diff gcc/ada/libgnat/s-genbig.adb @ 145:1830386684a0

gcc-9.2.0
author anatofuz
date Thu, 13 Feb 2020 11:34:05 +0900
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/ada/libgnat/s-genbig.adb	Thu Feb 13 11:34:05 2020 +0900
@@ -0,0 +1,1133 @@
+------------------------------------------------------------------------------
+--                                                                          --
+--                         GNAT COMPILER COMPONENTS                         --
+--                                                                          --
+--               S Y S T E M . G E N E R I C _ B I G N U M S                --
+--                                                                          --
+--                                 B o d y                                  --
+--                                                                          --
+--          Copyright (C) 2012-2019, Free Software Foundation, Inc.         --
+--                                                                          --
+-- GNAT is free software;  you can  redistribute it  and/or modify it under --
+-- terms of the  GNU General Public License as published  by the Free Soft- --
+-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
+-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
+--                                                                          --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception,   --
+-- version 3.1, as published by the Free Software Foundation.               --
+--                                                                          --
+-- You should have received a copy of the GNU General Public License and    --
+-- a copy of the GCC Runtime Library Exception along with this program;     --
+-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
+-- <http://www.gnu.org/licenses/>.                                          --
+--                                                                          --
+-- GNAT was originally developed  by the GNAT team at  New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc.      --
+--                                                                          --
+------------------------------------------------------------------------------
+
+--  This package provides arbitrary precision signed integer arithmetic.
+
+with System;                  use System;
+with System.Secondary_Stack;  use System.Secondary_Stack;
+with System.Storage_Elements; use System.Storage_Elements;
+
+package body System.Generic_Bignums is
+
+   use Interfaces;
+   --  So that operations on Unsigned_32/Unsigned_64 are available
+
+   type DD is mod Base ** 2;
+   --  Double length digit used for intermediate computations
+
+   function MSD (X : DD) return SD is (SD (X / Base));
+   function LSD (X : DD) return SD is (SD (X mod Base));
+   --  Most significant and least significant digit of double digit value
+
+   function "&" (X, Y : SD) return DD is (DD (X) * Base + DD (Y));
+   --  Compose double digit value from two single digit values
+
+   subtype LLI is Long_Long_Integer;
+
+   One_Data : constant Digit_Vector (1 .. 1) := (1 => 1);
+   --  Constant one
+
+   Zero_Data : constant Digit_Vector (1 .. 0) := (1 .. 0 => 0);
+   --  Constant zero
+
+   -----------------------
+   -- Local Subprograms --
+   -----------------------
+
+   function Add
+     (X, Y  : Digit_Vector;
+      X_Neg : Boolean;
+      Y_Neg : Boolean) return Bignum
+   with
+     Pre => X'First = 1 and then Y'First = 1;
+   --  This procedure adds two signed numbers returning the Sum, it is used
+   --  for both addition and subtraction. The value computed is X + Y, with
+   --  X_Neg and Y_Neg giving the signs of the operands.
+
+   function Allocate_Bignum (Len : Length) return Bignum with
+     Post => Allocate_Bignum'Result.Len = Len;
+   --  Allocate Bignum value of indicated length on secondary stack. On return
+   --  the Neg and D fields are left uninitialized.
+
+   type Compare_Result is (LT, EQ, GT);
+   --  Indicates result of comparison in following call
+
+   function Compare
+     (X, Y         : Digit_Vector;
+      X_Neg, Y_Neg : Boolean) return Compare_Result
+   with
+     Pre => X'First = 1 and then Y'First = 1;
+   --  Compare (X with sign X_Neg) with (Y with sign Y_Neg), and return the
+   --  result of the signed comparison.
+
+   procedure Div_Rem
+     (X, Y              : Bignum;
+      Quotient          : out Bignum;
+      Remainder         : out Bignum;
+      Discard_Quotient  : Boolean := False;
+      Discard_Remainder : Boolean := False);
+   --  Returns the Quotient and Remainder from dividing abs (X) by abs (Y). The
+   --  values of X and Y are not modified. If Discard_Quotient is True, then
+   --  Quotient is undefined on return, and if Discard_Remainder is True, then
+   --  Remainder is undefined on return. Service routine for Big_Div/Rem/Mod.
+
+   procedure Free_Bignum (X : Bignum) is null;
+   --  Called to free a Bignum value used in intermediate computations. In
+   --  this implementation using the secondary stack, it does nothing at all,
+   --  because we rely on Mark/Release, but it may be of use for some
+   --  alternative implementation.
