diff libgcc/soft-fp/op-1.h @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 1830386684a0
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libgcc/soft-fp/op-1.h	Fri Oct 27 22:46:09 2017 +0900
@@ -0,0 +1,369 @@
+/* Software floating-point emulation.
+   Basic one-word fraction declaration and manipulation.
+   Copyright (C) 1997-2016 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+		  Jakub Jelinek (jj@ultra.linux.cz),
+		  David S. Miller (davem@redhat.com) and
+		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   In addition to the permissions in the GNU Lesser General Public
+   License, the Free Software Foundation gives you unlimited
+   permission to link the compiled version of this file into
+   combinations with other programs, and to distribute those
+   combinations without any restriction coming from the use of this
+   file.  (The Lesser General Public License restrictions do apply in
+   other respects; for example, they cover modification of the file,
+   and distribution when not linked into a combine executable.)
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <http://www.gnu.org/licenses/>.  */
+
+#ifndef SOFT_FP_OP_1_H
+#define SOFT_FP_OP_1_H	1
+
+#define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f _FP_ZERO_INIT
+#define _FP_FRAC_COPY_1(D, S)	(D##_f = S##_f)
+#define _FP_FRAC_SET_1(X, I)	(X##_f = I)
+#define _FP_FRAC_HIGH_1(X)	(X##_f)
+#define _FP_FRAC_LOW_1(X)	(X##_f)
+#define _FP_FRAC_WORD_1(X, w)	(X##_f)
+
+#define _FP_FRAC_ADDI_1(X, I)	(X##_f += I)
+#define _FP_FRAC_SLL_1(X, N)			\
+  do						\
+    {						\
+      if (__builtin_constant_p (N) && (N) == 1)	\
+	X##_f += X##_f;				\
+      else					\
+	X##_f <<= (N);				\
+    }						\
+  while (0)
+#define _FP_FRAC_SRL_1(X, N)	(X##_f >>= N)
+
+/* Right shift with sticky-lsb.  */
+#define _FP_FRAC_SRST_1(X, S, N, sz)	__FP_FRAC_SRST_1 (X##_f, S, (N), (sz))
+#define _FP_FRAC_SRS_1(X, N, sz)	__FP_FRAC_SRS_1 (X##_f, (N), (sz))
+
+#define __FP_FRAC_SRST_1(X, S, N, sz)			\
+  do							\
+    {							\
+      S = (__builtin_constant_p (N) && (N) == 1		\
+	   ? X & 1					\
+	   : (X << (_FP_W_TYPE_SIZE - (N))) != 0);	\
+      X = X >> (N);					\
+    }							\
+  while (0)
+
+#define __FP_FRAC_SRS_1(X, N, sz)				\
+  (X = (X >> (N) | (__builtin_constant_p (N) && (N) == 1	\
+		    ? X & 1					\
+		    : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
+
+#define _FP_FRAC_ADD_1(R, X, Y)	(R##_f = X##_f + Y##_f)
+#define _FP_FRAC_SUB_1(R, X, Y)	(R##_f = X##_f - Y##_f)
+#define _FP_FRAC_DEC_1(X, Y)	(X##_f -= Y##_f)
+#define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ ((z), X##_f)
+
+/* Predicates.  */
+#define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE) X##_f < 0)
+#define _FP_FRAC_ZEROP_1(X)	(X##_f == 0)
+#define _FP_FRAC_OVERP_1(fs, X)	(X##_f & _FP_OVERFLOW_##fs)
+#define _FP_FRAC_CLEAR_OVERP_1(fs, X)	(X##_f &= ~_FP_OVERFLOW_##fs)
+#define _FP_FRAC_HIGHBIT_DW_1(fs, X)	(X##_f & _FP_HIGHBIT_DW_##fs)
+#define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f)
+#define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f)
+#define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f)
+
+#define _FP_ZEROFRAC_1		0
+#define _FP_MINFRAC_1		1
+#define _FP_MAXFRAC_1		(~(_FP_WS_TYPE) 0)
+
+/* Unpack the raw bits of a native fp value.  Do not classify or
+   normalize the data.  */
+
+#define _FP_UNPACK_RAW_1(fs, X, val)			\
+  do							\
+    {							\
+      union _FP_UNION_##fs _FP_UNPACK_RAW_1_flo;	\
+      _FP_UNPACK_RAW_1_flo.flt = (val);			\
+							\
+      X##_f = _FP_UNPACK_RAW_1_flo.bits.frac;		\
+      X##_e = _FP_UNPACK_RAW_1_flo.bits.exp;		\
+      X##_s = _FP_UNPACK_RAW_1_flo.bits.sign;		\
+    }							\
+  while (0)
+
+#define _FP_UNPACK_RAW_1_P(fs, X, val)			\
+  do							\
+    {							\
+      union _FP_UNION_##fs *_FP_UNPACK_RAW_1_P_flo	\
+	= (union _FP_UNION_##fs *) (val);		\
+							\
+      X##_f = _FP_UNPACK_RAW_1_P_flo->bits.frac;	\
+      X##_e = _FP_UNPACK_RAW_1_P_flo->bits.exp;		\
+      X##_s = _FP_UNPACK_RAW_1_P_flo->bits.sign;	\
+    }							\
+  while (0)
+
+/* Repack the raw bits of a native fp value.  */
+
+#define _FP_PACK_RAW_1(fs, val, X)		\
+  do						\
+    {						\
+      union _FP_UNION_##fs _FP_PACK_RAW_1_flo;	\
+						\
+      _FP_PACK_RAW_1_flo.bits.frac = X##_f;	\
+      _FP_PACK_RAW_1_flo.bits.exp  = X##_e;	\
