diff libstdc++-v3/include/tr1/hashtable_policy.h @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libstdc++-v3/include/tr1/hashtable_policy.h	Fri Oct 27 22:46:09 2017 +0900
@@ -0,0 +1,779 @@
+// Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
+
+// Copyright (C) 2010-2017 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library.  This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 3, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+
+// Under Section 7 of GPL version 3, you are granted additional
+// permissions described in the GCC Runtime Library Exception, version
+// 3.1, as published by the Free Software Foundation.
+
+// You should have received a copy of the GNU General Public License and
+// a copy of the GCC Runtime Library Exception along with this program;
+// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
+// <http://www.gnu.org/licenses/>.
+
+/** @file tr1/hashtable_policy.h
+ *  This is an internal header file, included by other library headers.
+ *  Do not attempt to use it directly. 
+ *  @headername{tr1/unordered_map, tr1/unordered_set}
+ */
+
+namespace std _GLIBCXX_VISIBILITY(default)
+{ 
+_GLIBCXX_BEGIN_NAMESPACE_VERSION
+
+namespace tr1
+{
+namespace __detail
+{
+  // Helper function: return distance(first, last) for forward
+  // iterators, or 0 for input iterators.
+  template<class _Iterator>
+    inline typename std::iterator_traits<_Iterator>::difference_type
+    __distance_fw(_Iterator __first, _Iterator __last,
+		  std::input_iterator_tag)
+    { return 0; }
+
+  template<class _Iterator>
+    inline typename std::iterator_traits<_Iterator>::difference_type
+    __distance_fw(_Iterator __first, _Iterator __last,
+		  std::forward_iterator_tag)
+    { return std::distance(__first, __last); }
+
+  template<class _Iterator>
+    inline typename std::iterator_traits<_Iterator>::difference_type
+    __distance_fw(_Iterator __first, _Iterator __last)
+    {
+      typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
+      return __distance_fw(__first, __last, _Tag());
+    }
+
+  // Auxiliary types used for all instantiations of _Hashtable: nodes
+  // and iterators.
+  
+  // Nodes, used to wrap elements stored in the hash table.  A policy
+  // template parameter of class template _Hashtable controls whether
+  // nodes also store a hash code. In some cases (e.g. strings) this
+  // may be a performance win.
+  template<typename _Value, bool __cache_hash_code>
+    struct _Hash_node;
+
+  template<typename _Value>
+    struct _Hash_node<_Value, true>
+    {
+      _Value       _M_v;
+      std::size_t  _M_hash_code;
+      _Hash_node*  _M_next;
+    };
+
+  template<typename _Value>
+    struct _Hash_node<_Value, false>
+    {
+      _Value       _M_v;
+      _Hash_node*  _M_next;
+    };
+
+  // Local iterators, used to iterate within a bucket but not between
+  // buckets.
+  template<typename _Value, bool __cache>
+    struct _Node_iterator_base
+    {
+      _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
+      : _M_cur(__p) { }
+      
+      void
+      _M_incr()
+      { _M_cur = _M_cur->_M_next; }
+
+      _Hash_node<_Value, __cache>*  _M_cur;
+    };
+
+  template<typename _Value, bool __cache>
+    inline bool
+    operator==(const _Node_iterator_base<_Value, __cache>& __x,
+	       const _Node_iterator_base<_Value, __cache>& __y)
+    { return __x._M_cur == __y._M_cur; }
+
+  template<typename _Value, bool __cache>
+    inline bool
+    operator!=(const _Node_iterator_base<_Value, __cache>& __x,
+	       const _Node_iterator_base<_Value, __cache>& __y)
+    { return __x._M_cur != __y._M_cur; }
