diff gcc/tree-vect-data-refs.c @ 55:77e2b8dfacca gcc-4.4.5

update it from 4.4.3 to 4.5.0
author ryoma <e075725@ie.u-ryukyu.ac.jp>
date Fri, 12 Feb 2010 23:39:51 +0900
parents
children b7f97abdc517
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/tree-vect-data-refs.c	Fri Feb 12 23:39:51 2010 +0900
@@ -0,0 +1,3510 @@
+/* Data References Analysis and Manipulation Utilities for Vectorization.
+   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software
+   Foundation, Inc.
+   Contributed by Dorit Naishlos <dorit@il.ibm.com>
+   and Ira Rosen <irar@il.ibm.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "tree.h"
+#include "target.h"
+#include "basic-block.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "cfgloop.h"
+#include "expr.h"
+#include "optabs.h"
+#include "tree-chrec.h"
+#include "tree-scalar-evolution.h"
+#include "tree-vectorizer.h"
+#include "toplev.h"
+
+
+/* Return the smallest scalar part of STMT.
+   This is used to determine the vectype of the stmt. We generally set the
+   vectype according to the type of the result (lhs). For stmts whose
+   result-type is different than the type of the arguments (e.g., demotion,
+   promotion), vectype will be reset appropriately (later).  Note that we have
+   to visit the smallest datatype in this function, because that determines the
+   VF. If the smallest datatype in the loop is present only as the rhs of a
+   promotion operation - we'd miss it.
+   Such a case, where a variable of this datatype does not appear in the lhs
+   anywhere in the loop, can only occur if it's an invariant: e.g.:
+   'int_x = (int) short_inv', which we'd expect to have been optimized away by
+   invariant motion. However, we cannot rely on invariant motion to always take
+   invariants out of the loop, and so in the case of promotion we also have to
+   check the rhs.
+   LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
+   types.  */
+
+tree
+vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
+                               HOST_WIDE_INT *rhs_size_unit)
+{
+  tree scalar_type = gimple_expr_type (stmt);
+  HOST_WIDE_INT lhs, rhs;
+
+  lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
+
+  if (is_gimple_assign (stmt)
+      && (gimple_assign_cast_p (stmt)
+          || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
+          || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
+    {
+      tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
+
+      rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
+      if (rhs < lhs)
+        scalar_type = rhs_type;
+    }
+
+  *lhs_size_unit = lhs;
+  *rhs_size_unit = rhs;
+  return scalar_type;
+}
+
+
+/* Find the place of the data-ref in STMT in the interleaving chain that starts
+   from FIRST_STMT. Return -1 if the data-ref is not a part of the chain.  */
+
+int
+vect_get_place_in_interleaving_chain (gimple stmt, gimple first_stmt)
+{
+  gimple next_stmt = first_stmt;
+  int result = 0;
+
+  if (first_stmt != DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)))
+    return -1;
+
+  while (next_stmt && next_stmt != stmt)
+    {
+      result++;
+      next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
+    }
+
+  if (next_stmt)
+    return result;
+  else
+    return -1;
+}
+
+
+/* Function vect_insert_into_interleaving_chain.
+
+   Insert DRA into the interleaving chain of DRB according to DRA's INIT.  */
+
+static void
+vect_insert_into_interleaving_chain (struct data_reference *dra,
+				     struct data_reference *drb)
+{
+  gimple prev, next;
+  tree next_init;
+  stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
+  stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
+
+  prev = DR_GROUP_FIRST_DR (stmtinfo_b);
+  next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));
+  while (next)
+    {
+      next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
+      if (tree_int_cst_compare (next_init, DR_INIT (dra)) > 0)
+	{
+	  /* Insert here.  */
+	  DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = DR_STMT (dra);
+	  DR_GROUP_NEXT_DR (stmtinfo_a) = next;
+	  return;
+	}
+      prev = next;
+      next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));
+    }
+
+  /* We got to the end of the list. Insert here.  */
+  DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = DR_STMT (dra);
+  DR_GROUP_NEXT_DR (stmtinfo_a) = NULL;
+}
+
+
+/* Function vect_update_interleaving_chain.
+
+   For two data-refs DRA and DRB that are a part of a chain interleaved data
+   accesses, update the interleaving chain. DRB's INIT is smaller than DRA's.
+
+   There are four possible cases:
+   1. New stmts - both DRA and DRB are not a part of any chain:
+      FIRST_DR = DRB
+      NEXT_DR (DRB) = DRA
+   2. DRB is a part of a chain and DRA is not:
+      no need to update FIRST_DR
+      no need to insert DRB
+      insert DRA according to init
+   3. DRA is a part of a chain and DRB is not:
+      if (init of FIRST_DR > init of DRB)
+          FIRST_DR = DRB
+	  NEXT(FIRST_DR) = previous FIRST_DR
+      else
+          insert DRB according to its init
+   4. both DRA and DRB are in some interleaving chains:
+      choose the chain with the smallest init of FIRST_DR
+      insert the nodes of the second chain into the first one.  */
+
+static void
+vect_update_interleaving_chain (struct data_reference *drb,
+				struct data_reference *dra)
+{
+  stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
+  stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
+  tree next_init, init_dra_chain, init_drb_chain;
+  gimple first_a, first_b;
+  tree node_init;
+  gimple node, prev, next, first_stmt;
+
+  /* 1. New stmts - both DRA and DRB are not a part of any chain.   */
+  if (!DR_GROUP_FIRST_DR (stmtinfo_a) && !DR_GROUP_FIRST_DR (stmtinfo_b))
+    {
+      DR_GROUP_FIRST_DR (stmtinfo_a) = DR_STMT (drb);
+      DR_GROUP_FIRST_DR (stmtinfo_b) = DR_STMT (drb);
+      DR_GROUP_NEXT_DR (stmtinfo_b) = DR_STMT (dra);
+      return;
+    }
+
+  /* 2. DRB is a part of a chain and DRA is not.  */
+  if (!DR_GROUP_FIRST_DR (stmtinfo_a) && DR_GROUP_FIRST_DR (stmtinfo_b))
+    {
+      DR_GROUP_FIRST_DR (stmtinfo_a) = DR_GROUP_FIRST_DR (stmtinfo_b);
+      /* Insert DRA into the chain of DRB.  */
+      vect_insert_into_interleaving_chain (dra, drb);
+      return;
+    }
+
+  /* 3. DRA is a part of a chain and DRB is not.  */
+  if (DR_GROUP_FIRST_DR (stmtinfo_a) && !DR_GROUP_FIRST_DR (stmtinfo_b))
+    {
+      gimple old_first_stmt = DR_GROUP_FIRST_DR (stmtinfo_a);
+      tree init_old = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (
+							      old_first_stmt)));
+      gimple tmp;
+
+      if (tree_int_cst_compare (init_old, DR_INIT (drb)) > 0)
+	{
+	  /* DRB's init is smaller than the init of the stmt previously marked
+	     as the first stmt of the interleaving chain of DRA. Therefore, we
+	     update FIRST_STMT and put DRB in the head of the list.  */
+	  DR_GROUP_FIRST_DR (stmtinfo_b) = DR_STMT (drb);
+	  DR_GROUP_NEXT_DR (stmtinfo_b) = old_first_stmt;
+
+	  /* Update all the stmts in the list to point to the new FIRST_STMT.  */
+	  tmp = old_first_stmt;
+	  while (tmp)
+	    {
+	      DR_GROUP_FIRST_DR (vinfo_for_stmt (tmp)) = DR_STMT (drb);
+	      tmp = DR_GROUP_NEXT_DR (vinfo_for_stmt (tmp));
+	    }
+	}
+      else
+	{
+	  /* Insert DRB in the list of DRA.  */
+	  vect_insert_into_interleaving_chain (drb, dra);
+	  DR_GROUP_FIRST_DR (stmtinfo_b) = DR_GROUP_FIRST_DR (stmtinfo_a);
+	}
+      return;
+    }
+
+  /* 4. both DRA and DRB are in some interleaving chains.  */
+  first_a = DR_GROUP_FIRST_DR (stmtinfo_a);
+  first_b = DR_GROUP_FIRST_DR (stmtinfo_b);
+  if (first_a == first_b)
+    return;
+  init_dra_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_a)));
+  init_drb_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_b)));
+
+  if (tree_int_cst_compare (init_dra_chain, init_drb_chain) > 0)
+    {
+      /* Insert the nodes of DRA chain into the DRB chain.
+	 After inserting a node, continue from this node of the DRB chain (don't
+         start from the beginning.  */
+      node = DR_GROUP_FIRST_DR (stmtinfo_a);
+      prev = DR_GROUP_FIRST_DR (stmtinfo_b);
+      first_stmt = first_b;
+    }
+  else
+    {
+      /* Insert the nodes of DRB chain into the DRA chain.
+	 After inserting a node, continue from this node of the DRA chain (don't
+         start from the beginning.  */
+      node = DR_GROUP_FIRST_DR (stmtinfo_b);
+      prev = DR_GROUP_FIRST_DR (stmtinfo_a);
+      first_stmt = first_a;
+    }
+
+  while (node)
+    {
+      node_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (node)));
+      next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));
+      while (next)
+	{
+	  next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
+	  if (tree_int_cst_compare (next_init, node_init) > 0)
+	    {
+	      /* Insert here.  */
+	      DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = node;
+	      DR_GROUP_NEXT_DR (vinfo_for_stmt (node)) = next;
+	      prev = node;
+	      break;
+	    }
+	  prev = next;
+	  next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));
+	}
+      if (!next)
+	{
+	  /* We got to the end of the list. Insert here.  */
+	  DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = node;
+	  DR_GROUP_NEXT_DR (vinfo_for_stmt (node)) = NULL;
+	  prev = node;
+	}
+      DR_GROUP_FIRST_DR (vinfo_for_stmt (node)) = first_stmt;
+      node = DR_GROUP_NEXT_DR (vinfo_for_stmt (node));
+    }
+}
+
+
+/* Function vect_equal_offsets.
+
+   Check if OFFSET1 and OFFSET2 are identical expressions.  */
+
+static bool
+vect_equal_offsets (tree offset1, tree offset2)
+{
+  bool res0, res1;
+
+  STRIP_NOPS (offset1);
+  STRIP_NOPS (offset2);
+
+  if (offset1 == offset2)
+    return true;
+
+  if (TREE_CODE (offset1) != TREE_CODE (offset2)
+      || !BINARY_CLASS_P (offset1)
+      || !BINARY_CLASS_P (offset2))
+    return false;
+
+  res0 = vect_equal_offsets (TREE_OPERAND (offset1, 0),
+			     TREE_OPERAND (offset2, 0));
+  res1 = vect_equal_offsets (TREE_OPERAND (offset1, 1),
+			     TREE_OPERAND (offset2, 1));
+
+  return (res0 && res1);
+}
+
+
+/* Function vect_check_interleaving.
+
+   Check if DRA and DRB are a part of interleaving. In case they are, insert
+   DRA and DRB in an interleaving chain.  */
+
+static bool
+vect_check_interleaving (struct data_reference *dra,
+			 struct data_reference *drb)
+{
+  HOST_WIDE_INT type_size_a, type_size_b, diff_mod_size, step, init_a, init_b;
+
+  /* Check that the data-refs have same first location (except init) and they
+     are both either store or load (not load and store).  */
+  if ((DR_BASE_ADDRESS (dra) != DR_BASE_ADDRESS (drb)
+       && (TREE_CODE (DR_BASE_ADDRESS (dra)) != ADDR_EXPR
+	   || TREE_CODE (DR_BASE_ADDRESS (drb)) != ADDR_EXPR
+	   || TREE_OPERAND (DR_BASE_ADDRESS (dra), 0)
+	   != TREE_OPERAND (DR_BASE_ADDRESS (drb),0)))
+      || !vect_equal_offsets (DR_OFFSET (dra), DR_OFFSET (drb))
+      || !tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb))
+      || DR_IS_READ (dra) != DR_IS_READ (drb))
+    return false;
+
+  /* Check:
+     1. data-refs are of the same type
+     2. their steps are equal
+     3. the step (if greater than zero) is greater than the difference between
+        data-refs' inits.  */
+  type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
+  type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
+
+  if (type_size_a != type_size_b
+      || tree_int_cst_compare (DR_STEP (dra), DR_STEP (drb))
+      || !types_compatible_p (TREE_TYPE (DR_REF (dra)),
+                              TREE_TYPE (DR_REF (drb))))
+    return false;
+
+  init_a = TREE_INT_CST_LOW (DR_INIT (dra));
+  init_b = TREE_INT_CST_LOW (DR_INIT (drb));
+  step = TREE_INT_CST_LOW (DR_STEP (dra));
+
+  if (init_a > init_b)
+    {
+      /* If init_a == init_b + the size of the type * k, we have an interleaving,
+	 and DRB is accessed before DRA.  */
+      diff_mod_size = (init_a - init_b) % type_size_a;
+
+      if (step && (init_a - init_b) > step)
+         return false;
+
+      if (diff_mod_size == 0)
+	{
+	  vect_update_interleaving_chain (drb, dra);
+	  if (vect_print_dump_info (REPORT_DR_DETAILS))
+	    {
+	      fprintf (vect_dump, "Detected interleaving ");
+	      print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+	      fprintf (vect_dump, " and ");
+	      print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+	    }
+	  return true;
+	}
+    }
+  else
+    {
+      /* If init_b == init_a + the size of the type * k, we have an
+	 interleaving, and DRA is accessed before DRB.  */
+      diff_mod_size = (init_b - init_a) % type_size_a;
+
+      if (step && (init_b - init_a) > step)
+         return false;
+
+      if (diff_mod_size == 0)
+	{
+	  vect_update_interleaving_chain (dra, drb);
+	  if (vect_print_dump_info (REPORT_DR_DETAILS))
+	    {
+	      fprintf (vect_dump, "Detected interleaving ");
+	      print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+	      fprintf (vect_dump, " and ");
+	      print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+	    }
+	  return true;
+	}
+    }
+
+  return false;
+}
+
+/* Check if data references pointed by DR_I and DR_J are same or
+   belong to same interleaving group.  Return FALSE if drs are
+   different, otherwise return TRUE.  */
+
+static bool
+vect_same_range_drs (data_reference_p dr_i, data_reference_p dr_j)
+{
+  gimple stmt_i = DR_STMT (dr_i);
+  gimple stmt_j = DR_STMT (dr_j);
+
+  if (operand_equal_p (DR_REF (dr_i), DR_REF (dr_j), 0)
+      || (DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_i))
+	    && DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_j))
+	    && (DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_i))
+		== DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_j)))))
+    return true;
+  else
+    return false;
+}
+
+/* If address ranges represented by DDR_I and DDR_J are equal,
+   return TRUE, otherwise return FALSE.  */
+
+static bool
+vect_vfa_range_equal (ddr_p ddr_i, ddr_p ddr_j)
+{
+  if ((vect_same_range_drs (DDR_A (ddr_i), DDR_A (ddr_j))
+       && vect_same_range_drs (DDR_B (ddr_i), DDR_B (ddr_j)))
+      || (vect_same_range_drs (DDR_A (ddr_i), DDR_B (ddr_j))
+	  && vect_same_range_drs (DDR_B (ddr_i), DDR_A (ddr_j))))
+    return true;
+  else
+    return false;
+}
+
+/* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
+   tested at run-time.  Return TRUE if DDR was successfully inserted.
