diff gcc/ira.c @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents f6334be47118
children 84e7813d76e9
line wrap: on
line diff
--- a/gcc/ira.c	Sun Aug 21 07:07:55 2011 +0900
+++ b/gcc/ira.c	Fri Oct 27 22:46:09 2017 +0900
@@ -1,6 +1,5 @@
 /* Integrated Register Allocator (IRA) entry point.
-   Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
-   Free Software Foundation, Inc.
+   Copyright (C) 2006-2017 Free Software Foundation, Inc.
    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
 
 This file is part of GCC.
@@ -38,40 +37,51 @@
        the other regions.  Therefore data structure representing a
        region is called loop_tree_node.
 
-     o *Cover class* is a register class belonging to a set of
-       non-intersecting register classes containing all of the
-       hard-registers available for register allocation.  The set of
-       all cover classes for a target is defined in the corresponding
-       machine-description file according some criteria.  Such notion
-       is needed because Chaitin-Briggs algorithm works on
-       non-intersected register classes.
+     o *Allocno class* is a register class used for allocation of
+       given allocno.  It means that only hard register of given
+       register class can be assigned to given allocno.  In reality,
+       even smaller subset of (*profitable*) hard registers can be
+       assigned.  In rare cases, the subset can be even smaller
+       because our modification of Chaitin-Briggs algorithm requires
+       that sets of hard registers can be assigned to allocnos forms a
+       forest, i.e. the sets can be ordered in a way where any
+       previous set is not intersected with given set or is a superset
+       of given set.
+
+     o *Pressure class* is a register class belonging to a set of
+       register classes containing all of the hard-registers available
+       for register allocation.  The set of all pressure classes for a
+       target is defined in the corresponding machine-description file
+       according some criteria.  Register pressure is calculated only
+       for pressure classes and it affects some IRA decisions as
+       forming allocation regions.
 
      o *Allocno* represents the live range of a pseudo-register in a
        region.  Besides the obvious attributes like the corresponding
-       pseudo-register number, cover class, conflicting allocnos and
+       pseudo-register number, allocno class, conflicting allocnos and
        conflicting hard-registers, there are a few allocno attributes
        which are important for understanding the allocation algorithm:
 
-       - *Live ranges*.  This is a list of ranges of *program
-         points* where the allocno lives.  Program points represent
-         places where a pseudo can be born or become dead (there are
+       - *Live ranges*.  This is a list of ranges of *program points*
+         where the allocno lives.  Program points represent places
+         where a pseudo can be born or become dead (there are
          approximately two times more program points than the insns)
          and they are represented by integers starting with 0.  The
-         live ranges are used to find conflicts between allocnos of
-         different cover classes.  They also play very important role
-         for the transformation of the IRA internal representation of
-         several regions into a one region representation.  The later is
-         used during the reload pass work because each allocno
-         represents all of the corresponding pseudo-registers.
+         live ranges are used to find conflicts between allocnos.
+         They also play very important role for the transformation of
+         the IRA internal representation of several regions into a one
+         region representation.  The later is used during the reload
+         pass work because each allocno represents all of the
+         corresponding pseudo-registers.
 
        - *Hard-register costs*.  This is a vector of size equal to the
-         number of available hard-registers of the allocno's cover
-         class.  The cost of a callee-clobbered hard-register for an
-         allocno is increased by the cost of save/restore code around
-         the calls through the given allocno's life.  If the allocno
-         is a move instruction operand and another operand is a
-         hard-register of the allocno's cover class, the cost of the
-         hard-register is decreased by the move cost.
+         number of available hard-registers of the allocno class.  The
+         cost of a callee-clobbered hard-register for an allocno is
+         increased by the cost of save/restore code around the calls
+         through the given allocno's life.  If the allocno is a move
+         instruction operand and another operand is a hard-register of
+         the allocno class, the cost of the hard-register is decreased
+         by the move cost.
 
          When an allocno is assigned, the hard-register with minimal
          full cost is used.  Initially, a hard-register's full cost is
@@ -139,12 +149,12 @@
        * First, IRA builds regions and creates allocnos (file
          ira-build.c) and initializes most of their attributes.
 
-       * Then IRA finds a cover class for each allocno and calculates
-         its initial (non-accumulated) cost of memory and each
-         hard-register of its cover class (file ira-cost.c).
-
-       * IRA creates live ranges of each allocno, calulates register
-         pressure for each cover class in each region, sets up
+       * Then IRA finds an allocno class for each allocno and
+         calculates its initial (non-accumulated) cost of memory and
+         each hard-register of its allocno class (file ira-cost.c).
+
+       * IRA creates live ranges of each allocno, calculates register
+         pressure for each pressure class in each region, sets up
          conflict hard registers for each allocno and info about calls
          the allocno lives through (file ira-lives.c).
 
@@ -157,23 +167,70 @@
 
        * IRA creates all caps (file ira-build.c).
 
-       * Having live-ranges of allocnos and their cover classes, IRA
-         creates conflicting allocnos of the same cover class for each
-         allocno.  Conflicting allocnos are stored as a bit vector or
-         array of pointers to the conflicting allocnos whatever is
-         more profitable (file ira-conflicts.c).  At this point IRA
-         creates allocno copies.
+       * Having live-ranges of allocnos and their classes, IRA creates
+         conflicting allocnos for each allocno.  Conflicting allocnos
+         are stored as a bit vector or array of pointers to the
+         conflicting allocnos whatever is more profitable (file
+         ira-conflicts.c).  At this point IRA creates allocno copies.
 
      o Coloring.  Now IRA has all necessary info to start graph coloring
        process.  It is done in each region on top-down traverse of the
        region tree (file ira-color.c).  There are following subpasses:
 
+       * Finding profitable hard registers of corresponding allocno
+         class for each allocno.  For example, only callee-saved hard
+         registers are frequently profitable for allocnos living
+         through colors.  If the profitable hard register set of
+         allocno does not form a tree based on subset relation, we use
+         some approximation to form the tree.  This approximation is
+         used to figure out trivial colorability of allocnos.  The
+         approximation is a pretty rare case.
+
        * Putting allocnos onto the coloring stack.  IRA uses Briggs
          optimistic coloring which is a major improvement over
          Chaitin's coloring.  Therefore IRA does not spill allocnos at
          this point.  There is some freedom in the order of putting
          allocnos on the stack which can affect the final result of
-         the allocation.  IRA uses some heuristics to improve the order.
+         the allocation.  IRA uses some heuristics to improve the
+         order.  The major one is to form *threads* from colorable
+         allocnos and push them on the stack by threads.  Thread is a
+         set of non-conflicting colorable allocnos connected by
+         copies.  The thread contains allocnos from the colorable
+         bucket or colorable allocnos already pushed onto the coloring
+         stack.  Pushing thread allocnos one after another onto the
+         stack increases chances of removing copies when the allocnos
+         get the same hard reg.
+	 
+	 We also use a modification of Chaitin-Briggs algorithm which
+         works for intersected register classes of allocnos.  To
+         figure out trivial colorability of allocnos, the mentioned
+         above tree of hard register sets is used.  To get an idea how
+         the algorithm works in i386 example, let us consider an
+         allocno to which any general hard register can be assigned.
+         If the allocno conflicts with eight allocnos to which only
+         EAX register can be assigned, given allocno is still
+         trivially colorable because all conflicting allocnos might be
+         assigned only to EAX and all other general hard registers are
+         still free.
+
+	 To get an idea of the used trivial colorability criterion, it
+	 is also useful to read article "Graph-Coloring Register
+	 Allocation for Irregular Architectures" by Michael D. Smith
+	 and Glen Holloway.  Major difference between the article
+	 approach and approach used in IRA is that Smith's approach
+	 takes register classes only from machine description and IRA
+	 calculate register classes from intermediate code too
+	 (e.g. an explicit usage of hard registers in RTL code for
+	 parameter passing can result in creation of additional
+	 register classes which contain or exclude the hard
+	 registers).  That makes IRA approach useful for improving
+	 coloring even for architectures with regular register files
+	 and in fact some benchmarking shows the improvement for
+	 regular class architectures is even bigger than for irregular
+	 ones.  Another difference is that Smith's approach chooses
+	 intersection of classes of all insn operands in which a given
+	 pseudo occurs.  IRA can use bigger classes if it is still
+	 more profitable than memory usage.
 
        * Popping the allocnos from the stack and assigning them hard
          registers.  If IRA can not assign a hard register to an
@@ -187,15 +244,22 @@
          hard-register for the allocno and cost of usage of the
          hard-register for allocnos conflicting with given allocno.
 
-       * After allono assigning in the region, IRA modifies the hard
+       * Chaitin-Briggs coloring assigns as many pseudos as possible
+         to hard registers.  After coloring we try to improve
+         allocation with cost point of view.  We improve the
+         allocation by spilling some allocnos and assigning the freed
+         hard registers to other allocnos if it decreases the overall
+         allocation cost.
+
+       * After allocno assigning in the region, IRA modifies the hard
          register and memory costs for the corresponding allocnos in
          the subregions to reflect the cost of possible loads, stores,
          or moves on the border of the region and its subregions.
          When default regional allocation algorithm is used
          (-fira-algorithm=mixed), IRA just propagates the assignment
          for allocnos if the register pressure in the region for the
-         corresponding cover class is less than number of available
-         hard registers for given cover class.
+         corresponding pressure class is less than number of available
+         hard registers for given pressure class.
 
      o Spill/restore code moving.  When IRA performs an allocation
        by traversing regions in top-down order, it does not know what
@@ -210,28 +274,29 @@
        practice, so there is no real need for a better time complexity
        algorithm.
 
-     o Code change.  After coloring, two allocnos representing the same
-       pseudo-register outside and inside a region respectively may be
-       assigned to different locations (hard-registers or memory).  In
-       this case IRA creates and uses a new pseudo-register inside the
-       region and adds code to move allocno values on the region's
-       borders.  This is done during top-down traversal of the regions
-       (file ira-emit.c).  In some complicated cases IRA can create a
-       new allocno to move allocno values (e.g. when a swap of values
-       stored in two hard-registers is needed).  At this stage, the
-       new allocno is marked as spilled.  IRA still creates the
-       pseudo-register and the moves on the region borders even when
-       both allocnos were assigned to the same hard-register.  If the
-       reload pass spills a pseudo-register for some reason, the
-       effect will be smaller because another allocno will still be in
-       the hard-register.  In most cases, this is better then spilling
-       both allocnos.  If reload does not change the allocation
-       for the two pseudo-registers, the trivial move will be removed
-       by post-reload optimizations.  IRA does not generate moves for
+     o Code change.  After coloring, two allocnos representing the
+       same pseudo-register outside and inside a region respectively
+       may be assigned to different locations (hard-registers or
+       memory).  In this case IRA creates and uses a new
+       pseudo-register inside the region and adds code to move allocno
+       values on the region's borders.  This is done during top-down
+       traversal of the regions (file ira-emit.c).  In some
+       complicated cases IRA can create a new allocno to move allocno
+       values (e.g. when a swap of values stored in two hard-registers
+       is needed).  At this stage, the new allocno is marked as
+       spilled.  IRA still creates the pseudo-register and the moves
+       on the region borders even when both allocnos were assigned to
+       the same hard-register.  If the reload pass spills a
+       pseudo-register for some reason, the effect will be smaller
+       because another allocno will still be in the hard-register.  In
+       most cases, this is better then spilling both allocnos.  If
+       reload does not change the allocation for the two
+       pseudo-registers, the trivial move will be removed by
+       post-reload optimizations.  IRA does not generate moves for
        allocnos assigned to the same hard register when the default
        regional allocation algorithm is used and the register pressure
-       in the region for the corresponding allocno cover class is less
-       than number of available hard registers for given cover class.
+       in the region for the corresponding pressure class is less than
+       number of available hard registers for given pressure class.
        IRA also does some optimizations to remove redundant stores and
        to reduce code duplication on the region borders.
 
@@ -242,7 +307,7 @@
        rebuilding would be, but is much faster.
 
      o After IR flattening, IRA tries to assign hard registers to all
-       spilled allocnos.  This is impelemented by a simple and fast
+       spilled allocnos.  This is implemented by a simple and fast
        priority coloring algorithm (see function
        ira_reassign_conflict_allocnos::ira-color.c).  Here new allocnos
        created during the code change pass can be assigned to hard
@@ -263,7 +328,7 @@
          in places where the pseudo-register lives.
 
    IRA uses a lot of data representing the target processors.  These
-   data are initilized in file ira.c.
+   data are initialized in file ira.c.
 
    If function has no loops (or the loops are ignored when
    -fira-algorithm=CB is used), we have classic Chaitin-Briggs
@@ -287,6 +352,9 @@
    o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
      Register Allocation Based on Graph Fusion.
 
+   o Michael D. Smith and Glenn Holloway.  Graph-Coloring Register
+     Allocation for Irregular Architectures
+
    o Vladimir Makarov. The Integrated Register Allocator for GCC.
 
    o Vladimir Makarov.  The top-down register allocator for irregular
@@ -298,30 +366,32 @@
 #include "config.h"
 #include "system.h"
 #include "coretypes.h"
-#include "tm.h"
-#include "regs.h"
-#include "rtl.h"
-#include "tm_p.h"
+#include "backend.h"
 #include "target.h"
-#include "flags.h"
-#include "obstack.h"
-#include "bitmap.h"
-#include "hard-reg-set.h"
-#include "basic-block.h"
+#include "rtl.h"
+#include "tree.h"
 #include "df.h"
+#include "memmodel.h"
+#include "tm_p.h"
+#include "insn-config.h"
+#include "regs.h"
+#include "ira.h"
+#include "ira-int.h"
+#include "diagnostic-core.h"
+#include "cfgrtl.h"
+#include "cfgbuild.h"
+#include "cfgcleanup.h"
 #include "expr.h"
-#include "recog.h"
-#include "params.h"
-#include "timevar.h"
 #include "tree-pass.h"
 #include "output.h"
-#include "except.h"
 #include "reload.h"
-#include "diagnostic-core.h"
-#include "integrate.h"
-#include "ggc.h"
-#include "ira-int.h"
-
+#include "cfgloop.h"
+#include "lra.h"
+#include "dce.h"
+#include "dbgcnt.h"
+#include "rtl-iter.h"
+#include "shrink-wrap.h"
+#include "print-rtl.h"
 
 struct target_ira default_target_ira;
 struct target_ira_int default_target_ira_int;
@@ -343,22 +413,30 @@
    stack slots used in current function so far.  */
 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
 
-/* Correspondingly overall cost of the allocation, cost of the
-   allocnos assigned to hard-registers, cost of the allocnos assigned
-   to memory, cost of loads, stores and register move insns generated
-   for pseudo-register live range splitting (see ira-emit.c).  */
-int ira_overall_cost;
-int ira_reg_cost, ira_mem_cost;
-int ira_load_cost, ira_store_cost, ira_shuffle_cost;
+/* Correspondingly overall cost of the allocation, overall cost before
+   reload, cost of the allocnos assigned to hard-registers, cost of
+   the allocnos assigned to memory, cost of loads, stores and register
+   move insns generated for pseudo-register live range splitting (see
+   ira-emit.c).  */
+int64_t ira_overall_cost, overall_cost_before;
+int64_t ira_reg_cost, ira_mem_cost;
+int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
 int ira_move_loops_num, ira_additional_jumps_num;
 
 /* All registers that can be eliminated.  */
 
 HARD_REG_SET eliminable_regset;
 
+/* Value of max_reg_num () before IRA work start.  This value helps
+   us to recognize a situation when new pseudos were created during
+   IRA work.  */
+static int max_regno_before_ira;
+
 /* Temporary hard reg set used for a different calculation.  */
 static HARD_REG_SET temp_hard_regset;
 
+#define last_mode_for_init_move_cost \
+  (this_target_ira_int->x_last_mode_for_init_move_cost)
 
 
 /* The function sets up the map IRA_REG_MODE_HARD_REGSET.  */
@@ -371,7 +449,8 @@
     for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
       {
 	CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
-	for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
+	for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
+	     i >= 0; i--)
 	  if (hard_regno + i < FIRST_PSEUDO_REGISTER)
 	    SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
 			      hard_regno + i);
@@ -426,23 +505,6 @@
     }
 }
 
-/* Set up IRA_AVAILABLE_CLASS_REGS.  */
-static void
-setup_available_class_regs (void)
-{
-  int i, j;
-
-  memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
-  for (i = 0; i < N_REG_CLASSES; i++)
-    {
-      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
-      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
-      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
-	if (TEST_HARD_REG_BIT (temp_hard_regset, j))
-	  ira_available_class_regs[i]++;
-    }
-}
-
 /* Set up global variables defining info about hard registers for the
    allocation.  These depend on USE_HARD_FRAME_P whose TRUE value means
    that we can use the hard frame pointer for the allocation.  */
@@ -452,20 +514,61 @@
 #ifdef ADJUST_REG_ALLOC_ORDER
   ADJUST_REG_ALLOC_ORDER;
 #endif
-  COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
+  COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
   if (! use_hard_frame_p)
     SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
   setup_class_hard_regs ();
-  setup_available_class_regs ();
 }
 
 
 
-/* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST.  */
+#define alloc_reg_class_subclasses \
+  (this_target_ira_int->x_alloc_reg_class_subclasses)
+
+/* Initialize the table of subclasses of each reg class.  */
+static void
+setup_reg_subclasses (void)
+{
+  int i, j;
+  HARD_REG_SET temp_hard_regset2;
+
+  for (i = 0; i < N_REG_CLASSES; i++)
+    for (j = 0; j < N_REG_CLASSES; j++)
+      alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
+
+  for (i = 0; i < N_REG_CLASSES; i++)
+    {
+      if (i == (int) NO_REGS)
+	continue;
+
+      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
+      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
+      if (hard_reg_set_empty_p (temp_hard_regset))
+	continue;
+      for (j = 0; j < N_REG_CLASSES; j++)
+	if (i != j)
+	  {
+	    enum reg_class *p;
+
+	    COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
+	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
+	    if (! hard_reg_set_subset_p (temp_hard_regset,
+					 temp_hard_regset2))
+	      continue;
+	    p = &alloc_reg_class_subclasses[j][0];
+	    while (*p != LIM_REG_CLASSES) p++;
+	    *p = (enum reg_class) i;
+	  }
+    }
+}
+
+
+
+/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST.  */
 static void
 setup_class_subset_and_memory_move_costs (void)
 {
-  int cl, cl2, mode;
+  int cl, cl2, mode, cost;
   HARD_REG_SET temp_hard_regset2;
 
   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
@@ -476,34 +579,60 @@
       if (cl != (int) NO_REGS)
 	for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
 	  {
-	    ira_memory_move_cost[mode][cl][0] =
-	      memory_move_cost ((enum machine_mode) mode,
-				(enum reg_class) cl, false);
-	    ira_memory_move_cost[mode][cl][1] =
-	      memory_move_cost ((enum machine_mode) mode,
-				(enum reg_class) cl, true);
+	    ira_max_memory_move_cost[mode][cl][0]
+	      = ira_memory_move_cost[mode][cl][0]
+	      = memory_move_cost ((machine_mode) mode,
+				  (reg_class_t) cl, false);
+	    ira_max_memory_move_cost[mode][cl][1]
+	      = ira_memory_move_cost[mode][cl][1]
+	      = memory_move_cost ((machine_mode) mode,
+				  (reg_class_t) cl, true);
 	    /* Costs for NO_REGS are used in cost calculation on the
 	       1st pass when the preferred register classes are not
 	       known yet.  In this case we take the best scenario.  */
 	    if (ira_memory_move_cost[mode][NO_REGS][0]
 		> ira_memory_move_cost[mode][cl][0])
-	      ira_memory_move_cost[mode][NO_REGS][0]
+	      ira_max_memory_move_cost[mode][NO_REGS][0]
+		= ira_memory_move_cost[mode][NO_REGS][0]
 		= ira_memory_move_cost[mode][cl][0];
 	    if (ira_memory_move_cost[mode][NO_REGS][1]
 		> ira_memory_move_cost[mode][cl][1])
-	      ira_memory_move_cost[mode][NO_REGS][1]
+	      ira_max_memory_move_cost[mode][NO_REGS][1]
+		= ira_memory_move_cost[mode][NO_REGS][1]
 		= ira_memory_move_cost[mode][cl][1];
 	  }
-      for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
-	{
-	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
-	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
-	  COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
-	  AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
-	  ira_class_subset_p[cl][cl2]
-	    = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
-	}
     }
+  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
+    for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
+      {
+	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
+	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
+	COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
+	AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
+	ira_class_subset_p[cl][cl2]
+	  = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
+	if (! hard_reg_set_empty_p (temp_hard_regset2)
+	    && hard_reg_set_subset_p (reg_class_contents[cl2],
+				      reg_class_contents[cl]))
+	  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
+	    {
+	      cost = ira_memory_move_cost[mode][cl2][0];
+	      if (cost > ira_max_memory_move_cost[mode][cl][0])
+		ira_max_memory_move_cost[mode][cl][0] = cost;
+	      cost = ira_memory_move_cost[mode][cl2][1];
+	      if (cost > ira_max_memory_move_cost[mode][cl][1])
+		ira_max_memory_move_cost[mode][cl][1] = cost;
+	    }
+      }
+  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
+    for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
+      {
+	ira_memory_move_cost[mode][cl][0]
+	  = ira_max_memory_move_cost[mode][cl][0];
+	ira_memory_move_cost[mode][cl][1]
+	  = ira_max_memory_move_cost[mode][cl][1];
+      }
+  setup_reg_subclasses ();
 }
 
 
@@ -535,20 +664,6 @@
   return res;
 }
 
-/* Reallocate memory PTR of size LEN for IRA data.  */
-void *
-ira_reallocate (void *ptr, size_t len)
-{
-  void *res;
-
-#ifndef IRA_NO_OBSTACK
-  res = obstack_alloc (&ira_obstack, len);
-#else
-  res = xrealloc (ptr, len);
-#endif
-  return res;
-}
-
 /* Free memory ADDR allocated for IRA data.  */
 void
 ira_free (void *addr ATTRIBUTE_UNUSED)
@@ -600,7 +715,7 @@
 	if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
 	  fprintf (f, "b%-3d", bb->index);
 	else
-	  fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
+	  fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
 	if (ALLOCNO_HARD_REGNO (a) >= 0)
 	  fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
 	else
@@ -618,216 +733,393 @@
 }
 