+
+   function Normalize
+     (X   : Digit_Vector;
+      Neg : Boolean := False) return Bignum;
+   --  Given a digit vector and sign, allocate and construct a Bignum value.
+   --  Note that X may have leading zeroes which must be removed, and if the
+   --  result is zero, the sign is forced positive.
+
+   ---------
+   -- Add --
+   ---------
+
+   function Add
+     (X, Y  : Digit_Vector;
+      X_Neg : Boolean;
+      Y_Neg : Boolean) return Bignum
+   is
+   begin
+      --  If signs are the same, we are doing an addition, it is convenient to
+      --  ensure that the first operand is the longer of the two.
+
+      if X_Neg = Y_Neg then
+         if X'Last < Y'Last then
+            return Add (X => Y, Y => X, X_Neg => Y_Neg, Y_Neg => X_Neg);
+
+         --  Here signs are the same, and the first operand is the longer
+
+         else
+            pragma Assert (X_Neg = Y_Neg and then X'Last >= Y'Last);
+
+            --  Do addition, putting result in Sum (allowing for carry)
+
+            declare
+               Sum : Digit_Vector (0 .. X'Last);
+               RD  : DD;
+
+            begin
+               RD := 0;
+               for J in reverse 1 .. X'Last loop
+                  RD := RD + DD (X (J));
+
+                  if J >= 1 + (X'Last - Y'Last) then
+                     RD := RD + DD (Y (J - (X'Last - Y'Last)));
+                  end if;
+
+                  Sum (J) := LSD (RD);
+                  RD := RD / Base;
+               end loop;
+
+               Sum (0) := SD (RD);
+               return Normalize (Sum, X_Neg);
+            end;
+         end if;
+
+      --  Signs are different so really this is a subtraction, we want to make
+      --  sure that the largest magnitude operand is the first one, and then
+      --  the result will have the sign of the first operand.
+
+      else
+         declare
+            CR : constant Compare_Result := Compare (X, Y, False, False);
+
+         begin
+            if CR = EQ then
+               return Normalize (Zero_Data);
+
+            elsif CR = LT then
+               return Add (X => Y, Y => X, X_Neg => Y_Neg, Y_Neg => X_Neg);
+
+            else
+               pragma Assert (X_Neg /= Y_Neg and then CR = GT);
+
+               --  Do subtraction, putting result in Diff
+
+               declare
+                  Diff : Digit_Vector (1 .. X'Length);
+                  RD   : DD;
+
+               begin
+                  RD := 0;
+                  for J in reverse 1 .. X'Last loop
+                     RD := RD + DD (X (J));
+
+                     if J >= 1 + (X'Last - Y'Last) then
+                        RD := RD - DD (Y (J - (X'Last - Y'Last)));
+                     end if;
+
+                     Diff (J) := LSD (RD);
+                     RD := (if RD < Base then 0 else -1);
+                  end loop;
+
+                  return Normalize (Diff, X_Neg);
+               end;
+            end if;
+         end;
+      end if;
+   end Add;
+
+   ---------------------
+   -- Allocate_Bignum --
+   ---------------------
+
+   function Allocate_Bignum (Len : Length) return Bignum is
+      Addr : Address;
+
+   begin
+      --  Allocation on the heap
+
+      if not Use_Secondary_Stack then
+         declare
+            B : Bignum;
+         begin
+            B := new Bignum_Data'(Len, False, (others => 0));
+            return B;
+         end;
+
+      --  Allocation on the secondary stack
+
+      else
+         --  Note: The approach used here is designed to avoid strict aliasing
+         --  warnings that appeared previously using unchecked conversion.
+
+         SS_Allocate (Addr, Storage_Offset (4 + 4 * Len));
+
+         declare
+            B : Bignum;
+            for B'Address use Addr'Address;
+            pragma Import (Ada, B);
+
+            BD : Bignum_Data (Len);
+            for BD'Address use Addr;
+            pragma Import (Ada, BD);
+
+            --  Expose a writable view of discriminant BD.Len so that we can
+            --  initialize it. We need to use the exact layout of the record
+            --  to ensure that the Length field has 24 bits as expected.