+   Return false if versioning is not supported.  */
+
+static bool
+vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
+{
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+  if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
+    return false;
+
+  if (vect_print_dump_info (REPORT_DR_DETAILS))
+    {
+      fprintf (vect_dump, "mark for run-time aliasing test between ");
+      print_generic_expr (vect_dump, DR_REF (DDR_A (ddr)), TDF_SLIM);
+      fprintf (vect_dump, " and ");
+      print_generic_expr (vect_dump, DR_REF (DDR_B (ddr)), TDF_SLIM);
+    }
+
+  if (optimize_loop_nest_for_size_p (loop))
+    {
+      if (vect_print_dump_info (REPORT_DR_DETAILS))
+	fprintf (vect_dump, "versioning not supported when optimizing for size.");
+      return false;
+    }
+
+  /* FORNOW: We don't support versioning with outer-loop vectorization.  */
+  if (loop->inner)
+    {
+      if (vect_print_dump_info (REPORT_DR_DETAILS))
+	fprintf (vect_dump, "versioning not yet supported for outer-loops.");
+      return false;
+    }
+
+  VEC_safe_push (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo), ddr);
+  return true;
+}
+
+
+/* Function vect_analyze_data_ref_dependence.
+
+   Return TRUE if there (might) exist a dependence between a memory-reference
+   DRA and a memory-reference DRB.  When versioning for alias may check a
+   dependence at run-time, return FALSE.  */
+
+static bool
+vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
+                                  loop_vec_info loop_vinfo)
+{
+  unsigned int i;
+  struct loop *loop = NULL;
+  int vectorization_factor = 0;
+  struct data_reference *dra = DDR_A (ddr);
+  struct data_reference *drb = DDR_B (ddr);
+  stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
+  stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
+  int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
+  int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
+  lambda_vector dist_v;
+  unsigned int loop_depth;
+
+  if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+    {
+      /* Independent data accesses.  */
+      vect_check_interleaving (dra, drb);
+      return false;
+    }
+
+  if (loop_vinfo)
+    {
+      loop = LOOP_VINFO_LOOP (loop_vinfo);
+      vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+    }
+
+  if ((DR_IS_READ (dra) && DR_IS_READ (drb) && loop_vinfo) || dra == drb)
+    return false;
+
+  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+    {
+      if (loop_vinfo)
+        {
+          if (vect_print_dump_info (REPORT_DR_DETAILS))
+            {
+              fprintf (vect_dump, "versioning for alias required: "
+                                  "can't determine dependence between ");
+              print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+              fprintf (vect_dump, " and ");
+              print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+            }
+
+          /* Add to list of ddrs that need to be tested at run-time.  */
+          return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
+        }
+
+      /* When vectorizing a basic block unknown depnedence can still mean
+	 strided access.  */
+      if (vect_check_interleaving (dra, drb))
+         return false;
+
+      if (vect_print_dump_info (REPORT_DR_DETAILS))
+        {
+          fprintf (vect_dump, "can't determine dependence between ");
+          print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+          fprintf (vect_dump, " and ");
+          print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+        }
+
+      return true;
+    }
+
+  /* Versioning for alias is not yet supported for basic block SLP, and
+     dependence distance is unapplicable, hence, in case of known data
+     dependence, basic block vectorization is impossible for now.  */
+  if (!loop_vinfo)
+    {
+      if (dra != drb && vect_check_interleaving (dra, drb))
+        return false;
+
+      if (vect_print_dump_info (REPORT_DR_DETAILS))
+        {
+          fprintf (vect_dump, "determined dependence between ");
+          print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+          fprintf (vect_dump, " and ");
+          print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+        }
+
+      return true;
+    }
+
+  /* Loop-based vectorization and known data dependence.  */
+  if (DDR_NUM_DIST_VECTS (ddr) == 0)
+    {
+      if (vect_print_dump_info (REPORT_DR_DETAILS))
+        {
+          fprintf (vect_dump, "versioning for alias required: bad dist vector for ");
+          print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+          fprintf (vect_dump, " and ");
+          print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+        }
+      /* Add to list of ddrs that need to be tested at run-time.  */
+      return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
+    }
+
+  loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
+  for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v); i++)
+    {
+      int dist = dist_v[loop_depth];
+
+      if (vect_print_dump_info (REPORT_DR_DETAILS))
+	fprintf (vect_dump, "dependence distance  = %d.", dist);
+
+      /* Same loop iteration.  */
+      if (dist % vectorization_factor == 0 && dra_size == drb_size)
+	{
+	  /* Two references with distance zero have the same alignment.  */
+	  VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a), drb);
+	  VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b), dra);
+	  if (vect_print_dump_info (REPORT_ALIGNMENT))
+	    fprintf (vect_dump, "accesses have the same alignment.");
+	  if (vect_print_dump_info (REPORT_DR_DETAILS))
+	    {
+	      fprintf (vect_dump, "dependence distance modulo vf == 0 between ");
+	      print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+	      fprintf (vect_dump, " and ");
+	      print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+	    }
+
+          /* For interleaving, mark that there is a read-write dependency if
+             necessary. We check before that one of the data-refs is store.  */
+          if (DR_IS_READ (dra))
+            DR_GROUP_READ_WRITE_DEPENDENCE (stmtinfo_a) = true;
+	  else
+            {
+              if (DR_IS_READ (drb))
+                DR_GROUP_READ_WRITE_DEPENDENCE (stmtinfo_b) = true;
+	    }
+
+          continue;
+	}
+
+      if (abs (dist) >= vectorization_factor
+          || (dist > 0 && DDR_REVERSED_P (ddr)))
+	{
+	  /* Dependence distance does not create dependence, as far as
+	     vectorization is concerned, in this case. If DDR_REVERSED_P the
+	     order of the data-refs in DDR was reversed (to make distance
+	     vector positive), and the actual distance is negative.  */
+	  if (vect_print_dump_info (REPORT_DR_DETAILS))
+	    fprintf (vect_dump, "dependence distance >= VF or negative.");
+	  continue;
+	}
+
+      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+	{
+	  fprintf (vect_dump, "not vectorized, possible dependence "
+    		              "between data-refs ");
+	  print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+	  fprintf (vect_dump, " and ");
+	  print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+	}
+
+      return true;
+    }
+
+  return false;
+}
+
+/* Function vect_analyze_data_ref_dependences.
+
+   Examine all the data references in the loop, and make sure there do not
+   exist any data dependences between them.  */
+
+bool
+vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
+                                   bb_vec_info bb_vinfo)
+{
+  unsigned int i;
+  VEC (ddr_p, heap) *ddrs = NULL;
+  struct data_dependence_relation *ddr;
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "=== vect_analyze_dependences ===");
+
+  if (loop_vinfo)
+    ddrs = LOOP_VINFO_DDRS (loop_vinfo);
+  else
+    ddrs = BB_VINFO_DDRS (bb_vinfo);
+
+  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
+    if (vect_analyze_data_ref_dependence (ddr, loop_vinfo))
+      return false;
+
+  return true;
+}
+
+
+/* Function vect_compute_data_ref_alignment
+
+   Compute the misalignment of the data reference DR.
+
+   Output:
+   1. If during the misalignment computation it is found that the data reference
+      cannot be vectorized then false is returned.
+   2. DR_MISALIGNMENT (DR) is defined.
+
+   FOR NOW: No analysis is actually performed. Misalignment is calculated
+   only for trivial cases. TODO.  */
+
+static bool
+vect_compute_data_ref_alignment (struct data_reference *dr)
+{
+  gimple stmt = DR_STMT (dr);
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = NULL;
+  tree ref = DR_REF (dr);
+  tree vectype;
+  tree base, base_addr;
+  bool base_aligned;
+  tree misalign;
+  tree aligned_to, alignment;
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "vect_compute_data_ref_alignment:");
+
+  if (loop_vinfo)
+    loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+  /* Initialize misalignment to unknown.  */
+  SET_DR_MISALIGNMENT (dr, -1);
+
+  misalign = DR_INIT (dr);
+  aligned_to = DR_ALIGNED_TO (dr);
+  base_addr = DR_BASE_ADDRESS (dr);
+  vectype = STMT_VINFO_VECTYPE (stmt_info);
+
+  /* In case the dataref is in an inner-loop of the loop that is being
+     vectorized (LOOP), we use the base and misalignment information
+     relative to the outer-loop (LOOP). This is ok only if the misalignment
+     stays the same throughout the execution of the inner-loop, which is why
+     we have to check that the stride of the dataref in the inner-loop evenly
+     divides by the vector size.  */
+  if (loop && nested_in_vect_loop_p (loop, stmt))
+    {
+      tree step = DR_STEP (dr);
+      HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
+
+      if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
+        {
+          if (vect_print_dump_info (REPORT_ALIGNMENT))
+            fprintf (vect_dump, "inner step divides the vector-size.");
+	  misalign = STMT_VINFO_DR_INIT (stmt_info);
+	  aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
+	  base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
+        }
+      else
+	{
+	  if (vect_print_dump_info (REPORT_ALIGNMENT))
+	    fprintf (vect_dump, "inner step doesn't divide the vector-size.");
+	  misalign = NULL_TREE;
+	}
+    }
+
+  base = build_fold_indirect_ref (base_addr);
+  alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
+
+  if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
+      || !misalign)
+    {
+      if (vect_print_dump_info (REPORT_ALIGNMENT))
+	{
+	  fprintf (vect_dump, "Unknown alignment for access: ");
+	  print_generic_expr (vect_dump, base, TDF_SLIM);
+	}
+      return true;
+    }
+
+  if ((DECL_P (base)
+       && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
+				alignment) >= 0)
+      || (TREE_CODE (base_addr) == SSA_NAME
+	  && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
+						      TREE_TYPE (base_addr)))),
+				   alignment) >= 0))
+    base_aligned = true;
+  else
+    base_aligned = false;
+
+  if (!base_aligned)
+    {
+      /* Do not change the alignment of global variables if
+	 flag_section_anchors is enabled.  */
+      if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
+	  || (TREE_STATIC (base) && flag_section_anchors))
+	{
+	  if (vect_print_dump_info (REPORT_DETAILS))
+	    {
+	      fprintf (vect_dump, "can't force alignment of ref: ");
+	      print_generic_expr (vect_dump, ref, TDF_SLIM);
+	    }
+	  return true;
+	}
+
+      /* Force the alignment of the decl.
+	 NOTE: This is the only change to the code we make during
+	 the analysis phase, before deciding to vectorize the loop.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+	fprintf (vect_dump, "force alignment");
+      DECL_ALIGN (base) = TYPE_ALIGN (vectype);
+      DECL_USER_ALIGN (base) = 1;
+    }
+
+  /* At this point we assume that the base is aligned.  */
+  gcc_assert (base_aligned
+	      || (TREE_CODE (base) == VAR_DECL
+		  && DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
+
+  /* Modulo alignment.  */
+  misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
+
+  if (!host_integerp (misalign, 1))
+    {
+      /* Negative or overflowed misalignment value.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+	fprintf (vect_dump, "unexpected misalign value");
+      return false;
+    }
+
+  SET_DR_MISALIGNMENT (dr, TREE_INT_CST_LOW (misalign));
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    {
+      fprintf (vect_dump, "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
+      print_generic_expr (vect_dump, ref, TDF_SLIM);
+    }
+
+  return true;
+}
+
+
+/* Function vect_compute_data_refs_alignment
+
+   Compute the misalignment of data references in the loop.
+   Return FALSE if a data reference is found that cannot be vectorized.  */
+
+static bool
+vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
+                                  bb_vec_info bb_vinfo)
+{
+  VEC (data_reference_p, heap) *datarefs;
+  struct data_reference *dr;
+  unsigned int i;
+
+  if (loop_vinfo)
+    datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+  else
+    datarefs = BB_VINFO_DATAREFS (bb_vinfo);
+
+  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+    if (!vect_compute_data_ref_alignment (dr))
+      return false;
+
+  return true;
+}
+
+
+/* Function vect_update_misalignment_for_peel
+
+   DR - the data reference whose misalignment is to be adjusted.
+   DR_PEEL - the data reference whose misalignment is being made
+             zero in the vector loop by the peel.