 
-#define alloc_reg_class_subclasses \
-  (this_target_ira_int->x_alloc_reg_class_subclasses)
-
-/* Initialize the table of subclasses of each reg class.  */
+
+/* Set up ira_stack_reg_pressure_class which is the biggest pressure
+   register class containing stack registers or NO_REGS if there are
+   no stack registers.  To find this class, we iterate through all
+   register pressure classes and choose the first register pressure
+   class containing all the stack registers and having the biggest
+   size.  */
 static void
-setup_reg_subclasses (void)
+setup_stack_reg_pressure_class (void)
 {
-  int i, j;
+  ira_stack_reg_pressure_class = NO_REGS;
+#ifdef STACK_REGS
+  {
+    int i, best, size;
+    enum reg_class cl;
+    HARD_REG_SET temp_hard_regset2;
+
+    CLEAR_HARD_REG_SET (temp_hard_regset);
+    for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
+      SET_HARD_REG_BIT (temp_hard_regset, i);
+    best = 0;
+    for (i = 0; i < ira_pressure_classes_num; i++)
+      {
+	cl = ira_pressure_classes[i];
+	COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
+	AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
+	size = hard_reg_set_size (temp_hard_regset2);
+	if (best < size)
+	  {
+	    best = size;
+	    ira_stack_reg_pressure_class = cl;
+	  }
+      }
+  }
+#endif
+}
+
+/* Find pressure classes which are register classes for which we
+   calculate register pressure in IRA, register pressure sensitive
+   insn scheduling, and register pressure sensitive loop invariant
+   motion.
+
+   To make register pressure calculation easy, we always use
+   non-intersected register pressure classes.  A move of hard
+   registers from one register pressure class is not more expensive
+   than load and store of the hard registers.  Most likely an allocno
+   class will be a subset of a register pressure class and in many
+   cases a register pressure class.  That makes usage of register
+   pressure classes a good approximation to find a high register
+   pressure.  */
+static void
+setup_pressure_classes (void)
+{
+  int cost, i, n, curr;
+  int cl, cl2;
+  enum reg_class pressure_classes[N_REG_CLASSES];
+  int m;
   HARD_REG_SET temp_hard_regset2;
-
-  for (i = 0; i < N_REG_CLASSES; i++)
-    for (j = 0; j < N_REG_CLASSES; j++)
-      alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
-
-  for (i = 0; i < N_REG_CLASSES; i++)
+  bool insert_p;
+
+  if (targetm.compute_pressure_classes)
+    n = targetm.compute_pressure_classes (pressure_classes);
+  else
+    { 
+      n = 0;
+      for (cl = 0; cl < N_REG_CLASSES; cl++)
+	{
+	  if (ira_class_hard_regs_num[cl] == 0)
+	    continue;
+	  if (ira_class_hard_regs_num[cl] != 1
+	      /* A register class without subclasses may contain a few
+		 hard registers and movement between them is costly
+		 (e.g. SPARC FPCC registers).  We still should consider it
+		 as a candidate for a pressure class.  */
+	      && alloc_reg_class_subclasses[cl][0] < cl)
+	    {
+	      /* Check that the moves between any hard registers of the
+		 current class are not more expensive for a legal mode
+		 than load/store of the hard registers of the current
+		 class.  Such class is a potential candidate to be a
+		 register pressure class.  */
+	      for (m = 0; m < NUM_MACHINE_MODES; m++)
+		{
+		  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
+		  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
+		  AND_COMPL_HARD_REG_SET (temp_hard_regset,
+					  ira_prohibited_class_mode_regs[cl][m]);
+		  if (hard_reg_set_empty_p (temp_hard_regset))
+		    continue;
+		  ira_init_register_move_cost_if_necessary ((machine_mode) m);
+		  cost = ira_register_move_cost[m][cl][cl];
+		  if (cost <= ira_max_memory_move_cost[m][cl][1]
+		      || cost <= ira_max_memory_move_cost[m][cl][0])
+		    break;
+		}
+	      if (m >= NUM_MACHINE_MODES)
+		continue;
+	    }
+	  curr = 0;
+	  insert_p = true;
+	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
+	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
+	  /* Remove so far added pressure classes which are subset of the
+	     current candidate class.  Prefer GENERAL_REGS as a pressure
+	     register class to another class containing the same
+	     allocatable hard registers.  We do this because machine
+	     dependent cost hooks might give wrong costs for the latter
+	     class but always give the right cost for the former class
+	     (GENERAL_REGS).  */
+	  for (i = 0; i < n; i++)
+	    {
+	      cl2 = pressure_classes[i];
+	      COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
+	      AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
+	      if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
+		  && (! hard_reg_set_equal_p (temp_hard_regset,
+					      temp_hard_regset2)
+		      || cl2 == (int) GENERAL_REGS))
+		{
+		  pressure_classes[curr++] = (enum reg_class) cl2;
+		  insert_p = false;
+		  continue;
+		}
+	      if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
+		  && (! hard_reg_set_equal_p (temp_hard_regset2,
+					      temp_hard_regset)
+		      || cl == (int) GENERAL_REGS))
+		continue;
+	      if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
+		insert_p = false;
+	      pressure_classes[curr++] = (enum reg_class) cl2;
+	    }
+	  /* If the current candidate is a subset of a so far added
+	     pressure class, don't add it to the list of the pressure
+	     classes.  */
+	  if (insert_p)
+	    pressure_classes[curr++] = (enum reg_class) cl;
+	  n = curr;
+	}
+    }
+#ifdef ENABLE_IRA_CHECKING
+  {
+    HARD_REG_SET ignore_hard_regs;
+
+    /* Check pressure classes correctness: here we check that hard
+       registers from all register pressure classes contains all hard
+       registers available for the allocation.  */
+    CLEAR_HARD_REG_SET (temp_hard_regset);
+    CLEAR_HARD_REG_SET (temp_hard_regset2);
+    COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
+    for (cl = 0; cl < LIM_REG_CLASSES; cl++)
+      {
+	/* For some targets (like MIPS with MD_REGS), there are some
+	   classes with hard registers available for allocation but
+	   not able to hold value of any mode.  */
+	for (m = 0; m < NUM_MACHINE_MODES; m++)
+	  if (contains_reg_of_mode[cl][m])
+	    break;
+	if (m >= NUM_MACHINE_MODES)
+	  {
+	    IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
+	    continue;
+	  }
+	for (i = 0; i < n; i++)
+	  if ((int) pressure_classes[i] == cl)
+	    break;
+	IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
+	if (i < n)
+	  IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
+      }
+    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+      /* Some targets (like SPARC with ICC reg) have allocatable regs
+	 for which no reg class is defined.  */
+      if (REGNO_REG_CLASS (i) == NO_REGS)
+	SET_HARD_REG_BIT (ignore_hard_regs, i);
+    AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
+    AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
+    ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
+  }
+#endif
+  ira_pressure_classes_num = 0;
+  for (i = 0; i < n; i++)
     {
-      if (i == (int) NO_REGS)
+      cl = (int) pressure_classes[i];
+      ira_reg_pressure_class_p[cl] = true;
+      ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
+    }
+  setup_stack_reg_pressure_class ();
+}
+
+/* Set up IRA_UNIFORM_CLASS_P.  Uniform class is a register class
+   whose register move cost between any registers of the class is the
+   same as for all its subclasses.  We use the data to speed up the
+   2nd pass of calculations of allocno costs.  */
+static void
+setup_uniform_class_p (void)
+{
+  int i, cl, cl2, m;
+
+  for (cl = 0; cl < N_REG_CLASSES; cl++)
+    {
+      ira_uniform_class_p[cl] = false;
+      if (ira_class_hard_regs_num[cl] == 0)
 	continue;
-
-      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
-      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
-      if (hard_reg_set_empty_p (temp_hard_regset))
-	continue;
-      for (j = 0; j < N_REG_CLASSES; j++)
-	if (i != j)
-	  {
-	    enum reg_class *p;
-
-	    COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
-	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
-	    if (! hard_reg_set_subset_p (temp_hard_regset,
-					 temp_hard_regset2))
-	      continue;
-	    p = &alloc_reg_class_subclasses[j][0];
-	    while (*p != LIM_REG_CLASSES) p++;
-	    *p = (enum reg_class) i;
-	  }
+      /* We can not use alloc_reg_class_subclasses here because move
+	 cost hooks does not take into account that some registers are
+	 unavailable for the subtarget.  E.g. for i686, INT_SSE_REGS
+	 is element of alloc_reg_class_subclasses for GENERAL_REGS
+	 because SSE regs are unavailable.  */
+      for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
+	{
+	  if (ira_class_hard_regs_num[cl2] == 0)
+	    continue;
+      	  for (m = 0; m < NUM_MACHINE_MODES; m++)
+	    if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
+	      {
+		ira_init_register_move_cost_if_necessary ((machine_mode) m);
+		if (ira_register_move_cost[m][cl][cl]
+		    != ira_register_move_cost[m][cl2][cl2])
+		  break;
+	      }
+	  if (m < NUM_MACHINE_MODES)
+	    break;
+	}
+      if (cl2 == LIM_REG_CLASSES)
+	ira_uniform_class_p[cl] = true;
     }
 }
 
-
-
-/* Set the four global variables defined above.  */
+/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
+   IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
+
+   Target may have many subtargets and not all target hard registers can
+   be used for allocation, e.g. x86 port in 32-bit mode can not use
+   hard registers introduced in x86-64 like r8-r15).  Some classes
+   might have the same allocatable hard registers, e.g.  INDEX_REGS
+   and GENERAL_REGS in x86 port in 32-bit mode.  To decrease different
+   calculations efforts we introduce allocno classes which contain
+   unique non-empty sets of allocatable hard-registers.
+
+   Pseudo class cost calculation in ira-costs.c is very expensive.
+   Therefore we are trying to decrease number of classes involved in
+   such calculation.  Register classes used in the cost calculation
+   are called important classes.  They are allocno classes and other
+   non-empty classes whose allocatable hard register sets are inside
+   of an allocno class hard register set.  From the first sight, it
+   looks like that they are just allocno classes.  It is not true.  In
+   example of x86-port in 32-bit mode, allocno classes will contain
+   GENERAL_REGS but not LEGACY_REGS (because allocatable hard
+   registers are the same for the both classes).  The important
+   classes will contain GENERAL_REGS and LEGACY_REGS.  It is done
+   because a machine description insn constraint may refers for
+   LEGACY_REGS and code in ira-costs.c is mostly base on investigation
+   of the insn constraints.  */
 static void
-setup_cover_and_important_classes (void)
+setup_allocno_and_important_classes (void)
 {
   int i, j, n, cl;
   bool set_p;
-  const reg_class_t *cover_classes;
   HARD_REG_SET temp_hard_regset2;
   static enum reg_class classes[LIM_REG_CLASSES + 1];
 
-  if (targetm.ira_cover_classes == NULL)
-    cover_classes = NULL;
-  else
-    cover_classes = targetm.ira_cover_classes ();
-  if (cover_classes == NULL)
-    ira_assert (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY);
-  else
+  n = 0;
+  /* Collect classes which contain unique sets of allocatable hard
+     registers.  Prefer GENERAL_REGS to other classes containing the
+     same set of hard registers.  */
+  for (i = 0; i < LIM_REG_CLASSES; i++)
     {
-      for (i = 0; (cl = cover_classes[i]) != LIM_REG_CLASSES; i++)
-	classes[i] = (enum reg_class) cl;
-      classes[i] = LIM_REG_CLASSES;
+      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
+      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
+      for (j = 0; j < n; j++)
+	{
+	  cl = classes[j];
+	  COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
+	  AND_COMPL_HARD_REG_SET (temp_hard_regset2,
+				  no_unit_alloc_regs);
+	  if (hard_reg_set_equal_p (temp_hard_regset,
+				    temp_hard_regset2))
+	    break;
+	}
+      if (j >= n || targetm.additional_allocno_class_p (i))
+	classes[n++] = (enum reg_class) i;
+      else if (i == GENERAL_REGS)
+	/* Prefer general regs.  For i386 example, it means that
+	   we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
+	   (all of them consists of the same available hard
+	   registers).  */
+	classes[j] = (enum reg_class) i;
     }
-
-  if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
-    {
-      n = 0;
-      for (i = 0; i <= LIM_REG_CLASSES; i++)
-	{
-	  if (i == NO_REGS)
-	    continue;
-#ifdef CONSTRAINT_NUM_DEFINED_P
-	  for (j = 0; j < CONSTRAINT__LIMIT; j++)
-	    if ((int) REG_CLASS_FOR_CONSTRAINT ((enum constraint_num) j) == i)
+  classes[n] = LIM_REG_CLASSES;
+
+  /* Set up classes which can be used for allocnos as classes
+     containing non-empty unique sets of allocatable hard
+     registers.  */
+  ira_allocno_classes_num = 0;
+  for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
+    if (ira_class_hard_regs_num[cl] > 0)
+      ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
+  ira_important_classes_num = 0;
+  /* Add non-allocno classes containing to non-empty set of
+     allocatable hard regs.  */
+  for (cl = 0; cl < N_REG_CLASSES; cl++)
+    if (ira_class_hard_regs_num[cl] > 0)
+      {
+	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
+	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
+	set_p = false;
+	for (j = 0; j < ira_allocno_classes_num; j++)
+	  {
+	    COPY_HARD_REG_SET (temp_hard_regset2,
+			       reg_class_contents[ira_allocno_classes[j]]);
+	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
+	    if ((enum reg_class) cl == ira_allocno_classes[j])
 	      break;
-	  if (j < CONSTRAINT__LIMIT)
-	    {
-	      classes[n++] = (enum reg_class) i;
-	      continue;
-	    }
-#endif
-	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
-	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
-	  for (j = 0; j < LIM_REG_CLASSES; j++)
-	    {
-	      if (i == j)
-		continue;
-	      COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
-	      AND_COMPL_HARD_REG_SET (temp_hard_regset2,
-				      no_unit_alloc_regs);
-	      if (hard_reg_set_equal_p (temp_hard_regset,
-					temp_hard_regset2))
-		    break;
-	    }
-	  if (j >= i)
-	    classes[n++] = (enum reg_class) i;
-	}
-      classes[n] = LIM_REG_CLASSES;
-    }
-
-  ira_reg_class_cover_size = 0;
-  for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
-    {
-      for (j = 0; j < i; j++)
-	if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
-	    && reg_classes_intersect_p ((enum reg_class) cl, classes[j]))
-	  gcc_unreachable ();
-      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
-      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
-      if (! hard_reg_set_empty_p (temp_hard_regset))
-	ira_reg_class_cover[ira_reg_class_cover_size++] = (enum reg_class) cl;
-    }
-  ira_important_classes_num = 0;
+	    else if (hard_reg_set_subset_p (temp_hard_regset,
+					    temp_hard_regset2))
+	      set_p = true;
+	  }
+	if (set_p && j >= ira_allocno_classes_num)
+	  ira_important_classes[ira_important_classes_num++]
+	    = (enum reg_class) cl;
+      }
+  /* Now add allocno classes to the important classes.  */
+  for (j = 0; j < ira_allocno_classes_num; j++)
+    ira_important_classes[ira_important_classes_num++]
+      = ira_allocno_classes[j];
   for (cl = 0; cl < N_REG_CLASSES; cl++)
     {
-      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
-      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
-      if (! hard_reg_set_empty_p (temp_hard_regset))
-	{
-	  set_p = false;
-	  for (j = 0; j < ira_reg_class_cover_size; j++)
-	    {
-	      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
-	      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
-	      COPY_HARD_REG_SET (temp_hard_regset2,
-				 reg_class_contents[ira_reg_class_cover[j]]);
-	      AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
-	      if ((enum reg_class) cl == ira_reg_class_cover[j]
-		  || hard_reg_set_equal_p (temp_hard_regset,
-					   temp_hard_regset2))
-		break;
-	      else if (hard_reg_set_subset_p (temp_hard_regset,
-					      temp_hard_regset2))
-		set_p = true;
-	    }
-	  if (set_p && j >= ira_reg_class_cover_size)
-	    ira_important_classes[ira_important_classes_num++]
-	      = (enum reg_class) cl;
-	}
+      ira_reg_allocno_class_p[cl] = false;
+      ira_reg_pressure_class_p[cl] = false;
     }
-  for (j = 0; j < ira_reg_class_cover_size; j++)
-    ira_important_classes[ira_important_classes_num++]
-      = ira_reg_class_cover[j];
+  for (j = 0; j < ira_allocno_classes_num; j++)
+    ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
+  setup_pressure_classes ();
+  setup_uniform_class_p ();
 }
 
-/* Set up array IRA_CLASS_TRANSLATE.  */
+/* Setup translation in CLASS_TRANSLATE of all classes into a class
+   given by array CLASSES of length CLASSES_NUM.  The function is used
+   make translation any reg class to an allocno class or to an
+   pressure class.  This translation is necessary for some
+   calculations when we can use only allocno or pressure classes and
+   such translation represents an approximate representation of all
+   classes.
+
+   The translation in case when allocatable hard register set of a
+   given class is subset of allocatable hard register set of a class
+   in CLASSES is pretty simple.  We use smallest classes from CLASSES
+   containing a given class.  If allocatable hard register set of a
+   given class is not a subset of any corresponding set of a class
+   from CLASSES, we use the cheapest (with load/store point of view)
+   class from CLASSES whose set intersects with given class set.  */
 static void
-setup_class_translate (void)
+setup_class_translate_array (enum reg_class *class_translate,
+			     int classes_num, enum reg_class *classes)
 {
   int cl, mode;
-  enum reg_class cover_class, best_class, *cl_ptr;
+  enum reg_class aclass, best_class, *cl_ptr;
   int i, cost, min_cost, best_cost;
 
   for (cl = 0; cl < N_REG_CLASSES; cl++)
-    ira_class_translate[cl] = NO_REGS;
-
-  if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
-    for (cl = 0; cl < LIM_REG_CLASSES; cl++)
-      {
-	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
-	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
-	for (i = 0; i < ira_reg_class_cover_size; i++)
-	  {
-	    HARD_REG_SET temp_hard_regset2;
-
-	    cover_class = ira_reg_class_cover[i];
-	    COPY_HARD_REG_SET (temp_hard_regset2,
-			       reg_class_contents[cover_class]);
-	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
-	    if (hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2))
-	      ira_class_translate[cl] = cover_class;
-	  }
-      }
-  for (i = 0; i < ira_reg_class_cover_size; i++)
+    class_translate[cl] = NO_REGS;
+
+  for (i = 0; i < classes_num; i++)
     {
-      cover_class = ira_reg_class_cover[i];
-      if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY)
-	for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
-	     (cl = *cl_ptr) != LIM_REG_CLASSES;
-	     cl_ptr++)
-	  {
-	    if (ira_class_translate[cl] == NO_REGS)
-	      ira_class_translate[cl] = cover_class;
-#ifdef ENABLE_IRA_CHECKING
-	    else
-	      {
-		COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
-		AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
-		if (! hard_reg_set_empty_p (temp_hard_regset))
-		  gcc_unreachable ();
-	      }
-#endif
-	  }
-      ira_class_translate[cover_class] = cover_class;
+      aclass = classes[i];
+      for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
+	   (cl = *cl_ptr) != LIM_REG_CLASSES;
+	   cl_ptr++)
+	if (class_translate[cl] == NO_REGS)
+	  class_translate[cl] = aclass;
+      class_translate[aclass] = aclass;
     }
-  /* For classes which are not fully covered by a cover class (in
-     other words covered by more one cover class), use the cheapest
-     cover class.  */
+  /* For classes which are not fully covered by one of given classes
+     (in other words covered by more one given class), use the
+     cheapest class.  */
   for (cl = 0; cl < N_REG_CLASSES; cl++)
     {
-      if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
+      if (cl == NO_REGS || class_translate[cl] != NO_REGS)
 	continue;
       best_class = NO_REGS;
       best_cost = INT_MAX;
-      for (i = 0; i < ira_reg_class_cover_size; i++)
+      for (i = 0; i < classes_num; i++)
 	{
-	  cover_class = ira_reg_class_cover[i];
+	  aclass = classes[i];
 	  COPY_HARD_REG_SET (temp_hard_regset,
-			     reg_class_contents[cover_class]);
+			     reg_class_contents[aclass]);
 	  AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
 	  if (! hard_reg_set_empty_p (temp_hard_regset))
@@ -835,26 +1127,36 @@
 	      min_cost = INT_MAX;
 	      for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
 		{
-		  cost = (ira_memory_move_cost[mode][cl][0]
-			  + ira_memory_move_cost[mode][cl][1]);
+		  cost = (ira_memory_move_cost[mode][aclass][0]
+			  + ira_memory_move_cost[mode][aclass][1]);
 		  if (min_cost > cost)
 		    min_cost = cost;
 		}
 	      if (best_class == NO_REGS || best_cost > min_cost)
 		{
-		  best_class = cover_class;
+		  best_class = aclass;
 		  best_cost = min_cost;
 		}
 	    }
 	}
-      ira_class_translate[cl] = best_class;
+      class_translate[cl] = best_class;
     }
 }
 
-/* Order numbers of cover classes in original target cover class
-   array, -1 for non-cover classes.  This is only live during
-   reorder_important_classes.  */
-static int cover_class_order[N_REG_CLASSES];
+/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
+   IRA_PRESSURE_CLASS_TRANSLATE.  */
+static void
+setup_class_translate (void)
+{
+  setup_class_translate_array (ira_allocno_class_translate,
+			       ira_allocno_classes_num, ira_allocno_classes);
+  setup_class_translate_array (ira_pressure_class_translate,
+			       ira_pressure_classes_num, ira_pressure_classes);
+}
+
+/* Order numbers of allocno classes in original target allocno class
+   array, -1 for non-allocno classes.  */
+static int allocno_class_order[N_REG_CLASSES];
 
 /* The function used to sort the important classes.  */
 static int
@@ -862,32 +1164,47 @@
 {
   enum reg_class cl1 = *(const enum reg_class *) v1p;
   enum reg_class cl2 = *(const enum reg_class *) v2p;
+  enum reg_class tcl1, tcl2;
   int diff;
 
-  cl1 = ira_class_translate[cl1];
-  cl2 = ira_class_translate[cl2];
-  if (cl1 != NO_REGS && cl2 != NO_REGS
-      && (diff = cover_class_order[cl1] - cover_class_order[cl2]) != 0)
+  tcl1 = ira_allocno_class_translate[cl1];
+  tcl2 = ira_allocno_class_translate[cl2];
+  if (tcl1 != NO_REGS && tcl2 != NO_REGS
+      && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
     return diff;
   return (int) cl1 - (int) cl2;
 }
 
-/* Reorder important classes according to the order of their cover
-   classes.  */
+/* For correct work of function setup_reg_class_relation we need to
+   reorder important classes according to the order of their allocno
+   classes.  It places important classes containing the same
+   allocatable hard register set adjacent to each other and allocno
+   class with the allocatable hard register set right after the other
+   important classes with the same set.
+
+   In example from comments of function
+   setup_allocno_and_important_classes, it places LEGACY_REGS and
+   GENERAL_REGS close to each other and GENERAL_REGS is after
+   LEGACY_REGS.  */
 static void
 reorder_important_classes (void)
 {
   int i;
 
   for (i = 0; i < N_REG_CLASSES; i++)
-    cover_class_order[i] = -1;
-  for (i = 0; i < ira_reg_class_cover_size; i++)
-    cover_class_order[ira_reg_class_cover[i]] = i;
+    allocno_class_order[i] = -1;
+  for (i = 0; i < ira_allocno_classes_num; i++)
+    allocno_class_order[ira_allocno_classes[i]] = i;
   qsort (ira_important_classes, ira_important_classes_num,
 	 sizeof (enum reg_class), comp_reg_classes_func);
+  for (i = 0; i < ira_important_classes_num; i++)
+    ira_important_class_nums[ira_important_classes[i]] = i;
 }
 