+      _FP_PACK_RAW_1_flo.bits.sign = X##_s;	\
+						\
+      (val) = _FP_PACK_RAW_1_flo.flt;		\
+    }						\
+  while (0)
+
+#define _FP_PACK_RAW_1_P(fs, val, X)			\
+  do							\
+    {							\
+      union _FP_UNION_##fs *_FP_PACK_RAW_1_P_flo	\
+	= (union _FP_UNION_##fs *) (val);		\
+							\
+      _FP_PACK_RAW_1_P_flo->bits.frac = X##_f;		\
+      _FP_PACK_RAW_1_P_flo->bits.exp  = X##_e;		\
+      _FP_PACK_RAW_1_P_flo->bits.sign = X##_s;		\
+    }							\
+  while (0)
+
+
+/* Multiplication algorithms: */
+
+/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
+   multiplication immediately.  */
+
+#define _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y)	\
+  do							\
+    {							\
+      R##_f = X##_f * Y##_f;				\
+    }							\
+  while (0)
+
+#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\
+  do									\
+    {									\
+      _FP_MUL_MEAT_DW_1_imm ((wfracbits), R, X, Y);			\
+      /* Normalize since we know where the msb of the multiplicands	\
+	 were (bit B), we know that the msb of the of the product is	\
+	 at either 2B or 2B-1.  */					\
+      _FP_FRAC_SRS_1 (R, (wfracbits)-1, 2*(wfracbits));			\
+    }									\
+  while (0)
+
+/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
+
+#define _FP_MUL_MEAT_DW_1_wide(wfracbits, R, X, Y, doit)	\
+  do								\
+    {								\
+      doit (R##_f1, R##_f0, X##_f, Y##_f);			\
+    }								\
+  while (0)
+
+#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\
+  do									\
+    {									\
+      _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_wide_Z);				\
+      _FP_MUL_MEAT_DW_1_wide ((wfracbits), _FP_MUL_MEAT_1_wide_Z,	\
+			      X, Y, doit);				\
+      /* Normalize since we know where the msb of the multiplicands	\
+	 were (bit B), we know that the msb of the of the product is	\
+	 at either 2B or 2B-1.  */					\
+      _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_wide_Z, (wfracbits)-1,		\
+		      2*(wfracbits));					\
+      R##_f = _FP_MUL_MEAT_1_wide_Z_f0;					\
+    }									\
+  while (0)
+
+/* Finally, a simple widening multiply algorithm.  What fun!  */
+
+#define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y)			\
+  do									\
+    {									\
+      _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_xh, _FP_MUL_MEAT_DW_1_hard_xl;	\
+      _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl;	\
+      _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a);			\
+									\
+      /* Split the words in half.  */					\
+      _FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2);		\
+      _FP_MUL_MEAT_DW_1_hard_xl						\
+	= X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1);	\
+      _FP_MUL_MEAT_DW_1_hard_yh = Y##_f >> (_FP_W_TYPE_SIZE/2);		\
+      _FP_MUL_MEAT_DW_1_hard_yl						\
+	= Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1);	\
+									\
+      /* Multiply the pieces.  */					\
+      R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl;	\
+      _FP_MUL_MEAT_DW_1_hard_a_f0					\
+	= _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl;	\
+      _FP_MUL_MEAT_DW_1_hard_a_f1					\
+	= _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh;	\
+      R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh;	\
+									\
+      /* Reassemble into two full words.  */				\
+      if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1)	\
+	  < _FP_MUL_MEAT_DW_1_hard_a_f1)				\
+	R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2);		\
+      _FP_MUL_MEAT_DW_1_hard_a_f1					\
+	= _FP_MUL_MEAT_DW_1_hard_a_f0 >> (_FP_W_TYPE_SIZE/2);		\
+      _FP_MUL_MEAT_DW_1_hard_a_f0					\
+	= _FP_MUL_MEAT_DW_1_hard_a_f0 << (_FP_W_TYPE_SIZE/2);		\
+      _FP_FRAC_ADD_2 (R, R, _FP_MUL_MEAT_DW_1_hard_a);			\
+    }									\
+  while (0)
+
+#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)			\
+  do								\
+    {								\
+      _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z);			\
+      _FP_MUL_MEAT_DW_1_hard ((wfracbits),			\
+			      _FP_MUL_MEAT_1_hard_z, X, Y);	\
+								\
+      /* Normalize.  */						\
+      _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z,			\
+		      (wfracbits) - 1, 2*(wfracbits));		\
+      R##_f = _FP_MUL_MEAT_1_hard_z_f0;				\
+    }								\
+  while (0)
+
+
+/* Division algorithms: */
+