+   NPEEL - the number of iterations in the peel loop if the misalignment
+           of DR_PEEL is known at compile time.  */
+
+static void
+vect_update_misalignment_for_peel (struct data_reference *dr,
+                                   struct data_reference *dr_peel, int npeel)
+{
+  unsigned int i;
+  VEC(dr_p,heap) *same_align_drs;
+  struct data_reference *current_dr;
+  int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
+  int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
+  stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
+  stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
+
+ /* For interleaved data accesses the step in the loop must be multiplied by
+     the size of the interleaving group.  */
+  if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
+    dr_size *= DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_DR (stmt_info)));
+  if (STMT_VINFO_STRIDED_ACCESS (peel_stmt_info))
+    dr_peel_size *= DR_GROUP_SIZE (peel_stmt_info);
+
+  /* It can be assumed that the data refs with the same alignment as dr_peel
+     are aligned in the vector loop.  */
+  same_align_drs
+    = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
+  for (i = 0; VEC_iterate (dr_p, same_align_drs, i, current_dr); i++)
+    {
+      if (current_dr != dr)
+        continue;
+      gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
+                  DR_MISALIGNMENT (dr_peel) / dr_peel_size);
+      SET_DR_MISALIGNMENT (dr, 0);
+      return;
+    }
+
+  if (known_alignment_for_access_p (dr)
+      && known_alignment_for_access_p (dr_peel))
+    {
+      int misal = DR_MISALIGNMENT (dr);
+      tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+      misal += npeel * dr_size;
+      misal %= GET_MODE_SIZE (TYPE_MODE (vectype));
+      SET_DR_MISALIGNMENT (dr, misal);
+      return;
+    }
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "Setting misalignment to -1.");
+  SET_DR_MISALIGNMENT (dr, -1);
+}
+
+
+/* Function vect_verify_datarefs_alignment
+
+   Return TRUE if all data references in the loop can be
+   handled with respect to alignment.  */
+
+bool
+vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
+{
+  VEC (data_reference_p, heap) *datarefs;
+  struct data_reference *dr;
+  enum dr_alignment_support supportable_dr_alignment;
+  unsigned int i;
+
+  if (loop_vinfo)
+    datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+  else
+    datarefs = BB_VINFO_DATAREFS (bb_vinfo);
+
+  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+    {
+      gimple stmt = DR_STMT (dr);
+      stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+      /* For interleaving, only the alignment of the first access matters.  */
+      if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
+          && DR_GROUP_FIRST_DR (stmt_info) != stmt)
+        continue;
+
+      supportable_dr_alignment = vect_supportable_dr_alignment (dr);
+      if (!supportable_dr_alignment)
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+            {
+              if (DR_IS_READ (dr))
+                fprintf (vect_dump,
+                         "not vectorized: unsupported unaligned load.");
+              else
+                fprintf (vect_dump,
+                         "not vectorized: unsupported unaligned store.");
+            }
+          return false;
+        }
+      if (supportable_dr_alignment != dr_aligned
+          && vect_print_dump_info (REPORT_ALIGNMENT))
+        fprintf (vect_dump, "Vectorizing an unaligned access.");
+    }
+  return true;
+}
+
+
+/* Function vector_alignment_reachable_p
+
+   Return true if vector alignment for DR is reachable by peeling
+   a few loop iterations.  Return false otherwise.  */
+
+static bool
+vector_alignment_reachable_p (struct data_reference *dr)
+{
+  gimple stmt = DR_STMT (dr);
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+
+  if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
+    {
+      /* For interleaved access we peel only if number of iterations in
+	 the prolog loop ({VF - misalignment}), is a multiple of the
+	 number of the interleaved accesses.  */
+      int elem_size, mis_in_elements;
+      int nelements = TYPE_VECTOR_SUBPARTS (vectype);
+
+      /* FORNOW: handle only known alignment.  */
+      if (!known_alignment_for_access_p (dr))
+	return false;
+
+      elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
+      mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
+
+      if ((nelements - mis_in_elements) % DR_GROUP_SIZE (stmt_info))
+	return false;
+    }
+
+  /* If misalignment is known at the compile time then allow peeling
+     only if natural alignment is reachable through peeling.  */
+  if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
+    {
+      HOST_WIDE_INT elmsize =
+		int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
+      if (vect_print_dump_info (REPORT_DETAILS))
+	{
+	  fprintf (vect_dump, "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
+	  fprintf (vect_dump, ". misalignment = %d. ", DR_MISALIGNMENT (dr));
+	}
+      if (DR_MISALIGNMENT (dr) % elmsize)
+	{
+	  if (vect_print_dump_info (REPORT_DETAILS))
+	    fprintf (vect_dump, "data size does not divide the misalignment.\n");
+	  return false;
+	}
+    }
+
+  if (!known_alignment_for_access_p (dr))
+    {
+      tree type = (TREE_TYPE (DR_REF (dr)));
+      tree ba = DR_BASE_OBJECT (dr);
+      bool is_packed = false;
+
+      if (ba)
+	is_packed = contains_packed_reference (ba);
+
+      if (vect_print_dump_info (REPORT_DETAILS))
+	fprintf (vect_dump, "Unknown misalignment, is_packed = %d",is_packed);
+      if (targetm.vectorize.vector_alignment_reachable (type, is_packed))
+	return true;
+      else
+	return false;
+    }
+
+  return true;
+}
+
+/* Function vect_enhance_data_refs_alignment
+
+   This pass will use loop versioning and loop peeling in order to enhance
+   the alignment of data references in the loop.
+
+   FOR NOW: we assume that whatever versioning/peeling takes place, only the
+   original loop is to be vectorized; Any other loops that are created by
+   the transformations performed in this pass - are not supposed to be
+   vectorized. This restriction will be relaxed.
+
+   This pass will require a cost model to guide it whether to apply peeling
+   or versioning or a combination of the two. For example, the scheme that
+   intel uses when given a loop with several memory accesses, is as follows:
+   choose one memory access ('p') which alignment you want to force by doing
+   peeling. Then, either (1) generate a loop in which 'p' is aligned and all
+   other accesses are not necessarily aligned, or (2) use loop versioning to
+   generate one loop in which all accesses are aligned, and another loop in
+   which only 'p' is necessarily aligned.
+
+   ("Automatic Intra-Register Vectorization for the Intel Architecture",
+   Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
+   Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
+
+   Devising a cost model is the most critical aspect of this work. It will
+   guide us on which access to peel for, whether to use loop versioning, how
+   many versions to create, etc. The cost model will probably consist of
+   generic considerations as well as target specific considerations (on
+   powerpc for example, misaligned stores are more painful than misaligned
+   loads).
+
+   Here are the general steps involved in alignment enhancements:
+
+     -- original loop, before alignment analysis:
+	for (i=0; i<N; i++){
+	  x = q[i];			# DR_MISALIGNMENT(q) = unknown
+	  p[i] = y;			# DR_MISALIGNMENT(p) = unknown
+	}
+
+     -- After vect_compute_data_refs_alignment:
+	for (i=0; i<N; i++){
+	  x = q[i];			# DR_MISALIGNMENT(q) = 3
+	  p[i] = y;			# DR_MISALIGNMENT(p) = unknown
+	}
+
+     -- Possibility 1: we do loop versioning:
+     if (p is aligned) {
+	for (i=0; i<N; i++){	# loop 1A
+	  x = q[i];			# DR_MISALIGNMENT(q) = 3
+	  p[i] = y;			# DR_MISALIGNMENT(p) = 0
+	}
+     }
+     else {
+	for (i=0; i<N; i++){	# loop 1B
+	  x = q[i];			# DR_MISALIGNMENT(q) = 3
+	  p[i] = y;			# DR_MISALIGNMENT(p) = unaligned
+	}
+     }
+
+     -- Possibility 2: we do loop peeling:
+     for (i = 0; i < 3; i++){	# (scalar loop, not to be vectorized).
+	x = q[i];
+	p[i] = y;
+     }
+     for (i = 3; i < N; i++){	# loop 2A
+	x = q[i];			# DR_MISALIGNMENT(q) = 0
+	p[i] = y;			# DR_MISALIGNMENT(p) = unknown
+     }
+
+     -- Possibility 3: combination of loop peeling and versioning:
+     for (i = 0; i < 3; i++){	# (scalar loop, not to be vectorized).
+	x = q[i];
+	p[i] = y;
+     }
+     if (p is aligned) {
+	for (i = 3; i<N; i++){	# loop 3A
+	  x = q[i];			# DR_MISALIGNMENT(q) = 0
+	  p[i] = y;			# DR_MISALIGNMENT(p) = 0
+	}
+     }
+     else {
+	for (i = 3; i<N; i++){	# loop 3B
+	  x = q[i];			# DR_MISALIGNMENT(q) = 0
+	  p[i] = y;			# DR_MISALIGNMENT(p) = unaligned
+	}
+     }
+
+     These loops are later passed to loop_transform to be vectorized. The
+     vectorizer will use the alignment information to guide the transformation
+     (whether to generate regular loads/stores, or with special handling for
+     misalignment).  */
+
+bool
+vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
+{
+  VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  enum dr_alignment_support supportable_dr_alignment;
+  struct data_reference *dr0 = NULL;
+  struct data_reference *dr;
+  unsigned int i;
+  bool do_peeling = false;
+  bool do_versioning = false;
+  bool stat;
+  gimple stmt;
+  stmt_vec_info stmt_info;
+  int vect_versioning_for_alias_required;
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "=== vect_enhance_data_refs_alignment ===");
+
+  /* While cost model enhancements are expected in the future, the high level
+     view of the code at this time is as follows:
+
+     A) If there is a misaligned access then see if peeling to align
+        this access can make all data references satisfy
+        vect_supportable_dr_alignment.  If so, update data structures
+        as needed and return true.
+
+     B) If peeling wasn't possible and there is a data reference with an
+        unknown misalignment that does not satisfy vect_supportable_dr_alignment
+        then see if loop versioning checks can be used to make all data
+        references satisfy vect_supportable_dr_alignment.  If so, update
+        data structures as needed and return true.
+
+     C) If neither peeling nor versioning were successful then return false if
+        any data reference does not satisfy vect_supportable_dr_alignment.
+
+     D) Return true (all data references satisfy vect_supportable_dr_alignment).
+
+     Note, Possibility 3 above (which is peeling and versioning together) is not
+     being done at this time.  */
+
+  /* (1) Peeling to force alignment.  */
+
+  /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
+     Considerations:
+     + How many accesses will become aligned due to the peeling
+     - How many accesses will become unaligned due to the peeling,
+       and the cost of misaligned accesses.
+     - The cost of peeling (the extra runtime checks, the increase
+       in code size).
+
+     The scheme we use FORNOW: peel to force the alignment of the first
+     unsupported misaligned access in the loop.
+
+     TODO: Use a cost model.  */
+
+  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+    {
+      stmt = DR_STMT (dr);
+      stmt_info = vinfo_for_stmt (stmt);
+
+      /* For interleaving, only the alignment of the first access
+         matters.  */
+      if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
+          && DR_GROUP_FIRST_DR (stmt_info) != stmt)
+        continue;
+
+      if (!DR_IS_READ (dr) && !aligned_access_p (dr))
+        {
+	  do_peeling = vector_alignment_reachable_p (dr);
+	  if (do_peeling)
+	    dr0 = dr;
+	  if (!do_peeling && vect_print_dump_info (REPORT_DETAILS))
+            fprintf (vect_dump, "vector alignment may not be reachable");
+	  break;
+	}
+    }
+
+  vect_versioning_for_alias_required
+    = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
+
+  /* Temporarily, if versioning for alias is required, we disable peeling
+     until we support peeling and versioning.  Often peeling for alignment
+     will require peeling for loop-bound, which in turn requires that we
+     know how to adjust the loop ivs after the loop.  */
+  if (vect_versioning_for_alias_required
+      || !vect_can_advance_ivs_p (loop_vinfo)
+      || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
+    do_peeling = false;
+
+  if (do_peeling)
+    {
+      int mis;
+      int npeel = 0;
+      gimple stmt = DR_STMT (dr0);
+      stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+      tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+      int nelements = TYPE_VECTOR_SUBPARTS (vectype);
+
+      if (known_alignment_for_access_p (dr0))
+        {
+          /* Since it's known at compile time, compute the number of iterations
+             in the peeled loop (the peeling factor) for use in updating
+             DR_MISALIGNMENT values.  The peeling factor is the vectorization
+             factor minus the misalignment as an element count.  */
+          mis = DR_MISALIGNMENT (dr0);
+          mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
+          npeel = nelements - mis;
+
+	  /* For interleaved data access every iteration accesses all the
+	     members of the group, therefore we divide the number of iterations
+	     by the group size.  */
+	  stmt_info = vinfo_for_stmt (DR_STMT (dr0));
+	  if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
+	    npeel /= DR_GROUP_SIZE (stmt_info);
+
+          if (vect_print_dump_info (REPORT_DETAILS))
+            fprintf (vect_dump, "Try peeling by %d", npeel);
+        }
+
+      /* Ensure that all data refs can be vectorized after the peel.  */
+      for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+        {
+          int save_misalignment;
+
+	  if (dr == dr0)
+	    continue;
+
+	  stmt = DR_STMT (dr);
+	  stmt_info = vinfo_for_stmt (stmt);
+	  /* For interleaving, only the alignment of the first access
+            matters.  */
+	  if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
+	      && DR_GROUP_FIRST_DR (stmt_info) != stmt)
+	    continue;
+
+	  save_misalignment = DR_MISALIGNMENT (dr);
+	  vect_update_misalignment_for_peel (dr, dr0, npeel);
+	  supportable_dr_alignment = vect_supportable_dr_alignment (dr);
+	  SET_DR_MISALIGNMENT (dr, save_misalignment);
+
+	  if (!supportable_dr_alignment)
+	    {
+	      do_peeling = false;
+	      break;
+	    }
+	}
+
+      if (do_peeling)
+        {
+          /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
+             If the misalignment of DR_i is identical to that of dr0 then set
+             DR_MISALIGNMENT (DR_i) to zero.  If the misalignment of DR_i and
+             dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
+             by the peeling factor times the element size of DR_i (MOD the
+             vectorization factor times the size).  Otherwise, the
+             misalignment of DR_i must be set to unknown.  */
+	  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+	    if (dr != dr0)
+	      vect_update_misalignment_for_peel (dr, dr0, npeel);
+
+          LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
+          LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0);
+	  SET_DR_MISALIGNMENT (dr0, 0);
+	  if (vect_print_dump_info (REPORT_ALIGNMENT))
+            fprintf (vect_dump, "Alignment of access forced using peeling.");
+
+          if (vect_print_dump_info (REPORT_DETAILS))
+            fprintf (vect_dump, "Peeling for alignment will be applied.");
+
+	  stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
+	  gcc_assert (stat);
+          return stat;
+        }
+    }
+
+
+  /* (2) Versioning to force alignment.  */
+
+  /* Try versioning if:
+     1) flag_tree_vect_loop_version is TRUE
+     2) optimize loop for speed
+     3) there is at least one unsupported misaligned data ref with an unknown
+        misalignment, and
+     4) all misaligned data refs with a known misalignment are supported, and
+     5) the number of runtime alignment checks is within reason.  */
+
+  do_versioning =
+	flag_tree_vect_loop_version
+	&& optimize_loop_nest_for_speed_p (loop)
+	&& (!loop->inner); /* FORNOW */
+
+  if (do_versioning)
+    {
+      for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+        {
+	  stmt = DR_STMT (dr);
+	  stmt_info = vinfo_for_stmt (stmt);
+
+	  /* For interleaving, only the alignment of the first access
+	     matters.  */
+	  if (aligned_access_p (dr)
+	      || (STMT_VINFO_STRIDED_ACCESS (stmt_info)
+		  && DR_GROUP_FIRST_DR (stmt_info) != stmt))
+	    continue;
+
+	  supportable_dr_alignment = vect_supportable_dr_alignment (dr);
+
+          if (!supportable_dr_alignment)
+            {
+              gimple stmt;
+              int mask;
+              tree vectype;
+
+              if (known_alignment_for_access_p (dr)
+                  || VEC_length (gimple,
+                                 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
+                     >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
+                {
+                  do_versioning = false;
+                  break;
+                }
+
+              stmt = DR_STMT (dr);
+              vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
+              gcc_assert (vectype);
+
+              /* The rightmost bits of an aligned address must be zeros.