-/* Set up the above reg class relations.  */
+/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
+   IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
+   IRA_REG_CLASSES_INTERSECT_P.  For the meaning of the relations,
+   please see corresponding comments in ira-int.h.  */
 static void
 setup_reg_class_relations (void)
 {
@@ -905,6 +1222,7 @@
 	{
 	  ira_reg_classes_intersect_p[cl1][cl2] = false;
 	  ira_reg_class_intersect[cl1][cl2] = NO_REGS;
+	  ira_reg_class_subset[cl1][cl2] = NO_REGS;
 	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
 	  COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
@@ -912,6 +1230,9 @@
 	  if (hard_reg_set_empty_p (temp_hard_regset)
 	      && hard_reg_set_empty_p (temp_set2))
 	    {
+	      /* The both classes have no allocatable hard registers
+		 -- take all class hard registers into account and use
+		 reg_class_subunion and reg_class_superunion.  */
 	      for (i = 0;; i++)
 		{
 		  cl3 = reg_class_subclasses[cl1][i];
@@ -921,7 +1242,8 @@
 					  (enum reg_class) cl3))
 		    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
 		}
-	      ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
+	      ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
+	      ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
 	      continue;
 	    }
 	  ira_reg_classes_intersect_p[cl1][cl2]
@@ -929,6 +1251,9 @@
 	  if (important_class_p[cl1] && important_class_p[cl2]
 	      && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
 	    {
+	      /* CL1 and CL2 are important classes and CL1 allocatable
+		 hard register set is inside of CL2 allocatable hard
+		 registers -- make CL1 a superset of CL2.  */
 	      enum reg_class *p;
 
 	      p = &ira_reg_class_super_classes[cl1][0];
@@ -937,91 +1262,171 @@
 	      *p++ = (enum reg_class) cl2;
 	      *p = LIM_REG_CLASSES;
 	    }
-	  ira_reg_class_union[cl1][cl2] = NO_REGS;
+	  ira_reg_class_subunion[cl1][cl2] = NO_REGS;
+	  ira_reg_class_superunion[cl1][cl2] = NO_REGS;
 	  COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
 	  AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
 	  AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
 	  COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
 	  IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
 	  AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
-	  for (i = 0; i < ira_important_classes_num; i++)
+	  for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
 	    {
-	      cl3 = ira_important_classes[i];
 	      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
 	      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
 	      if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
 		{
+		  /* CL3 allocatable hard register set is inside of
+		     intersection of allocatable hard register sets
+		     of CL1 and CL2.  */
+		  if (important_class_p[cl3])
+		    {
+		      COPY_HARD_REG_SET
+			(temp_set2,
+			 reg_class_contents
+			 [(int) ira_reg_class_intersect[cl1][cl2]]);
+		      AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
+		      if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
+			  /* If the allocatable hard register sets are
+			     the same, prefer GENERAL_REGS or the
+			     smallest class for debugging
+			     purposes.  */
+			  || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
+			      && (cl3 == GENERAL_REGS
+				  || ((ira_reg_class_intersect[cl1][cl2]
+				       != GENERAL_REGS)
+				      && hard_reg_set_subset_p
+				         (reg_class_contents[cl3],
+					  reg_class_contents
+					  [(int)
+					   ira_reg_class_intersect[cl1][cl2]])))))
+			ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
+		    }
 		  COPY_HARD_REG_SET
 		    (temp_set2,
-		     reg_class_contents[(int)
-					ira_reg_class_intersect[cl1][cl2]]);
+		     reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
-	 	  if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
+		  if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
 		      /* Ignore unavailable hard registers and prefer
 			 smallest class for debugging purposes.  */
 		      || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
 			  && hard_reg_set_subset_p
 			     (reg_class_contents[cl3],
 			      reg_class_contents
-			      [(int) ira_reg_class_intersect[cl1][cl2]])))
-		    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
+			      [(int) ira_reg_class_subset[cl1][cl2]])))
+		    ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
 		}
-	      if (hard_reg_set_subset_p (temp_hard_regset, union_set))
+	      if (important_class_p[cl3]
+		  && hard_reg_set_subset_p (temp_hard_regset, union_set))
 		{
+		  /* CL3 allocatable hard register set is inside of
+		     union of allocatable hard register sets of CL1
+		     and CL2.  */
 		  COPY_HARD_REG_SET
 		    (temp_set2,
-		     reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
+		     reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
-	 	  if (ira_reg_class_union[cl1][cl2] == NO_REGS
+	 	  if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
 		      || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
+			  
+			  && (! hard_reg_set_equal_p (temp_set2,
+						      temp_hard_regset)
+			      || cl3 == GENERAL_REGS
+			      /* If the allocatable hard register sets are the
+				 same, prefer GENERAL_REGS or the smallest
+				 class for debugging purposes.  */
+			      || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
+				  && hard_reg_set_subset_p
+				     (reg_class_contents[cl3],
+				      reg_class_contents
+				      [(int) ira_reg_class_subunion[cl1][cl2]])))))
+		    ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
+		}
+	      if (hard_reg_set_subset_p (union_set, temp_hard_regset))
+		{
+		  /* CL3 allocatable hard register set contains union
+		     of allocatable hard register sets of CL1 and
+		     CL2.  */
+		  COPY_HARD_REG_SET
+		    (temp_set2,
+		     reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
+		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
+	 	  if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
+		      || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
 
 			  && (! hard_reg_set_equal_p (temp_set2,
 						      temp_hard_regset)
-			      /* Ignore unavailable hard registers and
-				 prefer smallest class for debugging
-				 purposes.  */
-			      || hard_reg_set_subset_p
-			         (reg_class_contents[cl3],
-				  reg_class_contents
-				  [(int) ira_reg_class_union[cl1][cl2]]))))
-		    ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
+			      || cl3 == GENERAL_REGS
+			      /* If the allocatable hard register sets are the
+				 same, prefer GENERAL_REGS or the smallest
+				 class for debugging purposes.  */
+			      || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
+				  && hard_reg_set_subset_p
+				     (reg_class_contents[cl3],
+				      reg_class_contents
+				      [(int) ira_reg_class_superunion[cl1][cl2]])))))
+		    ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
 		}
 	    }
 	}
     }
 }
 
-/* Output all cover classes and the translation map into file F.  */
+/* Output all uniform and important classes into file F.  */
 static void
-print_class_cover (FILE *f)
+print_uniform_and_important_classes (FILE *f)
 {
-  static const char *const reg_class_names[] = REG_CLASS_NAMES;
+  int i, cl;
+
+  fprintf (f, "Uniform classes:\n");
+  for (cl = 0; cl < N_REG_CLASSES; cl++)
+    if (ira_uniform_class_p[cl])
+      fprintf (f, " %s", reg_class_names[cl]);
+  fprintf (f, "\nImportant classes:\n");
+  for (i = 0; i < ira_important_classes_num; i++)
+    fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
+  fprintf (f, "\n");
+}
+
+/* Output all possible allocno or pressure classes and their
+   translation map into file F.  */
+static void
+print_translated_classes (FILE *f, bool pressure_p)
+{
+  int classes_num = (pressure_p
+		     ? ira_pressure_classes_num : ira_allocno_classes_num);
+  enum reg_class *classes = (pressure_p
+			     ? ira_pressure_classes : ira_allocno_classes);
+  enum reg_class *class_translate = (pressure_p
+				     ? ira_pressure_class_translate
+				     : ira_allocno_class_translate);
   int i;
 
-  fprintf (f, "Class cover:\n");
-  for (i = 0; i < ira_reg_class_cover_size; i++)
-    fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
+  fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
+  for (i = 0; i < classes_num; i++)
+    fprintf (f, " %s", reg_class_names[classes[i]]);
   fprintf (f, "\nClass translation:\n");
   for (i = 0; i < N_REG_CLASSES; i++)
     fprintf (f, " %s -> %s\n", reg_class_names[i],
-	     reg_class_names[ira_class_translate[i]]);
+	     reg_class_names[class_translate[i]]);
 }
 
-/* Output all cover classes and the translation map into
-   stderr.  */
+/* Output all possible allocno and translation classes and the
+   translation maps into stderr.  */
 void
-ira_debug_class_cover (void)
+ira_debug_allocno_classes (void)
 {
-  print_class_cover (stderr);
+  print_uniform_and_important_classes (stderr);
+  print_translated_classes (stderr, false);
+  print_translated_classes (stderr, true);
 }
 
-/* Set up different arrays concerning class subsets, cover and
+/* Set up different arrays concerning class subsets, allocno and
    important classes.  */
 static void
-find_reg_class_closure (void)
+find_reg_classes (void)
 {
-  setup_reg_subclasses ();
-  setup_cover_and_important_classes ();
+  setup_allocno_and_important_classes ();
   setup_class_translate ();
   reorder_important_classes ();
   setup_reg_class_relations ();
@@ -1031,95 +1436,232 @@
 
 /* Set up the array above.  */
 static void
-setup_hard_regno_cover_class (void)
+setup_hard_regno_aclass (void)
 {
   int i;
 
   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
     {
-      ira_hard_regno_cover_class[i]
+#if 1
+      ira_hard_regno_allocno_class[i]
 	= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
 	   ? NO_REGS
-	   : ira_class_translate[REGNO_REG_CLASS (i)]);
+	   : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
+#else
+      int j;
+      enum reg_class cl;
+      ira_hard_regno_allocno_class[i] = NO_REGS;
+      for (j = 0; j < ira_allocno_classes_num; j++)
+ 	{
+	  cl = ira_allocno_classes[j];
+ 	  if (ira_class_hard_reg_index[cl][i] >= 0)
+ 	    {
+	      ira_hard_regno_allocno_class[i] = cl;
+ 	      break;
+ 	    }
+ 	}
+#endif
+    }
+}
+
+
+
+/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps.  */
+static void
+setup_reg_class_nregs (void)
+{
+  int i, cl, cl2, m;
+
+  for (m = 0; m < MAX_MACHINE_MODE; m++)
+    {
+      for (cl = 0; cl < N_REG_CLASSES; cl++)
+	ira_reg_class_max_nregs[cl][m]
+	  = ira_reg_class_min_nregs[cl][m]
+	  = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
+      for (cl = 0; cl < N_REG_CLASSES; cl++)
+	for (i = 0;
+	     (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
+	     i++)
+	  if (ira_reg_class_min_nregs[cl2][m]
+	      < ira_reg_class_min_nregs[cl][m])
+	    ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
     }
 }
 
 
 
-/* Form IRA_REG_CLASS_NREGS map.  */
-static void
-setup_reg_class_nregs (void)
-{
-  int cl, m;
-
-  for (cl = 0; cl < N_REG_CLASSES; cl++)
-    for (m = 0; m < MAX_MACHINE_MODE; m++)
-      ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS ((enum reg_class) cl,
-						    (enum machine_mode) m);
-}
-
-
-
-/* Set up PROHIBITED_CLASS_MODE_REGS.  */
+/* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
+   This function is called once IRA_CLASS_HARD_REGS has been initialized.  */
 static void
 setup_prohibited_class_mode_regs (void)
 {
-  int i, j, k, hard_regno;
-  enum reg_class cl;
-
-  for (i = 0; i < ira_reg_class_cover_size; i++)
+  int j, k, hard_regno, cl, last_hard_regno, count;
+
+  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
     {
-      cl = ira_reg_class_cover[i];
+      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
+      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
       for (j = 0; j < NUM_MACHINE_MODES; j++)
 	{
-	  CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
+	  count = 0;
+	  last_hard_regno = -1;
+	  CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
 	  for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
 	    {
 	      hard_regno = ira_class_hard_regs[cl][k];
-	      if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
-		SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
+	      if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
+		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
 				  hard_regno);
+	      else if (in_hard_reg_set_p (temp_hard_regset,
+					  (machine_mode) j, hard_regno))
+		{
+		  last_hard_regno = hard_regno;
+		  count++;
+		}
 	    }
+	  ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
 	}
     }
 }
 
+/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
+   spanning from one register pressure class to another one.  It is
+   called after defining the pressure classes.  */
+static void
+clarify_prohibited_class_mode_regs (void)
+{
+  int j, k, hard_regno, cl, pclass, nregs;
+
+  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
+    for (j = 0; j < NUM_MACHINE_MODES; j++)
+      {
+	CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
+	for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
+	  {
+	    hard_regno = ira_class_hard_regs[cl][k];
+	    if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
+	      continue;
+	    nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
+	    if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
+	      {
+		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
+				  hard_regno);
+		 continue;
+	      }
+	    pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
+	    for (nregs-- ;nregs >= 0; nregs--)
+	      if (((enum reg_class) pclass
+		   != ira_pressure_class_translate[REGNO_REG_CLASS
+						   (hard_regno + nregs)]))
+		{
+		  SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
+				    hard_regno);
+		  break;
+		}
+	    if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
+				    hard_regno))
+	      add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
+				   (machine_mode) j, hard_regno);
+	  }
+      }
+}
 
-
-/* Allocate and initialize IRA_REGISTER_MOVE_COST,
-   IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
-   not done yet.  */
+/* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
+   and IRA_MAY_MOVE_OUT_COST for MODE.  */
 void
-ira_init_register_move_cost (enum machine_mode mode)
+ira_init_register_move_cost (machine_mode mode)
 {
-  int cl1, cl2;
+  static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
+  bool all_match = true;
+  unsigned int cl1, cl2;
 
   ira_assert (ira_register_move_cost[mode] == NULL
 	      && ira_may_move_in_cost[mode] == NULL
 	      && ira_may_move_out_cost[mode] == NULL);
-  if (move_cost[mode] == NULL)
-    init_move_cost (mode);
-  ira_register_move_cost[mode] = move_cost[mode];
-  /* Don't use ira_allocate because the tables exist out of scope of a
-     IRA call.  */
-  ira_may_move_in_cost[mode]
-    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
-  memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
-	  sizeof (move_table) * N_REG_CLASSES);
-  ira_may_move_out_cost[mode]
-    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
-  memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
-	  sizeof (move_table) * N_REG_CLASSES);
+  ira_assert (have_regs_of_mode[mode]);
+  for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
+    for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
+      {
+	int cost;
+	if (!contains_reg_of_mode[cl1][mode]
+	    || !contains_reg_of_mode[cl2][mode])
+	  {
+	    if ((ira_reg_class_max_nregs[cl1][mode]
+		 > ira_class_hard_regs_num[cl1])
+		|| (ira_reg_class_max_nregs[cl2][mode]
+		    > ira_class_hard_regs_num[cl2]))
+	      cost = 65535;
+	    else
+	      cost = (ira_memory_move_cost[mode][cl1][0]
+		      + ira_memory_move_cost[mode][cl2][1]) * 2;
+	  }
+	else
+	  {
+	    cost = register_move_cost (mode, (enum reg_class) cl1,
+				       (enum reg_class) cl2);
+	    ira_assert (cost < 65535);
+	  }
+	all_match &= (last_move_cost[cl1][cl2] == cost);
+	last_move_cost[cl1][cl2] = cost;
+      }
+  if (all_match && last_mode_for_init_move_cost != -1)
+    {
+      ira_register_move_cost[mode]
+	= ira_register_move_cost[last_mode_for_init_move_cost];
+      ira_may_move_in_cost[mode]
+	= ira_may_move_in_cost[last_mode_for_init_move_cost];
+      ira_may_move_out_cost[mode]
+	= ira_may_move_out_cost[last_mode_for_init_move_cost];
+      return;
+    }
+  last_mode_for_init_move_cost = mode;
+  ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
+  ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
+  ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
-    {
-      for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
-	{
-	  if (ira_class_subset_p[cl1][cl2])
-	    ira_may_move_in_cost[mode][cl1][cl2] = 0;
-	  if (ira_class_subset_p[cl2][cl1])
-	    ira_may_move_out_cost[mode][cl1][cl2] = 0;
-	}
-    }
+    for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
+      {
+	int cost;
+	enum reg_class *p1, *p2;
+	
+	if (last_move_cost[cl1][cl2] == 65535)
+	  {
+	    ira_register_move_cost[mode][cl1][cl2] = 65535;
+	    ira_may_move_in_cost[mode][cl1][cl2] = 65535;
+	    ira_may_move_out_cost[mode][cl1][cl2] = 65535;
+	  }
+	else
+	  {
+	    cost = last_move_cost[cl1][cl2];
+	    
+	    for (p2 = &reg_class_subclasses[cl2][0];
+		 *p2 != LIM_REG_CLASSES; p2++)
+	      if (ira_class_hard_regs_num[*p2] > 0
+		  && (ira_reg_class_max_nregs[*p2][mode]
+		      <= ira_class_hard_regs_num[*p2]))
+		cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
+	    
+	    for (p1 = &reg_class_subclasses[cl1][0];
+		 *p1 != LIM_REG_CLASSES; p1++)
+	      if (ira_class_hard_regs_num[*p1] > 0
+		  && (ira_reg_class_max_nregs[*p1][mode]
+		      <= ira_class_hard_regs_num[*p1]))
+		cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
+	    
+	    ira_assert (cost <= 65535);
+	    ira_register_move_cost[mode][cl1][cl2] = cost;
+	    
+	    if (ira_class_subset_p[cl1][cl2])
+	      ira_may_move_in_cost[mode][cl1][cl2] = 0;
+	    else
+	      ira_may_move_in_cost[mode][cl1][cl2] = cost;
+	    
+	    if (ira_class_subset_p[cl2][cl1])
+	      ira_may_move_out_cost[mode][cl1][cl2] = 0;
+	    else
+	      ira_may_move_out_cost[mode][cl1][cl2] = cost;
+	  }
+      }
 }
 
 
@@ -1130,34 +1672,46 @@
 void
 ira_init_once (void)
 {
-  int mode;
-
-  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
-    {
-      ira_register_move_cost[mode] = NULL;
-      ira_may_move_in_cost[mode] = NULL;
-      ira_may_move_out_cost[mode] = NULL;
-    }
   ira_init_costs_once ();
+  lra_init_once ();
+
+  ira_use_lra_p = targetm.lra_p ();
 }
 
-/* Free ira_register_move_cost, ira_may_move_in_cost, and
+/* Free ira_max_register_move_cost, ira_may_move_in_cost and
    ira_may_move_out_cost for each mode.  */
-static void
-free_register_move_costs (void)
+void
+target_ira_int::free_register_move_costs (void)
 {
-  int mode;
-
+  int mode, i;
+
+  /* Reset move_cost and friends, making sure we only free shared
+     table entries once.  */
   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
-    {
-      if (ira_may_move_in_cost[mode] != NULL)
-	free (ira_may_move_in_cost[mode]);
-      if (ira_may_move_out_cost[mode] != NULL)
-	free (ira_may_move_out_cost[mode]);
-      ira_register_move_cost[mode] = NULL;
-      ira_may_move_in_cost[mode] = NULL;
-      ira_may_move_out_cost[mode] = NULL;
-    }
+    if (x_ira_register_move_cost[mode])
+      {
+	for (i = 0;
+	     i < mode && (x_ira_register_move_cost[i]
+			  != x_ira_register_move_cost[mode]);
+	     i++)
+	  ;
+	if (i == mode)
+	  {
+	    free (x_ira_register_move_cost[mode]);
+	    free (x_ira_may_move_in_cost[mode]);
+	    free (x_ira_may_move_out_cost[mode]);
+	  }
+      }
+  memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
+  memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
+  memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
+  last_mode_for_init_move_cost = -1;
+}
+
+target_ira_int::~target_ira_int ()
+{
+  free_ira_costs ();
+  free_register_move_costs ();
 }
 
 /* This is called every time when register related information is
@@ -1165,25 +1719,18 @@
 void
 ira_init (void)
 {
-  free_register_move_costs ();
+  this_target_ira_int->free_register_move_costs ();
   setup_reg_mode_hard_regset ();
   setup_alloc_regs (flag_omit_frame_pointer != 0);
   setup_class_subset_and_memory_move_costs ();
-  find_reg_class_closure ();
-  setup_hard_regno_cover_class ();
   setup_reg_class_nregs ();
   setup_prohibited_class_mode_regs ();
+  find_reg_classes ();
+  clarify_prohibited_class_mode_regs ();
+  setup_hard_regno_aclass ();
   ira_init_costs ();
 }
 
-/* Function called once at the end of compiler work.  */
-void
-ira_finish_once (void)
-{
-  ira_finish_costs_once ();
-  free_register_move_costs ();
-}
-
 
 #define ira_prohibited_mode_move_regs_initialized_p \
   (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
@@ -1193,32 +1740,33 @@
 setup_prohibited_mode_move_regs (void)
 {
   int i, j;
-  rtx test_reg1, test_reg2, move_pat, move_insn;
+  rtx test_reg1, test_reg2, move_pat;
+  rtx_insn *move_insn;
 
   if (ira_prohibited_mode_move_regs_initialized_p)
     return;
   ira_prohibited_mode_move_regs_initialized_p = true;
-  test_reg1 = gen_rtx_REG (VOIDmode, 0);
-  test_reg2 = gen_rtx_REG (VOIDmode, 0);
-  move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
-  move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
+  test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
+  test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
+  move_pat = gen_rtx_SET (test_reg1, test_reg2);
+  move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
   for (i = 0; i < NUM_MACHINE_MODES; i++)
     {
       SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
 	{
-	  if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
+	  if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
 	    continue;
-	  SET_REGNO_RAW (test_reg1, j);
-	  PUT_MODE (test_reg1, (enum machine_mode) i);
-	  SET_REGNO_RAW (test_reg2, j);
-	  PUT_MODE (test_reg2, (enum machine_mode) i);
+	  set_mode_and_regno (test_reg1, (machine_mode) i, j);
+	  set_mode_and_regno (test_reg2, (machine_mode) i, j);
 	  INSN_CODE (move_insn) = -1;
 	  recog_memoized (move_insn);
 	  if (INSN_CODE (move_insn) < 0)
 	    continue;
 	  extract_insn (move_insn);
-	  if (! constrain_operands (1))
+	  /* We don't know whether the move will be in code that is optimized
+	     for size or speed, so consider all enabled alternatives.  */
+	  if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
 	    continue;
 	  CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
 	}
@@ -1227,6 +1775,419 @@
 
 
 