+/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
+   division immediately.  Give this macro either _FP_DIV_HELP_imm for
+   C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
+   choose will depend on what the compiler does with divrem4.  */
+
+#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)				\
+  do									\
+    {									\
+      _FP_W_TYPE _FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r;		\
+      X##_f <<= (X##_f < Y##_f						\
+		 ? R##_e--, _FP_WFRACBITS_##fs				\
+		 : _FP_WFRACBITS_##fs - 1);				\
+      doit (_FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r, X##_f, Y##_f);	\
+      R##_f = _FP_DIV_MEAT_1_imm_q | (_FP_DIV_MEAT_1_imm_r != 0);	\
+    }									\
+  while (0)
+
+/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
+   that may be useful in this situation.  This first is for a primitive
+   that requires normalization, the second for one that does not.  Look
+   for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
+
+#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\
+  do									\
+    {									\
+      _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nh;				\
+      _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nl;				\
+      _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_q;				\
+      _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_r;				\
+      _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_y;				\
+									\
+      /* Normalize Y -- i.e. make the most significant bit set.  */	\
+      _FP_DIV_MEAT_1_udiv_norm_y = Y##_f << _FP_WFRACXBITS_##fs;	\
+									\
+      /* Shift X op correspondingly high, that is, up one full word.  */ \
+      if (X##_f < Y##_f)						\
+	{								\
+	  R##_e--;							\
+	  _FP_DIV_MEAT_1_udiv_norm_nl = 0;				\
+	  _FP_DIV_MEAT_1_udiv_norm_nh = X##_f;				\
+	}								\
+      else								\
+	{								\
+	  _FP_DIV_MEAT_1_udiv_norm_nl = X##_f << (_FP_W_TYPE_SIZE - 1);	\
+	  _FP_DIV_MEAT_1_udiv_norm_nh = X##_f >> 1;			\
+	}								\
+									\
+      udiv_qrnnd (_FP_DIV_MEAT_1_udiv_norm_q,				\
+		  _FP_DIV_MEAT_1_udiv_norm_r,				\
+		  _FP_DIV_MEAT_1_udiv_norm_nh,				\
+		  _FP_DIV_MEAT_1_udiv_norm_nl,				\
+		  _FP_DIV_MEAT_1_udiv_norm_y);				\
+      R##_f = (_FP_DIV_MEAT_1_udiv_norm_q				\
+	       | (_FP_DIV_MEAT_1_udiv_norm_r != 0));			\
+    }									\
+  while (0)
+
+#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)				\
+  do									\
+    {									\
+      _FP_W_TYPE _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl;	\
+      _FP_W_TYPE _FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r;		\
+      if (X##_f < Y##_f)						\
+	{								\
+	  R##_e--;							\
+	  _FP_DIV_MEAT_1_udiv_nl = X##_f << _FP_WFRACBITS_##fs;		\
+	  _FP_DIV_MEAT_1_udiv_nh = X##_f >> _FP_WFRACXBITS_##fs;	\
+	}								\
+      else								\
+	{								\
+	  _FP_DIV_MEAT_1_udiv_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\
+	  _FP_DIV_MEAT_1_udiv_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\
+	}								\
+      udiv_qrnnd (_FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r,		\
+		  _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl,	\
+		  Y##_f);						\
+      R##_f = _FP_DIV_MEAT_1_udiv_q | (_FP_DIV_MEAT_1_udiv_r != 0);	\
+    }									\
+  while (0)
+
+
+/* Square root algorithms:
+   We have just one right now, maybe Newton approximation
+   should be added for those machines where division is fast.  */
+
+#define _FP_SQRT_MEAT_1(R, S, T, X, q)		\
+  do						\
+    {						\
+      while ((q) != _FP_WORK_ROUND)		\
+	{					\
+	  T##_f = S##_f + (q);			\
+	  if (T##_f <= X##_f)			\
+	    {					\
+	      S##_f = T##_f + (q);		\
+	      X##_f -= T##_f;			\
+	      R##_f += (q);			\
+	    }					\
+	  _FP_FRAC_SLL_1 (X, 1);		\
+	  (q) >>= 1;				\
+	}					\
+      if (X##_f)				\
+	{					\
+	  if (S##_f < X##_f)			\
+	    R##_f |= _FP_WORK_ROUND;		\
+	  R##_f |= _FP_WORK_STICKY;		\
+	}					\
+    }						\
+  while (0)
+
+/* Assembly/disassembly for converting to/from integral types.
+   No shifting or overflow handled here.  */
+
+#define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	((r) = X##_f)
+#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = (r))
+
+
+/* Convert FP values between word sizes.  */
+
+#define _FP_FRAC_COPY_1_1(D, S)		(D##_f = S##_f)
+
+#endif /* !SOFT_FP_OP_1_H */