+                 Construct the mask needed for this test.  For example,
+                 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
+                 mask must be 15 = 0xf. */
+              mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
+
+              /* FORNOW: use the same mask to test all potentially unaligned
+                 references in the loop.  The vectorizer currently supports
+                 a single vector size, see the reference to
+                 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
+                 vectorization factor is computed.  */
+              gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
+                          || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
+              LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
+              VEC_safe_push (gimple, heap,
+                             LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo),
+                             DR_STMT (dr));
+            }
+        }
+
+      /* Versioning requires at least one misaligned data reference.  */
+      if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
+        do_versioning = false;
+      else if (!do_versioning)
+        VEC_truncate (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo), 0);
+    }
+
+  if (do_versioning)
+    {
+      VEC(gimple,heap) *may_misalign_stmts
+        = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
+      gimple stmt;
+
+      /* It can now be assumed that the data references in the statements
+         in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
+         of the loop being vectorized.  */
+      for (i = 0; VEC_iterate (gimple, may_misalign_stmts, i, stmt); i++)
+        {
+          stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+          dr = STMT_VINFO_DATA_REF (stmt_info);
+	  SET_DR_MISALIGNMENT (dr, 0);
+	  if (vect_print_dump_info (REPORT_ALIGNMENT))
+            fprintf (vect_dump, "Alignment of access forced using versioning.");
+        }
+
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "Versioning for alignment will be applied.");
+
+      /* Peeling and versioning can't be done together at this time.  */
+      gcc_assert (! (do_peeling && do_versioning));
+
+      stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
+      gcc_assert (stat);
+      return stat;
+    }
+
+  /* This point is reached if neither peeling nor versioning is being done.  */
+  gcc_assert (! (do_peeling || do_versioning));
+
+  stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
+  return stat;
+}
+
+
+/* Function vect_analyze_data_refs_alignment
+
+   Analyze the alignment of the data-references in the loop.
+   Return FALSE if a data reference is found that cannot be vectorized.  */
+
+bool
+vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
+                                  bb_vec_info bb_vinfo)
+{
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "=== vect_analyze_data_refs_alignment ===");
+
+  if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
+    {
+      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+	fprintf (vect_dump,
+		 "not vectorized: can't calculate alignment for data ref.");
+      return false;
+    }
+
+  return true;
+}
+
+
+/* Analyze groups of strided accesses: check that DR belongs to a group of
+   strided accesses of legal size, step, etc. Detect gaps, single element
+   interleaving, and other special cases. Set strided access info.
+   Collect groups of strided stores for further use in SLP analysis.  */
+
+static bool
+vect_analyze_group_access (struct data_reference *dr)
+{
+  tree step = DR_STEP (dr);
+  tree scalar_type = TREE_TYPE (DR_REF (dr));
+  HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
+  gimple stmt = DR_STMT (dr);
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+  HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
+  HOST_WIDE_INT stride;
+  bool slp_impossible = false;
+
+  /* For interleaving, STRIDE is STEP counted in elements, i.e., the size of the
+     interleaving group (including gaps).  */
+  stride = dr_step / type_size;
+
+  /* Not consecutive access is possible only if it is a part of interleaving.  */
+  if (!DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)))
+    {
+      /* Check if it this DR is a part of interleaving, and is a single
+	 element of the group that is accessed in the loop.  */
+
+      /* Gaps are supported only for loads. STEP must be a multiple of the type
+	 size.  The size of the group must be a power of 2.  */
+      if (DR_IS_READ (dr)
+	  && (dr_step % type_size) == 0
+	  && stride > 0
+	  && exact_log2 (stride) != -1)
+	{
+	  DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) = stmt;
+	  DR_GROUP_SIZE (vinfo_for_stmt (stmt)) = stride;
+	  if (vect_print_dump_info (REPORT_DR_DETAILS))
+	    {
+	      fprintf (vect_dump, "Detected single element interleaving ");
+	      print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
+	      fprintf (vect_dump, " step ");
+	      print_generic_expr (vect_dump, step, TDF_SLIM);
+	    }
+	  return true;
+	}
+      if (vect_print_dump_info (REPORT_DETAILS))
+	fprintf (vect_dump, "not consecutive access");
+      return false;
+    }
+
+  if (DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) == stmt)
+    {
+      /* First stmt in the interleaving chain. Check the chain.  */
+      gimple next = DR_GROUP_NEXT_DR (vinfo_for_stmt (stmt));
+      struct data_reference *data_ref = dr;
+      unsigned int count = 1;
+      tree next_step;
+      tree prev_init = DR_INIT (data_ref);
+      gimple prev = stmt;
+      HOST_WIDE_INT diff, count_in_bytes, gaps = 0;
+
+      while (next)
+        {
+          /* Skip same data-refs. In case that two or more stmts share data-ref
+             (supported only for loads), we vectorize only the first stmt, and
+             the rest get their vectorized loads from the first one.  */
+          if (!tree_int_cst_compare (DR_INIT (data_ref),
+                                     DR_INIT (STMT_VINFO_DATA_REF (
+						   vinfo_for_stmt (next)))))
+            {
+              if (!DR_IS_READ (data_ref))
+                {
+                  if (vect_print_dump_info (REPORT_DETAILS))
+                    fprintf (vect_dump, "Two store stmts share the same dr.");
+                  return false;
+                }
+
+              /* Check that there is no load-store dependencies for this loads
+                 to prevent a case of load-store-load to the same location.  */
+              if (DR_GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (next))
+                  || DR_GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (prev)))
+                {
+                  if (vect_print_dump_info (REPORT_DETAILS))
+                    fprintf (vect_dump,
+                             "READ_WRITE dependence in interleaving.");
+                  return false;
+                }
+
+              /* For load use the same data-ref load.  */
+              DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
+
+              prev = next;
+              next = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
+              continue;
+            }
+          prev = next;
+
+          /* Check that all the accesses have the same STEP.  */
+          next_step = DR_STEP (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
+          if (tree_int_cst_compare (step, next_step))
+            {
+              if (vect_print_dump_info (REPORT_DETAILS))
+                fprintf (vect_dump, "not consecutive access in interleaving");
+              return false;
+            }
+
+          data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
+          /* Check that the distance between two accesses is equal to the type
+             size. Otherwise, we have gaps.  */
+          diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
+                  - TREE_INT_CST_LOW (prev_init)) / type_size;
+	  if (diff != 1)
+	    {
+	      /* FORNOW: SLP of accesses with gaps is not supported.  */
+	      slp_impossible = true;
+	      if (!DR_IS_READ (data_ref))
+		{
+		  if (vect_print_dump_info (REPORT_DETAILS))
+		    fprintf (vect_dump, "interleaved store with gaps");
+		  return false;
+		}
+
+              gaps += diff - 1;
+	    }
+
+          /* Store the gap from the previous member of the group. If there is no
+             gap in the access, DR_GROUP_GAP is always 1.  */
+          DR_GROUP_GAP (vinfo_for_stmt (next)) = diff;
+
+          prev_init = DR_INIT (data_ref);
+          next = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
+          /* Count the number of data-refs in the chain.  */
+          count++;
+        }
+
+      /* COUNT is the number of accesses found, we multiply it by the size of
+         the type to get COUNT_IN_BYTES.  */
+      count_in_bytes = type_size * count;
+
+      /* Check that the size of the interleaving (including gaps) is not
+         greater than STEP.  */
+      if (dr_step && dr_step < count_in_bytes + gaps * type_size)
+        {
+          if (vect_print_dump_info (REPORT_DETAILS))
+            {
+              fprintf (vect_dump, "interleaving size is greater than step for ");
+              print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
+            }
+          return false;
+        }
+
+      /* Check that the size of the interleaving is equal to STEP for stores,
+         i.e., that there are no gaps.  */
+      if (dr_step && dr_step != count_in_bytes)
+        {
+          if (DR_IS_READ (dr))
+            {
+              slp_impossible = true;
+              /* There is a gap after the last load in the group. This gap is a
+                 difference between the stride and the number of elements. When
+                 there is no gap, this difference should be 0.  */
+              DR_GROUP_GAP (vinfo_for_stmt (stmt)) = stride - count;
+            }
+          else
+            {
+              if (vect_print_dump_info (REPORT_DETAILS))
+                fprintf (vect_dump, "interleaved store with gaps");
+              return false;
+            }
+        }
+
+      /* Check that STEP is a multiple of type size.  */
+      if (dr_step && (dr_step % type_size) != 0)
+        {
+          if (vect_print_dump_info (REPORT_DETAILS))
+            {
+              fprintf (vect_dump, "step is not a multiple of type size: step ");
+              print_generic_expr (vect_dump, step, TDF_SLIM);
+              fprintf (vect_dump, " size ");
+              print_generic_expr (vect_dump, TYPE_SIZE_UNIT (scalar_type),
+                                  TDF_SLIM);
+            }
+          return false;
+        }
+
+      /* FORNOW: we handle only interleaving that is a power of 2.
+         We don't fail here if it may be still possible to vectorize the
+         group using SLP. If not, the size of the group will be checked in
+         vect_analyze_operations, and the vectorization will fail.  */
+      if (exact_log2 (stride) == -1)
+	{
+	  if (vect_print_dump_info (REPORT_DETAILS))
+	    fprintf (vect_dump, "interleaving is not a power of 2");
+
+	  if (slp_impossible)
+	    return false;
+	}
+
+      if (stride == 0)
+        stride = count;
+
+      DR_GROUP_SIZE (vinfo_for_stmt (stmt)) = stride;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "Detected interleaving of size %d", (int)stride);
+
+      /* SLP: create an SLP data structure for every interleaving group of
+	 stores for further analysis in vect_analyse_slp.  */
+      if (!DR_IS_READ (dr) && !slp_impossible)
+        {
+          if (loop_vinfo)
+            VEC_safe_push (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo),
+                           stmt);
+          if (bb_vinfo)
+            VEC_safe_push (gimple, heap, BB_VINFO_STRIDED_STORES (bb_vinfo),
+                           stmt);
+        }
+    }
+
+  return true;
+}
+
+
+/* Analyze the access pattern of the data-reference DR.
+   In case of non-consecutive accesses call vect_analyze_group_access() to
+   analyze groups of strided accesses.  */
+
+static bool
+vect_analyze_data_ref_access (struct data_reference *dr)
+{
+  tree step = DR_STEP (dr);
+  tree scalar_type = TREE_TYPE (DR_REF (dr));
+  gimple stmt = DR_STMT (dr);
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = NULL;
+  HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
+
+  if (loop_vinfo)
+    loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+  if (loop_vinfo && !step)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+	fprintf (vect_dump, "bad data-ref access in loop");
+      return false;
+    }
+
+  /* Don't allow invariant accesses in loops.  */
+  if (loop_vinfo && dr_step == 0)
+    return false;
+
+  if (loop && nested_in_vect_loop_p (loop, stmt))
+    {
+      /* Interleaved accesses are not yet supported within outer-loop
+        vectorization for references in the inner-loop.  */
+      DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) = NULL;
+
+      /* For the rest of the analysis we use the outer-loop step.  */
+      step = STMT_VINFO_DR_STEP (stmt_info);
+      dr_step = TREE_INT_CST_LOW (step);
+
+      if (dr_step == 0)
+	{
+	  if (vect_print_dump_info (REPORT_ALIGNMENT))
+	    fprintf (vect_dump, "zero step in outer loop.");
+	  if (DR_IS_READ (dr))
+  	    return true;
+	  else
+	    return false;
+	}
+    }
+
+  /* Consecutive?  */
+  if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type)))
+    {
+      /* Mark that it is not interleaving.  */
+      DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) = NULL;
+      return true;
+    }
+
+  if (loop && nested_in_vect_loop_p (loop, stmt))
+    {
+      if (vect_print_dump_info (REPORT_ALIGNMENT))
+	fprintf (vect_dump, "strided access in outer loop.");
+      return false;
+    }
+
+  /* Not consecutive access - check if it's a part of interleaving group.  */
+  return vect_analyze_group_access (dr);
+}
+
+
+/* Function vect_analyze_data_ref_accesses.
+
+   Analyze the access pattern of all the data references in the loop.
+
+   FORNOW: the only access pattern that is considered vectorizable is a
+	   simple step 1 (consecutive) access.
+
+   FORNOW: handle only arrays and pointer accesses.  */
+
+bool
+vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
+{
+  unsigned int i;
+  VEC (data_reference_p, heap) *datarefs;
+  struct data_reference *dr;
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "=== vect_analyze_data_ref_accesses ===");
+
+  if (loop_vinfo)
+    datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+  else
+    datarefs = BB_VINFO_DATAREFS (bb_vinfo);
+
+  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+    if (!vect_analyze_data_ref_access (dr))
+      {
+	if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+	  fprintf (vect_dump, "not vectorized: complicated access pattern.");
+	return false;
+      }
+
+  return true;
+}
+
+/* Function vect_prune_runtime_alias_test_list.
+
+   Prune a list of ddrs to be tested at run-time by versioning for alias.
+   Return FALSE if resulting list of ddrs is longer then allowed by
+   PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE.  */
+
+bool
+vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
+{
+  VEC (ddr_p, heap) * ddrs =
+    LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
+  unsigned i, j;
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "=== vect_prune_runtime_alias_test_list ===");
+
+  for (i = 0; i < VEC_length (ddr_p, ddrs); )
+    {
+      bool found;
+      ddr_p ddr_i;
+
+      ddr_i = VEC_index (ddr_p, ddrs, i);
+      found = false;
+
+      for (j = 0; j < i; j++)
+        {
+	  ddr_p ddr_j = VEC_index (ddr_p, ddrs, j);
+
+	  if (vect_vfa_range_equal (ddr_i, ddr_j))
+	    {
+	      if (vect_print_dump_info (REPORT_DR_DETAILS))
+		{
+		  fprintf (vect_dump, "found equal ranges ");
+		  print_generic_expr (vect_dump, DR_REF (DDR_A (ddr_i)), TDF_SLIM);
+		  fprintf (vect_dump, ", ");
+		  print_generic_expr (vect_dump, DR_REF (DDR_B (ddr_i)), TDF_SLIM);
+		  fprintf (vect_dump, " and ");
+		  print_generic_expr (vect_dump, DR_REF (DDR_A (ddr_j)), TDF_SLIM);
+		  fprintf (vect_dump, ", ");
+		  print_generic_expr (vect_dump, DR_REF (DDR_B (ddr_j)), TDF_SLIM);
+		}
+	      found = true;
+	      break;
+	    }
+	}
+
+      if (found)
+      {
+	VEC_ordered_remove (ddr_p, ddrs, i);
+	continue;
+      }
+      i++;
+    }
+
+  if (VEC_length (ddr_p, ddrs) >
+       (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
+    {
+      if (vect_print_dump_info (REPORT_DR_DETAILS))
+	{
+	  fprintf (vect_dump,
+		   "disable versioning for alias - max number of generated "
+		   "checks exceeded.");
+	}
+
+      VEC_truncate (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo), 0);
+
+      return false;
+    }
+
+  return true;
+}
+
+
+/* Function vect_analyze_data_refs.