+
+            type Bignum_Data_Header is record
+               Len : Length;
+               Neg : Boolean;
+            end record;
+
+            for Bignum_Data_Header use record
+               Len at 0 range 0 .. 23;
+               Neg at 3 range 0 .. 7;
+            end record;
+
+            BDH : Bignum_Data_Header;
+            for BDH'Address use BD'Address;
+            pragma Import (Ada, BDH);
+
+            pragma Assert (BDH.Len'Size = BD.Len'Size);
+
+         begin
+            BDH.Len := Len;
+            return B;
+         end;
+      end if;
+   end Allocate_Bignum;
+
+   -------------
+   -- Big_Abs --
+   -------------
+
+   function Big_Abs (X : Bignum) return Bignum is
+   begin
+      return Normalize (X.D);
+   end Big_Abs;
+
+   -------------
+   -- Big_Add --
+   -------------
+
+   function Big_Add  (X, Y : Bignum) return Bignum is
+   begin
+      return Add (X.D, Y.D, X.Neg, Y.Neg);
+   end Big_Add;
+
+   -------------
+   -- Big_Div --
+   -------------
+
+   --  This table is excerpted from RM 4.5.5(28-30) and shows how the result
+   --  varies with the signs of the operands.
+
+   --   A      B   A/B      A     B    A/B
+   --
+   --   10     5    2      -10    5    -2
+   --   11     5    2      -11    5    -2
+   --   12     5    2      -12    5    -2
+   --   13     5    2      -13    5    -2
+   --   14     5    2      -14    5    -2
+   --
+   --   A      B   A/B      A     B    A/B
+   --
+   --   10    -5   -2      -10   -5     2
+   --   11    -5   -2      -11   -5     2
+   --   12    -5   -2      -12   -5     2
+   --   13    -5   -2      -13   -5     2
+   --   14    -5   -2      -14   -5     2
+
+   function Big_Div  (X, Y : Bignum) return Bignum is
+      Q, R : Bignum;
+   begin
+      Div_Rem (X, Y, Q, R, Discard_Remainder => True);
+      Q.Neg := Q.Len > 0 and then (X.Neg xor Y.Neg);
+      return Q;
+   end Big_Div;
+
+   -------------
+   -- Big_Exp --
+   -------------
+
+   function Big_Exp  (X, Y : Bignum) return Bignum is
+
+      function "**" (X : Bignum; Y : SD) return Bignum;
+      --  Internal routine where we know right operand is one word
+
+      ----------
+      -- "**" --
+      ----------
+
+      function "**" (X : Bignum; Y : SD) return Bignum is
+      begin
+         case Y is
+
+            --  X ** 0 is 1
+
+            when 0 =>
+               return Normalize (One_Data);
+
+            --  X ** 1 is X
+
+            when 1 =>
+               return Normalize (X.D);
+
+            --  X ** 2 is X * X
+
+            when 2 =>
+               return Big_Mul (X, X);
+
+            --  For X greater than 2, use the recursion
+
+            --  X even, X ** Y = (X ** (Y/2)) ** 2;
+            --  X odd,  X ** Y = (X ** (Y/2)) ** 2 * X;
+
+            when others =>
+               declare
+                  XY2  : constant Bignum := X ** (Y / 2);
+                  XY2S : constant Bignum := Big_Mul (XY2, XY2);
+                  Res  : Bignum;
+
+               begin
+                  Free_Bignum (XY2);
+
+                  --  Raise storage error if intermediate value is getting too
+                  --  large, which we arbitrarily define as 200 words for now.
+
+                  if XY2S.Len > 200 then
+                     Free_Bignum (XY2S);
+                     raise Storage_Error with
+                       "exponentiation result is too large";
+                  end if;
+
+                  --  Otherwise take care of even/odd cases
+
+                  if (Y and 1) = 0 then
+                     return XY2S;
+
+                  else
+                     Res := Big_Mul (XY2S, X);
+                     Free_Bignum (XY2S);
+                     return Res;
+                  end if;
+               end;
+         end case;
+      end "**";
+
+   --  Start of processing for Big_Exp
+
+   begin
+      --  Error if right operand negative
+
+      if Y.Neg then
+         raise Constraint_Error with "exponentiation to negative power";
+
+      --  X ** 0 is always 1 (including 0 ** 0, so do this test first)
+
+      elsif Y.Len = 0 then
+         return Normalize (One_Data);
+
+      --  0 ** X is always 0 (for X non-zero)
+
+      elsif X.Len = 0 then
+         return Normalize (Zero_Data);
+
+      --  (+1) ** Y = 1
+      --  (-1) ** Y = +/-1 depending on whether Y is even or odd
+
+      elsif X.Len = 1 and then X.D (1) = 1 then
+         return Normalize
+           (X.D, Neg => X.Neg and then ((Y.D (Y.Len) and 1) = 1));
+
+      --  If the absolute value of the base is greater than 1, then the
+      --  exponent must not be bigger than one word, otherwise the result
+      --  is ludicrously large, and we just signal Storage_Error right away.
