diff gcc/range-op.cc @ 145:1830386684a0

gcc-9.2.0
author anatofuz
date Thu, 13 Feb 2020 11:34:05 +0900
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/range-op.cc	Thu Feb 13 11:34:05 2020 +0900
@@ -0,0 +1,3113 @@
+/* Code for range operators.
+   Copyright (C) 2017-2020 Free Software Foundation, Inc.
+   Contributed by Andrew MacLeod <amacleod@redhat.com>
+   and Aldy Hernandez <aldyh@redhat.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "insn-codes.h"
+#include "rtl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "cfghooks.h"
+#include "tree-pass.h"
+#include "ssa.h"
+#include "optabs-tree.h"
+#include "gimple-pretty-print.h"
+#include "diagnostic-core.h"
+#include "flags.h"
+#include "fold-const.h"
+#include "stor-layout.h"
+#include "calls.h"
+#include "cfganal.h"
+#include "gimple-fold.h"
+#include "tree-eh.h"
+#include "gimple-iterator.h"
+#include "gimple-walk.h"
+#include "tree-cfg.h"
+#include "wide-int.h"
+#include "range-op.h"
+
+// Return the upper limit for a type.
+
+static inline wide_int
+max_limit (const_tree type)
+{
+  return wi::max_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
+}
+
+// Return the lower limit for a type.
+
+static inline wide_int
+min_limit (const_tree type)
+{
+  return wi::min_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
+}
+
+// If the range of either op1 or op2 is undefined, set the result to
+// undefined and return TRUE.
+
+inline bool
+empty_range_check (value_range &r,
+		   const value_range &op1, const value_range & op2)
+{
+  if (op1.undefined_p () || op2.undefined_p ())
+    {
+      r.set_undefined ();
+      return true;
+    }
+  else
+    return false;
+}
+
+// Return TRUE if shifting by OP is undefined behavior, and set R to
+// the appropriate range.
+
+static inline bool
+undefined_shift_range_check (value_range &r, tree type, const value_range op)
+{
+  if (op.undefined_p ())
+    {
+      r = value_range ();
+      return true;
+    }
+
+  // Shifting by any values outside [0..prec-1], gets undefined
+  // behavior from the shift operation.  We cannot even trust
+  // SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
+  // shifts, and the operation at the tree level may be widened.
+  if (wi::lt_p (op.lower_bound (), 0, TYPE_SIGN (op.type ()))
+      || wi::ge_p (op.upper_bound (),
+		   TYPE_PRECISION (type), TYPE_SIGN (op.type ())))
+    {
+      r = value_range (type);
+      return true;
+    }
+  return false;
+}
+
+// Return TRUE if 0 is within [WMIN, WMAX].
+
+static inline bool
+wi_includes_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
+{
+  signop sign = TYPE_SIGN (type);
+  return wi::le_p (wmin, 0, sign) && wi::ge_p (wmax, 0, sign);
+}
+
+// Return TRUE if [WMIN, WMAX] is the singleton 0.
+
+static inline bool
+wi_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
+{
+  unsigned prec = TYPE_PRECISION (type);
+  return wmin == wmax && wi::eq_p (wmin, wi::zero (prec));
+}
+
+// Default wide_int fold operation returns [MIN, MAX].
+
+void
+range_operator::wi_fold (value_range &r, tree type,
+			 const wide_int &lh_lb ATTRIBUTE_UNUSED,
+			 const wide_int &lh_ub ATTRIBUTE_UNUSED,
+			 const wide_int &rh_lb ATTRIBUTE_UNUSED,
+			 const wide_int &rh_ub ATTRIBUTE_UNUSED) const
+{
+  gcc_checking_assert (value_range::supports_type_p (type));
+  r = value_range (type);
+}
+
+// The default for fold is to break all ranges into sub-ranges and
+// invoke the wi_fold method on each sub-range pair.
+
+bool
+range_operator::fold_range (value_range &r, tree type,
+			    const value_range &lh,
+			    const value_range &rh) const
+{
+  gcc_checking_assert (value_range::supports_type_p (type));
+  if (empty_range_check (r, lh, rh))
+    return true;
+
+  value_range tmp;
+  r.set_undefined ();
+  for (unsigned x = 0; x < lh.num_pairs (); ++x)
+    for (unsigned y = 0; y < rh.num_pairs (); ++y)
+      {
+	wide_int lh_lb = lh.lower_bound (x);
+	wide_int lh_ub = lh.upper_bound (x);
+	wide_int rh_lb = rh.lower_bound (y);
+	wide_int rh_ub = rh.upper_bound (y);
+	wi_fold (tmp, type, lh_lb, lh_ub, rh_lb, rh_ub);
+	r.union_ (tmp);
+	if (r.varying_p ())
+	  return true;
+      }
+  return true;
+}
+
+// The default for op1_range is to return false.
+
+bool
+range_operator::op1_range (value_range &r ATTRIBUTE_UNUSED,
+			   tree type ATTRIBUTE_UNUSED,
+			   const value_range &lhs ATTRIBUTE_UNUSED,
+			   const value_range &op2 ATTRIBUTE_UNUSED) const
+{
+  return false;
+}
+
+// The default for op2_range is to return false.
+
+bool
+range_operator::op2_range (value_range &r ATTRIBUTE_UNUSED,
+			   tree type ATTRIBUTE_UNUSED,
+			   const value_range &lhs ATTRIBUTE_UNUSED,
+			   const value_range &op1 ATTRIBUTE_UNUSED) const
+{
+  return false;
+}
+
+
+// Create and return a range from a pair of wide-ints that are known
+// to have overflowed (or underflowed).
+
+static void
+value_range_from_overflowed_bounds (value_range &r, tree type,
+				    const wide_int &wmin,
+				    const wide_int &wmax)
+{
+  const signop sgn = TYPE_SIGN (type);
+  const unsigned int prec = TYPE_PRECISION (type);
+
+  wide_int tmin = wide_int::from (wmin, prec, sgn);
+  wide_int tmax = wide_int::from (wmax, prec, sgn);
+
+  bool covers = false;
+  wide_int tem = tmin;
+  tmin = tmax + 1;
+  if (wi::cmp (tmin, tmax, sgn) < 0)
+    covers = true;
+  tmax = tem - 1;
+  if (wi::cmp (tmax, tem, sgn) > 0)
+    covers = true;
+
+  // If the anti-range would cover nothing, drop to varying.
+  // Likewise if the anti-range bounds are outside of the types
+  // values.
+  if (covers || wi::cmp (tmin, tmax, sgn) > 0)
+    r = value_range (type);
+  else
+    r = value_range (type, tmin, tmax, VR_ANTI_RANGE);
+}
+
+// Create and return a range from a pair of wide-ints.  MIN_OVF and
+// MAX_OVF describe any overflow that might have occurred while
+// calculating WMIN and WMAX respectively.
+
+static void
+value_range_with_overflow (value_range &r, tree type,
+			   const wide_int &wmin, const wide_int &wmax,
+			   wi::overflow_type min_ovf = wi::OVF_NONE,
+			   wi::overflow_type max_ovf = wi::OVF_NONE)
+{
+  const signop sgn = TYPE_SIGN (type);
+  const unsigned int prec = TYPE_PRECISION (type);
+  const bool overflow_wraps = TYPE_OVERFLOW_WRAPS (type);
+
+  // For one bit precision if max != min, then the range covers all
+  // values.
+  if (prec == 1 && wi::ne_p (wmax, wmin))
+    {
+      r = value_range (type);
+      return;
+    }
+
+  if (overflow_wraps)
+    {
+      // If overflow wraps, truncate the values and adjust the range,
+      // kind, and bounds appropriately.
+      if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
+	{
+	  wide_int tmin = wide_int::from (wmin, prec, sgn);
+	  wide_int tmax = wide_int::from (wmax, prec, sgn);
+	  // If the limits are swapped, we wrapped around and cover
+	  // the entire range.
+	  if (wi::gt_p (tmin, tmax, sgn))
+	    r = value_range (type);
+	  else
+	    // No overflow or both overflow or underflow.  The range
+	    // kind stays normal.
+	    r = value_range (type, tmin, tmax);
+	  return;
+	}
+
+      if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
+	  || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
+	value_range_from_overflowed_bounds (r, type, wmin, wmax);
+      else
+	// Other underflow and/or overflow, drop to VR_VARYING.
+	r = value_range (type);
+    }
+  else
+    {
+      // If overflow does not wrap, saturate to [MIN, MAX].
+      wide_int new_lb, new_ub;
+      if (min_ovf == wi::OVF_UNDERFLOW)
+	new_lb = wi::min_value (prec, sgn);
+      else if (min_ovf == wi::OVF_OVERFLOW)
+	new_lb = wi::max_value (prec, sgn);
+      else
+        new_lb = wmin;
+
+      if (max_ovf == wi::OVF_UNDERFLOW)
+	new_ub = wi::min_value (prec, sgn);
+      else if (max_ovf == wi::OVF_OVERFLOW)
+	new_ub = wi::max_value (prec, sgn);
+      else
+        new_ub = wmax;
+
+      r = value_range (type, new_lb, new_ub);
+    }
+}
+
+// Create and return a range from a pair of wide-ints.  Canonicalize
+// the case where the bounds are swapped.  In which case, we transform
+// [10,5] into [MIN,5][10,MAX].
+
+static inline void
+create_possibly_reversed_range (value_range &r, tree type,
+				const wide_int &new_lb, const wide_int &new_ub)
+{
+  signop s = TYPE_SIGN (type);
+  // If the bounds are swapped, treat the result as if an overflow occured.
+  if (wi::gt_p (new_lb, new_ub, s))
+    value_range_from_overflowed_bounds (r, type, new_lb, new_ub);
+  else
+    // Otherwise its just a normal range.
+    r = value_range (type, new_lb, new_ub);
+}
+
+// Return a value_range instance that is a boolean TRUE.
+
+static inline value_range
+range_true (tree type)
+{
+  unsigned prec = TYPE_PRECISION (type);
+  return value_range (type, wi::one (prec), wi::one (prec));
+}
+
+// Return a value_range instance that is a boolean FALSE.
+
+static inline value_range
+range_false (tree type)
+{
+  unsigned prec = TYPE_PRECISION (type);
+  return value_range (type, wi::zero (prec), wi::zero (prec));
+}
+
+// Return a value_range that covers both true and false.
+
+static inline value_range
+range_true_and_false (tree type)
+{
+  unsigned prec = TYPE_PRECISION (type);
+  return value_range (type, wi::zero (prec), wi::one (prec));
+}
+
+enum bool_range_state { BRS_FALSE, BRS_TRUE, BRS_EMPTY, BRS_FULL };
+
+// Return the summary information about boolean range LHS.  Return an
+// "interesting" range in R.  For EMPTY or FULL, return the equivalent
+// range for TYPE, for BRS_TRUE and BRS false, return the negation of
+// the bool range.
+
+static bool_range_state
+get_bool_state (value_range &r, const value_range &lhs, tree val_type)
+{
+  // If there is no result, then this is unexecutable.
+  if (lhs.undefined_p ())
+    {
+      r.set_undefined ();
+      return BRS_EMPTY;
+    }
+
+  // If the bounds aren't the same, then it's not a constant.
+  if (!wi::eq_p (lhs.upper_bound (), lhs.lower_bound ()))
+    {
+      r.set_varying (val_type);
+      return BRS_FULL;
+    }
+
+  if (lhs.zero_p ())
+    return BRS_FALSE;
+
+  return BRS_TRUE;
+}
+
+
+class operator_equal : public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &val) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &val) const;
+} op_equal;
+
+bool
+operator_equal::fold_range (value_range &r, tree type,
+			    const value_range &op1,
+			    const value_range &op2) const
+{
+  if (empty_range_check (r, op1, op2))
+    return true;
+
+  // We can be sure the values are always equal or not if both ranges
+  // consist of a single value, and then compare them.
+  if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
+      && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
+    {
+      if (wi::eq_p (op1.lower_bound (), op2.upper_bound()))
+	r = range_true (type);
+      else
+	r = range_false (type);
+    }
+  else
+    {
+      // If ranges do not intersect, we know the range is not equal,
+      // otherwise we don't know anything for sure.
