =
+          this->backend()->call_expression(bfunction, pfunc_code, empty_args,
+                                           NULL, unknown_loc);
+      init_stmts.push_back(this->backend()->expression_statement(bfunction,
+                                                                 pfunc_call));
+    }
+}
+
+// Register global variables with the garbage collector.  We need to
+// register all variables which can hold a pointer value.  They become
+// roots during the mark phase.  We build a struct that is easy to
+// hook into a list of roots.
+
+// type gcRoot struct {
+// 	decl    unsafe.Pointer // Pointer to variable.
+//	size    uintptr        // Total size of variable.
+// 	ptrdata uintptr        // Length of variable's gcdata.
+// 	gcdata  *byte          // Pointer mask.
+// }
+//
+// type gcRootList struct {
+// 	next  *gcRootList
+// 	count int
+// 	roots [...]gcRoot
+// }
+
+// The last entry in the roots array has a NULL decl field.
+
+void
+Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
+		       std::vector<Bstatement*>& init_stmts,
+                       Bfunction* init_bfn)
+{
+  if (var_gc.empty() && this->gc_roots_.empty())
+    return;
+
+  Type* pvt = Type::make_pointer_type(Type::make_void_type());
+  Type* uintptr_type = Type::lookup_integer_type("uintptr");
+  Type* byte_type = this->lookup_global("byte")->type_value();
+  Type* pointer_byte_type = Type::make_pointer_type(byte_type);
+  Struct_type* root_type =
+    Type::make_builtin_struct_type(4,
+				   "decl", pvt,
+				   "size", uintptr_type,
+				   "ptrdata", uintptr_type,
+				   "gcdata", pointer_byte_type);
+
+  Location builtin_loc = Linemap::predeclared_location();
+  unsigned long roots_len = var_gc.size() + this->gc_roots_.size();
+  Expression* length = Expression::make_integer_ul(roots_len, NULL,
+                                                   builtin_loc);
+  Array_type* root_array_type = Type::make_array_type(root_type, length);
+  root_array_type->set_is_array_incomparable();
+
+  Type* int_type = Type::lookup_integer_type("int");
+  Struct_type* root_list_type =
+      Type::make_builtin_struct_type(3,
+                                     "next", pvt,
+				     "count", int_type,
+                                     "roots", root_array_type);
+
+  // Build an initializer for the roots array.
+
+  Expression_list* roots_init = new Expression_list();
+
+  for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
+       p != var_gc.end();
+       ++p)
+    {
+      Expression_list* init = new Expression_list();
+
+      Location no_loc = (*p)->location();
+      Expression* decl = Expression::make_var_reference(*p, no_loc);
+      Expression* decl_addr =
+          Expression::make_unary(OPERATOR_AND, decl, no_loc);
+      decl_addr->unary_expression()->set_does_not_escape();
+      decl_addr = Expression::make_cast(pvt, decl_addr, no_loc);
+      init->push_back(decl_addr);
+
+      Expression* size =
+	Expression::make_type_info(decl->type(),
+				   Expression::TYPE_INFO_SIZE);
+      init->push_back(size);
+
+      Expression* ptrdata =
+	Expression::make_type_info(decl->type(),
+				   Expression::TYPE_INFO_BACKEND_PTRDATA);
+      init->push_back(ptrdata);
+
+      Expression* gcdata = Expression::make_ptrmask_symbol(decl->type());
+      init->push_back(gcdata);
+
+      Expression* root_ctor =
+          Expression::make_struct_composite_literal(root_type, init, no_loc);
+      roots_init->push_back(root_ctor);
+    }
+
+  for (std::vector<Expression*>::const_iterator p = this->gc_roots_.begin();
+       p != this->gc_roots_.end();
+       ++p)
+    {
+      Expression_list *init = new Expression_list();
+
+      Expression* expr = *p;
+      Location eloc = expr->location();
+      init->push_back(Expression::make_cast(pvt, expr, eloc));
+
+      Type* type = expr->type()->points_to();
+      go_assert(type != NULL);
+
+      Expression* size =
+	Expression::make_type_info(type,
+				   Expression::TYPE_INFO_SIZE);
+      init->push_back(size);
+
+      Expression* ptrdata =
+	Expression::make_type_info(type,
+				   Expression::TYPE_INFO_BACKEND_PTRDATA);
+      init->push_back(ptrdata);
+
+      Expression* gcdata = Expression::make_ptrmask_symbol(type);
+      init->push_back(gcdata);
+
+      Expression* root_ctor =
+	Expression::make_struct_composite_literal(root_type, init, eloc);
+      roots_init->push_back(root_ctor);
+    }
+
+  // Build a constructor for the struct.
+
+  Expression_list* root_list_init = new Expression_list();
+  root_list_init->push_back(Expression::make_nil(builtin_loc));
+  root_list_init->push_back(Expression::make_integer_ul(roots_len, int_type,
+							builtin_loc));
+
+  Expression* roots_ctor =
+      Expression::make_array_composite_literal(root_array_type, roots_init,
+                                               builtin_loc);
+  root_list_init->push_back(roots_ctor);
+
+  Expression* root_list_ctor =
+      Expression::make_struct_composite_literal(root_list_type, root_list_init,
+                                                builtin_loc);
+
+  Expression* root_addr = Expression::make_unary(OPERATOR_AND, root_list_ctor,
+                                                 builtin_loc);
+  root_addr->unary_expression()->set_is_gc_root();
+  Expression* register_roots = Runtime::make_call(Runtime::REGISTER_GC_ROOTS,
+                                                  builtin_loc, 1, root_addr);
+
+  Translate_context context(this, NULL, NULL, NULL);
+  Bexpression* bcall = register_roots->get_backend(&context);
+  init_stmts.push_back(this->backend()->expression_statement(init_bfn, bcall));
+}
+
+// Build the decl for the initialization function.
+
+Named_object*
+Gogo::initialization_function_decl()
+{
+  std::string name = this->get_init_fn_name();
+  Location loc = this->package_->location();
+
+  Function_type* fntype = Type::make_function_type(NULL, NULL, NULL, loc);
+  Function* initfn = new Function(fntype, NULL, NULL, loc);
+  return Named_object::make_function(name, NULL, initfn);
+}
+
+// Create the magic initialization function.  CODE_STMT is the
+// code that it needs to run.
+
+Named_object*
+Gogo::create_initialization_function(Named_object* initfn,
+				     Bstatement* code_stmt)
+{
+  // Make sure that we thought we needed an initialization function,
+  // as otherwise we will not have reported it in the export data.
+  go_assert(this->is_main_package() || this->need_init_fn_);
+
+  if (initfn == NULL)
+    initfn = this->initialization_function_decl();
+
+  // Bind the initialization function code to a block.
+  Bfunction* fndecl = initfn->func_value()->get_or_make_decl(this, initfn);
+  Location pkg_loc = this->package_->location();
+  std::vector<Bvariable*> vars;
+  this->backend()->block(fndecl, NULL, vars, pkg_loc, pkg_loc);
+
+  if (!this->backend()->function_set_body(fndecl, code_stmt))
+    {
+      go_assert(saw_errors());
+      return NULL;
+    }
+  return initfn;
+}
+
+// Search for references to VAR in any statements or called functions.
+
+class Find_var : public Traverse
+{
+ public:
+  // A hash table we use to avoid looping.  The index is the name of a
+  // named object.  We only look through objects defined in this
+  // package.
+  typedef Unordered_set(const void*) Seen_objects;
+
+  Find_var(Named_object* var, Seen_objects* seen_objects)
+    : Traverse(traverse_expressions),
+      var_(var), seen_objects_(seen_objects), found_(false)
+  { }
+
+  // Whether the variable was found.
+  bool
+  found() const
+  { return this->found_; }
+
+  int
+  expression(Expression**);
+
+ private:
+  // The variable we are looking for.
+  Named_object* var_;
+  // Names of objects we have already seen.
+  Seen_objects* seen_objects_;
+  // True if the variable was found.
+  bool found_;
+};
+
+// See if EXPR refers to VAR, looking through function calls and
+// variable initializations.
+
+int
+Find_var::expression(Expression** pexpr)
+{
+  Expression* e = *pexpr;
+
+  Var_expression* ve = e->var_expression();
+  if (ve != NULL)
+    {
+      Named_object* v = ve->named_object();
+      if (v == this->var_)
+	{
+	  this->found_ = true;
+	  return TRAVERSE_EXIT;
+	}
+
+      if (v->is_variable() && v->package() == NULL)
+	{
+	  Expression* init = v->var_value()->init();
+	  if (init != NULL)
+	    {
+	      std::pair<Seen_objects::iterator, bool> ins =
+		this->seen_objects_->insert(v);
+	      if (ins.second)
+		{
+		  // This is the first time we have seen this name.
+		  if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
+		    return TRAVERSE_EXIT;
+		}
+	    }
+	}
+    }
+
+  // We traverse the code of any function or bound method we see.  Note that
+  // this means that we will traverse the code of a function or bound method
+  // whose address is taken even if it is not called.
+  Func_expression* fe = e->func_expression();
+  Bound_method_expression* bme = e->bound_method_expression();
+  if (fe != NULL || bme != NULL)
+    {
+      const Named_object* f = fe != NULL ? fe->named_object() : bme->function();
+      if (f->is_function() && f->package() == NULL)
+	{
+	  std::pair<Seen_objects::iterator, bool> ins =
+	    this->seen_objects_->insert(f);
+	  if (ins.second)
+	    {
+	      // This is the first time we have seen this name.
+	      if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
+		return TRAVERSE_EXIT;
+	    }
+	}
+    }
+
+  Temporary_reference_expression* tre = e->temporary_reference_expression();
+  if (tre != NULL)
+    {
+      Temporary_statement* ts = tre->statement();
+      Expression* init = ts->init();
+      if (init != NULL)
+	{
+	  std::pair<Seen_objects::iterator, bool> ins =
+	    this->seen_objects_->insert(ts);
+	  if (ins.second)
+	    {
+	      // This is the first time we have seen this temporary
+	      // statement.
+	      if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
+		return TRAVERSE_EXIT;
+	    }
+	}
+    }
+
+  return TRAVERSE_CONTINUE;
+}
+
+// Return true if EXPR, PREINIT, or DEP refers to VAR.
+
+static bool
+expression_requires(Expression* expr, Block* preinit, Named_object* dep,
+		    Named_object* var)
+{
+  Find_var::Seen_objects seen_objects;
+  Find_var find_var(var, &seen_objects);
+  if (expr != NULL)
+    Expression::traverse(&expr, &find_var);
+  if (preinit != NULL)
+    preinit->traverse(&find_var);
+  if (dep != NULL)
+    {
+      Expression* init = dep->var_value()->init();
+      if (init != NULL)
+	Expression::traverse(&init, &find_var);
+      if (dep->var_value()->has_pre_init())
+	dep->var_value()->preinit()->traverse(&find_var);
+    }
+
+  return find_var.found();
+}
+
+// Sort variable initializations.  If the initialization expression
+// for variable A refers directly or indirectly to the initialization
+// expression for variable B, then we must initialize B before A.
+
+class Var_init
+{
+ public:
+  Var_init()
+    : var_(NULL), init_(NULL), dep_count_(0)
+  { }
+
+  Var_init(Named_object* var, Bstatement* init)
+    : var_(var), init_(init), dep_count_(0)
+  { }
+
+  // Return the variable.
+  Named_object*
+  var() const
+  { return this->var_; }
+
+  // Return the initialization expression.
+  Bstatement*
+  init() const
+  { return this->init_; }
+
+  // Return the number of remaining dependencies.
+  size_t
+  dep_count() const
+  { return this->dep_count_; }
+
+  // Increment the number of dependencies.
+  void
+  add_dependency()
+  { ++this->dep_count_; }
+
+  // Decrement the number of dependencies.
+  void
+  remove_dependency()
+  { --this->dep_count_; }
+
+ private:
+  // The variable being initialized.
+  Named_object* var_;
+  // The initialization statement.
+  Bstatement* init_;
+  // The number of initializations this is dependent on.  A variable
+  // initialization should not be emitted if any of its dependencies
+  // have not yet been resolved.
+  size_t dep_count_;
+};
+
+// For comparing Var_init keys in a map.
+
+inline bool
+operator<(const Var_init& v1, const Var_init& v2)
+{ return v1.var()->name() < v2.var()->name(); }
+
+typedef std::list<Var_init> Var_inits;
+
+// Sort the variable initializations.  The rule we follow is that we
+// emit them in the order they appear in the array, except that if the
+// initialization expression for a variable V1 depends upon another
+// variable V2 then we initialize V1 after V2.
+
+static void
+sort_var_inits(Gogo* gogo, Var_inits* var_inits)
+{
+  if (var_inits->empty())
+    return;
+
+  typedef std::pair<Named_object*, Named_object*> No_no;
+  typedef std::map<No_no, bool> Cache;
+  Cache cache;
+
+  // A mapping from a variable initialization to a set of
+  // variable initializations that depend on it.
+  typedef std::map<Var_init, std::set<Var_init*> > Init_deps;
+  Init_deps init_deps;
+  bool init_loop = false;
+  for (Var_inits::iterator p1 = var_inits->begin();
+       p1 != var_inits->end();
+       ++p1)
+    {
+      Named_object* var = p1->var();
+      Expression* init = var->var_value()->init();
+      Block* preinit = var->var_value()->preinit();
+      Named_object* dep = gogo->var_depends_on(var->var_value());
+
+      // Start walking through the list to see which variables VAR
+      // needs to wait for.
+      for (Var_inits::iterator p2 = var_inits->begin();
+	   p2 != var_inits->end();
+	   ++p2)
+	{
+	  if (var == p2->var())
+	    continue;
+
+	  Named_object* p2var = p2->var();
+	  No_no key(var, p2var);
+	  std::pair<Cache::iterator, bool> ins =
+	    cache.insert(std::make_pair(key, false));
+	  if (ins.second)
+	    ins.first->second = expression_requires(init, preinit, dep, p2var);
+	  if (ins.first->second)
+	    {
+	      // VAR depends on P2VAR.
+	      init_deps[*p2].insert(&(*p1));
+	      p1->add_dependency();
+
+	      // Check for cycles.
+	      key = std::make_pair(p2var, var);
+	      ins = cache.insert(std::make_pair(key, false));
+	      if (ins.second)
+		ins.first->second =
+		  expression_requires(p2var->var_value()->init(),
+				      p2var->var_value()->preinit(),
+				      gogo->var_depends_on(p2var->var_value()),
+				      var);
+	      if (ins.first->second)
+		{
+		  go_error_at(var->location(),
+			      ("initialization expressions for %qs and "
+			       "%qs depend upon each other"),
+			      var->message_name().c_str(),
+			      p2var->message_name().c_str());
+		  go_inform(p2->var()->location(), "%qs defined here",
+			    p2var->message_name().c_str());
+		  init_loop = true;
+		  break;
+		}
+	    }
+	}
+    }
+
+  // If there are no dependencies then the declaration order is sorted.
+  if (!init_deps.empty() && !init_loop)
+    {
+      // Otherwise, sort variable initializations by emitting all variables with
+      // no dependencies in declaration order. VAR_INITS is already in
+      // declaration order.
+      Var_inits ready;
+      while (!var_inits->empty())
+	{
+	  Var_inits::iterator v1;;
+	  for (v1 = var_inits->begin(); v1 != var_inits->end(); ++v1)
+	    {
+	      if (v1->dep_count() == 0)
+		break;
+	    }
+	  go_assert(v1 != var_inits->end());
+
+	  // V1 either has no dependencies or its dependencies have already
+	  // been emitted, add it to READY next.  When V1 is emitted, remove
+	  // a dependency from each V that depends on V1.
+	  ready.splice(ready.end(), *var_inits, v1);
+
+	  Init_deps::iterator p1 = init_deps.find(*v1);
+	  if (p1 != init_deps.end())
+	    {
+	      std::set<Var_init*> resolved = p1->second;
+	      for (std::set<Var_init*>::iterator pv = resolved.begin();
+		   pv != resolved.end();
+		   ++pv)
+		(*pv)->remove_dependency();
+	      init_deps.erase(p1);
+	    }
+	}
+      var_inits->swap(ready);
+      go_assert(init_deps.empty());
+    }
+
+  // VAR_INITS is in the correct order.  For each VAR in VAR_INITS,
+  // check for a loop of VAR on itself.
+  // interpret as a loop.
+  for (Var_inits::const_iterator p = var_inits->begin();
+       p != var_inits->end();
+       ++p)
+    gogo->check_self_dep(p->var());
+}
+
+// Give an error if the initialization expression for VAR depends on
+// itself.  We only check if INIT is not NULL and there is no
+// dependency; when INIT is NULL, it means that PREINIT sets VAR,
+// which we will interpret as a loop.
+
+void
+Gogo::check_self_dep(Named_object* var)
+{
+  Expression* init = var->var_value()->init();
+  Block* preinit = var->var_value()->preinit();
+  Named_object* dep = this->var_depends_on(var->var_value());
+  if (init != NULL
+      && dep == NULL
+      && expression_requires(init, preinit, NULL, var))
+    go_error_at(var->location(),
+		"initialization expression for %qs depends upon itself",
+		var->message_name().c_str());
+}
+
+// Write out the global definitions.
+
+void
+Gogo::write_globals()
+{
+  this->build_interface_method_tables();
+
+  Bindings* bindings = this->current_bindings();
+
+  for (Bindings::const_declarations_iterator p = bindings->begin_declarations();
+       p != bindings->end_declarations();
+       ++p)
+    {
+      // If any function declarations needed a descriptor, make sure
+      // we build it.
+      Named_object* no = p->second;
+      if (no->is_function_declaration())
+	no->func_declaration_value()->build_backend_descriptor(this);
+    }
+
+  // Lists of globally declared types, variables, constants, and functions
+  // that must be defined.
+  std::vector<Btype*> type_decls;
+  std::vector<Bvariable*> var_decls;
+  std::vector<Bexpression*> const_decls;
+  std::vector<Bfunction*> func_decls;
+
+  // The init function declaration and associated Bfunction, if necessary.
+  Named_object* init_fndecl = NULL;
+  Bfunction* init_bfn = NULL;
+
+  std::vector<Bstatement*> init_stmts;
+  std::vector<Bstatement*> var_init_stmts;
+
+  if (this->is_main_package())
+    {
+      init_fndecl = this->initialization_function_decl();
+      init_bfn = init_fndecl->func_value()->get_or_make_decl(this, init_fndecl);
+      this->init_imports(init_stmts, init_bfn);
+    }
+
+  // A list of variable initializations.
+  Var_inits var_inits;
+
+  // A list of variables which need to be registered with the garbage
+  // collector.
+  size_t count_definitions = bindings->size_definitions();
+  std::vector<Named_object*> var_gc;
+  var_gc.reserve(count_definitions);
+
+  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
+       p != bindings->end_definitions();
+       ++p)
+    {
+      Named_object* no = *p;
+      go_assert(!no->is_type_declaration() && !no->is_function_declaration());
+
+      // There is nothing to do for a package.
+      if (no->is_package())
+        continue;
+
+      // There is nothing to do for an object which was imported from
+      // a different package into the global scope.
+      if (no->package() != NULL)
+        continue;
+
+      // Skip blank named functions and constants.
+      if ((no->is_function() && no->func_value()->is_sink())
+	  || (no->is_const() && no->const_value()->is_sink()))
+        continue;
+
+      // There is nothing useful we can output for constants which
+      // have ideal or non-integral type.
+      if (no->is_const())
+        {
+          Type* type = no->const_value()->type();
+          if (type == NULL)
+            type = no->const_value()->expr()->type();
+          if (type->is_abstract() || !type->is_numeric_type())
+            continue;
+        }
+
+      if (!no->is_variable())
+        no->get_backend(this, const_decls, type_decls, func_decls);
+      else
+	{
+          Variable* var = no->var_value();
+	  Bvariable* bvar = no->get_backend_variable(this, NULL);
+          var_decls.push_back(bvar);
+
+	  // Check for a sink variable, which may be used to run an
+	  // initializer purely for its side effects.
+	  bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
+
+          Bstatement* var_init_stmt = NULL;
+	  if (!var->has_pre_init())
+	    {
+              // If the backend representation of the variable initializer is
+              // constant, we can just set the initial value using
+              // global_var_set_init instead of during the init() function.
+              // The initializer is constant if it is the zero-value of the
+              // variable's type or if the initial value is an immutable value
+              // that is not copied to the heap.
+              bool is_static_initializer = false;
+              if (var->init() == NULL)
+                is_static_initializer = true;
+              else
+                {
+                  Type* var_type = var->type();
+                  Expression* init = var->init();
+                  Expression* init_cast =
+                      Expression::make_cast(var_type, init, var->location());
+                  is_static_initializer = init_cast->is_static_initializer();
+                }
+
+	      // Non-constant variable initializations might need to create
+	      // temporary variables, which will need the initialization
+	      // function as context.
+	      Named_object* var_init_fn;
+	      if (is_static_initializer)
+		var_init_fn = NULL;
+	      else
+		{
+		  if (init_fndecl == NULL)
+                    {
+                      init_fndecl = this->initialization_function_decl();
+                      Function* func = init_fndecl->func_value();
+                      init_bfn = func->get_or_make_decl(this, init_fndecl);
+                    }
+		  var_init_fn = init_fndecl;
+		}
+              Bexpression* var_binit = var->get_init(this, var_init_fn);
+
+              if (var_binit == NULL)
+		;
+	      else if (is_static_initializer)
+		{
+		  if (expression_requires(var->init(), NULL,
+					  this->var_depends_on(var), no))
+		    go_error_at(no->location(),
+				"initialization expression for %qs depends "
+				"upon itself",
+				no->message_name().c_str());
+		  this->backend()->global_variable_set_init(bvar, var_binit);
+		}
+	      else if (is_sink)
+	        var_init_stmt =
+                    this->backend()->expression_statement(init_bfn, var_binit);
+	      else
+                {
+                  Location loc = var->location();
+                  Bexpression* var_expr =
+                      this->backend()->var_expression(bvar, VE_lvalue, loc);
+                  var_init_stmt =
+                      this->backend()->assignment_statement(init_bfn, var_expr,
+                                                            var_binit, loc);
+                }
+	    }
+	  else
+	    {
+	      // We are going to create temporary variables which
+	      // means that we need an fndecl.
+              if (init_fndecl == NULL)
+		init_fndecl = this->initialization_function_decl();
+
+	      Bvariable* var_decl = is_sink ? NULL : bvar;
+	      var_init_stmt = var->get_init_block(this, init_fndecl, var_decl);
+	    }
+
+	  if (var_init_stmt != NULL)
+	    {
+	      if (var->init() == NULL && !var->has_pre_init())
+                var_init_stmts.push_back(var_init_stmt);
+	      else
+                var_inits.push_back(Var_init(no, var_init_stmt));
+	    }
+	  else if (this->var_depends_on(var) != NULL)
+	    {
+	      // This variable is initialized from something that is
+	      // not in its init or preinit.  This variable needs to
+	      // participate in dependency analysis sorting, in case
+	      // some other variable depends on this one.
+              Btype* btype = no->var_value()->type()->get_backend(this);
+              Bexpression* zero = this->backend()->zero_expression(btype);
+              Bstatement* zero_stmt =
+                  this->backend()->expression_statement(init_bfn, zero);
+	      var_inits.push_back(Var_init(no, zero_stmt));
+	    }
+
+	  // Collect a list of all global variables with pointers,
+	  // to register them for the garbage collector.
+	  if (!is_sink && var->type()->has_pointer())
+	    {
+	      // Avoid putting runtime.gcRoots itself on the list.
+	      if (this->compiling_runtime()
+		  && this->package_name() == "runtime"
+		  && Gogo::unpack_hidden_name(no->name()) == "gcRoots")
+		;
+	      else
+		var_gc.push_back(no);
+	    }
+	}
+    }
+
+  // Register global variables with the garbage collector.
+  this->register_gc_vars(var_gc, init_stmts, init_bfn);
+
+  // Simple variable initializations, after all variables are
+  // registered.
+  init_stmts.push_back(this->backend()->statement_list(var_init_stmts));
+
+  // Complete variable initializations, first sorting them into a
+  // workable order.
+  if (!var_inits.empty())
+    {
+      sort_var_inits(this, &var_inits);
+      for (Var_inits::const_iterator p = var_inits.begin();
+           p != var_inits.end();
+           ++p)
+        init_stmts.push_back(p->init());
+    }
+
+  // After all the variables are initialized, call the init
+  // functions if there are any.  Init functions take no arguments, so
+  // we pass in EMPTY_ARGS to call them.
+  std::vector<Bexpression*> empty_args;
+  for (std::vector<Named_object*>::const_iterator p =
+           this->init_functions_.begin();
+       p != this->init_functions_.end();
+       ++p)
+    {
+      Location func_loc = (*p)->location();
+      Function* func = (*p)->func_value();
+      Bfunction* initfn = func->get_or_make_decl(this, *p);
+      Bexpression* func_code =
+          this->backend()->function_code_expression(initfn, func_loc);
+      Bexpression* call = this->backend()->call_expression(init_bfn, func_code,
+                                                           empty_args,
+							   NULL, func_loc);
+      Bstatement* ist = this->backend()->expression_statement(init_bfn, call);
+      init_stmts.push_back(ist);
+    }
+
+  // Set up a magic function to do all the initialization actions.
+  // This will be called if this package is imported.
+  Bstatement* init_fncode = this->backend()->statement_list(init_stmts);
+  if (this->need_init_fn_ || this->is_main_package())
+    {
+      init_fndecl =
+	this->create_initialization_function(init_fndecl, init_fncode);
+      if (init_fndecl != NULL)
+	func_decls.push_back(init_fndecl->func_value()->get_decl());
+    }
+
+  // We should not have seen any new bindings created during the conversion.
+  go_assert(count_definitions == this->current_bindings()->size_definitions());
+
+  // Define all globally declared values.
+  if (!saw_errors())
+    this->backend()->write_global_definitions(type_decls, const_decls,
+					      func_decls, var_decls);
+}
+
+// Return the current block.
+
+Block*
+Gogo::current_block()
+{
+  if (this->functions_.empty())
+    return NULL;
+  else
+    return this->functions_.back().blocks.back();
+}
+
+// Look up a name in the current binding contour.  If PFUNCTION is not
+// NULL, set it to the function in which the name is defined, or NULL
+// if the name is defined in global scope.
+
+Named_object*
+Gogo::lookup(const std::string& name, Named_object** pfunction) const
+{
+  if (pfunction != NULL)
+    *pfunction = NULL;
+
+  if (Gogo::is_sink_name(name))
+    return Named_object::make_sink();
+
+  for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
+       p != this->functions_.rend();
+       ++p)
+    {
+      Named_object* ret = p->blocks.back()->bindings()->lookup(name);
+      if (ret != NULL)
+	{
+	  if (pfunction != NULL)
+	    *pfunction = p->function;
+	  return ret;
+	}
+    }
+
+  if (this->package_ != NULL)
+    {
+      Named_object* ret = this->package_->bindings()->lookup(name);
+      if (ret != NULL)
+	{
+	  if (ret->package() != NULL)
+            {
+              std::string dot_alias = "." + ret->package()->package_name();
+              ret->package()->note_usage(dot_alias);
+            }
+	  return ret;
+	}
+    }
+
+  // We do not look in the global namespace.  If we did, the global
+  // namespace would effectively hide names which were defined in
+  // package scope which we have not yet seen.  Instead,
+  // define_global_names is called after parsing is over to connect
+  // undefined names at package scope with names defined at global
+  // scope.
+
+  return NULL;
+}
+
+// Look up a name in the current block, without searching enclosing
+// blocks.
+
+Named_object*
+Gogo::lookup_in_block(const std::string& name) const
+{
+  go_assert(!this->functions_.empty());
+  go_assert(!this->functions_.back().blocks.empty());
+  return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
+}
+
+// Look up a name in the global namespace.