+
+      elsif Y.Len > 1 then
+         raise Storage_Error with "exponentiation result is too large";
+
+      --  Special case (+/-)2 ** K, where K is 1 .. 31 using a shift
+
+      elsif X.Len = 1 and then X.D (1) = 2 and then Y.D (1) < 32 then
+         declare
+            D : constant Digit_Vector (1 .. 1) :=
+                  (1 => Shift_Left (SD'(1), Natural (Y.D (1))));
+         begin
+            return Normalize (D, X.Neg);
+         end;
+
+      --  Remaining cases have right operand of one word
+
+      else
+         return X ** Y.D (1);
+      end if;
+   end Big_Exp;
+
+   ------------
+   -- Big_EQ --
+   ------------
+
+   function Big_EQ (X, Y : Bignum) return Boolean is
+   begin
+      return Compare (X.D, Y.D, X.Neg, Y.Neg) = EQ;
+   end Big_EQ;
+
+   ------------
+   -- Big_GE --
+   ------------
+
+   function Big_GE (X, Y : Bignum) return Boolean is
+   begin
+      return Compare (X.D, Y.D, X.Neg, Y.Neg) /= LT;
+   end Big_GE;
+
+   ------------
+   -- Big_GT --
+   ------------
+
+   function Big_GT (X, Y : Bignum) return Boolean is
+   begin
+      return Compare (X.D, Y.D, X.Neg, Y.Neg) = GT;
+   end Big_GT;
+
+   ------------
+   -- Big_LE --
+   ------------
+
+   function Big_LE (X, Y : Bignum) return Boolean is
+   begin
+      return Compare (X.D, Y.D, X.Neg, Y.Neg) /= GT;
+   end Big_LE;
+
+   ------------
+   -- Big_LT --
+   ------------
+
+   function Big_LT (X, Y : Bignum) return Boolean is
+   begin
+      return Compare (X.D, Y.D, X.Neg, Y.Neg) = LT;
+   end Big_LT;
+
+   -------------
+   -- Big_Mod --
+   -------------
+
+   --  This table is excerpted from RM 4.5.5(28-30) and shows how the result
+   --  of Rem and Mod vary with the signs of the operands.
+
+   --   A      B    A mod B  A rem B     A     B    A mod B  A rem B
+
+   --   10     5       0        0       -10    5       0        0
+   --   11     5       1        1       -11    5       4       -1
+   --   12     5       2        2       -12    5       3       -2
+   --   13     5       3        3       -13    5       2       -3
+   --   14     5       4        4       -14    5       1       -4
+
+   --   A      B    A mod B  A rem B     A     B    A mod B  A rem B
+
+   --   10    -5       0        0       -10   -5       0        0
+   --   11    -5      -4        1       -11   -5      -1       -1
+   --   12    -5      -3        2       -12   -5      -2       -2
+   --   13    -5      -2        3       -13   -5      -3       -3
+   --   14    -5      -1        4       -14   -5      -4       -4
+
+   function Big_Mod (X, Y : Bignum) return Bignum is
+      Q, R : Bignum;
+
+   begin
+      --  If signs are same, result is same as Rem
+
+      if X.Neg = Y.Neg then
+         return Big_Rem (X, Y);
+
+      --  Case where Mod is different
+
+      else
+         --  Do division
+
+         Div_Rem (X, Y, Q, R, Discard_Quotient => True);
+
+         --  Zero result is unchanged
+
+         if R.Len = 0 then
+            return R;
+
+         --  Otherwise adjust result
+
+         else
+            declare
+               T1 : constant Bignum := Big_Sub (Y, R);
+            begin
+               T1.Neg := Y.Neg;
+               Free_Bignum (R);
+               return T1;
+            end;
+         end if;
+      end if;
+   end Big_Mod;
+
+   -------------
+   -- Big_Mul --
+   -------------
+
+   function Big_Mul (X, Y : Bignum) return Bignum is
+      Result : Digit_Vector (1 .. X.Len + Y.Len) := (others => 0);
+      --  Accumulate result (max length of result is sum of operand lengths)
+
+      L : Length;
+      --  Current result digit
+
+      D : DD;
+      --  Result digit
+
+   begin
+      for J in 1 .. X.Len loop
+         for K in 1 .. Y.Len loop
+            L := Result'Last - (X.Len - J) - (Y.Len - K);
+            D := DD (X.D (J)) * DD (Y.D (K)) + DD (Result (L));
+            Result (L) := LSD (D);
+            D := D / Base;
+
+            --  D is carry which must be propagated
+
+            while D /= 0 and then L >= 1 loop
+               L := L - 1;
+               D := D + DD (Result (L));
+               Result (L) := LSD (D);
+               D := D / Base;
+            end loop;
+
+            --  Must not have a carry trying to extend max length
+
+            pragma Assert (D = 0);
+         end loop;
+      end loop;
+
+      --  Return result
+
+      return Normalize (Result, X.Neg xor Y.Neg);
+   end Big_Mul;
+
+   ------------
+   -- Big_NE --
+   ------------
+
+   function Big_NE (X, Y : Bignum) return Boolean is
+   begin
+      return Compare (X.D, Y.D, X.Neg, Y.Neg) /= EQ;
+   end Big_NE;
+
+   -------------
+   -- Big_Neg --
+   -------------
+
+   function Big_Neg (X : Bignum) return Bignum is
+   begin
+      return Normalize (X.D, not X.Neg);
+   end Big_Neg;
+
+   -------------
+   -- Big_Rem --
+   -------------
+
+   --  This table is excerpted from RM 4.5.5(28-30) and shows how the result
+   --  varies with the signs of the operands.
