diff gcc/calls.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children caeb520cebed 855418dad1a3
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/calls.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,4395 @@
+/* Convert function calls to rtl insns, for GNU C compiler.
+   Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
+   Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "flags.h"
+#include "expr.h"
+#include "optabs.h"
+#include "libfuncs.h"
+#include "function.h"
+#include "regs.h"
+#include "toplev.h"
+#include "output.h"
+#include "tm_p.h"
+#include "timevar.h"
+#include "sbitmap.h"
+#include "langhooks.h"
+#include "target.h"
+#include "cgraph.h"
+#include "except.h"
+#include "dbgcnt.h"
+#include "tree-flow.h"
+
+/* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits.  */
+#define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
+
+/* Data structure and subroutines used within expand_call.  */
+
+struct arg_data
+{
+  /* Tree node for this argument.  */
+  tree tree_value;
+  /* Mode for value; TYPE_MODE unless promoted.  */
+  enum machine_mode mode;
+  /* Current RTL value for argument, or 0 if it isn't precomputed.  */
+  rtx value;
+  /* Initially-compute RTL value for argument; only for const functions.  */
+  rtx initial_value;
+  /* Register to pass this argument in, 0 if passed on stack, or an
+     PARALLEL if the arg is to be copied into multiple non-contiguous
+     registers.  */
+  rtx reg;
+  /* Register to pass this argument in when generating tail call sequence.
+     This is not the same register as for normal calls on machines with
+     register windows.  */
+  rtx tail_call_reg;
+  /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
+     form for emit_group_move.  */
+  rtx parallel_value;
+  /* If REG was promoted from the actual mode of the argument expression,
+     indicates whether the promotion is sign- or zero-extended.  */
+  int unsignedp;
+  /* Number of bytes to put in registers.  0 means put the whole arg
+     in registers.  Also 0 if not passed in registers.  */
+  int partial;
+  /* Nonzero if argument must be passed on stack.
+     Note that some arguments may be passed on the stack
+     even though pass_on_stack is zero, just because FUNCTION_ARG says so.
+     pass_on_stack identifies arguments that *cannot* go in registers.  */
+  int pass_on_stack;
+  /* Some fields packaged up for locate_and_pad_parm.  */
+  struct locate_and_pad_arg_data locate;
+  /* Location on the stack at which parameter should be stored.  The store
+     has already been done if STACK == VALUE.  */
+  rtx stack;
+  /* Location on the stack of the start of this argument slot.  This can
+     differ from STACK if this arg pads downward.  This location is known
+     to be aligned to FUNCTION_ARG_BOUNDARY.  */
+  rtx stack_slot;
+  /* Place that this stack area has been saved, if needed.  */
+  rtx save_area;
+  /* If an argument's alignment does not permit direct copying into registers,
+     copy in smaller-sized pieces into pseudos.  These are stored in a
+     block pointed to by this field.  The next field says how many
+     word-sized pseudos we made.  */
+  rtx *aligned_regs;
+  int n_aligned_regs;
+};
+
+/* A vector of one char per byte of stack space.  A byte if nonzero if
+   the corresponding stack location has been used.
+   This vector is used to prevent a function call within an argument from
+   clobbering any stack already set up.  */
+static char *stack_usage_map;
+
+/* Size of STACK_USAGE_MAP.  */
+static int highest_outgoing_arg_in_use;
+
+/* A bitmap of virtual-incoming stack space.  Bit is set if the corresponding
+   stack location's tail call argument has been already stored into the stack.