+
+Named_object*
+Gogo::lookup_global(const char* name) const
+{
+  return this->globals_->lookup(name);
+}
+
+// Add an imported package.
+
+Package*
+Gogo::add_imported_package(const std::string& real_name,
+			   const std::string& alias_arg,
+			   bool is_alias_exported,
+			   const std::string& pkgpath,
+			   const std::string& pkgpath_symbol,
+			   Location location,
+			   bool* padd_to_globals)
+{
+  Package* ret = this->register_package(pkgpath, pkgpath_symbol, location);
+  ret->set_package_name(real_name, location);
+
+  *padd_to_globals = false;
+
+  if (alias_arg == "_")
+    ;
+  else if (alias_arg == ".")
+    {
+      *padd_to_globals = true;
+      std::string dot_alias = "." + real_name;
+      ret->add_alias(dot_alias, location);
+    }
+  else
+    {
+      std::string alias = alias_arg;
+      if (alias.empty())
+	{
+	  alias = real_name;
+	  is_alias_exported = Lex::is_exported_name(alias);
+	}
+      ret->add_alias(alias, location);
+      alias = this->pack_hidden_name(alias, is_alias_exported);
+      Named_object* no = this->package_->bindings()->add_package(alias, ret);
+      if (!no->is_package())
+	return NULL;
+    }
+
+  return ret;
+}
+
+// Register a package.  This package may or may not be imported.  This
+// returns the Package structure for the package, creating if it
+// necessary.  LOCATION is the location of the import statement that
+// led us to see this package.  PKGPATH_SYMBOL is the symbol to use
+// for names in the package; it may be the empty string, in which case
+// we either get it later or make a guess when we need it.
+
+Package*
+Gogo::register_package(const std::string& pkgpath,
+		       const std::string& pkgpath_symbol, Location location)
+{
+  Package* package = NULL;
+  std::pair<Packages::iterator, bool> ins =
+    this->packages_.insert(std::make_pair(pkgpath, package));
+  if (!ins.second)
+    {
+      // We have seen this package name before.
+      package = ins.first->second;
+      go_assert(package != NULL && package->pkgpath() == pkgpath);
+      if (!pkgpath_symbol.empty())
+	package->set_pkgpath_symbol(pkgpath_symbol);
+      if (Linemap::is_unknown_location(package->location()))
+	package->set_location(location);
+    }
+  else
+    {
+      // First time we have seen this package name.
+      package = new Package(pkgpath, pkgpath_symbol, location);
+      go_assert(ins.first->second == NULL);
+      ins.first->second = package;
+    }
+
+  return package;
+}
+
+// Return the pkgpath symbol for a package, given the pkgpath.
+
+std::string
+Gogo::pkgpath_symbol_for_package(const std::string& pkgpath)
+{
+  Packages::iterator p = this->packages_.find(pkgpath);
+  go_assert(p != this->packages_.end());
+  return p->second->pkgpath_symbol();
+}
+
+// Start compiling a function.
+
+Named_object*
+Gogo::start_function(const std::string& name, Function_type* type,
+		     bool add_method_to_type, Location location)
+{
+  bool at_top_level = this->functions_.empty();
+
+  Block* block = new Block(NULL, location);
+
+  Named_object* enclosing = (at_top_level
+			 ? NULL
+			 : this->functions_.back().function);
+
+  Function* function = new Function(type, enclosing, block, location);
+
+  if (type->is_method())
+    {
+      const Typed_identifier* receiver = type->receiver();
+      Variable* this_param = new Variable(receiver->type(), NULL, false,
+					  true, true, location);
+      std::string rname = receiver->name();
+      if (rname.empty() || Gogo::is_sink_name(rname))
+	{
+	  // We need to give receivers a name since they wind up in
+	  // DECL_ARGUMENTS.  FIXME.
+	  static unsigned int count;
+	  char buf[50];
+	  snprintf(buf, sizeof buf, "r.%u", count);
+	  ++count;
+	  rname = buf;
+	}
+      block->bindings()->add_variable(rname, NULL, this_param);
+    }
+
+  const Typed_identifier_list* parameters = type->parameters();
+  bool is_varargs = type->is_varargs();
+  if (parameters != NULL)
+    {
+      for (Typed_identifier_list::const_iterator p = parameters->begin();
+	   p != parameters->end();
+	   ++p)
+	{
+	  Variable* param = new Variable(p->type(), NULL, false, true, false,
+					 p->location());
+	  if (is_varargs && p + 1 == parameters->end())
+	    param->set_is_varargs_parameter();
+
+	  std::string pname = p->name();
+	  if (pname.empty() || Gogo::is_sink_name(pname))
+	    {
+	      // We need to give parameters a name since they wind up
+	      // in DECL_ARGUMENTS.  FIXME.
+	      static unsigned int count;
+	      char buf[50];
+	      snprintf(buf, sizeof buf, "p.%u", count);
+	      ++count;
+	      pname = buf;
+	    }
+	  block->bindings()->add_variable(pname, NULL, param);
+	}
+    }
+
+  function->create_result_variables(this);
+
+  const std::string* pname;
+  std::string nested_name;
+  bool is_init = false;
+  if (Gogo::unpack_hidden_name(name) == "init" && !type->is_method())
+    {
+      if ((type->parameters() != NULL && !type->parameters()->empty())
+	  || (type->results() != NULL && !type->results()->empty()))
+	go_error_at(location,
+		    "func init must have no arguments and no return values");
+      // There can be multiple "init" functions, so give them each a
+      // different name.
+      nested_name = this->init_function_name();
+      pname = &nested_name;
+      is_init = true;
+    }
+  else if (!name.empty())
+    pname = &name;
+  else
+    {
+      // Invent a name for a nested function.
+      nested_name = this->nested_function_name();
+      pname = &nested_name;
+    }
+
+  Named_object* ret;
+  if (Gogo::is_sink_name(*pname))
+    {
+      std::string sname(this->sink_function_name());
+      ret = Named_object::make_function(sname, NULL, function);
+      ret->func_value()->set_is_sink();
+
+      if (!type->is_method())
+	ret = this->package_->bindings()->add_named_object(ret);
+      else if (add_method_to_type)
+	{
+	  // We should report errors even for sink methods.
+	  Type* rtype = type->receiver()->type();
+	  // Avoid points_to and deref to avoid getting an error if
+	  // the type is not yet defined.
+	  if (rtype->classification() == Type::TYPE_POINTER)
+	    rtype = rtype->points_to();
+	  while (rtype->named_type() != NULL
+		 && rtype->named_type()->is_alias())
+	    rtype = rtype->named_type()->real_type()->forwarded();
+	  if (rtype->is_error_type())
+	    ;
+	  else if (rtype->named_type() != NULL)
+	    {
+	      if (rtype->named_type()->named_object()->package() != NULL)
+		go_error_at(type->receiver()->location(),
+			    "may not define methods on non-local type");
+	    }
+	  else if (rtype->forward_declaration_type() != NULL)
+	    {
+	      // Go ahead and add the method in case we need to report
+	      // an error when we see the definition.
+	      rtype->forward_declaration_type()->add_existing_method(ret);
+	    }
+	  else
+	    go_error_at(type->receiver()->location(),
+			("invalid receiver type "
+			 "(receiver must be a named type)"));
+	}
+    }
+  else if (!type->is_method())
+    {
+      ret = this->package_->bindings()->add_function(*pname, NULL, function);
+      if (!ret->is_function() || ret->func_value() != function)
+	{
+	  // Redefinition error.  Invent a name to avoid knockon
+	  // errors.
+	  std::string rname(this->redefined_function_name());
+	  ret = this->package_->bindings()->add_function(rname, NULL, function);
+	}
+    }
+  else
+    {
+      if (!add_method_to_type)
+	ret = Named_object::make_function(name, NULL, function);
+      else
+	{
+	  go_assert(at_top_level);
+	  Type* rtype = type->receiver()->type();
+
+	  // We want to look through the pointer created by the
+	  // parser, without getting an error if the type is not yet
+	  // defined.
+	  if (rtype->classification() == Type::TYPE_POINTER)
+	    rtype = rtype->points_to();
+
+	  while (rtype->named_type() != NULL
+		 && rtype->named_type()->is_alias())
+	    rtype = rtype->named_type()->real_type()->forwarded();
+
+	  if (rtype->is_error_type())
+	    ret = Named_object::make_function(name, NULL, function);
+	  else if (rtype->named_type() != NULL)
+	    {
+	      if (rtype->named_type()->named_object()->package() != NULL)
+		{
+		  go_error_at(type->receiver()->location(),
+			      "may not define methods on non-local type");
+		  ret = Named_object::make_function(name, NULL, function);
+		}
+	      else
+		{
+		  ret = rtype->named_type()->add_method(name, function);
+		  if (!ret->is_function())
+		    {
+		      // Redefinition error.
+		      ret = Named_object::make_function(name, NULL, function);
+		    }
+		}
+	    }
+	  else if (rtype->forward_declaration_type() != NULL)
+	    {
+	      Named_object* type_no =
+		rtype->forward_declaration_type()->named_object();
+	      if (type_no->is_unknown())
+		{
+		  // If we are seeing methods it really must be a
+		  // type.  Declare it as such.  An alternative would
+		  // be to support lists of methods for unknown
+		  // expressions.  Either way the error messages if
+		  // this is not a type are going to get confusing.
+		  Named_object* declared =
+		    this->declare_package_type(type_no->name(),
+					       type_no->location());
+		  go_assert(declared
+			     == type_no->unknown_value()->real_named_object());
+		}
+	      ret = rtype->forward_declaration_type()->add_method(name,
+								  function);
+	    }
+	  else
+            {
+	      go_error_at(type->receiver()->location(),
+			  ("invalid receiver type (receiver must "
+			   "be a named type)"));
+              ret = Named_object::make_function(name, NULL, function);
+            }
+	}
+      this->package_->bindings()->add_method(ret);
+    }
+
+  this->functions_.resize(this->functions_.size() + 1);
+  Open_function& of(this->functions_.back());
+  of.function = ret;
+  of.blocks.push_back(block);
+
+  if (is_init)
+    {
+      this->init_functions_.push_back(ret);
+      this->need_init_fn_ = true;
+    }
+
+  return ret;
+}
+
+// Finish compiling a function.
+
+void
+Gogo::finish_function(Location location)
+{
+  this->finish_block(location);
+  go_assert(this->functions_.back().blocks.empty());
+  this->functions_.pop_back();
+}
+
+// Return the current function.
+
+Named_object*
+Gogo::current_function() const
+{
+  go_assert(!this->functions_.empty());
+  return this->functions_.back().function;
+}
+
+// Start a new block.
+
+void
+Gogo::start_block(Location location)
+{
+  go_assert(!this->functions_.empty());
+  Block* block = new Block(this->current_block(), location);
+  this->functions_.back().blocks.push_back(block);
+}
+
+// Finish a block.
+
+Block*
+Gogo::finish_block(Location location)
+{
+  go_assert(!this->functions_.empty());
+  go_assert(!this->functions_.back().blocks.empty());
+  Block* block = this->functions_.back().blocks.back();
+  this->functions_.back().blocks.pop_back();
+  block->set_end_location(location);
+  return block;
+}
+
+// Add an erroneous name.
+
+Named_object*
+Gogo::add_erroneous_name(const std::string& name)
+{
+  return this->package_->bindings()->add_erroneous_name(name);
+}
+
+// Add an unknown name.
+
+Named_object*
+Gogo::add_unknown_name(const std::string& name, Location location)
+{
+  return this->package_->bindings()->add_unknown_name(name, location);
+}
+
+// Declare a function.
+
+Named_object*
+Gogo::declare_function(const std::string& name, Function_type* type,
+		       Location location)
+{
+  if (!type->is_method())
+    return this->current_bindings()->add_function_declaration(name, NULL, type,
+							      location);
+  else
+    {
+      // We don't bother to add this to the list of global
+      // declarations.
+      Type* rtype = type->receiver()->type();
+
+      // We want to look through the pointer created by the
+      // parser, without getting an error if the type is not yet
+      // defined.
+      if (rtype->classification() == Type::TYPE_POINTER)
+	rtype = rtype->points_to();
+
+      if (rtype->is_error_type())
+	return NULL;
+      else if (rtype->named_type() != NULL)
+	return rtype->named_type()->add_method_declaration(name, NULL, type,
+							   location);
+      else if (rtype->forward_declaration_type() != NULL)
+	{
+	  Forward_declaration_type* ftype = rtype->forward_declaration_type();
+	  return ftype->add_method_declaration(name, NULL, type, location);
+	}
+      else
+        {
+	  go_error_at(type->receiver()->location(),
+		      "invalid receiver type (receiver must be a named type)");
+          return Named_object::make_erroneous_name(name);
+        }
+    }
+}
+
+// Add a label definition.
+
+Label*
+Gogo::add_label_definition(const std::string& label_name,
+			   Location location)
+{
+  go_assert(!this->functions_.empty());
+  Function* func = this->functions_.back().function->func_value();
+  Label* label = func->add_label_definition(this, label_name, location);
+  this->add_statement(Statement::make_label_statement(label, location));
+  return label;
+}
+
+// Add a label reference.
+
+Label*
+Gogo::add_label_reference(const std::string& label_name,
+			  Location location, bool issue_goto_errors)
+{
+  go_assert(!this->functions_.empty());
+  Function* func = this->functions_.back().function->func_value();
+  return func->add_label_reference(this, label_name, location,
+				   issue_goto_errors);
+}
+
+// Return the current binding state.
+
+Bindings_snapshot*
+Gogo::bindings_snapshot(Location location)
+{
+  return new Bindings_snapshot(this->current_block(), location);
+}
+
+// Add a statement.
+
+void
+Gogo::add_statement(Statement* statement)
+{
+  go_assert(!this->functions_.empty()
+	     && !this->functions_.back().blocks.empty());
+  this->functions_.back().blocks.back()->add_statement(statement);
+}
+
+// Add a block.
+
+void
+Gogo::add_block(Block* block, Location location)
+{
+  go_assert(!this->functions_.empty()
+	     && !this->functions_.back().blocks.empty());
+  Statement* statement = Statement::make_block_statement(block, location);
+  this->functions_.back().blocks.back()->add_statement(statement);
+}
+
+// Add a constant.
+
+Named_object*
+Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
+		   int iota_value)
+{
+  return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
+}
+
+// Add a type.
+
+void
+Gogo::add_type(const std::string& name, Type* type, Location location)
+{
+  Named_object* no = this->current_bindings()->add_type(name, NULL, type,
+							location);
+  if (!this->in_global_scope() && no->is_type())
+    {
+      Named_object* f = this->functions_.back().function;
+      unsigned int index;
+      if (f->is_function())
+	index = f->func_value()->new_local_type_index();
+      else
+	index = 0;
+      no->type_value()->set_in_function(f, index);
+    }
+}
+
+// Add a named type.
+
+void
+Gogo::add_named_type(Named_type* type)
+{
+  go_assert(this->in_global_scope());
+  this->current_bindings()->add_named_type(type);
+}
+
+// Declare a type.
+
+Named_object*
+Gogo::declare_type(const std::string& name, Location location)
+{
+  Bindings* bindings = this->current_bindings();
+  Named_object* no = bindings->add_type_declaration(name, NULL, location);
+  if (!this->in_global_scope() && no->is_type_declaration())
+    {
+      Named_object* f = this->functions_.back().function;
+      unsigned int index;
+      if (f->is_function())
+	index = f->func_value()->new_local_type_index();
+      else
+	index = 0;
+      no->type_declaration_value()->set_in_function(f, index);
+    }
+  return no;
+}
+
+// Declare a type at the package level.
+
+Named_object*
+Gogo::declare_package_type(const std::string& name, Location location)
+{
+  return this->package_->bindings()->add_type_declaration(name, NULL, location);
+}
+
+// Declare a function at the package level.
+
+Named_object*
+Gogo::declare_package_function(const std::string& name, Function_type* type,
+			       Location location)
+{
+  return this->package_->bindings()->add_function_declaration(name, NULL, type,
+							      location);
+}
+
+// Define a type which was already declared.
+
+void
+Gogo::define_type(Named_object* no, Named_type* type)
+{
+  this->current_bindings()->define_type(no, type);
+}
+
+// Add a variable.
+
+Named_object*
+Gogo::add_variable(const std::string& name, Variable* variable)
+{
+  Named_object* no = this->current_bindings()->add_variable(name, NULL,
+							    variable);
+
+  // In a function the middle-end wants to see a DECL_EXPR node.
+  if (no != NULL
+      && no->is_variable()
+      && !no->var_value()->is_parameter()
+      && !this->functions_.empty())
+    this->add_statement(Statement::make_variable_declaration(no));
+
+  return no;
+}
+
+// Add a sink--a reference to the blank identifier _.
+
+Named_object*
+Gogo::add_sink()
+{
+  return Named_object::make_sink();
+}
+
+// Add a named object for a dot import.
+
+void
+Gogo::add_dot_import_object(Named_object* no)
+{
+  // If the name already exists, then it was defined in some file seen
+  // earlier.  If the earlier name is just a declaration, don't add
+  // this name, because that will cause the previous declaration to
+  // merge to this imported name, which should not happen.  Just add
+  // this name to the list of file block names to get appropriate
+  // errors if we see a later definition.
+  Named_object* e = this->package_->bindings()->lookup(no->name());
+  if (e != NULL && e->package() == NULL)
+    {
+      if (e->is_unknown())
+	e = e->resolve();
+      if (e->package() == NULL
+	  && (e->is_type_declaration()
+	      || e->is_function_declaration()
+	      || e->is_unknown()))
+	{
+	  this->add_file_block_name(no->name(), no->location());
+	  return;
+	}
+    }
+
+  this->current_bindings()->add_named_object(no);
+}
+
+// Add a linkname.  This implements the go:linkname compiler directive.
+// We only support this for functions and function declarations.
+
+void
+Gogo::add_linkname(const std::string& go_name, bool is_exported,
+		   const std::string& ext_name, Location loc)
+{
+  Named_object* no =
+    this->package_->bindings()->lookup(this->pack_hidden_name(go_name,
+							      is_exported));
+  if (no == NULL)
+    go_error_at(loc, "%s is not defined", go_name.c_str());
+  else if (no->is_function())
+    no->func_value()->set_asm_name(ext_name);
+  else if (no->is_function_declaration())
+    no->func_declaration_value()->set_asm_name(ext_name);
+  else
+    go_error_at(loc,
+		("%s is not a function; "
+		 "//go:linkname is only supported for functions"),
+		go_name.c_str());
+}
+
+// Mark all local variables used.  This is used when some types of
+// parse error occur.
+
+void
+Gogo::mark_locals_used()
+{
+  for (Open_functions::iterator pf = this->functions_.begin();
+       pf != this->functions_.end();
+       ++pf)
+    {
+      for (std::vector<Block*>::iterator pb = pf->blocks.begin();
+	   pb != pf->blocks.end();
+	   ++pb)
+	(*pb)->bindings()->mark_locals_used();
+    }
+}
+
+// Record that we've seen an interface type.
+
+void
+Gogo::record_interface_type(Interface_type* itype)
+{
+  this->interface_types_.push_back(itype);
+}
+
+// Define the global names.  We do this only after parsing all the
+// input files, because the program might define the global names
+// itself.
+
+void
+Gogo::define_global_names()
+{
+  if (this->is_main_package())
+    {
+      // Every Go program has to import the runtime package, so that
+      // it is properly initialized.
+      this->import_package("runtime", "_", false, false,
+			   Linemap::predeclared_location());
+    }
+
+  for (Bindings::const_declarations_iterator p =
+	 this->globals_->begin_declarations();
+       p != this->globals_->end_declarations();
+       ++p)
+    {
+      Named_object* global_no = p->second;
+      std::string name(Gogo::pack_hidden_name(global_no->name(), false));
+      Named_object* no = this->package_->bindings()->lookup(name);
+      if (no == NULL)
+	continue;
+      no = no->resolve();
+      if (no->is_type_declaration())
+	{
+	  if (global_no->is_type())
+	    {
+	      if (no->type_declaration_value()->has_methods())
+		{
+		  for (std::vector<Named_object*>::const_iterator p =
+			 no->type_declaration_value()->methods()->begin();
+		       p != no->type_declaration_value()->methods()->end();
+		       p++)
+		    go_error_at((*p)->location(),
+				"may not define methods on non-local type");
+		}
+	      no->set_type_value(global_no->type_value());
+	    }
+	  else
+	    {
+	      go_error_at(no->location(), "expected type");
+	      Type* errtype = Type::make_error_type();
+	      Named_object* err =
+                Named_object::make_type("erroneous_type", NULL, errtype,
+                                        Linemap::predeclared_location());
+	      no->set_type_value(err->type_value());
+	    }
+	}
+      else if (no->is_unknown())
+	no->unknown_value()->set_real_named_object(global_no);
+    }
+
+  // Give an error if any name is defined in both the package block
+  // and the file block.  For example, this can happen if one file
+  // imports "fmt" and another file defines a global variable fmt.
+  for (Bindings::const_declarations_iterator p =
+	 this->package_->bindings()->begin_declarations();
+       p != this->package_->bindings()->end_declarations();
+       ++p)
+    {
+      if (p->second->is_unknown()
+	  && p->second->unknown_value()->real_named_object() == NULL)
+	{
+	  // No point in warning about an undefined name, as we will
+	  // get other errors later anyhow.
+	  continue;
+	}
+      File_block_names::const_iterator pf =
+	this->file_block_names_.find(p->second->name());
+      if (pf != this->file_block_names_.end())
+	{
+	  std::string n = p->second->message_name();
+	  go_error_at(p->second->location(),
+		      "%qs defined as both imported name and global name",
+		      n.c_str());
+	  go_inform(pf->second, "%qs imported here", n.c_str());
+	}
+
+      // No package scope identifier may be named "init".
+      if (!p->second->is_function()
+	  && Gogo::unpack_hidden_name(p->second->name()) == "init")
+	{
+	  go_error_at(p->second->location(),
+		      "cannot declare init - must be func");
+	}
+    }
+}
+
+// Clear out names in file scope.
+
+void
+Gogo::clear_file_scope()
+{
+  this->package_->bindings()->clear_file_scope(this);
+
+  // Warn about packages which were imported but not used.
+  bool quiet = saw_errors();
+  for (Packages::iterator p = this->packages_.begin();
+       p != this->packages_.end();
+       ++p)
+    {
+      Package* package = p->second;
+      if (package != this->package_ && !quiet)
+        {
+          for (Package::Aliases::const_iterator p1 = package->aliases().begin();
+               p1 != package->aliases().end();
+               ++p1)
+            {
+              if (!p1->second->used())
+                {
+                  // Give a more refined error message if the alias name is known.
+                  std::string pkg_name = package->package_name();
+                  if (p1->first != pkg_name && p1->first[0] != '.')
+                    {
+		      go_error_at(p1->second->location(),
+				  "imported and not used: %s as %s",
+				  Gogo::message_name(pkg_name).c_str(),
+				  Gogo::message_name(p1->first).c_str());
+                    }
+                  else
+		    go_error_at(p1->second->location(),
+				"imported and not used: %s",
+				Gogo::message_name(pkg_name).c_str());
+                }
+            }
+        }
+      package->clear_used();
+    }
+
+  this->current_file_imported_unsafe_ = false;
+}
+
+// Queue up a type specific function for later writing.  These are
+// written out in write_specific_type_functions, called after the
+// parse tree is lowered.
+
+void
+Gogo::queue_specific_type_function(Type* type, Named_type* name, int64_t size,
+				   const std::string& hash_name,
+				   Function_type* hash_fntype,
+				   const std::string& equal_name,
+				   Function_type* equal_fntype)
+{
+  go_assert(!this->specific_type_functions_are_written_);
+  go_assert(!this->in_global_scope());
+  Specific_type_function* tsf = new Specific_type_function(type, name, size,
+							   hash_name,
+							   hash_fntype,
+							   equal_name,
+							   equal_fntype);
+  this->specific_type_functions_.push_back(tsf);
+}
+
+// Look for types which need specific hash or equality functions.
+
+class Specific_type_functions : public Traverse
+{
+ public:
+  Specific_type_functions(Gogo* gogo)
+    : Traverse(traverse_types),
+      gogo_(gogo)
+  { }
+
+  int
+  type(Type*);
+
+ private:
+  Gogo* gogo_;
+};
+
+int
+Specific_type_functions::type(Type* t)
+{
+  Named_object* hash_fn;
+  Named_object* equal_fn;
+  switch (t->classification())
+    {
+    case Type::TYPE_NAMED:
+      {
+	Named_type* nt = t->named_type();
+	if (nt->is_alias())
+	  return TRAVERSE_CONTINUE;
+	if (t->needs_specific_type_functions(this->gogo_))
+	  t->type_functions(this->gogo_, nt, NULL, NULL, &hash_fn, &equal_fn);
+
+	// If this is a struct type, we don't want to make functions
+	// for the unnamed struct.
+	Type* rt = nt->real_type();
+	if (rt->struct_type() == NULL)
+	  {
+	    if (Type::traverse(rt, this) == TRAVERSE_EXIT)
+	      return TRAVERSE_EXIT;
+	  }
+	else
+	  {
+	    // If this type is defined in another package, then we don't
+	    // need to worry about the unexported fields.
+	    bool is_defined_elsewhere = nt->named_object()->package() != NULL;
+	    const Struct_field_list* fields = rt->struct_type()->fields();
+	    for (Struct_field_list::const_iterator p = fields->begin();
+		 p != fields->end();
+		 ++p)
+	      {
+		if (is_defined_elsewhere
+		    && Gogo::is_hidden_name(p->field_name()))
+		  continue;
+		if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
+		  return TRAVERSE_EXIT;
+	      }
+	  }
+
+	return TRAVERSE_SKIP_COMPONENTS;
+      }
+
+    case Type::TYPE_STRUCT:
+    case Type::TYPE_ARRAY:
+      if (t->needs_specific_type_functions(this->gogo_))
+	t->type_functions(this->gogo_, NULL, NULL, NULL, &hash_fn, &equal_fn);
+      break;
+
+    default:
+      break;
+    }
+
+  return TRAVERSE_CONTINUE;
+}
+
+// Write out type specific functions.
+
+void
+Gogo::write_specific_type_functions()
+{
+  Specific_type_functions stf(this);
+  this->traverse(&stf);
+
+  while (!this->specific_type_functions_.empty())
+    {
+      Specific_type_function* tsf = this->specific_type_functions_.back();
+      this->specific_type_functions_.pop_back();
+      tsf->type->write_specific_type_functions(this, tsf->name, tsf->size,
+					       tsf->hash_name,
+					       tsf->hash_fntype,
+					       tsf->equal_name,
+					       tsf->equal_fntype);
+      delete tsf;
+    }
+  this->specific_type_functions_are_written_ = true;
+}
+
+// Traverse the tree.
+
+void
+Gogo::traverse(Traverse* traverse)
+{
+  // Traverse the current package first for consistency.  The other
+  // packages will only contain imported types, constants, and
+  // declarations.
+  if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
+    return;
+  for (Packages::const_iterator p = this->packages_.begin();
+       p != this->packages_.end();
+       ++p)
+    {
+      if (p->second != this->package_)
+	{
+	  if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
+	    break;
+	}
+    }
+}
+
+// Add a type to verify.  This is used for types of sink variables, in
+// order to give appropriate error messages.
+
+void
+Gogo::add_type_to_verify(Type* type)
+{
+  this->verify_types_.push_back(type);
+}
+
+// Traversal class used to verify types.
+
+class Verify_types : public Traverse
+{
+ public:
+  Verify_types()
+    : Traverse(traverse_types)
+  { }
+
+  int
+  type(Type*);
+};
+
+// Verify that a type is correct.
+
+int
+Verify_types::type(Type* t)
+{
+  if (!t->verify())
+    return TRAVERSE_SKIP_COMPONENTS;
+  return TRAVERSE_CONTINUE;
+}
+
+// Verify that all types are correct.