+
+   --   A      B   A rem B   A     B   A rem B
+
+   --   10     5      0     -10    5      0
+   --   11     5      1     -11    5     -1
+   --   12     5      2     -12    5     -2
+   --   13     5      3     -13    5     -3
+   --   14     5      4     -14    5     -4
+
+   --   A      B  A rem B    A     B   A rem B
+
+   --   10    -5     0      -10   -5      0
+   --   11    -5     1      -11   -5     -1
+   --   12    -5     2      -12   -5     -2
+   --   13    -5     3      -13   -5     -3
+   --   14    -5     4      -14   -5     -4
+
+   function Big_Rem (X, Y : Bignum) return Bignum is
+      Q, R : Bignum;
+   begin
+      Div_Rem (X, Y, Q, R, Discard_Quotient => True);
+      R.Neg := R.Len > 0 and then X.Neg;
+      return R;
+   end Big_Rem;
+
+   -------------
+   -- Big_Sub --
+   -------------
+
+   function Big_Sub (X, Y : Bignum) return Bignum is
+   begin
+      --  If right operand zero, return left operand (avoiding sharing)
+
+      if Y.Len = 0 then
+         return Normalize (X.D, X.Neg);
+
+      --  Otherwise add negative of right operand
+
+      else
+         return Add (X.D, Y.D, X.Neg, not Y.Neg);
+      end if;
+   end Big_Sub;
+
+   -------------
+   -- Compare --
+   -------------
+
+   function Compare
+     (X, Y         : Digit_Vector;
+      X_Neg, Y_Neg : Boolean) return Compare_Result
+   is
+   begin
+      --  Signs are different, that's decisive, since 0 is always plus
+
+      if X_Neg /= Y_Neg then
+         return (if X_Neg then LT else GT);
+
+      --  Lengths are different, that's decisive since no leading zeroes
+
+      elsif X'Last /= Y'Last then
+         return (if (X'Last > Y'Last) xor X_Neg then GT else LT);
+
+      --  Need to compare data
+
+      else
+         for J in X'Range loop
+            if X (J) /= Y (J) then
+               return (if (X (J) > Y (J)) xor X_Neg then GT else LT);
+            end if;
+         end loop;
+
+         return EQ;
+      end if;
+   end Compare;
+
+   -------------
+   -- Div_Rem --
+   -------------
+
+   procedure Div_Rem
+     (X, Y              : Bignum;
+      Quotient          : out Bignum;
+      Remainder         : out Bignum;
+      Discard_Quotient  : Boolean := False;
+      Discard_Remainder : Boolean := False)
+   is
+   begin
+      --  Error if division by zero
+
+      if Y.Len = 0 then
+         raise Constraint_Error with "division by zero";
+      end if;
+
+      --  Handle simple cases with special tests
+
+      --  If X < Y then quotient is zero and remainder is X
+
+      if Compare (X.D, Y.D, False, False) = LT then
+         Remainder := Normalize (X.D);
+         Quotient  := Normalize (Zero_Data);
+         return;
+
+      --  If both X and Y are less than 2**63-1, we can use Long_Long_Integer
+      --  arithmetic. Note it is good not to do an accurate range check against
+      --  Long_Long_Integer since -2**63 / -1 overflows.