+   This bitmap is used to prevent sibling call optimization if function tries
+   to use parent's incoming argument slots when they have been already
+   overwritten with tail call arguments.  */
+static sbitmap stored_args_map;
+
+/* stack_arg_under_construction is nonzero when an argument may be
+   initialized with a constructor call (including a C function that
+   returns a BLKmode struct) and expand_call must take special action
+   to make sure the object being constructed does not overlap the
+   argument list for the constructor call.  */
+static int stack_arg_under_construction;
+
+static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
+			 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
+			 CUMULATIVE_ARGS *);
+static void precompute_register_parameters (int, struct arg_data *, int *);
+static int store_one_arg (struct arg_data *, rtx, int, int, int);
+static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
+static int finalize_must_preallocate (int, int, struct arg_data *,
+				      struct args_size *);
+static void precompute_arguments (int, struct arg_data *);
+static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
+static void initialize_argument_information (int, struct arg_data *,
+					     struct args_size *, int,
+					     tree, tree,
+					     tree, tree, CUMULATIVE_ARGS *, int,
+					     rtx *, int *, int *, int *,
+					     bool *, bool);
+static void compute_argument_addresses (struct arg_data *, rtx, int);
+static rtx rtx_for_function_call (tree, tree);
+static void load_register_parameters (struct arg_data *, int, rtx *, int,
+				      int, int *);
+static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
+				      enum machine_mode, int, va_list);
+static int special_function_p (const_tree, int);
+static int check_sibcall_argument_overlap_1 (rtx);
+static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
+
+static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
+						      unsigned int);
+static tree split_complex_types (tree);
+
+#ifdef REG_PARM_STACK_SPACE
+static rtx save_fixed_argument_area (int, rtx, int *, int *);
+static void restore_fixed_argument_area (rtx, rtx, int, int);
+#endif
+
+/* Force FUNEXP into a form suitable for the address of a CALL,
+   and return that as an rtx.  Also load the static chain register
+   if FNDECL is a nested function.
+
+   CALL_FUSAGE points to a variable holding the prospective
+   CALL_INSN_FUNCTION_USAGE information.  */
+
+rtx
+prepare_call_address (rtx funexp, rtx static_chain_value,
+		      rtx *call_fusage, int reg_parm_seen, int sibcallp)
+{
+  /* Make a valid memory address and copy constants through pseudo-regs,
+     but not for a constant address if -fno-function-cse.  */
+  if (GET_CODE (funexp) != SYMBOL_REF)
+    /* If we are using registers for parameters, force the
+       function address into a register now.  */
+    funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
+	      ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
+	      : memory_address (FUNCTION_MODE, funexp));
+  else if (! sibcallp)
+    {
+#ifndef NO_FUNCTION_CSE
+      if (optimize && ! flag_no_function_cse)
+	funexp = force_reg (Pmode, funexp);
+#endif
+    }
+
+  if (static_chain_value != 0)
+    {
+      static_chain_value = convert_memory_address (Pmode, static_chain_value);
+      emit_move_insn (static_chain_rtx, static_chain_value);
+
+      if (REG_P (static_chain_rtx))
+	use_reg (call_fusage, static_chain_rtx);
+    }
+
+  return funexp;
+}
+
+/* Generate instructions to call function FUNEXP,
+   and optionally pop the results.
+   The CALL_INSN is the first insn generated.
+
+   FNDECL is the declaration node of the function.  This is given to the
+   macro RETURN_POPS_ARGS to determine whether this function pops its own args.
+
+   FUNTYPE is the data type of the function.  This is given to the macro
+   RETURN_POPS_ARGS to determine whether this function pops its own args.
+   We used to allow an identifier for library functions, but that doesn't
+   work when the return type is an aggregate type and the calling convention
+   says that the pointer to this aggregate is to be popped by the callee.
+
+   STACK_SIZE is the number of bytes of arguments on the stack,
+   ROUNDED_STACK_SIZE is that number rounded up to
+   PREFERRED_STACK_BOUNDARY; zero if the size is variable.  This is
+   both to put into the call insn and to generate explicit popping
+   code if necessary.
+
+   STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
+   It is zero if this call doesn't want a structure value.
+
+   NEXT_ARG_REG is the rtx that results from executing
+     FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
+   just after all the args have had their registers assigned.
+   This could be whatever you like, but normally it is the first
+   arg-register beyond those used for args in this call,
+   or 0 if all the arg-registers are used in this call.
+   It is passed on to `gen_call' so you can put this info in the call insn.
+
+   VALREG is a hard register in which a value is returned,
+   or 0 if the call does not return a value.
+
+   OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
+   the args to this call were processed.
+   We restore `inhibit_defer_pop' to that value.