+      r = op1;
+      r.intersect (op2);
+      if (r.undefined_p ())
+	r = range_false (type);
+      else
+	r = range_true_and_false (type);
+    }
+  return true;
+}
+
+bool
+operator_equal::op1_range (value_range &r, tree type,
+			   const value_range &lhs,
+			   const value_range &op2) const
+{
+  switch (get_bool_state (r, lhs, type))
+    {
+    case BRS_FALSE:
+      // If the result is false, the only time we know anything is
+      // if OP2 is a constant.
+      if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
+	{
+	  r = op2;
+	  r.invert ();
+	}
+      else
+	r.set_varying (type);
+      break;
+
+    case BRS_TRUE:
+      // If it's true, the result is the same as OP2.
+      r = op2;
+      break;
+
+    default:
+      break;
+    }
+  return true;
+}
+
+bool
+operator_equal::op2_range (value_range &r, tree type,
+			   const value_range &lhs,
+			   const value_range &op1) const
+{
+  return operator_equal::op1_range (r, type, lhs, op1);
+}
+
+
+class operator_not_equal : public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const;
+} op_not_equal;
+
+bool
+operator_not_equal::fold_range (value_range &r, tree type,
+				const value_range &op1,
+				const value_range &op2) const
+{
+  if (empty_range_check (r, op1, op2))
+    return true;
+
+  // We can be sure the values are always equal or not if both ranges
+  // consist of a single value, and then compare them.
+  if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
+      && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
+    {
+      if (wi::ne_p (op1.lower_bound (), op2.upper_bound()))
+	r = range_true (type);
+      else
+	r = range_false (type);
+    }
+  else
+    {
+      // If ranges do not intersect, we know the range is not equal,
+      // otherwise we don't know anything for sure.
+      r = op1;
+      r.intersect (op2);
+      if (r.undefined_p ())
+	r = range_true (type);
+      else
+	r = range_true_and_false (type);
+    }
+  return true;
+}
+
+bool
+operator_not_equal::op1_range (value_range &r, tree type,
+			       const value_range &lhs,
+			       const value_range &op2) const
+{
+  switch (get_bool_state (r, lhs, type))
+    {
+    case BRS_TRUE:
+      // If the result is true, the only time we know anything is if
+      // OP2 is a constant.
+      if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
+	{
+	  r = op2;
+	  r.invert ();
+	}
+      else
+	r.set_varying (type);
+      break;
+
+    case BRS_FALSE:
+      // If its true, the result is the same as OP2.
+      r = op2;
+      break;
+
+    default:
+      break;
+    }
+  return true;
+}
+
+
+bool
+operator_not_equal::op2_range (value_range &r, tree type,
+			       const value_range &lhs,
+			       const value_range &op1) const
+{
+  return operator_not_equal::op1_range (r, type, lhs, op1);
+}
+
+// (X < VAL) produces the range of [MIN, VAL - 1].
+
+static void
+build_lt (value_range &r, tree type, const wide_int &val)
+{
+  wi::overflow_type ov;
+  wide_int lim = wi::sub (val, 1, TYPE_SIGN (type), &ov);
+
+  // If val - 1 underflows, check if X < MIN, which is an empty range.
+  if (ov)
+    r.set_undefined ();
+  else
+    r = value_range (type, min_limit (type), lim);
+}
+
+// (X <= VAL) produces the range of [MIN, VAL].
+
+static void
+build_le (value_range &r, tree type, const wide_int &val)
+{
+  r = value_range (type, min_limit (type), val);
+}
+
+// (X > VAL) produces the range of [VAL + 1, MAX].
+
+static void
+build_gt (value_range &r, tree type, const wide_int &val)
+{
+  wi::overflow_type ov;
+  wide_int lim = wi::add (val, 1, TYPE_SIGN (type), &ov);
+  // If val + 1 overflows, check is for X > MAX, which is an empty range.
+  if (ov)
+    r.set_undefined ();
+  else
+    r = value_range (type, lim, max_limit (type));
+}
+
+// (X >= val) produces the range of [VAL, MAX].
+
+static void
+build_ge (value_range &r, tree type, const wide_int &val)
+{
+  r = value_range (type, val, max_limit (type));
+}
+
+
+class operator_lt :  public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const;
+} op_lt;
+
+bool
+operator_lt::fold_range (value_range &r, tree type,
+			 const value_range &op1,
+			 const value_range &op2) const
+{
+  if (empty_range_check (r, op1, op2))
+    return true;
+
+  signop sign = TYPE_SIGN (op1.type ());
+  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
+
+  if (wi::lt_p (op1.upper_bound (), op2.lower_bound (), sign))
+    r = range_true (type);
+  else if (!wi::lt_p (op1.lower_bound (), op2.upper_bound (), sign))
+    r = range_false (type);
+  else
+    r = range_true_and_false (type);
+  return true;
+}
+
+bool
+operator_lt::op1_range (value_range &r, tree type,
+			const value_range &lhs,
+			const value_range &op2) const
+{
+  switch (get_bool_state (r, lhs, type))
+    {
+    case BRS_TRUE:
+      build_lt (r, type, op2.upper_bound ());
+      break;
+
+    case BRS_FALSE:
+      build_ge (r, type, op2.lower_bound ());
+      break;
+
+    default:
+      break;
+    }
+  return true;
+}
+
+bool
+operator_lt::op2_range (value_range &r, tree type,
+			const value_range &lhs,
+			const value_range &op1) const
+{
+  switch (get_bool_state (r, lhs, type))
+    {
+    case BRS_FALSE:
+      build_le (r, type, op1.upper_bound ());
+      break;
+
+    case BRS_TRUE:
+      build_gt (r, type, op1.lower_bound ());
+      break;
+
+    default:
+      break;
+    }
+  return true;
+}
+
+
+class operator_le :  public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const;
+} op_le;
+
+bool
+operator_le::fold_range (value_range &r, tree type,
+			 const value_range &op1,
+			 const value_range &op2) const
+{
+  if (empty_range_check (r, op1, op2))
+    return true;
+
+  signop sign = TYPE_SIGN (op1.type ());
+  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
+
+  if (wi::le_p (op1.upper_bound (), op2.lower_bound (), sign))
+    r = range_true (type);
+  else if (!wi::le_p (op1.lower_bound (), op2.upper_bound (), sign))
+    r = range_false (type);
+  else
+    r = range_true_and_false (type);
+  return true;
+}
+
+bool
+operator_le::op1_range (value_range &r, tree type,
+			const value_range &lhs,
+			const value_range &op2) const
+{
+  switch (get_bool_state (r, lhs, type))
+    {
+    case BRS_TRUE:
+      build_le (r, type, op2.upper_bound ());
+      break;
+
+    case BRS_FALSE:
+      build_gt (r, type, op2.lower_bound ());
+      break;
+
+    default:
+      break;
+    }
+  return true;
+}
+
+bool
+operator_le::op2_range (value_range &r, tree type,
+			const value_range &lhs,
+			const value_range &op1) const
+{
+  switch (get_bool_state (r, lhs, type))
+    {
+    case BRS_FALSE:
+      build_lt (r, type, op1.upper_bound ());
+      break;
+
+    case BRS_TRUE:
+      build_ge (r, type, op1.lower_bound ());
+      break;
+
+    default:
+      break;
+    }
+  return true;
+}
+
+
+class operator_gt :  public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const;
+} op_gt;
+
+bool
+operator_gt::fold_range (value_range &r, tree type,
+			 const value_range &op1, const value_range &op2) const
+{
+  if (empty_range_check (r, op1, op2))
+    return true;
+
+  signop sign = TYPE_SIGN (op1.type ());
+  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
+
+  if (wi::gt_p (op1.lower_bound (), op2.upper_bound (), sign))
+    r = range_true (type);
+  else if (!wi::gt_p (op1.upper_bound (), op2.lower_bound (), sign))
+    r = range_false (type);
+  else
+    r = range_true_and_false (type);
+  return true;
+}
+
+bool
+operator_gt::op1_range (value_range &r, tree type,
+			const value_range &lhs, const value_range &op2) const
+{
+  switch (get_bool_state (r, lhs, type))
+    {
+    case BRS_TRUE:
+      build_gt (r, type, op2.lower_bound ());
+      break;
+
+    case BRS_FALSE:
+      build_le (r, type, op2.upper_bound ());
+      break;
+
+    default:
+      break;
+    }
+  return true;
+}
+
+bool
+operator_gt::op2_range (value_range &r, tree type,
+			const value_range &lhs,
+			const value_range &op1) const
+{
+  switch (get_bool_state (r, lhs, type))
+    {
+    case BRS_FALSE:
+      build_ge (r, type, op1.lower_bound ());
+      break;
+
+    case BRS_TRUE:
+      build_lt (r, type, op1.upper_bound ());
+      break;
+
+    default:
+      break;
+    }
+  return true;
+}
+
+
+class operator_ge :  public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const;
+} op_ge;
+
+bool
+operator_ge::fold_range (value_range &r, tree type,
+			 const value_range &op1,
+			 const value_range &op2) const
+{
+  if (empty_range_check (r, op1, op2))
+    return true;
+
+  signop sign = TYPE_SIGN (op1.type ());
+  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
+
+  if (wi::ge_p (op1.lower_bound (), op2.upper_bound (), sign))
+    r = range_true (type);
+  else if (!wi::ge_p (op1.upper_bound (), op2.lower_bound (), sign))
+    r = range_false (type);
+  else
+    r = range_true_and_false (type);
+  return true;
+}
+
+bool
+operator_ge::op1_range (value_range &r, tree type,
+			const value_range &lhs,
+			const value_range &op2) const
+{
+  switch (get_bool_state (r, lhs, type))
+    {
+    case BRS_TRUE:
+      build_ge (r, type, op2.lower_bound ());
+      break;
+
+    case BRS_FALSE:
+      build_lt (r, type, op2.upper_bound ());
+      break;
+
+    default:
+      break;
+    }
+  return true;
+}
+
+bool
+operator_ge::op2_range (value_range &r, tree type,
+			const value_range &lhs,
+			const value_range &op1) const
+{
+  switch (get_bool_state (r, lhs, type))
+    {
+    case BRS_FALSE:
+      build_gt (r, type, op1.lower_bound ());
+      break;
+
+    case BRS_TRUE:
+      build_le (r, type, op1.upper_bound ());
+      break;
+
+    default:
+      break;
+    }
+  return true;
+}
+
+
+class operator_plus : public range_operator
+{
+public:
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const;
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+} op_plus;
+
+void
+operator_plus::wi_fold (value_range &r, tree type,
+			const wide_int &lh_lb, const wide_int &lh_ub,
+			const wide_int &rh_lb, const wide_int &rh_ub) const
+{
+  wi::overflow_type ov_lb, ov_ub;
+  signop s = TYPE_SIGN (type);
+  wide_int new_lb = wi::add (lh_lb, rh_lb, s, &ov_lb);
+  wide_int new_ub = wi::add (lh_ub, rh_ub, s, &ov_ub);
+  value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
+}
+
+bool
+operator_plus::op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const
+{
+  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, lhs, op2);
+}
+
+bool
+operator_plus::op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const
+{
+  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, lhs, op1);
+}
+
+
+class operator_minus : public range_operator
+{
+public:
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const;
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+} op_minus;
+
+void 
+operator_minus::wi_fold (value_range &r, tree type,
+			 const wide_int &lh_lb, const wide_int &lh_ub,
+			 const wide_int &rh_lb, const wide_int &rh_ub) const
+{
+  wi::overflow_type ov_lb, ov_ub;
+  signop s = TYPE_SIGN (type);
+  wide_int new_lb = wi::sub (lh_lb, rh_ub, s, &ov_lb);
+  wide_int new_ub = wi::sub (lh_ub, rh_lb, s, &ov_ub);
+  value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
+}
+
+bool
+operator_minus::op1_range (value_range &r, tree type,
+			   const value_range &lhs,
+			   const value_range &op2) const
+{
+  return range_op_handler (PLUS_EXPR, type)->fold_range (r, type, lhs, op2);
+}
+
+bool
+operator_minus::op2_range (value_range &r, tree type,
+			   const value_range &lhs,
+			   const value_range &op1) const
+{
+  return fold_range (r, type, op1, lhs);
+}
+
+
+class operator_min : public range_operator
+{
+public:
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+} op_min;
+
+void
+operator_min::wi_fold (value_range &r, tree type,
+		       const wide_int &lh_lb, const wide_int &lh_ub,
+		       const wide_int &rh_lb, const wide_int &rh_ub) const
+{
+  signop s = TYPE_SIGN (type);
+  wide_int new_lb = wi::min (lh_lb, rh_lb, s);
+  wide_int new_ub = wi::min (lh_ub, rh_ub, s);
+  value_range_with_overflow (r, type, new_lb, new_ub);
+}
+
+
+class operator_max : public range_operator
+{
+public:
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+} op_max;
+
+void
+operator_max::wi_fold (value_range &r, tree type,
+		       const wide_int &lh_lb, const wide_int &lh_ub,
+		       const wide_int &rh_lb, const wide_int &rh_ub) const
+{
+  signop s = TYPE_SIGN (type);
+  wide_int new_lb = wi::max (lh_lb, rh_lb, s);
+  wide_int new_ub = wi::max (lh_ub, rh_ub, s);
+  value_range_with_overflow (r, type, new_lb, new_ub);
+}
+
+
+class cross_product_operator : public range_operator
+{
+public:
+  // Perform an operation between two wide-ints and place the result
+  // in R.  Return true if the operation overflowed.