+/* Setup possible alternatives in ALTS for INSN.  */
+void
+ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
+{
+  /* MAP nalt * nop -> start of constraints for given operand and
+     alternative.  */
+  static vec<const char *> insn_constraints;
+  int nop, nalt;
+  bool curr_swapped;
+  const char *p;
+  int commutative = -1;
+
+  extract_insn (insn);
+  alternative_mask preferred = get_preferred_alternatives (insn);
+  CLEAR_HARD_REG_SET (alts);
+  insn_constraints.release ();
+  insn_constraints.safe_grow_cleared (recog_data.n_operands
+				      * recog_data.n_alternatives + 1);
+  /* Check that the hard reg set is enough for holding all
+     alternatives.  It is hard to imagine the situation when the
+     assertion is wrong.  */
+  ira_assert (recog_data.n_alternatives
+	      <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
+			    FIRST_PSEUDO_REGISTER));
+  for (curr_swapped = false;; curr_swapped = true)
+    {
+      /* Calculate some data common for all alternatives to speed up the
+	 function.  */
+      for (nop = 0; nop < recog_data.n_operands; nop++)
+	{
+	  for (nalt = 0, p = recog_data.constraints[nop];
+	       nalt < recog_data.n_alternatives;
+	       nalt++)
+	    {
+	      insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
+	      while (*p && *p != ',')
+		{
+		  /* We only support one commutative marker, the first
+		     one.  We already set commutative above.  */
+		  if (*p == '%' && commutative < 0)
+		    commutative = nop;
+		  p++;
+		}
+	      if (*p)
+		p++;
+	    }
+	}
+      for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
+	{
+	  if (!TEST_BIT (preferred, nalt)
+	      || TEST_HARD_REG_BIT (alts, nalt))
+	    continue;
+
+	  for (nop = 0; nop < recog_data.n_operands; nop++)
+	    {
+	      int c, len;
+
+	      rtx op = recog_data.operand[nop];
+	      p = insn_constraints[nop * recog_data.n_alternatives + nalt];
+	      if (*p == 0 || *p == ',')
+		continue;
+	      
+	      do
+		switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
+		  {
+		  case '#':
+		  case ',':
+		    c = '\0';
+		    /* FALLTHRU */
+		  case '\0':
+		    len = 0;
+		    break;
+		  
+		  case '%':
+		    /* The commutative modifier is handled above.  */
+		    break;
+
+		  case '0':  case '1':  case '2':  case '3':  case '4':
+		  case '5':  case '6':  case '7':  case '8':  case '9':
+		    goto op_success;
+		    break;
+		    
+		  case 'g':
+		    goto op_success;
+		    break;
+		    
+		  default:
+		    {
+		      enum constraint_num cn = lookup_constraint (p);
+		      switch (get_constraint_type (cn))
+			{
+			case CT_REGISTER:
+			  if (reg_class_for_constraint (cn) != NO_REGS)
+			    goto op_success;
+			  break;
+
+			case CT_CONST_INT:
+			  if (CONST_INT_P (op)
+			      && (insn_const_int_ok_for_constraint
+				  (INTVAL (op), cn)))
+			    goto op_success;
+			  break;
+
+			case CT_ADDRESS:
+			case CT_MEMORY:
+			case CT_SPECIAL_MEMORY:
+			  goto op_success;
+
+			case CT_FIXED_FORM:
+			  if (constraint_satisfied_p (op, cn))
+			    goto op_success;
+			  break;
+			}
+		      break;
+		    }
+		  }
+	      while (p += len, c);
+	      break;
+	    op_success:
+	      ;
+	    }
+	  if (nop >= recog_data.n_operands)
+	    SET_HARD_REG_BIT (alts, nalt);
+	}
+      if (commutative < 0)
+	break;
+      /* Swap forth and back to avoid changing recog_data.  */
+      std::swap (recog_data.operand[commutative],
+		 recog_data.operand[commutative + 1]);
+      if (curr_swapped)
+	break;
+    }
+}
+
+/* Return the number of the output non-early clobber operand which
+   should be the same in any case as operand with number OP_NUM (or
+   negative value if there is no such operand).  The function takes
+   only really possible alternatives into consideration.  */
+int
+ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
+{
+  int curr_alt, c, original, dup;
+  bool ignore_p, use_commut_op_p;
+  const char *str;
+
+  if (op_num < 0 || recog_data.n_alternatives == 0)
+    return -1;
+  /* We should find duplications only for input operands.  */
+  if (recog_data.operand_type[op_num] != OP_IN)
+    return -1;
+  str = recog_data.constraints[op_num];
+  use_commut_op_p = false;
+  for (;;)
+    {
+      rtx op = recog_data.operand[op_num];
+      
+      for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
+	   original = -1;;)
+	{
+	  c = *str;
+	  if (c == '\0')
+	    break;
+	  if (c == '#')
+	    ignore_p = true;
+	  else if (c == ',')
+	    {
+	      curr_alt++;
+	      ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
+	    }
+	  else if (! ignore_p)
+	    switch (c)
+	      {
+	      case 'g':
+		goto fail;
+	      default:
+		{
+		  enum constraint_num cn = lookup_constraint (str);
+		  enum reg_class cl = reg_class_for_constraint (cn);
+		  if (cl != NO_REGS
+		      && !targetm.class_likely_spilled_p (cl))
+		    goto fail;
+		  if (constraint_satisfied_p (op, cn))
+		    goto fail;
+		  break;
+		}
+		
+	      case '0': case '1': case '2': case '3': case '4':
+	      case '5': case '6': case '7': case '8': case '9':
+		if (original != -1 && original != c)
+		  goto fail;
+		original = c;
+		break;
+	      }
+	  str += CONSTRAINT_LEN (c, str);
+	}
+      if (original == -1)
+	goto fail;
+      dup = -1;
+      for (ignore_p = false, str = recog_data.constraints[original - '0'];
+	   *str != 0;
+	   str++)
+	if (ignore_p)
+	  {
+	    if (*str == ',')
+	      ignore_p = false;
+	  }
+	else if (*str == '#')
+	  ignore_p = true;
+	else if (! ignore_p)
+	  {
+	    if (*str == '=')
+	      dup = original - '0';
+	    /* It is better ignore an alternative with early clobber.  */
+	    else if (*str == '&')
+	      goto fail;
+	  }
+      if (dup >= 0)
+	return dup;
+    fail:
+      if (use_commut_op_p)
+	break;
+      use_commut_op_p = true;
+      if (recog_data.constraints[op_num][0] == '%')
+	str = recog_data.constraints[op_num + 1];
+      else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
+	str = recog_data.constraints[op_num - 1];
+      else
+	break;
+    }
+  return -1;
+}
+
+
+
+/* Search forward to see if the source register of a copy insn dies
+   before either it or the destination register is modified, but don't
+   scan past the end of the basic block.  If so, we can replace the
+   source with the destination and let the source die in the copy
+   insn.
+
+   This will reduce the number of registers live in that range and may
+   enable the destination and the source coalescing, thus often saving
+   one register in addition to a register-register copy.  */
+
+static void
+decrease_live_ranges_number (void)
+{
+  basic_block bb;
+  rtx_insn *insn;
+  rtx set, src, dest, dest_death, note;
+  rtx_insn *p, *q;
+  int sregno, dregno;
+
+  if (! flag_expensive_optimizations)
+    return;
+
+  if (ira_dump_file)
+    fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
+
+  FOR_EACH_BB_FN (bb, cfun)
+    FOR_BB_INSNS (bb, insn)
+      {
+	set = single_set (insn);
+	if (! set)
+	  continue;
+	src = SET_SRC (set);
+	dest = SET_DEST (set);
+	if (! REG_P (src) || ! REG_P (dest)
+	    || find_reg_note (insn, REG_DEAD, src))
+	  continue;
+	sregno = REGNO (src);
+	dregno = REGNO (dest);
+	
+	/* We don't want to mess with hard regs if register classes
+	   are small.  */
+	if (sregno == dregno
+	    || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
+		&& (sregno < FIRST_PSEUDO_REGISTER
+		    || dregno < FIRST_PSEUDO_REGISTER))
+	    /* We don't see all updates to SP if they are in an
+	       auto-inc memory reference, so we must disallow this
+	       optimization on them.  */
+	    || sregno == STACK_POINTER_REGNUM
+	    || dregno == STACK_POINTER_REGNUM)
+	  continue;
+	
+	dest_death = NULL_RTX;
+
+	for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
+	  {
+	    if (! INSN_P (p))
+	      continue;
+	    if (BLOCK_FOR_INSN (p) != bb)
+	      break;
+	    
+	    if (reg_set_p (src, p) || reg_set_p (dest, p)
+		/* If SRC is an asm-declared register, it must not be
+		   replaced in any asm.  Unfortunately, the REG_EXPR
+		   tree for the asm variable may be absent in the SRC
+		   rtx, so we can't check the actual register
+		   declaration easily (the asm operand will have it,
+		   though).  To avoid complicating the test for a rare
+		   case, we just don't perform register replacement
+		   for a hard reg mentioned in an asm.  */
+		|| (sregno < FIRST_PSEUDO_REGISTER
+		    && asm_noperands (PATTERN (p)) >= 0
+		    && reg_overlap_mentioned_p (src, PATTERN (p)))
+		/* Don't change hard registers used by a call.  */
+		|| (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
+		    && find_reg_fusage (p, USE, src))
+		/* Don't change a USE of a register.  */
+		|| (GET_CODE (PATTERN (p)) == USE
+		    && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
+	      break;
+	    
+	    /* See if all of SRC dies in P.  This test is slightly
+	       more conservative than it needs to be.  */
+	    if ((note = find_regno_note (p, REG_DEAD, sregno))
+		&& GET_MODE (XEXP (note, 0)) == GET_MODE (src))
+	      {
+		int failed = 0;
+		
+		/* We can do the optimization.  Scan forward from INSN
+		   again, replacing regs as we go.  Set FAILED if a
+		   replacement can't be done.  In that case, we can't
+		   move the death note for SRC.  This should be
+		   rare.  */
+		
+		/* Set to stop at next insn.  */
+		for (q = next_real_insn (insn);
+		     q != next_real_insn (p);
+		     q = next_real_insn (q))
+		  {
+		    if (reg_overlap_mentioned_p (src, PATTERN (q)))
+		      {
+			/* If SRC is a hard register, we might miss
+			   some overlapping registers with
+			   validate_replace_rtx, so we would have to
+			   undo it.  We can't if DEST is present in
+			   the insn, so fail in that combination of
+			   cases.  */
+			if (sregno < FIRST_PSEUDO_REGISTER
+			    && reg_mentioned_p (dest, PATTERN (q)))
+			  failed = 1;
+			
+			/* Attempt to replace all uses.  */
+			else if (!validate_replace_rtx (src, dest, q))
+			  failed = 1;
+			
+			/* If this succeeded, but some part of the
+			   register is still present, undo the
+			   replacement.  */
+			else if (sregno < FIRST_PSEUDO_REGISTER
+				 && reg_overlap_mentioned_p (src, PATTERN (q)))
+			  {
+			    validate_replace_rtx (dest, src, q);
+			    failed = 1;
+			  }
+		      }
+		    
+		    /* If DEST dies here, remove the death note and
+		       save it for later.  Make sure ALL of DEST dies
+		       here; again, this is overly conservative.  */
+		    if (! dest_death
+			&& (dest_death = find_regno_note (q, REG_DEAD, dregno)))
+		      {
+			if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
+			  remove_note (q, dest_death);
+			else
+			  {
+			    failed = 1;
+			    dest_death = 0;
+			  }
+		      }
+		  }
+		
+		if (! failed)
+		  {
+		    /* Move death note of SRC from P to INSN.  */
+		    remove_note (p, note);
+		    XEXP (note, 1) = REG_NOTES (insn);
+		    REG_NOTES (insn) = note;
+		  }
+		
+		/* DEST is also dead if INSN has a REG_UNUSED note for
+		   DEST.  */
+		if (! dest_death
+		    && (dest_death
+			= find_regno_note (insn, REG_UNUSED, dregno)))
+		  {
+		    PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
+		    remove_note (insn, dest_death);
+		  }
+		
+		/* Put death note of DEST on P if we saw it die.  */
+		if (dest_death)
+		  {
+		    XEXP (dest_death, 1) = REG_NOTES (p);
+		    REG_NOTES (p) = dest_death;
+		  }
+		break;
+	      }
+	    
+	    /* If SRC is a hard register which is set or killed in
+	       some other way, we can't do this optimization.  */
+	    else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
+	      break;
+	  }
+      }
+}
+
+
+
 /* Return nonzero if REGNO is a particularly bad choice for reloading X.  */
 static bool
 ira_bad_reload_regno_1 (int regno, rtx x)
@@ -1271,87 +2232,73 @@
 	  || ira_bad_reload_regno_1 (regno, out));
 }
 
-/* Function specific hard registers that can not be used for the
-   register allocation.  */
-HARD_REG_SET ira_no_alloc_regs;
-
-/* Return TRUE if *LOC contains an asm.  */
-static int
-insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
-{
-  if ( !*loc)
-    return FALSE;
-  if (GET_CODE (*loc) == ASM_OPERANDS)
-    return TRUE;
-  return FALSE;
-}
-
-
-/* Return TRUE if INSN contains an ASM.  */
-static bool
-insn_contains_asm (rtx insn)
-{
-  return for_each_rtx (&insn, insn_contains_asm_1, NULL);
-}
-
 /* Add register clobbers from asm statements.  */
 static void
 compute_regs_asm_clobbered (void)
 {
   basic_block bb;
 
-  FOR_EACH_BB (bb)
+  FOR_EACH_BB_FN (bb, cfun)
     {
-      rtx insn;
+      rtx_insn *insn;
       FOR_BB_INSNS_REVERSE (bb, insn)
 	{
-	  df_ref *def_rec;
-
-	  if (insn_contains_asm (insn))
-	    for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
+	  df_ref def;
+
+	  if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
+	    FOR_EACH_INSN_DEF (def, insn)
 	      {
-		df_ref def = *def_rec;
 		unsigned int dregno = DF_REF_REGNO (def);
-		if (dregno < FIRST_PSEUDO_REGISTER)
-		  {
-		    unsigned int i;
-		    enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
-		    unsigned int end = dregno
-		      + hard_regno_nregs[dregno][mode] - 1;
-
-		    for (i = dregno; i <= end; ++i)
-		      SET_HARD_REG_BIT(crtl->asm_clobbers, i);
-		  }
+		if (HARD_REGISTER_NUM_P (dregno))
+		  add_to_hard_reg_set (&crtl->asm_clobbers,
+				       GET_MODE (DF_REF_REAL_REG (def)),
+				       dregno);
 	      }
 	}
     }
 }
 
 
-/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE.  */
+/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
+   REGS_EVER_LIVE.  */
 void
 ira_setup_eliminable_regset (void)
 {
-#ifdef ELIMINABLE_REGS
   int i;
   static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
-#endif
+
+  /* Setup is_leaf as frame_pointer_required may use it.  This function
+     is called by sched_init before ira if scheduling is enabled.  */
+  crtl->is_leaf = leaf_function_p ();
+
   /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
      sp for alloca.  So we can't eliminate the frame pointer in that
      case.  At some point, we should improve this by emitting the
      sp-adjusting insns for this case.  */
-  int need_fp
+  frame_pointer_needed
     = (! flag_omit_frame_pointer
        || (cfun->calls_alloca && EXIT_IGNORE_STACK)
-       /* We need the frame pointer to catch stack overflow exceptions
-	  if the stack pointer is moving.  */
-       || (flag_stack_check && STACK_CHECK_MOVING_SP)
+       /* We need the frame pointer to catch stack overflow exceptions if
+	  the stack pointer is moving (as for the alloca case just above).  */
+       || (STACK_CHECK_MOVING_SP
+	   && flag_stack_check
+	   && flag_exceptions
+	   && cfun->can_throw_non_call_exceptions)
        || crtl->accesses_prior_frames
-       || crtl->stack_realign_needed
+       || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
+       /* We need a frame pointer for all Cilk Plus functions that use
+	  Cilk keywords.  */
+       || (flag_cilkplus && cfun->is_cilk_function)
        || targetm.frame_pointer_required ());
 
-  frame_pointer_needed = need_fp;
-
+    /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
+       RTL is very small.  So if we use frame pointer for RA and RTL
+       actually prevents this, we will spill pseudos assigned to the
+       frame pointer in LRA.  */
+
+  if (frame_pointer_needed)
+    df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
+    
   COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
   CLEAR_HARD_REG_SET (eliminable_regset);
 
@@ -1359,12 +2306,11 @@
 
   /* Build the regset of all eliminable registers and show we can't
      use those that we already know won't be eliminated.  */
-#ifdef ELIMINABLE_REGS
   for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
     {
       bool cannot_elim
 	= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
-	   || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
+	   || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
 
       if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
 	{
@@ -1379,91 +2325,19 @@
       else
 	df_set_regs_ever_live (eliminables[i].from, true);
     }
-#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
-  if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
-    {
-      SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
-      if (need_fp)
-	SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
-    }
-  else if (need_fp)
-    error ("%s cannot be used in asm here",
-	   reg_names[HARD_FRAME_POINTER_REGNUM]);
-  else
-    df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
-#endif
-
-#else
-  if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
+  if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
     {
-      SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
-      if (need_fp)
-	SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
-    }
-  else if (need_fp)
-    error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
-  else
-    df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
-#endif
-}
-
-
-
-/* The length of the following two arrays.  */
-int ira_reg_equiv_len;
-
-/* The element value is TRUE if the corresponding regno value is
-   invariant.  */
-bool *ira_reg_equiv_invariant_p;
-
-/* The element value is equiv constant of given pseudo-register or
-   NULL_RTX.  */
-rtx *ira_reg_equiv_const;
-
-/* Set up the two arrays declared above.  */
-static void
-find_reg_equiv_invariant_const (void)
-{
-  int i;
-  bool invariant_p;
-  rtx list, insn, note, constant, x;
-
-  for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
-    {
-      constant = NULL_RTX;
-      invariant_p = false;
-      for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
+      if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
 	{
-	  insn = XEXP (list, 0);
-	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
-
-	  if (note == NULL_RTX)
-	    continue;
-
-	  x = XEXP (note, 0);
-
-	  if (! CONSTANT_P (x)
-	      || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
-	    {
-	      /* It can happen that a REG_EQUIV note contains a MEM
-		 that is not a legitimate memory operand.  As later
-		 stages of the reload assume that all addresses found
-		 in the reg_equiv_* arrays were originally legitimate,
-		 we ignore such REG_EQUIV notes.  */
-	      if (memory_operand (x, VOIDmode))
-		invariant_p = MEM_READONLY_P (x);
-	      else if (function_invariant_p (x))
-		{
-		  if (GET_CODE (x) == PLUS
-		      || x == frame_pointer_rtx || x == arg_pointer_rtx)
-		    invariant_p = true;
-		  else
-		    constant = x;
-		}
-	    }
+	  SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
+	  if (frame_pointer_needed)
+	    SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
 	}
-      ira_reg_equiv_invariant_p[i] = invariant_p;
-      ira_reg_equiv_const[i] = constant;
+      else if (frame_pointer_needed)
+	error ("%s cannot be used in asm here",
+	       reg_names[HARD_FRAME_POINTER_REGNUM]);
+      else
+	df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
     }
 }
 
@@ -1489,6 +2363,8 @@
   caller_save_needed = 0;
   FOR_EACH_ALLOCNO (a, ai)
     {
+      if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
+	continue;
       /* There are no caps at this point.  */
       ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
       if (! ALLOCNO_ASSIGNED_P (a))
@@ -1497,17 +2373,33 @@
 	ALLOCNO_ASSIGNED_P (a) = true;
       ira_free_allocno_updated_costs (a);
       hard_regno = ALLOCNO_HARD_REGNO (a);
-      regno = (int) REGNO (ALLOCNO_REG (a));
+      regno = ALLOCNO_REGNO (a);
       reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
-      if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
-	  && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
-					  call_used_reg_set))
+      if (hard_regno >= 0)
 	{
-	  ira_assert (!optimize || flag_caller_saves
-		      || regno >= ira_reg_equiv_len
-		      || ira_reg_equiv_const[regno]
-		      || ira_reg_equiv_invariant_p[regno]);
-	  caller_save_needed = 1;
+	  int i, nwords;
+	  enum reg_class pclass;
+	  ira_object_t obj;
+	  
+	  pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
+	  nwords = ALLOCNO_NUM_OBJECTS (a);
+	  for (i = 0; i < nwords; i++)
+	    {
+	      obj = ALLOCNO_OBJECT (a, i);
+	      IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
+				      reg_class_contents[pclass]);
+	    }
+	  if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
+	      && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
+						  call_used_reg_set))
+	    {
+	      ira_assert (!optimize || flag_caller_saves
+			  || (ALLOCNO_CALLS_CROSSED_NUM (a)
+			      == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
+			  || regno >= ira_reg_equiv_len
+			  || ira_equiv_no_lvalue_p (regno));
+	      caller_save_needed = 1;
+	    }
 	}
     }
 }
@@ -1535,13 +2427,13 @@
 	 allocnos because the cost info and info about intersected
 	 calls are incorrect for them.  */
       ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
-				|| ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
+				|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
 				|| (ALLOCNO_MEMORY_COST (a)
-				    - ALLOCNO_COVER_CLASS_COST (a)) < 0);
-      ira_assert (hard_regno < 0
-		  || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
-						  reg_class_contents
-						  [ALLOCNO_COVER_CLASS (a)]));
+				    - ALLOCNO_CLASS_COST (a)) < 0);
+      ira_assert
+	(hard_regno < 0
+	 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
+				   reg_class_contents[ALLOCNO_CLASS (a)]));
     }
 }
 
@@ -1559,9 +2451,9 @@
     {
       hard_regno = ALLOCNO_HARD_REGNO (a);
       ira_assert (hard_regno < 0
-		  || ! ira_hard_reg_not_in_set_p
-		       (hard_regno, ALLOCNO_MODE (a),
-			reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
+		  || (ira_hard_reg_in_set_p
+		      (hard_regno, ALLOCNO_MODE (a),
+		       reg_class_contents[ALLOCNO_CLASS (a)])));
       if (hard_regno < 0)
 	{
 	  cost = ALLOCNO_MEMORY_COST (a);
@@ -1571,12 +2463,12 @@
 	{
 	  cost = (ALLOCNO_HARD_REG_COSTS (a)
 		  [ira_class_hard_reg_index
-		   [ALLOCNO_COVER_CLASS (a)][hard_regno]]);
+		   [ALLOCNO_CLASS (a)][hard_regno]]);
 	  ira_reg_cost += cost;
 	}
       else
 	{
-	  cost = ALLOCNO_COVER_CLASS_COST (a);
+	  cost = ALLOCNO_CLASS_COST (a);
 	  ira_reg_cost += cost;
 	}
       ira_overall_cost += cost;
@@ -1585,10 +2477,15 @@
   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
     {
       fprintf (ira_dump_file,
-	       "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
+	       "+++Costs: overall %" PRId64
+	       ", reg %" PRId64
+	       ", mem %" PRId64
+	       ", ld %" PRId64
+	       ", st %" PRId64
+	       ", move %" PRId64,
 	       ira_overall_cost, ira_reg_cost, ira_mem_cost,
 	       ira_load_cost, ira_store_cost, ira_shuffle_cost);
-      fprintf (ira_dump_file, "+++       move loops %d, new jumps %d\n",
+      fprintf (ira_dump_file, "\n+++       move loops %d, new jumps %d\n",
 	       ira_move_loops_num, ira_additional_jumps_num);
     }
 
@@ -1613,7 +2510,7 @@
       if (ALLOCNO_CAP_MEMBER (a) != NULL
 	  || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
 	continue;
-      nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
+      nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
       if (nregs == 1)
 	/* We allocated a single hard register.  */
 	n = 1;
@@ -1630,7 +2527,7 @@
 	  int this_regno = hard_regno;
 	  if (n > 1)
 	    {
-	      if (WORDS_BIG_ENDIAN)
+	      if (REG_WORDS_BIG_ENDIAN)
 		this_regno += n - i - 1;
 	      else
 		this_regno += i;
@@ -1642,14 +2539,13 @@
 	      if (conflict_hard_regno < 0)
 		continue;
 
-	      conflict_nregs
-		= (hard_regno_nregs
-		   [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
+	      conflict_nregs = hard_regno_nregs (conflict_hard_regno,
+						 ALLOCNO_MODE (conflict_a));
 
 	      if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
 		  && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
 		{
-		  if (WORDS_BIG_ENDIAN)
+		  if (REG_WORDS_BIG_ENDIAN)
 		    conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
 					    - OBJECT_SUBWORD (conflict_obj) - 1);
 		  else
@@ -1672,25 +2568,132 @@
 }
 #endif
 
+/* Allocate REG_EQUIV_INIT.  Set up it from IRA_REG_EQUIV which should
+   be already calculated.  */
+static void
+setup_reg_equiv_init (void)
+{
+  int i;
+  int max_regno = max_reg_num ();
+
+  for (i = 0; i < max_regno; i++)
+    reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
+}
+
+/* Update equiv regno from movement of FROM_REGNO to TO_REGNO.  INSNS
+   are insns which were generated for such movement.  It is assumed
+   that FROM_REGNO and TO_REGNO always have the same value at the
+   point of any move containing such registers. This function is used
+   to update equiv info for register shuffles on the region borders
+   and for caller save/restore insns.  */
+void
+ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
+{
+  rtx_insn *insn;
+  rtx x, note;
+
+  if (! ira_reg_equiv[from_regno].defined_p
+      && (! ira_reg_equiv[to_regno].defined_p
+	  || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
+	      && ! MEM_READONLY_P (x))))
+    return;
+  insn = insns;
+  if (NEXT_INSN (insn) != NULL_RTX)
+    {
+      if (! ira_reg_equiv[to_regno].defined_p)
+	{
+	  ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
+	  return;
+	}
+      ira_reg_equiv[to_regno].defined_p = false;
+      ira_reg_equiv[to_regno].memory
+	= ira_reg_equiv[to_regno].constant
+	= ira_reg_equiv[to_regno].invariant
+	= ira_reg_equiv[to_regno].init_insns = NULL;
+      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
+	fprintf (ira_dump_file,
+		 "      Invalidating equiv info for reg %d\n", to_regno);
+      return;
+    }
+  /* It is possible that FROM_REGNO still has no equivalence because
+     in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
+     insn was not processed yet.  */
+  if (ira_reg_equiv[from_regno].defined_p)
+    {
+      ira_reg_equiv[to_regno].defined_p = true;
+      if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
+	{
+	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
+		      && ira_reg_equiv[from_regno].constant == NULL_RTX);
+	  ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
+		      || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
+	  ira_reg_equiv[to_regno].memory = x;
+	  if (! MEM_READONLY_P (x))
+	    /* We don't add the insn to insn init list because memory
+	       equivalence is just to say what memory is better to use
+	       when the pseudo is spilled.  */
+	    return;
+	}
+      else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
+	{
+	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
+	  ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
+		      || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
+	  ira_reg_equiv[to_regno].constant = x;
+	}
+      else
+	{
+	  x = ira_reg_equiv[from_regno].invariant;
+	  ira_assert (x != NULL_RTX);
+	  ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
+		      || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
+	  ira_reg_equiv[to_regno].invariant = x;
+	}
+      if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
+	{
+	  note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
+	  gcc_assert (note != NULL_RTX);
+	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
+	    {
+	      fprintf (ira_dump_file,
+		       "      Adding equiv note to insn %u for reg %d ",
+		       INSN_UID (insn), to_regno);
+	      dump_value_slim (ira_dump_file, x, 1);
+	      fprintf (ira_dump_file, "\n");
+	    }
+	}
+    }
+  ira_reg_equiv[to_regno].init_insns
+    = gen_rtx_INSN_LIST (VOIDmode, insn,
+			 ira_reg_equiv[to_regno].init_insns);
+  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
+    fprintf (ira_dump_file,
+	     "      Adding equiv init move insn %u to reg %d\n",
+	     INSN_UID (insn), to_regno);
+}
+
 /* Fix values of array REG_EQUIV_INIT after live range splitting done
    by IRA.  */
 static void
 fix_reg_equiv_init (void)
 {
   int max_regno = max_reg_num ();
-  int i, new_regno;
-  rtx x, prev, next, insn, set;
-
-  if (reg_equiv_init_size < max_regno)
+  int i, new_regno, max;
+  rtx set;
+  rtx_insn_list *x, *next, *prev;
+  rtx_insn *insn;
+
+  if (max_regno_before_ira < max_regno)
     {
-      reg_equiv_init = GGC_RESIZEVEC (rtx, reg_equiv_init, max_regno);
-      while (reg_equiv_init_size < max_regno)
-	reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
-      for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
-	for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
+      max = vec_safe_length (reg_equivs);
+      grow_reg_equivs ();
+      for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
+	for (prev = NULL, x = reg_equiv_init (i);
+	     x != NULL_RTX;
+	     x = next)
 	  {
-	    next = XEXP (x, 1);
-	    insn = XEXP (x, 0);
+	    next = x->next ();
+	    insn = x->insn ();
 	    set = single_set (insn);
 	    ira_assert (set != NULL_RTX
 			&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
@@ -1708,12 +2711,13 @@
 	      prev = x;
 	    else
 	      {
+		/* Remove the wrong list element.  */
 		if (prev == NULL_RTX)
-		  reg_equiv_init[i] = next;
+		  reg_equiv_init (i) = next;
 		else
 		  XEXP (prev, 1) = next;
-		XEXP (x, 1) = reg_equiv_init[new_regno];
-		reg_equiv_init[new_regno] = x;
+		XEXP (x, 1) = reg_equiv_init (new_regno);
+		reg_equiv_init (new_regno) = x;
 	      }
 	  }
     }
@@ -1732,7 +2736,7 @@
   FOR_EACH_ALLOCNO (a, ai)
     {
       if (ALLOCNO_CAP_MEMBER (a) != NULL)
-	/* It is a cap. */
+	/* It is a cap.  */
 	continue;
       hard_regno = ALLOCNO_HARD_REGNO (a);
       if (hard_regno >= 0)
@@ -1768,7 +2772,7 @@
       ira_assert (i != old_regno);
       setup_reg_classes (i, reg_preferred_class (old_regno),
 			 reg_alternate_class (old_regno),
-			 reg_cover_class (old_regno));
+			 reg_allocno_class (old_regno));
       if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
 	fprintf (ira_dump_file,
 		 "    New r%d: setting preferred %s, alternative %s\n",
@@ -1778,18 +2782,22 @@
 }
 