+
+  Find all the data references in the loop or basic block.
+
+   The general structure of the analysis of data refs in the vectorizer is as
+   follows:
+   1- vect_analyze_data_refs(loop/bb): call
+      compute_data_dependences_for_loop/bb to find and analyze all data-refs
+      in the loop/bb and their dependences.
+   2- vect_analyze_dependences(): apply dependence testing using ddrs.
+   3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
+   4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
+
+*/
+
+bool
+vect_analyze_data_refs (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
+{
+  struct loop *loop = NULL;
+  basic_block bb = NULL;
+  unsigned int i;
+  VEC (data_reference_p, heap) *datarefs;
+  struct data_reference *dr;
+  tree scalar_type;
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "=== vect_analyze_data_refs ===\n");
+
+  if (loop_vinfo)
+    {
+      loop = LOOP_VINFO_LOOP (loop_vinfo);
+      compute_data_dependences_for_loop (loop, true,
+                                         &LOOP_VINFO_DATAREFS (loop_vinfo),
+                                         &LOOP_VINFO_DDRS (loop_vinfo));
+      datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+    }
+  else
+    {
+      bb = BB_VINFO_BB (bb_vinfo);
+      compute_data_dependences_for_bb (bb, true,
+                                       &BB_VINFO_DATAREFS (bb_vinfo),
+                                       &BB_VINFO_DDRS (bb_vinfo));
+      datarefs = BB_VINFO_DATAREFS (bb_vinfo);
+    }
+
+  /* Go through the data-refs, check that the analysis succeeded. Update pointer
+     from stmt_vec_info struct to DR and vectype.  */
+
+  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+    {
+      gimple stmt;
+      stmt_vec_info stmt_info;
+      tree base, offset, init;
+
+      if (!dr || !DR_REF (dr))
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+	    fprintf (vect_dump, "not vectorized: unhandled data-ref ");
+          return false;
+        }
+
+      stmt = DR_STMT (dr);
+      stmt_info = vinfo_for_stmt (stmt);
+
+      /* Check that analysis of the data-ref succeeded.  */
+      if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
+          || !DR_STEP (dr))
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+            {
+              fprintf (vect_dump, "not vectorized: data ref analysis failed ");
+              print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
+            }
+          return false;
+        }
+
+      if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+            fprintf (vect_dump, "not vectorized: base addr of dr is a "
+                     "constant");
+          return false;
+        }
+
+      base = unshare_expr (DR_BASE_ADDRESS (dr));
+      offset = unshare_expr (DR_OFFSET (dr));
+      init = unshare_expr (DR_INIT (dr));
+
+      /* Update DR field in stmt_vec_info struct.  */
+
+      /* If the dataref is in an inner-loop of the loop that is considered for
+	 for vectorization, we also want to analyze the access relative to
+	 the outer-loop (DR contains information only relative to the
+	 inner-most enclosing loop).  We do that by building a reference to the
+	 first location accessed by the inner-loop, and analyze it relative to
+	 the outer-loop.  */
+      if (loop && nested_in_vect_loop_p (loop, stmt))
+	{
+	  tree outer_step, outer_base, outer_init;
+	  HOST_WIDE_INT pbitsize, pbitpos;
+	  tree poffset;
+	  enum machine_mode pmode;
+	  int punsignedp, pvolatilep;
+	  affine_iv base_iv, offset_iv;
+	  tree dinit;
+
+	  /* Build a reference to the first location accessed by the
+	     inner-loop: *(BASE+INIT). (The first location is actually
+	     BASE+INIT+OFFSET, but we add OFFSET separately later).  */
+          tree inner_base = build_fold_indirect_ref
+                                (fold_build2 (POINTER_PLUS_EXPR,
+                                              TREE_TYPE (base), base,
+                                              fold_convert (sizetype, init)));
+
+	  if (vect_print_dump_info (REPORT_DETAILS))
+	    {
+	      fprintf (vect_dump, "analyze in outer-loop: ");
+	      print_generic_expr (vect_dump, inner_base, TDF_SLIM);
+	    }
+
+	  outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
+		          &poffset, &pmode, &punsignedp, &pvolatilep, false);
+	  gcc_assert (outer_base != NULL_TREE);
+
+	  if (pbitpos % BITS_PER_UNIT != 0)
+	    {
+	      if (vect_print_dump_info (REPORT_DETAILS))
+		fprintf (vect_dump, "failed: bit offset alignment.\n");
+	      return false;
+	    }
+
+	  outer_base = build_fold_addr_expr (outer_base);
+	  if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
+                          &base_iv, false))
+	    {
+	      if (vect_print_dump_info (REPORT_DETAILS))
+		fprintf (vect_dump, "failed: evolution of base is not affine.\n");
+	      return false;
+	    }
+
+	  if (offset)
+	    {
+	      if (poffset)
+		poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
+                                       poffset);
+	      else
+		poffset = offset;
+	    }
+
+	  if (!poffset)
+	    {
+	      offset_iv.base = ssize_int (0);
+	      offset_iv.step = ssize_int (0);
+	    }
+	  else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
+                               &offset_iv, false))
+	    {
+	      if (vect_print_dump_info (REPORT_DETAILS))
+	        fprintf (vect_dump, "evolution of offset is not affine.\n");
+	      return false;
+	    }
+
+	  outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
+	  split_constant_offset (base_iv.base, &base_iv.base, &dinit);
+	  outer_init =  size_binop (PLUS_EXPR, outer_init, dinit);
+	  split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
+	  outer_init =  size_binop (PLUS_EXPR, outer_init, dinit);
+
+	  outer_step = size_binop (PLUS_EXPR,
+				fold_convert (ssizetype, base_iv.step),
+				fold_convert (ssizetype, offset_iv.step));
+
+	  STMT_VINFO_DR_STEP (stmt_info) = outer_step;
+	  /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
+	  STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
+	  STMT_VINFO_DR_INIT (stmt_info) = outer_init;
+	  STMT_VINFO_DR_OFFSET (stmt_info) =
+				fold_convert (ssizetype, offset_iv.base);
+	  STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
+				size_int (highest_pow2_factor (offset_iv.base));
+
+	  if (vect_print_dump_info (REPORT_DETAILS))
+	    {
+	      fprintf (vect_dump, "\touter base_address: ");
+	      print_generic_expr (vect_dump, STMT_VINFO_DR_BASE_ADDRESS (stmt_info), TDF_SLIM);
+	      fprintf (vect_dump, "\n\touter offset from base address: ");
+	      print_generic_expr (vect_dump, STMT_VINFO_DR_OFFSET (stmt_info), TDF_SLIM);
+	      fprintf (vect_dump, "\n\touter constant offset from base address: ");
+	      print_generic_expr (vect_dump, STMT_VINFO_DR_INIT (stmt_info), TDF_SLIM);
+	      fprintf (vect_dump, "\n\touter step: ");
+	      print_generic_expr (vect_dump, STMT_VINFO_DR_STEP (stmt_info), TDF_SLIM);
+	      fprintf (vect_dump, "\n\touter aligned to: ");
+	      print_generic_expr (vect_dump, STMT_VINFO_DR_ALIGNED_TO (stmt_info), TDF_SLIM);
+	    }
+	}
+
+      if (STMT_VINFO_DATA_REF (stmt_info))
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+            {
+              fprintf (vect_dump,
+                       "not vectorized: more than one data ref in stmt: ");
+              print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
+            }
+          return false;
+        }
+
+      STMT_VINFO_DATA_REF (stmt_info) = dr;
+
+      /* Set vectype for STMT.  */
+      scalar_type = TREE_TYPE (DR_REF (dr));
+      STMT_VINFO_VECTYPE (stmt_info) =
+                get_vectype_for_scalar_type (scalar_type);
+      if (!STMT_VINFO_VECTYPE (stmt_info))
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+            {
+              fprintf (vect_dump,
+                       "not vectorized: no vectype for stmt: ");
+              print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
+              fprintf (vect_dump, " scalar_type: ");
+              print_generic_expr (vect_dump, scalar_type, TDF_DETAILS);
+            }
+          return false;
+        }
+    }
+
+  return true;
+}
+
+
+/* Function vect_get_new_vect_var.
+
+   Returns a name for a new variable. The current naming scheme appends the
+   prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
+   the name of vectorizer generated variables, and appends that to NAME if
+   provided.  */
+
+tree
+vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
+{
+  const char *prefix;
+  tree new_vect_var;
+
+  switch (var_kind)
+  {
+  case vect_simple_var:
+    prefix = "vect_";
+    break;
+  case vect_scalar_var:
+    prefix = "stmp_";
+    break;
+  case vect_pointer_var:
+    prefix = "vect_p";
+    break;
+  default:
+    gcc_unreachable ();
+  }
+
+  if (name)
+    {
+      char* tmp = concat (prefix, name, NULL);
+      new_vect_var = create_tmp_var (type, tmp);
+      free (tmp);
+    }
+  else
+    new_vect_var = create_tmp_var (type, prefix);
+
+  /* Mark vector typed variable as a gimple register variable.  */
+  if (TREE_CODE (type) == VECTOR_TYPE)
+    DECL_GIMPLE_REG_P (new_vect_var) = true;
+
+  return new_vect_var;
+}
+
+
+/* Function vect_create_addr_base_for_vector_ref.
+
+   Create an expression that computes the address of the first memory location
+   that will be accessed for a data reference.
+
+   Input:
+   STMT: The statement containing the data reference.
+   NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
+   OFFSET: Optional. If supplied, it is be added to the initial address.
+   LOOP:    Specify relative to which loop-nest should the address be computed.
+            For example, when the dataref is in an inner-loop nested in an
+	    outer-loop that is now being vectorized, LOOP can be either the
+	    outer-loop, or the inner-loop. The first memory location accessed
+	    by the following dataref ('in' points to short):
+
+		for (i=0; i<N; i++)
+		   for (j=0; j<M; j++)
+		     s += in[i+j]
+
+	    is as follows:
+	    if LOOP=i_loop:	&in		(relative to i_loop)
+	    if LOOP=j_loop: 	&in+i*2B	(relative to j_loop)
+
+   Output:
+   1. Return an SSA_NAME whose value is the address of the memory location of
+      the first vector of the data reference.
+   2. If new_stmt_list is not NULL_TREE after return then the caller must insert
+      these statement(s) which define the returned SSA_NAME.
+
+   FORNOW: We are only handling array accesses with step 1.  */
+
+tree
+vect_create_addr_base_for_vector_ref (gimple stmt,
+				      gimple_seq *new_stmt_list,
+				      tree offset,
+				      struct loop *loop)
+{
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+  tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
+  tree base_name;
+  tree data_ref_base_var;
+  tree vec_stmt;
+  tree addr_base, addr_expr;
+  tree dest;
+  gimple_seq seq = NULL;
+  tree base_offset = unshare_expr (DR_OFFSET (dr));
+  tree init = unshare_expr (DR_INIT (dr));
+  tree vect_ptr_type;
+  tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+
+  if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
+    {
+      struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+      gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
+
+      data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
+      base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
+      init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
+    }
+
+  if (loop_vinfo)
+    base_name = build_fold_indirect_ref (data_ref_base);
+  else
+    {
+      base_offset = ssize_int (0);
+      init = ssize_int (0);
+      base_name = build_fold_indirect_ref (unshare_expr (DR_REF (dr)));
+    }
+
+  data_ref_base_var = create_tmp_var (TREE_TYPE (data_ref_base), "batmp");
+  add_referenced_var (data_ref_base_var);
+  data_ref_base = force_gimple_operand (data_ref_base, &seq, true,
+					data_ref_base_var);
+  gimple_seq_add_seq (new_stmt_list, seq);
+
+  /* Create base_offset */
+  base_offset = size_binop (PLUS_EXPR,
+			    fold_convert (sizetype, base_offset),
+			    fold_convert (sizetype, init));
+  dest = create_tmp_var (sizetype, "base_off");
+  add_referenced_var (dest);
+  base_offset = force_gimple_operand (base_offset, &seq, true, dest);
+  gimple_seq_add_seq (new_stmt_list, seq);
+
+  if (offset)
+    {
+      tree tmp = create_tmp_var (sizetype, "offset");
+
+      add_referenced_var (tmp);
+      offset = fold_build2 (MULT_EXPR, sizetype,
+			    fold_convert (sizetype, offset), step);
+      base_offset = fold_build2 (PLUS_EXPR, sizetype,
+				 base_offset, offset);
+      base_offset = force_gimple_operand (base_offset, &seq, false, tmp);
+      gimple_seq_add_seq (new_stmt_list, seq);
+    }
+
+  /* base + base_offset */
+  if (loop_vinfo)
+    addr_base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (data_ref_base),
+                             data_ref_base, base_offset);
+  else
+    {
+      if (TREE_CODE (DR_REF (dr)) == INDIRECT_REF)
+        addr_base = unshare_expr (TREE_OPERAND (DR_REF (dr), 0));
+      else
+        addr_base = build1 (ADDR_EXPR,
+                            build_pointer_type (TREE_TYPE (DR_REF (dr))),
+                            unshare_expr (DR_REF (dr)));
+    }
+
+  vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
+
+  vec_stmt = fold_convert (vect_ptr_type, addr_base);
+  addr_expr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
+                                     get_name (base_name));
+  add_referenced_var (addr_expr);
+  vec_stmt = force_gimple_operand (vec_stmt, &seq, false, addr_expr);
+  gimple_seq_add_seq (new_stmt_list, seq);
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    {
+      fprintf (vect_dump, "created ");
+      print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
+    }
+
+  return vec_stmt;
+}
+
+
+/* Function vect_create_data_ref_ptr.