+
+void
+Gogo::verify_types()
+{
+  Verify_types traverse;
+  this->traverse(&traverse);
+
+  for (std::vector<Type*>::iterator p = this->verify_types_.begin();
+       p != this->verify_types_.end();
+       ++p)
+    (*p)->verify();
+  this->verify_types_.clear();
+}
+
+// Traversal class used to lower parse tree.
+
+class Lower_parse_tree : public Traverse
+{
+ public:
+  Lower_parse_tree(Gogo* gogo, Named_object* function)
+    : Traverse(traverse_variables
+	       | traverse_constants
+	       | traverse_functions
+	       | traverse_statements
+	       | traverse_expressions),
+      gogo_(gogo), function_(function), iota_value_(-1), inserter_()
+  { }
+
+  void
+  set_inserter(const Statement_inserter* inserter)
+  { this->inserter_ = *inserter; }
+
+  int
+  variable(Named_object*);
+
+  int
+  constant(Named_object*, bool);
+
+  int
+  function(Named_object*);
+
+  int
+  statement(Block*, size_t* pindex, Statement*);
+
+  int
+  expression(Expression**);
+
+ private:
+  // General IR.
+  Gogo* gogo_;
+  // The function we are traversing.
+  Named_object* function_;
+  // Value to use for the predeclared constant iota.
+  int iota_value_;
+  // Current statement inserter for use by expressions.
+  Statement_inserter inserter_;
+};
+
+// Lower variables.
+
+int
+Lower_parse_tree::variable(Named_object* no)
+{
+  if (!no->is_variable())
+    return TRAVERSE_CONTINUE;
+
+  if (no->is_variable() && no->var_value()->is_global())
+    {
+      // Global variables can have loops in their initialization
+      // expressions.  This is handled in lower_init_expression.
+      no->var_value()->lower_init_expression(this->gogo_, this->function_,
+					     &this->inserter_);
+      return TRAVERSE_CONTINUE;
+    }
+
+  // This is a local variable.  We are going to return
+  // TRAVERSE_SKIP_COMPONENTS here because we want to traverse the
+  // initialization expression when we reach the variable declaration
+  // statement.  However, that means that we need to traverse the type
+  // ourselves.
+  if (no->var_value()->has_type())
+    {
+      Type* type = no->var_value()->type();
+      if (type != NULL)
+	{
+	  if (Type::traverse(type, this) == TRAVERSE_EXIT)
+	    return TRAVERSE_EXIT;
+	}
+    }
+  go_assert(!no->var_value()->has_pre_init());
+
+  return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Lower constants.  We handle constants specially so that we can set
+// the right value for the predeclared constant iota.  This works in
+// conjunction with the way we lower Const_expression objects.
+
+int
+Lower_parse_tree::constant(Named_object* no, bool)
+{
+  Named_constant* nc = no->const_value();
+
+  // Don't get into trouble if the constant's initializer expression
+  // refers to the constant itself.
+  if (nc->lowering())
+    return TRAVERSE_CONTINUE;
+  nc->set_lowering();
+
+  go_assert(this->iota_value_ == -1);
+  this->iota_value_ = nc->iota_value();
+  nc->traverse_expression(this);
+  this->iota_value_ = -1;
+
+  nc->clear_lowering();
+
+  // We will traverse the expression a second time, but that will be
+  // fast.
+
+  return TRAVERSE_CONTINUE;
+}
+
+// Lower the body of a function, and set the closure type.  Record the
+// function while lowering it, so that we can pass it down when
+// lowering an expression.
+
+int
+Lower_parse_tree::function(Named_object* no)
+{
+  no->func_value()->set_closure_type();
+
+  go_assert(this->function_ == NULL);
+  this->function_ = no;
+  int t = no->func_value()->traverse(this);
+  this->function_ = NULL;
+
+  if (t == TRAVERSE_EXIT)
+    return t;
+  return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Lower statement parse trees.
+
+int
+Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
+{
+  // Because we explicitly traverse the statement's contents
+  // ourselves, we want to skip block statements here.  There is
+  // nothing to lower in a block statement.
+  if (sorig->is_block_statement())
+    return TRAVERSE_CONTINUE;
+
+  Statement_inserter hold_inserter(this->inserter_);
+  this->inserter_ = Statement_inserter(block, pindex);
+
+  // Lower the expressions first.
+  int t = sorig->traverse_contents(this);
+  if (t == TRAVERSE_EXIT)
+    {
+      this->inserter_ = hold_inserter;
+      return t;
+    }
+
+  // Keep lowering until nothing changes.
+  Statement* s = sorig;
+  while (true)
+    {
+      Statement* snew = s->lower(this->gogo_, this->function_, block,
+				 &this->inserter_);
+      if (snew == s)
+	break;
+      s = snew;
+      t = s->traverse_contents(this);
+      if (t == TRAVERSE_EXIT)
+	{
+	  this->inserter_ = hold_inserter;
+	  return t;
+	}
+    }
+
+  if (s != sorig)
+    block->replace_statement(*pindex, s);
+
+  this->inserter_ = hold_inserter;
+  return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Lower expression parse trees.
+
+int
+Lower_parse_tree::expression(Expression** pexpr)
+{
+  // We have to lower all subexpressions first, so that we can get
+  // their type if necessary.  This is awkward, because we don't have
+  // a postorder traversal pass.
+  if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
+    return TRAVERSE_EXIT;
+  // Keep lowering until nothing changes.
+  while (true)
+    {
+      Expression* e = *pexpr;
+      Expression* enew = e->lower(this->gogo_, this->function_,
+				  &this->inserter_, this->iota_value_);
+      if (enew == e)
+	break;
+      if (enew->traverse_subexpressions(this) == TRAVERSE_EXIT)
+	return TRAVERSE_EXIT;
+      *pexpr = enew;
+    }
+  return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Lower the parse tree.  This is called after the parse is complete,
+// when all names should be resolved.
+
+void
+Gogo::lower_parse_tree()
+{
+  Lower_parse_tree lower_parse_tree(this, NULL);
+  this->traverse(&lower_parse_tree);
+
+  // There might be type definitions that involve expressions such as the
+  // array length.  Make sure to lower these expressions as well.  Otherwise,
+  // errors hidden within a type can introduce unexpected errors into later
+  // passes.
+  for (std::vector<Type*>::iterator p = this->verify_types_.begin();
+       p != this->verify_types_.end();
+       ++p)
+    Type::traverse(*p, &lower_parse_tree);
+}
+
+// Lower a block.
+
+void
+Gogo::lower_block(Named_object* function, Block* block)
+{
+  Lower_parse_tree lower_parse_tree(this, function);
+  block->traverse(&lower_parse_tree);
+}
+
+// Lower an expression.  INSERTER may be NULL, in which case the
+// expression had better not need to create any temporaries.
+
+void
+Gogo::lower_expression(Named_object* function, Statement_inserter* inserter,
+		       Expression** pexpr)
+{
+  Lower_parse_tree lower_parse_tree(this, function);
+  if (inserter != NULL)
+    lower_parse_tree.set_inserter(inserter);
+  lower_parse_tree.expression(pexpr);
+}
+
+// Lower a constant.  This is called when lowering a reference to a
+// constant.  We have to make sure that the constant has already been
+// lowered.
+
+void
+Gogo::lower_constant(Named_object* no)
+{
+  go_assert(no->is_const());
+  Lower_parse_tree lower(this, NULL);
+  lower.constant(no, false);
+}
+
+// Traverse the tree to create function descriptors as needed.
+
+class Create_function_descriptors : public Traverse
+{
+ public:
+  Create_function_descriptors(Gogo* gogo)
+    : Traverse(traverse_functions | traverse_expressions),
+      gogo_(gogo)
+  { }
+
+  int
+  function(Named_object*);
+
+  int
+  expression(Expression**);
+
+ private:
+  Gogo* gogo_;
+};
+
+// Create a descriptor for every top-level exported function.
+
+int
+Create_function_descriptors::function(Named_object* no)
+{
+  if (no->is_function()
+      && no->func_value()->enclosing() == NULL
+      && !no->func_value()->is_method()
+      && !Gogo::is_hidden_name(no->name())
+      && !Gogo::is_thunk(no))
+    no->func_value()->descriptor(this->gogo_, no);
+
+  return TRAVERSE_CONTINUE;
+}
+
+// If we see a function referenced in any way other than calling it,
+// create a descriptor for it.
+
+int
+Create_function_descriptors::expression(Expression** pexpr)
+{
+  Expression* expr = *pexpr;
+
+  Func_expression* fe = expr->func_expression();
+  if (fe != NULL)
+    {
+      // We would not get here for a call to this function, so this is
+      // a reference to a function other than calling it.  We need a
+      // descriptor.
+      if (fe->closure() != NULL)
+	return TRAVERSE_CONTINUE;
+      Named_object* no = fe->named_object();
+      if (no->is_function() && !no->func_value()->is_method())
+	no->func_value()->descriptor(this->gogo_, no);
+      else if (no->is_function_declaration()
+	       && !no->func_declaration_value()->type()->is_method()
+	       && !Linemap::is_predeclared_location(no->location()))
+	no->func_declaration_value()->descriptor(this->gogo_, no);
+      return TRAVERSE_CONTINUE;
+    }
+
+  Bound_method_expression* bme = expr->bound_method_expression();
+  if (bme != NULL)
+    {
+      // We would not get here for a call to this method, so this is a
+      // method value.  We need to create a thunk.
+      Bound_method_expression::create_thunk(this->gogo_, bme->method(),
+					    bme->function());
+      return TRAVERSE_CONTINUE;
+    }
+
+  Interface_field_reference_expression* ifre =
+    expr->interface_field_reference_expression();
+  if (ifre != NULL)
+    {
+      // We would not get here for a call to this interface method, so
+      // this is a method value.  We need to create a thunk.
+      Interface_type* type = ifre->expr()->type()->interface_type();
+      if (type != NULL)
+	Interface_field_reference_expression::create_thunk(this->gogo_, type,
+							   ifre->name());
+      return TRAVERSE_CONTINUE;
+    }
+
+  Call_expression* ce = expr->call_expression();
+  if (ce != NULL)
+    {
+      Expression* fn = ce->fn();
+      if (fn->func_expression() != NULL
+	  || fn->bound_method_expression() != NULL
+	  || fn->interface_field_reference_expression() != NULL)
+	{
+	  // Traverse the arguments but not the function.
+	  Expression_list* args = ce->args();
+	  if (args != NULL)
+	    {
+	      if (args->traverse(this) == TRAVERSE_EXIT)
+		return TRAVERSE_EXIT;
+	    }
+	  return TRAVERSE_SKIP_COMPONENTS;
+	}
+    }
+
+  return TRAVERSE_CONTINUE;
+}
+
+// Create function descriptors as needed.  We need a function
+// descriptor for all exported functions and for all functions that
+// are referenced without being called.
+
+void
+Gogo::create_function_descriptors()
+{
+  // Create a function descriptor for any exported function that is
+  // declared in this package.  This is so that we have a descriptor
+  // for functions written in assembly.  Gather the descriptors first
+  // so that we don't add declarations while looping over them.
+  std::vector<Named_object*> fndecls;
+  Bindings* b = this->package_->bindings();
+  for (Bindings::const_declarations_iterator p = b->begin_declarations();
+       p != b->end_declarations();
+       ++p)
+    {
+      Named_object* no = p->second;
+      if (no->is_function_declaration()
+	  && !no->func_declaration_value()->type()->is_method()
+	  && !Linemap::is_predeclared_location(no->location())
+	  && !Gogo::is_hidden_name(no->name()))
+	fndecls.push_back(no);
+    }
+  for (std::vector<Named_object*>::const_iterator p = fndecls.begin();
+       p != fndecls.end();
+       ++p)
+    (*p)->func_declaration_value()->descriptor(this, *p);
+  fndecls.clear();
+
+  Create_function_descriptors cfd(this);
+  this->traverse(&cfd);
+}
+
+// Look for interface types to finalize methods of inherited
+// interfaces.
+
+class Finalize_methods : public Traverse
+{
+ public:
+  Finalize_methods(Gogo* gogo)
+    : Traverse(traverse_types),
+      gogo_(gogo)
+  { }
+
+  int
+  type(Type*);
+
+ private:
+  Gogo* gogo_;
+};
+
+// Finalize the methods of an interface type.
+
+int
+Finalize_methods::type(Type* t)
+{
+  // Check the classification so that we don't finalize the methods
+  // twice for a named interface type.
+  switch (t->classification())
+    {
+    case Type::TYPE_INTERFACE:
+      t->interface_type()->finalize_methods();
+      break;
+
+    case Type::TYPE_NAMED:
+      {
+	Named_type* nt = t->named_type();
+	Type* rt = nt->real_type();
+	if (rt->classification() != Type::TYPE_STRUCT)
+	  {
+	    // Finalize the methods of the real type first.
+	    if (Type::traverse(rt, this) == TRAVERSE_EXIT)
+	      return TRAVERSE_EXIT;
+
+	    // Finalize the methods of this type.
+	    nt->finalize_methods(this->gogo_);
+	  }
+	else
+	  {
+	    // We don't want to finalize the methods of a named struct
+	    // type, as the methods should be attached to the named
+	    // type, not the struct type.  We just want to finalize
+	    // the field types.
+	    //
+	    // It is possible that a field type refers indirectly to
+	    // this type, such as via a field with function type with
+	    // an argument or result whose type is this type.  To
+	    // avoid the cycle, first finalize the methods of any
+	    // embedded types, which are the only types we need to
+	    // know to finalize the methods of this type.
+	    const Struct_field_list* fields = rt->struct_type()->fields();
+	    if (fields != NULL)
+	      {
+		for (Struct_field_list::const_iterator pf = fields->begin();
+		     pf != fields->end();
+		     ++pf)
+		  {
+		    if (pf->is_anonymous())
+		      {
+			if (Type::traverse(pf->type(), this) == TRAVERSE_EXIT)
+			  return TRAVERSE_EXIT;
+		      }
+		  }
+	      }
+
+	    // Finalize the methods of this type.
+	    nt->finalize_methods(this->gogo_);
+
+	    // Finalize all the struct fields.
+	    if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
+	      return TRAVERSE_EXIT;
+	  }
+
+	// If this type is defined in a different package, then finalize the
+	// types of all the methods, since we won't see them otherwise.
+	if (nt->named_object()->package() != NULL && nt->has_any_methods())
+	  {
+	    const Methods* methods = nt->methods();
+	    for (Methods::const_iterator p = methods->begin();
+		 p != methods->end();
+		 ++p)
+	      {
+		if (Type::traverse(p->second->type(), this) == TRAVERSE_EXIT)
+		  return TRAVERSE_EXIT;
+	      }
+	  }
+
+	// Finalize the types of all methods that are declared but not
+	// defined, since we won't see the declarations otherwise.
+	if (nt->named_object()->package() == NULL
+	    && nt->local_methods() != NULL)
+	  {
+	    const Bindings* methods = nt->local_methods();
+	    for (Bindings::const_declarations_iterator p =
+		   methods->begin_declarations();
+		 p != methods->end_declarations();
+		 p++)
+	      {
+		if (p->second->is_function_declaration())
+		  {
+		    Type* mt = p->second->func_declaration_value()->type();
+		    if (Type::traverse(mt, this) == TRAVERSE_EXIT)
+		      return TRAVERSE_EXIT;
+		  }
+	      }
+	  }
+
+	return TRAVERSE_SKIP_COMPONENTS;
+      }
+
+    case Type::TYPE_STRUCT:
+      // Traverse the field types first in case there is an embedded
+      // field with methods that the struct should inherit.
+      if (t->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
+          return TRAVERSE_EXIT;
+      t->struct_type()->finalize_methods(this->gogo_);
+      return TRAVERSE_SKIP_COMPONENTS;
+
+    default:
+      break;
+    }
+
+  return TRAVERSE_CONTINUE;
+}
+
+// Finalize method lists and build stub methods for types.
+
+void
+Gogo::finalize_methods()
+{
+  Finalize_methods finalize(this);
+  this->traverse(&finalize);
+}
+
+// Set types for unspecified variables and constants.
+
+void
+Gogo::determine_types()
+{
+  Bindings* bindings = this->current_bindings();
+  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
+       p != bindings->end_definitions();
+       ++p)
+    {
+      if ((*p)->is_function())
+	(*p)->func_value()->determine_types();
+      else if ((*p)->is_variable())
+	(*p)->var_value()->determine_type();
+      else if ((*p)->is_const())
+	(*p)->const_value()->determine_type();
+
+      // See if a variable requires us to build an initialization
+      // function.  We know that we will see all global variables
+      // here.
+      if (!this->need_init_fn_ && (*p)->is_variable())
+	{
+	  Variable* variable = (*p)->var_value();
+
+	  // If this is a global variable which requires runtime
+	  // initialization, we need an initialization function.
+	  if (!variable->is_global())
+	    ;
+	  else if (variable->init() == NULL)
+	    ;
+	  else if (variable->type()->interface_type() != NULL)
+	    this->need_init_fn_ = true;
+	  else if (variable->init()->is_constant())
+	    ;
+	  else if (!variable->init()->is_composite_literal())
+	    this->need_init_fn_ = true;
+	  else if (variable->init()->is_nonconstant_composite_literal())
+	    this->need_init_fn_ = true;
+
+	  // If this is a global variable which holds a pointer value,
+	  // then we need an initialization function to register it as a
+	  // GC root.
+	  if (variable->is_global() && variable->type()->has_pointer())
+	    this->need_init_fn_ = true;
+	}
+    }
+
+  // Determine the types of constants in packages.
+  for (Packages::const_iterator p = this->packages_.begin();
+       p != this->packages_.end();
+       ++p)
+    p->second->determine_types();
+}
+
+// Traversal class used for type checking.
+
+class Check_types_traverse : public Traverse
+{
+ public:
+  Check_types_traverse(Gogo* gogo)
+    : Traverse(traverse_variables
+	       | traverse_constants
+	       | traverse_functions
+	       | traverse_statements
+	       | traverse_expressions),
+      gogo_(gogo)
+  { }
+
+  int
+  variable(Named_object*);
+
+  int
+  constant(Named_object*, bool);
+
+  int
+  function(Named_object*);
+
+  int
+  statement(Block*, size_t* pindex, Statement*);
+
+  int
+  expression(Expression**);
+
+ private:
+  // General IR.
+  Gogo* gogo_;
+};
+
+// Check that a variable initializer has the right type.
+
+int
+Check_types_traverse::variable(Named_object* named_object)
+{
+  if (named_object->is_variable())
+    {
+      Variable* var = named_object->var_value();
+
+      // Give error if variable type is not defined.
+      var->type()->base();
+
+      Expression* init = var->init();
+      std::string reason;
+      if (init != NULL
+	  && !Type::are_assignable(var->type(), init->type(), &reason))
+	{
+	  if (reason.empty())
+	    go_error_at(var->location(), "incompatible type in initialization");
+	  else
+	    go_error_at(var->location(),
+			"incompatible type in initialization (%s)",
+			reason.c_str());
+          init = Expression::make_error(named_object->location());
+	  var->clear_init();
+	}
+      else if (init != NULL
+               && init->func_expression() != NULL)
+        {
+          Named_object* no = init->func_expression()->named_object();
+          Function_type* fntype;
+          if (no->is_function())
+            fntype = no->func_value()->type();
+          else if (no->is_function_declaration())
+            fntype = no->func_declaration_value()->type();
+          else
+            go_unreachable();
+
+          // Builtin functions cannot be used as function values for variable
+          // initialization.
+          if (fntype->is_builtin())
+            {
+	      go_error_at(init->location(),
+			  "invalid use of special builtin function %qs; "
+			  "must be called",
+			  no->message_name().c_str());
+            }
+        }
+      if (!var->is_used()
+          && !var->is_global()
+          && !var->is_parameter()
+          && !var->is_receiver()
+          && !var->type()->is_error()
+          && (init == NULL || !init->is_error_expression())
+          && !Lex::is_invalid_identifier(named_object->name()))
+	go_error_at(var->location(), "%qs declared and not used",
+		    named_object->message_name().c_str());
+    }
+  return TRAVERSE_CONTINUE;
+}
+
+// Check that a constant initializer has the right type.
+
+int
+Check_types_traverse::constant(Named_object* named_object, bool)
+{
+  Named_constant* constant = named_object->const_value();
+  Type* ctype = constant->type();
+  if (ctype->integer_type() == NULL
+      && ctype->float_type() == NULL
+      && ctype->complex_type() == NULL
+      && !ctype->is_boolean_type()
+      && !ctype->is_string_type())
+    {
+      if (ctype->is_nil_type())
+	go_error_at(constant->location(), "const initializer cannot be nil");
+      else if (!ctype->is_error())
+	go_error_at(constant->location(), "invalid constant type");
+      constant->set_error();
+    }
+  else if (!constant->expr()->is_constant())
+    {
+      go_error_at(constant->expr()->location(), "expression is not constant");
+      constant->set_error();
+    }
+  else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
+				 NULL))
+    {
+      go_error_at(constant->location(),
+                  "initialization expression has wrong type");
+      constant->set_error();
+    }
+  return TRAVERSE_CONTINUE;
+}
+
+// There are no types to check in a function, but this is where we
+// issue warnings about labels which are defined but not referenced.
+
+int
+Check_types_traverse::function(Named_object* no)
+{
+  no->func_value()->check_labels();
+  return TRAVERSE_CONTINUE;
+}
+
+// Check that types are valid in a statement.
+
+int
+Check_types_traverse::statement(Block*, size_t*, Statement* s)
+{
+  s->check_types(this->gogo_);
+  return TRAVERSE_CONTINUE;
+}
+
+// Check that types are valid in an expression.
+
+int
+Check_types_traverse::expression(Expression** expr)
+{
+  (*expr)->check_types(this->gogo_);
+  return TRAVERSE_CONTINUE;
+}
+
+// Check that types are valid.
+
+void
+Gogo::check_types()
+{
+  Check_types_traverse traverse(this);
+  this->traverse(&traverse);
+
+  Bindings* bindings = this->current_bindings();
+  for (Bindings::const_declarations_iterator p = bindings->begin_declarations();
+       p != bindings->end_declarations();
+       ++p)
+    {
+      // Also check the types in a function declaration's signature.
+      Named_object* no = p->second;
+      if (no->is_function_declaration())
+        no->func_declaration_value()->check_types();
+    }
+}
+
+// Check the types in a single block.
+
+void
+Gogo::check_types_in_block(Block* block)
+{
+  Check_types_traverse traverse(this);
+  block->traverse(&traverse);
+}
+
+// A traversal class used to find a single shortcut operator within an
+// expression.
+
+class Find_shortcut : public Traverse
+{
+ public:
+  Find_shortcut()
+    : Traverse(traverse_blocks
+	       | traverse_statements
+	       | traverse_expressions),
+      found_(NULL)
+  { }
+
+  // A pointer to the expression which was found, or NULL if none was
+  // found.
+  Expression**
+  found() const
+  { return this->found_; }
+
+ protected:
+  int
+  block(Block*)
+  { return TRAVERSE_SKIP_COMPONENTS; }
+
+  int
+  statement(Block*, size_t*, Statement*)
+  { return TRAVERSE_SKIP_COMPONENTS; }
+
+  int
+  expression(Expression**);
+
+ private:
+  Expression** found_;
+};
+
+// Find a shortcut expression.
+
+int
+Find_shortcut::expression(Expression** pexpr)
+{
+  Expression* expr = *pexpr;
+  Binary_expression* be = expr->binary_expression();
+  if (be == NULL)
+    return TRAVERSE_CONTINUE;
+  Operator op = be->op();
+  if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
+    return TRAVERSE_CONTINUE;
+  go_assert(this->found_ == NULL);
+  this->found_ = pexpr;
+  return TRAVERSE_EXIT;
+}
+
+// A traversal class used to turn shortcut operators into explicit if
+// statements.
+
+class Shortcuts : public Traverse
+{
+ public:
+  Shortcuts(Gogo* gogo)
+    : Traverse(traverse_variables
+	       | traverse_statements),
+      gogo_(gogo)
+  { }
+
+ protected:
+  int
+  variable(Named_object*);
+
+  int
+  statement(Block*, size_t*, Statement*);
+
+ private:
+  // Convert a shortcut operator.
+  Statement*
+  convert_shortcut(Block* enclosing, Expression** pshortcut);
+
+  // The IR.
+  Gogo* gogo_;
+};
+
+// Remove shortcut operators in a single statement.
+
+int
+Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
+{
+  // FIXME: This approach doesn't work for switch statements, because
+  // we add the new statements before the whole switch when we need to
+  // instead add them just before the switch expression.  The right
+  // fix is probably to lower switch statements with nonconstant cases
+  // to a series of conditionals.
+  if (s->switch_statement() != NULL)
+    return TRAVERSE_CONTINUE;
+
+  while (true)
+    {
+      Find_shortcut find_shortcut;
+
+      // If S is a variable declaration, then ordinary traversal won't
+      // do anything.  We want to explicitly traverse the
+      // initialization expression if there is one.
+      Variable_declaration_statement* vds = s->variable_declaration_statement();
+      Expression* init = NULL;
+      if (vds == NULL)
+	s->traverse_contents(&find_shortcut);
+      else
+	{
+	  init = vds->var()->var_value()->init();
+	  if (init == NULL)
+	    return TRAVERSE_CONTINUE;
+	  init->traverse(&init, &find_shortcut);
+	}
+      Expression** pshortcut = find_shortcut.found();
+      if (pshortcut == NULL)
+	return TRAVERSE_CONTINUE;
+
+      Statement* snew = this->convert_shortcut(block, pshortcut);
+      block->insert_statement_before(*pindex, snew);
+      ++*pindex;
+
+      if (pshortcut == &init)
+	vds->var()->var_value()->set_init(init);
+    }
+}
+
+// Remove shortcut operators in the initializer of a global variable.
+
+int
+Shortcuts::variable(Named_object* no)
+{
+  if (no->is_result_variable())
+    return TRAVERSE_CONTINUE;
+  Variable* var = no->var_value();
+  Expression* init = var->init();
+  if (!var->is_global() || init == NULL)
+    return TRAVERSE_CONTINUE;
+
+  while (true)
+    {
+      Find_shortcut find_shortcut;
+      init->traverse(&init, &find_shortcut);
+      Expression** pshortcut = find_shortcut.found();
+      if (pshortcut == NULL)
+	return TRAVERSE_CONTINUE;
+
+      Statement* snew = this->convert_shortcut(NULL, pshortcut);
+      var->add_preinit_statement(this->gogo_, snew);
+      if (pshortcut == &init)
+	var->set_init(init);
+    }
+}
+
+// Given an expression which uses a shortcut operator, return a
+// statement which implements it, and update *PSHORTCUT accordingly.
+
+Statement*
+Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
+{
+  Binary_expression* shortcut = (*pshortcut)->binary_expression();
+  Expression* left = shortcut->left();
+  Expression* right = shortcut->right();
+  Location loc = shortcut->location();
+
+  Block* retblock = new Block(enclosing, loc);
+  retblock->set_end_location(loc);
+
+  Temporary_statement* ts = Statement::make_temporary(shortcut->type(),
+						      left, loc);
+  retblock->add_statement(ts);
+
+  Block* block = new Block(retblock, loc);
+  block->set_end_location(loc);
+  Expression* tmpref = Expression::make_temporary_reference(ts, loc);
+  Statement* assign = Statement::make_assignment(tmpref, right, loc);
+  block->add_statement(assign);
+
+  Expression* cond = Expression::make_temporary_reference(ts, loc);
+  if (shortcut->binary_expression()->op() == OPERATOR_OROR)
+    cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
+
+  Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
+							 loc);
+  retblock->add_statement(if_statement);
+
+  *pshortcut = Expression::make_temporary_reference(ts, loc);
+
+  delete shortcut;
+
+  // Now convert any shortcut operators in LEFT and RIGHT.