+  virtual bool wi_op_overflows (wide_int &r,
+				tree type,
+				const wide_int &,
+				const wide_int &) const = 0;
+
+  // Calculate the cross product of two sets of sub-ranges and return it.
+  void wi_cross_product (value_range &r, tree type,
+			 const wide_int &lh_lb,
+			 const wide_int &lh_ub,
+			 const wide_int &rh_lb,
+			 const wide_int &rh_ub) const;
+};
+
+// Calculate the cross product of two sets of ranges and return it.
+//
+// Multiplications, divisions and shifts are a bit tricky to handle,
+// depending on the mix of signs we have in the two ranges, we need to
+// operate on different values to get the minimum and maximum values
+// for the new range.  One approach is to figure out all the
+// variations of range combinations and do the operations.
+//
+// However, this involves several calls to compare_values and it is
+// pretty convoluted.  It's simpler to do the 4 operations (MIN0 OP
+// MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP MAX1) and then
+// figure the smallest and largest values to form the new range.
+
+void
+cross_product_operator::wi_cross_product (value_range &r, tree type,
+					  const wide_int &lh_lb,
+					  const wide_int &lh_ub,
+					  const wide_int &rh_lb,
+					  const wide_int &rh_ub) const
+{
+  wide_int cp1, cp2, cp3, cp4;
+  // Default to varying.
+  r = value_range (type);
+
+  // Compute the 4 cross operations, bailing if we get an overflow we
+  // can't handle.
+  if (wi_op_overflows (cp1, type, lh_lb, rh_lb))
+    return;
+  if (wi::eq_p (lh_lb, lh_ub))
+    cp3 = cp1;
+  else if (wi_op_overflows (cp3, type, lh_ub, rh_lb))
+    return;
+  if (wi::eq_p (rh_lb, rh_ub))
+    cp2 = cp1;
+  else if (wi_op_overflows (cp2, type, lh_lb, rh_ub))
+    return;
+  if (wi::eq_p (lh_lb, lh_ub))
+    cp4 = cp2;
+  else if (wi_op_overflows (cp4, type, lh_ub, rh_ub))
+    return;
+
+  // Order pairs.
+  signop sign = TYPE_SIGN (type);
+  if (wi::gt_p (cp1, cp2, sign))
+    std::swap (cp1, cp2);
+  if (wi::gt_p (cp3, cp4, sign))
+    std::swap (cp3, cp4);
+
+  // Choose min and max from the ordered pairs.
+  wide_int res_lb = wi::min (cp1, cp3, sign);
+  wide_int res_ub = wi::max (cp2, cp4, sign);
+  value_range_with_overflow (r, type, res_lb, res_ub);
+}
+
+
+class operator_mult : public cross_product_operator
+{
+public:
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+  virtual bool wi_op_overflows (wide_int &res, tree type,
+				const wide_int &w0, const wide_int &w1) const;
+} op_mult;
+
+bool
+operator_mult::wi_op_overflows (wide_int &res, tree type,
+				const wide_int &w0, const wide_int &w1) const
+{
+  wi::overflow_type overflow = wi::OVF_NONE;
+  signop sign = TYPE_SIGN (type);
+  res = wi::mul (w0, w1, sign, &overflow);
+   if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
+     {
+       // For multiplication, the sign of the overflow is given
+       // by the comparison of the signs of the operands.
+       if (sign == UNSIGNED || w0.sign_mask () == w1.sign_mask ())
+	 res = wi::max_value (w0.get_precision (), sign);
+       else
+	 res = wi::min_value (w0.get_precision (), sign);
+       return false;
+     }
+   return overflow;
+}
+
+void 
+operator_mult::wi_fold (value_range &r, tree type,
+			const wide_int &lh_lb, const wide_int &lh_ub,
+			const wide_int &rh_lb, const wide_int &rh_ub) const
+{
+  if (TYPE_OVERFLOW_UNDEFINED (type))
+    {
+      wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
+      return;
+    }
+
+  // Multiply the ranges when overflow wraps.  This is basically fancy
+  // code so we don't drop to varying with an unsigned
+  // [-3,-1]*[-3,-1].
+  //
+  // This test requires 2*prec bits if both operands are signed and
+  // 2*prec + 2 bits if either is not.  Therefore, extend the values
+  // using the sign of the result to PREC2.  From here on out,
+  // everthing is just signed math no matter what the input types
+  // were.
+
+  signop sign = TYPE_SIGN (type);
+  unsigned prec = TYPE_PRECISION (type);
+  widest2_int min0 = widest2_int::from (lh_lb, sign);
+  widest2_int max0 = widest2_int::from (lh_ub, sign);
+  widest2_int min1 = widest2_int::from (rh_lb, sign);
+  widest2_int max1 = widest2_int::from (rh_ub, sign);
+  widest2_int sizem1 = wi::mask <widest2_int> (prec, false);
+  widest2_int size = sizem1 + 1;
+
+  // Canonicalize the intervals.
+  if (sign == UNSIGNED)
+    {
+      if (wi::ltu_p (size, min0 + max0))
+	{
+	  min0 -= size;
+	  max0 -= size;
+	}
+      if (wi::ltu_p (size, min1 + max1))
+	{
+	  min1 -= size;
+	  max1 -= size;
+	}
+    }
+
+  // Sort the 4 products so that min is in prod0 and max is in
+  // prod3.
+  widest2_int prod0 = min0 * min1;
+  widest2_int prod1 = min0 * max1;
+  widest2_int prod2 = max0 * min1;
+  widest2_int prod3 = max0 * max1;
+
+  // min0min1 > max0max1
+  if (prod0 > prod3)
+    std::swap (prod0, prod3);
+
+  // min0max1 > max0min1
+  if (prod1 > prod2)
+    std::swap (prod1, prod2);
+
+  if (prod0 > prod1)
+    std::swap (prod0, prod1);
+
+  if (prod2 > prod3)
+    std::swap (prod2, prod3);
+
+  // diff = max - min
+  prod2 = prod3 - prod0;
+  if (wi::geu_p (prod2, sizem1))
+    // The range covers all values.
+    r = value_range (type);
+  else
+    {
+      wide_int new_lb = wide_int::from (prod0, prec, sign);
+      wide_int new_ub = wide_int::from (prod3, prec, sign);
+      create_possibly_reversed_range (r, type, new_lb, new_ub);
+    }
+}
+
+
+class operator_div : public cross_product_operator
+{
+public:
+  operator_div (enum tree_code c)  { code = c; }
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+  virtual bool wi_op_overflows (wide_int &res, tree type,
+				const wide_int &, const wide_int &) const;
+private:
+  enum tree_code code;
+};
+
+bool
+operator_div::wi_op_overflows (wide_int &res, tree type,
+			       const wide_int &w0, const wide_int &w1) const
+{
+  if (w1 == 0)
+    return true;
+
+  wi::overflow_type overflow = wi::OVF_NONE;
+  signop sign = TYPE_SIGN (type);
+
+  switch (code)
+    {
+    case EXACT_DIV_EXPR:
+      // EXACT_DIV_EXPR is implemented as TRUNC_DIV_EXPR in
+      // operator_exact_divide.  No need to handle it here.
+      gcc_unreachable ();
+      break;
+    case TRUNC_DIV_EXPR:
+      res = wi::div_trunc (w0, w1, sign, &overflow);
+      break;
+    case FLOOR_DIV_EXPR:
+      res = wi::div_floor (w0, w1, sign, &overflow);
+      break;
+    case ROUND_DIV_EXPR:
+      res = wi::div_round (w0, w1, sign, &overflow);
+      break;
+    case CEIL_DIV_EXPR:
+      res = wi::div_ceil (w0, w1, sign, &overflow);
+      break;
+    default:
+      gcc_unreachable ();
+    }
+
+  if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
+    {
+      // For division, the only case is -INF / -1 = +INF.
+      res = wi::max_value (w0.get_precision (), sign);
+      return false;
+    }
+  return overflow;
+}
+
+void
+operator_div::wi_fold (value_range &r, tree type,
+		       const wide_int &lh_lb, const wide_int &lh_ub,
+		       const wide_int &rh_lb, const wide_int &rh_ub) const
+{
+  // If we know we will divide by zero, return undefined.
+  if (rh_lb == 0 && rh_ub == 0)
+    {
+      r = value_range ();
+      return;
+    }
+
+  const wide_int dividend_min = lh_lb;
+  const wide_int dividend_max = lh_ub;
+  const wide_int divisor_min = rh_lb;
+  const wide_int divisor_max = rh_ub;
+  signop sign = TYPE_SIGN (type);
+  unsigned prec = TYPE_PRECISION (type);
+  wide_int extra_min, extra_max;
+
+  // If we know we won't divide by zero, just do the division.
+  if (!wi_includes_zero_p (type, divisor_min, divisor_max))
+    {
+      wi_cross_product (r, type, dividend_min, dividend_max,
+		       divisor_min, divisor_max);
+      return;
+    }
+
+  // If flag_non_call_exceptions, we must not eliminate a division by zero.
+  if (cfun->can_throw_non_call_exceptions)
+    {
+      r = value_range (type);
+      return;
+    }
+
+  // If we're definitely dividing by zero, there's nothing to do.
+  if (wi_zero_p (type, divisor_min, divisor_max))
+    {
+      r = value_range ();
+      return;
+    }
+
+  // Perform the division in 2 parts, [LB, -1] and [1, UB], which will
+  // skip any division by zero.
+
+  // First divide by the negative numbers, if any.
+  if (wi::neg_p (divisor_min, sign))
+    wi_cross_product (r, type, dividend_min, dividend_max,
+		      divisor_min, wi::minus_one (prec));
+  else
+    r = value_range ();
+
+  // Then divide by the non-zero positive numbers, if any.
+  if (wi::gt_p (divisor_max, wi::zero (prec), sign))
+    {
+      value_range tmp;
+      wi_cross_product (tmp, type, dividend_min, dividend_max,
+			wi::one (prec), divisor_max);
+      r.union_ (tmp);
+    }
+  // We shouldn't still have undefined here.
+  gcc_checking_assert (!r.undefined_p ());
+}
+
+operator_div op_trunc_div (TRUNC_DIV_EXPR);
+operator_div op_floor_div (FLOOR_DIV_EXPR);
+operator_div op_round_div (ROUND_DIV_EXPR);
+operator_div op_ceil_div (CEIL_DIV_EXPR);
+
+
+class operator_exact_divide : public operator_div
+{
+public:
+  operator_exact_divide () : operator_div (TRUNC_DIV_EXPR) { }
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+
+} op_exact_div;
+
+bool
+operator_exact_divide::op1_range (value_range &r, tree type,
+				  const value_range &lhs,
+				  const value_range &op2) const
+{
+  tree offset;
+  // [2, 4] = op1 / [3,3]   since its exact divide, no need to worry about
+  // remainders in the endpoints, so op1 = [2,4] * [3,3] = [6,12].