+
+   CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
+   denote registers used by the called function.  */
+
+static void
+emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
+	     tree funtype ATTRIBUTE_UNUSED,
+	     HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
+	     HOST_WIDE_INT rounded_stack_size,
+	     HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
+	     rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
+	     int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
+	     CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
+{
+  rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
+  rtx call_insn;
+  int already_popped = 0;
+  HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
+#if defined (HAVE_call) && defined (HAVE_call_value)
+  rtx struct_value_size_rtx;
+  struct_value_size_rtx = GEN_INT (struct_value_size);
+#endif
+
+#ifdef CALL_POPS_ARGS
+  n_popped += CALL_POPS_ARGS (* args_so_far);
+#endif
+
+  /* Ensure address is valid.  SYMBOL_REF is already valid, so no need,
+     and we don't want to load it into a register as an optimization,
+     because prepare_call_address already did it if it should be done.  */
+  if (GET_CODE (funexp) != SYMBOL_REF)
+    funexp = memory_address (FUNCTION_MODE, funexp);
+
+#if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
+  if ((ecf_flags & ECF_SIBCALL)
+      && HAVE_sibcall_pop && HAVE_sibcall_value_pop
+      && (n_popped > 0 || stack_size == 0))
+    {
+      rtx n_pop = GEN_INT (n_popped);
+      rtx pat;
+
+      /* If this subroutine pops its own args, record that in the call insn
+	 if possible, for the sake of frame pointer elimination.  */
+
+      if (valreg)
+	pat = GEN_SIBCALL_VALUE_POP (valreg,
+				     gen_rtx_MEM (FUNCTION_MODE, funexp),
+				     rounded_stack_size_rtx, next_arg_reg,
+				     n_pop);
+      else
+	pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
+			       rounded_stack_size_rtx, next_arg_reg, n_pop);
+
+      emit_call_insn (pat);
+      already_popped = 1;
+    }
+  else
+#endif
+
+#if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
+  /* If the target has "call" or "call_value" insns, then prefer them
+     if no arguments are actually popped.  If the target does not have
+     "call" or "call_value" insns, then we must use the popping versions
+     even if the call has no arguments to pop.  */
+#if defined (HAVE_call) && defined (HAVE_call_value)
+  if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
+      && n_popped > 0)
+#else
+  if (HAVE_call_pop && HAVE_call_value_pop)
+#endif
+    {
+      rtx n_pop = GEN_INT (n_popped);
+      rtx pat;
+
+      /* If this subroutine pops its own args, record that in the call insn
+	 if possible, for the sake of frame pointer elimination.  */
+
+      if (valreg)
+	pat = GEN_CALL_VALUE_POP (valreg,
+				  gen_rtx_MEM (FUNCTION_MODE, funexp),
+				  rounded_stack_size_rtx, next_arg_reg, n_pop);
+      else
+	pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
+			    rounded_stack_size_rtx, next_arg_reg, n_pop);
+
+      emit_call_insn (pat);
+      already_popped = 1;
+    }
+  else
+#endif
+
+#if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
+  if ((ecf_flags & ECF_SIBCALL)
+      && HAVE_sibcall && HAVE_sibcall_value)
+    {
+      if (valreg)
+	emit_call_insn (GEN_SIBCALL_VALUE (valreg,
+					   gen_rtx_MEM (FUNCTION_MODE, funexp),
+					   rounded_stack_size_rtx,
+					   next_arg_reg, NULL_RTX));
+      else
+	emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
+				     rounded_stack_size_rtx, next_arg_reg,
+				     struct_value_size_rtx));
+    }
+  else
+#endif
+
+#if defined (HAVE_call) && defined (HAVE_call_value)
+  if (HAVE_call && HAVE_call_value)
+    {
+      if (valreg)
+	emit_call_insn (GEN_CALL_VALUE (valreg,
+					gen_rtx_MEM (FUNCTION_MODE, funexp),
+					rounded_stack_size_rtx, next_arg_reg,
+					NULL_RTX));
+      else
+	emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
+				  rounded_stack_size_rtx, next_arg_reg,
+				  struct_value_size_rtx));
+    }
+  else
+#endif
+    gcc_unreachable ();
+
+  /* Find the call we just emitted.  */