+  Shortcuts shortcuts(this->gogo_);
+  retblock->traverse(&shortcuts);
+
+  return Statement::make_block_statement(retblock, loc);
+}
+
+// Turn shortcut operators into explicit if statements.  Doing this
+// considerably simplifies the order of evaluation rules.
+
+void
+Gogo::remove_shortcuts()
+{
+  Shortcuts shortcuts(this);
+  this->traverse(&shortcuts);
+}
+
+// A traversal class which finds all the expressions which must be
+// evaluated in order within a statement or larger expression.  This
+// is used to implement the rules about order of evaluation.
+
+class Find_eval_ordering : public Traverse
+{
+ private:
+  typedef std::vector<Expression**> Expression_pointers;
+
+ public:
+  Find_eval_ordering()
+    : Traverse(traverse_blocks
+	       | traverse_statements
+	       | traverse_expressions),
+      exprs_()
+  { }
+
+  size_t
+  size() const
+  { return this->exprs_.size(); }
+
+  typedef Expression_pointers::const_iterator const_iterator;
+
+  const_iterator
+  begin() const
+  { return this->exprs_.begin(); }
+
+  const_iterator
+  end() const
+  { return this->exprs_.end(); }
+
+ protected:
+  int
+  block(Block*)
+  { return TRAVERSE_SKIP_COMPONENTS; }
+
+  int
+  statement(Block*, size_t*, Statement*)
+  { return TRAVERSE_SKIP_COMPONENTS; }
+
+  int
+  expression(Expression**);
+
+ private:
+  // A list of pointers to expressions with side-effects.
+  Expression_pointers exprs_;
+};
+
+// If an expression must be evaluated in order, put it on the list.
+
+int
+Find_eval_ordering::expression(Expression** expression_pointer)
+{
+  // We have to look at subexpressions before this one.
+  if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
+    return TRAVERSE_EXIT;
+  if ((*expression_pointer)->must_eval_in_order())
+    this->exprs_.push_back(expression_pointer);
+  return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// A traversal class for ordering evaluations.
+
+class Order_eval : public Traverse
+{
+ public:
+  Order_eval(Gogo* gogo)
+    : Traverse(traverse_variables
+	       | traverse_statements),
+      gogo_(gogo)
+  { }
+
+  int
+  variable(Named_object*);
+
+  int
+  statement(Block*, size_t*, Statement*);
+
+ private:
+  // The IR.
+  Gogo* gogo_;
+};
+
+// Implement the order of evaluation rules for a statement.
+
+int
+Order_eval::statement(Block* block, size_t* pindex, Statement* stmt)
+{
+  // FIXME: This approach doesn't work for switch statements, because
+  // we add the new statements before the whole switch when we need to
+  // instead add them just before the switch expression.  The right
+  // fix is probably to lower switch statements with nonconstant cases
+  // to a series of conditionals.
+  if (stmt->switch_statement() != NULL)
+    return TRAVERSE_CONTINUE;
+
+  Find_eval_ordering find_eval_ordering;
+
+  // If S is a variable declaration, then ordinary traversal won't do
+  // anything.  We want to explicitly traverse the initialization
+  // expression if there is one.
+  Variable_declaration_statement* vds = stmt->variable_declaration_statement();
+  Expression* init = NULL;
+  Expression* orig_init = NULL;
+  if (vds == NULL)
+    stmt->traverse_contents(&find_eval_ordering);
+  else
+    {
+      init = vds->var()->var_value()->init();
+      if (init == NULL)
+	return TRAVERSE_CONTINUE;
+      orig_init = init;
+
+      // It might seem that this could be
+      // init->traverse_subexpressions.  Unfortunately that can fail
+      // in a case like
+      //   var err os.Error
+      //   newvar, err := call(arg())
+      // Here newvar will have an init of call result 0 of
+      // call(arg()).  If we only traverse subexpressions, we will
+      // only find arg(), and we won't bother to move anything out.
+      // Then we get to the assignment to err, we will traverse the
+      // whole statement, and this time we will find both call() and
+      // arg(), and so we will move them out.  This will cause them to
+      // be put into temporary variables before the assignment to err
+      // but after the declaration of newvar.  To avoid that problem,
+      // we traverse the entire expression here.
+      Expression::traverse(&init, &find_eval_ordering);
+    }
+
+  size_t c = find_eval_ordering.size();
+  if (c == 0)
+    return TRAVERSE_CONTINUE;
+
+  // If there is only one expression with a side-effect, we can
+  // usually leave it in place.
+  if (c == 1)
+    {
+      switch (stmt->classification())
+	{
+	case Statement::STATEMENT_ASSIGNMENT:
+	  // For an assignment statement, we need to evaluate an
+	  // expression on the right hand side before we evaluate any
+	  // index expression on the left hand side, so for that case
+	  // we always move the expression.  Otherwise we mishandle
+	  // m[0] = len(m) where m is a map.
+	  break;
+
+	case Statement::STATEMENT_EXPRESSION:
+	  {
+	    // If this is a call statement that doesn't return any
+	    // values, it will not have been counted as a value to
+	    // move.  We need to move any subexpressions in case they
+	    // are themselves call statements that require passing a
+	    // closure.
+	    Expression* expr = stmt->expression_statement()->expr();
+	    if (expr->call_expression() != NULL
+		&& expr->call_expression()->result_count() == 0)
+	      break;
+	    return TRAVERSE_CONTINUE;
+	  }
+
+	default:
+	  // We can leave the expression in place.
+	  return TRAVERSE_CONTINUE;
+	}
+    }
+
+  bool is_thunk = stmt->thunk_statement() != NULL;
+  Expression_statement* es = stmt->expression_statement();
+  for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
+       p != find_eval_ordering.end();
+       ++p)
+    {
+      Expression** pexpr = *p;
+
+      // The last expression in a thunk will be the call passed to go
+      // or defer, which we must not evaluate early.
+      if (is_thunk && p + 1 == find_eval_ordering.end())
+	break;
+
+      Location loc = (*pexpr)->location();
+      Statement* s;
+      if ((*pexpr)->call_expression() == NULL
+	  || (*pexpr)->call_expression()->result_count() < 2)
+	{
+	  Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
+							      loc);
+	  s = ts;
+	  *pexpr = Expression::make_temporary_reference(ts, loc);
+	}
+      else
+	{
+	  // A call expression which returns multiple results needs to
+	  // be handled specially.  We can't create a temporary
+	  // because there is no type to give it.  Any actual uses of
+	  // the values will be done via Call_result_expressions.
+          //
+          // Since a given call expression can be shared by multiple
+          // Call_result_expressions, avoid hoisting the call the
+          // second time we see it here. In addition, don't try to
+          // hoist the top-level multi-return call in the statement,
+          // since doing this would result a tree with more than one copy
+          // of the call.
+          if (this->remember_expression(*pexpr))
+            s = NULL;
+          else if (es != NULL && *pexpr == es->expr())
+            s = NULL;
+          else
+            s = Statement::make_statement(*pexpr, true);
+        }
+
+      if (s != NULL)
+        {
+          block->insert_statement_before(*pindex, s);
+          ++*pindex;
+        }
+    }
+
+  if (init != orig_init)
+    vds->var()->var_value()->set_init(init);
+
+  return TRAVERSE_CONTINUE;
+}
+
+// Implement the order of evaluation rules for the initializer of a
+// global variable.
+
+int
+Order_eval::variable(Named_object* no)
+{
+  if (no->is_result_variable())
+    return TRAVERSE_CONTINUE;
+  Variable* var = no->var_value();
+  Expression* init = var->init();
+  if (!var->is_global() || init == NULL)
+    return TRAVERSE_CONTINUE;
+
+  Find_eval_ordering find_eval_ordering;
+  Expression::traverse(&init, &find_eval_ordering);
+
+  if (find_eval_ordering.size() <= 1)
+    {
+      // If there is only one expression with a side-effect, we can
+      // leave it in place.
+      return TRAVERSE_SKIP_COMPONENTS;
+    }
+
+  Expression* orig_init = init;
+
+  for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
+       p != find_eval_ordering.end();
+       ++p)
+    {
+      Expression** pexpr = *p;
+      Location loc = (*pexpr)->location();
+      Statement* s;
+      if ((*pexpr)->call_expression() == NULL
+	  || (*pexpr)->call_expression()->result_count() < 2)
+	{
+	  Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
+							      loc);
+	  s = ts;
+	  *pexpr = Expression::make_temporary_reference(ts, loc);
+	}
+      else
+	{
+	  // A call expression which returns multiple results needs to
+	  // be handled specially.
+	  s = Statement::make_statement(*pexpr, true);
+	}
+      var->add_preinit_statement(this->gogo_, s);
+    }
+
+  if (init != orig_init)
+    var->set_init(init);
+
+  return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Use temporary variables to implement the order of evaluation rules.
+
+void
+Gogo::order_evaluations()
+{
+  Order_eval order_eval(this);
+  this->traverse(&order_eval);
+}
+
+// Traversal to flatten parse tree after order of evaluation rules are applied.
+
+class Flatten : public Traverse
+{
+ public:
+  Flatten(Gogo* gogo, Named_object* function)
+    : Traverse(traverse_variables
+	       | traverse_functions
+	       | traverse_statements
+	       | traverse_expressions),
+      gogo_(gogo), function_(function), inserter_()
+  { }
+
+  void
+  set_inserter(const Statement_inserter* inserter)
+  { this->inserter_ = *inserter; }
+
+  int
+  variable(Named_object*);
+
+  int
+  function(Named_object*);
+
+  int
+  statement(Block*, size_t* pindex, Statement*);
+
+  int
+  expression(Expression**);
+
+ private:
+  // General IR.
+  Gogo* gogo_;
+  // The function we are traversing.
+  Named_object* function_;
+  // Current statement inserter for use by expressions.
+  Statement_inserter inserter_;
+};
+
+// Flatten variables.
+
+int
+Flatten::variable(Named_object* no)
+{
+  if (!no->is_variable())
+    return TRAVERSE_CONTINUE;
+
+  if (no->is_variable() && no->var_value()->is_global())
+    {
+      // Global variables can have loops in their initialization
+      // expressions.  This is handled in flatten_init_expression.
+      no->var_value()->flatten_init_expression(this->gogo_, this->function_,
+                                               &this->inserter_);
+      return TRAVERSE_CONTINUE;
+    }
+
+  go_assert(!no->var_value()->has_pre_init());
+
+  return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Flatten the body of a function.  Record the function while flattening it,
+// so that we can pass it down when flattening an expression.
+
+int
+Flatten::function(Named_object* no)
+{
+  go_assert(this->function_ == NULL);
+  this->function_ = no;
+  int t = no->func_value()->traverse(this);
+  this->function_ = NULL;
+
+  if (t == TRAVERSE_EXIT)
+    return t;
+  return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Flatten statement parse trees.
+
+int
+Flatten::statement(Block* block, size_t* pindex, Statement* sorig)
+{
+  // Because we explicitly traverse the statement's contents
+  // ourselves, we want to skip block statements here.  There is
+  // nothing to flatten in a block statement.
+  if (sorig->is_block_statement())
+    return TRAVERSE_CONTINUE;
+
+  Statement_inserter hold_inserter(this->inserter_);
+  this->inserter_ = Statement_inserter(block, pindex);
+
+  // Flatten the expressions first.
+  int t = sorig->traverse_contents(this);
+  if (t == TRAVERSE_EXIT)
+    {
+      this->inserter_ = hold_inserter;
+      return t;
+    }
+
+  // Keep flattening until nothing changes.
+  Statement* s = sorig;
+  while (true)
+    {
+      Statement* snew = s->flatten(this->gogo_, this->function_, block,
+                                   &this->inserter_);
+      if (snew == s)
+	break;
+      s = snew;
+      t = s->traverse_contents(this);
+      if (t == TRAVERSE_EXIT)
+	{
+	  this->inserter_ = hold_inserter;
+	  return t;
+	}
+    }
+
+  if (s != sorig)
+    block->replace_statement(*pindex, s);
+
+  this->inserter_ = hold_inserter;
+  return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Flatten expression parse trees.
+
+int
+Flatten::expression(Expression** pexpr)
+{
+  // Keep flattening until nothing changes.
+  while (true)
+    {
+      Expression* e = *pexpr;
+      if (e->traverse_subexpressions(this) == TRAVERSE_EXIT)
+        return TRAVERSE_EXIT;
+
+      Expression* enew = e->flatten(this->gogo_, this->function_,
+                                    &this->inserter_);
+      if (enew == e)
+	break;
+      *pexpr = enew;
+    }
+  return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Flatten a block.
+
+void
+Gogo::flatten_block(Named_object* function, Block* block)
+{
+  Flatten flatten(this, function);
+  block->traverse(&flatten);
+}
+
+// Flatten an expression.  INSERTER may be NULL, in which case the
+// expression had better not need to create any temporaries.
+
+void
+Gogo::flatten_expression(Named_object* function, Statement_inserter* inserter,
+                         Expression** pexpr)
+{
+  Flatten flatten(this, function);
+  if (inserter != NULL)
+    flatten.set_inserter(inserter);
+  flatten.expression(pexpr);
+}
+
+void
+Gogo::flatten()
+{
+  Flatten flatten(this, NULL);
+  this->traverse(&flatten);
+}
+
+// Traversal to convert calls to the predeclared recover function to
+// pass in an argument indicating whether it can recover from a panic
+// or not.
+
+class Convert_recover : public Traverse
+{
+ public:
+  Convert_recover(Named_object* arg)
+    : Traverse(traverse_expressions),
+      arg_(arg)
+  { }
+
+ protected:
+  int
+  expression(Expression**);
+
+ private:
+  // The argument to pass to the function.
+  Named_object* arg_;
+};
+
+// Convert calls to recover.
+
+int
+Convert_recover::expression(Expression** pp)
+{
+  Call_expression* ce = (*pp)->call_expression();
+  if (ce != NULL && ce->is_recover_call())
+    ce->set_recover_arg(Expression::make_var_reference(this->arg_,
+						       ce->location()));
+  return TRAVERSE_CONTINUE;
+}
+
+// Traversal for build_recover_thunks.
+
+class Build_recover_thunks : public Traverse
+{
+ public:
+  Build_recover_thunks(Gogo* gogo)
+    : Traverse(traverse_functions),
+      gogo_(gogo)
+  { }
+
+  int
+  function(Named_object*);
+
+ private:
+  Expression*
+  can_recover_arg(Location);
+
+  // General IR.
+  Gogo* gogo_;
+};
+
+// If this function calls recover, turn it into a thunk.
+
+int
+Build_recover_thunks::function(Named_object* orig_no)
+{
+  Function* orig_func = orig_no->func_value();
+  if (!orig_func->calls_recover()
+      || orig_func->is_recover_thunk()
+      || orig_func->has_recover_thunk())
+    return TRAVERSE_CONTINUE;
+
+  Gogo* gogo = this->gogo_;
+  Location location = orig_func->location();
+
+  static int count;
+  char buf[50];
+
+  Function_type* orig_fntype = orig_func->type();
+  Typed_identifier_list* new_params = new Typed_identifier_list();
+  std::string receiver_name;
+  if (orig_fntype->is_method())
+    {
+      const Typed_identifier* receiver = orig_fntype->receiver();
+      snprintf(buf, sizeof buf, "rt.%u", count);
+      ++count;
+      receiver_name = buf;
+      new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
+					     receiver->location()));
+    }
+  const Typed_identifier_list* orig_params = orig_fntype->parameters();
+  if (orig_params != NULL && !orig_params->empty())
+    {
+      for (Typed_identifier_list::const_iterator p = orig_params->begin();
+	   p != orig_params->end();
+	   ++p)
+	{
+	  snprintf(buf, sizeof buf, "pt.%u", count);
+	  ++count;
+	  new_params->push_back(Typed_identifier(buf, p->type(),
+						 p->location()));
+	}
+    }
+  snprintf(buf, sizeof buf, "pr.%u", count);
+  ++count;
+  std::string can_recover_name = buf;
+  new_params->push_back(Typed_identifier(can_recover_name,
+					 Type::lookup_bool_type(),
+					 orig_fntype->location()));
+
+  const Typed_identifier_list* orig_results = orig_fntype->results();
+  Typed_identifier_list* new_results;
+  if (orig_results == NULL || orig_results->empty())
+    new_results = NULL;
+  else
+    {
+      new_results = new Typed_identifier_list();
+      for (Typed_identifier_list::const_iterator p = orig_results->begin();
+	   p != orig_results->end();
+	   ++p)
+	new_results->push_back(Typed_identifier("", p->type(), p->location()));
+    }
+
+  Function_type *new_fntype = Type::make_function_type(NULL, new_params,
+						       new_results,
+						       orig_fntype->location());
+  if (orig_fntype->is_varargs())
+    new_fntype->set_is_varargs();
+
+  Type* rtype = NULL;
+  if (orig_fntype->is_method())
+    rtype = orig_fntype->receiver()->type();
+  std::string name(gogo->recover_thunk_name(orig_no->name(), rtype));
+  Named_object *new_no = gogo->start_function(name, new_fntype, false,
+					      location);
+  Function *new_func = new_no->func_value();
+  if (orig_func->enclosing() != NULL)
+    new_func->set_enclosing(orig_func->enclosing());
+
+  // We build the code for the original function attached to the new
+  // function, and then swap the original and new function bodies.
+  // This means that existing references to the original function will
+  // then refer to the new function.  That makes this code a little
+  // confusing, in that the reference to NEW_NO really refers to the
+  // other function, not the one we are building.
+
+  Expression* closure = NULL;
+  if (orig_func->needs_closure())
+    {
+      // For the new function we are creating, declare a new parameter
+      // variable NEW_CLOSURE_NO and set it to be the closure variable
+      // of the function.  This will be set to the closure value
+      // passed in by the caller.  Then pass a reference to this
+      // variable as the closure value when calling the original
+      // function.  In other words, simply pass the closure value
+      // through the thunk we are creating.
+      Named_object* orig_closure_no = orig_func->closure_var();
+      Variable* orig_closure_var = orig_closure_no->var_value();
+      Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
+				       false, false, location);
+      new_var->set_is_closure();
+      snprintf(buf, sizeof buf, "closure.%u", count);
+      ++count;
+      Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
+								 new_var);
+      new_func->set_closure_var(new_closure_no);
+      closure = Expression::make_var_reference(new_closure_no, location);
+    }
+
+  Expression* fn = Expression::make_func_reference(new_no, closure, location);
+
+  Expression_list* args = new Expression_list();
+  if (new_params != NULL)
+    {
+      // Note that we skip the last parameter, which is the boolean
+      // indicating whether recover can succed.
+      for (Typed_identifier_list::const_iterator p = new_params->begin();
+	   p + 1 != new_params->end();
+	   ++p)
+	{
+	  Named_object* p_no = gogo->lookup(p->name(), NULL);
+	  go_assert(p_no != NULL
+		     && p_no->is_variable()
+		     && p_no->var_value()->is_parameter());
+	  args->push_back(Expression::make_var_reference(p_no, location));
+	}
+    }
+  args->push_back(this->can_recover_arg(location));
+
+  gogo->start_block(location);
+
+  Call_expression* call = Expression::make_call(fn, args, false, location);
+
+  // Any varargs call has already been lowered.
+  call->set_varargs_are_lowered();
+
+  Statement* s = Statement::make_return_from_call(call, location);
+  s->determine_types();
+  gogo->add_statement(s);
+
+  Block* b = gogo->finish_block(location);
+
+  gogo->add_block(b, location);
+
+  // Lower the call in case it returns multiple results.
+  gogo->lower_block(new_no, b);
+
+  gogo->finish_function(location);
+
+  // Swap the function bodies and types.
+  new_func->swap_for_recover(orig_func);
+  orig_func->set_is_recover_thunk();
+  new_func->set_calls_recover();
+  new_func->set_has_recover_thunk();
+
+  Bindings* orig_bindings = orig_func->block()->bindings();
+  Bindings* new_bindings = new_func->block()->bindings();
+  if (orig_fntype->is_method())
+    {
+      // We changed the receiver to be a regular parameter.  We have
+      // to update the binding accordingly in both functions.
+      Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
+      go_assert(orig_rec_no != NULL
+		 && orig_rec_no->is_variable()
+		 && !orig_rec_no->var_value()->is_receiver());
+      orig_rec_no->var_value()->set_is_receiver();
+
+      std::string new_receiver_name(orig_fntype->receiver()->name());
+      if (new_receiver_name.empty())
+	{
+	  // Find the receiver.  It was named "r.NNN" in
+	  // Gogo::start_function.
+	  for (Bindings::const_definitions_iterator p =
+		 new_bindings->begin_definitions();
+	       p != new_bindings->end_definitions();
+	       ++p)
+	    {
+	      const std::string& pname((*p)->name());
+	      if (pname[0] == 'r' && pname[1] == '.')
+		{
+		  new_receiver_name = pname;
+		  break;
+		}
+	    }
+	  go_assert(!new_receiver_name.empty());
+	}
+      Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
+      if (new_rec_no == NULL)
+	go_assert(saw_errors());
+      else
+	{
+	  go_assert(new_rec_no->is_variable()
+		     && new_rec_no->var_value()->is_receiver());
+	  new_rec_no->var_value()->set_is_not_receiver();
+	}
+    }
+
+  // Because we flipped blocks but not types, the can_recover
+  // parameter appears in the (now) old bindings as a parameter.
+  // Change it to a local variable, whereupon it will be discarded.
+  Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
+  go_assert(can_recover_no != NULL
+	     && can_recover_no->is_variable()
+	     && can_recover_no->var_value()->is_parameter());
+  orig_bindings->remove_binding(can_recover_no);
+
+  // Add the can_recover argument to the (now) new bindings, and
+  // attach it to any recover statements.
+  Variable* can_recover_var = new Variable(Type::lookup_bool_type(), NULL,
+					   false, true, false, location);
+  can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
+					      can_recover_var);
+  Convert_recover convert_recover(can_recover_no);
+  new_func->traverse(&convert_recover);
+
+  // Update the function pointers in any named results.
+  new_func->update_result_variables();
+  orig_func->update_result_variables();
+
+  return TRAVERSE_CONTINUE;
+}
+
+// Return the expression to pass for the .can_recover parameter to the
+// new function.  This indicates whether a call to recover may return
+// non-nil.  The expression is runtime.canrecover(__builtin_return_address()).
+
+Expression*
+Build_recover_thunks::can_recover_arg(Location location)
+{
+  static Named_object* builtin_return_address;
+  if (builtin_return_address == NULL)
+    builtin_return_address =
+      Gogo::declare_builtin_rf_address("__builtin_return_address");
+
+  static Named_object* can_recover;
+  if (can_recover == NULL)
+    {
+      const Location bloc = Linemap::predeclared_location();
+      Typed_identifier_list* param_types = new Typed_identifier_list();
+      Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
+      param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
+      Type* boolean_type = Type::lookup_bool_type();
+      Typed_identifier_list* results = new Typed_identifier_list();
+      results->push_back(Typed_identifier("", boolean_type, bloc));
+      Function_type* fntype = Type::make_function_type(NULL, param_types,
+						       results, bloc);
+      can_recover =
+	Named_object::make_function_declaration("runtime_canrecover",
+						NULL, fntype, bloc);
+      can_recover->func_declaration_value()->set_asm_name("runtime.canrecover");
+    }
+
+  Expression* fn = Expression::make_func_reference(builtin_return_address,
+						   NULL, location);
+
+  Expression* zexpr = Expression::make_integer_ul(0, NULL, location);
+  Expression_list *args = new Expression_list();
+  args->push_back(zexpr);
+
+  Expression* call = Expression::make_call(fn, args, false, location);
+
+  args = new Expression_list();
+  args->push_back(call);
+
+  fn = Expression::make_func_reference(can_recover, NULL, location);
+  return Expression::make_call(fn, args, false, location);
+}
+
+// Build thunks for functions which call recover.  We build a new
+// function with an extra parameter, which is whether a call to
+// recover can succeed.  We then move the body of this function to
+// that one.  We then turn this function into a thunk which calls the
+// new one, passing the value of runtime.canrecover(__builtin_return_address()).
+// The function will be marked as not splitting the stack.  This will
+// cooperate with the implementation of defer to make recover do the
+// right thing.
+
+void
+Gogo::build_recover_thunks()
+{
+  Build_recover_thunks build_recover_thunks(this);
+  this->traverse(&build_recover_thunks);
+}
+
+// Return a declaration for __builtin_return_address or
+// __builtin_frame_address.
+
+Named_object*
+Gogo::declare_builtin_rf_address(const char* name)
+{
+  const Location bloc = Linemap::predeclared_location();
+
+  Typed_identifier_list* param_types = new Typed_identifier_list();
+  Type* uint32_type = Type::lookup_integer_type("uint32");
+  param_types->push_back(Typed_identifier("l", uint32_type, bloc));
+
+  Typed_identifier_list* return_types = new Typed_identifier_list();
+  Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
+  return_types->push_back(Typed_identifier("", voidptr_type, bloc));
+
+  Function_type* fntype = Type::make_function_type(NULL, param_types,
+						   return_types, bloc);
+  Named_object* ret = Named_object::make_function_declaration(name, NULL,
+							      fntype, bloc);
+  ret->func_declaration_value()->set_asm_name(name);
+  return ret;
+}
+
+// Build a call to the runtime error function.
+
+Expression*
+Gogo::runtime_error(int code, Location location)
+{
+  Type* int32_type = Type::lookup_integer_type("int32");
+  Expression* code_expr = Expression::make_integer_ul(code, int32_type,
+						      location);
+  return Runtime::make_call(Runtime::RUNTIME_ERROR, location, 1, code_expr);
+}
+
+// Look for named types to see whether we need to create an interface
+// method table.
+
+class Build_method_tables : public Traverse
+{
+ public:
+  Build_method_tables(Gogo* gogo,
+		      const std::vector<Interface_type*>& interfaces)
+    : Traverse(traverse_types),
+      gogo_(gogo), interfaces_(interfaces)
+  { }
+
+  int
+  type(Type*);
+
+ private:
+  // The IR.
+  Gogo* gogo_;
+  // A list of locally defined interfaces which have hidden methods.
+  const std::vector<Interface_type*>& interfaces_;
+};
+
+// Build all required interface method tables for types.  We need to
+// ensure that we have an interface method table for every interface
+// which has a hidden method, for every named type which implements
+// that interface.  Normally we can just build interface method tables
+// as we need them.  However, in some cases we can require an
+// interface method table for an interface defined in a different
+// package for a type defined in that package.  If that interface and
+// type both use a hidden method, that is OK.  However, we will not be
+// able to build that interface method table when we need it, because
+// the type's hidden method will be static.  So we have to build it
+// here, and just refer it from other packages as needed.
+
+void
+Gogo::build_interface_method_tables()
+{
+  if (saw_errors())
+    return;
+
+  std::vector<Interface_type*> hidden_interfaces;
+  hidden_interfaces.reserve(this->interface_types_.size());
+  for (std::vector<Interface_type*>::const_iterator pi =
+	 this->interface_types_.begin();
+       pi != this->interface_types_.end();
+       ++pi)
+    {
+      const Typed_identifier_list* methods = (*pi)->methods();
+      if (methods == NULL)
+	continue;
+      for (Typed_identifier_list::const_iterator pm = methods->begin();
+	   pm != methods->end();
+	   ++pm)
+	{
+	  if (Gogo::is_hidden_name(pm->name()))
+	    {
+	      hidden_interfaces.push_back(*pi);
+	      break;
+	    }
+	}
+    }
+
+  if (!hidden_interfaces.empty())
+    {
+      // Now traverse the tree looking for all named types.
+      Build_method_tables bmt(this, hidden_interfaces);
+      this->traverse(&bmt);
+    }
+
+  // We no longer need the list of interfaces.
+
+  this->interface_types_.clear();
+}
+
+// This is called for each type.  For a named type, for each of the
+// interfaces with hidden methods that it implements, create the
+// method table.