+
+   Create a new pointer to vector type (vp), that points to the first location
+   accessed in the loop by STMT, along with the def-use update chain to
+   appropriately advance the pointer through the loop iterations. Also set
+   aliasing information for the pointer.  This vector pointer is used by the
+   callers to this function to create a memory reference expression for vector
+   load/store access.
+
+   Input:
+   1. STMT: a stmt that references memory. Expected to be of the form
+         GIMPLE_ASSIGN <name, data-ref> or
+	 GIMPLE_ASSIGN <data-ref, name>.
+   2. AT_LOOP: the loop where the vector memref is to be created.
+   3. OFFSET (optional): an offset to be added to the initial address accessed
+        by the data-ref in STMT.
+   4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
+        pointing to the initial address.
+   5. TYPE: if not NULL indicates the required type of the data-ref.
+
+   Output:
+   1. Declare a new ptr to vector_type, and have it point to the base of the
+      data reference (initial addressed accessed by the data reference).
+      For example, for vector of type V8HI, the following code is generated:
+
+      v8hi *vp;
+      vp = (v8hi *)initial_address;
+
+      if OFFSET is not supplied:
+         initial_address = &a[init];
+      if OFFSET is supplied:
+         initial_address = &a[init + OFFSET];
+
+      Return the initial_address in INITIAL_ADDRESS.
+
+   2. If ONLY_INIT is true, just return the initial pointer.  Otherwise, also
+      update the pointer in each iteration of the loop.
+
+      Return the increment stmt that updates the pointer in PTR_INCR.
+
+   3. Set INV_P to true if the access pattern of the data reference in the
+      vectorized loop is invariant. Set it to false otherwise.
+
+   4. Return the pointer.  */
+
+tree
+vect_create_data_ref_ptr (gimple stmt, struct loop *at_loop,
+			  tree offset, tree *initial_address, gimple *ptr_incr,
+			  bool only_init, bool *inv_p)
+{
+  tree base_name;
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = NULL;
+  bool nested_in_vect_loop = false;
+  struct loop *containing_loop = NULL;
+  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+  tree vect_ptr_type;
+  tree vect_ptr;
+  tree new_temp;
+  gimple vec_stmt;
+  gimple_seq new_stmt_list = NULL;
+  edge pe = NULL;
+  basic_block new_bb;
+  tree vect_ptr_init;
+  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+  tree vptr;
+  gimple_stmt_iterator incr_gsi;
+  bool insert_after;
+  tree indx_before_incr, indx_after_incr;
+  gimple incr;
+  tree step;
+  bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+  gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
+
+  if (loop_vinfo)
+    {
+      loop = LOOP_VINFO_LOOP (loop_vinfo);
+      nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
+      containing_loop = (gimple_bb (stmt))->loop_father;
+      pe = loop_preheader_edge (loop);
+    }
+  else
+    {
+      gcc_assert (bb_vinfo);
+      only_init = true;
+      *ptr_incr = NULL;
+    }
+
+  /* Check the step (evolution) of the load in LOOP, and record
+     whether it's invariant.  */
+  if (nested_in_vect_loop)
+    step = STMT_VINFO_DR_STEP (stmt_info);
+  else
+    step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
+
+  if (tree_int_cst_compare (step, size_zero_node) == 0)
+    *inv_p = true;
+  else
+    *inv_p = false;
+
+  /* Create an expression for the first address accessed by this load
+     in LOOP.  */
+  base_name = build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    {
+      tree data_ref_base = base_name;
+      fprintf (vect_dump, "create vector-pointer variable to type: ");
+      print_generic_expr (vect_dump, vectype, TDF_SLIM);
+      if (TREE_CODE (data_ref_base) == VAR_DECL
+          || TREE_CODE (data_ref_base) == ARRAY_REF)
+        fprintf (vect_dump, "  vectorizing an array ref: ");
+      else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
+        fprintf (vect_dump, "  vectorizing a record based array ref: ");
+      else if (TREE_CODE (data_ref_base) == SSA_NAME)
+        fprintf (vect_dump, "  vectorizing a pointer ref: ");
+      print_generic_expr (vect_dump, base_name, TDF_SLIM);
+    }
+
+  /** (1) Create the new vector-pointer variable:  **/
+  vect_ptr_type = build_pointer_type (vectype);
+  vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
+                                    get_name (base_name));
+
+  /* Vector types inherit the alias set of their component type by default so
+     we need to use a ref-all pointer if the data reference does not conflict
+     with the created vector data reference because it is not addressable.  */
+  if (!alias_sets_conflict_p (get_deref_alias_set (vect_ptr),
+			      get_alias_set (DR_REF (dr))))
+    {
+      vect_ptr_type
+	= build_pointer_type_for_mode (vectype,
+				       TYPE_MODE (vect_ptr_type), true);
+      vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
+					get_name (base_name));
+    }
+
+  /* Likewise for any of the data references in the stmt group.  */
+  else if (STMT_VINFO_DR_GROUP_SIZE (stmt_info) > 1)
+    {
+      gimple orig_stmt = STMT_VINFO_DR_GROUP_FIRST_DR (stmt_info);
+      do
+	{
+	  tree lhs = gimple_assign_lhs (orig_stmt);
+	  if (!alias_sets_conflict_p (get_deref_alias_set (vect_ptr),
+				      get_alias_set (lhs)))
+	    {
+	      vect_ptr_type
+		= build_pointer_type_for_mode (vectype,
+					       TYPE_MODE (vect_ptr_type), true);
+	      vect_ptr
+		= vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
+					 get_name (base_name));
+	      break;
+	    }
+
+	  orig_stmt = STMT_VINFO_DR_GROUP_NEXT_DR (vinfo_for_stmt (orig_stmt));
+	}
+      while (orig_stmt);
+    }
+
+  add_referenced_var (vect_ptr);
+
+  /** Note: If the dataref is in an inner-loop nested in LOOP, and we are
+      vectorizing LOOP (i.e. outer-loop vectorization), we need to create two
+      def-use update cycles for the pointer: One relative to the outer-loop
+      (LOOP), which is what steps (3) and (4) below do. The other is relative
+      to the inner-loop (which is the inner-most loop containing the dataref),
+      and this is done be step (5) below.
+
+      When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
+      inner-most loop, and so steps (3),(4) work the same, and step (5) is
+      redundant.  Steps (3),(4) create the following:
+
+	vp0 = &base_addr;
+	LOOP:	vp1 = phi(vp0,vp2)
+		...
+		...
+		vp2 = vp1 + step
+		goto LOOP
+
+      If there is an inner-loop nested in loop, then step (5) will also be
+      applied, and an additional update in the inner-loop will be created:
+
+	vp0 = &base_addr;
+	LOOP:   vp1 = phi(vp0,vp2)
+		...
+        inner:     vp3 = phi(vp1,vp4)
+	           vp4 = vp3 + inner_step
+	           if () goto inner
+		...
+		vp2 = vp1 + step
+		if () goto LOOP   */
+
+  /** (3) Calculate the initial address the vector-pointer, and set
+          the vector-pointer to point to it before the loop:  **/
+
+  /* Create: (&(base[init_val+offset]) in the loop preheader.  */
+
+  new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
+                                                   offset, loop);
+  if (new_stmt_list)
+    {
+      if (pe)
+        {
+          new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
+          gcc_assert (!new_bb);
+        }
+      else
+        gsi_insert_seq_before (&gsi, new_stmt_list, GSI_SAME_STMT);
+    }
+
+  *initial_address = new_temp;
+
+  /* Create: p = (vectype *) initial_base  */
+  vec_stmt = gimple_build_assign (vect_ptr,
+				  fold_convert (vect_ptr_type, new_temp));
+  vect_ptr_init = make_ssa_name (vect_ptr, vec_stmt);
+  gimple_assign_set_lhs (vec_stmt, vect_ptr_init);
+  if (pe)
+    {
+      new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
+      gcc_assert (!new_bb);
+    }
+  else
+    gsi_insert_before (&gsi, vec_stmt, GSI_SAME_STMT);
+
+  /** (4) Handle the updating of the vector-pointer inside the loop.
+	  This is needed when ONLY_INIT is false, and also when AT_LOOP
+	  is the inner-loop nested in LOOP (during outer-loop vectorization).
+   **/
+
+  /* No update in loop is required.  */
+  if (only_init && (!loop_vinfo || at_loop == loop))
+    {
+      /* Copy the points-to information if it exists. */
+      if (DR_PTR_INFO (dr))
+        duplicate_ssa_name_ptr_info (vect_ptr_init, DR_PTR_INFO (dr));
+      vptr = vect_ptr_init;
+    }
+  else
+    {
+      /* The step of the vector pointer is the Vector Size.  */
+      tree step = TYPE_SIZE_UNIT (vectype);
+      /* One exception to the above is when the scalar step of the load in
+	 LOOP is zero. In this case the step here is also zero.  */
+      if (*inv_p)
+	step = size_zero_node;
+
+      standard_iv_increment_position (loop, &incr_gsi, &insert_after);
+
+      create_iv (vect_ptr_init,
+		 fold_convert (vect_ptr_type, step),
+		 vect_ptr, loop, &incr_gsi, insert_after,
+		 &indx_before_incr, &indx_after_incr);
+      incr = gsi_stmt (incr_gsi);
+      set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
+
+      /* Copy the points-to information if it exists. */
+      if (DR_PTR_INFO (dr))
+	{
+	  duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
+	  duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
+	}
+      if (ptr_incr)
+	*ptr_incr = incr;
+
+      vptr = indx_before_incr;
+    }
+
+  if (!nested_in_vect_loop || only_init)
+    return vptr;
+
+
+  /** (5) Handle the updating of the vector-pointer inside the inner-loop
+	  nested in LOOP, if exists: **/
+
+  gcc_assert (nested_in_vect_loop);
+  if (!only_init)
+    {
+      standard_iv_increment_position (containing_loop, &incr_gsi,
+				      &insert_after);
+      create_iv (vptr, fold_convert (vect_ptr_type, DR_STEP (dr)), vect_ptr,
+		 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
+		 &indx_after_incr);
+      incr = gsi_stmt (incr_gsi);
+      set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
+
+      /* Copy the points-to information if it exists. */
+      if (DR_PTR_INFO (dr))
+	{
+	  duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
+	  duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
+	}
+      if (ptr_incr)
+	*ptr_incr = incr;
+
+      return indx_before_incr;
+    }
+  else
+    gcc_unreachable ();
+}
+
+
+/* Function bump_vector_ptr
+
+   Increment a pointer (to a vector type) by vector-size. If requested,
+   i.e. if PTR-INCR is given, then also connect the new increment stmt
+   to the existing def-use update-chain of the pointer, by modifying
+   the PTR_INCR as illustrated below:
+
+   The pointer def-use update-chain before this function:
+                        DATAREF_PTR = phi (p_0, p_2)
+                        ....
+        PTR_INCR:       p_2 = DATAREF_PTR + step
+
+   The pointer def-use update-chain after this function:
+                        DATAREF_PTR = phi (p_0, p_2)
+                        ....
+                        NEW_DATAREF_PTR = DATAREF_PTR + BUMP
+                        ....
+        PTR_INCR:       p_2 = NEW_DATAREF_PTR + step
+
+   Input:
+   DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
+                 in the loop.
+   PTR_INCR - optional. The stmt that updates the pointer in each iteration of
+	      the loop.  The increment amount across iterations is expected
+	      to be vector_size.
+   BSI - location where the new update stmt is to be placed.
+   STMT - the original scalar memory-access stmt that is being vectorized.
+   BUMP - optional. The offset by which to bump the pointer. If not given,
+	  the offset is assumed to be vector_size.
+
+   Output: Return NEW_DATAREF_PTR as illustrated above.
+
+*/
+
+tree
+bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
+		 gimple stmt, tree bump)
+{
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+  tree ptr_var = SSA_NAME_VAR (dataref_ptr);
+  tree update = TYPE_SIZE_UNIT (vectype);
+  gimple incr_stmt;
+  ssa_op_iter iter;
+  use_operand_p use_p;
+  tree new_dataref_ptr;
+
+  if (bump)
+    update = bump;
+
+  incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, ptr_var,
+					    dataref_ptr, update);
+  new_dataref_ptr = make_ssa_name (ptr_var, incr_stmt);
+  gimple_assign_set_lhs (incr_stmt, new_dataref_ptr);
+  vect_finish_stmt_generation (stmt, incr_stmt, gsi);
+
+  /* Copy the points-to information if it exists. */
+  if (DR_PTR_INFO (dr))
+    duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
+
+  if (!ptr_incr)
+    return new_dataref_ptr;
+
+  /* Update the vector-pointer's cross-iteration increment.  */
+  FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
+    {
+      tree use = USE_FROM_PTR (use_p);
+
+      if (use == dataref_ptr)
+        SET_USE (use_p, new_dataref_ptr);
+      else
+        gcc_assert (tree_int_cst_compare (use, update) == 0);
+    }
+
+  return new_dataref_ptr;
+}
+
+
+/* Function vect_create_destination_var.
+
+   Create a new temporary of type VECTYPE.  */
+
+tree
+vect_create_destination_var (tree scalar_dest, tree vectype)
+{
+  tree vec_dest;
+  const char *new_name;
+  tree type;
+  enum vect_var_kind kind;
+
+  kind = vectype ? vect_simple_var : vect_scalar_var;
+  type = vectype ? vectype : TREE_TYPE (scalar_dest);
+
+  gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
+
+  new_name = get_name (scalar_dest);
+  if (!new_name)
+    new_name = "var_";
+  vec_dest = vect_get_new_vect_var (type, kind, new_name);
+  add_referenced_var (vec_dest);
+
+  return vec_dest;
+}
+
+/* Function vect_strided_store_supported.
+
+   Returns TRUE is INTERLEAVE_HIGH and INTERLEAVE_LOW operations are supported,
+   and FALSE otherwise.  */
+
+bool
+vect_strided_store_supported (tree vectype)
+{
+  optab interleave_high_optab, interleave_low_optab;
+  int mode;
+
+  mode = (int) TYPE_MODE (vectype);
+
+  /* Check that the operation is supported.  */
+  interleave_high_optab = optab_for_tree_code (VEC_INTERLEAVE_HIGH_EXPR,
+					       vectype, optab_default);
+  interleave_low_optab = optab_for_tree_code (VEC_INTERLEAVE_LOW_EXPR,
+					      vectype, optab_default);
+  if (!interleave_high_optab || !interleave_low_optab)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+	fprintf (vect_dump, "no optab for interleave.");
+      return false;
+    }
+
+  if (optab_handler (interleave_high_optab, mode)->insn_code
+      == CODE_FOR_nothing
+      || optab_handler (interleave_low_optab, mode)->insn_code
+      == CODE_FOR_nothing)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+	fprintf (vect_dump, "interleave op not supported by target.");
+      return false;
+    }
+
+  return true;
+}
+
+
+/* Function vect_permute_store_chain.