+  call_insn = last_call_insn ();
+
+  /* Put the register usage information there.  */
+  add_function_usage_to (call_insn, call_fusage);
+
+  /* If this is a const call, then set the insn's unchanging bit.  */
+  if (ecf_flags & ECF_CONST)
+    RTL_CONST_CALL_P (call_insn) = 1;
+
+  /* If this is a pure call, then set the insn's unchanging bit.  */
+  if (ecf_flags & ECF_PURE)
+    RTL_PURE_CALL_P (call_insn) = 1;
+
+  /* If this is a const call, then set the insn's unchanging bit.  */
+  if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
+    RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
+
+  /* If this call can't throw, attach a REG_EH_REGION reg note to that
+     effect.  */
+  if (ecf_flags & ECF_NOTHROW)
+    add_reg_note (call_insn, REG_EH_REGION, const0_rtx);
+  else
+    {
+      int rn = lookup_expr_eh_region (fntree);
+
+      /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
+	 throw, which we already took care of.  */
+      if (rn > 0)
+	add_reg_note (call_insn, REG_EH_REGION, GEN_INT (rn));
+    }
+
+  if (ecf_flags & ECF_NORETURN)
+    add_reg_note (call_insn, REG_NORETURN, const0_rtx);
+
+  if (ecf_flags & ECF_RETURNS_TWICE)
+    {
+      add_reg_note (call_insn, REG_SETJMP, const0_rtx);
+      cfun->calls_setjmp = 1;
+    }
+
+  SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
+
+  /* Restore this now, so that we do defer pops for this call's args
+     if the context of the call as a whole permits.  */
+  inhibit_defer_pop = old_inhibit_defer_pop;
+
+  if (n_popped > 0)
+    {
+      if (!already_popped)
+	CALL_INSN_FUNCTION_USAGE (call_insn)
+	  = gen_rtx_EXPR_LIST (VOIDmode,
+			       gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
+			       CALL_INSN_FUNCTION_USAGE (call_insn));
+      rounded_stack_size -= n_popped;
+      rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
+      stack_pointer_delta -= n_popped;
+
+      /* If popup is needed, stack realign must use DRAP  */
+      if (SUPPORTS_STACK_ALIGNMENT)
+        crtl->need_drap = true;
+    }
+
+  if (!ACCUMULATE_OUTGOING_ARGS)
+    {
+      /* If returning from the subroutine does not automatically pop the args,
+	 we need an instruction to pop them sooner or later.
+	 Perhaps do it now; perhaps just record how much space to pop later.
+
+	 If returning from the subroutine does pop the args, indicate that the
+	 stack pointer will be changed.  */
+
+      if (rounded_stack_size != 0)
+	{
+	  if (ecf_flags & ECF_NORETURN)
+	    /* Just pretend we did the pop.  */
+	    stack_pointer_delta -= rounded_stack_size;
+	  else if (flag_defer_pop && inhibit_defer_pop == 0
+	      && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
+	    pending_stack_adjust += rounded_stack_size;
+	  else
+	    adjust_stack (rounded_stack_size_rtx);
+	}
+    }
+  /* When we accumulate outgoing args, we must avoid any stack manipulations.
+     Restore the stack pointer to its original value now.  Usually
+     ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
+     On  i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
+     popping variants of functions exist as well.
+
+     ??? We may optimize similar to defer_pop above, but it is
+     probably not worthwhile.
+
+     ??? It will be worthwhile to enable combine_stack_adjustments even for
+     such machines.  */
+  else if (n_popped)
+    anti_adjust_stack (GEN_INT (n_popped));
+}
+
+/* Determine if the function identified by NAME and FNDECL is one with
+   special properties we wish to know about.
+
+   For example, if the function might return more than one time (setjmp), then
+   set RETURNS_TWICE to a nonzero value.
+
+   Similarly set NORETURN if the function is in the longjmp family.
+
+   Set MAY_BE_ALLOCA for any memory allocation function that might allocate
+   space from the stack such as alloca.  */
+
+static int
+special_function_p (const_tree fndecl, int flags)
+{
+  if (fndecl && DECL_NAME (fndecl)
+      && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
+      /* Exclude functions not at the file scope, or not `extern',
+	 since they are not the magic functions we would otherwise
+	 think they are.