+
+int
+Build_method_tables::type(Type* type)
+{
+  Named_type* nt = type->named_type();
+  Struct_type* st = type->struct_type();
+  if (nt != NULL || st != NULL)
+    {
+      Translate_context context(this->gogo_, NULL, NULL, NULL);
+      for (std::vector<Interface_type*>::const_iterator p =
+	     this->interfaces_.begin();
+	   p != this->interfaces_.end();
+	   ++p)
+	{
+	  // We ask whether a pointer to the named type implements the
+	  // interface, because a pointer can implement more methods
+	  // than a value.
+	  if (nt != NULL)
+	    {
+	      if ((*p)->implements_interface(Type::make_pointer_type(nt),
+					     NULL))
+		{
+		  nt->interface_method_table(*p, false)->get_backend(&context);
+                  nt->interface_method_table(*p, true)->get_backend(&context);
+		}
+	    }
+	  else
+	    {
+	      if ((*p)->implements_interface(Type::make_pointer_type(st),
+					     NULL))
+		{
+		  st->interface_method_table(*p, false)->get_backend(&context);
+		  st->interface_method_table(*p, true)->get_backend(&context);
+		}
+	    }
+	}
+    }
+  return TRAVERSE_CONTINUE;
+}
+
+// Return an expression which allocates memory to hold values of type TYPE.
+
+Expression*
+Gogo::allocate_memory(Type* type, Location location)
+{
+  Expression* td = Expression::make_type_descriptor(type, location);
+  return Runtime::make_call(Runtime::NEW, location, 1, td);
+}
+
+// Traversal class used to check for return statements.
+
+class Check_return_statements_traverse : public Traverse
+{
+ public:
+  Check_return_statements_traverse()
+    : Traverse(traverse_functions)
+  { }
+
+  int
+  function(Named_object*);
+};
+
+// Check that a function has a return statement if it needs one.
+
+int
+Check_return_statements_traverse::function(Named_object* no)
+{
+  Function* func = no->func_value();
+  const Function_type* fntype = func->type();
+  const Typed_identifier_list* results = fntype->results();
+
+  // We only need a return statement if there is a return value.
+  if (results == NULL || results->empty())
+    return TRAVERSE_CONTINUE;
+
+  if (func->block()->may_fall_through())
+    go_error_at(func->block()->end_location(),
+		"missing return at end of function");
+
+  return TRAVERSE_CONTINUE;
+}
+
+// Check return statements.
+
+void
+Gogo::check_return_statements()
+{
+  Check_return_statements_traverse traverse;
+  this->traverse(&traverse);
+}
+
+// Export identifiers as requested.
+
+void
+Gogo::do_exports()
+{
+  // For now we always stream to a section.  Later we may want to
+  // support streaming to a separate file.
+  Stream_to_section stream(this->backend());
+
+  // Write out either the prefix or pkgpath depending on how we were
+  // invoked.
+  std::string prefix;
+  std::string pkgpath;
+  if (this->pkgpath_from_option_)
+    pkgpath = this->pkgpath_;
+  else if (this->prefix_from_option_)
+    prefix = this->prefix_;
+  else if (this->is_main_package())
+    pkgpath = "main";
+  else
+    prefix = "go";
+
+  Export exp(&stream);
+  exp.register_builtin_types(this);
+  exp.export_globals(this->package_name(),
+		     prefix,
+		     pkgpath,
+		     this->packages_,
+		     this->imports_,
+		     (this->need_init_fn_ && !this->is_main_package()
+		      ? this->get_init_fn_name()
+		      : ""),
+		     this->imported_init_fns_,
+		     this->package_->bindings());
+
+  if (!this->c_header_.empty() && !saw_errors())
+    this->write_c_header();
+}
+
+// Write the top level named struct types in C format to a C header
+// file.  This is used when building the runtime package, to share
+// struct definitions between C and Go.
+
+void
+Gogo::write_c_header()
+{
+  std::ofstream out;
+  out.open(this->c_header_.c_str());
+  if (out.fail())
+    {
+      go_error_at(Linemap::unknown_location(),
+		  "cannot open %s: %m", this->c_header_.c_str());
+      return;
+    }
+
+  std::list<Named_object*> types;
+  Bindings* top = this->package_->bindings();
+  for (Bindings::const_definitions_iterator p = top->begin_definitions();
+       p != top->end_definitions();
+       ++p)
+    {
+      Named_object* no = *p;
+
+      // Skip names that start with underscore followed by something
+      // other than an uppercase letter, as when compiling the runtime
+      // package they are mostly types defined by mkrsysinfo.sh based
+      // on the C system header files.  We don't need to translate
+      // types to C and back to Go.  But do accept the special cases
+      // _defer and _panic.
+      std::string name = Gogo::unpack_hidden_name(no->name());
+      if (name[0] == '_'
+	  && (name[1] < 'A' || name[1] > 'Z')
+	  && (name != "_defer" && name != "_panic"))
+	continue;
+
+      if (no->is_type() && no->type_value()->struct_type() != NULL)
+	types.push_back(no);
+      if (no->is_const() && no->const_value()->type()->integer_type() != NULL)
+	{
+	  Numeric_constant nc;
+	  unsigned long val;
+	  if (no->const_value()->expr()->numeric_constant_value(&nc)
+	      && nc.to_unsigned_long(&val) == Numeric_constant::NC_UL_VALID)
+	    {
+	      out << "#define " << no->message_name() << ' ' << val
+		  << std::endl;
+	    }
+	}
+    }
+
+  std::vector<const Named_object*> written;
+  int loop = 0;
+  while (!types.empty())
+    {
+      Named_object* no = types.front();
+      types.pop_front();
+
+      std::vector<const Named_object*> requires;
+      std::vector<const Named_object*> declare;
+      if (!no->type_value()->struct_type()->can_write_to_c_header(&requires,
+								  &declare))
+	continue;
+
+      bool ok = true;
+      for (std::vector<const Named_object*>::const_iterator pr
+	     = requires.begin();
+	   pr != requires.end() && ok;
+	   ++pr)
+	{
+	  for (std::list<Named_object*>::const_iterator pt = types.begin();
+	       pt != types.end() && ok;
+	       ++pt)
+	    if (*pr == *pt)
+	      ok = false;
+	}
+      if (!ok)
+	{
+	  ++loop;
+	  if (loop > 10000)
+	    {
+	      // This should be impossible since the code parsed and
+	      // type checked.
+	      go_unreachable();
+	    }
+
+	  types.push_back(no);
+	  continue;
+	}
+
+      for (std::vector<const Named_object*>::const_iterator pd
+	     = declare.begin();
+	   pd != declare.end();
+	   ++pd)
+	{
+	  if (*pd == no)
+	    continue;
+
+	  std::vector<const Named_object*> drequires;
+	  std::vector<const Named_object*> ddeclare;
+	  if (!(*pd)->type_value()->struct_type()->
+	      can_write_to_c_header(&drequires, &ddeclare))
+	    continue;
+
+	  bool done = false;
+	  for (std::vector<const Named_object*>::const_iterator pw
+		 = written.begin();
+	       pw != written.end();
+	       ++pw)
+	    {
+	      if (*pw == *pd)
+		{
+		  done = true;
+		  break;
+		}
+	    }
+	  if (!done)
+	    {
+	      out << std::endl;
+	      out << "struct " << (*pd)->message_name() << ";" << std::endl;
+	      written.push_back(*pd);
+	    }
+	}
+
+      out << std::endl;
+      out << "struct " << no->message_name() << " {" << std::endl;
+      no->type_value()->struct_type()->write_to_c_header(out);
+      out << "};" << std::endl;
+      written.push_back(no);
+    }
+
+  out.close();
+  if (out.fail())
+    go_error_at(Linemap::unknown_location(),
+		"error writing to %s: %m", this->c_header_.c_str());
+}
+
+// Find the blocks in order to convert named types defined in blocks.
+
+class Convert_named_types : public Traverse
+{
+ public:
+  Convert_named_types(Gogo* gogo)
+    : Traverse(traverse_blocks),
+      gogo_(gogo)
+  { }
+
+ protected:
+  int
+  block(Block* block);
+
+ private:
+  Gogo* gogo_;
+};
+
+int
+Convert_named_types::block(Block* block)
+{
+  this->gogo_->convert_named_types_in_bindings(block->bindings());
+  return TRAVERSE_CONTINUE;
+}
+
+// Convert all named types to the backend representation.  Since named
+// types can refer to other types, this needs to be done in the right
+// sequence, which is handled by Named_type::convert.  Here we arrange
+// to call that for each named type.
+
+void
+Gogo::convert_named_types()
+{
+  this->convert_named_types_in_bindings(this->globals_);
+  for (Packages::iterator p = this->packages_.begin();
+       p != this->packages_.end();
+       ++p)
+    {
+      Package* package = p->second;
+      this->convert_named_types_in_bindings(package->bindings());
+    }
+
+  Convert_named_types cnt(this);
+  this->traverse(&cnt);
+
+  // Make all the builtin named types used for type descriptors, and
+  // then convert them.  They will only be written out if they are
+  // needed.
+  Type::make_type_descriptor_type();
+  Type::make_type_descriptor_ptr_type();
+  Function_type::make_function_type_descriptor_type();
+  Pointer_type::make_pointer_type_descriptor_type();
+  Struct_type::make_struct_type_descriptor_type();
+  Array_type::make_array_type_descriptor_type();
+  Array_type::make_slice_type_descriptor_type();
+  Map_type::make_map_type_descriptor_type();
+  Channel_type::make_chan_type_descriptor_type();
+  Interface_type::make_interface_type_descriptor_type();
+  Expression::make_func_descriptor_type();
+  Type::convert_builtin_named_types(this);
+
+  Runtime::convert_types(this);
+
+  this->named_types_are_converted_ = true;
+
+  Type::finish_pointer_types(this);
+}
+
+// Convert all names types in a set of bindings.
+
+void
+Gogo::convert_named_types_in_bindings(Bindings* bindings)
+{
+  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
+       p != bindings->end_definitions();
+       ++p)
+    {
+      if ((*p)->is_type())
+	(*p)->type_value()->convert(this);
+    }
+}
+
+// Class Function.
+
+Function::Function(Function_type* type, Named_object* enclosing, Block* block,
+		   Location location)
+  : type_(type), enclosing_(enclosing), results_(NULL),
+    closure_var_(NULL), block_(block), location_(location), labels_(),
+    local_type_count_(0), descriptor_(NULL), fndecl_(NULL), defer_stack_(NULL),
+    pragmas_(0), is_sink_(false), results_are_named_(false),
+    is_unnamed_type_stub_method_(false), calls_recover_(false),
+    is_recover_thunk_(false), has_recover_thunk_(false),
+    calls_defer_retaddr_(false), is_type_specific_function_(false),
+    in_unique_section_(false)
+{
+}
+
+// Create the named result variables.
+
+void
+Function::create_result_variables(Gogo* gogo)
+{
+  const Typed_identifier_list* results = this->type_->results();
+  if (results == NULL || results->empty())
+    return;
+
+  if (!results->front().name().empty())
+    this->results_are_named_ = true;
+
+  this->results_ = new Results();
+  this->results_->reserve(results->size());
+
+  Block* block = this->block_;
+  int index = 0;
+  for (Typed_identifier_list::const_iterator p = results->begin();
+       p != results->end();
+       ++p, ++index)
+    {
+      std::string name = p->name();
+      if (name.empty() || Gogo::is_sink_name(name))
+	{
+	  static int result_counter;
+	  char buf[100];
+	  snprintf(buf, sizeof buf, "$ret%d", result_counter);
+	  ++result_counter;
+	  name = gogo->pack_hidden_name(buf, false);
+	}
+      Result_variable* result = new Result_variable(p->type(), this, index,
+						    p->location());
+      Named_object* no = block->bindings()->add_result_variable(name, result);
+      if (no->is_result_variable())
+	this->results_->push_back(no);
+      else
+	{
+	  static int dummy_result_count;
+	  char buf[100];
+	  snprintf(buf, sizeof buf, "$dret%d", dummy_result_count);
+	  ++dummy_result_count;
+	  name = gogo->pack_hidden_name(buf, false);
+	  no = block->bindings()->add_result_variable(name, result);
+	  go_assert(no->is_result_variable());
+	  this->results_->push_back(no);
+	}
+    }
+}
+
+// Update the named result variables when cloning a function which
+// calls recover.
+
+void
+Function::update_result_variables()
+{
+  if (this->results_ == NULL)
+    return;
+
+  for (Results::iterator p = this->results_->begin();
+       p != this->results_->end();
+       ++p)
+    (*p)->result_var_value()->set_function(this);
+}
+
+// Whether this method should not be included in the type descriptor.
+
+bool
+Function::nointerface() const
+{
+  go_assert(this->is_method());
+  return (this->pragmas_ & GOPRAGMA_NOINTERFACE) != 0;
+}
+
+// Record that this method should not be included in the type
+// descriptor.
+
+void
+Function::set_nointerface()
+{
+  this->pragmas_ |= GOPRAGMA_NOINTERFACE;
+}
+
+// Return the closure variable, creating it if necessary.
+
+Named_object*
+Function::closure_var()
+{
+  if (this->closure_var_ == NULL)
+    {
+      go_assert(this->descriptor_ == NULL);
+      // We don't know the type of the variable yet.  We add fields as
+      // we find them.
+      Location loc = this->type_->location();
+      Struct_field_list* sfl = new Struct_field_list;
+      Struct_type* struct_type = Type::make_struct_type(sfl, loc);
+      struct_type->set_is_struct_incomparable();
+      Variable* var = new Variable(Type::make_pointer_type(struct_type),
+				   NULL, false, false, false, loc);
+      var->set_is_used();
+      var->set_is_closure();
+      this->closure_var_ = Named_object::make_variable("$closure", NULL, var);
+      // Note that the new variable is not in any binding contour.
+    }
+  return this->closure_var_;
+}
+
+// Set the type of the closure variable.
+
+void
+Function::set_closure_type()
+{
+  if (this->closure_var_ == NULL)
+    return;
+  Named_object* closure = this->closure_var_;
+  Struct_type* st = closure->var_value()->type()->deref()->struct_type();
+
+  // The first field of a closure is always a pointer to the function
+  // code.
+  Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
+  st->push_field(Struct_field(Typed_identifier(".$f", voidptr_type,
+					       this->location_)));
+
+  unsigned int index = 1;
+  for (Closure_fields::const_iterator p = this->closure_fields_.begin();
+       p != this->closure_fields_.end();
+       ++p, ++index)
+    {
+      Named_object* no = p->first;
+      char buf[20];
+      snprintf(buf, sizeof buf, "%u", index);
+      std::string n = no->name() + buf;
+      Type* var_type;
+      if (no->is_variable())
+	var_type = no->var_value()->type();
+      else
+	var_type = no->result_var_value()->type();
+      Type* field_type = Type::make_pointer_type(var_type);
+      st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
+    }
+}
+
+// Return whether this function is a method.
+
+bool
+Function::is_method() const
+{
+  return this->type_->is_method();
+}
+
+// Add a label definition.
+
+Label*
+Function::add_label_definition(Gogo* gogo, const std::string& label_name,
+			       Location location)
+{
+  Label* lnull = NULL;
+  std::pair<Labels::iterator, bool> ins =
+    this->labels_.insert(std::make_pair(label_name, lnull));
+  Label* label;
+  if (label_name == "_")
+    {
+      label = Label::create_dummy_label();
+      if (ins.second)
+	ins.first->second = label;
+    }
+  else if (ins.second)
+    {
+      // This is a new label.
+      label = new Label(label_name);
+      ins.first->second = label;
+    }
+  else
+    {
+      // The label was already in the hash table.
+      label = ins.first->second;
+      if (label->is_defined())
+	{
+	  go_error_at(location, "label %qs already defined",
+		      Gogo::message_name(label_name).c_str());
+	  go_inform(label->location(), "previous definition of %qs was here",
+		    Gogo::message_name(label_name).c_str());
+	  return new Label(label_name);
+	}
+    }
+
+  label->define(location, gogo->bindings_snapshot(location));
+
+  // Issue any errors appropriate for any previous goto's to this
+  // label.
+  const std::vector<Bindings_snapshot*>& refs(label->refs());
+  for (std::vector<Bindings_snapshot*>::const_iterator p = refs.begin();
+       p != refs.end();
+       ++p)
+    (*p)->check_goto_to(gogo->current_block());
+  label->clear_refs();
+
+  return label;
+}
+
+// Add a reference to a label.
+
+Label*
+Function::add_label_reference(Gogo* gogo, const std::string& label_name,
+			      Location location, bool issue_goto_errors)
+{
+  Label* lnull = NULL;
+  std::pair<Labels::iterator, bool> ins =
+    this->labels_.insert(std::make_pair(label_name, lnull));
+  Label* label;
+  if (!ins.second)
+    {
+      // The label was already in the hash table.
+      label = ins.first->second;
+    }
+  else
+    {
+      go_assert(ins.first->second == NULL);
+      label = new Label(label_name);
+      ins.first->second = label;
+    }
+
+  label->set_is_used();
+
+  if (issue_goto_errors)
+    {
+      Bindings_snapshot* snapshot = label->snapshot();
+      if (snapshot != NULL)
+	snapshot->check_goto_from(gogo->current_block(), location);
+      else
+	label->add_snapshot_ref(gogo->bindings_snapshot(location));
+    }
+
+  return label;
+}
+
+// Warn about labels that are defined but not used.
+
+void
+Function::check_labels() const
+{
+  for (Labels::const_iterator p = this->labels_.begin();
+       p != this->labels_.end();
+       p++)
+    {
+      Label* label = p->second;
+      if (!label->is_used())
+	go_error_at(label->location(), "label %qs defined and not used",
+		    Gogo::message_name(label->name()).c_str());
+    }
+}
+
+// Swap one function with another.  This is used when building the
+// thunk we use to call a function which calls recover.  It may not
+// work for any other case.
+
+void
+Function::swap_for_recover(Function *x)
+{
+  go_assert(this->enclosing_ == x->enclosing_);
+  std::swap(this->results_, x->results_);
+  std::swap(this->closure_var_, x->closure_var_);
+  std::swap(this->block_, x->block_);
+  go_assert(this->location_ == x->location_);
+  go_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
+  go_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
+}
+
+// Traverse the tree.
+
+int
+Function::traverse(Traverse* traverse)
+{
+  unsigned int traverse_mask = traverse->traverse_mask();
+
+  if ((traverse_mask
+       & (Traverse::traverse_types | Traverse::traverse_expressions))
+      != 0)
+    {
+      if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
+	return TRAVERSE_EXIT;
+    }
+
+  // FIXME: We should check traverse_functions here if nested
+  // functions are stored in block bindings.
+  if (this->block_ != NULL
+      && (traverse_mask
+	  & (Traverse::traverse_variables
+	     | Traverse::traverse_constants
+	     | Traverse::traverse_blocks
+	     | Traverse::traverse_statements
+	     | Traverse::traverse_expressions
+	     | Traverse::traverse_types)) != 0)
+    {
+      if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
+	return TRAVERSE_EXIT;
+    }
+
+  return TRAVERSE_CONTINUE;
+}
+
+// Work out types for unspecified variables and constants.
+
+void
+Function::determine_types()
+{
+  if (this->block_ != NULL)
+    this->block_->determine_types();
+}
+
+// Return the function descriptor, the value you get when you refer to
+// the function in Go code without calling it.
+
+Expression*
+Function::descriptor(Gogo*, Named_object* no)
+{
+  go_assert(!this->is_method());
+  go_assert(this->closure_var_ == NULL);
+  if (this->descriptor_ == NULL)
+    this->descriptor_ = Expression::make_func_descriptor(no);
+  return this->descriptor_;
+}
+
+// Get a pointer to the variable representing the defer stack for this
+// function, making it if necessary.  The value of the variable is set
+// by the runtime routines to true if the function is returning,
+// rather than panicing through.  A pointer to this variable is used
+// as a marker for the functions on the defer stack associated with
+// this function.  A function-specific variable permits inlining a
+// function which uses defer.
+
+Expression*
+Function::defer_stack(Location location)
+{
+  if (this->defer_stack_ == NULL)
+    {
+      Type* t = Type::lookup_bool_type();
+      Expression* n = Expression::make_boolean(false, location);
+      this->defer_stack_ = Statement::make_temporary(t, n, location);
+      this->defer_stack_->set_is_address_taken();
+    }
+  Expression* ref = Expression::make_temporary_reference(this->defer_stack_,
+							 location);
+  return Expression::make_unary(OPERATOR_AND, ref, location);
+}
+
+// Export the function.
+
+void
+Function::export_func(Export* exp, const std::string& name) const
+{
+  Function::export_func_with_type(exp, name, this->type_);
+}
+
+// Export a function with a type.
+
+void
+Function::export_func_with_type(Export* exp, const std::string& name,
+				const Function_type* fntype)
+{
+  exp->write_c_string("func ");
+
+  if (fntype->is_method())
+    {
+      exp->write_c_string("(");
+      const Typed_identifier* receiver = fntype->receiver();
+      exp->write_name(receiver->name());
+      exp->write_escape(receiver->note());
+      exp->write_c_string(" ");
+      exp->write_type(receiver->type());
+      exp->write_c_string(") ");
+    }
+
+  exp->write_string(name);
+
+  exp->write_c_string(" (");
+  const Typed_identifier_list* parameters = fntype->parameters();
+  if (parameters != NULL)
+    {
+      size_t i = 0;
+      bool is_varargs = fntype->is_varargs();
+      bool first = true;
+      for (Typed_identifier_list::const_iterator p = parameters->begin();
+	   p != parameters->end();
+	   ++p, ++i)
+	{
+	  if (first)
+	    first = false;
+	  else
+	    exp->write_c_string(", ");
+	  exp->write_name(p->name());
+	  exp->write_escape(p->note());
+	  exp->write_c_string(" ");
+	  if (!is_varargs || p + 1 != parameters->end())
+	    exp->write_type(p->type());
+	  else
+	    {
+	      exp->write_c_string("...");
+	      exp->write_type(p->type()->array_type()->element_type());
+	    }
+	}
+    }
+  exp->write_c_string(")");
+
+  const Typed_identifier_list* results = fntype->results();
+  if (results != NULL)
+    {
+      if (results->size() == 1 && results->begin()->name().empty())
+	{
+	  exp->write_c_string(" ");
+	  exp->write_type(results->begin()->type());
+	}
+      else
+	{
+	  exp->write_c_string(" (");
+	  bool first = true;
+	  for (Typed_identifier_list::const_iterator p = results->begin();
+	       p != results->end();
+	       ++p)
+	    {
+	      if (first)
+		first = false;
+	      else
+		exp->write_c_string(", ");
+	      exp->write_name(p->name());
+	      exp->write_escape(p->note());
+	      exp->write_c_string(" ");
+	      exp->write_type(p->type());
+	    }
+	  exp->write_c_string(")");
+	}
+    }
+  exp->write_c_string(";\n");
+}
+
+// Import a function.
+
+void
+Function::import_func(Import* imp, std::string* pname,
+		      Typed_identifier** preceiver,
+		      Typed_identifier_list** pparameters,
+		      Typed_identifier_list** presults,
+		      bool* is_varargs)
+{
+  imp->require_c_string("func ");
+
+  *preceiver = NULL;
+  if (imp->peek_char() == '(')
+    {
+      imp->require_c_string("(");
+      std::string name = imp->read_name();
+      std::string escape_note = imp->read_escape();
+      imp->require_c_string(" ");
+      Type* rtype = imp->read_type();
+      *preceiver = new Typed_identifier(name, rtype, imp->location());
+      (*preceiver)->set_note(escape_note);
+      imp->require_c_string(") ");
+    }
+
+  *pname = imp->read_identifier();
+
+  Typed_identifier_list* parameters;
+  *is_varargs = false;
+  imp->require_c_string(" (");
+  if (imp->peek_char() == ')')
+    parameters = NULL;
+  else
+    {
+      parameters = new Typed_identifier_list();
+      while (true)
+	{
+	  std::string name = imp->read_name();
+	  std::string escape_note = imp->read_escape();
+	  imp->require_c_string(" ");
+
+	  if (imp->match_c_string("..."))
+	    {
+	      imp->advance(3);
+	      *is_varargs = true;
+	    }
+
+	  Type* ptype = imp->read_type();
+	  if (*is_varargs)
+	    ptype = Type::make_array_type(ptype, NULL);
+	  Typed_identifier t = Typed_identifier(name, ptype, imp->location());
+	  t.set_note(escape_note);
+	  parameters->push_back(t);
+	  if (imp->peek_char() != ',')
+	    break;
+	  go_assert(!*is_varargs);
+	  imp->require_c_string(", ");
+	}
+    }
+  imp->require_c_string(")");
+  *pparameters = parameters;
+
+  Typed_identifier_list* results;
+  if (imp->peek_char() != ' ')
+    results = NULL;
+  else
+    {
+      results = new Typed_identifier_list();
+      imp->require_c_string(" ");
+      if (imp->peek_char() != '(')
+	{
+	  Type* rtype = imp->read_type();
+	  results->push_back(Typed_identifier("", rtype, imp->location()));
+	}
+      else
+	{
+	  imp->require_c_string("(");
+	  while (true)
+	    {
+	      std::string name = imp->read_name();
+	      std::string note = imp->read_escape();
+	      imp->require_c_string(" ");
+	      Type* rtype = imp->read_type();
+	      Typed_identifier t = Typed_identifier(name, rtype,
+						    imp->location());
+	      t.set_note(note);
+	      results->push_back(t);
+	      if (imp->peek_char() != ',')
+		break;
+	      imp->require_c_string(", ");
+	    }
+	  imp->require_c_string(")");
+	}
+    }
+  imp->require_c_string(";\n");
+  *presults = results;
+}
+
+// Get the backend representation.
+
+Bfunction*
+Function::get_or_make_decl(Gogo* gogo, Named_object* no)
+{
+  if (this->fndecl_ == NULL)
+    {
+      bool is_visible = false;
+      bool is_init_fn = false;
+      Type* rtype = NULL;
+      if (no->package() != NULL)
+        ;
+      else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
+        ;
+      else if (Gogo::unpack_hidden_name(no->name()) == "init"
+               && !this->type_->is_method())
+	;
+      else if (no->name() == gogo->get_init_fn_name())
+	{
+	  is_visible = true;
+	  is_init_fn = true;
+	}
+      else if (Gogo::unpack_hidden_name(no->name()) == "main"
+               && gogo->is_main_package())
+        is_visible = true;
+      // Methods have to be public even if they are hidden because
+      // they can be pulled into type descriptors when using
+      // anonymous fields.
+      else if (!Gogo::is_hidden_name(no->name())
+               || this->type_->is_method())
+        {
+	  if (!this->is_unnamed_type_stub_method_)
+	    is_visible = true;
+	  if (this->type_->is_method())
+	    rtype = this->type_->receiver()->type();
+        }
+
+      std::string asm_name;
+      if (!this->asm_name_.empty())
+	{
+	  asm_name = this->asm_name_;
+
+	  // If an assembler name is explicitly specified, there must
+	  // be some reason to refer to the symbol from a different
+	  // object file.
+	  is_visible = true;
+	}
+      else if (is_init_fn)
+	{
+	  // These names appear in the export data and are used
+	  // directly in the assembler code.  If we change this here
+	  // we need to change Gogo::init_imports.
+	  asm_name = no->name();
+	}
+      else
+	asm_name = gogo->function_asm_name(no->name(), NULL, rtype);
+
+      // If a function calls the predeclared recover function, we
+      // can't inline it, because recover behaves differently in a
+      // function passed directly to defer.  If this is a recover
+      // thunk that we built to test whether a function can be
+      // recovered, we can't inline it, because that will mess up
+      // our return address comparison.
+      bool is_inlinable = !(this->calls_recover_ || this->is_recover_thunk_);
+
+      // If a function calls __go_set_defer_retaddr, then mark it as
+      // uninlinable.  This prevents the GCC backend from splitting
+      // the function; splitting the function is a bad idea because we
+      // want the return address label to be in the same function as
+      // the call.