 
+/* The number of entries allocated in reg_info.  */
+static int allocated_reg_info_size;
 
 /* Regional allocation can create new pseudo-registers.  This function
    expands some arrays for pseudo-registers.  */
 static void
-expand_reg_info (int old_size)
+expand_reg_info (void)
 {
   int i;
   int size = max_reg_num ();
 
   resize_reg_info ();
-  for (i = old_size; i < size; i++)
+  for (i = allocated_reg_info_size; i < size; i++)
     setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
+  setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
+  allocated_reg_info_size = size;
 }
 
 /* Return TRUE if there is too high register pressure in the function.
@@ -1798,12 +2806,12 @@
 too_high_register_pressure_p (void)
 {
   int i;
-  enum reg_class cover_class;
-
-  for (i = 0; i < ira_reg_class_cover_size; i++)
+  enum reg_class pclass;
+
+  for (i = 0; i < ira_pressure_classes_num; i++)
     {
-      cover_class = ira_reg_class_cover[i];
-      if (ira_loop_tree_root->reg_pressure[cover_class] > 10000)
+      pclass = ira_pressure_classes[i];
+      if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
 	return true;
     }
   return false;
@@ -1820,22 +2828,69 @@
 mark_elimination (int from, int to)
 {
   basic_block bb;
-
-  FOR_EACH_BB (bb)
+  bitmap r;
+
+  FOR_EACH_BB_FN (bb, cfun)
     {
-      /* We don't use LIVE info in IRA.  */
-      bitmap r = DF_LR_IN (bb);
-
-      if (REGNO_REG_SET_P (r, from))
+      r = DF_LR_IN (bb);
+      if (bitmap_bit_p (r, from))
 	{
-	  CLEAR_REGNO_REG_SET (r, from);
-	  SET_REGNO_REG_SET (r, to);
+	  bitmap_clear_bit (r, from);
+	  bitmap_set_bit (r, to);
+	}
+      if (! df_live)
+        continue;
+      r = DF_LIVE_IN (bb);
+      if (bitmap_bit_p (r, from))
+	{
+	  bitmap_clear_bit (r, from);
+	  bitmap_set_bit (r, to);
 	}
     }
 }
 
 
 
+/* The length of the following array.  */
+int ira_reg_equiv_len;
+
+/* Info about equiv. info for each register.  */
+struct ira_reg_equiv_s *ira_reg_equiv;
+
+/* Expand ira_reg_equiv if necessary.  */
+void
+ira_expand_reg_equiv (void)
+{
+  int old = ira_reg_equiv_len;
+
+  if (ira_reg_equiv_len > max_reg_num ())
+    return;
+  ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
+  ira_reg_equiv
+    = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
+					 ira_reg_equiv_len
+					 * sizeof (struct ira_reg_equiv_s));
+  gcc_assert (old < ira_reg_equiv_len);
+  memset (ira_reg_equiv + old, 0,
+	  sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
+}
+
+static void
+init_reg_equiv (void)
+{
+  ira_reg_equiv_len = 0;
+  ira_reg_equiv = NULL;
+  ira_expand_reg_equiv ();
+}
+
+static void
+finish_reg_equiv (void)
+{
+  free (ira_reg_equiv);
+}
+
+
+
 struct equivalence
 {
   /* Set when a REG_EQUIV note is found or created.  Use to
@@ -1843,79 +2898,109 @@
      e.g. by reload.  */
   rtx replacement;
   rtx *src_p;
-  /* The list of each instruction which initializes this register.  */
-  rtx init_insns;
+
+  /* The list of each instruction which initializes this register.
+
+     NULL indicates we know nothing about this register's equivalence
+     properties.
+
+     An INSN_LIST with a NULL insn indicates this pseudo is already
+     known to not have a valid equivalence.  */
+  rtx_insn_list *init_insns;
+
   /* Loop depth is used to recognize equivalences which appear
      to be present within the same loop (or in an inner loop).  */
-  int loop_depth;
+  short loop_depth;
   /* Nonzero if this had a preexisting REG_EQUIV note.  */
-  int is_arg_equivalence;
+  unsigned char is_arg_equivalence : 1;
   /* Set when an attempt should be made to replace a register
      with the associated src_p entry.  */
-  char replace;
+  unsigned char replace : 1;
+  /* Set if this register has no known equivalence.  */
+  unsigned char no_equiv : 1;
+  /* Set if this register is mentioned in a paradoxical subreg.  */
+  unsigned char pdx_subregs : 1;
 };
 
 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
    structure for that register.  */
 static struct equivalence *reg_equiv;
 
-/* Used for communication between the following two functions: contains
-   a MEM that we wish to ensure remains unchanged.  */
-static rtx equiv_mem;
-
-/* Set nonzero if EQUIV_MEM is modified.  */
-static int equiv_mem_modified;
+/* Used for communication between the following two functions.  */
+struct equiv_mem_data
+{
+  /* A MEM that we wish to ensure remains unchanged.  */
+  rtx equiv_mem;
+
+  /* Set true if EQUIV_MEM is modified.  */
+  bool equiv_mem_modified;
+};
 
 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
    Called via note_stores.  */
 static void
 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
-			       void *data ATTRIBUTE_UNUSED)
+			       void *data)
 {
+  struct equiv_mem_data *info = (struct equiv_mem_data *) data;
+
   if ((REG_P (dest)
-       && reg_overlap_mentioned_p (dest, equiv_mem))
+       && reg_overlap_mentioned_p (dest, info->equiv_mem))
       || (MEM_P (dest)
-	  && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
-    equiv_mem_modified = 1;
+	  && anti_dependence (info->equiv_mem, dest)))
+    info->equiv_mem_modified = true;
 }
 
+enum valid_equiv { valid_none, valid_combine, valid_reload };
+
 /* Verify that no store between START and the death of REG invalidates
    MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
    by storing into an overlapping memory location, or with a non-const
    CALL_INSN.
 
-   Return 1 if MEMREF remains valid.  */
-static int
-validate_equiv_mem (rtx start, rtx reg, rtx memref)
+   Return VALID_RELOAD if MEMREF remains valid for both reload and
+   combine_and_move insns, VALID_COMBINE if only valid for
+   combine_and_move_insns, and VALID_NONE otherwise.  */
+static enum valid_equiv
+validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
 {
-  rtx insn;
+  rtx_insn *insn;
   rtx note;
-
-  equiv_mem = memref;
-  equiv_mem_modified = 0;
+  struct equiv_mem_data info = { memref, false };
+  enum valid_equiv ret = valid_reload;
 
   /* If the memory reference has side effects or is volatile, it isn't a
      valid equivalence.  */
   if (side_effects_p (memref))
-    return 0;
-
-  for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
+    return valid_none;
+
+  for (insn = start; insn; insn = NEXT_INSN (insn))
     {
-      if (! INSN_P (insn))
+      if (!INSN_P (insn))
 	continue;
 
       if (find_reg_note (insn, REG_DEAD, reg))
-	return 1;
-
-      /* This used to ignore readonly memory and const/pure calls.  The problem
-	 is the equivalent form may reference a pseudo which gets assigned a
-	 call clobbered hard reg.  When we later replace REG with its
-	 equivalent form, the value in the call-clobbered reg has been
-	 changed and all hell breaks loose.  */
+	return ret;
+
       if (CALL_P (insn))
-	return 0;
-
-      note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
+	{
+	  /* We can combine a reg def from one insn into a reg use in
+	     another over a call if the memory is readonly or the call
+	     const/pure.  However, we can't set reg_equiv notes up for
+	     reload over any call.  The problem is the equivalent form
+	     may reference a pseudo which gets assigned a call
+	     clobbered hard reg.  When we later replace REG with its
+	     equivalent form, the value in the call-clobbered reg has
+	     been changed and all hell breaks loose.  */
+	  ret = valid_combine;
+	  if (!MEM_READONLY_P (memref)
+	      && !RTL_CONST_OR_PURE_CALL_P (insn))
+	    return valid_none;
+	}
+
+      note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
+      if (info.equiv_mem_modified)
+	return valid_none;
 
       /* If a register mentioned in MEMREF is modified via an
 	 auto-increment, we lose the equivalence.  Do the same if one
@@ -1927,10 +3012,10 @@
 	     || REG_NOTE_KIND (note) == REG_DEAD)
 	    && REG_P (XEXP (note, 0))
 	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
-	  return 0;
+	  return valid_none;
     }
 
-  return 0;
+  return valid_none;
 }
 
 /* Returns zero if X is known to be invariant.  */
@@ -1947,10 +3032,7 @@
       return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
 
     case CONST:
-    case CONST_INT:
-    case CONST_DOUBLE:
-    case CONST_FIXED:
-    case CONST_VECTOR:
+    CASE_CONST_ANY:
     case SYMBOL_REF:
     case LABEL_REF:
       return 0;
@@ -2015,9 +3097,10 @@
       return 0;
 
     case REG:
-      return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
-	      && reg_equiv[REGNO (x)].replace)
-	     || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
+      return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
+	       && reg_equiv[REGNO (x)].replace)
+	      || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
+		  && ! rtx_varies_p (x, 0)));
 
     case UNSPEC_VOLATILE:
       return 0;
@@ -2050,53 +3133,6 @@
   return 1;
 }
 
-/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true.  */
-static int
-contains_replace_regs (rtx x)
-{
-  int i, j;
-  const char *fmt;
-  enum rtx_code code = GET_CODE (x);
-
-  switch (code)
-    {
-    case CONST_INT:
-    case CONST:
-    case LABEL_REF:
-    case SYMBOL_REF:
-    case CONST_DOUBLE:
-    case CONST_FIXED:
-    case CONST_VECTOR:
-    case PC:
-    case CC0:
-    case HIGH:
-      return 0;
-
-    case REG:
-      return reg_equiv[REGNO (x)].replace;
-
-    default:
-      break;
-    }
-
-  fmt = GET_RTX_FORMAT (code);
-  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
-    switch (fmt[i])
-      {
-      case 'e':
-	if (contains_replace_regs (XEXP (x, i)))
-	  return 1;
-	break;
-      case 'E':
-	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
-	  if (contains_replace_regs (XVECEXP (x, i, j)))
-	    return 1;
-	break;
-      }
-
-  return 0;
-}
-
 /* TRUE if X references a memory location that would be affected by a store
    to MEMREF.  */
 static int
@@ -2108,13 +3144,10 @@
 
   switch (code)
     {
-    case CONST_INT:
     case CONST:
     case LABEL_REF:
     case SYMBOL_REF:
-    case CONST_DOUBLE:
-    case CONST_FIXED:
-    case CONST_VECTOR:
+    CASE_CONST_ANY:
     case PC:
     case CC0:
     case HIGH:
@@ -2127,7 +3160,7 @@
 				      reg_equiv[REGNO (x)].replacement));
 
     case MEM:
-      if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
+      if (true_dependence (memref, VOIDmode, x))
 	return 1;
       break;
 
@@ -2167,13 +3200,18 @@
 }
 
 /* TRUE if some insn in the range (START, END] references a memory location
-   that would be affected by a store to MEMREF.  */
+   that would be affected by a store to MEMREF.
+
+   Callers should not call this routine if START is after END in the
+   RTL chain.  */
+
 static int
-memref_used_between_p (rtx memref, rtx start, rtx end)
+memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
 {
-  rtx insn;
-
-  for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
+  rtx_insn *insn;
+
+  for (insn = NEXT_INSN (start);
+       insn && insn != NEXT_INSN (end);
        insn = NEXT_INSN (insn))
     {
       if (!NONDEBUG_INSN_P (insn))
@@ -2187,6 +3225,7 @@
 	return 1;
     }
 
+  gcc_assert (insn == NEXT_INSN (end));
   return 0;
 }
 
@@ -2198,31 +3237,53 @@
    assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
    but needs to be there because this function is called from note_stores.  */
 static void
-no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
+no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
+	  void *data ATTRIBUTE_UNUSED)
 {
   int regno;
-  rtx list;
+  rtx_insn_list *list;
 
   if (!REG_P (reg))
     return;
   regno = REGNO (reg);
+  reg_equiv[regno].no_equiv = 1;
   list = reg_equiv[regno].init_insns;
-  if (list == const0_rtx)
+  if (list && list->insn () == NULL)
     return;
-  reg_equiv[regno].init_insns = const0_rtx;
+  reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
   reg_equiv[regno].replacement = NULL_RTX;
   /* This doesn't matter for equivalences made for argument registers, we
      should keep their initialization insns.  */
   if (reg_equiv[regno].is_arg_equivalence)
     return;
-  reg_equiv_init[regno] = NULL_RTX;
-  for (; list; list =  XEXP (list, 1))
+  ira_reg_equiv[regno].defined_p = false;
+  ira_reg_equiv[regno].init_insns = NULL;
+  for (; list; list = list->next ())
     {
-      rtx insn = XEXP (list, 0);
+      rtx_insn *insn = list->insn ();
       remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
     }
 }
 
+/* Check whether the SUBREG is a paradoxical subreg and set the result
+   in PDX_SUBREGS.  */
+
+static void
+set_paradoxical_subreg (rtx_insn *insn)
+{
+  subrtx_iterator::array_type array;
+  FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
+    {
+      const_rtx subreg = *iter;
+      if (GET_CODE (subreg) == SUBREG)
+	{
+	  const_rtx reg = SUBREG_REG (subreg);
+	  if (REG_P (reg) && paradoxical_subreg_p (subreg))
+	    reg_equiv[REGNO (reg)].pdx_subregs = true;
+	}
+    }
+}
+
 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
    equivalent replacement.  */
 
@@ -2233,50 +3294,87 @@
     {
       bitmap cleared_regs = (bitmap) data;
       if (bitmap_bit_p (cleared_regs, REGNO (loc)))
-	return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
+	return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
 					NULL_RTX, adjust_cleared_regs, data);
     }
   return NULL_RTX;
 }
 
-/* Nonzero if we recorded an equivalence for a LABEL_REF.  */
-static int recorded_label_ref;
+/* Given register REGNO is set only once, return true if the defining
+   insn dominates all uses.  */
+
+static bool
+def_dominates_uses (int regno)
+{
+  df_ref def = DF_REG_DEF_CHAIN (regno);
+
+  struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
+  /* If this is an artificial def (eh handler regs, hard frame pointer
+     for non-local goto, regs defined on function entry) then def_info
+     is NULL and the reg is always live before any use.  We might
+     reasonably return true in that case, but since the only call
+     of this function is currently here in ira.c when we are looking
+     at a defining insn we can't have an artificial def as that would
+     bump DF_REG_DEF_COUNT.  */
+  gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
+
+  rtx_insn *def_insn = DF_REF_INSN (def);
+  basic_block def_bb = BLOCK_FOR_INSN (def_insn);
+
+  for (df_ref use = DF_REG_USE_CHAIN (regno);
+       use;
+       use = DF_REF_NEXT_REG (use))
+    {
+      struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
+      /* Only check real uses, not artificial ones.  */
+      if (use_info)
+	{
+	  rtx_insn *use_insn = DF_REF_INSN (use);
+	  if (!DEBUG_INSN_P (use_insn))
+	    {
+	      basic_block use_bb = BLOCK_FOR_INSN (use_insn);
+	      if (use_bb != def_bb
+		  ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
+		  : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
+		return false;
+	    }
+	}
+    }
+  return true;
+}
 
 /* Find registers that are equivalent to a single value throughout the
-   compilation (either because they can be referenced in memory or are set once
-   from a single constant).  Lower their priority for a register.
-
-   If such a register is only referenced once, try substituting its value
-   into the using insn.  If it succeeds, we can eliminate the register
-   completely.
-
-   Initialize the REG_EQUIV_INIT array of initializing insns.
-
-   Return non-zero if jump label rebuilding should be done.  */
-static int
+   compilation (either because they can be referenced in memory or are
+   set once from a single constant).  Lower their priority for a
+   register.
+
+   If such a register is only referenced once, try substituting its
+   value into the using insn.  If it succeeds, we can eliminate the
+   register completely.
+
+   Initialize init_insns in ira_reg_equiv array.  */
+static void
 update_equiv_regs (void)
 {
-  rtx insn;
+  rtx_insn *insn;
   basic_block bb;
-  int loop_depth;
-  bitmap cleared_regs;
-
-  /* We need to keep track of whether or not we recorded a LABEL_REF so
-     that we know if the jump optimizer needs to be rerun.  */
-  recorded_label_ref = 0;
-
-  reg_equiv = XCNEWVEC (struct equivalence, max_regno);
-  reg_equiv_init = ggc_alloc_cleared_vec_rtx (max_regno);
-  reg_equiv_init_size = max_regno;
-
-  init_alias_analysis ();
+
+  /* Scan insns and set pdx_subregs if the reg is used in a
+     paradoxical subreg.  Don't set such reg equivalent to a mem,
+     because lra will not substitute such equiv memory in order to
+     prevent access beyond allocated memory for paradoxical memory subreg.  */
+  FOR_EACH_BB_FN (bb, cfun)
+    FOR_BB_INSNS (bb, insn)
+      if (NONDEBUG_INSN_P (insn))
+	set_paradoxical_subreg (insn);
 
   /* Scan the insns and find which registers have equivalences.  Do this
      in a separate scan of the insns because (due to -fcse-follow-jumps)
      a register can be set below its use.  */
-  FOR_EACH_BB (bb)
+  bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
+  FOR_EACH_BB_FN (bb, cfun)
     {
-      loop_depth = bb->loop_depth;
+      int loop_depth = bb_loop_depth (bb);
 
       for (insn = BB_HEAD (bb);
 	   insn != NEXT_INSN (BB_END (bb));
@@ -2298,7 +3396,8 @@
 
 	  /* If this insn contains more (or less) than a single SET,
 	     only mark all destinations as having no known equivalence.  */
-	  if (set == 0)
+	  if (set == NULL_RTX
+	      || side_effects_p (SET_SRC (set)))
 	    {
 	      note_stores (PATTERN (insn), no_equiv, NULL);
 	      continue;
@@ -2326,14 +3425,20 @@
 	      gcc_assert (REG_P (dest));
 	      regno = REGNO (dest);
 
-	      /* Note that we don't want to clear reg_equiv_init even if there
-		 are multiple sets of this register.  */
+	      /* Note that we don't want to clear init_insns in
+		 ira_reg_equiv even if there are multiple sets of this
+		 register.  */
 	      reg_equiv[regno].is_arg_equivalence = 1;
 
-	      /* Record for reload that this is an equivalencing insn.  */
-	      if (rtx_equal_p (src, XEXP (note, 0)))
-		reg_equiv_init[regno]
-		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
+	      /* The insn result can have equivalence memory although
+		 the equivalence is not set up by the insn.  We add
+		 this insn to init insns as it is a flag for now that
+		 regno has an equivalence.  We will remove the insn
+		 from init insn list later.  */
+	      if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
+		ira_reg_equiv[regno].init_insns
+		  = gen_rtx_INSN_LIST (VOIDmode, insn,
+				       ira_reg_equiv[regno].init_insns);
 
 	      /* Continue normally in case this is a candidate for
 		 replacements.  */
@@ -2356,7 +3461,8 @@
 
 	  if (!REG_P (dest)
 	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
-	      || reg_equiv[regno].init_insns == const0_rtx
+	      || (reg_equiv[regno].init_insns
+		  && reg_equiv[regno].init_insns->insn () == NULL)
 	      || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
 		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
 	    {
@@ -2366,6 +3472,14 @@
 	      continue;
 	    }
 
+	  /* Don't set reg mentioned in a paradoxical subreg
+	     equivalent to a mem.  */
+	  if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
+	    {
+	      note_stores (set, no_equiv, NULL);
+	      continue;
+	    }
+
 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
 
 	  /* cse sometimes generates function invariants, but doesn't put a
@@ -2375,28 +3489,70 @@
 	    note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
 
 	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
-	     since it represents a function call */
+	     since it represents a function call.  */
 	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
 	    note = NULL_RTX;
 
-	  if (DF_REG_DEF_COUNT (regno) != 1
-	      && (! note
+	  if (DF_REG_DEF_COUNT (regno) != 1)
+	    {
+	      bool equal_p = true;
+	      rtx_insn_list *list;
+
+	      /* If we have already processed this pseudo and determined it
+		 can not have an equivalence, then honor that decision.  */
+	      if (reg_equiv[regno].no_equiv)
+		continue;
+
+	      if (! note
 		  || rtx_varies_p (XEXP (note, 0), 0)
 		  || (reg_equiv[regno].replacement
 		      && ! rtx_equal_p (XEXP (note, 0),
-					reg_equiv[regno].replacement))))
-	    {
-	      no_equiv (dest, set, NULL);
-	      continue;
+					reg_equiv[regno].replacement)))
+		{
+		  no_equiv (dest, set, NULL);
+		  continue;
+		}
+
+	      list = reg_equiv[regno].init_insns;
+	      for (; list; list = list->next ())
+		{
+		  rtx note_tmp;
+		  rtx_insn *insn_tmp;
+
+		  insn_tmp = list->insn ();
+		  note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
+		  gcc_assert (note_tmp);
+		  if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
+		    {
+		      equal_p = false;
+		      break;
+		    }
+		}
+
+	      if (! equal_p)
+		{
+		  no_equiv (dest, set, NULL);
+		  continue;
+		}
 	    }
+
 	  /* Record this insn as initializing this register.  */
 	  reg_equiv[regno].init_insns
 	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
 
 	  /* If this register is known to be equal to a constant, record that
-	     it is always equivalent to the constant.  */
+	     it is always equivalent to the constant.
+	     Note that it is possible to have a register use before
+	     the def in loops (see gcc.c-torture/execute/pr79286.c)
+	     where the reg is undefined on first use.  If the def insn
+	     won't trap we can use it as an equivalence, effectively
+	     choosing the "undefined" value for the reg to be the
+	     same as the value set by the def.  */
 	  if (DF_REG_DEF_COUNT (regno) == 1
-	      && note && ! rtx_varies_p (XEXP (note, 0), 0))
+	      && note
+	      && !rtx_varies_p (XEXP (note, 0), 0)
+	      && (!may_trap_or_fault_p (XEXP (note, 0))
+		  || def_dominates_uses (regno)))
 	    {
 	      rtx note_value = XEXP (note, 0);
 	      remove_note (insn, note);
@@ -2417,47 +3573,40 @@
 	     a register used only in one basic block from a MEM.  If so, and the
 	     MEM remains unchanged for the life of the register, add a REG_EQUIV
 	     note.  */
-
 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
 