+
+      elsif (X.Len <= 1 or else (X.Len = 2 and then X.D (1) < 2**31))
+              and then
+            (Y.Len <= 1 or else (Y.Len = 2 and then Y.D (1) < 2**31))
+      then
+         declare
+            A : constant LLI := abs (From_Bignum (X));
+            B : constant LLI := abs (From_Bignum (Y));
+         begin
+            Quotient  := To_Bignum (A / B);
+            Remainder := To_Bignum (A rem B);
+            return;
+         end;
+
+      --  Easy case if divisor is one digit
+
+      elsif Y.Len = 1 then
+         declare
+            ND  : DD;
+            Div : constant DD := DD (Y.D (1));
+
+            Result : Digit_Vector (1 .. X.Len);
+            Remdr  : Digit_Vector (1 .. 1);
+
+         begin
+            ND := 0;
+            for J in 1 .. X.Len loop
+               ND := Base * ND + DD (X.D (J));
+               Result (J) := SD (ND / Div);
+               ND := ND rem Div;
+            end loop;
+
+            Quotient  := Normalize (Result);
+            Remdr (1) := SD (ND);
+            Remainder := Normalize (Remdr);
+            return;
+         end;
+      end if;
+
+      --  The complex full multi-precision case. We will employ algorithm
+      --  D defined in the section "The Classical Algorithms" (sec. 4.3.1)
+      --  of Donald Knuth's "The Art of Computer Programming", Vol. 2, 2nd
+      --  edition. The terminology is adjusted for this section to match that
+      --  reference.
+
+      --  We are dividing X.Len digits of X (called u here) by Y.Len digits
+      --  of Y (called v here), developing the quotient and remainder. The
+      --  numbers are represented using Base, which was chosen so that we have
+      --  the operations of multiplying to single digits (SD) to form a double
+      --  digit (DD), and dividing a double digit (DD) by a single digit (SD)
+      --  to give a single digit quotient and a single digit remainder.
+
+      --  Algorithm D from Knuth
+
+      --  Comments here with square brackets are directly from Knuth
+
+      Algorithm_D : declare
+
+         --  The following lower case variables correspond exactly to the
+         --  terminology used in algorithm D.
+
+         m : constant Length := X.Len - Y.Len;
+         n : constant Length := Y.Len;
+         b : constant DD     := Base;
+
+         u : Digit_Vector (0 .. m + n);
+         v : Digit_Vector (1 .. n);
+         q : Digit_Vector (0 .. m);
+         r : Digit_Vector (1 .. n);
+
+         u0 : SD renames u (0);
+         v1 : SD renames v (1);
+         v2 : SD renames v (2);
+
+         d    : DD;
+         j    : Length;
+         qhat : DD;
+         rhat : DD;
+         temp : DD;
+
+      begin
+         --  Initialize data of left and right operands
+
+         for J in 1 .. m + n loop
+            u (J) := X.D (J);
+         end loop;
+
+         for J in 1 .. n loop
+            v (J) := Y.D (J);
+         end loop;
+
+         --  [Division of nonnegative integers.] Given nonnegative integers u
+         --  = (ul,u2..um+n) and v = (v1,v2..vn), where v1 /= 0 and n > 1, we
+         --  form the quotient u / v = (q0,ql..qm) and the remainder u mod v =
+         --  (r1,r2..rn).
+
+         pragma Assert (v1 /= 0);
+         pragma Assert (n > 1);
+
+         --  Dl. [Normalize.] Set d = b/(vl + 1). Then set (u0,u1,u2..um+n)
+         --  equal to (u1,u2..um+n) times d, and set (v1,v2..vn) equal to
+         --  (v1,v2..vn) times d. Note the introduction of a new digit position
+         --  u0 at the left of u1; if d = 1 all we need to do in this step is
+         --  to set u0 = 0.
+
+         d := b / (DD (v1) + 1);
+
+         if d = 1 then
+            u0 := 0;
+
+         else
+            declare
+               Carry : DD;
+               Tmp   : DD;
+
+            begin
+               --  Multiply Dividend (u) by d
+
+               Carry := 0;
+               for J in reverse 1 .. m + n loop
+                  Tmp   := DD (u (J)) * d + Carry;
+                  u (J) := LSD (Tmp);
+                  Carry := Tmp / Base;
+               end loop;
+
+               u0 := SD (Carry);
+
+               --  Multiply Divisor (v) by d
+
+               Carry := 0;
+               for J in reverse 1 .. n loop
+                  Tmp   := DD (v (J)) * d + Carry;
+                  v (J) := LSD (Tmp);
+                  Carry := Tmp / Base;
+               end loop;
+
+               pragma Assert (Carry = 0);
+            end;
+         end if;
+
+         --  D2. [Initialize j.] Set j = 0. The loop on j, steps D2 through D7,
+         --  will be essentially a division of (uj, uj+1..uj+n) by (v1,v2..vn)
+         --  to get a single quotient digit qj.