+      if (this->calls_defer_retaddr_)
+	is_inlinable = false;
+
+      // Check the //go:noinline compiler directive.
+      if ((this->pragmas_ & GOPRAGMA_NOINLINE) != 0)
+	is_inlinable = false;
+
+      // If this is a thunk created to call a function which calls
+      // the predeclared recover function, we need to disable
+      // stack splitting for the thunk.
+      bool disable_split_stack = this->is_recover_thunk_;
+
+      // Check the //go:nosplit compiler directive.
+      if ((this->pragmas_ & GOPRAGMA_NOSPLIT) != 0)
+	disable_split_stack = true;
+
+      // This should go into a unique section if that has been
+      // requested elsewhere, or if this is a nointerface function.
+      // We want to put a nointerface function into a unique section
+      // because there is a good chance that the linker garbage
+      // collection can discard it.
+      bool in_unique_section = (this->in_unique_section_
+				|| (this->is_method() && this->nointerface()));
+
+      Btype* functype = this->type_->get_backend_fntype(gogo);
+      this->fndecl_ =
+          gogo->backend()->function(functype, no->get_id(gogo), asm_name,
+                                    is_visible, false, is_inlinable,
+                                    disable_split_stack, in_unique_section,
+				    this->location());
+    }
+  return this->fndecl_;
+}
+
+// Get the backend representation.
+
+Bfunction*
+Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no)
+{
+  if (this->fndecl_ == NULL)
+    {
+      // Let Go code use an asm declaration to pick up a builtin
+      // function.
+      if (!this->asm_name_.empty())
+	{
+	  Bfunction* builtin_decl =
+	    gogo->backend()->lookup_builtin(this->asm_name_);
+	  if (builtin_decl != NULL)
+	    {
+	      this->fndecl_ = builtin_decl;
+	      return this->fndecl_;
+	    }
+	}
+
+      std::string asm_name;
+      if (this->asm_name_.empty())
+	{
+	  Type* rtype = NULL;
+	  if (this->fntype_->is_method())
+	    rtype = this->fntype_->receiver()->type();
+	  asm_name = gogo->function_asm_name(no->name(), no->package(), rtype);
+	}
+      else if (go_id_needs_encoding(no->get_id(gogo)))
+        asm_name = go_encode_id(no->get_id(gogo));
+
+      Btype* functype = this->fntype_->get_backend_fntype(gogo);
+      this->fndecl_ =
+          gogo->backend()->function(functype, no->get_id(gogo), asm_name,
+                                    true, true, true, false, false,
+                                    this->location());
+    }
+
+  return this->fndecl_;
+}
+
+// Build the descriptor for a function declaration.  This won't
+// necessarily happen if the package has just a declaration for the
+// function and no other reference to it, but we may still need the
+// descriptor for references from other packages.
+void
+Function_declaration::build_backend_descriptor(Gogo* gogo)
+{
+  if (this->descriptor_ != NULL)
+    {
+      Translate_context context(gogo, NULL, NULL, NULL);
+      this->descriptor_->get_backend(&context);
+    }
+}
+
+// Check that the types used in this declaration's signature are defined.
+// Reports errors for any undefined type.
+
+void
+Function_declaration::check_types() const
+{
+  // Calling Type::base will give errors for any undefined types.
+  Function_type* fntype = this->type();
+  if (fntype->receiver() != NULL)
+    fntype->receiver()->type()->base();
+  if (fntype->parameters() != NULL)
+    {
+      const Typed_identifier_list* params = fntype->parameters();
+      for (Typed_identifier_list::const_iterator p = params->begin();
+           p != params->end();
+           ++p)
+        p->type()->base();
+    }
+}
+
+// Return the function's decl after it has been built.
+
+Bfunction*
+Function::get_decl() const
+{
+  go_assert(this->fndecl_ != NULL);
+  return this->fndecl_;
+}
+
+// Build the backend representation for the function code.
+
+void
+Function::build(Gogo* gogo, Named_object* named_function)
+{
+  Translate_context context(gogo, named_function, NULL, NULL);
+
+  // A list of parameter variables for this function.
+  std::vector<Bvariable*> param_vars;
+
+  // Variables that need to be declared for this function and their
+  // initial values.
+  std::vector<Bvariable*> vars;
+  std::vector<Bexpression*> var_inits;
+  for (Bindings::const_definitions_iterator p =
+	 this->block_->bindings()->begin_definitions();
+       p != this->block_->bindings()->end_definitions();
+       ++p)
+    {
+      Location loc = (*p)->location();
+      if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
+	{
+	  Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
+          Bvariable* parm_bvar = bvar;
+
+	  // We always pass the receiver to a method as a pointer.  If
+	  // the receiver is declared as a non-pointer type, then we
+	  // copy the value into a local variable.
+	  if ((*p)->var_value()->is_receiver()
+	      && (*p)->var_value()->type()->points_to() == NULL)
+	    {
+	      std::string name = (*p)->name() + ".pointer";
+	      Type* var_type = (*p)->var_value()->type();
+	      Variable* parm_var =
+		  new Variable(Type::make_pointer_type(var_type), NULL, false,
+			       true, false, loc);
+	      Named_object* parm_no =
+                  Named_object::make_variable(name, NULL, parm_var);
+              parm_bvar = parm_no->get_backend_variable(gogo, named_function);
+
+              vars.push_back(bvar);
+	      Expression* parm_ref =
+                  Expression::make_var_reference(parm_no, loc);
+	      parm_ref = Expression::make_unary(OPERATOR_MULT, parm_ref, loc);
+	      if ((*p)->var_value()->is_in_heap())
+		parm_ref = Expression::make_heap_expression(parm_ref, loc);
+              var_inits.push_back(parm_ref->get_backend(&context));
+	    }
+	  else if ((*p)->var_value()->is_in_heap())
+	    {
+	      // If we take the address of a parameter, then we need
+	      // to copy it into the heap.
+	      std::string parm_name = (*p)->name() + ".param";
+	      Variable* parm_var = new Variable((*p)->var_value()->type(), NULL,
+						false, true, false, loc);
+	      Named_object* parm_no =
+		  Named_object::make_variable(parm_name, NULL, parm_var);
+	      parm_bvar = parm_no->get_backend_variable(gogo, named_function);
+
+              vars.push_back(bvar);
+	      Expression* var_ref =
+		  Expression::make_var_reference(parm_no, loc);
+	      var_ref = Expression::make_heap_expression(var_ref, loc);
+              var_inits.push_back(var_ref->get_backend(&context));
+	    }
+          param_vars.push_back(parm_bvar);
+	}
+      else if ((*p)->is_result_variable())
+	{
+	  Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
+
+	  Type* type = (*p)->result_var_value()->type();
+	  Bexpression* init;
+	  if (!(*p)->result_var_value()->is_in_heap())
+	    {
+	      Btype* btype = type->get_backend(gogo);
+	      init = gogo->backend()->zero_expression(btype);
+	    }
+	  else
+	    init = Expression::make_allocation(type,
+					       loc)->get_backend(&context);
+
+          vars.push_back(bvar);
+          var_inits.push_back(init);
+	}
+    }
+  if (!gogo->backend()->function_set_parameters(this->fndecl_, param_vars))
+    {
+      go_assert(saw_errors());
+      return;
+    }
+
+  // If we need a closure variable, make sure to create it.
+  // It gets installed in the function as a side effect of creation.
+  if (this->closure_var_ != NULL)
+    {
+      go_assert(this->closure_var_->var_value()->is_closure());
+      this->closure_var_->get_backend_variable(gogo, named_function);
+    }
+
+  if (this->block_ != NULL)
+    {
+      // Declare variables if necessary.
+      Bblock* var_decls = NULL;
+
+      Bstatement* defer_init = NULL;
+      if (!vars.empty() || this->defer_stack_ != NULL)
+	{
+          var_decls =
+              gogo->backend()->block(this->fndecl_, NULL, vars,
+                                     this->block_->start_location(),
+                                     this->block_->end_location());
+
+	  if (this->defer_stack_ != NULL)
+	    {
+	      Translate_context dcontext(gogo, named_function, this->block_,
+                                         var_decls);
+              defer_init = this->defer_stack_->get_backend(&dcontext);
+	    }
+	}
+
+      // Build the backend representation for all the statements in the
+      // function.
+      Translate_context context(gogo, named_function, NULL, NULL);
+      Bblock* code_block = this->block_->get_backend(&context);
+
+      // Initialize variables if necessary.
+      std::vector<Bstatement*> init;
+      go_assert(vars.size() == var_inits.size());
+      for (size_t i = 0; i < vars.size(); ++i)
+	{
+          Bstatement* init_stmt =
+              gogo->backend()->init_statement(this->fndecl_, vars[i],
+                                              var_inits[i]);
+          init.push_back(init_stmt);
+	}
+      if (defer_init != NULL)
+	init.push_back(defer_init);
+      Bstatement* var_init = gogo->backend()->statement_list(init);
+
+      // Initialize all variables before executing this code block.
+      Bstatement* code_stmt = gogo->backend()->block_statement(code_block);
+      code_stmt = gogo->backend()->compound_statement(var_init, code_stmt);
+
+      // If we have a defer stack, initialize it at the start of a
+      // function.
+      Bstatement* except = NULL;
+      Bstatement* fini = NULL;
+      if (defer_init != NULL)
+	{
+	  // Clean up the defer stack when we leave the function.
+	  this->build_defer_wrapper(gogo, named_function, &except, &fini);
+
+          // Wrap the code for this function in an exception handler to handle
+          // defer calls.
+          code_stmt =
+              gogo->backend()->exception_handler_statement(code_stmt,
+                                                           except, fini,
+                                                           this->location_);
+	}
+
+      // Stick the code into the block we built for the receiver, if
+      // we built one.
+      if (var_decls != NULL)
+        {
+          std::vector<Bstatement*> code_stmt_list(1, code_stmt);
+          gogo->backend()->block_add_statements(var_decls, code_stmt_list);
+          code_stmt = gogo->backend()->block_statement(var_decls);
+        }
+
+      if (!gogo->backend()->function_set_body(this->fndecl_, code_stmt))
+        {
+          go_assert(saw_errors());
+          return;
+        }
+    }
+
+  // If we created a descriptor for the function, make sure we emit it.
+  if (this->descriptor_ != NULL)
+    {
+      Translate_context context(gogo, NULL, NULL, NULL);
+      this->descriptor_->get_backend(&context);
+    }
+}
+
+// Build the wrappers around function code needed if the function has
+// any defer statements.  This sets *EXCEPT to an exception handler
+// and *FINI to a finally handler.
+
+void
+Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
+			      Bstatement** except, Bstatement** fini)
+{
+  Location end_loc = this->block_->end_location();
+
+  // Add an exception handler.  This is used if a panic occurs.  Its
+  // purpose is to stop the stack unwinding if a deferred function
+  // calls recover.  There are more details in
+  // libgo/runtime/go-unwind.c.
+
+  std::vector<Bstatement*> stmts;
+  Expression* call = Runtime::make_call(Runtime::CHECKDEFER, end_loc, 1,
+					this->defer_stack(end_loc));
+  Translate_context context(gogo, named_function, NULL, NULL);
+  Bexpression* defer = call->get_backend(&context);
+  stmts.push_back(gogo->backend()->expression_statement(this->fndecl_, defer));
+
+  Bstatement* ret_bstmt = this->return_value(gogo, named_function, end_loc);
+  if (ret_bstmt != NULL)
+    stmts.push_back(ret_bstmt);
+
+  go_assert(*except == NULL);
+  *except = gogo->backend()->statement_list(stmts);
+
+  call = Runtime::make_call(Runtime::CHECKDEFER, end_loc, 1,
+                            this->defer_stack(end_loc));
+  defer = call->get_backend(&context);
+
+  call = Runtime::make_call(Runtime::DEFERRETURN, end_loc, 1,
+        		    this->defer_stack(end_loc));
+  Bexpression* undefer = call->get_backend(&context);
+  Bstatement* function_defer =
+      gogo->backend()->function_defer_statement(this->fndecl_, undefer, defer,
+                                                end_loc);
+  stmts = std::vector<Bstatement*>(1, function_defer);
+  if (this->type_->results() != NULL
+      && !this->type_->results()->empty()
+      && !this->type_->results()->front().name().empty())
+    {
+      // If the result variables are named, and we are returning from
+      // this function rather than panicing through it, we need to
+      // return them again, because they might have been changed by a
+      // defer function.  The runtime routines set the defer_stack
+      // variable to true if we are returning from this function.
+
+      ret_bstmt = this->return_value(gogo, named_function, end_loc);
+      Bexpression* nil = Expression::make_nil(end_loc)->get_backend(&context);
+      Bexpression* ret =
+          gogo->backend()->compound_expression(ret_bstmt, nil, end_loc);
+      Expression* ref =
+	Expression::make_temporary_reference(this->defer_stack_, end_loc);
+      Bexpression* bref = ref->get_backend(&context);
+      ret = gogo->backend()->conditional_expression(this->fndecl_,
+                                                    NULL, bref, ret, NULL,
+                                                    end_loc);
+      stmts.push_back(gogo->backend()->expression_statement(this->fndecl_, ret));
+    }
+
+  go_assert(*fini == NULL);
+  *fini = gogo->backend()->statement_list(stmts);
+}
+
+// Return the statement that assigns values to this function's result struct.
+
+Bstatement*
+Function::return_value(Gogo* gogo, Named_object* named_function,
+		       Location location) const
+{
+  const Typed_identifier_list* results = this->type_->results();
+  if (results == NULL || results->empty())
+    return NULL;
+
+  go_assert(this->results_ != NULL);
+  if (this->results_->size() != results->size())
+    {
+      go_assert(saw_errors());
+      return gogo->backend()->error_statement();
+    }
+
+  std::vector<Bexpression*> vals(results->size());
+  for (size_t i = 0; i < vals.size(); ++i)
+    {
+      Named_object* no = (*this->results_)[i];
+      Bvariable* bvar = no->get_backend_variable(gogo, named_function);
+      Bexpression* val = gogo->backend()->var_expression(bvar, VE_rvalue,
+                                                         location);
+      if (no->result_var_value()->is_in_heap())
+	{
+	  Btype* bt = no->result_var_value()->type()->get_backend(gogo);
+	  val = gogo->backend()->indirect_expression(bt, val, true, location);
+	}
+      vals[i] = val;
+    }
+  return gogo->backend()->return_statement(this->fndecl_, vals, location);
+}
+
+// Class Block.
+
+Block::Block(Block* enclosing, Location location)
+  : enclosing_(enclosing), statements_(),
+    bindings_(new Bindings(enclosing == NULL
+			   ? NULL
+			   : enclosing->bindings())),
+    start_location_(location),
+    end_location_(Linemap::unknown_location())
+{
+}
+
+// Add a statement to a block.
+
+void
+Block::add_statement(Statement* statement)
+{
+  this->statements_.push_back(statement);
+}
+
+// Add a statement to the front of a block.  This is slow but is only
+// used for reference counts of parameters.
+
+void
+Block::add_statement_at_front(Statement* statement)
+{
+  this->statements_.insert(this->statements_.begin(), statement);
+}
+
+// Replace a statement in a block.
+
+void
+Block::replace_statement(size_t index, Statement* s)
+{
+  go_assert(index < this->statements_.size());
+  this->statements_[index] = s;
+}
+
+// Add a statement before another statement.
+
+void
+Block::insert_statement_before(size_t index, Statement* s)
+{
+  go_assert(index < this->statements_.size());
+  this->statements_.insert(this->statements_.begin() + index, s);
+}
+
+// Add a statement after another statement.
+
+void
+Block::insert_statement_after(size_t index, Statement* s)
+{
+  go_assert(index < this->statements_.size());
+  this->statements_.insert(this->statements_.begin() + index + 1, s);
+}
+
+// Traverse the tree.
+
+int
+Block::traverse(Traverse* traverse)
+{
+  unsigned int traverse_mask = traverse->traverse_mask();
+
+  if ((traverse_mask & Traverse::traverse_blocks) != 0)
+    {
+      int t = traverse->block(this);
+      if (t == TRAVERSE_EXIT)
+	return TRAVERSE_EXIT;
+      else if (t == TRAVERSE_SKIP_COMPONENTS)
+	return TRAVERSE_CONTINUE;
+    }
+
+  if ((traverse_mask
+       & (Traverse::traverse_variables
+	  | Traverse::traverse_constants
+	  | Traverse::traverse_expressions
+	  | Traverse::traverse_types)) != 0)
+    {
+      const unsigned int e_or_t = (Traverse::traverse_expressions
+				   | Traverse::traverse_types);
+      const unsigned int e_or_t_or_s = (e_or_t
+					| Traverse::traverse_statements);
+      for (Bindings::const_definitions_iterator pb =
+	     this->bindings_->begin_definitions();
+	   pb != this->bindings_->end_definitions();
+	   ++pb)
+	{
+	  int t = TRAVERSE_CONTINUE;
+	  switch ((*pb)->classification())
+	    {
+	    case Named_object::NAMED_OBJECT_CONST:
+	      if ((traverse_mask & Traverse::traverse_constants) != 0)
+		t = traverse->constant(*pb, false);
+	      if (t == TRAVERSE_CONTINUE
+		  && (traverse_mask & e_or_t) != 0)
+		{
+		  Type* tc = (*pb)->const_value()->type();
+		  if (tc != NULL
+		      && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
+		    return TRAVERSE_EXIT;
+		  t = (*pb)->const_value()->traverse_expression(traverse);
+		}
+	      break;
+
+	    case Named_object::NAMED_OBJECT_VAR:
+	    case Named_object::NAMED_OBJECT_RESULT_VAR:
+	      if ((traverse_mask & Traverse::traverse_variables) != 0)
+		t = traverse->variable(*pb);
+	      if (t == TRAVERSE_CONTINUE
+		  && (traverse_mask & e_or_t) != 0)
+		{
+		  if ((*pb)->is_result_variable()
+		      || (*pb)->var_value()->has_type())
+		    {
+		      Type* tv = ((*pb)->is_variable()
+				  ? (*pb)->var_value()->type()
+				  : (*pb)->result_var_value()->type());
+		      if (tv != NULL
+			  && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
+			return TRAVERSE_EXIT;
+		    }
+		}
+	      if (t == TRAVERSE_CONTINUE
+		  && (traverse_mask & e_or_t_or_s) != 0
+		  && (*pb)->is_variable())
+		t = (*pb)->var_value()->traverse_expression(traverse,
+							    traverse_mask);
+	      break;
+
+	    case Named_object::NAMED_OBJECT_FUNC:
+	    case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
+	      go_unreachable();
+
+	    case Named_object::NAMED_OBJECT_TYPE:
+	      if ((traverse_mask & e_or_t) != 0)
+		t = Type::traverse((*pb)->type_value(), traverse);
+	      break;
+
+	    case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
+	    case Named_object::NAMED_OBJECT_UNKNOWN:
+	    case Named_object::NAMED_OBJECT_ERRONEOUS:
+	      break;
+
+	    case Named_object::NAMED_OBJECT_PACKAGE:
+	    case Named_object::NAMED_OBJECT_SINK:
+	      go_unreachable();
+
+	    default:
+	      go_unreachable();
+	    }
+
+	  if (t == TRAVERSE_EXIT)
+	    return TRAVERSE_EXIT;
+	}
+    }
+
+  // No point in checking traverse_mask here--if we got here we always
+  // want to walk the statements.  The traversal can insert new
+  // statements before or after the current statement.  Inserting
+  // statements before the current statement requires updating I via
+  // the pointer; those statements will not be traversed.  Any new
+  // statements inserted after the current statement will be traversed
+  // in their turn.
+  for (size_t i = 0; i < this->statements_.size(); ++i)
+    {
+      if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
+	return TRAVERSE_EXIT;
+    }
+
+  return TRAVERSE_CONTINUE;
+}
+
+// Work out types for unspecified variables and constants.
+
+void
+Block::determine_types()
+{
+  for (Bindings::const_definitions_iterator pb =
+	 this->bindings_->begin_definitions();
+       pb != this->bindings_->end_definitions();
+       ++pb)
+    {
+      if ((*pb)->is_variable())
+	(*pb)->var_value()->determine_type();
+      else if ((*pb)->is_const())
+	(*pb)->const_value()->determine_type();
+    }
+
+  for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
+       ps != this->statements_.end();
+       ++ps)
+    (*ps)->determine_types();
+}
+
+// Return true if the statements in this block may fall through.
+
+bool
+Block::may_fall_through() const
+{
+  if (this->statements_.empty())
+    return true;
+  return this->statements_.back()->may_fall_through();
+}
+
+// Convert a block to the backend representation.
+
+Bblock*
+Block::get_backend(Translate_context* context)
+{
+  Gogo* gogo = context->gogo();
+  Named_object* function = context->function();
+  std::vector<Bvariable*> vars;
+  vars.reserve(this->bindings_->size_definitions());
+  for (Bindings::const_definitions_iterator pv =
+	 this->bindings_->begin_definitions();
+       pv != this->bindings_->end_definitions();
+       ++pv)
+    {
+      if ((*pv)->is_variable() && !(*pv)->var_value()->is_parameter())
+	vars.push_back((*pv)->get_backend_variable(gogo, function));
+    }
+
+  go_assert(function != NULL);
+  Bfunction* bfunction =
+    function->func_value()->get_or_make_decl(gogo, function);
+  Bblock* ret = context->backend()->block(bfunction, context->bblock(),
+					  vars, this->start_location_,
+					  this->end_location_);
+
+  Translate_context subcontext(gogo, function, this, ret);
+  std::vector<Bstatement*> bstatements;
+  bstatements.reserve(this->statements_.size());
+  for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
+       p != this->statements_.end();
+       ++p)
+    bstatements.push_back((*p)->get_backend(&subcontext));
+
+  context->backend()->block_add_statements(ret, bstatements);
+
+  return ret;
+}
+
+// Class Bindings_snapshot.
+
+Bindings_snapshot::Bindings_snapshot(const Block* b, Location location)
+  : block_(b), counts_(), location_(location)
+{
+  while (b != NULL)
+    {
+      this->counts_.push_back(b->bindings()->size_definitions());
+      b = b->enclosing();
+    }
+}
+
+// Report errors appropriate for a goto from B to this.
+
+void
+Bindings_snapshot::check_goto_from(const Block* b, Location loc)
+{
+  size_t dummy;
+  if (!this->check_goto_block(loc, b, this->block_, &dummy))
+    return;
+  this->check_goto_defs(loc, this->block_,
+			this->block_->bindings()->size_definitions(),
+			this->counts_[0]);
+}
+
+// Report errors appropriate for a goto from this to B.
+
+void
+Bindings_snapshot::check_goto_to(const Block* b)
+{
+  size_t index;
+  if (!this->check_goto_block(this->location_, this->block_, b, &index))
+    return;
+  this->check_goto_defs(this->location_, b, this->counts_[index],
+			b->bindings()->size_definitions());
+}
+
+// Report errors appropriate for a goto at LOC from BFROM to BTO.
+// Return true if all is well, false if we reported an error.  If this
+// returns true, it sets *PINDEX to the number of blocks BTO is above
+// BFROM.
+
+bool
+Bindings_snapshot::check_goto_block(Location loc, const Block* bfrom,
+				    const Block* bto, size_t* pindex)
+{
+  // It is an error if BTO is not either BFROM or above BFROM.
+  size_t index = 0;
+  for (const Block* pb = bfrom; pb != bto; pb = pb->enclosing(), ++index)
+    {
+      if (pb == NULL)
+	{
+	  go_error_at(loc, "goto jumps into block");
+	  go_inform(bto->start_location(), "goto target block starts here");
+	  return false;
+	}
+    }
+  *pindex = index;
+  return true;
+}
+
+// Report errors appropriate for a goto at LOC ending at BLOCK, where
+// CFROM is the number of names defined at the point of the goto and
+// CTO is the number of names defined at the point of the label.
+
+void
+Bindings_snapshot::check_goto_defs(Location loc, const Block* block,
+				   size_t cfrom, size_t cto)
+{
+  if (cfrom < cto)
+    {
+      Bindings::const_definitions_iterator p =
+	block->bindings()->begin_definitions();
+      for (size_t i = 0; i < cfrom; ++i)
+	{
+	  go_assert(p != block->bindings()->end_definitions());
+	  ++p;
+	}
+      go_assert(p != block->bindings()->end_definitions());
+
+      std::string n = (*p)->message_name();
+      go_error_at(loc, "goto jumps over declaration of %qs", n.c_str());
+      go_inform((*p)->location(), "%qs defined here", n.c_str());
+    }
+}
+
+// Class Function_declaration.
+
+// Return the function descriptor.
+
+Expression*
+Function_declaration::descriptor(Gogo*, Named_object* no)
+{
+  go_assert(!this->fntype_->is_method());
+  if (this->descriptor_ == NULL)
+    this->descriptor_ = Expression::make_func_descriptor(no);
+  return this->descriptor_;
+}
+
+// Class Variable.
+
+Variable::Variable(Type* type, Expression* init, bool is_global,
+		   bool is_parameter, bool is_receiver,
+		   Location location)
+  : type_(type), init_(init), preinit_(NULL), location_(location),
+    backend_(NULL), is_global_(is_global), is_parameter_(is_parameter),
+    is_closure_(false), is_receiver_(is_receiver),
+    is_varargs_parameter_(false), is_used_(false),
+    is_address_taken_(false), is_non_escaping_address_taken_(false),
+    seen_(false), init_is_lowered_(false), init_is_flattened_(false),
+    type_from_init_tuple_(false), type_from_range_index_(false),
+    type_from_range_value_(false), type_from_chan_element_(false),
+    is_type_switch_var_(false), determined_type_(false),
+    in_unique_section_(false), escapes_(true)
+{
+  go_assert(type != NULL || init != NULL);
+  go_assert(!is_parameter || init == NULL);
+}
+
+// Traverse the initializer expression.
+
+int
+Variable::traverse_expression(Traverse* traverse, unsigned int traverse_mask)
+{
+  if (this->preinit_ != NULL)
+    {
+      if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
+	return TRAVERSE_EXIT;
+    }
+  if (this->init_ != NULL
+      && ((traverse_mask
+	   & (Traverse::traverse_expressions | Traverse::traverse_types))
+	  != 0))
+    {
+      if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
+	return TRAVERSE_EXIT;
+    }
+  return TRAVERSE_CONTINUE;
+}
+
+// Lower the initialization expression after parsing is complete.
+
+void
+Variable::lower_init_expression(Gogo* gogo, Named_object* function,
+				Statement_inserter* inserter)
+{
+  Named_object* dep = gogo->var_depends_on(this);
+  if (dep != NULL && dep->is_variable())
+    dep->var_value()->lower_init_expression(gogo, function, inserter);
+
+  if (this->init_ != NULL && !this->init_is_lowered_)
+    {
+      if (this->seen_)
+	{
+	  // We will give an error elsewhere, this is just to prevent
+	  // an infinite loop.
+	  return;
+	}
+      this->seen_ = true;
+
+      Statement_inserter global_inserter;
+      if (this->is_global_)
+	{
+	  global_inserter = Statement_inserter(gogo, this);
+	  inserter = &global_inserter;
+	}
+
+      gogo->lower_expression(function, inserter, &this->init_);
+
+      this->seen_ = false;
+
+      this->init_is_lowered_ = true;
+    }
+}
+
+// Flatten the initialization expression after ordering evaluations.
+
+void
+Variable::flatten_init_expression(Gogo* gogo, Named_object* function,
+                                  Statement_inserter* inserter)
+{
+  Named_object* dep = gogo->var_depends_on(this);
+  if (dep != NULL && dep->is_variable())
+    dep->var_value()->flatten_init_expression(gogo, function, inserter);
+
+  if (this->init_ != NULL && !this->init_is_flattened_)
+    {
+      if (this->seen_)
+	{
+	  // We will give an error elsewhere, this is just to prevent
+	  // an infinite loop.