+  // We wont bother trying to enumerate all the in between stuff :-P
+  // TRUE accuraacy is [6,6][9,9][12,12].  This is unlikely to matter most of
+  // the time however.
+  // If op2 is a multiple of 2, we would be able to set some non-zero bits.
+  if (op2.singleton_p (&offset)
+      && !integer_zerop (offset))
+    return range_op_handler (MULT_EXPR, type)->fold_range (r, type, lhs, op2);
+  return false;
+}
+
+
+class operator_lshift : public cross_product_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+
+  virtual void wi_fold (value_range &r, tree type,
+			const wide_int &lh_lb, const wide_int &lh_ub,
+			const wide_int &rh_lb, const wide_int &rh_ub) const;
+  virtual bool wi_op_overflows (wide_int &res,
+				tree type,
+				const wide_int &,
+				const wide_int &) const;
+} op_lshift;
+
+bool
+operator_lshift::fold_range (value_range &r, tree type,
+			     const value_range &op1,
+			     const value_range &op2) const
+{
+  if (undefined_shift_range_check (r, type, op2))
+    return true;
+
+  // Transform left shifts by constants into multiplies.
+  if (op2.singleton_p ())
+    {
+      unsigned shift = op2.lower_bound ().to_uhwi ();
+      wide_int tmp = wi::set_bit_in_zero (shift, TYPE_PRECISION (type));
+      value_range mult (type, tmp, tmp);
+
+      // Force wrapping multiplication.
+      bool saved_flag_wrapv = flag_wrapv;
+      bool saved_flag_wrapv_pointer = flag_wrapv_pointer;
+      flag_wrapv = 1;
+      flag_wrapv_pointer = 1;
+      bool b = range_op_handler (MULT_EXPR, type)->fold_range (r, type, op1,
+							       mult);
+      flag_wrapv = saved_flag_wrapv;
+      flag_wrapv_pointer = saved_flag_wrapv_pointer;
+      return b;
+    }
+  else
+    // Otherwise, invoke the generic fold routine.
+    return range_operator::fold_range (r, type, op1, op2);
+}
+
+void
+operator_lshift::wi_fold (value_range &r, tree type,
+			  const wide_int &lh_lb, const wide_int &lh_ub,
+			  const wide_int &rh_lb, const wide_int &rh_ub) const
+{
+  signop sign = TYPE_SIGN (type);
+  unsigned prec = TYPE_PRECISION (type);
+  int overflow_pos = sign == SIGNED ? prec - 1 : prec;
+  int bound_shift = overflow_pos - rh_ub.to_shwi ();
+  // If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
+  // overflow.  However, for that to happen, rh.max needs to be zero,
+  // which means rh is a singleton range of zero, which means it
+  // should be handled by the lshift fold_range above.
+  wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
+  wide_int complement = ~(bound - 1);
+  wide_int low_bound, high_bound;
+  bool in_bounds = false;
+
+  if (sign == UNSIGNED)
+    {
+      low_bound = bound;
+      high_bound = complement;
+      if (wi::ltu_p (lh_ub, low_bound))
+	{
+	  // [5, 6] << [1, 2] == [10, 24].
+	  // We're shifting out only zeroes, the value increases
+	  // monotonically.
+	  in_bounds = true;
+	}
+      else if (wi::ltu_p (high_bound, lh_lb))
+	{
+	  // [0xffffff00, 0xffffffff] << [1, 2]
+	  // == [0xfffffc00, 0xfffffffe].
+	  // We're shifting out only ones, the value decreases
+	  // monotonically.
+	  in_bounds = true;
+	}
+    }
+  else
+    {
+      // [-1, 1] << [1, 2] == [-4, 4]
+      low_bound = complement;
+      high_bound = bound;
+      if (wi::lts_p (lh_ub, high_bound)
+	  && wi::lts_p (low_bound, lh_lb))
+	{
+	  // For non-negative numbers, we're shifting out only zeroes,
+	  // the value increases monotonically.  For negative numbers,
+	  // we're shifting out only ones, the value decreases
+	  // monotonically.
+	  in_bounds = true;
+	}
+    }
+
+  if (in_bounds)
+    wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
+  else
+   r = value_range (type);
+}
+
+bool
+operator_lshift::wi_op_overflows (wide_int &res, tree type,
+				  const wide_int &w0, const wide_int &w1) const
+{
+  signop sign = TYPE_SIGN (type);
+  if (wi::neg_p (w1))
+    {
+      // It's unclear from the C standard whether shifts can overflow.
+      // The following code ignores overflow; perhaps a C standard
+      // interpretation ruling is needed.
+      res = wi::rshift (w0, -w1, sign);
+    }
+  else
+    res = wi::lshift (w0, w1);
+  return false;
+}
+
+
+class operator_rshift : public cross_product_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+  virtual bool wi_op_overflows (wide_int &res,
+				tree type,
+				const wide_int &w0,
+				const wide_int &w1) const;
+} op_rshift;
+
+bool
+operator_rshift::wi_op_overflows (wide_int &res,
+				  tree type,
+				  const wide_int &w0,
+				  const wide_int &w1) const
+{
+  signop sign = TYPE_SIGN (type);
+  if (wi::neg_p (w1))
+    res = wi::lshift (w0, -w1);
+  else
+    {
+      // It's unclear from the C standard whether shifts can overflow.
+      // The following code ignores overflow; perhaps a C standard
+      // interpretation ruling is needed.
+      res = wi::rshift (w0, w1, sign);
+    }
+  return false;
+}
+
+bool
+operator_rshift::fold_range (value_range &r, tree type,
+			     const value_range &op1,
+			     const value_range &op2) const
+{
+  // Invoke the generic fold routine if not undefined..
+  if (undefined_shift_range_check (r, type, op2))
+    return true;
+
+  return range_operator::fold_range (r, type, op1, op2);
+}
+
+void
+operator_rshift::wi_fold (value_range &r, tree type,
+			  const wide_int &lh_lb, const wide_int &lh_ub,
+			  const wide_int &rh_lb, const wide_int &rh_ub) const
+{
+  wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
+}
+
+
+class operator_cast: public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+
+} op_convert;
+
+bool
+operator_cast::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
+			   const value_range &lh,
+			   const value_range &rh) const
+{
+  if (empty_range_check (r, lh, rh))
+    return true;
+  
+  tree inner = lh.type ();
+  tree outer = rh.type ();
+  gcc_checking_assert (rh.varying_p ());
+  gcc_checking_assert (types_compatible_p (outer, type));
+  signop inner_sign = TYPE_SIGN (inner);
+  signop outer_sign = TYPE_SIGN (outer);
+  unsigned inner_prec = TYPE_PRECISION (inner);
+  unsigned outer_prec = TYPE_PRECISION (outer);
+
+  // Start with an empty range and add subranges.
+  r = value_range ();
+  for (unsigned x = 0; x < lh.num_pairs (); ++x)
+    {
+      wide_int lh_lb = lh.lower_bound (x);
+      wide_int lh_ub = lh.upper_bound (x);
+
+      // If the conversion is not truncating we can convert the min
+      // and max values and canonicalize the resulting range.
+      // Otherwise, we can do the conversion if the size of the range
+      // is less than what the precision of the target type can
+      // represent.
+      if (outer_prec >= inner_prec
+	  || wi::rshift (wi::sub (lh_ub, lh_lb),
+			 wi::uhwi (outer_prec, inner_prec),
+			 inner_sign) == 0)
+	{
+	  wide_int min = wide_int::from (lh_lb, outer_prec, inner_sign);
+	  wide_int max = wide_int::from (lh_ub, outer_prec, inner_sign);
+	  if (!wi::eq_p (min, wi::min_value (outer_prec, outer_sign))
+	      || !wi::eq_p (max, wi::max_value (outer_prec, outer_sign)))
+	    {
+	      value_range tmp;
+	      create_possibly_reversed_range (tmp, type, min, max);
+	      r.union_ (tmp);
+	      continue;
+	    }
+	}
+      r = value_range (type);
+      break;
+    }
+  return true;
+}
+
+bool
+operator_cast::op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const
+{
+  tree lhs_type = lhs.type ();
+  value_range tmp;
+  gcc_checking_assert (types_compatible_p (op2.type(), type));
+
+  // If the precision of the LHS is smaller than the precision of the
+  // RHS, then there would be truncation of the value on the RHS, and
+  // so we can tell nothing about it.
+  if (TYPE_PRECISION (lhs_type) < TYPE_PRECISION (type))
+    {
+      // If we've been passed an actual value for the RHS rather than
+      // the type, see if it fits the LHS, and if so, then we can allow
+      // it.
+      fold_range (r, lhs_type, op2, value_range (lhs_type));
+      fold_range (tmp, type, r, value_range (type));
+      if (tmp == op2)
+        {
+	  // We know the value of the RHS fits in the LHS type, so
+	  // convert the LHS and remove any values that arent in OP2.
+	  fold_range (r, type, lhs, value_range (type));
+	  r.intersect (op2);
+	  return true;
+	}
+      // Special case if the LHS is a boolean.  A 0 means the RHS is
+      // zero, and a 1 means the RHS is non-zero.
+      if (TREE_CODE (lhs_type) == BOOLEAN_TYPE)
+	{
+	  // If the LHS is unknown, the result is whatever op2 already is.
+	  if (!lhs.singleton_p ())
+	    {
+	      r = op2;
+	      return true;
+	    }
+	  // Boolean casts are weird in GCC. It's actually an implied
+	  // mask with 0x01, so all that is known is whether the
+	  // rightmost bit is 0 or 1, which implies the only value
+	  // *not* in the RHS is 0 or -1.
+	  unsigned prec = TYPE_PRECISION (type);
+	  if (lhs.zero_p ())
+	    r = value_range (type, wi::minus_one (prec), wi::minus_one (prec),
+			     VR_ANTI_RANGE);
+	  else
+	    r = value_range (type, wi::zero (prec), wi::zero (prec),
+			     VR_ANTI_RANGE);
+	  // And intersect it with what we know about op2.
+	  r.intersect (op2);
+	}
+      else
+	// Otherwise we'll have to assume it's whatever we know about op2.
+	r = op2;
+      return true;
+    }
+
+  // If the LHS precision is greater than the rhs precision, the LHS
+  // range is restricted to the range of the RHS by this
+  // assignment.
+  if (TYPE_PRECISION (lhs_type) > TYPE_PRECISION (type))
+    {
+      // Cast the range of the RHS to the type of the LHS.
+      fold_range (tmp, lhs_type, value_range (type), value_range (lhs_type));
+      // Intersect this with the LHS range will produce the range, which
+      // will be cast to the RHS type before returning.
+      tmp.intersect (lhs);
+    }
+  else
+    tmp = lhs;
+
+  // Cast the calculated range to the type of the RHS.
+  fold_range (r, type, tmp, value_range (type));
+  return true;
+}
+
+
+class operator_logical_and : public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &lh,
+			   const value_range &rh) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const;
+} op_logical_and;
+
+
+bool
+operator_logical_and::fold_range (value_range &r, tree type,
+				  const value_range &lh,
+				  const value_range &rh) const
+{
+  if (empty_range_check (r, lh, rh))
+    return true;
+
+  // 0 && anything is 0.
+  if ((wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (lh.upper_bound (), 0))
+      || (wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (rh.upper_bound (), 0)))
+    r = range_false (type);
+  else if (lh.contains_p (build_zero_cst (lh.type ()))
+	   || rh.contains_p (build_zero_cst (rh.type ())))
+    // To reach this point, there must be a logical 1 on each side, and
+    // the only remaining question is whether there is a zero or not.