+
+   Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
+   a power of 2, generate interleave_high/low stmts to reorder the data
+   correctly for the stores. Return the final references for stores in
+   RESULT_CHAIN.
+
+   E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
+   The input is 4 vectors each containing 8 elements. We assign a number to each
+   element, the input sequence is:
+
+   1st vec:   0  1  2  3  4  5  6  7
+   2nd vec:   8  9 10 11 12 13 14 15
+   3rd vec:  16 17 18 19 20 21 22 23
+   4th vec:  24 25 26 27 28 29 30 31
+
+   The output sequence should be:
+
+   1st vec:  0  8 16 24  1  9 17 25
+   2nd vec:  2 10 18 26  3 11 19 27
+   3rd vec:  4 12 20 28  5 13 21 30
+   4th vec:  6 14 22 30  7 15 23 31
+
+   i.e., we interleave the contents of the four vectors in their order.
+
+   We use interleave_high/low instructions to create such output. The input of
+   each interleave_high/low operation is two vectors:
+   1st vec    2nd vec
+   0 1 2 3    4 5 6 7
+   the even elements of the result vector are obtained left-to-right from the
+   high/low elements of the first vector. The odd elements of the result are
+   obtained left-to-right from the high/low elements of the second vector.
+   The output of interleave_high will be:   0 4 1 5
+   and of interleave_low:                   2 6 3 7
+
+
+   The permutation is done in log LENGTH stages. In each stage interleave_high
+   and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
+   where the first argument is taken from the first half of DR_CHAIN and the
+   second argument from it's second half.
+   In our example,
+
+   I1: interleave_high (1st vec, 3rd vec)
+   I2: interleave_low (1st vec, 3rd vec)
+   I3: interleave_high (2nd vec, 4th vec)
+   I4: interleave_low (2nd vec, 4th vec)
+
+   The output for the first stage is:
+
+   I1:  0 16  1 17  2 18  3 19
+   I2:  4 20  5 21  6 22  7 23
+   I3:  8 24  9 25 10 26 11 27
+   I4: 12 28 13 29 14 30 15 31
+
+   The output of the second stage, i.e. the final result is:
+
+   I1:  0  8 16 24  1  9 17 25
+   I2:  2 10 18 26  3 11 19 27
+   I3:  4 12 20 28  5 13 21 30
+   I4:  6 14 22 30  7 15 23 31.  */
+
+bool
+vect_permute_store_chain (VEC(tree,heap) *dr_chain,
+			  unsigned int length,
+			  gimple stmt,
+			  gimple_stmt_iterator *gsi,
+			  VEC(tree,heap) **result_chain)
+{
+  tree perm_dest, vect1, vect2, high, low;
+  gimple perm_stmt;
+  tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
+  int i;
+  unsigned int j;
+  enum tree_code high_code, low_code;
+
+  /* Check that the operation is supported.  */
+  if (!vect_strided_store_supported (vectype))
+    return false;
+
+  *result_chain = VEC_copy (tree, heap, dr_chain);
+
+  for (i = 0; i < exact_log2 (length); i++)
+    {
+      for (j = 0; j < length/2; j++)
+	{
+	  vect1 = VEC_index (tree, dr_chain, j);
+	  vect2 = VEC_index (tree, dr_chain, j+length/2);
+
+	  /* Create interleaving stmt:
+	     in the case of big endian:
+                                high = interleave_high (vect1, vect2)
+             and in the case of little endian:
+                                high = interleave_low (vect1, vect2).  */
+	  perm_dest = create_tmp_var (vectype, "vect_inter_high");
+	  DECL_GIMPLE_REG_P (perm_dest) = 1;
+	  add_referenced_var (perm_dest);
+          if (BYTES_BIG_ENDIAN)
+	    {
+	      high_code = VEC_INTERLEAVE_HIGH_EXPR;
+	      low_code = VEC_INTERLEAVE_LOW_EXPR;
+	    }
+	  else
+	    {
+	      low_code = VEC_INTERLEAVE_HIGH_EXPR;
+	      high_code = VEC_INTERLEAVE_LOW_EXPR;
+	    }
+	  perm_stmt = gimple_build_assign_with_ops (high_code, perm_dest,
+						    vect1, vect2);
+	  high = make_ssa_name (perm_dest, perm_stmt);
+	  gimple_assign_set_lhs (perm_stmt, high);
+	  vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+	  VEC_replace (tree, *result_chain, 2*j, high);
+
+	  /* Create interleaving stmt:
+             in the case of big endian:
+                               low  = interleave_low (vect1, vect2)
+             and in the case of little endian:
+                               low  = interleave_high (vect1, vect2).  */
+	  perm_dest = create_tmp_var (vectype, "vect_inter_low");
+	  DECL_GIMPLE_REG_P (perm_dest) = 1;
+	  add_referenced_var (perm_dest);
+	  perm_stmt = gimple_build_assign_with_ops (low_code, perm_dest,
+						    vect1, vect2);
+	  low = make_ssa_name (perm_dest, perm_stmt);
+	  gimple_assign_set_lhs (perm_stmt, low);
+	  vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+	  VEC_replace (tree, *result_chain, 2*j+1, low);
+	}
+      dr_chain = VEC_copy (tree, heap, *result_chain);
+    }
+  return true;
+}
+
+/* Function vect_setup_realignment
+
+   This function is called when vectorizing an unaligned load using
+   the dr_explicit_realign[_optimized] scheme.
+   This function generates the following code at the loop prolog:
+
+      p = initial_addr;
+   x  msq_init = *(floor(p));   # prolog load
+      realignment_token = call target_builtin;
+    loop:
+   x  msq = phi (msq_init, ---)
+
+   The stmts marked with x are generated only for the case of
+   dr_explicit_realign_optimized.
+
+   The code above sets up a new (vector) pointer, pointing to the first
+   location accessed by STMT, and a "floor-aligned" load using that pointer.
+   It also generates code to compute the "realignment-token" (if the relevant
+   target hook was defined), and creates a phi-node at the loop-header bb
+   whose arguments are the result of the prolog-load (created by this
+   function) and the result of a load that takes place in the loop (to be
+   created by the caller to this function).
+
+   For the case of dr_explicit_realign_optimized:
+   The caller to this function uses the phi-result (msq) to create the
+   realignment code inside the loop, and sets up the missing phi argument,
+   as follows:
+    loop:
+      msq = phi (msq_init, lsq)
+      lsq = *(floor(p'));        # load in loop
+      result = realign_load (msq, lsq, realignment_token);
+
+   For the case of dr_explicit_realign:
+    loop:
+      msq = *(floor(p)); 	# load in loop
+      p' = p + (VS-1);
+      lsq = *(floor(p'));	# load in loop
+      result = realign_load (msq, lsq, realignment_token);
+
+   Input:
+   STMT - (scalar) load stmt to be vectorized. This load accesses
+          a memory location that may be unaligned.
+   BSI - place where new code is to be inserted.
+   ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
+			      is used.
+
+   Output:
+   REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
+                       target hook, if defined.
+   Return value - the result of the loop-header phi node.  */
+
+tree
+vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
+                        tree *realignment_token,
+			enum dr_alignment_support alignment_support_scheme,
+			tree init_addr,
+			struct loop **at_loop)
+{
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  edge pe;
+  tree scalar_dest = gimple_assign_lhs (stmt);
+  tree vec_dest;
+  gimple inc;
+  tree ptr;
+  tree data_ref;
+  gimple new_stmt;
+  basic_block new_bb;
+  tree msq_init = NULL_TREE;
+  tree new_temp;
+  gimple phi_stmt;
+  tree msq = NULL_TREE;
+  gimple_seq stmts = NULL;
+  bool inv_p;
+  bool compute_in_loop = false;
+  bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
+  struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
+  struct loop *loop_for_initial_load;
+
+  gcc_assert (alignment_support_scheme == dr_explicit_realign
+	      || alignment_support_scheme == dr_explicit_realign_optimized);
+
+  /* We need to generate three things:
+     1. the misalignment computation
+     2. the extra vector load (for the optimized realignment scheme).
+     3. the phi node for the two vectors from which the realignment is
+      done (for the optimized realignment scheme).
+   */
+
+  /* 1. Determine where to generate the misalignment computation.
+
+     If INIT_ADDR is NULL_TREE, this indicates that the misalignment
+     calculation will be generated by this function, outside the loop (in the
+     preheader).  Otherwise, INIT_ADDR had already been computed for us by the
+     caller, inside the loop.
+
+     Background: If the misalignment remains fixed throughout the iterations of
+     the loop, then both realignment schemes are applicable, and also the
+     misalignment computation can be done outside LOOP.  This is because we are
+     vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
+     are a multiple of VS (the Vector Size), and therefore the misalignment in
+     different vectorized LOOP iterations is always the same.
+     The problem arises only if the memory access is in an inner-loop nested
+     inside LOOP, which is now being vectorized using outer-loop vectorization.
+     This is the only case when the misalignment of the memory access may not
+     remain fixed throughout the iterations of the inner-loop (as explained in
+     detail in vect_supportable_dr_alignment).  In this case, not only is the
+     optimized realignment scheme not applicable, but also the misalignment
+     computation (and generation of the realignment token that is passed to
+     REALIGN_LOAD) have to be done inside the loop.
+
+     In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
+     or not, which in turn determines if the misalignment is computed inside
+     the inner-loop, or outside LOOP.  */
+
+  if (init_addr != NULL_TREE)
+    {
+      compute_in_loop = true;
+      gcc_assert (alignment_support_scheme == dr_explicit_realign);
+    }
+
+
+  /* 2. Determine where to generate the extra vector load.
+
+     For the optimized realignment scheme, instead of generating two vector
+     loads in each iteration, we generate a single extra vector load in the
+     preheader of the loop, and in each iteration reuse the result of the
+     vector load from the previous iteration.  In case the memory access is in
+     an inner-loop nested inside LOOP, which is now being vectorized using
+     outer-loop vectorization, we need to determine whether this initial vector
+     load should be generated at the preheader of the inner-loop, or can be
+     generated at the preheader of LOOP.  If the memory access has no evolution
+     in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
+     to be generated inside LOOP (in the preheader of the inner-loop).  */
+
+  if (nested_in_vect_loop)
+    {
+      tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
+      bool invariant_in_outerloop =
+            (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
+      loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
+    }
+  else
+    loop_for_initial_load = loop;
+  if (at_loop)
+    *at_loop = loop_for_initial_load;
+
+  /* 3. For the case of the optimized realignment, create the first vector
+      load at the loop preheader.  */
+
+  if (alignment_support_scheme == dr_explicit_realign_optimized)
+    {
+      /* Create msq_init = *(floor(p1)) in the loop preheader  */
+
+      gcc_assert (!compute_in_loop);
+      pe = loop_preheader_edge (loop_for_initial_load);
+      vec_dest = vect_create_destination_var (scalar_dest, vectype);
+      ptr = vect_create_data_ref_ptr (stmt, loop_for_initial_load, NULL_TREE,
+				      &init_addr, &inc, true, &inv_p);
+      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, ptr);
+      new_stmt = gimple_build_assign (vec_dest, data_ref);
+      new_temp = make_ssa_name (vec_dest, new_stmt);
+      gimple_assign_set_lhs (new_stmt, new_temp);
+      mark_symbols_for_renaming (new_stmt);
+      new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
+      gcc_assert (!new_bb);
+      msq_init = gimple_assign_lhs (new_stmt);
+    }
+
+  /* 4. Create realignment token using a target builtin, if available.
+      It is done either inside the containing loop, or before LOOP (as
+      determined above).  */
+
+  if (targetm.vectorize.builtin_mask_for_load)
+    {
+      tree builtin_decl;
+
+      /* Compute INIT_ADDR - the initial addressed accessed by this memref.  */
+      if (compute_in_loop)
+	gcc_assert (init_addr); /* already computed by the caller.  */
+      else
+	{
+	  /* Generate the INIT_ADDR computation outside LOOP.  */
+	  init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
+							NULL_TREE, loop);
+	  pe = loop_preheader_edge (loop);
+	  new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
+	  gcc_assert (!new_bb);
+	}
+
+      builtin_decl = targetm.vectorize.builtin_mask_for_load ();
+      new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
+      vec_dest =
+	vect_create_destination_var (scalar_dest,
+				     gimple_call_return_type (new_stmt));
+      new_temp = make_ssa_name (vec_dest, new_stmt);
+      gimple_call_set_lhs (new_stmt, new_temp);
+
+      if (compute_in_loop)
+	gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
+      else
+	{
+	  /* Generate the misalignment computation outside LOOP.  */
+	  pe = loop_preheader_edge (loop);
+	  new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
+	  gcc_assert (!new_bb);
+	}
+
+      *realignment_token = gimple_call_lhs (new_stmt);
+
+      /* The result of the CALL_EXPR to this builtin is determined from
+         the value of the parameter and no global variables are touched
+         which makes the builtin a "const" function.  Requiring the
+         builtin to have the "const" attribute makes it unnecessary
+         to call mark_call_clobbered.  */
+      gcc_assert (TREE_READONLY (builtin_decl));
+    }
+
+  if (alignment_support_scheme == dr_explicit_realign)
+    return msq;
+
+  gcc_assert (!compute_in_loop);
+  gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
+
+
+  /* 5. Create msq = phi <msq_init, lsq> in loop  */
+
+  pe = loop_preheader_edge (containing_loop);
+  vec_dest = vect_create_destination_var (scalar_dest, vectype);
+  msq = make_ssa_name (vec_dest, NULL);
+  phi_stmt = create_phi_node (msq, containing_loop->header);
+  SSA_NAME_DEF_STMT (msq) = phi_stmt;
+  add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
+
+  return msq;
+}
+
+
+/* Function vect_strided_load_supported.