+	 FIXME: this should be handled with attributes, not with this
+	 hacky imitation of DECL_ASSEMBLER_NAME.  It's (also) wrong
+	 because you can declare fork() inside a function if you
+	 wish.  */
+      && (DECL_CONTEXT (fndecl) == NULL_TREE
+	  || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
+      && TREE_PUBLIC (fndecl))
+    {
+      const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
+      const char *tname = name;
+
+      /* We assume that alloca will always be called by name.  It
+	 makes no sense to pass it as a pointer-to-function to
+	 anything that does not understand its behavior.  */
+      if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
+	    && name[0] == 'a'
+	    && ! strcmp (name, "alloca"))
+	   || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
+	       && name[0] == '_'
+	       && ! strcmp (name, "__builtin_alloca"))))
+	flags |= ECF_MAY_BE_ALLOCA;
+
+      /* Disregard prefix _, __, __x or __builtin_.  */
+      if (name[0] == '_')
+	{
+	  if (name[1] == '_'
+	      && name[2] == 'b'
+	      && !strncmp (name + 3, "uiltin_", 7))
+	    tname += 10;
+	  else if (name[1] == '_' && name[2] == 'x')
+	    tname += 3;
+	  else if (name[1] == '_')
+	    tname += 2;
+	  else
+	    tname += 1;
+	}
+
+      if (tname[0] == 's')
+	{
+	  if ((tname[1] == 'e'
+	       && (! strcmp (tname, "setjmp")
+		   || ! strcmp (tname, "setjmp_syscall")))
+	      || (tname[1] == 'i'
+		  && ! strcmp (tname, "sigsetjmp"))
+	      || (tname[1] == 'a'
+		  && ! strcmp (tname, "savectx")))
+	    flags |= ECF_RETURNS_TWICE;
+
+	  if (tname[1] == 'i'
+	      && ! strcmp (tname, "siglongjmp"))
+	    flags |= ECF_NORETURN;
+	}
+      else if ((tname[0] == 'q' && tname[1] == 's'
+		&& ! strcmp (tname, "qsetjmp"))
+	       || (tname[0] == 'v' && tname[1] == 'f'
+		   && ! strcmp (tname, "vfork"))
+	       || (tname[0] == 'g' && tname[1] == 'e'
+		   && !strcmp (tname, "getcontext")))
+	flags |= ECF_RETURNS_TWICE;
+
+      else if (tname[0] == 'l' && tname[1] == 'o'
+	       && ! strcmp (tname, "longjmp"))
+	flags |= ECF_NORETURN;
+    }
+
+  return flags;
+}
+
+/* Return nonzero when FNDECL represents a call to setjmp.  */
+
+int
+setjmp_call_p (const_tree fndecl)
+{
+  return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
+}
+
+
+/* Return true if STMT is an alloca call.  */
+
+bool
+gimple_alloca_call_p (const_gimple stmt)
+{
+  tree fndecl;
+
+  if (!is_gimple_call (stmt))
+    return false;
+
+  fndecl = gimple_call_fndecl (stmt);
+  if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
+    return true;
+
+  return false;
+}
+
+/* Return true when exp contains alloca call.  */
+
+bool
+alloca_call_p (const_tree exp)
+{
+  if (TREE_CODE (exp) == CALL_EXPR
+      && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
+      && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
+      && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
+	  & ECF_MAY_BE_ALLOCA))
+    return true;
+  return false;
+}
+
+/* Detect flags (function attributes) from the function decl or type node.  */
+
+int
+flags_from_decl_or_type (const_tree exp)
+{
+  int flags = 0;
+  const_tree type = exp;
+
+  if (DECL_P (exp))
+    {
+      type = TREE_TYPE (exp);
+
+      /* The function exp may have the `malloc' attribute.  */
+      if (DECL_IS_MALLOC (exp))
+	flags |= ECF_MALLOC;
+
+      /* The function exp may have the `returns_twice' attribute.  */
+      if (DECL_IS_RETURNS_TWICE (exp))
+	flags |= ECF_RETURNS_TWICE;
+
+      /* Process the pure and const attributes.  */
+      if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
+	flags |= ECF_CONST;
+      if (DECL_PURE_P (exp))
+	flags |= ECF_PURE;
+      if (DECL_LOOPING_CONST_OR_PURE_P (exp))
+	flags |= ECF_LOOPING_CONST_OR_PURE;
+
+      if (DECL_IS_NOVOPS (exp))
+	flags |= ECF_NOVOPS;
+
+      if (TREE_NOTHROW (exp))
+	flags |= ECF_NOTHROW;
+
+      flags = special_function_p (exp, flags);
+    }
+  else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
+    flags |= ECF_CONST;
+
+  if (TREE_THIS_VOLATILE (exp))
+    flags |= ECF_NORETURN;
+
+  return flags;
+}
+
+/* Detect flags from a CALL_EXPR.  */
+
+int
+call_expr_flags (const_tree t)
+{
+  int flags;
+  tree decl = get_callee_fndecl (t);
+
+  if (decl)
+    flags = flags_from_decl_or_type (decl);
+  else
+    {
+      t = TREE_TYPE (CALL_EXPR_FN (t));
+      if (t && TREE_CODE (t) == POINTER_TYPE)
+	flags = flags_from_decl_or_type (TREE_TYPE (t));
+      else
+	flags = 0;
+    }
+
+  return flags;
+}
+
+/* Precompute all register parameters as described by ARGS, storing values
+   into fields within the ARGS array.