-	  if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
-	      && MEM_P (SET_SRC (set))
-	      && validate_equiv_mem (insn, dest, SET_SRC (set)))
-	    note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
-
+	  rtx replacement = NULL_RTX;
 	  if (note)
+	    replacement = XEXP (note, 0);
+	  else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
+		   && MEM_P (SET_SRC (set)))
 	    {
-	      int regno = REGNO (dest);
-	      rtx x = XEXP (note, 0);
-
-	      /* If we haven't done so, record for reload that this is an
-		 equivalencing insn.  */
-	      if (!reg_equiv[regno].is_arg_equivalence)
-		reg_equiv_init[regno]
-		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
-
-	      /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
-		 We might end up substituting the LABEL_REF for uses of the
-		 pseudo here or later.  That kind of transformation may turn an
-		 indirect jump into a direct jump, in which case we must rerun the
-		 jump optimizer to ensure that the JUMP_LABEL fields are valid.  */
-	      if (GET_CODE (x) == LABEL_REF
-		  || (GET_CODE (x) == CONST
-		      && GET_CODE (XEXP (x, 0)) == PLUS
-		      && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
-		recorded_label_ref = 1;
-
-	      reg_equiv[regno].replacement = x;
+	      enum valid_equiv validity;
+	      validity = validate_equiv_mem (insn, dest, SET_SRC (set));
+	      if (validity != valid_none)
+		{
+		  replacement = copy_rtx (SET_SRC (set));
+		  if (validity == valid_reload)
+		    note = set_unique_reg_note (insn, REG_EQUIV, replacement);
+		}
+	    }
+
+	  /* If we haven't done so, record for reload that this is an
+	     equivalencing insn.  */
+	  if (note && !reg_equiv[regno].is_arg_equivalence)
+	    ira_reg_equiv[regno].init_insns
+	      = gen_rtx_INSN_LIST (VOIDmode, insn,
+				   ira_reg_equiv[regno].init_insns);
+
+	  if (replacement)
+	    {
+	      reg_equiv[regno].replacement = replacement;
 	      reg_equiv[regno].src_p = &SET_SRC (set);
-	      reg_equiv[regno].loop_depth = loop_depth;
+	      reg_equiv[regno].loop_depth = (short) loop_depth;
 
 	      /* Don't mess with things live during setjmp.  */
-	      if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
+	      if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
 		{
-		  /* Note that the statement below does not affect the priority
-		     in local-alloc!  */
-		  REG_LIVE_LENGTH (regno) *= 2;
-
 		  /* If the register is referenced exactly twice, meaning it is
 		     set once and used once, indicate that the reference may be
 		     replaced by the equivalence we computed above.  Do this
@@ -2468,7 +3617,7 @@
 		     calls.  */
 
 		  if (REG_N_REFS (regno) == 2
-		      && (rtx_equal_p (x, src)
+		      && (rtx_equal_p (replacement, src)
 			  || ! equiv_init_varies_p (src))
 		      && NONJUMP_INSN_P (insn)
 		      && equiv_init_movable_p (PATTERN (insn), regno))
@@ -2477,17 +3626,25 @@
 	    }
 	}
     }
-
-  if (!optimize)
-    goto out;
-
-  /* A second pass, to gather additional equivalences with memory.  This needs
-     to be done after we know which registers we are going to replace.  */
-
-  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+}
+
+/* For insns that set a MEM to the contents of a REG that is only used
+   in a single basic block, see if the register is always equivalent
+   to that memory location and if moving the store from INSN to the
+   insn that sets REG is safe.  If so, put a REG_EQUIV note on the
+   initializing insn.  */
+static void
+add_store_equivs (void)
+{
+  auto_bitmap seen_insns;
+
+  for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
     {
       rtx set, src, dest;
       unsigned regno;
+      rtx_insn *init_insn;
+
+      bitmap_set_bit (seen_insns, INSN_UID (insn));
 
       if (! INSN_P (insn))
 	continue;
@@ -2499,199 +3656,194 @@
       dest = SET_DEST (set);
       src = SET_SRC (set);
 
-      /* If this sets a MEM to the contents of a REG that is only used
-	 in a single basic block, see if the register is always equivalent
-	 to that memory location and if moving the store from INSN to the
-	 insn that set REG is safe.  If so, put a REG_EQUIV note on the
-	 initializing insn.
-
-	 Don't add a REG_EQUIV note if the insn already has one.  The existing
-	 REG_EQUIV is likely more useful than the one we are adding.
-
-	 If one of the regs in the address has reg_equiv[REGNO].replace set,
-	 then we can't add this REG_EQUIV note.  The reg_equiv[REGNO].replace
-	 optimization may move the set of this register immediately before
-	 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
-	 the mention in the REG_EQUIV note would be to an uninitialized
-	 pseudo.  */
-
+      /* Don't add a REG_EQUIV note if the insn already has one.  The existing
+	 REG_EQUIV is likely more useful than the one we are adding.  */
       if (MEM_P (dest) && REG_P (src)
 	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
 	  && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
 	  && DF_REG_DEF_COUNT (regno) == 1
-	  && reg_equiv[regno].init_insns != 0
-	  && reg_equiv[regno].init_insns != const0_rtx
-	  && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
-			      REG_EQUIV, NULL_RTX)
-	  && ! contains_replace_regs (XEXP (dest, 0)))
+	  && ! reg_equiv[regno].pdx_subregs
+	  && reg_equiv[regno].init_insns != NULL
+	  && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
+	  && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
+	  && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
+	  && validate_equiv_mem (init_insn, src, dest) == valid_reload
+	  && ! memref_used_between_p (dest, init_insn, insn)
+	  /* Attaching a REG_EQUIV note will fail if INIT_INSN has
+	     multiple sets.  */
+	  && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
 	{
-	  rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
-	  if (validate_equiv_mem (init_insn, src, dest)
-	      && ! memref_used_between_p (dest, init_insn, insn)
-	      /* Attaching a REG_EQUIV note will fail if INIT_INSN has
-		 multiple sets.  */
-	      && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
-	    {
-	      /* This insn makes the equivalence, not the one initializing
-		 the register.  */
-	      reg_equiv_init[regno]
-		= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
-	      df_notes_rescan (init_insn);
-	    }
+	  /* This insn makes the equivalence, not the one initializing
+	     the register.  */
+	  ira_reg_equiv[regno].init_insns
+	    = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
+	  df_notes_rescan (init_insn);
+	  if (dump_file)
+	    fprintf (dump_file,
+		     "Adding REG_EQUIV to insn %d for source of insn %d\n",
+		     INSN_UID (init_insn),
+		     INSN_UID (insn));
 	}
     }
-
-  cleared_regs = BITMAP_ALLOC (NULL);
-  /* Now scan all regs killed in an insn to see if any of them are
-     registers only used that once.  If so, see if we can replace the
-     reference with the equivalent form.  If we can, delete the
-     initializing reference and this register will go away.  If we
-     can't replace the reference, and the initializing reference is
-     within the same loop (or in an inner loop), then move the register
-     initialization just before the use, so that they are in the same
-     basic block.  */
-  FOR_EACH_BB_REVERSE (bb)
+}
+
+/* Scan all regs killed in an insn to see if any of them are registers
+   only used that once.  If so, see if we can replace the reference
+   with the equivalent form.  If we can, delete the initializing
+   reference and this register will go away.  If we can't replace the
+   reference, and the initializing reference is within the same loop
+   (or in an inner loop), then move the register initialization just
+   before the use, so that they are in the same basic block.  */
+static void
+combine_and_move_insns (void)
+{
+  auto_bitmap cleared_regs;
+  int max = max_reg_num ();
+
+  for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
     {
-      loop_depth = bb->loop_depth;
-      for (insn = BB_END (bb);
-	   insn != PREV_INSN (BB_HEAD (bb));
-	   insn = PREV_INSN (insn))
+      if (!reg_equiv[regno].replace)
+	continue;
+
+      rtx_insn *use_insn = 0;
+      for (df_ref use = DF_REG_USE_CHAIN (regno);
+	   use;
+	   use = DF_REF_NEXT_REG (use))
+	if (DF_REF_INSN_INFO (use))
+	  {
+	    if (DEBUG_INSN_P (DF_REF_INSN (use)))
+	      continue;
+	    gcc_assert (!use_insn);
+	    use_insn = DF_REF_INSN (use);
+	  }
+      gcc_assert (use_insn);
+
+      /* Don't substitute into jumps.  indirect_jump_optimize does
+	 this for anything we are prepared to handle.  */
+      if (JUMP_P (use_insn))
+	continue;
+
+      /* Also don't substitute into a conditional trap insn -- it can become
+	 an unconditional trap, and that is a flow control insn.  */
+      if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
+	continue;
+
+      df_ref def = DF_REG_DEF_CHAIN (regno);
+      gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
+      rtx_insn *def_insn = DF_REF_INSN (def);
+
+      /* We may not move instructions that can throw, since that
+	 changes basic block boundaries and we are not prepared to
+	 adjust the CFG to match.  */
+      if (can_throw_internal (def_insn))
+	continue;
+
+      basic_block use_bb = BLOCK_FOR_INSN (use_insn);
+      basic_block def_bb = BLOCK_FOR_INSN (def_insn);
+      if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
+	continue;
+
+      if (asm_noperands (PATTERN (def_insn)) < 0
+	  && validate_replace_rtx (regno_reg_rtx[regno],
+				   *reg_equiv[regno].src_p, use_insn))
 	{
 	  rtx link;
-
-	  if (! INSN_P (insn))
-	    continue;
-
-	  /* Don't substitute into a non-local goto, this confuses CFG.  */
-	  if (JUMP_P (insn)
-	      && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
-	    continue;
-
-	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
+	  /* Append the REG_DEAD notes from def_insn.  */
+	  for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
 	    {
-	      if (REG_NOTE_KIND (link) == REG_DEAD
-		  /* Make sure this insn still refers to the register.  */
-		  && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
+	      if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
 		{
-		  int regno = REGNO (XEXP (link, 0));
-		  rtx equiv_insn;
-
-		  if (! reg_equiv[regno].replace
-		      || reg_equiv[regno].loop_depth < loop_depth
-		      /* There is no sense to move insns if we did
-			 register pressure-sensitive scheduling was
-			 done because it will not improve allocation
-			 but worsen insn schedule with a big
-			 probability.  */
-		      || (flag_sched_pressure && flag_schedule_insns))
-		    continue;
-
-		  /* reg_equiv[REGNO].replace gets set only when
-		     REG_N_REFS[REGNO] is 2, i.e. the register is set
-		     once and used once.  (If it were only set, but not used,
-		     flow would have deleted the setting insns.)  Hence
-		     there can only be one insn in reg_equiv[REGNO].init_insns.  */
-		  gcc_assert (reg_equiv[regno].init_insns
-			      && !XEXP (reg_equiv[regno].init_insns, 1));
-		  equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
-
-		  /* We may not move instructions that can throw, since
-		     that changes basic block boundaries and we are not
-		     prepared to adjust the CFG to match.  */
-		  if (can_throw_internal (equiv_insn))
-		    continue;
-
-		  if (asm_noperands (PATTERN (equiv_insn)) < 0
-		      && validate_replace_rtx (regno_reg_rtx[regno],
-					       *(reg_equiv[regno].src_p), insn))
-		    {
-		      rtx equiv_link;
-		      rtx last_link;
-		      rtx note;
-
-		      /* Find the last note.  */
-		      for (last_link = link; XEXP (last_link, 1);
-			   last_link = XEXP (last_link, 1))
-			;
-
-		      /* Append the REG_DEAD notes from equiv_insn.  */
-		      equiv_link = REG_NOTES (equiv_insn);
-		      while (equiv_link)
-			{
-			  note = equiv_link;
-			  equiv_link = XEXP (equiv_link, 1);
-			  if (REG_NOTE_KIND (note) == REG_DEAD)
-			    {
-			      remove_note (equiv_insn, note);
-			      XEXP (last_link, 1) = note;
-			      XEXP (note, 1) = NULL_RTX;
-			      last_link = note;
-			    }
-			}
-
-		      remove_death (regno, insn);
-		      SET_REG_N_REFS (regno, 0);
-		      REG_FREQ (regno) = 0;
-		      delete_insn (equiv_insn);
-
-		      reg_equiv[regno].init_insns
-			= XEXP (reg_equiv[regno].init_insns, 1);
-
-		      reg_equiv_init[regno] = NULL_RTX;
-		      bitmap_set_bit (cleared_regs, regno);
-		    }
-		  /* Move the initialization of the register to just before
-		     INSN.  Update the flow information.  */
-		  else if (prev_nondebug_insn (insn) != equiv_insn)
-		    {
-		      rtx new_insn;
-
-		      new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
-		      REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
-		      REG_NOTES (equiv_insn) = 0;
-		      /* Rescan it to process the notes.  */
-		      df_insn_rescan (new_insn);
-
-		      /* Make sure this insn is recognized before
-			 reload begins, otherwise
-			 eliminate_regs_in_insn will die.  */
-		      INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
-
-		      delete_insn (equiv_insn);
-
-		      XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
-
-		      REG_BASIC_BLOCK (regno) = bb->index;
-		      REG_N_CALLS_CROSSED (regno) = 0;
-		      REG_FREQ_CALLS_CROSSED (regno) = 0;
-		      REG_N_THROWING_CALLS_CROSSED (regno) = 0;
-		      REG_LIVE_LENGTH (regno) = 2;
-
-		      if (insn == BB_HEAD (bb))
-			BB_HEAD (bb) = PREV_INSN (insn);
-
-		      reg_equiv_init[regno]
-			= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
-		      bitmap_set_bit (cleared_regs, regno);
-		    }
+		  *p = XEXP (link, 1);
+		  XEXP (link, 1) = REG_NOTES (use_insn);
+		  REG_NOTES (use_insn) = link;
 		}
+	      else
+		p = &XEXP (link, 1);
 	    }
+
+	  remove_death (regno, use_insn);
+	  SET_REG_N_REFS (regno, 0);
+	  REG_FREQ (regno) = 0;
+	  df_ref use;
+	  FOR_EACH_INSN_USE (use, def_insn)
+	    {
+	      unsigned int use_regno = DF_REF_REGNO (use);
+	      if (!HARD_REGISTER_NUM_P (use_regno))
+		reg_equiv[use_regno].replace = 0;
+	    }
+
+	  delete_insn (def_insn);
+
+	  reg_equiv[regno].init_insns = NULL;
+	  ira_reg_equiv[regno].init_insns = NULL;
+	  bitmap_set_bit (cleared_regs, regno);
+	}
+
+      /* Move the initialization of the register to just before
+	 USE_INSN.  Update the flow information.  */
+      else if (prev_nondebug_insn (use_insn) != def_insn)
+	{
+	  rtx_insn *new_insn;
+
+	  new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
+	  REG_NOTES (new_insn) = REG_NOTES (def_insn);
+	  REG_NOTES (def_insn) = 0;
+	  /* Rescan it to process the notes.  */
+	  df_insn_rescan (new_insn);
+
+	  /* Make sure this insn is recognized before reload begins,
+	     otherwise eliminate_regs_in_insn will die.  */
+	  INSN_CODE (new_insn) = INSN_CODE (def_insn);
+
+	  delete_insn (def_insn);
+
+	  XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
+
+	  REG_BASIC_BLOCK (regno) = use_bb->index;
+	  REG_N_CALLS_CROSSED (regno) = 0;
+
+	  if (use_insn == BB_HEAD (use_bb))
+	    BB_HEAD (use_bb) = new_insn;
+
+	  /* We know regno dies in use_insn, but inside a loop
+	     REG_DEAD notes might be missing when def_insn was in
+	     another basic block.  However, when we move def_insn into
+	     this bb we'll definitely get a REG_DEAD note and reload
+	     will see the death.  It's possible that update_equiv_regs
+	     set up an equivalence referencing regno for a reg set by
+	     use_insn, when regno was seen as non-local.  Now that
+	     regno is local to this block, and dies, such an
+	     equivalence is invalid.  */
+	  if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
+	    {
+	      rtx set = single_set (use_insn);
+	      if (set && REG_P (SET_DEST (set)))
+		no_equiv (SET_DEST (set), set, NULL);
+	    }
+
+	  ira_reg_equiv[regno].init_insns
+	    = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
+	  bitmap_set_bit (cleared_regs, regno);
 	}
     }
 
   if (!bitmap_empty_p (cleared_regs))
     {
-      FOR_EACH_BB (bb)
+      basic_block bb;
+
+      FOR_EACH_BB_FN (bb, cfun)
 	{
+	  bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
+	  bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
+	  if (!df_live)
+	    continue;
 	  bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
 	  bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
-	  bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
-	  bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
 	}
 
       /* Last pass - adjust debug insns referencing cleared regs.  */
       if (MAY_HAVE_DEBUG_INSNS)
-	for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+	for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
 	  if (DEBUG_INSN_P (insn))
 	    {
 	      rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
@@ -2703,15 +3855,158 @@
 		df_insn_rescan (insn);
 	    }
     }
-
-  BITMAP_FREE (cleared_regs);
-
-  out:
-  /* Clean up.  */
-
-  end_alias_analysis ();
-  free (reg_equiv);
-  return recorded_label_ref;
+}
+
+/* A pass over indirect jumps, converting simple cases to direct jumps.
+   Combine does this optimization too, but only within a basic block.  */
+static void
+indirect_jump_optimize (void)
+{
+  basic_block bb;
+  bool rebuild_p = false;
+
+  FOR_EACH_BB_REVERSE_FN (bb, cfun)
+    {
+      rtx_insn *insn = BB_END (bb);
+      if (!JUMP_P (insn)
+	  || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
+	continue;
+
+      rtx x = pc_set (insn);
+      if (!x || !REG_P (SET_SRC (x)))
+	continue;
+
+      int regno = REGNO (SET_SRC (x));
+      if (DF_REG_DEF_COUNT (regno) == 1)
+	{
+	  df_ref def = DF_REG_DEF_CHAIN (regno);
+	  if (!DF_REF_IS_ARTIFICIAL (def))
+	    {
+	      rtx_insn *def_insn = DF_REF_INSN (def);
+	      rtx lab = NULL_RTX;
+	      rtx set = single_set (def_insn);
+	      if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
+		lab = SET_SRC (set);
+	      else
+		{
+		  rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
+		  if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
+		    lab = XEXP (eqnote, 0);
+		}
+	      if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
+		rebuild_p = true;
+	    }
+	}
+    }
+
+  if (rebuild_p)
+    {
+      timevar_push (TV_JUMP);
+      rebuild_jump_labels (get_insns ());
+      if (purge_all_dead_edges ())
+	delete_unreachable_blocks ();
+      timevar_pop (TV_JUMP);
+    }
+}
+
+/* Set up fields memory, constant, and invariant from init_insns in
+   the structures of array ira_reg_equiv.  */
+static void
+setup_reg_equiv (void)
+{
+  int i;
+  rtx_insn_list *elem, *prev_elem, *next_elem;
+  rtx_insn *insn;
+  rtx set, x;
+
+  for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
+    for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
+	 elem;
+	 prev_elem = elem, elem = next_elem)
+      {
+	next_elem = elem->next ();
+	insn = elem->insn ();
+	set = single_set (insn);
+	
+	/* Init insns can set up equivalence when the reg is a destination or
+	   a source (in this case the destination is memory).  */
+	if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
+	  {
+	    if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
+	      {
+		x = XEXP (x, 0);
+		if (REG_P (SET_DEST (set))
+		    && REGNO (SET_DEST (set)) == (unsigned int) i
+		    && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
+		  {
+		    /* This insn reporting the equivalence but
+		       actually not setting it.  Remove it from the
+		       list.  */
+		    if (prev_elem == NULL)
+		      ira_reg_equiv[i].init_insns = next_elem;
+		    else
+		      XEXP (prev_elem, 1) = next_elem;
+		    elem = prev_elem;
+		  }
+	      }
+	    else if (REG_P (SET_DEST (set))
+		     && REGNO (SET_DEST (set)) == (unsigned int) i)
+	      x = SET_SRC (set);
+	    else
+	      {      
+		gcc_assert (REG_P (SET_SRC (set))
+			    && REGNO (SET_SRC (set)) == (unsigned int) i);
+		x = SET_DEST (set);
+	      }
+	    if (! function_invariant_p (x)
+		|| ! flag_pic
+		/* A function invariant is often CONSTANT_P but may
+		   include a register.  We promise to only pass
+		   CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
+		|| (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
+	      {
+		/* It can happen that a REG_EQUIV note contains a MEM
+		   that is not a legitimate memory operand.  As later
+		   stages of reload assume that all addresses found in
+		   the lra_regno_equiv_* arrays were originally
+		   legitimate, we ignore such REG_EQUIV notes.  */
+		if (memory_operand (x, VOIDmode))
+		  {
+		    ira_reg_equiv[i].defined_p = true;
+		    ira_reg_equiv[i].memory = x;
+		    continue;
+		  }
+		else if (function_invariant_p (x))
+		  {
+		    machine_mode mode;
+		    
+		    mode = GET_MODE (SET_DEST (set));
+		    if (GET_CODE (x) == PLUS
+			|| x == frame_pointer_rtx || x == arg_pointer_rtx)
+		      /* This is PLUS of frame pointer and a constant,
+			 or fp, or argp.  */
+		      ira_reg_equiv[i].invariant = x;
+		    else if (targetm.legitimate_constant_p (mode, x))
+		      ira_reg_equiv[i].constant = x;
+		    else
+		      {
+			ira_reg_equiv[i].memory = force_const_mem (mode, x);
+			if (ira_reg_equiv[i].memory == NULL_RTX)
+			  {
+			    ira_reg_equiv[i].defined_p = false;
+			    ira_reg_equiv[i].init_insns = NULL;
+			    break;
+			  }
+		      }
+		    ira_reg_equiv[i].defined_p = true;
+		    continue;
+		  }
+	      }
+	  }
+	ira_reg_equiv[i].defined_p = false;
+	ira_reg_equiv[i].init_insns = NULL;
+	break;
+      }
 }
 
 
@@ -2720,7 +4015,7 @@
 static void
 print_insn_chain (FILE *file, struct insn_chain *c)
 {
-  fprintf (file, "insn=%d, ", INSN_UID(c->insn));
+  fprintf (file, "insn=%d, ", INSN_UID (c->insn));
   bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
   bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
 }
@@ -2750,7 +4045,7 @@
    initialization.  ALLOCNUM need not be the regno of REG.  */
 static void
 init_live_subregs (bool init_value, sbitmap *live_subregs,
-		   int *live_subregs_used, int allocnum, rtx reg)
+		   bitmap live_subregs_used, int allocnum, rtx reg)
 {
   unsigned int regno = REGNO (SUBREG_REG (reg));
   int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
@@ -2758,22 +4053,21 @@
   gcc_assert (size > 0);
 
   /* Been there, done that.  */
-  if (live_subregs_used[allocnum])
+  if (bitmap_bit_p (live_subregs_used, allocnum))
     return;
 
-  /* Create a new one with zeros.  */
+  /* Create a new one.  */
   if (live_subregs[allocnum] == NULL)
     live_subregs[allocnum] = sbitmap_alloc (size);
 
   /* If the entire reg was live before blasting into subregs, we need
      to init all of the subregs to ones else init to 0.  */
   if (init_value)
-    sbitmap_ones (live_subregs[allocnum]);
+    bitmap_ones (live_subregs[allocnum]);
   else
-    sbitmap_zero (live_subregs[allocnum]);
-
-  /* Set the number of bits that we really want.  */
-  live_subregs_used[allocnum] = size;
+    bitmap_clear (live_subregs[allocnum]);
+
+  bitmap_set_bit (live_subregs_used, allocnum);
 }
 
 /* Walk the insns of the current function and build reload_insn_chain,
@@ -2786,37 +4080,37 @@
   basic_block bb;
   struct insn_chain *c = NULL;
   struct insn_chain *next = NULL;
-  bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
-  bitmap elim_regset = BITMAP_ALLOC (NULL);
+  auto_bitmap live_relevant_regs;
+  auto_bitmap elim_regset;
   /* live_subregs is a vector used to keep accurate information about
      which hardregs are live in multiword pseudos.  live_subregs and
      live_subregs_used are indexed by pseudo number.  The live_subreg
      entry for a particular pseudo is only used if the corresponding
-     element is non zero in live_subregs_used.  The value in
-     live_subregs_used is number of bytes that the pseudo can
+     element is non zero in live_subregs_used.  The sbitmap size of
+     live_subreg[allocno] is number of bytes that the pseudo can
      occupy.  */
   sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
-  int *live_subregs_used = XNEWVEC (int, max_regno);
+  auto_bitmap live_subregs_used;
 
   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
     if (TEST_HARD_REG_BIT (eliminable_regset, i))
       bitmap_set_bit (elim_regset, i);
-  FOR_EACH_BB_REVERSE (bb)
+  FOR_EACH_BB_REVERSE_FN (bb, cfun)
     {
       bitmap_iterator bi;
-      rtx insn;
+      rtx_insn *insn;
 