+
+         j := 0;
+
+         --  Loop through digits
+
+         loop
+            --  Note: In the original printing, step D3 was as follows:
+
+            --  D3. [Calculate qhat.] If uj = v1, set qhat to b-l; otherwise
+            --  set qhat to (uj,uj+1)/v1. Now test if v2 * qhat is greater than
+            --  (uj*b + uj+1 - qhat*v1)*b + uj+2. If so, decrease qhat by 1 and
+            --  repeat this test
+
+            --  This had a bug not discovered till 1995, see Vol 2 errata:
+            --  http://www-cs-faculty.stanford.edu/~uno/err2-2e.ps.gz. Under
+            --  rare circumstances the expression in the test could overflow.
+            --  This version was further corrected in 2005, see Vol 2 errata:
+            --  http://www-cs-faculty.stanford.edu/~uno/all2-pre.ps.gz.
+            --  The code below is the fixed version of this step.
+
+            --  D3. [Calculate qhat.] Set qhat to (uj,uj+1)/v1 and rhat to
+            --  to (uj,uj+1) mod v1.
+
+            temp := u (j) & u (j + 1);
+            qhat := temp / DD (v1);
+            rhat := temp mod DD (v1);
+
+            --  D3 (continued). Now test if qhat >= b or v2*qhat > (rhat,uj+2):
+            --  if so, decrease qhat by 1, increase rhat by v1, and repeat this
+            --  test if rhat < b. [The test on v2 determines at high speed
+            --  most of the cases in which the trial value qhat is one too
+            --  large, and eliminates all cases where qhat is two too large.]
+
+            while qhat >= b
+              or else DD (v2) * qhat > LSD (rhat) & u (j + 2)
+            loop
+               qhat := qhat - 1;
+               rhat := rhat + DD (v1);
+               exit when rhat >= b;
+            end loop;
+
+            --  D4. [Multiply and subtract.] Replace (uj,uj+1..uj+n) by
+            --  (uj,uj+1..uj+n) minus qhat times (v1,v2..vn). This step
+            --  consists of a simple multiplication by a one-place number,
+            --  combined with a subtraction.
+
+            --  The digits (uj,uj+1..uj+n) are always kept positive; if the
+            --  result of this step is actually negative then (uj,uj+1..uj+n)
+            --  is left as the true value plus b**(n+1), i.e. as the b's
+            --  complement of the true value, and a "borrow" to the left is
+            --  remembered.
+
+            declare
+               Borrow : SD;
+               Carry  : DD;
+               Temp   : DD;
+
+               Negative : Boolean;
+               --  Records if subtraction causes a negative result, requiring
+               --  an add back (case where qhat turned out to be 1 too large).
+
+            begin
+               Borrow := 0;
+               for K in reverse 1 .. n loop
+                  Temp := qhat * DD (v (K)) + DD (Borrow);
+                  Borrow := MSD (Temp);
+
+                  if LSD (Temp) > u (j + K) then
+                     Borrow := Borrow + 1;
+                  end if;
+
+                  u (j + K) := u (j + K) - LSD (Temp);
+               end loop;
+
+               Negative := u (j) < Borrow;
+               u (j) := u (j) - Borrow;
+
+               --  D5. [Test remainder.] Set qj = qhat. If the result of step
+               --  D4 was negative, we will do the add back step (step D6).
+
+               q (j) := LSD (qhat);
+
+               if Negative then
+
+                  --  D6. [Add back.] Decrease qj by 1, and add (0,v1,v2..vn)
+                  --  to (uj,uj+1,uj+2..uj+n). (A carry will occur to the left
+                  --  of uj, and it is be ignored since it cancels with the
+                  --  borrow that occurred in D4.)
+
+                  q (j) := q (j) - 1;
+
+                  Carry := 0;
+                  for K in reverse 1 .. n loop
+                     Temp := DD (v (K)) + DD (u (j + K)) + Carry;
+                     u (j + K) := LSD (Temp);
+                     Carry := Temp / Base;
+                  end loop;
+
+                  u (j) := u (j) + SD (Carry);
+               end if;
+            end;
+
+            --  D7. [Loop on j.] Increase j by one. Now if j <= m, go back to
+            --  D3 (the start of the loop on j).
+
+            j := j + 1;
+            exit when not (j <= m);
+         end loop;
+
+         --  D8. [Unnormalize.] Now (qo,ql..qm) is the desired quotient, and
+         --  the desired remainder may be obtained by dividing (um+1..um+n)
+         --  by d.