+    r = range_true_and_false (type);
+  else
+    r = range_true (type);
+  return true;
+}
+
+bool
+operator_logical_and::op1_range (value_range &r, tree type,
+				 const value_range &lhs,
+				 const value_range &op2 ATTRIBUTE_UNUSED) const
+{
+   switch (get_bool_state (r, lhs, type))
+     {
+     case BRS_TRUE:
+       // A true result means both sides of the AND must be true.
+       r = range_true (type);
+       break;
+     default:
+       // Any other result means only one side has to be false, the
+       // other side can be anything. So we cannott be sure of any
+       // result here.
+       r = range_true_and_false (type);
+       break;
+     }
+  return true;
+}
+
+bool
+operator_logical_and::op2_range (value_range &r, tree type,
+				 const value_range &lhs,
+				 const value_range &op1) const
+{
+  return operator_logical_and::op1_range (r, type, lhs, op1);
+}
+
+
+class operator_bitwise_and : public range_operator
+{
+public:
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const;
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+} op_bitwise_and;
+
+// Optimize BIT_AND_EXPR and BIT_IOR_EXPR in terms of a mask if
+// possible.  Basically, see if we can optimize:
+//
+//	[LB, UB] op Z
+//   into:
+//	[LB op Z, UB op Z]
+//
+// If the optimization was successful, accumulate the range in R and
+// return TRUE.
+
+static bool
+wi_optimize_and_or (value_range &r,
+		    enum tree_code code,
+		    tree type,
+		    const wide_int &lh_lb, const wide_int &lh_ub,
+		    const wide_int &rh_lb, const wide_int &rh_ub)
+{
+  // Calculate the singleton mask among the ranges, if any.
+  wide_int lower_bound, upper_bound, mask;
+  if (wi::eq_p (rh_lb, rh_ub))
+    {
+      mask = rh_lb;
+      lower_bound = lh_lb;
+      upper_bound = lh_ub;
+    }
+  else if (wi::eq_p (lh_lb, lh_ub))
+    {
+      mask = lh_lb;
+      lower_bound = rh_lb;
+      upper_bound = rh_ub;
+    }
+  else
+    return false;
+
+  // If Z is a constant which (for op | its bitwise not) has n
+  // consecutive least significant bits cleared followed by m 1
+  // consecutive bits set immediately above it and either
+  // m + n == precision, or (x >> (m + n)) == (y >> (m + n)).
+  //
+  // The least significant n bits of all the values in the range are
+  // cleared or set, the m bits above it are preserved and any bits
+  // above these are required to be the same for all values in the
+  // range.
+  wide_int w = mask;
+  int m = 0, n = 0;
+  if (code == BIT_IOR_EXPR)
+    w = ~w;
+  if (wi::eq_p (w, 0))
+    n = w.get_precision ();
+  else
+    {
+      n = wi::ctz (w);
+      w = ~(w | wi::mask (n, false, w.get_precision ()));
+      if (wi::eq_p (w, 0))
+	m = w.get_precision () - n;
+      else
+	m = wi::ctz (w) - n;
+    }
+  wide_int new_mask = wi::mask (m + n, true, w.get_precision ());
+  if ((new_mask & lower_bound) != (new_mask & upper_bound))
+    return false;
+
+  wide_int res_lb, res_ub;
+  if (code == BIT_AND_EXPR)
+    {
+      res_lb = wi::bit_and (lower_bound, mask);
+      res_ub = wi::bit_and (upper_bound, mask);
+    }
+  else if (code == BIT_IOR_EXPR)
+    {
+      res_lb = wi::bit_or (lower_bound, mask);
+      res_ub = wi::bit_or (upper_bound, mask);
+    }
+  else
+    gcc_unreachable ();
+  value_range_with_overflow (r, type, res_lb, res_ub);
+  return true;
+}
+
+// For range [LB, UB] compute two wide_int bit masks.
+//
+// In the MAYBE_NONZERO bit mask, if some bit is unset, it means that
+// for all numbers in the range the bit is 0, otherwise it might be 0
+// or 1.
+//
+// In the MUSTBE_NONZERO bit mask, if some bit is set, it means that
+// for all numbers in the range the bit is 1, otherwise it might be 0
+// or 1.
+
+void
+wi_set_zero_nonzero_bits (tree type,
+			  const wide_int &lb, const wide_int &ub,
+			  wide_int &maybe_nonzero,
+			  wide_int &mustbe_nonzero)
+{
+  signop sign = TYPE_SIGN (type);
+
+  if (wi::eq_p (lb, ub))
+    maybe_nonzero = mustbe_nonzero = lb;
+  else if (wi::ge_p (lb, 0, sign) || wi::lt_p (ub, 0, sign))
+    {
+      wide_int xor_mask = lb ^ ub;
+      maybe_nonzero = lb | ub;
+      mustbe_nonzero = lb & ub;
+      if (xor_mask != 0)
+	{
+	  wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
+				    maybe_nonzero.get_precision ());
+	  maybe_nonzero = maybe_nonzero | mask;
+	  mustbe_nonzero = wi::bit_and_not (mustbe_nonzero, mask);
+	}
+    }
+  else
+    {
+      maybe_nonzero = wi::minus_one (lb.get_precision ());
+      mustbe_nonzero = wi::zero (lb.get_precision ());
+    }
+}
+
+void
+operator_bitwise_and::wi_fold (value_range &r, tree type,
+			       const wide_int &lh_lb,
+			       const wide_int &lh_ub,
+			       const wide_int &rh_lb,
+			       const wide_int &rh_ub) const
+{
+  if (wi_optimize_and_or (r, BIT_AND_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
+    return;
+
+  wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
+  wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
+  wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
+			    maybe_nonzero_lh, mustbe_nonzero_lh);
+  wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
+			    maybe_nonzero_rh, mustbe_nonzero_rh);
+
+  wide_int new_lb = mustbe_nonzero_lh & mustbe_nonzero_rh;
+  wide_int new_ub = maybe_nonzero_lh & maybe_nonzero_rh;
+  signop sign = TYPE_SIGN (type);
+  unsigned prec = TYPE_PRECISION (type);
+  // If both input ranges contain only negative values, we can
+  // truncate the result range maximum to the minimum of the
+  // input range maxima.
+  if (wi::lt_p (lh_ub, 0, sign) && wi::lt_p (rh_ub, 0, sign))
+    {
+      new_ub = wi::min (new_ub, lh_ub, sign);
+      new_ub = wi::min (new_ub, rh_ub, sign);
+    }
+  // If either input range contains only non-negative values
+  // we can truncate the result range maximum to the respective
+  // maximum of the input range.
+  if (wi::ge_p (lh_lb, 0, sign))
+    new_ub = wi::min (new_ub, lh_ub, sign);
+  if (wi::ge_p (rh_lb, 0, sign))
+    new_ub = wi::min (new_ub, rh_ub, sign);
+  // PR68217: In case of signed & sign-bit-CST should
+  // result in [-INF, 0] instead of [-INF, INF].
+  if (wi::gt_p (new_lb, new_ub, sign))
+    {
+      wide_int sign_bit = wi::set_bit_in_zero (prec - 1, prec);
+      if (sign == SIGNED
+	  && ((wi::eq_p (lh_lb, lh_ub)
+	       && !wi::cmps (lh_lb, sign_bit))
+	      || (wi::eq_p (rh_lb, rh_ub)
+		  && !wi::cmps (rh_lb, sign_bit))))
+	{
+	  new_lb = wi::min_value (prec, sign);
+	  new_ub = wi::zero (prec);
+	}
+    }
+  // If the limits got swapped around, return varying.
+  if (wi::gt_p (new_lb, new_ub,sign))
+    r = value_range (type);
+  else
+    value_range_with_overflow (r, type, new_lb, new_ub);
+}
+
+bool
+operator_bitwise_and::op1_range (value_range &r, tree type,
+				 const value_range &lhs,
+				 const value_range &op2) const
+{
+  // If this is really a logical wi_fold, call that.
+  if (types_compatible_p (type, boolean_type_node))
+    return op_logical_and.op1_range (r, type, lhs, op2);
+
+  // For now do nothing with bitwise AND of value_range's.
+  r.set_varying (type);
+  return true;
+}
+
+bool
+operator_bitwise_and::op2_range (value_range &r, tree type,
+				 const value_range &lhs,
+				 const value_range &op1) const
+{
+  return operator_bitwise_and::op1_range (r, type, lhs, op1);
+}
+
+
+class operator_logical_or : public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &lh,
+			   const value_range &rh) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const;
+} op_logical_or;
+
+bool
+operator_logical_or::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
+				 const value_range &lh,
+				 const value_range &rh) const
+{
+  if (empty_range_check (r, lh, rh))
+    return true;
+
+  r = lh;
+  r.union_ (rh);
+  return true;
+}
+
+bool
+operator_logical_or::op1_range (value_range &r, tree type,
+				const value_range &lhs,
+				const value_range &op2 ATTRIBUTE_UNUSED) const
+{
+   switch (get_bool_state (r, lhs, type))
+     {
+     case BRS_FALSE:
+       // A false result means both sides of the OR must be false.
+       r = range_false (type);
+       break;
+     default:
+       // Any other result means only one side has to be true, the
+       // other side can be anything. so we can't be sure of any result
+       // here.
+       r = range_true_and_false (type);
+       break;
+    }
+  return true;
+}
+
+bool
+operator_logical_or::op2_range (value_range &r, tree type,
+				const value_range &lhs,
+				const value_range &op1) const
+{
+  return operator_logical_or::op1_range (r, type, lhs, op1);
+}
+
+
+class operator_bitwise_or : public range_operator
+{
+public:
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+  virtual bool op2_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op1) const;
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+} op_bitwise_or;
+
+void
+operator_bitwise_or::wi_fold (value_range &r, tree type,
+			      const wide_int &lh_lb,
+			      const wide_int &lh_ub,
+			      const wide_int &rh_lb,
+			      const wide_int &rh_ub) const
+{
+  if (wi_optimize_and_or (r, BIT_IOR_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
+    return;
+
+  wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
+  wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
+  wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
+			    maybe_nonzero_lh, mustbe_nonzero_lh);
+  wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
+			    maybe_nonzero_rh, mustbe_nonzero_rh);
+  wide_int new_lb = mustbe_nonzero_lh | mustbe_nonzero_rh;
+  wide_int new_ub = maybe_nonzero_lh | maybe_nonzero_rh;
+  signop sign = TYPE_SIGN (type);
+  // If the input ranges contain only positive values we can
+  // truncate the minimum of the result range to the maximum
+  // of the input range minima.
+  if (wi::ge_p (lh_lb, 0, sign)
+      && wi::ge_p (rh_lb, 0, sign))
+    {
+      new_lb = wi::max (new_lb, lh_lb, sign);
+      new_lb = wi::max (new_lb, rh_lb, sign);
+    }
+  // If either input range contains only negative values
+  // we can truncate the minimum of the result range to the
+  // respective minimum range.
+  if (wi::lt_p (lh_ub, 0, sign))
+    new_lb = wi::max (new_lb, lh_lb, sign);
+  if (wi::lt_p (rh_ub, 0, sign))
+    new_lb = wi::max (new_lb, rh_lb, sign);
+  // If the limits got swapped around, return varying.
+  if (wi::gt_p (new_lb, new_ub,sign))
+    r = value_range (type);
+  else
+    value_range_with_overflow (r, type, new_lb, new_ub);
+}
+
+bool
+operator_bitwise_or::op1_range (value_range &r, tree type,
+				const value_range &lhs,
+				const value_range &op2) const
+{
+  // If this is really a logical wi_fold, call that.
+  if (types_compatible_p (type, boolean_type_node))
+    return op_logical_or.op1_range (r, type, lhs, op2);
+
+  // For now do nothing with bitwise OR of value_range's.