+
+  template<typename _Value, bool __constant_iterators, bool __cache>
+    struct _Node_iterator
+    : public _Node_iterator_base<_Value, __cache>
+    {
+      typedef _Value                                   value_type;
+      typedef typename
+      __gnu_cxx::__conditional_type<__constant_iterators,
+				    const _Value*, _Value*>::__type
+                                                       pointer;
+      typedef typename
+      __gnu_cxx::__conditional_type<__constant_iterators,
+				    const _Value&, _Value&>::__type
+                                                       reference;
+      typedef std::ptrdiff_t                           difference_type;
+      typedef std::forward_iterator_tag                iterator_category;
+
+      _Node_iterator()
+      : _Node_iterator_base<_Value, __cache>(0) { }
+
+      explicit
+      _Node_iterator(_Hash_node<_Value, __cache>* __p)
+      : _Node_iterator_base<_Value, __cache>(__p) { }
+
+      reference
+      operator*() const
+      { return this->_M_cur->_M_v; }
+  
+      pointer
+      operator->() const
+      { return std::__addressof(this->_M_cur->_M_v); }
+
+      _Node_iterator&
+      operator++()
+      { 
+	this->_M_incr();
+	return *this; 
+      }
+  
+      _Node_iterator
+      operator++(int)
+      { 
+	_Node_iterator __tmp(*this);
+	this->_M_incr();
+	return __tmp;
+      }
+    };
+
+  template<typename _Value, bool __constant_iterators, bool __cache>
+    struct _Node_const_iterator
+    : public _Node_iterator_base<_Value, __cache>
+    {
+      typedef _Value                                   value_type;
+      typedef const _Value*                            pointer;
+      typedef const _Value&                            reference;
+      typedef std::ptrdiff_t                           difference_type;
+      typedef std::forward_iterator_tag                iterator_category;
+
+      _Node_const_iterator()
+      : _Node_iterator_base<_Value, __cache>(0) { }
+
+      explicit
+      _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
+      : _Node_iterator_base<_Value, __cache>(__p) { }
+
+      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
+			   __cache>& __x)
+      : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
+
+      reference
+      operator*() const
+      { return this->_M_cur->_M_v; }
+  
+      pointer
+      operator->() const
+      { return std::__addressof(this->_M_cur->_M_v); }
+
+      _Node_const_iterator&
+      operator++()
+      { 
+	this->_M_incr();
+	return *this; 
+      }
+  
+      _Node_const_iterator
+      operator++(int)
+      { 
+	_Node_const_iterator __tmp(*this);
+	this->_M_incr();
+	return __tmp;
+      }
+    };
+
+  template<typename _Value, bool __cache>
+    struct _Hashtable_iterator_base
+    {
+      _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
+			       _Hash_node<_Value, __cache>** __bucket)
+      : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
+
+      void
+      _M_incr()
+      {
+	_M_cur_node = _M_cur_node->_M_next;
+	if (!_M_cur_node)
+	  _M_incr_bucket();
+      }
+
+      void
+      _M_incr_bucket();
+
+      _Hash_node<_Value, __cache>*   _M_cur_node;
+      _Hash_node<_Value, __cache>**  _M_cur_bucket;
+    };
+
+  // Global iterators, used for arbitrary iteration within a hash
+  // table.  Larger and more expensive than local iterators.
+  template<typename _Value, bool __cache>
+    void
+    _Hashtable_iterator_base<_Value, __cache>::
+    _M_incr_bucket()
+    {
+      ++_M_cur_bucket;
+
+      // This loop requires the bucket array to have a non-null sentinel.