       CLEAR_REG_SET (live_relevant_regs);
-      memset (live_subregs_used, 0, max_regno * sizeof (int));
-
-      EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
+      bitmap_clear (live_subregs_used);
+
+      EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
 	{
 	  if (i >= FIRST_PSEUDO_REGISTER)
 	    break;
 	  bitmap_set_bit (live_relevant_regs, i);
 	}
 
-      EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
+      EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
 				FIRST_PSEUDO_REGISTER, i, bi)
 	{
 	  if (pseudo_for_reload_consideration_p (i))
@@ -2827,9 +4121,8 @@
 	{
 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
 	    {
-	      unsigned int uid = INSN_UID (insn);
-	      df_ref *def_rec;
-	      df_ref *use_rec;
+	      struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
+	      df_ref def, use;
 
 	      c = new_insn_chain ();
 	      c->next = next;
@@ -2840,10 +4133,9 @@
 	      c->insn = insn;
 	      c->block = bb->index;
 
-	      if (INSN_P (insn))
-		for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
+	      if (NONDEBUG_INSN_P (insn))
+		FOR_EACH_INSN_INFO_DEF (def, insn_info)
 		  {
-		    df_ref def = *def_rec;
 		    unsigned int regno = DF_REF_REGNO (def);
 
 		    /* Ignore may clobbers because these are generated
@@ -2892,18 +4184,18 @@
 			      }
 
 			    /* Ignore the paradoxical bits.  */
-			    if ((int)last > live_subregs_used[regno])
-			      last = live_subregs_used[regno];
+			    if (last > SBITMAP_SIZE (live_subregs[regno]))
+			      last = SBITMAP_SIZE (live_subregs[regno]);
 
 			    while (start < last)
 			      {
-				RESET_BIT (live_subregs[regno], start);
+				bitmap_clear_bit (live_subregs[regno], start);
 				start++;
 			      }
 
-			    if (sbitmap_empty_p (live_subregs[regno]))
+			    if (bitmap_empty_p (live_subregs[regno]))
 			      {
-				live_subregs_used[regno] = 0;
+				bitmap_clear_bit (live_subregs_used, regno);
 				bitmap_clear_bit (live_relevant_regs, regno);
 			      }
 			    else
@@ -2921,8 +4213,8 @@
 			       modeling the def as a killing def.  */
 			    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
 			      {
+				bitmap_clear_bit (live_subregs_used, regno);
 				bitmap_clear_bit (live_relevant_regs, regno);
-				live_subregs_used[regno] = 0;
 			      }
 			  }
 		      }
@@ -2931,10 +4223,9 @@
 	      bitmap_and_compl_into (live_relevant_regs, elim_regset);
 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
 
-	      if (INSN_P (insn))
-		for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
+	      if (NONDEBUG_INSN_P (insn))
+		FOR_EACH_INSN_INFO_USE (use, insn_info)
 		  {
-		    df_ref use = *use_rec;
 		    unsigned int regno = DF_REF_REGNO (use);
 		    rtx reg = DF_REF_REG (use);
 
@@ -2943,7 +4234,7 @@
 		       to a multiword reg.  Here, we only model the
 		       subreg case that is not wrapped in ZERO_EXTRACT
 		       precisely so we do not need to look at the
-		       fabricated use. */
+		       fabricated use.  */
 		    if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
 			&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
 			&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
@@ -2978,12 +4269,12 @@
 			       live_subregs, live_subregs_used, regno, reg);
 
 			    /* Ignore the paradoxical bits.  */
-			    if ((int)last > live_subregs_used[regno])
-			      last = live_subregs_used[regno];
+			    if (last > SBITMAP_SIZE (live_subregs[regno]))
+			      last = SBITMAP_SIZE (live_subregs[regno]);
 
 			    while (start < last)
 			      {
-				SET_BIT (live_subregs[regno], start);
+				bitmap_set_bit (live_subregs[regno], start);
 				start++;
 			      }
 			  }
@@ -2992,7 +4283,7 @@
 			     effectively saying do not use the subregs
 			     because we are reading the whole
 			     pseudo.  */
-			  live_subregs_used[regno] = 0;
+			  bitmap_clear_bit (live_subregs_used, regno);
 			bitmap_set_bit (live_relevant_regs, regno);
 		      }
 		  }
@@ -3035,56 +4326,846 @@
 	}
     }
 
-  for (i = 0; i < (unsigned int) max_regno; i++)
-    if (live_subregs[i])
-      free (live_subregs[i]);
-
   reload_insn_chain = c;
   *p = NULL;
 
+  for (i = 0; i < (unsigned int) max_regno; i++)
+    if (live_subregs[i] != NULL)
+      sbitmap_free (live_subregs[i]);
   free (live_subregs);
-  free (live_subregs_used);
-  BITMAP_FREE (live_relevant_regs);
-  BITMAP_FREE (elim_regset);
 
   if (dump_file)
     print_insn_chains (dump_file);
 }
-
-/* Allocate memory for reg_equiv_memory_loc.  */
+ 
+/* Examine the rtx found in *LOC, which is read or written to as determined
+   by TYPE.  Return false if we find a reason why an insn containing this
+   rtx should not be moved (such as accesses to non-constant memory), true
+   otherwise.  */
+static bool
+rtx_moveable_p (rtx *loc, enum op_type type)
+{
+  const char *fmt;
+  rtx x = *loc;
+  enum rtx_code code = GET_CODE (x);
+  int i, j;
+
+  code = GET_CODE (x);
+  switch (code)
+    {
+    case CONST:
+    CASE_CONST_ANY:
+    case SYMBOL_REF:
+    case LABEL_REF:
+      return true;
+
+    case PC:
+      return type == OP_IN;
+
+    case CC0:
+      return false;
+
+    case REG:
+      if (x == frame_pointer_rtx)
+	return true;
+      if (HARD_REGISTER_P (x))
+	return false;
+      
+      return true;
+
+    case MEM:
+      if (type == OP_IN && MEM_READONLY_P (x))
+	return rtx_moveable_p (&XEXP (x, 0), OP_IN);
+      return false;
+
+    case SET:
+      return (rtx_moveable_p (&SET_SRC (x), OP_IN)
+	      && rtx_moveable_p (&SET_DEST (x), OP_OUT));
+
+    case STRICT_LOW_PART:
+      return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
+
+    case ZERO_EXTRACT:
+    case SIGN_EXTRACT:
+      return (rtx_moveable_p (&XEXP (x, 0), type)
+	      && rtx_moveable_p (&XEXP (x, 1), OP_IN)
+	      && rtx_moveable_p (&XEXP (x, 2), OP_IN));
+
+    case CLOBBER:
+      return rtx_moveable_p (&SET_DEST (x), OP_OUT);
+
+    case UNSPEC_VOLATILE:
+      /* It is a bad idea to consider insns with such rtl
+	 as moveable ones.  The insn scheduler also considers them as barrier
+	 for a reason.  */
+      return false;
+
+    case ASM_OPERANDS:
+      /* The same is true for volatile asm: it has unknown side effects, it
+         cannot be moved at will.  */
+      if (MEM_VOLATILE_P (x))
+	return false;
+
+    default:
+      break;
+    }
+
+  fmt = GET_RTX_FORMAT (code);
+  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+    {
+      if (fmt[i] == 'e')
+	{
+	  if (!rtx_moveable_p (&XEXP (x, i), type))
+	    return false;
+	}
+      else if (fmt[i] == 'E')
+	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+	  {
+	    if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
+	      return false;
+	  }
+    }
+  return true;
+}
+
+/* A wrapper around dominated_by_p, which uses the information in UID_LUID
+   to give dominance relationships between two insns I1 and I2.  */
+static bool
+insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
+{
+  basic_block bb1 = BLOCK_FOR_INSN (i1);
+  basic_block bb2 = BLOCK_FOR_INSN (i2);
+
+  if (bb1 == bb2)
+    return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
+  return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
+}
+
+/* Record the range of register numbers added by find_moveable_pseudos.  */
+int first_moveable_pseudo, last_moveable_pseudo;
+
+/* These two vectors hold data for every register added by
+   find_movable_pseudos, with index 0 holding data for the
+   first_moveable_pseudo.  */
+/* The original home register.  */
+static vec<rtx> pseudo_replaced_reg;
+
+/* Look for instances where we have an instruction that is known to increase
+   register pressure, and whose result is not used immediately.  If it is
+   possible to move the instruction downwards to just before its first use,
+   split its lifetime into two ranges.  We create a new pseudo to compute the
+   value, and emit a move instruction just before the first use.  If, after
+   register allocation, the new pseudo remains unallocated, the function
+   move_unallocated_pseudos then deletes the move instruction and places
+   the computation just before the first use.
+
+   Such a move is safe and profitable if all the input registers remain live
+   and unchanged between the original computation and its first use.  In such
+   a situation, the computation is known to increase register pressure, and
+   moving it is known to at least not worsen it.
+
+   We restrict moves to only those cases where a register remains unallocated,
+   in order to avoid interfering too much with the instruction schedule.  As
+   an exception, we may move insns which only modify their input register
+   (typically induction variables), as this increases the freedom for our
+   intended transformation, and does not limit the second instruction
+   scheduler pass.  */
+   
 static void
-init_reg_equiv_memory_loc (void)
+find_moveable_pseudos (void)
 {
-  max_regno = max_reg_num ();
-
-  /* And the reg_equiv_memory_loc array.  */
-  VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
-  memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
-	  sizeof (rtx) * max_regno);
-  reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
+  unsigned i;
+  int max_regs = max_reg_num ();
+  int max_uid = get_max_uid ();
+  basic_block bb;
+  int *uid_luid = XNEWVEC (int, max_uid);
+  rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
+  /* A set of registers which are live but not modified throughout a block.  */
+  bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
+					 last_basic_block_for_fn (cfun));
+  /* A set of registers which only exist in a given basic block.  */
+  bitmap_head *bb_local = XNEWVEC (bitmap_head,
+				   last_basic_block_for_fn (cfun));
+  /* A set of registers which are set once, in an instruction that can be
+     moved freely downwards, but are otherwise transparent to a block.  */
+  bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
+					       last_basic_block_for_fn (cfun));
+  auto_bitmap live, used, set, interesting, unusable_as_input;
+  bitmap_iterator bi;
+
+  first_moveable_pseudo = max_regs;
+  pseudo_replaced_reg.release ();
+  pseudo_replaced_reg.safe_grow_cleared (max_regs);
+
+  df_analyze ();
+  calculate_dominance_info (CDI_DOMINATORS);
+
+  i = 0;
+  FOR_EACH_BB_FN (bb, cfun)
+    {
+      rtx_insn *insn;
+      bitmap transp = bb_transp_live + bb->index;
+      bitmap moveable = bb_moveable_reg_sets + bb->index;
+      bitmap local = bb_local + bb->index;
+
+      bitmap_initialize (local, 0);
+      bitmap_initialize (transp, 0);
+      bitmap_initialize (moveable, 0);
+      bitmap_copy (live, df_get_live_out (bb));
+      bitmap_and_into (live, df_get_live_in (bb));
+      bitmap_copy (transp, live);
+      bitmap_clear (moveable);
+      bitmap_clear (live);
+      bitmap_clear (used);
+      bitmap_clear (set);
+      FOR_BB_INSNS (bb, insn)
+	if (NONDEBUG_INSN_P (insn))
+	  {
+	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
+	    df_ref def, use;
+
+	    uid_luid[INSN_UID (insn)] = i++;
+	    
+	    def = df_single_def (insn_info);
+	    use = df_single_use (insn_info);
+	    if (use
+		&& def
+		&& DF_REF_REGNO (use) == DF_REF_REGNO (def)
+		&& !bitmap_bit_p (set, DF_REF_REGNO (use))
+		&& rtx_moveable_p (&PATTERN (insn), OP_IN))
+	      {
+		unsigned regno = DF_REF_REGNO (use);
+		bitmap_set_bit (moveable, regno);
+		bitmap_set_bit (set, regno);
+		bitmap_set_bit (used, regno);
+		bitmap_clear_bit (transp, regno);
+		continue;
+	      }
+	    FOR_EACH_INSN_INFO_USE (use, insn_info)
+	      {
+		unsigned regno = DF_REF_REGNO (use);
+		bitmap_set_bit (used, regno);
+		if (bitmap_clear_bit (moveable, regno))
+		  bitmap_clear_bit (transp, regno);
+	      }
+
+	    FOR_EACH_INSN_INFO_DEF (def, insn_info)
+	      {
+		unsigned regno = DF_REF_REGNO (def);
+		bitmap_set_bit (set, regno);
+		bitmap_clear_bit (transp, regno);
+		bitmap_clear_bit (moveable, regno);
+	      }
+	  }
+    }
+
+  FOR_EACH_BB_FN (bb, cfun)
+    {
+      bitmap local = bb_local + bb->index;
+      rtx_insn *insn;
+
+      FOR_BB_INSNS (bb, insn)
+	if (NONDEBUG_INSN_P (insn))
+	  {
+	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
+	    rtx_insn *def_insn;
+	    rtx closest_use, note;
+	    df_ref def, use;
+	    unsigned regno;
+	    bool all_dominated, all_local;
+	    machine_mode mode;
+
+	    def = df_single_def (insn_info);
+	    /* There must be exactly one def in this insn.  */
+	    if (!def || !single_set (insn))
+	      continue;
+	    /* This must be the only definition of the reg.  We also limit
+	       which modes we deal with so that we can assume we can generate
+	       move instructions.  */
+	    regno = DF_REF_REGNO (def);
+	    mode = GET_MODE (DF_REF_REG (def));
+	    if (DF_REG_DEF_COUNT (regno) != 1
+		|| !DF_REF_INSN_INFO (def)
+		|| HARD_REGISTER_NUM_P (regno)
+		|| DF_REG_EQ_USE_COUNT (regno) > 0
+		|| (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
+	      continue;
+	    def_insn = DF_REF_INSN (def);
+
+	    for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
+	      if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
+		break;
+		
+	    if (note)
+	      {
+		if (dump_file)
+		  fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
+			   regno);
+		bitmap_set_bit (unusable_as_input, regno);
+		continue;
+	      }
+
+	    use = DF_REG_USE_CHAIN (regno);
+	    all_dominated = true;
+	    all_local = true;
+	    closest_use = NULL_RTX;
+	    for (; use; use = DF_REF_NEXT_REG (use))
+	      {
+		rtx_insn *insn;
+		if (!DF_REF_INSN_INFO (use))
+		  {
+		    all_dominated = false;
+		    all_local = false;
+		    break;
+		  }
+		insn = DF_REF_INSN (use);
+		if (DEBUG_INSN_P (insn))
+		  continue;
+		if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
+		  all_local = false;
+		if (!insn_dominated_by_p (insn, def_insn, uid_luid))
+		  all_dominated = false;
+		if (closest_use != insn && closest_use != const0_rtx)
+		  {
+		    if (closest_use == NULL_RTX)
+		      closest_use = insn;
+		    else if (insn_dominated_by_p (closest_use, insn, uid_luid))
+		      closest_use = insn;
+		    else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
+		      closest_use = const0_rtx;
+		  }
+	      }
+	    if (!all_dominated)
+	      {
+		if (dump_file)
+		  fprintf (dump_file, "Reg %d not all uses dominated by set\n",
+			   regno);
+		continue;
+	      }
+	    if (all_local)
+	      bitmap_set_bit (local, regno);
+	    if (closest_use == const0_rtx || closest_use == NULL
+		|| next_nonnote_nondebug_insn (def_insn) == closest_use)
+	      {
+		if (dump_file)
+		  fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
+			   closest_use == const0_rtx || closest_use == NULL
+			   ? " (no unique first use)" : "");
+		continue;
+	      }
+	    if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
+	      {
+		if (dump_file)
+		  fprintf (dump_file, "Reg %d: closest user uses cc0\n",
+			   regno);
+		continue;
+	      }
+
+	    bitmap_set_bit (interesting, regno);
+	    /* If we get here, we know closest_use is a non-NULL insn
+	       (as opposed to const_0_rtx).  */
+	    closest_uses[regno] = as_a <rtx_insn *> (closest_use);
+
+	    if (dump_file && (all_local || all_dominated))
+	      {
+		fprintf (dump_file, "Reg %u:", regno);
+		if (all_local)
+		  fprintf (dump_file, " local to bb %d", bb->index);
+		if (all_dominated)
+		  fprintf (dump_file, " def dominates all uses");
+		if (closest_use != const0_rtx)
+		  fprintf (dump_file, " has unique first use");
+		fputs ("\n", dump_file);
+	      }
+	  }
+    }
+
+  EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
+    {
+      df_ref def = DF_REG_DEF_CHAIN (i);
+      rtx_insn *def_insn = DF_REF_INSN (def);
+      basic_block def_block = BLOCK_FOR_INSN (def_insn);
+      bitmap def_bb_local = bb_local + def_block->index;
+      bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
+      bitmap def_bb_transp = bb_transp_live + def_block->index;
+      bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
+      rtx_insn *use_insn = closest_uses[i];
+      df_ref use;
+      bool all_ok = true;
+      bool all_transp = true;
+
+      if (!REG_P (DF_REF_REG (def)))
+	continue;
+
+      if (!local_to_bb_p)
+	{
+	  if (dump_file)
+	    fprintf (dump_file, "Reg %u not local to one basic block\n",
+		     i);
+	  continue;
+	}
+      if (reg_equiv_init (i) != NULL_RTX)
+	{
+	  if (dump_file)
+	    fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
+		     i);
+	  continue;
+	}
+      if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
+	{
+	  if (dump_file)
+	    fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
+		     INSN_UID (def_insn), i);
+	  continue;
+	}
+      if (dump_file)
+	fprintf (dump_file, "Examining insn %d, def for %d\n",
+		 INSN_UID (def_insn), i);
+      FOR_EACH_INSN_USE (use, def_insn)
+	{
+	  unsigned regno = DF_REF_REGNO (use);
+	  if (bitmap_bit_p (unusable_as_input, regno))
+	    {
+	      all_ok = false;
+	      if (dump_file)
+		fprintf (dump_file, "  found unusable input reg %u.\n", regno);
+	      break;
+	    }
+	  if (!bitmap_bit_p (def_bb_transp, regno))
+	    {
+	      if (bitmap_bit_p (def_bb_moveable, regno)
+		  && !control_flow_insn_p (use_insn)
+		  && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
+		{
+		  if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
+		    {
+		      rtx_insn *x = NEXT_INSN (def_insn);
+		      while (!modified_in_p (DF_REF_REG (use), x))
+			{
+			  gcc_assert (x != use_insn);
+			  x = NEXT_INSN (x);
+			}
+		      if (dump_file)
+			fprintf (dump_file, "  input reg %u modified but insn %d moveable\n",
+				 regno, INSN_UID (x));
+		      emit_insn_after (PATTERN (x), use_insn);
+		      set_insn_deleted (x);
+		    }
+		  else
+		    {
+		      if (dump_file)
+			fprintf (dump_file, "  input reg %u modified between def and use\n",
+				 regno);
+		      all_transp = false;
+		    }
+		}
+	      else
+		all_transp = false;
+	    }
+	}
+      if (!all_ok)
+	continue;
+      if (!dbg_cnt (ira_move))
+	break;
+      if (dump_file)
+	fprintf (dump_file, "  all ok%s\n", all_transp ? " and transp" : "");
+
+      if (all_transp)
+	{
+	  rtx def_reg = DF_REF_REG (def);
+	  rtx newreg = ira_create_new_reg (def_reg);
+	  if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
+	    {
+	      unsigned nregno = REGNO (newreg);
+	      emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
+	      nregno -= max_regs;
+	      pseudo_replaced_reg[nregno] = def_reg;
+	    }
+	}
+    }
+  
+  FOR_EACH_BB_FN (bb, cfun)
+    {
+      bitmap_clear (bb_local + bb->index);
+      bitmap_clear (bb_transp_live + bb->index);
+      bitmap_clear (bb_moveable_reg_sets + bb->index);
+    }
+  free (uid_luid);
+  free (closest_uses);
+  free (bb_local);
+  free (bb_transp_live);
+  free (bb_moveable_reg_sets);
+
+  last_moveable_pseudo = max_reg_num ();
+
+  fix_reg_equiv_init ();
+  expand_reg_info ();
+  regstat_free_n_sets_and_refs ();
+  regstat_free_ri ();
+  regstat_init_n_sets_and_refs ();
+  regstat_compute_ri ();
+  free_dominance_info (CDI_DOMINATORS);
 }
 