+  r.set_varying (type);
+  return true;
+}
+
+bool
+operator_bitwise_or::op2_range (value_range &r, tree type,
+				const value_range &lhs,
+				const value_range &op1) const
+{
+  return operator_bitwise_or::op1_range (r, type, lhs, op1);
+}
+
+
+class operator_bitwise_xor : public range_operator
+{
+public:
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+} op_bitwise_xor;
+
+void
+operator_bitwise_xor::wi_fold (value_range &r, tree type,
+			       const wide_int &lh_lb,
+			       const wide_int &lh_ub,
+			       const wide_int &rh_lb,
+			       const wide_int &rh_ub) const
+{
+  signop sign = TYPE_SIGN (type);
+  wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
+  wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
+  wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
+			    maybe_nonzero_lh, mustbe_nonzero_lh);
+  wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
+			    maybe_nonzero_rh, mustbe_nonzero_rh);
+
+  wide_int result_zero_bits = ((mustbe_nonzero_lh & mustbe_nonzero_rh)
+			       | ~(maybe_nonzero_lh | maybe_nonzero_rh));
+  wide_int result_one_bits
+    = (wi::bit_and_not (mustbe_nonzero_lh, maybe_nonzero_rh)
+       | wi::bit_and_not (mustbe_nonzero_rh, maybe_nonzero_lh));
+  wide_int new_ub = ~result_zero_bits;
+  wide_int new_lb = result_one_bits;
+
+  // If the range has all positive or all negative values, the result
+  // is better than VARYING.
+  if (wi::lt_p (new_lb, 0, sign) || wi::ge_p (new_ub, 0, sign))
+    value_range_with_overflow (r, type, new_lb, new_ub);
+  else
+    r = value_range (type);
+}
+
+
+class operator_trunc_mod : public range_operator
+{
+public:
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+} op_trunc_mod;
+
+void
+operator_trunc_mod::wi_fold (value_range &r, tree type,
+			     const wide_int &lh_lb,
+			     const wide_int &lh_ub,
+			     const wide_int &rh_lb,
+			     const wide_int &rh_ub) const
+{
+  wide_int new_lb, new_ub, tmp;
+  signop sign = TYPE_SIGN (type);
+  unsigned prec = TYPE_PRECISION (type);
+
+  // Mod 0 is undefined.  Return undefined.
+  if (wi_zero_p (type, rh_lb, rh_ub))
+    {
+      r = value_range ();
+      return;
+    }
+
+  // ABS (A % B) < ABS (B) and either 0 <= A % B <= A or A <= A % B <= 0.
+  new_ub = rh_ub - 1;
+  if (sign == SIGNED)
+    {
+      tmp = -1 - rh_lb;
+      new_ub = wi::smax (new_ub, tmp);
+    }
+
+  if (sign == UNSIGNED)
+    new_lb = wi::zero (prec);
+  else
+    {
+      new_lb = -new_ub;
+      tmp = lh_lb;
+      if (wi::gts_p (tmp, 0))
+	tmp = wi::zero (prec);
+      new_lb = wi::smax (new_lb, tmp);
+    }
+  tmp = lh_ub;
+  if (sign == SIGNED && wi::neg_p (tmp))
+    tmp = wi::zero (prec);
+  new_ub = wi::min (new_ub, tmp, sign);
+
+  value_range_with_overflow (r, type, new_lb, new_ub);
+}
+
+
+class operator_logical_not : public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &lh,
+			   const value_range &rh) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+} op_logical_not;
+
+// Folding a logical NOT, oddly enough, involves doing nothing on the
+// forward pass through.  During the initial walk backwards, the
+// logical NOT reversed the desired outcome on the way back, so on the
+// way forward all we do is pass the range forward.
+//
+// 	b_2 = x_1 < 20
+// 	b_3 = !b_2
+// 	if (b_3)
+//  to determine the TRUE branch, walking  backward
+//       if (b_3)		if ([1,1])
+//       b_3 = !b_2		[1,1] = ![0,0]
+// 	 b_2 = x_1 < 20		[0,0] = x_1 < 20,   false, so x_1 == [20, 255]
+//   which is the result we are looking for.. so.. pass it through.
+
+bool
+operator_logical_not::fold_range (value_range &r, tree type,
+				  const value_range &lh,
+				  const value_range &rh ATTRIBUTE_UNUSED) const
+{
+  if (empty_range_check (r, lh, rh))
+    return true;
+
+  if (lh.varying_p () || lh.undefined_p ())
+    r = lh;
+  else
+    {
+      r = lh;
+      r.invert ();
+    }
+  gcc_checking_assert (lh.type() == type);
+  return true;
+}
+
+bool
+operator_logical_not::op1_range (value_range &r,
+				 tree type ATTRIBUTE_UNUSED,
+				 const value_range &lhs,
+				 const value_range &op2 ATTRIBUTE_UNUSED) const
+{
+  r = lhs;
+  if (!lhs.varying_p () && !lhs.undefined_p ())
+    r.invert ();
+  return true;
+}
+
+
+class operator_bitwise_not : public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &lh,
+			   const value_range &rh) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+} op_bitwise_not;
+
+bool
+operator_bitwise_not::fold_range (value_range &r, tree type,
+				  const value_range &lh,
+				  const value_range &rh) const
+{
+  if (empty_range_check (r, lh, rh))
+    return true;
+
+  // ~X is simply -1 - X.
+  value_range minusone (type, wi::minus_one (TYPE_PRECISION (type)),
+			wi::minus_one (TYPE_PRECISION (type)));
+  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, minusone,
+							  lh);
+}
+
+bool
+operator_bitwise_not::op1_range (value_range &r, tree type,
+				 const value_range &lhs,
+				 const value_range &op2) const
+{
+  // ~X is -1 - X and since bitwise NOT is involutary...do it again.
+  return fold_range (r, type, lhs, op2);
+}
+
+
+class operator_cst : public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+} op_integer_cst;
+
+bool
+operator_cst::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
+			  const value_range &lh,
+			  const value_range &rh ATTRIBUTE_UNUSED) const
+{
+  r = lh;
+  return true;
+}
+
+
+class operator_identity : public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+} op_identity;
+
+bool
+operator_identity::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
+			       const value_range &lh,
+			       const value_range &rh ATTRIBUTE_UNUSED) const
+{
+  r = lh;
+  return true;
+}
+
+bool
+operator_identity::op1_range (value_range &r, tree type ATTRIBUTE_UNUSED,
+			      const value_range &lhs,
+			      const value_range &op2 ATTRIBUTE_UNUSED) const
+{
+  r = lhs;
+  return true;
+}
+
+
+class operator_abs : public range_operator
+{
+ public:
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+} op_abs;
+
+void
+operator_abs::wi_fold (value_range &r, tree type,
+		       const wide_int &lh_lb, const wide_int &lh_ub,
+		       const wide_int &rh_lb ATTRIBUTE_UNUSED,
+		       const wide_int &rh_ub ATTRIBUTE_UNUSED) const
+{
+  wide_int min, max;
+  signop sign = TYPE_SIGN (type);
+  unsigned prec = TYPE_PRECISION (type);
+
+  // Pass through LH for the easy cases.
+  if (sign == UNSIGNED || wi::ge_p (lh_lb, 0, sign))
+    {
+      r = value_range (type, lh_lb, lh_ub);
+      return;
+    }
+
+  // -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get
+  // a useful range.
+  wide_int min_value = wi::min_value (prec, sign);
+  wide_int max_value = wi::max_value (prec, sign);
+  if (!TYPE_OVERFLOW_UNDEFINED (type) && wi::eq_p (lh_lb, min_value))
+    {
+      r = value_range (type);
+      return;
+    }
+
+  // ABS_EXPR may flip the range around, if the original range
+  // included negative values.
+  if (wi::eq_p (lh_lb, min_value))
+    min = max_value;
+  else
+    min = wi::abs (lh_lb);
+  if (wi::eq_p (lh_ub, min_value))
+    max = max_value;
+  else
+    max = wi::abs (lh_ub);
+
+  // If the range contains zero then we know that the minimum value in the
+  // range will be zero.
+  if (wi::le_p (lh_lb, 0, sign) && wi::ge_p (lh_ub, 0, sign))
+    {
+      if (wi::gt_p (min, max, sign))
+	max = min;
+      min = wi::zero (prec);
+    }
+  else
+    {
+      // If the range was reversed, swap MIN and MAX.
+      if (wi::gt_p (min, max, sign))
+	std::swap (min, max);
+    }
+
+  // If the new range has its limits swapped around (MIN > MAX), then
+  // the operation caused one of them to wrap around.  The only thing
+  // we know is that the result is positive.
+  if (wi::gt_p (min, max, sign))
+    {
+      min = wi::zero (prec);
+      max = max_value;
+    }
+  r = value_range (type, min, max);
+}
+
+bool
+operator_abs::op1_range (value_range &r, tree type,
+			 const value_range &lhs,
+			 const value_range &op2) const
+{
+  if (empty_range_check (r, lhs, op2))
+    return true;
+  if (TYPE_UNSIGNED (type))
+    {
+      r = lhs;
+      return true;
+    }
+  // Start with the positives because negatives are an impossible result.
+  value_range positives = range_positives (type);
+  positives.intersect (lhs);
+  r = positives;
+  // Then add the negative of each pair:
+  // ABS(op1) = [5,20] would yield op1 => [-20,-5][5,20].
+  for (unsigned i = 0; i < positives.num_pairs (); ++i)
+    r.union_ (value_range (type,
+			   -positives.upper_bound (i),
+			   -positives.lower_bound (i)));
+  return true;
+}
+
+
+class operator_absu : public range_operator
+{
+ public:
+  virtual void wi_fold (value_range &r, tree type,
+			const wide_int &lh_lb, const wide_int &lh_ub,
+			const wide_int &rh_lb, const wide_int &rh_ub) const;
+} op_absu;
+
+void
+operator_absu::wi_fold (value_range &r, tree type,
+			const wide_int &lh_lb, const wide_int &lh_ub,
+			const wide_int &rh_lb ATTRIBUTE_UNUSED,
+			const wide_int &rh_ub ATTRIBUTE_UNUSED) const
+{
+  wide_int new_lb, new_ub;
+
+  // Pass through VR0 the easy cases.
+  if (wi::ges_p (lh_lb, 0))
+    {
+      new_lb = lh_lb;
+      new_ub = lh_ub;
+    }
+  else
+    {
+      new_lb = wi::abs (lh_lb);
+      new_ub = wi::abs (lh_ub);
+
+      // If the range contains zero then we know that the minimum
+      // value in the range will be zero.
+      if (wi::ges_p (lh_ub, 0))
+	{
+	  if (wi::gtu_p (new_lb, new_ub))
+	    new_ub = new_lb;
+	  new_lb = wi::zero (TYPE_PRECISION (type));
+	}
+      else
+	std::swap (new_lb, new_ub);
+    }
+
+  gcc_checking_assert (TYPE_UNSIGNED (type));
+  r = value_range (type, new_lb, new_ub);
+}
+
+
+class operator_negate : public range_operator
+{
+ public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+} op_negate;
+
+bool
+operator_negate::fold_range (value_range &r, tree type,
+			     const value_range &lh,
+			     const value_range &rh) const
+{
+  if (empty_range_check (r, lh, rh))
+    return true;
+  // -X is simply 0 - X.
+  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type,
+							  range_zero (type),
+							  lh);
+}
+
+bool
+operator_negate::op1_range (value_range &r, tree type,
+			    const value_range &lhs,
+			    const value_range &op2) const
+{
+  // NEGATE is involutory.
+  return fold_range (r, type, lhs, op2);
+}
+
+
+class operator_addr_expr : public range_operator
+{
+public:
+  virtual bool fold_range (value_range &r, tree type,
+			   const value_range &op1,
+			   const value_range &op2) const;
+  virtual bool op1_range (value_range &r, tree type,
+			  const value_range &lhs,
+			  const value_range &op2) const;
+} op_addr;
+
+bool
+operator_addr_expr::fold_range (value_range &r, tree type,
+				const value_range &lh,
+				const value_range &rh) const
+{
+  if (empty_range_check (r, lh, rh))
+    return true;
+
+  // Return a non-null pointer of the LHS type (passed in op2).