+      while (!*_M_cur_bucket)
+	++_M_cur_bucket;
+      _M_cur_node = *_M_cur_bucket;
+    }
+
+  template<typename _Value, bool __cache>
+    inline bool
+    operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
+	       const _Hashtable_iterator_base<_Value, __cache>& __y)
+    { return __x._M_cur_node == __y._M_cur_node; }
+
+  template<typename _Value, bool __cache>
+    inline bool
+    operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
+	       const _Hashtable_iterator_base<_Value, __cache>& __y)
+    { return __x._M_cur_node != __y._M_cur_node; }
+
+  template<typename _Value, bool __constant_iterators, bool __cache>
+    struct _Hashtable_iterator
+    : public _Hashtable_iterator_base<_Value, __cache>
+    {
+      typedef _Value                                   value_type;
+      typedef typename
+      __gnu_cxx::__conditional_type<__constant_iterators,
+				    const _Value*, _Value*>::__type
+                                                       pointer;
+      typedef typename
+      __gnu_cxx::__conditional_type<__constant_iterators,
+				    const _Value&, _Value&>::__type
+                                                       reference;
+      typedef std::ptrdiff_t                           difference_type;
+      typedef std::forward_iterator_tag                iterator_category;
+
+      _Hashtable_iterator()
+      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
+
+      _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
+			  _Hash_node<_Value, __cache>** __b)
+      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
+
+      explicit
+      _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
+      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
+
+      reference
+      operator*() const
+      { return this->_M_cur_node->_M_v; }
+  
+      pointer
+      operator->() const
+      { return std::__addressof(this->_M_cur_node->_M_v); }
+
+      _Hashtable_iterator&
+      operator++()
+      { 
+	this->_M_incr();
+	return *this;
+      }
+  
+      _Hashtable_iterator
+      operator++(int)
+      { 
+	_Hashtable_iterator __tmp(*this);
+	this->_M_incr();
+	return __tmp;
+      }
+    };
+
+  template<typename _Value, bool __constant_iterators, bool __cache>
+    struct _Hashtable_const_iterator
+    : public _Hashtable_iterator_base<_Value, __cache>
+    {
+      typedef _Value                                   value_type;
+      typedef const _Value*                            pointer;
+      typedef const _Value&                            reference;
+      typedef std::ptrdiff_t                           difference_type;
+      typedef std::forward_iterator_tag                iterator_category;
+
+      _Hashtable_const_iterator()
+      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
+
+      _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
+				_Hash_node<_Value, __cache>** __b)
+      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
+
+      explicit
+      _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
+      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
+
+      _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
+				__constant_iterators, __cache>& __x)
+      : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
+						  __x._M_cur_bucket) { }
+
+      reference
+      operator*() const
+      { return this->_M_cur_node->_M_v; }
+  
+      pointer
+      operator->() const
+      { return std::__addressof(this->_M_cur_node->_M_v); }
+
+      _Hashtable_const_iterator&
+      operator++()
+      { 
+	this->_M_incr();
+	return *this;
+      }
+  
+      _Hashtable_const_iterator
+      operator++(int)
+      { 
+	_Hashtable_const_iterator __tmp(*this);
+	this->_M_incr();
+	return __tmp;
+      }
+    };
+
+
+  // Many of class template _Hashtable's template parameters are policy
+  // classes.  These are defaults for the policies.
+
+  // Default range hashing function: use division to fold a large number
+  // into the range [0, N).
+  struct _Mod_range_hashing
+  {
+    typedef std::size_t first_argument_type;
+    typedef std::size_t second_argument_type;
+    typedef std::size_t result_type;
+
+    result_type
+    operator()(first_argument_type __num, second_argument_type __den) const
+    { return __num % __den; }
+  };
+
+  // Default ranged hash function H.  In principle it should be a
+  // function object composed from objects of type H1 and H2 such that
+  // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
+  // h1 and h2.  So instead we'll just use a tag to tell class template
+  // hashtable to do that composition.
+  struct _Default_ranged_hash { };
+
+  // Default value for rehash policy.  Bucket size is (usually) the
+  // smallest prime that keeps the load factor small enough.
+  struct _Prime_rehash_policy
+  {
+    _Prime_rehash_policy(float __z = 1.0)
+    : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
+
+    float
+    max_load_factor() const
+    { return _M_max_load_factor; }      
+
+    // Return a bucket size no smaller than n.
+    std::size_t
+    _M_next_bkt(std::size_t __n) const;
+    
+    // Return a bucket count appropriate for n elements
+    std::size_t
+    _M_bkt_for_elements(std::size_t __n) const;
+    
+    // __n_bkt is current bucket count, __n_elt is current element count,
+    // and __n_ins is number of elements to be inserted.  Do we need to
+    // increase bucket count?  If so, return make_pair(true, n), where n
+    // is the new bucket count.  If not, return make_pair(false, 0).