-/* All natural loops.  */
-struct loops ira_loops;
+/* If SET pattern SET is an assignment from a hard register to a pseudo which
+   is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
+   the destination.  Otherwise return NULL.  */
+
+static rtx
+interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
+{
+  rtx src = SET_SRC (set);
+  rtx dest = SET_DEST (set);
+  if (!REG_P (src) || !HARD_REGISTER_P (src)
+      || !REG_P (dest) || HARD_REGISTER_P (dest)
+      || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
+    return NULL;
+  return dest;
+}
+
+/* If insn is interesting for parameter range-splitting shrink-wrapping
+   preparation, i.e. it is a single set from a hard register to a pseudo, which
+   is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
+   parallel statement with only one such statement, return the destination.
+   Otherwise return NULL.  */
+
+static rtx
+interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
+{
+  if (!INSN_P (insn))
+    return NULL;
+  rtx pat = PATTERN (insn);
+  if (GET_CODE (pat) == SET)
+    return interesting_dest_for_shprep_1 (pat, call_dom);
+
+  if (GET_CODE (pat) != PARALLEL)
+    return NULL;
+  rtx ret = NULL;
+  for (int i = 0; i < XVECLEN (pat, 0); i++)
+    {
+      rtx sub = XVECEXP (pat, 0, i);
+      if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
+	continue;
+      if (GET_CODE (sub) != SET
+	  || side_effects_p (sub))
+	return NULL;
+      rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
+      if (dest && ret)
+	return NULL;
+      if (dest)
+	ret = dest;
+    }
+  return ret;
+}
+
+/* Split live ranges of pseudos that are loaded from hard registers in the
+   first BB in a BB that dominates all non-sibling call if such a BB can be
+   found and is not in a loop.  Return true if the function has made any
+   changes.  */
+
+static bool
+split_live_ranges_for_shrink_wrap (void)
+{
+  basic_block bb, call_dom = NULL;
+  basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
+  rtx_insn *insn, *last_interesting_insn = NULL;
+  auto_bitmap need_new, reachable;
+  vec<basic_block> queue;
+
+  if (!SHRINK_WRAPPING_ENABLED)
+    return false;
+
+  queue.create (n_basic_blocks_for_fn (cfun));
+
+  FOR_EACH_BB_FN (bb, cfun)
+    FOR_BB_INSNS (bb, insn)
+      if (CALL_P (insn) && !SIBLING_CALL_P (insn))
+	{
+	  if (bb == first)
+	    {
+	      queue.release ();
+	      return false;
+	    }
+
+	  bitmap_set_bit (need_new, bb->index);
+	  bitmap_set_bit (reachable, bb->index);
+	  queue.quick_push (bb);
+	  break;
+	}
+
+  if (queue.is_empty ())
+    {
+      queue.release ();
+      return false;
+    }
+
+  while (!queue.is_empty ())
+    {
+      edge e;
+      edge_iterator ei;
+
+      bb = queue.pop ();
+      FOR_EACH_EDGE (e, ei, bb->succs)
+	if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
+	    && bitmap_set_bit (reachable, e->dest->index))
+	  queue.quick_push (e->dest);
+    }
+  queue.release ();
+
+  FOR_BB_INSNS (first, insn)
+    {
+      rtx dest = interesting_dest_for_shprep (insn, NULL);
+      if (!dest)
+	continue;
+
+      if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
+	return false;
+
+      for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
+	   use;
+	   use = DF_REF_NEXT_REG (use))
+	{
+	  int ubbi = DF_REF_BB (use)->index;
+	  if (bitmap_bit_p (reachable, ubbi))
+	    bitmap_set_bit (need_new, ubbi);
+	}
+      last_interesting_insn = insn;
+    }
+
+  if (!last_interesting_insn)
+    return false;
+
+  call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
+  if (call_dom == first)
+    return false;
+
+  loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
+  while (bb_loop_depth (call_dom) > 0)
+    call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
+  loop_optimizer_finalize ();
+
+  if (call_dom == first)
+    return false;
+
+  calculate_dominance_info (CDI_POST_DOMINATORS);
+  if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
+    {
+      free_dominance_info (CDI_POST_DOMINATORS);
+      return false;
+    }
+  free_dominance_info (CDI_POST_DOMINATORS);
+
+  if (dump_file)
+    fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
+	     call_dom->index);
+
+  bool ret = false;
+  FOR_BB_INSNS (first, insn)
+    {
+      rtx dest = interesting_dest_for_shprep (insn, call_dom);
+      if (!dest || dest == pic_offset_table_rtx)
+	continue;
+
+      bool need_newreg = false;
+      df_ref use, next;
+      for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
+	{
+	  rtx_insn *uin = DF_REF_INSN (use);
+	  next = DF_REF_NEXT_REG (use);
+
+	  if (DEBUG_INSN_P (uin))
+	    continue;
+
+	  basic_block ubb = BLOCK_FOR_INSN (uin);
+	  if (ubb == call_dom
+	      || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
+	    {
+	      need_newreg = true;
+	      break;
+	    }
+	}
+
+      if (need_newreg)
+	{
+	  rtx newreg = ira_create_new_reg (dest);
+
+	  for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
+	    {
+	      rtx_insn *uin = DF_REF_INSN (use);
+	      next = DF_REF_NEXT_REG (use);
+
+	      basic_block ubb = BLOCK_FOR_INSN (uin);
+	      if (ubb == call_dom
+		  || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
+		validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
+	    }
+
+	  rtx_insn *new_move = gen_move_insn (newreg, dest);
+	  emit_insn_after (new_move, bb_note (call_dom));
+	  if (dump_file)
+	    {
+	      fprintf (dump_file, "Split live-range of register ");
+	      print_rtl_single (dump_file, dest);
+	    }
+	  ret = true;
+	}
+
+      if (insn == last_interesting_insn)
+	break;
+    }
+  apply_change_group ();
+  return ret;
+}
+
+/* Perform the second half of the transformation started in
+   find_moveable_pseudos.  We look for instances where the newly introduced
+   pseudo remains unallocated, and remove it by moving the definition to
+   just before its use, replacing the move instruction generated by
+   find_moveable_pseudos.  */
+static void
+move_unallocated_pseudos (void)
+{
+  int i;
+  for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
+    if (reg_renumber[i] < 0)
+      {
+	int idx = i - first_moveable_pseudo;
+	rtx other_reg = pseudo_replaced_reg[idx];
+	rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
+	/* The use must follow all definitions of OTHER_REG, so we can
+	   insert the new definition immediately after any of them.  */
+	df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
+	rtx_insn *move_insn = DF_REF_INSN (other_def);
+	rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
+	rtx set;
+	int success;
+
+	if (dump_file)
+	  fprintf (dump_file, "moving def of %d (insn %d now) ",
+		   REGNO (other_reg), INSN_UID (def_insn));
+
+	delete_insn (move_insn);
+	while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
+	  delete_insn (DF_REF_INSN (other_def));
+	delete_insn (def_insn);
+
+	set = single_set (newinsn);
+	success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
+	gcc_assert (success);
+	if (dump_file)
+	  fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
+		   INSN_UID (newinsn), i);
+	SET_REG_N_REFS (i, 0);
+      }
+}
+
+/* If the backend knows where to allocate pseudos for hard
+   register initial values, register these allocations now.  */
+static void
+allocate_initial_values (void)
+{
+  if (targetm.allocate_initial_value)
+    {
+      rtx hreg, preg, x;
+      int i, regno;
+
+      for (i = 0; HARD_REGISTER_NUM_P (i); i++)
+	{
+	  if (! initial_value_entry (i, &hreg, &preg))
+	    break;
+
+	  x = targetm.allocate_initial_value (hreg);
+	  regno = REGNO (preg);
+	  if (x && REG_N_SETS (regno) <= 1)
+	    {
+	      if (MEM_P (x))
+		reg_equiv_memory_loc (regno) = x;
+	      else
+		{
+		  basic_block bb;
+		  int new_regno;
+
+		  gcc_assert (REG_P (x));
+		  new_regno = REGNO (x);
+		  reg_renumber[regno] = new_regno;
+		  /* Poke the regno right into regno_reg_rtx so that even
+		     fixed regs are accepted.  */
+		  SET_REGNO (preg, new_regno);
+		  /* Update global register liveness information.  */
+		  FOR_EACH_BB_FN (bb, cfun)
+		    {
+		      if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
+			SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
+		      if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
+			SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
+		    }
+		}
+	    }
+	}
+
+      gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
+						  &hreg, &preg));
+    }
+}
+
+
+/* True when we use LRA instead of reload pass for the current
+   function.  */
+bool ira_use_lra_p;
 
 /* True if we have allocno conflicts.  It is false for non-optimized
    mode or when the conflict table is too big.  */
 bool ira_conflicts_p;
 
+/* Saved between IRA and reload.  */
+static int saved_flag_ira_share_spill_slots;
+
 /* This is the main entry of IRA.  */
 static void
 ira (FILE *f)
 {
-  int overall_cost_before, allocated_reg_info_size;
   bool loops_p;
-  int max_regno_before_ira, ira_max_point_before_emit;
-  int rebuild_p;
-  int saved_flag_ira_share_spill_slots;
-  basic_block bb;
-
-  timevar_push (TV_IRA);
-
-  if (flag_caller_saves)
+  int ira_max_point_before_emit;
+  bool saved_flag_caller_saves = flag_caller_saves;
+  enum ira_region saved_flag_ira_region = flag_ira_region;
+
+  clear_bb_flags ();
+
+  /* Determine if the current function is a leaf before running IRA
+     since this can impact optimizations done by the prologue and
+     epilogue thus changing register elimination offsets.
+     Other target callbacks may use crtl->is_leaf too, including
+     SHRINK_WRAPPING_ENABLED, so initialize as early as possible.  */
+  crtl->is_leaf = leaf_function_p ();
+
+  /* Perform target specific PIC register initialization.  */
+  targetm.init_pic_reg ();
+
+  ira_conflicts_p = optimize > 0;
+
+  /* If there are too many pseudos and/or basic blocks (e.g. 10K
+     pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
+     use simplified and faster algorithms in LRA.  */
+  lra_simple_p
+    = (ira_use_lra_p
+       && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
+  if (lra_simple_p)
+    {
+      /* It permits to skip live range splitting in LRA.  */
+      flag_caller_saves = false;
+      /* There is no sense to do regional allocation when we use
+	 simplified LRA.  */
+      flag_ira_region = IRA_REGION_ONE;
+      ira_conflicts_p = false;
+    }
+
+#ifndef IRA_NO_OBSTACK
+  gcc_obstack_init (&ira_obstack);
+#endif
+  bitmap_obstack_initialize (&ira_bitmap_obstack);
+
+  /* LRA uses its own infrastructure to handle caller save registers.  */
+  if (flag_caller_saves && !ira_use_lra_p)
     init_caller_save ();
 
   if (flag_ira_verbose < 10)
@@ -3098,21 +5179,41 @@
       ira_dump_file = stderr;
     }
 
-  ira_conflicts_p = optimize > 0;
   setup_prohibited_mode_move_regs ();
-
+  decrease_live_ranges_number ();
   df_note_add_problem ();
 
-  if (optimize == 1)
+  /* DF_LIVE can't be used in the register allocator, too many other
+     parts of the compiler depend on using the "classic" liveness
+     interpretation of the DF_LR problem.  See PR38711.
+     Remove the problem, so that we don't spend time updating it in
+     any of the df_analyze() calls during IRA/LRA.  */
+  if (optimize > 1)
+    df_remove_problem (df_live);
+  gcc_checking_assert (df_live == NULL);
+
+  if (flag_checking)
+    df->changeable_flags |= DF_VERIFY_SCHEDULED;
+
+  df_analyze ();
+
+  init_reg_equiv ();
+  if (ira_conflicts_p)
     {
-      df_live_add_problem ();
-      df_live_set_all_dirty ();
+      calculate_dominance_info (CDI_DOMINATORS);
+
+      if (split_live_ranges_for_shrink_wrap ())
+	df_analyze ();
+
+      free_dominance_info (CDI_DOMINATORS);
     }
-#ifdef ENABLE_CHECKING
-  df->changeable_flags |= DF_VERIFY_SCHEDULED;
-#endif
-  df_analyze ();
+
   df_clear_flags (DF_NO_INSN_RESCAN);
+
+  indirect_jump_optimize ();
+  if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
+    df_analyze ();
+
   regstat_init_n_sets_and_refs ();
   regstat_compute_ri ();
 
@@ -3122,41 +5223,44 @@
   if (warn_clobbered)
     generate_setjmp_warnings ();
 
-  /* Determine if the current function is a leaf before running IRA
-     since this can impact optimizations done by the prologue and
-     epilogue thus changing register elimination offsets.  */
-  current_function_is_leaf = leaf_function_p ();
-
   if (resize_reg_info () && flag_ira_loop_pressure)
-    ira_set_pseudo_classes (ira_dump_file);
-
-  rebuild_p = update_equiv_regs ();
-
-#ifndef IRA_NO_OBSTACK
-  gcc_obstack_init (&ira_obstack);
-#endif
-  bitmap_obstack_initialize (&ira_bitmap_obstack);
+    ira_set_pseudo_classes (true, ira_dump_file);
+
+  init_alias_analysis ();
+  loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
+  reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
+  update_equiv_regs ();
+
+  /* Don't move insns if live range shrinkage or register
+     pressure-sensitive scheduling were done because it will not
+     improve allocation but likely worsen insn scheduling.  */
+  if (optimize
+      && !flag_live_range_shrinkage
+      && !(flag_sched_pressure && flag_schedule_insns))
+    combine_and_move_insns ();
+
+  /* Gather additional equivalences with memory.  */
   if (optimize)
-    {
-      max_regno = max_reg_num ();
-      ira_reg_equiv_len = max_regno;
-      ira_reg_equiv_invariant_p
-	= (bool *) ira_allocate (max_regno * sizeof (bool));
-      memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
-      ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
-      memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
-      find_reg_equiv_invariant_const ();
-      if (rebuild_p)
-	{
-	  timevar_push (TV_JUMP);
-	  rebuild_jump_labels (get_insns ());
-	  if (purge_all_dead_edges ())
-	    delete_unreachable_blocks ();
-	  timevar_pop (TV_JUMP);
-	}
-    }
-
-  max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
+    add_store_equivs ();
+
+  loop_optimizer_finalize ();
+  free_dominance_info (CDI_DOMINATORS);
+  end_alias_analysis ();
+  free (reg_equiv);
+
+  setup_reg_equiv ();
+  grow_reg_equivs ();
+  setup_reg_equiv_init ();
+
+  allocated_reg_info_size = max_reg_num ();
+
+  /* It is not worth to do such improvement when we use a simple
+     allocation because of -O0 usage or because the function is too
+     big.  */
+  if (ira_conflicts_p)
+    find_moveable_pseudos ();
+
+  max_regno_before_ira = max_reg_num ();
   ira_setup_eliminable_regset ();
 
   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
@@ -3164,17 +5268,12 @@
   ira_move_loops_num = ira_additional_jumps_num = 0;
 
   ira_assert (current_loops == NULL);
-  flow_loops_find (&ira_loops);
-  record_loop_exits ();
-  current_loops = &ira_loops;
-
-  init_reg_equiv_memory_loc ();
+  if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
+    loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
 
   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
     fprintf (ira_dump_file, "Building IRA IR\n");
-  loops_p = ira_build (optimize
-		       && (flag_ira_region == IRA_REGION_ALL
-			   || flag_ira_region == IRA_REGION_MIXED));
+  loops_p = ira_build ();
 
   ira_assert (ira_conflicts_p || !loops_p);
 
@@ -3191,52 +5290,85 @@
 
   ira_max_point_before_emit = ira_max_point;
 
+  ira_initiate_emit_data ();
+
   ira_emit (loops_p);
 
+  max_regno = max_reg_num ();
   if (ira_conflicts_p)
     {
-      max_regno = max_reg_num ();
-
       if (! loops_p)
-	ira_initiate_assign ();
+	{
+	  if (! ira_use_lra_p)
+	    ira_initiate_assign ();
+	}
       else
 	{
-	  expand_reg_info (allocated_reg_info_size);
-	  setup_preferred_alternate_classes_for_new_pseudos
-	    (allocated_reg_info_size);
-	  allocated_reg_info_size = max_regno;
-
-	  if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
-	    fprintf (ira_dump_file, "Flattening IR\n");
-	  ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
+	  expand_reg_info ();
+
+	  if (ira_use_lra_p)
+	    {
+	      ira_allocno_t a;
+	      ira_allocno_iterator ai;
+
+	      FOR_EACH_ALLOCNO (a, ai)
+                {
+                  int old_regno = ALLOCNO_REGNO (a);
+                  int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
+
+                  ALLOCNO_REGNO (a) = new_regno;
+
+                  if (old_regno != new_regno)
+                    setup_reg_classes (new_regno, reg_preferred_class (old_regno),
+                                       reg_alternate_class (old_regno),
+                                       reg_allocno_class (old_regno));
+                }
+	    }
+	  else
+	    {
+	      if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
+		fprintf (ira_dump_file, "Flattening IR\n");
+	      ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
+	    }
 	  /* New insns were generated: add notes and recalculate live
 	     info.  */
 	  df_analyze ();
 
-	  flow_loops_find (&ira_loops);
-	  record_loop_exits ();
-	  current_loops = &ira_loops;
-
-	  setup_allocno_assignment_flags ();
-	  ira_initiate_assign ();
-	  ira_reassign_conflict_allocnos (max_regno);
+	  /* ??? Rebuild the loop tree, but why?  Does the loop tree
+	     change if new insns were generated?  Can that be handled
+	     by updating the loop tree incrementally?  */
+	  loop_optimizer_finalize ();
+	  free_dominance_info (CDI_DOMINATORS);
+	  loop_optimizer_init (AVOID_CFG_MODIFICATIONS
+			       | LOOPS_HAVE_RECORDED_EXITS);
+
+	  if (! ira_use_lra_p)
+	    {
+	      setup_allocno_assignment_flags ();
+	      ira_initiate_assign ();
+	      ira_reassign_conflict_allocnos (max_regno);
+	    }
 	}
     }
 
+  ira_finish_emit_data ();
+
   setup_reg_renumber ();
 
   calculate_allocation_cost ();
 
 #ifdef ENABLE_IRA_CHECKING
-  if (ira_conflicts_p)
+  if (ira_conflicts_p && ! ira_use_lra_p)
+    /* Opposite to reload pass, LRA does not use any conflict info
+       from IRA.  We don't rebuild conflict info for LRA (through
+       ira_flattening call) and can not use the check here.  We could
+       rebuild this info for LRA in the check mode but there is a risk
+       that code generated with the check and without it will be a bit
+       different.  Calling ira_flattening in any mode would be a
+       wasting CPU time.  So do not check the allocation for LRA.  */
     check_allocation ();
 #endif
 
-  if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
-    df_analyze ();
-
-  init_reg_equiv_memory_loc ();
-
   if (max_regno != max_regno_before_ira)
     {
       regstat_free_n_sets_and_refs ();
@@ -3245,68 +5377,124 @@
       regstat_compute_ri ();
     }
 
-  allocate_initial_values (reg_equiv_memory_loc);
-
   overall_cost_before = ira_overall_cost;
-  if (ira_conflicts_p)
+  if (! ira_conflicts_p)
+    grow_reg_equivs ();
+  else
     {
       fix_reg_equiv_init ();
 
 #ifdef ENABLE_IRA_CHECKING
       print_redundant_copies ();
 #endif
-
-      ira_spilled_reg_stack_slots_num = 0;
-      ira_spilled_reg_stack_slots
-	= ((struct ira_spilled_reg_stack_slot *)
-	   ira_allocate (max_regno
-			 * sizeof (struct ira_spilled_reg_stack_slot)));
-      memset (ira_spilled_reg_stack_slots, 0,
-	      max_regno * sizeof (struct ira_spilled_reg_stack_slot));
+      if (! ira_use_lra_p)
+	{
+	  ira_spilled_reg_stack_slots_num = 0;
+	  ira_spilled_reg_stack_slots
+	    = ((struct ira_spilled_reg_stack_slot *)
+	       ira_allocate (max_regno
+			     * sizeof (struct ira_spilled_reg_stack_slot)));
+	  memset (ira_spilled_reg_stack_slots, 0,
+		  max_regno * sizeof (struct ira_spilled_reg_stack_slot));
+	}
     }
-
-  timevar_pop (TV_IRA);
+  allocate_initial_values ();
+
+  /* See comment for find_moveable_pseudos call.  */
+  if (ira_conflicts_p)
+    move_unallocated_pseudos ();
+
+  /* Restore original values.  */
+  if (lra_simple_p)
+    {
+      flag_caller_saves = saved_flag_caller_saves;
+      flag_ira_region = saved_flag_ira_region;
+    }
+}
+
+static void
+do_reload (void)
+{
+  basic_block bb;
+  bool need_dce;
+  unsigned pic_offset_table_regno = INVALID_REGNUM;
+
+  if (flag_ira_verbose < 10)
+    ira_dump_file = dump_file;
+
+  /* If pic_offset_table_rtx is a pseudo register, then keep it so
+     after reload to avoid possible wrong usages of hard reg assigned
+     to it.  */
+  if (pic_offset_table_rtx
+      && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
+    pic_offset_table_regno = REGNO (pic_offset_table_rtx);
 
   timevar_push (TV_RELOAD);
-  df_set_flags (DF_NO_INSN_RESCAN);
-  build_insn_chain ();
-
-  reload_completed = !reload (get_insns (), ira_conflicts_p);
+  if (ira_use_lra_p)
+    {
+      if (current_loops != NULL)
+	{
+	  loop_optimizer_finalize ();
+	  free_dominance_info (CDI_DOMINATORS);
+	}
+      FOR_ALL_BB_FN (bb, cfun)
+	bb->loop_father = NULL;
+      current_loops = NULL;
+
+      ira_destroy ();
+
+      lra (ira_dump_file);
+      /* ???!!! Move it before lra () when we use ira_reg_equiv in
+	 LRA.  */
+      vec_free (reg_equivs);
+      reg_equivs = NULL;
+      need_dce = false;
+    }
+  else
+    {
+      df_set_flags (DF_NO_INSN_RESCAN);
+      build_insn_chain ();
+
+      need_dce = reload (get_insns (), ira_conflicts_p);
+    }
 
   timevar_pop (TV_RELOAD);
 
   timevar_push (TV_IRA);
 
-  if (ira_conflicts_p)
+  if (ira_conflicts_p && ! ira_use_lra_p)
     {
       ira_free (ira_spilled_reg_stack_slots);
-
       ira_finish_assign ();
-
     }
+
   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
       && overall_cost_before != ira_overall_cost)
-    fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
-  ira_destroy ();
+    fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
+	     ira_overall_cost);
 
   flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
 
-  flow_loops_free (&ira_loops);
-  free_dominance_info (CDI_DOMINATORS);
-  FOR_ALL_BB (bb)
-    bb->loop_father = NULL;
-  current_loops = NULL;
-
-  regstat_free_ri ();
-  regstat_free_n_sets_and_refs ();
+  if (! ira_use_lra_p)
+    {
+      ira_destroy ();
+      if (current_loops != NULL)
+	{
+	  loop_optimizer_finalize ();
+	  free_dominance_info (CDI_DOMINATORS);
+	}
+      FOR_ALL_BB_FN (bb, cfun)
+	bb->loop_father = NULL;
+      current_loops = NULL;
+      
+      regstat_free_ri ();
+      regstat_free_n_sets_and_refs ();
+    }
 
   if (optimize)
-    {
-      cleanup_cfg (CLEANUP_EXPENSIVE);
-
-      ira_free (ira_reg_equiv_invariant_p);
-      ira_free (ira_reg_equiv_const);
-    }
+    cleanup_cfg (CLEANUP_EXPENSIVE);
+
+  finish_reg_equiv ();
 
   bitmap_obstack_release (&ira_bitmap_obstack);
 #ifndef IRA_NO_OBSTACK
@@ -3314,53 +5502,141 @@
 #endif
 
   /* The code after the reload has changed so much that at this point
-     we might as well just rescan everything.  Not that
+     we might as well just rescan everything.  Note that
      df_rescan_all_insns is not going to help here because it does not
      touch the artificial uses and defs.  */
   df_finish_pass (true);
-  if (optimize > 1)
-    df_live_add_problem ();
   df_scan_alloc (NULL);
   df_scan_blocks ();
 
+  if (optimize > 1)
+    {
+      df_live_add_problem ();
+      df_live_set_all_dirty ();
+    }
+
   if (optimize)
     df_analyze ();
 
+  if (need_dce && optimize)
+    run_fast_dce ();
+
+  /* Diagnose uses of the hard frame pointer when it is used as a global
+     register.  Often we can get away with letting the user appropriate
+     the frame pointer, but we should let them know when code generation
+     makes that impossible.  */
+  if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
+    {
+      tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
+      error_at (DECL_SOURCE_LOCATION (current_function_decl),
+                "frame pointer required, but reserved");
+      inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
+    }
+
+  /* If we are doing generic stack checking, give a warning if this
+     function's frame size is larger than we expect.  */
+  if (flag_stack_check == GENERIC_STACK_CHECK)
+    {
+      HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
+
+      for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+	if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
+	  size += UNITS_PER_WORD;
+
+      if (size > STACK_CHECK_MAX_FRAME_SIZE)
+	warning (0, "frame size too large for reliable stack checking");
+    }
+
+  if (pic_offset_table_regno != INVALID_REGNUM)
+    pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
+
   timevar_pop (TV_IRA);
 }
-
 
-
-static bool
-gate_ira (void)
+/* Run the integrated register allocator.  */
+
+namespace {
+
+const pass_data pass_data_ira =
+{
+  RTL_PASS, /* type */
+  "ira", /* name */
+  OPTGROUP_NONE, /* optinfo_flags */
+  TV_IRA, /* tv_id */
+  0, /* properties_required */
+  0, /* properties_provided */
+  0, /* properties_destroyed */
+  0, /* todo_flags_start */
+  TODO_do_not_ggc_collect, /* todo_flags_finish */
+};
+
+class pass_ira : public rtl_opt_pass
 {
-  return true;
-}
-
-/* Run the integrated register allocator.  */
-static unsigned int
-rest_of_handle_ira (void)
+public:
+  pass_ira (gcc::context *ctxt)
+    : rtl_opt_pass (pass_data_ira, ctxt)
+  {}
+
+  /* opt_pass methods: */
+  virtual bool gate (function *)
+    {
+      return !targetm.no_register_allocation;
+    }
+  virtual unsigned int execute (function *)
+    {
+      ira (dump_file);
+      return 0;
+    }
+
+}; // class pass_ira
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_ira (gcc::context *ctxt)
 {
-  ira (dump_file);
-  return 0;
+  return new pass_ira (ctxt);
 }
 
-struct rtl_opt_pass pass_ira =
+namespace {
+
+const pass_data pass_data_reload =
+{
+  RTL_PASS, /* type */
+  "reload", /* name */
+  OPTGROUP_NONE, /* optinfo_flags */
+  TV_RELOAD, /* tv_id */
+  0, /* properties_required */
+  0, /* properties_provided */
+  0, /* properties_destroyed */
+  0, /* todo_flags_start */
+  0, /* todo_flags_finish */
+};
+
+class pass_reload : public rtl_opt_pass
 {
- {
-  RTL_PASS,
-  "ira",                                /* name */
-  gate_ira,                             /* gate */
-  rest_of_handle_ira,		        /* execute */
-  NULL,                                 /* sub */
-  NULL,                                 /* next */
-  0,                                    /* static_pass_number */
-  TV_NONE,	                        /* tv_id */
-  0,                                    /* properties_required */
-  0,                                    /* properties_provided */
-  0,                                    /* properties_destroyed */
-  0,                                    /* todo_flags_start */
-  TODO_dump_func |
-  TODO_ggc_collect                      /* todo_flags_finish */
- }
-};
+public:
+  pass_reload (gcc::context *ctxt)
+    : rtl_opt_pass (pass_data_reload, ctxt)
+  {}
+
+  /* opt_pass methods: */
+  virtual bool gate (function *)
+    {
+      return !targetm.no_register_allocation;
+    }
+  virtual unsigned int execute (function *)
+    {
+      do_reload ();
+      return 0;
+    }
+
+}; // class pass_reload
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_reload (gcc::context *ctxt)
+{
+  return new pass_reload (ctxt);
+}