+  if (lh.zero_p ())
+    r = range_zero (type);
+  else if (!lh.contains_p (build_zero_cst (lh.type ())))
+    r = range_nonzero (type);
+  else
+    r = value_range (type);
+  return true;
+}
+
+bool
+operator_addr_expr::op1_range (value_range &r, tree type,
+			       const value_range &lhs,
+			       const value_range &op2) const
+{
+  return operator_addr_expr::fold_range (r, type, lhs, op2);
+}
+
+
+class pointer_plus_operator : public range_operator
+{
+public:
+  virtual void wi_fold (value_range &r, tree type,
+		        const wide_int &lh_lb,
+		        const wide_int &lh_ub,
+		        const wide_int &rh_lb,
+		        const wide_int &rh_ub) const;
+} op_pointer_plus;
+
+void
+pointer_plus_operator::wi_fold (value_range &r, tree type,
+				const wide_int &lh_lb,
+				const wide_int &lh_ub,
+				const wide_int &rh_lb,
+				const wide_int &rh_ub) const
+{
+  // For pointer types, we are really only interested in asserting
+  // whether the expression evaluates to non-NULL.
+  //
+  // With -fno-delete-null-pointer-checks we need to be more
+  // conservative.  As some object might reside at address 0,
+  // then some offset could be added to it and the same offset
+  // subtracted again and the result would be NULL.
+  // E.g.
+  // static int a[12]; where &a[0] is NULL and
+  // ptr = &a[6];
+  // ptr -= 6;
+  // ptr will be NULL here, even when there is POINTER_PLUS_EXPR
+  // where the first range doesn't include zero and the second one
+  // doesn't either.  As the second operand is sizetype (unsigned),
+  // consider all ranges where the MSB could be set as possible
+  // subtractions where the result might be NULL.
+  if ((!wi_includes_zero_p (type, lh_lb, lh_ub)
+       || !wi_includes_zero_p (type, rh_lb, rh_ub))
+      && !TYPE_OVERFLOW_WRAPS (type)
+      && (flag_delete_null_pointer_checks
+	  || !wi::sign_mask (rh_ub)))
+    r = range_nonzero (type);
+  else if (lh_lb == lh_ub && lh_lb == 0
+	   && rh_lb == rh_ub && rh_lb == 0)
+    r = range_zero (type);
+  else
+   r = value_range (type);
+}
+
+
+class pointer_min_max_operator : public range_operator
+{
+public:
+  virtual void wi_fold (value_range & r, tree type,
+			const wide_int &lh_lb, const wide_int &lh_ub,
+			const wide_int &rh_lb, const wide_int &rh_ub) const;
+} op_ptr_min_max;
+
+void
+pointer_min_max_operator::wi_fold (value_range &r, tree type,
+				   const wide_int &lh_lb,
+				   const wide_int &lh_ub,
+				   const wide_int &rh_lb,
+				   const wide_int &rh_ub) const
+{
+  // For MIN/MAX expressions with pointers, we only care about
+  // nullness.  If both are non null, then the result is nonnull.
+  // If both are null, then the result is null.  Otherwise they
+  // are varying.
+  if (!wi_includes_zero_p (type, lh_lb, lh_ub)
+      && !wi_includes_zero_p (type, rh_lb, rh_ub))
+    r = range_nonzero (type);
+  else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
+    r = range_zero (type);
+  else
+    r = value_range (type);
+}
+
+
+class pointer_and_operator : public range_operator
+{
+public:
+  virtual void wi_fold (value_range &r, tree type,
+			const wide_int &lh_lb, const wide_int &lh_ub,
+			const wide_int &rh_lb, const wide_int &rh_ub) const;
+} op_pointer_and;
+
+void
+pointer_and_operator::wi_fold (value_range &r, tree type,
+			       const wide_int &lh_lb,
+			       const wide_int &lh_ub,
+			       const wide_int &rh_lb ATTRIBUTE_UNUSED,
+			       const wide_int &rh_ub ATTRIBUTE_UNUSED) const
+{
+  // For pointer types, we are really only interested in asserting
+  // whether the expression evaluates to non-NULL.
+  if (wi_zero_p (type, lh_lb, lh_ub) || wi_zero_p (type, lh_lb, lh_ub))
+    r = range_zero (type);
+  else 
+    r = value_range (type);
+}
+
+
+class pointer_or_operator : public range_operator
+{
+public:
+  virtual void wi_fold (value_range &r, tree type,
+			const wide_int &lh_lb, const wide_int &lh_ub,
+			const wide_int &rh_lb, const wide_int &rh_ub) const;
+} op_pointer_or;
+
+void
+pointer_or_operator::wi_fold (value_range &r, tree type,
+			      const wide_int &lh_lb,
+			      const wide_int &lh_ub,
+			      const wide_int &rh_lb,
+			      const wide_int &rh_ub) const
+{
+  // For pointer types, we are really only interested in asserting
+  // whether the expression evaluates to non-NULL.
+  if (!wi_includes_zero_p (type, lh_lb, lh_ub)
+      && !wi_includes_zero_p (type, rh_lb, rh_ub))
+    r = range_nonzero (type);
+  else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
+    r = range_zero (type);
+  else
+    r = value_range (type);
+}
+
+// This implements the range operator tables as local objects in this file.
+
+class range_op_table
+{
+public:
+  inline range_operator *operator[] (enum tree_code code);
+protected:
+  void set (enum tree_code code, range_operator &op);
+private:
+  range_operator *m_range_tree[MAX_TREE_CODES];
+};
+
+// Return a pointer to the range_operator instance, if there is one
+// associated with tree_code CODE.
+
+range_operator *
+range_op_table::operator[] (enum tree_code code)
+{
+  gcc_checking_assert (code > 0 && code < MAX_TREE_CODES);
+  return m_range_tree[code];
+}
+
+// Add OP to the handler table for CODE.
+
+void
+range_op_table::set (enum tree_code code, range_operator &op)
+{
+  gcc_checking_assert (m_range_tree[code] == NULL);
+  m_range_tree[code] = &op;
+}
+
+// Instantiate a range op table for integral operations.
+
+class integral_table : public range_op_table
+{
+public:
+  integral_table ();
+} integral_tree_table;
+
+integral_table::integral_table ()
+{
+  set (EQ_EXPR, op_equal);
+  set (NE_EXPR, op_not_equal);
+  set (LT_EXPR, op_lt);
+  set (LE_EXPR, op_le);
+  set (GT_EXPR, op_gt);
+  set (GE_EXPR, op_ge);
+  set (PLUS_EXPR, op_plus);
+  set (MINUS_EXPR, op_minus);
+  set (MIN_EXPR, op_min);
+  set (MAX_EXPR, op_max);
+  set (MULT_EXPR, op_mult);
+  set (TRUNC_DIV_EXPR, op_trunc_div);
+  set (FLOOR_DIV_EXPR, op_floor_div);
+  set (ROUND_DIV_EXPR, op_round_div);
+  set (CEIL_DIV_EXPR, op_ceil_div);
+  set (EXACT_DIV_EXPR, op_exact_div);
+  set (LSHIFT_EXPR, op_lshift);
+  set (RSHIFT_EXPR, op_rshift);
+  set (NOP_EXPR, op_convert);
+  set (CONVERT_EXPR, op_convert);
+  set (TRUTH_AND_EXPR, op_logical_and);
+  set (BIT_AND_EXPR, op_bitwise_and);
+  set (TRUTH_OR_EXPR, op_logical_or);
+  set (BIT_IOR_EXPR, op_bitwise_or);
+  set (BIT_XOR_EXPR, op_bitwise_xor);
+  set (TRUNC_MOD_EXPR, op_trunc_mod);
+  set (TRUTH_NOT_EXPR, op_logical_not);
+  set (BIT_NOT_EXPR, op_bitwise_not);
+  set (INTEGER_CST, op_integer_cst);
+  set (SSA_NAME, op_identity);
+  set (PAREN_EXPR, op_identity);
+  set (OBJ_TYPE_REF, op_identity);
+  set (ABS_EXPR, op_abs);
+  set (ABSU_EXPR, op_absu);
+  set (NEGATE_EXPR, op_negate);
+  set (ADDR_EXPR, op_addr);
+}
+
+// Instantiate a range op table for pointer operations.
+
+class pointer_table : public range_op_table
+{
+public:
+  pointer_table ();
+} pointer_tree_table;
+
+pointer_table::pointer_table ()
+{
+  set (BIT_AND_EXPR, op_pointer_and);
+  set (BIT_IOR_EXPR, op_pointer_or);
+  set (MIN_EXPR, op_ptr_min_max);
+  set (MAX_EXPR, op_ptr_min_max);
+  set (POINTER_PLUS_EXPR, op_pointer_plus);
+
+  set (EQ_EXPR, op_equal);
+  set (NE_EXPR, op_not_equal);
+  set (LT_EXPR, op_lt);
+  set (LE_EXPR, op_le);
+  set (GT_EXPR, op_gt);
+  set (GE_EXPR, op_ge);
+  set (SSA_NAME, op_identity);
+  set (ADDR_EXPR, op_addr);
+  set (NOP_EXPR, op_convert);
+  set (CONVERT_EXPR, op_convert);
+
+  set (BIT_NOT_EXPR, op_bitwise_not);
+  set (BIT_XOR_EXPR, op_bitwise_xor);
+}
+
+// The tables are hidden and accessed via a simple extern function.
+
+range_operator *
+range_op_handler (enum tree_code code, tree type)
+{
+  // First check if there is apointer specialization.
+  if (POINTER_TYPE_P (type))
+    return pointer_tree_table[code];
+  return integral_tree_table[code];
+}
+
+// Cast the range in R to TYPE.
+
+void
+range_cast (value_range &r, tree type)
+{
+  value_range tmp = r;
+  range_operator *op = range_op_handler (CONVERT_EXPR, type);
+  // Call op_convert, if it fails, the result is varying.
+  if (!op->fold_range (r, type, tmp, value_range (type)))
+    r = value_range (type);
+}
+
+#if CHECKING_P
+#include "selftest.h"
+#include "stor-layout.h"
+
+namespace selftest
+{
+#define INT(N) build_int_cst (integer_type_node, (N))
+#define UINT(N) build_int_cstu (unsigned_type_node, (N))
+#define INT16(N) build_int_cst (short_integer_type_node, (N))
+#define UINT16(N) build_int_cstu (short_unsigned_type_node, (N))
+#define INT64(N) build_int_cstu (long_long_integer_type_node, (N))
+#define UINT64(N) build_int_cstu (long_long_unsigned_type_node, (N))
+#define UINT128(N) build_int_cstu (u128_type, (N))
+#define UCHAR(N) build_int_cstu (unsigned_char_type_node, (N))
+#define SCHAR(N) build_int_cst (signed_char_type_node, (N))
+
+// Run all of the selftests within this file.
+
+void
+range_tests ()
+{
+  tree u128_type = build_nonstandard_integer_type (128, /*unsigned=*/1);
+  value_range i1, i2, i3;
+  value_range r0, r1, rold;
+
+  // Test that NOT(255) is [0..254] in 8-bit land.
+  value_range not_255 (UCHAR (255), UCHAR (255), VR_ANTI_RANGE);
+  ASSERT_TRUE (not_255 == value_range (UCHAR (0), UCHAR (254)));
+
+  // Test that NOT(0) is [1..255] in 8-bit land.
+  value_range not_zero = range_nonzero (unsigned_char_type_node);
+  ASSERT_TRUE (not_zero == value_range (UCHAR (1), UCHAR (255)));
+
+  // Check that [0,127][0x..ffffff80,0x..ffffff]
+  //  => ~[128, 0x..ffffff7f].
+  r0 = value_range (UINT128 (0), UINT128 (127));
+  tree high = build_minus_one_cst (u128_type);
+  // low = -1 - 127 => 0x..ffffff80.
+  tree low = fold_build2 (MINUS_EXPR, u128_type, high, UINT128(127));
+  r1 = value_range (low, high); // [0x..ffffff80, 0x..ffffffff]
+  // r0 = [0,127][0x..ffffff80,0x..fffffff].
+  r0.union_ (r1);
+  // r1 = [128, 0x..ffffff7f].