+	  return;
+	}
+      this->seen_ = true;
+
+      Statement_inserter global_inserter;
+      if (this->is_global_)
+	{
+	  global_inserter = Statement_inserter(gogo, this);
+	  inserter = &global_inserter;
+	}
+
+      gogo->flatten_expression(function, inserter, &this->init_);
+
+      // If an interface conversion is needed, we need a temporary
+      // variable.
+      if (this->type_ != NULL
+	  && !Type::are_identical(this->type_, this->init_->type(), false,
+				  NULL)
+	  && this->init_->type()->interface_type() != NULL
+	  && !this->init_->is_variable())
+	{
+	  Temporary_statement* temp =
+	    Statement::make_temporary(NULL, this->init_, this->location_);
+	  inserter->insert(temp);
+	  this->init_ = Expression::make_temporary_reference(temp,
+							     this->location_);
+	}
+
+      this->seen_ = false;
+      this->init_is_flattened_ = true;
+    }
+}
+
+// Get the preinit block.
+
+Block*
+Variable::preinit_block(Gogo* gogo)
+{
+  go_assert(this->is_global_);
+  if (this->preinit_ == NULL)
+    this->preinit_ = new Block(NULL, this->location());
+
+  // If a global variable has a preinitialization statement, then we
+  // need to have an initialization function.
+  gogo->set_need_init_fn();
+
+  return this->preinit_;
+}
+
+// Add a statement to be run before the initialization expression.
+
+void
+Variable::add_preinit_statement(Gogo* gogo, Statement* s)
+{
+  Block* b = this->preinit_block(gogo);
+  b->add_statement(s);
+  b->set_end_location(s->location());
+}
+
+// Whether this variable has a type.
+
+bool
+Variable::has_type() const
+{
+  if (this->type_ == NULL)
+    return false;
+
+  // A variable created in a type switch case nil does not actually
+  // have a type yet.  It will be changed to use the initializer's
+  // type in determine_type.
+  if (this->is_type_switch_var_
+      && this->type_->is_nil_constant_as_type())
+    return false;
+
+  return true;
+}
+
+// In an assignment which sets a variable to a tuple of EXPR, return
+// the type of the first element of the tuple.
+
+Type*
+Variable::type_from_tuple(Expression* expr, bool report_error) const
+{
+  if (expr->map_index_expression() != NULL)
+    {
+      Map_type* mt = expr->map_index_expression()->get_map_type();
+      if (mt == NULL)
+	return Type::make_error_type();
+      return mt->val_type();
+    }
+  else if (expr->receive_expression() != NULL)
+    {
+      Expression* channel = expr->receive_expression()->channel();
+      Type* channel_type = channel->type();
+      if (channel_type->channel_type() == NULL)
+	return Type::make_error_type();
+      return channel_type->channel_type()->element_type();
+    }
+  else
+    {
+      if (report_error)
+	go_error_at(this->location(), "invalid tuple definition");
+      return Type::make_error_type();
+    }
+}
+
+// Given EXPR used in a range clause, return either the index type or
+// the value type of the range, depending upon GET_INDEX_TYPE.
+
+Type*
+Variable::type_from_range(Expression* expr, bool get_index_type,
+			  bool report_error) const
+{
+  Type* t = expr->type();
+  if (t->array_type() != NULL
+      || (t->points_to() != NULL
+	  && t->points_to()->array_type() != NULL
+	  && !t->points_to()->is_slice_type()))
+    {
+      if (get_index_type)
+	return Type::lookup_integer_type("int");
+      else
+	return t->deref()->array_type()->element_type();
+    }
+  else if (t->is_string_type())
+    {
+      if (get_index_type)
+	return Type::lookup_integer_type("int");
+      else
+	return Type::lookup_integer_type("int32");
+    }
+  else if (t->map_type() != NULL)
+    {
+      if (get_index_type)
+	return t->map_type()->key_type();
+      else
+	return t->map_type()->val_type();
+    }
+  else if (t->channel_type() != NULL)
+    {
+      if (get_index_type)
+	return t->channel_type()->element_type();
+      else
+	{
+	  if (report_error)
+	    go_error_at(this->location(),
+			("invalid definition of value variable "
+			 "for channel range"));
+	  return Type::make_error_type();
+	}
+    }
+  else
+    {
+      if (report_error)
+	go_error_at(this->location(), "invalid type for range clause");
+      return Type::make_error_type();
+    }
+}
+
+// EXPR should be a channel.  Return the channel's element type.
+
+Type*
+Variable::type_from_chan_element(Expression* expr, bool report_error) const
+{
+  Type* t = expr->type();
+  if (t->channel_type() != NULL)
+    return t->channel_type()->element_type();
+  else
+    {
+      if (report_error)
+	go_error_at(this->location(), "expected channel");
+      return Type::make_error_type();
+    }
+}
+
+// Return the type of the Variable.  This may be called before
+// Variable::determine_type is called, which means that we may need to
+// get the type from the initializer.  FIXME: If we combine lowering
+// with type determination, then this should be unnecessary.
+
+Type*
+Variable::type()
+{
+  // A variable in a type switch with a nil case will have the wrong
+  // type here.  This gets fixed up in determine_type, below.
+  Type* type = this->type_;
+  Expression* init = this->init_;
+  if (this->is_type_switch_var_
+      && type != NULL
+      && this->type_->is_nil_constant_as_type())
+    {
+      Type_guard_expression* tge = this->init_->type_guard_expression();
+      go_assert(tge != NULL);
+      init = tge->expr();
+      type = NULL;
+    }
+
+  if (this->seen_)
+    {
+      if (this->type_ == NULL || !this->type_->is_error_type())
+	{
+	  go_error_at(this->location_, "variable initializer refers to itself");
+	  this->type_ = Type::make_error_type();
+	}
+      return this->type_;
+    }
+
+  this->seen_ = true;
+
+  if (type != NULL)
+    ;
+  else if (this->type_from_init_tuple_)
+    type = this->type_from_tuple(init, false);
+  else if (this->type_from_range_index_ || this->type_from_range_value_)
+    type = this->type_from_range(init, this->type_from_range_index_, false);
+  else if (this->type_from_chan_element_)
+    type = this->type_from_chan_element(init, false);
+  else
+    {
+      go_assert(init != NULL);
+      type = init->type();
+      go_assert(type != NULL);
+
+      // Variables should not have abstract types.
+      if (type->is_abstract())
+	type = type->make_non_abstract_type();
+
+      if (type->is_void_type())
+	type = Type::make_error_type();
+    }
+
+  this->seen_ = false;
+
+  return type;
+}
+
+// Fetch the type from a const pointer, in which case it should have
+// been set already.
+
+Type*
+Variable::type() const
+{
+  go_assert(this->type_ != NULL);
+  return this->type_;
+}
+
+// Set the type if necessary.
+
+void
+Variable::determine_type()
+{
+  if (this->determined_type_)
+    return;
+  this->determined_type_ = true;
+
+  if (this->preinit_ != NULL)
+    this->preinit_->determine_types();
+
+  // A variable in a type switch with a nil case will have the wrong
+  // type here.  It will have an initializer which is a type guard.
+  // We want to initialize it to the value without the type guard, and
+  // use the type of that value as well.
+  if (this->is_type_switch_var_
+      && this->type_ != NULL
+      && this->type_->is_nil_constant_as_type())
+    {
+      Type_guard_expression* tge = this->init_->type_guard_expression();
+      go_assert(tge != NULL);
+      this->type_ = NULL;
+      this->init_ = tge->expr();
+    }
+
+  if (this->init_ == NULL)
+    go_assert(this->type_ != NULL && !this->type_->is_abstract());
+  else if (this->type_from_init_tuple_)
+    {
+      Expression *init = this->init_;
+      init->determine_type_no_context();
+      this->type_ = this->type_from_tuple(init, true);
+      this->init_ = NULL;
+    }
+  else if (this->type_from_range_index_ || this->type_from_range_value_)
+    {
+      Expression* init = this->init_;
+      init->determine_type_no_context();
+      this->type_ = this->type_from_range(init, this->type_from_range_index_,
+					  true);
+      this->init_ = NULL;
+    }
+  else if (this->type_from_chan_element_)
+    {
+      Expression* init = this->init_;
+      init->determine_type_no_context();
+      this->type_ = this->type_from_chan_element(init, true);
+      this->init_ = NULL;
+    }
+  else
+    {
+      Type_context context(this->type_, false);
+      this->init_->determine_type(&context);
+      if (this->type_ == NULL)
+	{
+	  Type* type = this->init_->type();
+	  go_assert(type != NULL);
+	  if (type->is_abstract())
+	    type = type->make_non_abstract_type();
+
+	  if (type->is_void_type())
+	    {
+	      go_error_at(this->location_, "variable has no type");
+	      type = Type::make_error_type();
+	    }
+	  else if (type->is_nil_type())
+	    {
+	      go_error_at(this->location_, "variable defined to nil type");
+	      type = Type::make_error_type();
+	    }
+	  else if (type->is_call_multiple_result_type())
+	    {
+	      go_error_at(this->location_,
+		       "single variable set to multiple-value function call");
+	      type = Type::make_error_type();
+	    }
+
+	  this->type_ = type;
+	}
+    }
+}
+
+// Get the initial value of a variable.  This does not
+// consider whether the variable is in the heap--it returns the
+// initial value as though it were always stored in the stack.
+
+Bexpression*
+Variable::get_init(Gogo* gogo, Named_object* function)
+{
+  go_assert(this->preinit_ == NULL);
+  Location loc = this->location();
+  if (this->init_ == NULL)
+    {
+      go_assert(!this->is_parameter_);
+      if (this->is_global_ || this->is_in_heap())
+	return NULL;
+      Btype* btype = this->type()->get_backend(gogo);
+      return gogo->backend()->zero_expression(btype);
+    }
+  else
+    {
+      Translate_context context(gogo, function, NULL, NULL);
+      Expression* init = Expression::make_cast(this->type(), this->init_, loc);
+      return init->get_backend(&context);
+    }
+}
+
+// Get the initial value of a variable when a block is required.
+// VAR_DECL is the decl to set; it may be NULL for a sink variable.
+
+Bstatement*
+Variable::get_init_block(Gogo* gogo, Named_object* function,
+                         Bvariable* var_decl)
+{
+  go_assert(this->preinit_ != NULL);
+
+  // We want to add the variable assignment to the end of the preinit
+  // block.
+
+  Translate_context context(gogo, function, NULL, NULL);
+  Bblock* bblock = this->preinit_->get_backend(&context);
+  Bfunction* bfunction =
+      function->func_value()->get_or_make_decl(gogo, function);
+
+  // It's possible to have pre-init statements without an initializer
+  // if the pre-init statements set the variable.
+  Bstatement* decl_init = NULL;
+  if (this->init_ != NULL)
+    {
+      if (var_decl == NULL)
+        {
+          Bexpression* init_bexpr = this->init_->get_backend(&context);
+          decl_init = gogo->backend()->expression_statement(bfunction,
+                                                            init_bexpr);
+        }
+      else
+	{
+          Location loc = this->location();
+          Expression* val_expr =
+              Expression::make_cast(this->type(), this->init_, loc);
+          Bexpression* val = val_expr->get_backend(&context);
+          Bexpression* var_ref =
+              gogo->backend()->var_expression(var_decl, VE_lvalue, loc);
+          decl_init = gogo->backend()->assignment_statement(bfunction, var_ref,
+                                                            val, loc);
+	}
+    }
+  Bstatement* block_stmt = gogo->backend()->block_statement(bblock);
+  if (decl_init != NULL)
+    block_stmt = gogo->backend()->compound_statement(block_stmt, decl_init);
+  return block_stmt;
+}
+
+// Export the variable
+
+void
+Variable::export_var(Export* exp, const std::string& name) const
+{
+  go_assert(this->is_global_);
+  exp->write_c_string("var ");
+  exp->write_string(name);
+  exp->write_c_string(" ");
+  exp->write_type(this->type());
+  exp->write_c_string(";\n");
+}
+
+// Import a variable.
+
+void
+Variable::import_var(Import* imp, std::string* pname, Type** ptype)
+{
+  imp->require_c_string("var ");
+  *pname = imp->read_identifier();
+  imp->require_c_string(" ");
+  *ptype = imp->read_type();
+  imp->require_c_string(";\n");
+}
+
+// Convert a variable to the backend representation.
+
+Bvariable*
+Variable::get_backend_variable(Gogo* gogo, Named_object* function,
+			       const Package* package, const std::string& name)
+{
+  if (this->backend_ == NULL)
+    {
+      Backend* backend = gogo->backend();
+      Type* type = this->type_;
+      if (type->is_error_type()
+	  || (type->is_undefined()
+	      && (!this->is_global_ || package == NULL)))
+	this->backend_ = backend->error_variable();
+      else
+	{
+	  bool is_parameter = this->is_parameter_;
+	  if (this->is_receiver_ && type->points_to() == NULL)
+	    is_parameter = false;
+	  if (this->is_in_heap())
+	    {
+	      is_parameter = false;
+	      type = Type::make_pointer_type(type);
+	    }
+
+	  const std::string n = Gogo::unpack_hidden_name(name);
+	  Btype* btype = type->get_backend(gogo);
+
+	  Bvariable* bvar;
+	  if (Map_type::is_zero_value(this))
+	    bvar = Map_type::backend_zero_value(gogo);
+	  else if (this->is_global_)
+	    {
+	      std::string var_name(package != NULL
+				   ? package->package_name()
+				   : gogo->package_name());
+	      var_name.push_back('.');
+	      var_name.append(n);
+
+              std::string asm_name(gogo->global_var_asm_name(name, package));
+
+	      bool is_hidden = Gogo::is_hidden_name(name);
+	      // Hack to export runtime.writeBarrier.  FIXME.
+	      // This is because go:linkname doesn't work on variables.
+	      if (gogo->compiling_runtime()
+		  && var_name == "runtime.writeBarrier")
+		is_hidden = false;
+
+	      bvar = backend->global_variable(var_name,
+					      asm_name,
+					      btype,
+					      package != NULL,
+					      is_hidden,
+					      this->in_unique_section_,
+					      this->location_);
+	    }
+	  else if (function == NULL)
+	    {
+	      go_assert(saw_errors());
+	      bvar = backend->error_variable();
+	    }
+	  else
+	    {
+	      Bfunction* bfunction = function->func_value()->get_decl();
+	      bool is_address_taken = (this->is_non_escaping_address_taken_
+				       && !this->is_in_heap());
+	      if (this->is_closure())
+		bvar = backend->static_chain_variable(bfunction, n, btype,
+						      this->location_);
+	      else if (is_parameter)
+		bvar = backend->parameter_variable(bfunction, n, btype,
+						   is_address_taken,
+						   this->location_);
+	      else
+		bvar = backend->local_variable(bfunction, n, btype,
+					       is_address_taken,
+					       this->location_);
+	    }
+	  this->backend_ = bvar;
+	}
+    }
+  return this->backend_;
+}
+
+// Class Result_variable.
+
+// Convert a result variable to the backend representation.
+
+Bvariable*
+Result_variable::get_backend_variable(Gogo* gogo, Named_object* function,
+				      const std::string& name)
+{
+  if (this->backend_ == NULL)
+    {
+      Backend* backend = gogo->backend();
+      Type* type = this->type_;
+      if (type->is_error())
+	this->backend_ = backend->error_variable();
+      else
+	{
+	  if (this->is_in_heap())
+	    type = Type::make_pointer_type(type);
+	  Btype* btype = type->get_backend(gogo);
+	  Bfunction* bfunction = function->func_value()->get_decl();
+	  std::string n = Gogo::unpack_hidden_name(name);
+	  bool is_address_taken = (this->is_non_escaping_address_taken_
+				   && !this->is_in_heap());
+	  this->backend_ = backend->local_variable(bfunction, n, btype,
+						   is_address_taken,
+						   this->location_);
+	}
+    }
+  return this->backend_;
+}
+
+// Class Named_constant.
+
+// Traverse the initializer expression.
+
+int
+Named_constant::traverse_expression(Traverse* traverse)
+{
+  return Expression::traverse(&this->expr_, traverse);
+}
+
+// Determine the type of the constant.
+
+void
+Named_constant::determine_type()
+{
+  if (this->type_ != NULL)
+    {
+      Type_context context(this->type_, false);
+      this->expr_->determine_type(&context);
+    }
+  else
+    {
+      // A constant may have an abstract type.
+      Type_context context(NULL, true);
+      this->expr_->determine_type(&context);
+      this->type_ = this->expr_->type();
+      go_assert(this->type_ != NULL);
+    }
+}
+
+// Indicate that we found and reported an error for this constant.
+
+void
+Named_constant::set_error()
+{
+  this->type_ = Type::make_error_type();
+  this->expr_ = Expression::make_error(this->location_);
+}
+
+// Export a constant.
+
+void
+Named_constant::export_const(Export* exp, const std::string& name) const
+{
+  exp->write_c_string("const ");
+  exp->write_string(name);
+  exp->write_c_string(" ");
+  if (!this->type_->is_abstract())
+    {
+      exp->write_type(this->type_);
+      exp->write_c_string(" ");
+    }
+  exp->write_c_string("= ");
+  this->expr()->export_expression(exp);
+  exp->write_c_string(";\n");
+}
+
+// Import a constant.
+
+void
+Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
+			     Expression** pexpr)
+{
+  imp->require_c_string("const ");
+  *pname = imp->read_identifier();
+  imp->require_c_string(" ");
+  if (imp->peek_char() == '=')
+    *ptype = NULL;
+  else
+    {
+      *ptype = imp->read_type();
+      imp->require_c_string(" ");
+    }
+  imp->require_c_string("= ");
+  *pexpr = Expression::import_expression(imp);
+  imp->require_c_string(";\n");
+}
+
+// Get the backend representation.
+
+Bexpression*
+Named_constant::get_backend(Gogo* gogo, Named_object* const_no)
+{
+  if (this->bconst_ == NULL)
+    {
+      Translate_context subcontext(gogo, NULL, NULL, NULL);
+      Type* type = this->type();
+      Location loc = this->location();
+
+      Expression* const_ref = Expression::make_const_reference(const_no, loc);
+      Bexpression* const_decl = const_ref->get_backend(&subcontext);
+      if (type != NULL && type->is_numeric_type())
+	{
+	  Btype* btype = type->get_backend(gogo);
+	  std::string name = const_no->get_id(gogo);
+	  const_decl =
+	    gogo->backend()->named_constant_expression(btype, name,
+						       const_decl, loc);
+	}
+      this->bconst_ = const_decl;
+    }
+  return this->bconst_;
+}
+
+// Add a method.
+
+Named_object*
+Type_declaration::add_method(const std::string& name, Function* function)
+{
+  Named_object* ret = Named_object::make_function(name, NULL, function);
+  this->methods_.push_back(ret);
+  return ret;
+}
+
+// Add a method declaration.
+
+Named_object*
+Type_declaration::add_method_declaration(const std::string&  name,
+					 Package* package,
+					 Function_type* type,
+					 Location location)
+{
+  Named_object* ret = Named_object::make_function_declaration(name, package,
+							      type, location);
+  this->methods_.push_back(ret);
+  return ret;
+}
+
+// Return whether any methods are defined.
+
+bool
+Type_declaration::has_methods() const
+{
+  return !this->methods_.empty();
+}
+
+// Define methods for the real type.
+
+void
+Type_declaration::define_methods(Named_type* nt)
+{
+  if (this->methods_.empty())
+    return;
+
+  while (nt->is_alias())
+    {
+      Type *t = nt->real_type()->forwarded();
+      if (t->named_type() != NULL)
+	nt = t->named_type();
+      else if (t->forward_declaration_type() != NULL)
+	{
+	  Named_object* no = t->forward_declaration_type()->named_object();
+	  Type_declaration* td = no->type_declaration_value();
+	  td->methods_.insert(td->methods_.end(), this->methods_.begin(),
+			      this->methods_.end());
+	  this->methods_.clear();
+	  return;
+	}
+      else
+	{
+	  for (std::vector<Named_object*>::const_iterator p =
+		 this->methods_.begin();
+	       p != this->methods_.end();
+	       ++p)
+	    go_error_at((*p)->location(),
+			("invalid receiver type "
+			 "(receiver must be a named type"));
+	  return;
+	}
+    }
+
+  for (std::vector<Named_object*>::const_iterator p = this->methods_.begin();
+       p != this->methods_.end();
+       ++p)
+    {
+      if (!(*p)->func_value()->is_sink())
+	nt->add_existing_method(*p);
+    }
+}
+
+// We are using the type.  Return true if we should issue a warning.
+
+bool
+Type_declaration::using_type()
+{
+  bool ret = !this->issued_warning_;
+  this->issued_warning_ = true;
+  return ret;
+}
+
+// Class Unknown_name.
+
+// Set the real named object.
+
+void
+Unknown_name::set_real_named_object(Named_object* no)
+{
+  go_assert(this->real_named_object_ == NULL);
+  go_assert(!no->is_unknown());
+  this->real_named_object_ = no;
+}
+
+// Class Named_object.
+
+Named_object::Named_object(const std::string& name,
+			   const Package* package,
+			   Classification classification)
+  : name_(name), package_(package), classification_(classification),
+    is_redefinition_(false)
+{
+  if (Gogo::is_sink_name(name))
+    go_assert(classification == NAMED_OBJECT_SINK);
+}
+
+// Make an unknown name.  This is used by the parser.  The name must
+// be resolved later.  Unknown names are only added in the current
+// package.
+
+Named_object*
+Named_object::make_unknown_name(const std::string& name,
+				Location location)
+{
+  Named_object* named_object = new Named_object(name, NULL,
+						NAMED_OBJECT_UNKNOWN);
+  Unknown_name* value = new Unknown_name(location);
+  named_object->u_.unknown_value = value;
+  return named_object;
+}
+
+// Make a constant.
+
+Named_object*
+Named_object::make_constant(const Typed_identifier& tid,
+			    const Package* package, Expression* expr,
+			    int iota_value)
+{
+  Named_object* named_object = new Named_object(tid.name(), package,
+						NAMED_OBJECT_CONST);
+  Named_constant* named_constant = new Named_constant(tid.type(), expr,
+						      iota_value,
+						      tid.location());
+  named_object->u_.const_value = named_constant;
+  return named_object;
+}
+
+// Make a named type.
+
+Named_object*
+Named_object::make_type(const std::string& name, const Package* package,
+			Type* type, Location location)
+{
+  Named_object* named_object = new Named_object(name, package,
+						NAMED_OBJECT_TYPE);
+  Named_type* named_type = Type::make_named_type(named_object, type, location);
+  named_object->u_.type_value = named_type;
+  return named_object;
+}
+
+// Make a type declaration.
+
+Named_object*
+Named_object::make_type_declaration(const std::string& name,
+				    const Package* package,
+				    Location location)
+{
+  Named_object* named_object = new Named_object(name, package,
+						NAMED_OBJECT_TYPE_DECLARATION);
+  Type_declaration* type_declaration = new Type_declaration(location);
+  named_object->u_.type_declaration = type_declaration;
+  return named_object;
+}
+
+// Make a variable.
+
+Named_object*
+Named_object::make_variable(const std::string& name, const Package* package,
+			    Variable* variable)
+{
+  Named_object* named_object = new Named_object(name, package,
+						NAMED_OBJECT_VAR);
+  named_object->u_.var_value = variable;
+  return named_object;
+}
+
+// Make a result variable.
+
+Named_object*
+Named_object::make_result_variable(const std::string& name,
+				   Result_variable* result)
+{
+  Named_object* named_object = new Named_object(name, NULL,
+						NAMED_OBJECT_RESULT_VAR);
+  named_object->u_.result_var_value = result;
+  return named_object;
+}
+
+// Make a sink.  This is used for the special blank identifier _.
+
+Named_object*
+Named_object::make_sink()
+{
+  return new Named_object("_", NULL, NAMED_OBJECT_SINK);
+}
+
+// Make a named function.
+
+Named_object*
+Named_object::make_function(const std::string& name, const Package* package,
+			    Function* function)
+{
+  Named_object* named_object = new Named_object(name, package,
+						NAMED_OBJECT_FUNC);
+  named_object->u_.func_value = function;
+  return named_object;
+}
+
+// Make a function declaration.
+
+Named_object*
+Named_object::make_function_declaration(const std::string& name,
+					const Package* package,
+					Function_type* fntype,
+					Location location)
+{
+  Named_object* named_object = new Named_object(name, package,
+						NAMED_OBJECT_FUNC_DECLARATION);
+  Function_declaration *func_decl = new Function_declaration(fntype, location);
+  named_object->u_.func_declaration_value = func_decl;
+  return named_object;
+}
+
+// Make a package.
+
+Named_object*
+Named_object::make_package(const std::string& alias, Package* package)
+{
+  Named_object* named_object = new Named_object(alias, NULL,
+						NAMED_OBJECT_PACKAGE);
+  named_object->u_.package_value = package;
+  return named_object;
+}
+
+// Return the name to use in an error message.
+
+std::string
+Named_object::message_name() const
+{
+  if (this->package_ == NULL)
+    return Gogo::message_name(this->name_);
+  std::string ret;
+  if (this->package_->has_package_name())
+    ret = this->package_->package_name();
+  else
+    ret = this->package_->pkgpath();
+  ret = Gogo::message_name(ret);
+  ret += '.';
+  ret += Gogo::message_name(this->name_);
+  return ret;
+}
+
+// Set the type when a declaration is defined.
+
+void
+Named_object::set_type_value(Named_type* named_type)
+{
+  go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
+  Type_declaration* td = this->u_.type_declaration;
+  td->define_methods(named_type);
+  unsigned int index;
+  Named_object* in_function = td->in_function(&index);
+  if (in_function != NULL)
+    named_type->set_in_function(in_function, index);
+  delete td;
+  this->classification_ = NAMED_OBJECT_TYPE;
+  this->u_.type_value = named_type;
+}
+
+// Define a function which was previously declared.
+
+void
+Named_object::set_function_value(Function* function)
+{
+  go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
+  if (this->func_declaration_value()->has_descriptor())
+    {
+      Expression* descriptor =
+	this->func_declaration_value()->descriptor(NULL, NULL);
+      function->set_descriptor(descriptor);
+    }
+  this->classification_ = NAMED_OBJECT_FUNC;
+  // FIXME: We should free the old value.
+  this->u_.func_value = function;
+}
+
+// Declare an unknown object as a type declaration.
+
+void
+Named_object::declare_as_type()
+{
+  go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
+  Unknown_name* unk = this->u_.unknown_value;
+  this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
+  this->u_.type_declaration = new Type_declaration(unk->location());
+  delete unk;
+}
+
+// Return the location of a named object.
+
+Location
+Named_object::location() const
+{
+  switch (this->classification_)
+    {
+    default:
+    case NAMED_OBJECT_UNINITIALIZED:
+      go_unreachable();
+
+    case NAMED_OBJECT_ERRONEOUS:
+      return Linemap::unknown_location();
+
+    case NAMED_OBJECT_UNKNOWN:
+      return this->unknown_value()->location();
+
+    case NAMED_OBJECT_CONST:
+      return this->const_value()->location();
+
+    case NAMED_OBJECT_TYPE:
+      return this->type_value()->location();
+
+    case NAMED_OBJECT_TYPE_DECLARATION:
+      return this->type_declaration_value()->location();
+
+    case NAMED_OBJECT_VAR:
+      return this->var_value()->location();
+
+    case NAMED_OBJECT_RESULT_VAR:
+      return this->result_var_value()->location();
+
+    case NAMED_OBJECT_SINK:
+      go_unreachable();
+
+    case NAMED_OBJECT_FUNC:
+      return this->func_value()->location();
+
+    case NAMED_OBJECT_FUNC_DECLARATION:
+      return this->func_declaration_value()->location();
+
+    case NAMED_OBJECT_PACKAGE:
+      return this->package_value()->location();
+    }
+}
+
+// Export a named object.