+
+   Returns TRUE is EXTRACT_EVEN and EXTRACT_ODD operations are supported,
+   and FALSE otherwise.  */
+
+bool
+vect_strided_load_supported (tree vectype)
+{
+  optab perm_even_optab, perm_odd_optab;
+  int mode;
+
+  mode = (int) TYPE_MODE (vectype);
+
+  perm_even_optab = optab_for_tree_code (VEC_EXTRACT_EVEN_EXPR, vectype,
+					 optab_default);
+  if (!perm_even_optab)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+	fprintf (vect_dump, "no optab for perm_even.");
+      return false;
+    }
+
+  if (optab_handler (perm_even_optab, mode)->insn_code == CODE_FOR_nothing)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+	fprintf (vect_dump, "perm_even op not supported by target.");
+      return false;
+    }
+
+  perm_odd_optab = optab_for_tree_code (VEC_EXTRACT_ODD_EXPR, vectype,
+					optab_default);
+  if (!perm_odd_optab)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+	fprintf (vect_dump, "no optab for perm_odd.");
+      return false;
+    }
+
+  if (optab_handler (perm_odd_optab, mode)->insn_code == CODE_FOR_nothing)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+	fprintf (vect_dump, "perm_odd op not supported by target.");
+      return false;
+    }
+  return true;
+}
+
+
+/* Function vect_permute_load_chain.
+
+   Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
+   a power of 2, generate extract_even/odd stmts to reorder the input data
+   correctly. Return the final references for loads in RESULT_CHAIN.
+
+   E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
+   The input is 4 vectors each containing 8 elements. We assign a number to each
+   element, the input sequence is:
+
+   1st vec:   0  1  2  3  4  5  6  7
+   2nd vec:   8  9 10 11 12 13 14 15
+   3rd vec:  16 17 18 19 20 21 22 23
+   4th vec:  24 25 26 27 28 29 30 31
+
+   The output sequence should be:
+
+   1st vec:  0 4  8 12 16 20 24 28
+   2nd vec:  1 5  9 13 17 21 25 29
+   3rd vec:  2 6 10 14 18 22 26 30
+   4th vec:  3 7 11 15 19 23 27 31
+
+   i.e., the first output vector should contain the first elements of each
+   interleaving group, etc.
+
+   We use extract_even/odd instructions to create such output. The input of each
+   extract_even/odd operation is two vectors
+   1st vec    2nd vec
+   0 1 2 3    4 5 6 7
+
+   and the output is the vector of extracted even/odd elements. The output of
+   extract_even will be:   0 2 4 6
+   and of extract_odd:     1 3 5 7
+
+
+   The permutation is done in log LENGTH stages. In each stage extract_even and
+   extract_odd stmts are created for each pair of vectors in DR_CHAIN in their
+   order. In our example,
+
+   E1: extract_even (1st vec, 2nd vec)
+   E2: extract_odd (1st vec, 2nd vec)
+   E3: extract_even (3rd vec, 4th vec)
+   E4: extract_odd (3rd vec, 4th vec)
+
+   The output for the first stage will be:
+
+   E1:  0  2  4  6  8 10 12 14
+   E2:  1  3  5  7  9 11 13 15
+   E3: 16 18 20 22 24 26 28 30
+   E4: 17 19 21 23 25 27 29 31
+
+   In order to proceed and create the correct sequence for the next stage (or
+   for the correct output, if the second stage is the last one, as in our
+   example), we first put the output of extract_even operation and then the
+   output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
+   The input for the second stage is:
+
+   1st vec (E1):  0  2  4  6  8 10 12 14
+   2nd vec (E3): 16 18 20 22 24 26 28 30
+   3rd vec (E2):  1  3  5  7  9 11 13 15
+   4th vec (E4): 17 19 21 23 25 27 29 31
+
+   The output of the second stage:
+
+   E1: 0 4  8 12 16 20 24 28
+   E2: 2 6 10 14 18 22 26 30
+   E3: 1 5  9 13 17 21 25 29
+   E4: 3 7 11 15 19 23 27 31
+
+   And RESULT_CHAIN after reordering:
+
+   1st vec (E1):  0 4  8 12 16 20 24 28
+   2nd vec (E3):  1 5  9 13 17 21 25 29
+   3rd vec (E2):  2 6 10 14 18 22 26 30
+   4th vec (E4):  3 7 11 15 19 23 27 31.  */
+
+bool
+vect_permute_load_chain (VEC(tree,heap) *dr_chain,
+			 unsigned int length,
+			 gimple stmt,
+			 gimple_stmt_iterator *gsi,
+			 VEC(tree,heap) **result_chain)
+{
+  tree perm_dest, data_ref, first_vect, second_vect;
+  gimple perm_stmt;
+  tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
+  int i;
+  unsigned int j;
+
+  /* Check that the operation is supported.  */
+  if (!vect_strided_load_supported (vectype))
+    return false;
+
+  *result_chain = VEC_copy (tree, heap, dr_chain);
+  for (i = 0; i < exact_log2 (length); i++)
+    {
+      for (j = 0; j < length; j +=2)
+	{
+	  first_vect = VEC_index (tree, dr_chain, j);
+	  second_vect = VEC_index (tree, dr_chain, j+1);
+
+	  /* data_ref = permute_even (first_data_ref, second_data_ref);  */
+	  perm_dest = create_tmp_var (vectype, "vect_perm_even");
+	  DECL_GIMPLE_REG_P (perm_dest) = 1;
+	  add_referenced_var (perm_dest);
+
+	  perm_stmt = gimple_build_assign_with_ops (VEC_EXTRACT_EVEN_EXPR,
+						    perm_dest, first_vect,
+						    second_vect);
+
+	  data_ref = make_ssa_name (perm_dest, perm_stmt);
+	  gimple_assign_set_lhs (perm_stmt, data_ref);
+	  vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+	  mark_symbols_for_renaming (perm_stmt);
+
+	  VEC_replace (tree, *result_chain, j/2, data_ref);
+
+	  /* data_ref = permute_odd (first_data_ref, second_data_ref);  */
+	  perm_dest = create_tmp_var (vectype, "vect_perm_odd");
+	  DECL_GIMPLE_REG_P (perm_dest) = 1;
+	  add_referenced_var (perm_dest);
+
+	  perm_stmt = gimple_build_assign_with_ops (VEC_EXTRACT_ODD_EXPR,
+						    perm_dest, first_vect,
+						    second_vect);
+	  data_ref = make_ssa_name (perm_dest, perm_stmt);
+	  gimple_assign_set_lhs (perm_stmt, data_ref);
+	  vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+	  mark_symbols_for_renaming (perm_stmt);
+
+	  VEC_replace (tree, *result_chain, j/2+length/2, data_ref);
+	}
+      dr_chain = VEC_copy (tree, heap, *result_chain);
+    }
+  return true;
+}
+
+
+/* Function vect_transform_strided_load.
+
+   Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
+   to perform their permutation and ascribe the result vectorized statements to
+   the scalar statements.
+*/
+
+bool
+vect_transform_strided_load (gimple stmt, VEC(tree,heap) *dr_chain, int size,
+			     gimple_stmt_iterator *gsi)
+{
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  gimple first_stmt = DR_GROUP_FIRST_DR (stmt_info);
+  gimple next_stmt, new_stmt;
+  VEC(tree,heap) *result_chain = NULL;
+  unsigned int i, gap_count;
+  tree tmp_data_ref;
+
+  /* DR_CHAIN contains input data-refs that are a part of the interleaving.
+     RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
+     vectors, that are ready for vector computation.  */
+  result_chain = VEC_alloc (tree, heap, size);
+  /* Permute.  */
+  if (!vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain))
+    return false;
+
+  /* Put a permuted data-ref in the VECTORIZED_STMT field.
+     Since we scan the chain starting from it's first node, their order
+     corresponds the order of data-refs in RESULT_CHAIN.  */
+  next_stmt = first_stmt;
+  gap_count = 1;
+  for (i = 0; VEC_iterate (tree, result_chain, i, tmp_data_ref); i++)
+    {
+      if (!next_stmt)
+	break;
+
+      /* Skip the gaps. Loads created for the gaps will be removed by dead
+       code elimination pass later. No need to check for the first stmt in
+       the group, since it always exists.
+       DR_GROUP_GAP is the number of steps in elements from the previous
+       access (if there is no gap DR_GROUP_GAP is 1). We skip loads that
+       correspond to the gaps.
+      */
+      if (next_stmt != first_stmt
+          && gap_count < DR_GROUP_GAP (vinfo_for_stmt (next_stmt)))
+      {
+        gap_count++;
+        continue;
+      }
+
+      while (next_stmt)
+        {
+	  new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
+	  /* We assume that if VEC_STMT is not NULL, this is a case of multiple
+	     copies, and we put the new vector statement in the first available
+	     RELATED_STMT.  */
+	  if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
+	    STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
+	  else
+            {
+              if (!DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
+                {
+ 	          gimple prev_stmt =
+		    STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
+	          gimple rel_stmt =
+		    STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
+	          while (rel_stmt)
+		    {
+		      prev_stmt = rel_stmt;
+		      rel_stmt =
+                        STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
+		    }
+
+  	          STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
+                    new_stmt;
+                }
+            }
+
+	  next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
+	  gap_count = 1;
+	  /* If NEXT_STMT accesses the same DR as the previous statement,
+	     put the same TMP_DATA_REF as its vectorized statement; otherwise
+	     get the next data-ref from RESULT_CHAIN.  */
+	  if (!next_stmt || !DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
+	    break;
+        }
+    }
+
+  VEC_free (tree, heap, result_chain);
+  return true;
+}
+
+/* Function vect_force_dr_alignment_p.
+
+   Returns whether the alignment of a DECL can be forced to be aligned
+   on ALIGNMENT bit boundary.  */
+
+bool
+vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
+{
+  if (TREE_CODE (decl) != VAR_DECL)
+    return false;
+
+  if (DECL_EXTERNAL (decl))
+    return false;
+
+  if (TREE_ASM_WRITTEN (decl))
+    return false;
+
+  if (TREE_STATIC (decl))
+    return (alignment <= MAX_OFILE_ALIGNMENT);
+  else
+    return (alignment <= MAX_STACK_ALIGNMENT);
+}
+
+/* Function vect_supportable_dr_alignment
+
+   Return whether the data reference DR is supported with respect to its
+   alignment.  */
+
+enum dr_alignment_support
+vect_supportable_dr_alignment (struct data_reference *dr)
+{
+  gimple stmt = DR_STMT (dr);
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+  enum machine_mode mode = TYPE_MODE (vectype);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *vect_loop = NULL;
+  bool nested_in_vect_loop = false;
+
+  if (aligned_access_p (dr))
+    return dr_aligned;
+
+  if (!loop_vinfo)
+    /* FORNOW: Misaligned accesses are supported only in loops.  */
+    return dr_unaligned_unsupported;
+
+  vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
+  nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
+
+  /* Possibly unaligned access.  */
+
+  /* We can choose between using the implicit realignment scheme (generating
+     a misaligned_move stmt) and the explicit realignment scheme (generating
+     aligned loads with a REALIGN_LOAD). There are two variants to the explicit
+     realignment scheme: optimized, and unoptimized.
+     We can optimize the realignment only if the step between consecutive
+     vector loads is equal to the vector size.  Since the vector memory
+     accesses advance in steps of VS (Vector Size) in the vectorized loop, it
+     is guaranteed that the misalignment amount remains the same throughout the
+     execution of the vectorized loop.  Therefore, we can create the
+     "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
+     at the loop preheader.
+
+     However, in the case of outer-loop vectorization, when vectorizing a
+     memory access in the inner-loop nested within the LOOP that is now being
+     vectorized, while it is guaranteed that the misalignment of the
+     vectorized memory access will remain the same in different outer-loop
+     iterations, it is *not* guaranteed that is will remain the same throughout
+     the execution of the inner-loop.  This is because the inner-loop advances
+     with the original scalar step (and not in steps of VS).  If the inner-loop
+     step happens to be a multiple of VS, then the misalignment remains fixed
+     and we can use the optimized realignment scheme.  For example:
+
+      for (i=0; i<N; i++)
+        for (j=0; j<M; j++)
+          s += a[i+j];
+
+     When vectorizing the i-loop in the above example, the step between
+     consecutive vector loads is 1, and so the misalignment does not remain
+     fixed across the execution of the inner-loop, and the realignment cannot
+     be optimized (as illustrated in the following pseudo vectorized loop):
+
+      for (i=0; i<N; i+=4)
+        for (j=0; j<M; j++){
+          vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
+                         // when j is {0,1,2,3,4,5,6,7,...} respectively.
+                         // (assuming that we start from an aligned address).
+          }
+
+     We therefore have to use the unoptimized realignment scheme:
+
+      for (i=0; i<N; i+=4)
+          for (j=k; j<M; j+=4)
+          vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
+                           // that the misalignment of the initial address is
+                           // 0).
+
+     The loop can then be vectorized as follows:
+
+      for (k=0; k<4; k++){
+        rt = get_realignment_token (&vp[k]);
+        for (i=0; i<N; i+=4){
+          v1 = vp[i+k];
+          for (j=k; j<M; j+=4){
+            v2 = vp[i+j+VS-1];
+            va = REALIGN_LOAD <v1,v2,rt>;
+            vs += va;
+            v1 = v2;
+          }
+        }
+    } */
+
+  if (DR_IS_READ (dr))
+    {
+      bool is_packed = false;
+      tree type = (TREE_TYPE (DR_REF (dr)));
+
+      if (optab_handler (vec_realign_load_optab, mode)->insn_code !=
+						   	     CODE_FOR_nothing
+	  && (!targetm.vectorize.builtin_mask_for_load
+	      || targetm.vectorize.builtin_mask_for_load ()))
+	{
+	  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+	  if (nested_in_vect_loop
+	      && (TREE_INT_CST_LOW (DR_STEP (dr))
+		  != GET_MODE_SIZE (TYPE_MODE (vectype))))
+	    return dr_explicit_realign;
+	  else
+	    return dr_explicit_realign_optimized;
+	}
+      if (!known_alignment_for_access_p (dr))
+	{
+	  tree ba = DR_BASE_OBJECT (dr);
+
+	  if (ba)
+	    is_packed = contains_packed_reference (ba);
+	}
+
+      if (targetm.vectorize.
+	  builtin_support_vector_misalignment (mode, type,
+					       DR_MISALIGNMENT (dr), is_packed))
+	/* Can't software pipeline the loads, but can at least do them.  */
+	return dr_unaligned_supported;
+    }
+  else
+    {
+      bool is_packed = false;
+      tree type = (TREE_TYPE (DR_REF (dr)));
+
+      if (!known_alignment_for_access_p (dr))
+	{
+	  tree ba = DR_BASE_OBJECT (dr);
+
+	  if (ba)
+	    is_packed = contains_packed_reference (ba);
+	}
+
+     if (targetm.vectorize.
+         builtin_support_vector_misalignment (mode, type,
+					      DR_MISALIGNMENT (dr), is_packed))
+       return dr_unaligned_supported;
+    }
+
+  /* Unsupported.  */
+  return dr_unaligned_unsupported;
+}