+  r1 = value_range (UINT128(128),
+			 fold_build2 (MINUS_EXPR, u128_type,
+				      build_minus_one_cst (u128_type),
+				      UINT128(128)));
+  r0.invert ();
+  ASSERT_TRUE (r0 == r1);
+
+  r0.set_varying (integer_type_node);
+  tree minint = wide_int_to_tree (integer_type_node, r0.lower_bound ());
+  tree maxint = wide_int_to_tree (integer_type_node, r0.upper_bound ());
+
+  r0.set_varying (short_integer_type_node);
+  tree minshort = wide_int_to_tree (short_integer_type_node, r0.lower_bound ());
+  tree maxshort = wide_int_to_tree (short_integer_type_node, r0.upper_bound ());
+
+  r0.set_varying (unsigned_type_node);
+  tree maxuint = wide_int_to_tree (unsigned_type_node, r0.upper_bound ());
+
+  // Check that ~[0,5] => [6,MAX] for unsigned int.
+  r0 = value_range (UINT (0), UINT (5));
+  r0.invert ();
+  ASSERT_TRUE (r0 == value_range (UINT(6), maxuint));
+
+  // Check that ~[10,MAX] => [0,9] for unsigned int.
+  r0 = value_range (UINT(10), maxuint);
+  r0.invert ();
+  ASSERT_TRUE (r0 == value_range (UINT (0), UINT (9)));
+
+  // Check that ~[0,5] => [6,MAX] for unsigned 128-bit numbers.
+  r0 = value_range (UINT128 (0), UINT128 (5), VR_ANTI_RANGE);
+  r1 = value_range (UINT128(6), build_minus_one_cst (u128_type));
+  ASSERT_TRUE (r0 == r1);
+
+  // Check that [~5] is really [-MIN,4][6,MAX].
+  r0 = value_range (INT (5), INT (5), VR_ANTI_RANGE);
+  r1 = value_range (minint, INT (4));
+  r1.union_ (value_range (INT (6), maxint));
+  ASSERT_FALSE (r1.undefined_p ());
+  ASSERT_TRUE (r0 == r1);
+
+  r1 = value_range (INT (5), INT (5));
+  value_range r2 (r1);
+  ASSERT_TRUE (r1 == r2);
+
+  r1 = value_range (INT (5), INT (10));
+
+  r1 = value_range (integer_type_node,
+	       wi::to_wide (INT (5)), wi::to_wide (INT (10)));
+  ASSERT_TRUE (r1.contains_p (INT (7)));
+
+  r1 = value_range (SCHAR (0), SCHAR (20));
+  ASSERT_TRUE (r1.contains_p (SCHAR(15)));
+  ASSERT_FALSE (r1.contains_p (SCHAR(300)));
+
+  // If a range is in any way outside of the range for the converted
+  // to range, default to the range for the new type.
+  if (TYPE_PRECISION (TREE_TYPE (maxint))
+      > TYPE_PRECISION (short_integer_type_node))
+    {
+      r1 = value_range (integer_zero_node, maxint);
+      range_cast (r1, short_integer_type_node);
+      ASSERT_TRUE (r1.lower_bound () == wi::to_wide (minshort)
+		   && r1.upper_bound() == wi::to_wide (maxshort));
+    }
+
+  // (unsigned char)[-5,-1] => [251,255].
+  r0 = rold = value_range (SCHAR (-5), SCHAR (-1));
+  range_cast (r0, unsigned_char_type_node);
+  ASSERT_TRUE (r0 == value_range (UCHAR (251), UCHAR (255)));
+  range_cast (r0, signed_char_type_node);
+  ASSERT_TRUE (r0 == rold);
+
+  // (signed char)[15, 150] => [-128,-106][15,127].
+  r0 = rold = value_range (UCHAR (15), UCHAR (150));
+  range_cast (r0, signed_char_type_node);
+  r1 = value_range (SCHAR (15), SCHAR (127));
+  r2 = value_range (SCHAR (-128), SCHAR (-106));
+  r1.union_ (r2);
+  ASSERT_TRUE (r1 == r0);
+  range_cast (r0, unsigned_char_type_node);
+  ASSERT_TRUE (r0 == rold);
+
+  // (unsigned char)[-5, 5] => [0,5][251,255].
+  r0 = rold = value_range (SCHAR (-5), SCHAR (5));
+  range_cast (r0, unsigned_char_type_node);
+  r1 = value_range (UCHAR (251), UCHAR (255));
+  r2 = value_range (UCHAR (0), UCHAR (5));
+  r1.union_ (r2);
+  ASSERT_TRUE (r0 == r1);
+  range_cast (r0, signed_char_type_node);
+  ASSERT_TRUE (r0 == rold);
+
+  // (unsigned char)[-5,5] => [0,5][251,255].
+  r0 = value_range (INT (-5), INT (5));
+  range_cast (r0, unsigned_char_type_node);
+  r1 = value_range (UCHAR (0), UCHAR (5));
+  r1.union_ (value_range (UCHAR (251), UCHAR (255)));
+  ASSERT_TRUE (r0 == r1);
+
+  // (unsigned char)[5U,1974U] => [0,255].
+  r0 = value_range (UINT (5), UINT (1974));
+  range_cast (r0, unsigned_char_type_node);
+  ASSERT_TRUE (r0 == value_range (UCHAR (0), UCHAR (255)));
+  range_cast (r0, integer_type_node);
+  // Going to a wider range should not sign extend.
+  ASSERT_TRUE (r0 == value_range (INT (0), INT (255)));
+
+  // (unsigned char)[-350,15] => [0,255].
+  r0 = value_range (INT (-350), INT (15));
+  range_cast (r0, unsigned_char_type_node);
+  ASSERT_TRUE (r0 == (value_range
+		      (TYPE_MIN_VALUE (unsigned_char_type_node),
+		       TYPE_MAX_VALUE (unsigned_char_type_node))));
+
+  // Casting [-120,20] from signed char to unsigned short.
+  // => [0, 20][0xff88, 0xffff].
+  r0 = value_range (SCHAR (-120), SCHAR (20));
+  range_cast (r0, short_unsigned_type_node);
+  r1 = value_range (UINT16 (0), UINT16 (20));
+  r2 = value_range (UINT16 (0xff88), UINT16 (0xffff));
+  r1.union_ (r2);
+  ASSERT_TRUE (r0 == r1);
+  // A truncating cast back to signed char will work because [-120, 20]
+  // is representable in signed char.
+  range_cast (r0, signed_char_type_node);
+  ASSERT_TRUE (r0 == value_range (SCHAR (-120), SCHAR (20)));
+
+  // unsigned char -> signed short
+  //	(signed short)[(unsigned char)25, (unsigned char)250]
+  // => [(signed short)25, (signed short)250]
+  r0 = rold = value_range (UCHAR (25), UCHAR (250));
+  range_cast (r0, short_integer_type_node);
+  r1 = value_range (INT16 (25), INT16 (250));
+  ASSERT_TRUE (r0 == r1);
+  range_cast (r0, unsigned_char_type_node);
+  ASSERT_TRUE (r0 == rold);
+
+  // Test casting a wider signed [-MIN,MAX] to a nar`rower unsigned.
+  r0 = value_range (TYPE_MIN_VALUE (long_long_integer_type_node),
+	       TYPE_MAX_VALUE (long_long_integer_type_node));
+  range_cast (r0, short_unsigned_type_node);
+  r1 = value_range (TYPE_MIN_VALUE (short_unsigned_type_node),
+	       TYPE_MAX_VALUE (short_unsigned_type_node));
+  ASSERT_TRUE (r0 == r1);
+
+  // NOT([10,20]) ==> [-MIN,9][21,MAX].
+  r0 = r1 = value_range (INT (10), INT (20));
+  r2 = value_range (minint, INT(9));
+  r2.union_ (value_range (INT(21), maxint));
+  ASSERT_FALSE (r2.undefined_p ());
+  r1.invert ();
+  ASSERT_TRUE (r1 == r2);
+  // Test that NOT(NOT(x)) == x.
+  r2.invert ();
+  ASSERT_TRUE (r0 == r2);
+
+  // Test that booleans and their inverse work as expected.
+  r0 = range_zero (boolean_type_node);
+  ASSERT_TRUE (r0 == value_range (build_zero_cst (boolean_type_node),
+				       build_zero_cst (boolean_type_node)));
+  r0.invert ();
+  ASSERT_TRUE (r0 == value_range (build_one_cst (boolean_type_node),
+				       build_one_cst (boolean_type_node)));
+
+  // Casting NONZERO to a narrower type will wrap/overflow so
+  // it's just the entire range for the narrower type.
+  //
+  // "NOT 0 at signed 32-bits" ==> [-MIN_32,-1][1, +MAX_32].  This is
+  // is outside of the range of a smaller range, return the full
+  // smaller range.
+  if (TYPE_PRECISION (integer_type_node)
+      > TYPE_PRECISION (short_integer_type_node))
+    {
+      r0 = range_nonzero (integer_type_node);
+      range_cast (r0, short_integer_type_node);
+      r1 = value_range (TYPE_MIN_VALUE (short_integer_type_node),
+			     TYPE_MAX_VALUE (short_integer_type_node));
+      ASSERT_TRUE (r0 == r1);
+    }
+
+  // Casting NONZERO from a narrower signed to a wider signed.
+  //
+  // NONZERO signed 16-bits is [-MIN_16,-1][1, +MAX_16].
+  // Converting this to 32-bits signed is [-MIN_16,-1][1, +MAX_16].
+  r0 = range_nonzero (short_integer_type_node);
+  range_cast (r0, integer_type_node);
+  r1 = value_range (INT (-32768), INT (-1));
+  r2 = value_range (INT (1), INT (32767));
+  r1.union_ (r2);
+  ASSERT_TRUE (r0 == r1);
+
+  // Make sure NULL and non-NULL of pointer types work, and that
+  // inverses of them are consistent.
+  tree voidp = build_pointer_type (void_type_node);
+  r0 = range_zero (voidp);
+  r1 = r0;
+  r0.invert ();
+  r0.invert ();
+  ASSERT_TRUE (r0 == r1);
+
+  // [10,20] U [15, 30] => [10, 30].
+  r0 = value_range (INT (10), INT (20));
+  r1 = value_range (INT (15), INT (30));
+  r0.union_ (r1);
+  ASSERT_TRUE (r0 == value_range (INT (10), INT (30)));
+
+  // [15,40] U [] => [15,40].
+  r0 = value_range (INT (15), INT (40));
+  r1.set_undefined ();
+  r0.union_ (r1);
+  ASSERT_TRUE (r0 == value_range (INT (15), INT (40)));
+
+  // [10,20] U [10,10] => [10,20].
+  r0 = value_range (INT (10), INT (20));
+  r1 = value_range (INT (10), INT (10));
+  r0.union_ (r1);
+  ASSERT_TRUE (r0 == value_range (INT (10), INT (20)));
+
+  // [10,20] U [9,9] => [9,20].
+  r0 = value_range (INT (10), INT (20));
+  r1 = value_range (INT (9), INT (9));
+  r0.union_ (r1);
+  ASSERT_TRUE (r0 == value_range (INT (9), INT (20)));
+
+  // [10,20] ^ [15,30] => [15,20].
+  r0 = value_range (INT (10), INT (20));
+  r1 = value_range (INT (15), INT (30));
+  r0.intersect (r1);
+  ASSERT_TRUE (r0 == value_range (INT (15), INT (20)));
+
+  // Test the internal sanity of wide_int's wrt HWIs.
+  ASSERT_TRUE (wi::max_value (TYPE_PRECISION (boolean_type_node),
+			      TYPE_SIGN (boolean_type_node))
+	       == wi::uhwi (1, TYPE_PRECISION (boolean_type_node)));
+
+  // Test zero_p().
+  r0 = value_range (INT (0), INT (0));
+  ASSERT_TRUE (r0.zero_p ());
+
+  // Test nonzero_p().
+  r0 = value_range (INT (0), INT (0));
+  r0.invert ();
+  ASSERT_TRUE (r0.nonzero_p ());
+}
+
+} // namespace selftest
+
+#endif // CHECKING_P