+    std::pair<bool, std::size_t>
+    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
+		   std::size_t __n_ins) const;
+
+    enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
+
+    float                _M_max_load_factor;
+    float                _M_growth_factor;
+    mutable std::size_t  _M_next_resize;
+  };
+
+  extern const unsigned long __prime_list[];
+
+  // XXX This is a hack.  There's no good reason for any of
+  // _Prime_rehash_policy's member functions to be inline.  
+
+  // Return a prime no smaller than n.
+  inline std::size_t
+  _Prime_rehash_policy::
+  _M_next_bkt(std::size_t __n) const
+  {
+    // Don't include the last prime in the search, so that anything
+    // higher than the second-to-last prime returns a past-the-end
+    // iterator that can be dereferenced to get the last prime.
+    const unsigned long* __p
+      = std::lower_bound(__prime_list, __prime_list + _S_n_primes - 1, __n);
+    _M_next_resize = 
+      static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
+    return *__p;
+  }
+
+  // Return the smallest prime p such that alpha p >= n, where alpha
+  // is the load factor.
+  inline std::size_t
+  _Prime_rehash_policy::
+  _M_bkt_for_elements(std::size_t __n) const
+  {
+    const float __min_bkts = __n / _M_max_load_factor;
+    return _M_next_bkt(__builtin_ceil(__min_bkts));
+  }
+
+  // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
+  // If p > __n_bkt, return make_pair(true, p); otherwise return
+  // make_pair(false, 0).  In principle this isn't very different from 
+  // _M_bkt_for_elements.
+
+  // The only tricky part is that we're caching the element count at
+  // which we need to rehash, so we don't have to do a floating-point
+  // multiply for every insertion.
+
+  inline std::pair<bool, std::size_t>
+  _Prime_rehash_policy::
+  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
+		 std::size_t __n_ins) const
+  {
+    if (__n_elt + __n_ins > _M_next_resize)
+      {
+	float __min_bkts = ((float(__n_ins) + float(__n_elt))
+			    / _M_max_load_factor);
+	if (__min_bkts > __n_bkt)
+	  {
+	    __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
+	    return std::make_pair(true,
+				  _M_next_bkt(__builtin_ceil(__min_bkts)));
+	  }
+	else 
+	  {
+	    _M_next_resize = static_cast<std::size_t>
+	      (__builtin_ceil(__n_bkt * _M_max_load_factor));
+	    return std::make_pair(false, 0);
+	  }
+      }
+    else
+      return std::make_pair(false, 0);
+  }
+
+  // Base classes for std::tr1::_Hashtable.  We define these base
+  // classes because in some cases we want to do different things
+  // depending on the value of a policy class.  In some cases the
+  // policy class affects which member functions and nested typedefs
+  // are defined; we handle that by specializing base class templates.
+  // Several of the base class templates need to access other members
+  // of class template _Hashtable, so we use the "curiously recurring
+  // template pattern" for them.
+
+  // class template _Map_base.  If the hashtable has a value type of the
+  // form pair<T1, T2> and a key extraction policy that returns the
+  // first part of the pair, the hashtable gets a mapped_type typedef.
+  // If it satisfies those criteria and also has unique keys, then it
+  // also gets an operator[].  
+  template<typename _Key, typename _Value, typename _Ex, bool __unique,
+	   typename _Hashtable>
+    struct _Map_base { };
+	  
+  template<typename _Key, typename _Pair, typename _Hashtable>
+    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
+    {
+      typedef typename _Pair::second_type mapped_type;
+    };
+
+  template<typename _Key, typename _Pair, typename _Hashtable>
+    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
+    {
+      typedef typename _Pair::second_type mapped_type;
+      
+      mapped_type&
+      operator[](const _Key& __k);
+    };
+
+  template<typename _Key, typename _Pair, typename _Hashtable>
+    typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
+		       true, _Hashtable>::mapped_type&
+    _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
+    operator[](const _Key& __k)
+    {
+      _Hashtable* __h = static_cast<_Hashtable*>(this);
+      typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
+      std::size_t __n = __h->_M_bucket_index(__k, __code,
+					     __h->_M_bucket_count);
+
+      typename _Hashtable::_Node* __p =
+	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
+      if (!__p)
+	return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
+				     __n, __code)->second;
+      return (__p->_M_v).second;
+    }
+
+  // class template _Rehash_base.  Give hashtable the max_load_factor
+  // functions iff the rehash policy is _Prime_rehash_policy.