+
+void
+Named_object::export_named_object(Export* exp) const
+{
+  switch (this->classification_)
+    {
+    default:
+    case NAMED_OBJECT_UNINITIALIZED:
+    case NAMED_OBJECT_UNKNOWN:
+      go_unreachable();
+
+    case NAMED_OBJECT_ERRONEOUS:
+      break;
+
+    case NAMED_OBJECT_CONST:
+      this->const_value()->export_const(exp, this->name_);
+      break;
+
+    case NAMED_OBJECT_TYPE:
+      this->type_value()->export_named_type(exp, this->name_);
+      break;
+
+    case NAMED_OBJECT_TYPE_DECLARATION:
+      go_error_at(this->type_declaration_value()->location(),
+		  "attempt to export %<%s%> which was declared but not defined",
+		  this->message_name().c_str());
+      break;
+
+    case NAMED_OBJECT_FUNC_DECLARATION:
+      this->func_declaration_value()->export_func(exp, this->name_);
+      break;
+
+    case NAMED_OBJECT_VAR:
+      this->var_value()->export_var(exp, this->name_);
+      break;
+
+    case NAMED_OBJECT_RESULT_VAR:
+    case NAMED_OBJECT_SINK:
+      go_unreachable();
+
+    case NAMED_OBJECT_FUNC:
+      this->func_value()->export_func(exp, this->name_);
+      break;
+    }
+}
+
+// Convert a variable to the backend representation.
+
+Bvariable*
+Named_object::get_backend_variable(Gogo* gogo, Named_object* function)
+{
+  if (this->classification_ == NAMED_OBJECT_VAR)
+    return this->var_value()->get_backend_variable(gogo, function,
+						   this->package_, this->name_);
+  else if (this->classification_ == NAMED_OBJECT_RESULT_VAR)
+    return this->result_var_value()->get_backend_variable(gogo, function,
+							  this->name_);
+  else
+    go_unreachable();
+}
+
+// Return the external identifier for this object.
+
+std::string
+Named_object::get_id(Gogo* gogo)
+{
+  go_assert(!this->is_variable()
+	    && !this->is_result_variable()
+	    && !this->is_type());
+  std::string decl_name;
+  if (this->is_function_declaration()
+      && !this->func_declaration_value()->asm_name().empty())
+    decl_name = this->func_declaration_value()->asm_name();
+  else
+    {
+      std::string package_name;
+      if (this->package_ == NULL)
+	package_name = gogo->package_name();
+      else
+	package_name = this->package_->package_name();
+
+      // Note that this will be misleading if this is an unexported
+      // method generated for an embedded imported type.  In that case
+      // the unexported method should have the package name of the
+      // package from which it is imported, but we are going to give
+      // it our package name.  Fixing this would require knowing the
+      // package name, but we only know the package path.  It might be
+      // better to use package paths here anyhow.  This doesn't affect
+      // the assembler code, because we always set that name in
+      // Function::get_or_make_decl anyhow.  FIXME.
+
+      decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
+
+      Function_type* fntype;
+      if (this->is_function())
+	fntype = this->func_value()->type();
+      else if (this->is_function_declaration())
+	fntype = this->func_declaration_value()->type();
+      else
+	fntype = NULL;
+      if (fntype != NULL && fntype->is_method())
+	{
+	  decl_name.push_back('.');
+	  decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
+	}
+    }
+  return decl_name;
+}
+
+// Get the backend representation for this named object.
+
+void
+Named_object::get_backend(Gogo* gogo, std::vector<Bexpression*>& const_decls,
+                          std::vector<Btype*>& type_decls,
+                          std::vector<Bfunction*>& func_decls)
+{
+  // If this is a definition, avoid trying to get the backend
+  // representation, as that can crash.
+  if (this->is_redefinition_)
+    {
+      go_assert(saw_errors());
+      return;
+    }
+
+  switch (this->classification_)
+    {
+    case NAMED_OBJECT_CONST:
+      if (!Gogo::is_erroneous_name(this->name_))
+	const_decls.push_back(this->u_.const_value->get_backend(gogo, this));
+      break;
+
+    case NAMED_OBJECT_TYPE:
+      {
+        Named_type* named_type = this->u_.type_value;
+	if (!Gogo::is_erroneous_name(this->name_))
+	  type_decls.push_back(named_type->get_backend(gogo));
+
+        // We need to produce a type descriptor for every named
+        // type, and for a pointer to every named type, since
+        // other files or packages might refer to them.  We need
+        // to do this even for hidden types, because they might
+        // still be returned by some function.  Simply calling the
+        // type_descriptor method is enough to create the type
+        // descriptor, even though we don't do anything with it.
+        if (this->package_ == NULL && !saw_errors())
+          {
+            named_type->
+                type_descriptor_pointer(gogo, Linemap::predeclared_location());
+	    named_type->gc_symbol_pointer(gogo);
+            Type* pn = Type::make_pointer_type(named_type);
+            pn->type_descriptor_pointer(gogo, Linemap::predeclared_location());
+	    pn->gc_symbol_pointer(gogo);
+          }
+      }
+      break;
+
+    case NAMED_OBJECT_TYPE_DECLARATION:
+      go_error_at(Linemap::unknown_location(),
+		  "reference to undefined type %qs",
+		  this->message_name().c_str());
+      return;
+
+    case NAMED_OBJECT_VAR:
+    case NAMED_OBJECT_RESULT_VAR:
+    case NAMED_OBJECT_SINK:
+      go_unreachable();
+
+    case NAMED_OBJECT_FUNC:
+      {
+	Function* func = this->u_.func_value;
+	if (!Gogo::is_erroneous_name(this->name_))
+	  func_decls.push_back(func->get_or_make_decl(gogo, this));
+
+	if (func->block() != NULL)
+	  func->build(gogo, this);
+      }
+      break;
+
+    case NAMED_OBJECT_ERRONEOUS:
+      break;
+
+    default:
+      go_unreachable();
+    }
+}
+
+// Class Bindings.
+
+Bindings::Bindings(Bindings* enclosing)
+  : enclosing_(enclosing), named_objects_(), bindings_()
+{
+}
+
+// Clear imports.
+
+void
+Bindings::clear_file_scope(Gogo* gogo)
+{
+  Contour::iterator p = this->bindings_.begin();
+  while (p != this->bindings_.end())
+    {
+      bool keep;
+      if (p->second->package() != NULL)
+	keep = false;
+      else if (p->second->is_package())
+	keep = false;
+      else if (p->second->is_function()
+	       && !p->second->func_value()->type()->is_method()
+	       && Gogo::unpack_hidden_name(p->second->name()) == "init")
+	keep = false;
+      else
+	keep = true;
+
+      if (keep)
+	++p;
+      else
+	{
+	  gogo->add_file_block_name(p->second->name(), p->second->location());
+	  p = this->bindings_.erase(p);
+	}
+    }
+}
+
+// Look up a symbol.
+
+Named_object*
+Bindings::lookup(const std::string& name) const
+{
+  Contour::const_iterator p = this->bindings_.find(name);
+  if (p != this->bindings_.end())
+    return p->second->resolve();
+  else if (this->enclosing_ != NULL)
+    return this->enclosing_->lookup(name);
+  else
+    return NULL;
+}
+
+// Look up a symbol locally.
+
+Named_object*
+Bindings::lookup_local(const std::string& name) const
+{
+  Contour::const_iterator p = this->bindings_.find(name);
+  if (p == this->bindings_.end())
+    return NULL;
+  return p->second;
+}
+
+// Remove an object from a set of bindings.  This is used for a
+// special case in thunks for functions which call recover.
+
+void
+Bindings::remove_binding(Named_object* no)
+{
+  Contour::iterator pb = this->bindings_.find(no->name());
+  go_assert(pb != this->bindings_.end());
+  this->bindings_.erase(pb);
+  for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
+       pn != this->named_objects_.end();
+       ++pn)
+    {
+      if (*pn == no)
+	{
+	  this->named_objects_.erase(pn);
+	  return;
+	}
+    }
+  go_unreachable();
+}
+
+// Add a method to the list of objects.  This is not added to the
+// lookup table.  This is so that we have a single list of objects
+// declared at the top level, which we walk through when it's time to
+// convert to trees.
+
+void
+Bindings::add_method(Named_object* method)
+{
+  this->named_objects_.push_back(method);
+}
+
+// Add a generic Named_object to a Contour.
+
+Named_object*
+Bindings::add_named_object_to_contour(Contour* contour,
+				      Named_object* named_object)
+{
+  go_assert(named_object == named_object->resolve());
+  const std::string& name(named_object->name());
+  go_assert(!Gogo::is_sink_name(name));
+
+  std::pair<Contour::iterator, bool> ins =
+    contour->insert(std::make_pair(name, named_object));
+  if (!ins.second)
+    {
+      // The name was already there.
+      if (named_object->package() != NULL
+	  && ins.first->second->package() == named_object->package()
+	  && (ins.first->second->classification()
+	      == named_object->classification()))
+	{
+	  // This is a second import of the same object.
+	  return ins.first->second;
+	}
+      ins.first->second = this->new_definition(ins.first->second,
+					       named_object);
+      return ins.first->second;
+    }
+  else
+    {
+      // Don't push declarations on the list.  We push them on when
+      // and if we find the definitions.  That way we genericize the
+      // functions in order.
+      if (!named_object->is_type_declaration()
+	  && !named_object->is_function_declaration()
+	  && !named_object->is_unknown())
+	this->named_objects_.push_back(named_object);
+      return named_object;
+    }
+}
+
+// We had an existing named object OLD_OBJECT, and we've seen a new
+// one NEW_OBJECT with the same name.  FIXME: This does not free the
+// new object when we don't need it.
+
+Named_object*
+Bindings::new_definition(Named_object* old_object, Named_object* new_object)
+{
+  if (new_object->is_erroneous() && !old_object->is_erroneous())
+    return new_object;
+
+  std::string reason;
+  switch (old_object->classification())
+    {
+    default:
+    case Named_object::NAMED_OBJECT_UNINITIALIZED:
+      go_unreachable();
+
+    case Named_object::NAMED_OBJECT_ERRONEOUS:
+      return old_object;
+
+    case Named_object::NAMED_OBJECT_UNKNOWN:
+      {
+	Named_object* real = old_object->unknown_value()->real_named_object();
+	if (real != NULL)
+	  return this->new_definition(real, new_object);
+	go_assert(!new_object->is_unknown());
+	old_object->unknown_value()->set_real_named_object(new_object);
+	if (!new_object->is_type_declaration()
+	    && !new_object->is_function_declaration())
+	  this->named_objects_.push_back(new_object);
+	return new_object;
+      }
+
+    case Named_object::NAMED_OBJECT_CONST:
+      break;
+
+    case Named_object::NAMED_OBJECT_TYPE:
+      if (new_object->is_type_declaration())
+	return old_object;
+      break;
+
+    case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
+      if (new_object->is_type_declaration())
+	return old_object;
+      if (new_object->is_type())
+	{
+	  old_object->set_type_value(new_object->type_value());
+	  new_object->type_value()->set_named_object(old_object);
+	  this->named_objects_.push_back(old_object);
+	  return old_object;
+	}
+      break;
+
+    case Named_object::NAMED_OBJECT_VAR:
+    case Named_object::NAMED_OBJECT_RESULT_VAR:
+      // We have already given an error in the parser for cases where
+      // one parameter or result variable redeclares another one.
+      if ((new_object->is_variable()
+	   && new_object->var_value()->is_parameter())
+	  || new_object->is_result_variable())
+	return old_object;
+      break;
+
+    case Named_object::NAMED_OBJECT_SINK:
+      go_unreachable();
+
+    case Named_object::NAMED_OBJECT_FUNC:
+      if (new_object->is_function_declaration())
+	{
+	  if (!new_object->func_declaration_value()->asm_name().empty())
+	    go_error_at(Linemap::unknown_location(),
+			("sorry, not implemented: "
+			 "__asm__ for function definitions"));
+	  Function_type* old_type = old_object->func_value()->type();
+	  Function_type* new_type =
+	    new_object->func_declaration_value()->type();
+	  if (old_type->is_valid_redeclaration(new_type, &reason))
+	    return old_object;
+	}
+      break;
+
+    case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
+      {
+	if (new_object->is_function())
+	  {
+            Function_type* old_type =
+                old_object->func_declaration_value()->type();
+	    Function_type* new_type = new_object->func_value()->type();
+	    if (old_type->is_valid_redeclaration(new_type, &reason))
+	      {
+		if (!old_object->func_declaration_value()->asm_name().empty())
+		  go_error_at(Linemap::unknown_location(),
+			      ("sorry, not implemented: "
+			       "__asm__ for function definitions"));
+		old_object->set_function_value(new_object->func_value());
+		this->named_objects_.push_back(old_object);
+		return old_object;
+	      }
+	  }
+      }
+      break;
+
+    case Named_object::NAMED_OBJECT_PACKAGE:
+      break;
+    }
+
+  std::string n = old_object->message_name();
+  if (reason.empty())
+    go_error_at(new_object->location(), "redefinition of %qs", n.c_str());
+  else
+    go_error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
+		reason.c_str());
+  old_object->set_is_redefinition();
+  new_object->set_is_redefinition();
+
+  go_inform(old_object->location(), "previous definition of %qs was here",
+            n.c_str());
+
+  return old_object;
+}
+
+// Add a named type.
+
+Named_object*
+Bindings::add_named_type(Named_type* named_type)
+{
+  return this->add_named_object(named_type->named_object());
+}
+
+// Add a function.
+
+Named_object*
+Bindings::add_function(const std::string& name, const Package* package,
+		       Function* function)
+{
+  return this->add_named_object(Named_object::make_function(name, package,
+							    function));
+}
+
+// Add a function declaration.
+
+Named_object*
+Bindings::add_function_declaration(const std::string& name,
+				   const Package* package,
+				   Function_type* type,
+				   Location location)
+{
+  Named_object* no = Named_object::make_function_declaration(name, package,
+							     type, location);
+  return this->add_named_object(no);
+}
+
+// Define a type which was previously declared.
+
+void
+Bindings::define_type(Named_object* no, Named_type* type)
+{
+  no->set_type_value(type);
+  this->named_objects_.push_back(no);
+}
+
+// Mark all local variables as used.  This is used for some types of
+// parse error.
+
+void
+Bindings::mark_locals_used()
+{
+  for (std::vector<Named_object*>::iterator p = this->named_objects_.begin();
+       p != this->named_objects_.end();
+       ++p)
+    if ((*p)->is_variable())
+      (*p)->var_value()->set_is_used();
+}
+
+// Traverse bindings.
+
+int
+Bindings::traverse(Traverse* traverse, bool is_global)
+{
+  unsigned int traverse_mask = traverse->traverse_mask();
+
+  // We don't use an iterator because we permit the traversal to add
+  // new global objects.
+  const unsigned int e_or_t = (Traverse::traverse_expressions
+			       | Traverse::traverse_types);
+  const unsigned int e_or_t_or_s = (e_or_t
+				    | Traverse::traverse_statements);
+  for (size_t i = 0; i < this->named_objects_.size(); ++i)
+    {
+      Named_object* p = this->named_objects_[i];
+      int t = TRAVERSE_CONTINUE;
+      switch (p->classification())
+	{
+	case Named_object::NAMED_OBJECT_CONST:
+	  if ((traverse_mask & Traverse::traverse_constants) != 0)
+	    t = traverse->constant(p, is_global);
+	  if (t == TRAVERSE_CONTINUE
+	      && (traverse_mask & e_or_t) != 0)
+	    {
+	      Type* tc = p->const_value()->type();
+	      if (tc != NULL
+		  && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
+		return TRAVERSE_EXIT;
+	      t = p->const_value()->traverse_expression(traverse);
+	    }
+	  break;
+
+	case Named_object::NAMED_OBJECT_VAR:
+	case Named_object::NAMED_OBJECT_RESULT_VAR:
+	  if ((traverse_mask & Traverse::traverse_variables) != 0)
+	    t = traverse->variable(p);
+	  if (t == TRAVERSE_CONTINUE
+	      && (traverse_mask & e_or_t) != 0)
+	    {
+	      if (p->is_result_variable()
+		  || p->var_value()->has_type())
+		{
+		  Type* tv = (p->is_variable()
+			      ? p->var_value()->type()
+			      : p->result_var_value()->type());
+		  if (tv != NULL
+		      && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
+		    return TRAVERSE_EXIT;
+		}
+	    }
+	  if (t == TRAVERSE_CONTINUE
+	      && (traverse_mask & e_or_t_or_s) != 0
+	      && p->is_variable())
+	    t = p->var_value()->traverse_expression(traverse, traverse_mask);
+	  break;
+
+	case Named_object::NAMED_OBJECT_FUNC:
+	  if ((traverse_mask & Traverse::traverse_functions) != 0)
+	    t = traverse->function(p);
+
+	  if (t == TRAVERSE_CONTINUE
+	      && (traverse_mask
+		  & (Traverse::traverse_variables
+		     | Traverse::traverse_constants
+		     | Traverse::traverse_functions
+		     | Traverse::traverse_blocks
+		     | Traverse::traverse_statements
+		     | Traverse::traverse_expressions
+		     | Traverse::traverse_types)) != 0)
+	    t = p->func_value()->traverse(traverse);
+	  break;
+
+	case Named_object::NAMED_OBJECT_PACKAGE:
+	  // These are traversed in Gogo::traverse.
+	  go_assert(is_global);
+	  break;
+
+	case Named_object::NAMED_OBJECT_TYPE:
+	  if ((traverse_mask & e_or_t) != 0)
+	    t = Type::traverse(p->type_value(), traverse);
+	  break;
+
+	case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
+	case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
+	case Named_object::NAMED_OBJECT_UNKNOWN:
+	case Named_object::NAMED_OBJECT_ERRONEOUS:
+	  break;
+
+	case Named_object::NAMED_OBJECT_SINK:
+	default:
+	  go_unreachable();
+	}
+
+      if (t == TRAVERSE_EXIT)
+	return TRAVERSE_EXIT;
+    }
+
+  // If we need to traverse types, check the function declarations,
+  // which have types.  Also check any methods of a type declaration.
+  if ((traverse_mask & e_or_t) != 0)
+    {
+      for (Bindings::const_declarations_iterator p =
+	     this->begin_declarations();
+	   p != this->end_declarations();
+	   ++p)
+	{
+	  if (p->second->is_function_declaration())
+	    {
+	      if (Type::traverse(p->second->func_declaration_value()->type(),
+				 traverse)
+		  == TRAVERSE_EXIT)
+		return TRAVERSE_EXIT;
+	    }
+	  else if (p->second->is_type_declaration())
+	    {
+	      const std::vector<Named_object*>* methods =
+		p->second->type_declaration_value()->methods();
+	      for (std::vector<Named_object*>::const_iterator pm =
+		     methods->begin();
+		   pm != methods->end();
+		   pm++)
+		{
+		  Named_object* no = *pm;
+		  Type *t;
+		  if (no->is_function())
+		    t = no->func_value()->type();
+		  else if (no->is_function_declaration())
+		    t = no->func_declaration_value()->type();
+		  else
+		    continue;
+		  if (Type::traverse(t, traverse) == TRAVERSE_EXIT)
+		    return TRAVERSE_EXIT;
+		}
+	    }
+	}
+    }
+
+  return TRAVERSE_CONTINUE;
+}
+
+// Class Label.
+
+// Clear any references to this label.
+
+void
+Label::clear_refs()
+{
+  for (std::vector<Bindings_snapshot*>::iterator p = this->refs_.begin();
+       p != this->refs_.end();
+       ++p)
+    delete *p;
+  this->refs_.clear();
+}
+
+// Get the backend representation for a label.
+
+Blabel*
+Label::get_backend_label(Translate_context* context)
+{
+  if (this->blabel_ == NULL)
+    {
+      Function* function = context->function()->func_value();
+      Bfunction* bfunction = function->get_decl();
+      this->blabel_ = context->backend()->label(bfunction, this->name_,
+						this->location_);
+    }
+  return this->blabel_;
+}
+
+// Return an expression for the address of this label.
+
+Bexpression*
+Label::get_addr(Translate_context* context, Location location)
+{
+  Blabel* label = this->get_backend_label(context);
+  return context->backend()->label_address(label, location);
+}
+
+// Return the dummy label that represents any instance of the blank label.
+
+Label*
+Label::create_dummy_label()
+{
+  static Label* dummy_label;
+  if (dummy_label == NULL)
+    {
+      dummy_label = new Label("_");
+      dummy_label->set_is_used();
+    }
+  return dummy_label;
+}
+
+// Class Unnamed_label.
+
+// Get the backend representation for an unnamed label.
+
+Blabel*
+Unnamed_label::get_blabel(Translate_context* context)
+{
+  if (this->blabel_ == NULL)
+    {
+      Function* function = context->function()->func_value();
+      Bfunction* bfunction = function->get_decl();
+      this->blabel_ = context->backend()->label(bfunction, "",
+						this->location_);
+    }
+  return this->blabel_;
+}
+
+// Return a statement which defines this unnamed label.
+
+Bstatement*
+Unnamed_label::get_definition(Translate_context* context)
+{
+  Blabel* blabel = this->get_blabel(context);
+  return context->backend()->label_definition_statement(blabel);
+}
+
+// Return a goto statement to this unnamed label.
+
+Bstatement*
+Unnamed_label::get_goto(Translate_context* context, Location location)
+{
+  Blabel* blabel = this->get_blabel(context);
+  return context->backend()->goto_statement(blabel, location);
+}
+
+// Class Package.
+
+Package::Package(const std::string& pkgpath,
+		 const std::string& pkgpath_symbol, Location location)
+  : pkgpath_(pkgpath), pkgpath_symbol_(pkgpath_symbol),
+    package_name_(), bindings_(new Bindings(NULL)),
+    location_(location)
+{
+  go_assert(!pkgpath.empty());
+}
+
+// Set the package name.
+
+void
+Package::set_package_name(const std::string& package_name, Location location)
+{
+  go_assert(!package_name.empty());
+  if (this->package_name_.empty())
+    this->package_name_ = package_name;
+  else if (this->package_name_ != package_name)
+    go_error_at(location,
+		("saw two different packages with "
+		 "the same package path %s: %s, %s"),
+		this->pkgpath_.c_str(), this->package_name_.c_str(),
+		package_name.c_str());
+}
+
+// Return the pkgpath symbol, which is a prefix for symbols defined in
+// this package.
+
+std::string
+Package::pkgpath_symbol() const
+{
+  if (this->pkgpath_symbol_.empty())
+    return Gogo::pkgpath_for_symbol(this->pkgpath_);
+  return this->pkgpath_symbol_;
+}
+
+// Set the package path symbol.
+
+void
+Package::set_pkgpath_symbol(const std::string& pkgpath_symbol)
+{
+  go_assert(!pkgpath_symbol.empty());
+  if (this->pkgpath_symbol_.empty())
+    this->pkgpath_symbol_ = pkgpath_symbol;
+  else
+    go_assert(this->pkgpath_symbol_ == pkgpath_symbol);
+}
+
+// Note that symbol from this package was and qualified by ALIAS.
+
+void
+Package::note_usage(const std::string& alias) const
+{
+  Aliases::const_iterator p = this->aliases_.find(alias);
+  go_assert(p != this->aliases_.end());
+  p->second->note_usage();
+}
+
+// Forget a given usage.  If forgetting this usage means this package becomes
+// unused, report that error.
+
+void
+Package::forget_usage(Expression* usage) const
+{
+  if (this->fake_uses_.empty())
+    return;
+
+  std::set<Expression*>::iterator p = this->fake_uses_.find(usage);
+  go_assert(p != this->fake_uses_.end());
+  this->fake_uses_.erase(p);
+
+  if (this->fake_uses_.empty())
+    go_error_at(this->location(), "imported and not used: %s",
+		Gogo::message_name(this->package_name()).c_str());
+}
+
+// Clear the used field for the next file.  If the only usages of this package
+// are possibly fake, keep the fake usages for lowering.
+
+void
+Package::clear_used()
+{
+  std::string dot_alias = "." + this->package_name();
+  Aliases::const_iterator p = this->aliases_.find(dot_alias);
+  if (p != this->aliases_.end() && p->second->used() > this->fake_uses_.size())
+    this->fake_uses_.clear();
+
+  this->aliases_.clear();
+}
+
+Package_alias*
+Package::add_alias(const std::string& alias, Location location)
+{
+  Aliases::const_iterator p = this->aliases_.find(alias);
+  if (p == this->aliases_.end())
+    {
+      std::pair<Aliases::iterator, bool> ret;
+      ret = this->aliases_.insert(std::make_pair(alias,
+                                                 new Package_alias(location)));
+      p = ret.first;
+    }
+  return p->second;
+}
+
+// Determine types of constants.  Everything else in a package
+// (variables, function declarations) should already have a fixed
+// type.  Constants may have abstract types.
+
+void
+Package::determine_types()
+{
+  Bindings* bindings = this->bindings_;
+  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
+       p != bindings->end_definitions();
+       ++p)
+    {
+      if ((*p)->is_const())
+	(*p)->const_value()->determine_type();
+    }
+}
+
+// Class Traverse.
+
+// Destructor.
+
+Traverse::~Traverse()
+{
+  if (this->types_seen_ != NULL)
+    delete this->types_seen_;
+  if (this->expressions_seen_ != NULL)
+    delete this->expressions_seen_;
+}
+
+// Record that we are looking at a type, and return true if we have
+// already seen it.
+
+bool
+Traverse::remember_type(const Type* type)
+{
+  if (type->is_error_type())
+    return true;
+  go_assert((this->traverse_mask() & traverse_types) != 0
+	     || (this->traverse_mask() & traverse_expressions) != 0);
+  // We mostly only have to remember named types.  But it turns out
+  // that an interface type can refer to itself without using a name
+  // by relying on interface inheritance, as in
+  // type I interface { F() interface{I} }
+  if (type->classification() != Type::TYPE_NAMED
+      && type->classification() != Type::TYPE_INTERFACE)
+    return false;
+  if (this->types_seen_ == NULL)
+    this->types_seen_ = new Types_seen();
+  std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
+  return !ins.second;
+}
+
+// Record that we are looking at an expression, and return true if we
+// have already seen it. NB: this routine used to assert if the traverse
+// mask did not include expressions/types -- this is no longer the case,
+// since it can be useful to remember specific expressions during
+// walks that only cover statements.
+
+bool
+Traverse::remember_expression(const Expression* expression)
+{
+  if (this->expressions_seen_ == NULL)
+    this->expressions_seen_ = new Expressions_seen();
+  std::pair<Expressions_seen::iterator, bool> ins =
+    this->expressions_seen_->insert(expression);
+  return !ins.second;
+}
+
+// The default versions of these functions should never be called: the
+// traversal mask indicates which functions may be called.
+
+int
+Traverse::variable(Named_object*)
+{
+  go_unreachable();
+}
+
+int
+Traverse::constant(Named_object*, bool)
+{
+  go_unreachable();
+}
+
+int
+Traverse::function(Named_object*)
+{
+  go_unreachable();
+}
+
+int
+Traverse::block(Block*)
+{
+  go_unreachable();
+}
+
+int
+Traverse::statement(Block*, size_t*, Statement*)
+{
+  go_unreachable();
+}
+
+int
+Traverse::expression(Expression**)
+{
+  go_unreachable();
+}
+
+int
+Traverse::type(Type*)
+{
+  go_unreachable();
+}
+
+// Class Statement_inserter.
+
+void
+Statement_inserter::insert(Statement* s)
+{
+  if (this->block_ != NULL)
+    {
+      go_assert(this->pindex_ != NULL);
+      this->block_->insert_statement_before(*this->pindex_, s);
+      ++*this->pindex_;
+    }
+  else if (this->var_ != NULL)
+    this->var_->add_preinit_statement(this->gogo_, s);
+  else
+    go_assert(saw_errors());
+}