+
+   NUM_ACTUALS indicates the total number elements in the ARGS array.
+
+   Set REG_PARM_SEEN if we encounter a register parameter.  */
+
+static void
+precompute_register_parameters (int num_actuals, struct arg_data *args,
+				int *reg_parm_seen)
+{
+  int i;
+
+  *reg_parm_seen = 0;
+
+  for (i = 0; i < num_actuals; i++)
+    if (args[i].reg != 0 && ! args[i].pass_on_stack)
+      {
+	*reg_parm_seen = 1;
+
+	if (args[i].value == 0)
+	  {
+	    push_temp_slots ();
+	    args[i].value = expand_normal (args[i].tree_value);
+	    preserve_temp_slots (args[i].value);
+	    pop_temp_slots ();
+	  }
+
+	/* If the value is a non-legitimate constant, force it into a
+	   pseudo now.  TLS symbols sometimes need a call to resolve.  */
+	if (CONSTANT_P (args[i].value)
+	    && !LEGITIMATE_CONSTANT_P (args[i].value))
+	  args[i].value = force_reg (args[i].mode, args[i].value);
+
+	/* If we are to promote the function arg to a wider mode,
+	   do it now.  */
+
+	if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
+	  args[i].value
+	    = convert_modes (args[i].mode,
+			     TYPE_MODE (TREE_TYPE (args[i].tree_value)),
+			     args[i].value, args[i].unsignedp);
+
+	/* If we're going to have to load the value by parts, pull the
+	   parts into pseudos.  The part extraction process can involve
+	   non-trivial computation.  */
+	if (GET_CODE (args[i].reg) == PARALLEL)
+	  {
+	    tree type = TREE_TYPE (args[i].tree_value);
+	    args[i].parallel_value
+	      = emit_group_load_into_temps (args[i].reg, args[i].value,
+					    type, int_size_in_bytes (type));
+	  }
+
+	/* If the value is expensive, and we are inside an appropriately
+	   short loop, put the value into a pseudo and then put the pseudo
+	   into the hard reg.
+
+	   For small register classes, also do this if this call uses
+	   register parameters.  This is to avoid reload conflicts while
+	   loading the parameters registers.  */
+
+	else if ((! (REG_P (args[i].value)
+		     || (GET_CODE (args[i].value) == SUBREG
+			 && REG_P (SUBREG_REG (args[i].value)))))
+		 && args[i].mode != BLKmode
+		 && rtx_cost (args[i].value, SET, optimize_insn_for_speed_p ())
+		    > COSTS_N_INSNS (1)
+		 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
+		     || optimize))
+	  args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
+      }
+}
+
+#ifdef REG_PARM_STACK_SPACE
+
+  /* The argument list is the property of the called routine and it
+     may clobber it.  If the fixed area has been used for previous
+     parameters, we must save and restore it.  */
+
+static rtx
+save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
+{
+  int low;
+  int high;
+
+  /* Compute the boundary of the area that needs to be saved, if any.  */
+  high = reg_parm_stack_space;
+#ifdef ARGS_GROW_DOWNWARD
+  high += 1;
+#endif
+  if (high > highest_outgoing_arg_in_use)
+    high = highest_outgoing_arg_in_use;
+
+  for (low = 0; low < high; low++)
+    if (stack_usage_map[low] != 0)
+      {
+	int num_to_save;
+	enum machine_mode save_mode;
+	int delta;
+	rtx stack_area;
+	rtx save_area;
+
+	while (stack_usage_map[--high] == 0)
+	  ;
+
+	*low_to_save = low;
+	*high_to_save = high;
+
+	num_to_save = high - low + 1;
+	save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
+
+	/* If we don't have the required alignment, must do this
+	   in BLKmode.  */
+	if ((low & (MIN (GET_MODE_SIZE (save_mode),
+			 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
+	  save_mode = BLKmode;
+
+#ifdef ARGS_GROW_DOWNWARD
+	delta = -high;
+#else
+	delta = low;
+#endif