+  template<typename _RehashPolicy, typename _Hashtable>
+    struct _Rehash_base { };
+
+  template<typename _Hashtable>
+    struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
+    {
+      float
+      max_load_factor() const
+      {
+	const _Hashtable* __this = static_cast<const _Hashtable*>(this);
+	return __this->__rehash_policy().max_load_factor();
+      }
+
+      void
+      max_load_factor(float __z)
+      {
+	_Hashtable* __this = static_cast<_Hashtable*>(this);
+	__this->__rehash_policy(_Prime_rehash_policy(__z));
+      }
+    };
+
+  // Class template _Hash_code_base.  Encapsulates two policy issues that
+  // aren't quite orthogonal.
+  //   (1) the difference between using a ranged hash function and using
+  //       the combination of a hash function and a range-hashing function.
+  //       In the former case we don't have such things as hash codes, so
+  //       we have a dummy type as placeholder.
+  //   (2) Whether or not we cache hash codes.  Caching hash codes is
+  //       meaningless if we have a ranged hash function.
+  // We also put the key extraction and equality comparison function 
+  // objects here, for convenience.
+  
+  // Primary template: unused except as a hook for specializations.  
+  template<typename _Key, typename _Value,
+	   typename _ExtractKey, typename _Equal,
+	   typename _H1, typename _H2, typename _Hash,
+	   bool __cache_hash_code>
+    struct _Hash_code_base;
+
+  // Specialization: ranged hash function, no caching hash codes.  H1
+  // and H2 are provided but ignored.  We define a dummy hash code type.
+  template<typename _Key, typename _Value,
+	   typename _ExtractKey, typename _Equal,
+	   typename _H1, typename _H2, typename _Hash>
+    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
+			   _Hash, false>
+    {
+    protected:
+      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
+		      const _H1&, const _H2&, const _Hash& __h)
+      : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
+
+      typedef void* _Hash_code_type;
+  
+      _Hash_code_type
+      _M_hash_code(const _Key& __key) const
+      { return 0; }
+  
+      std::size_t
+      _M_bucket_index(const _Key& __k, _Hash_code_type,
+		      std::size_t __n) const
+      { return _M_ranged_hash(__k, __n); }
+
+      std::size_t
+      _M_bucket_index(const _Hash_node<_Value, false>* __p,
+		      std::size_t __n) const
+      { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
+  
+      bool
+      _M_compare(const _Key& __k, _Hash_code_type,
+		 _Hash_node<_Value, false>* __n) const
+      { return _M_eq(__k, _M_extract(__n->_M_v)); }
+
+      void
+      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
+      { }
+
+      void
+      _M_copy_code(_Hash_node<_Value, false>*,
+		   const _Hash_node<_Value, false>*) const
+      { }
+      
+      void
+      _M_swap(_Hash_code_base& __x)
+      {
+	std::swap(_M_extract, __x._M_extract);
+	std::swap(_M_eq, __x._M_eq);
+	std::swap(_M_ranged_hash, __x._M_ranged_hash);
+      }
+
+    protected:
+      _ExtractKey  _M_extract;
+      _Equal       _M_eq;
+      _Hash        _M_ranged_hash;
+    };
+
+
+  // No specialization for ranged hash function while caching hash codes.
+  // That combination is meaningless, and trying to do it is an error.
+  
+  
+  // Specialization: ranged hash function, cache hash codes.  This
+  // combination is meaningless, so we provide only a declaration
+  // and no definition.  
+  template<typename _Key, typename _Value,
+	   typename _ExtractKey, typename _Equal,
+	   typename _H1, typename _H2, typename _Hash>
+    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
+			   _Hash, true>;
+
+  // Specialization: hash function and range-hashing function, no
+  // caching of hash codes.  H is provided but ignored.  Provides
+  // typedef and accessor required by TR1.  