+
+         if not Discard_Quotient then
+            Quotient := Normalize (q);
+         end if;
+
+         if not Discard_Remainder then
+            declare
+               Remdr : DD;
+
+            begin
+               Remdr := 0;
+               for K in 1 .. n loop
+                  Remdr := Base * Remdr + DD (u (m + K));
+                  r (K) := SD (Remdr / d);
+                  Remdr := Remdr rem d;
+               end loop;
+
+               pragma Assert (Remdr = 0);
+            end;
+
+            Remainder := Normalize (r);
+         end if;
+      end Algorithm_D;
+   end Div_Rem;
+
+   -----------------
+   -- From_Bignum --
+   -----------------
+
+   function From_Bignum (X : Bignum) return Long_Long_Integer is
+   begin
+      if X.Len = 0 then
+         return 0;
+
+      elsif X.Len = 1 then
+         return (if X.Neg then -LLI (X.D (1)) else LLI (X.D (1)));
+
+      elsif X.Len = 2 then
+         declare
+            Mag : constant DD := X.D (1) & X.D (2);
+         begin
+            if X.Neg and then Mag <= 2 ** 63 then
+               return -LLI (Mag);
+            elsif Mag < 2 ** 63 then
+               return LLI (Mag);
+            end if;
+         end;
+      end if;
+
+      raise Constraint_Error with "expression value out of range";
+   end From_Bignum;
+
+   -------------------------
+   -- Bignum_In_LLI_Range --
+   -------------------------
+
+   function Bignum_In_LLI_Range (X : Bignum) return Boolean is
+   begin
+      --  If length is 0 or 1, definitely fits
+
+      if X.Len <= 1 then
+         return True;
+
+      --  If length is greater than 2, definitely does not fit
+
+      elsif X.Len > 2 then
+         return False;
+
+      --  Length is 2, more tests needed
+
+      else
+         declare
+            Mag : constant DD := X.D (1) & X.D (2);
+         begin
+            return Mag < 2 ** 63 or else (X.Neg and then Mag = 2 ** 63);
+         end;
+      end if;
+   end Bignum_In_LLI_Range;
+
+   ---------------
+   -- Normalize --
+   ---------------
+
+   function Normalize
+     (X   : Digit_Vector;
+      Neg : Boolean := False) return Bignum
+   is
+      B : Bignum;
+      J : Length;
+
+   begin
+      J := X'First;
+      while J <= X'Last and then X (J) = 0 loop
+         J := J + 1;
+      end loop;
+
+      B := Allocate_Bignum (X'Last - J + 1);
+      B.Neg := B.Len > 0 and then Neg;
+      B.D := X (J .. X'Last);
+      return B;
+   end Normalize;
+
+   ---------------
+   -- To_Bignum --
+   ---------------
+
+   function To_Bignum (X : Long_Long_Integer) return Bignum is
+      R : Bignum;
+
+   begin
+      if X = 0 then
+         R := Allocate_Bignum (0);
+
+      --  One word result
+
+      elsif X in -(2 ** 32 - 1) .. +(2 ** 32 - 1) then
+         R := Allocate_Bignum (1);
+         R.D (1) := SD (abs (X));
+
+      --  Largest negative number annoyance
+
+      elsif X = Long_Long_Integer'First then
+         R := Allocate_Bignum (2);
+         R.D (1) := 2 ** 31;
+         R.D (2) := 0;
+
+      --  Normal two word case
+
+      else
+         R := Allocate_Bignum (2);
+         R.D (2) := SD (abs (X) mod Base);
+         R.D (1) := SD (abs (X) / Base);
+      end if;
+
+      R.Neg := X < 0;
+      return R;
+   end To_Bignum;
+
+   function To_Bignum (X : Unsigned_64) return Bignum is
+      R : Bignum;
+
+   begin
+      if X = 0 then
+         R := Allocate_Bignum (0);
+
+      --  One word result
+
+      elsif X < 2 ** 32 then
+         R := Allocate_Bignum (1);
+         R.D (1) := SD (X);
+
+      --  Two word result
+
+      else
+         R := Allocate_Bignum (2);
+         R.D (2) := SD (X mod Base);
+         R.D (1) := SD (X / Base);
+      end if;
+
+      R.Neg := False;
+      return R;
+   end To_Bignum;
+
+   -------------
+   -- Is_Zero --
+   -------------
+
+   function Is_Zero (X : Bignum) return Boolean is
+     (X /= null and then X.D = Zero_Data);
+
+end System.Generic_Bignums;