+  template<typename _Key, typename _Value,
+	   typename _ExtractKey, typename _Equal,
+	   typename _H1, typename _H2>
+    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
+			   _Default_ranged_hash, false>
+    {
+      typedef _H1 hasher;
+
+      hasher
+      hash_function() const
+      { return _M_h1; }
+
+    protected:
+      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
+		      const _H1& __h1, const _H2& __h2,
+		      const _Default_ranged_hash&)
+      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
+
+      typedef std::size_t _Hash_code_type;
+
+      _Hash_code_type
+      _M_hash_code(const _Key& __k) const
+      { return _M_h1(__k); }
+      
+      std::size_t
+      _M_bucket_index(const _Key&, _Hash_code_type __c,
+		      std::size_t __n) const
+      { return _M_h2(__c, __n); }
+
+      std::size_t
+      _M_bucket_index(const _Hash_node<_Value, false>* __p,
+		      std::size_t __n) const
+      { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
+
+      bool
+      _M_compare(const _Key& __k, _Hash_code_type,
+		 _Hash_node<_Value, false>* __n) const
+      { return _M_eq(__k, _M_extract(__n->_M_v)); }
+
+      void
+      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
+      { }
+
+      void
+      _M_copy_code(_Hash_node<_Value, false>*,
+		   const _Hash_node<_Value, false>*) const
+      { }
+
+      void
+      _M_swap(_Hash_code_base& __x)
+      {
+	std::swap(_M_extract, __x._M_extract);
+	std::swap(_M_eq, __x._M_eq);
+	std::swap(_M_h1, __x._M_h1);
+	std::swap(_M_h2, __x._M_h2);
+      }
+
+    protected:
+      _ExtractKey  _M_extract;
+      _Equal       _M_eq;
+      _H1          _M_h1;
+      _H2          _M_h2;
+    };
+
+  // Specialization: hash function and range-hashing function, 
+  // caching hash codes.  H is provided but ignored.  Provides
+  // typedef and accessor required by TR1.
+  template<typename _Key, typename _Value,
+	   typename _ExtractKey, typename _Equal,
+	   typename _H1, typename _H2>
+    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
+			   _Default_ranged_hash, true>
+    {
+      typedef _H1 hasher;
+      
+      hasher
+      hash_function() const
+      { return _M_h1; }
+
+    protected:
+      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
+		      const _H1& __h1, const _H2& __h2,
+		      const _Default_ranged_hash&)
+      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
+
+      typedef std::size_t _Hash_code_type;
+  
+      _Hash_code_type
+      _M_hash_code(const _Key& __k) const
+      { return _M_h1(__k); }
+  
+      std::size_t
+      _M_bucket_index(const _Key&, _Hash_code_type __c,
+		      std::size_t __n) const
+      { return _M_h2(__c, __n); }
+
+      std::size_t
+      _M_bucket_index(const _Hash_node<_Value, true>* __p,
+		      std::size_t __n) const
+      { return _M_h2(__p->_M_hash_code, __n); }
+
+      bool
+      _M_compare(const _Key& __k, _Hash_code_type __c,
+		 _Hash_node<_Value, true>* __n) const
+      { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
+
+      void
+      _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
+      { __n->_M_hash_code = __c; }
+
+      void
+      _M_copy_code(_Hash_node<_Value, true>* __to,
+		   const _Hash_node<_Value, true>* __from) const
+      { __to->_M_hash_code = __from->_M_hash_code; }
+
+      void
+      _M_swap(_Hash_code_base& __x)
+      {
+	std::swap(_M_extract, __x._M_extract);
+	std::swap(_M_eq, __x._M_eq);
+	std::swap(_M_h1, __x._M_h1);
+	std::swap(_M_h2, __x._M_h2);
+      }
+      
+    protected:
+      _ExtractKey  _M_extract;
+      _Equal       _M_eq;
+      _H1          _M_h1;
+      _H2          _M_h2;
+    };
+} // namespace __detail
+}
+
+_GLIBCXX_END_NAMESPACE_VERSION
+}