+	stack_area = gen_rtx_MEM (save_mode,
+				  memory_address (save_mode,
+						  plus_constant (argblock,
+								 delta)));
+
+	set_mem_align (stack_area, PARM_BOUNDARY);
+	if (save_mode == BLKmode)
+	  {
+	    save_area = assign_stack_temp (BLKmode, num_to_save, 0);
+	    emit_block_move (validize_mem (save_area), stack_area,
+			     GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
+	  }
+	else
+	  {
+	    save_area = gen_reg_rtx (save_mode);
+	    emit_move_insn (save_area, stack_area);
+	  }
+
+	return save_area;
+      }
+
+  return NULL_RTX;
+}
+
+static void
+restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
+{
+  enum machine_mode save_mode = GET_MODE (save_area);
+  int delta;
+  rtx stack_area;
+
+#ifdef ARGS_GROW_DOWNWARD
+  delta = -high_to_save;
+#else
+  delta = low_to_save;
+#endif
+  stack_area = gen_rtx_MEM (save_mode,
+			    memory_address (save_mode,
+					    plus_constant (argblock, delta)));
+  set_mem_align (stack_area, PARM_BOUNDARY);
+
+  if (save_mode != BLKmode)
+    emit_move_insn (stack_area, save_area);
+  else
+    emit_block_move (stack_area, validize_mem (save_area),
+		     GEN_INT (high_to_save - low_to_save + 1),
+		     BLOCK_OP_CALL_PARM);
+}
+#endif /* REG_PARM_STACK_SPACE */
+
+/* If any elements in ARGS refer to parameters that are to be passed in
+   registers, but not in memory, and whose alignment does not permit a
+   direct copy into registers.  Copy the values into a group of pseudos
+   which we will later copy into the appropriate hard registers.
+
+   Pseudos for each unaligned argument will be stored into the array
+   args[argnum].aligned_regs.  The caller is responsible for deallocating
+   the aligned_regs array if it is nonzero.  */
+
+static void
+store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
+{
+  int i, j;
+
+  for (i = 0; i < num_actuals; i++)
+    if (args[i].reg != 0 && ! args[i].pass_on_stack
+	&& args[i].mode == BLKmode
+	&& MEM_P (args[i].value)
+	&& (MEM_ALIGN (args[i].value)
+	    < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
+      {
+	int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
+	int endian_correction = 0;
+
+	if (args[i].partial)
+	  {
+	    gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
+	    args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
+	  }
+	else
+	  {
+	    args[i].n_aligned_regs
+	      = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+	  }
+
+	args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
+
+	/* Structures smaller than a word are normally aligned to the
+	   least significant byte.  On a BYTES_BIG_ENDIAN machine,
+	   this means we must skip the empty high order bytes when
+	   calculating the bit offset.  */
+	if (bytes < UNITS_PER_WORD
+#ifdef BLOCK_REG_PADDING
+	    && (BLOCK_REG_PADDING (args[i].mode,
+				   TREE_TYPE (args[i].tree_value), 1)
+		== downward)
+#else
+	    && BYTES_BIG_ENDIAN
+#endif
+	    )
+	  endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
+
+	for (j = 0; j < args[i].n_aligned_regs; j++)
+	  {
+	    rtx reg = gen_reg_rtx (word_mode);
+	    rtx word = operand_subword_force (args[i].value, j, BLKmode);
+	    int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
+
+	    args[i].aligned_regs[j] = reg;
+	    word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
+				      word_mode, word_mode);
+
+	    /* There is no need to restrict this code to loading items
+	       in TYPE_ALIGN sized hunks.  The bitfield instructions can
+	       load up entire word sized registers efficiently.
+
+	       ??? This may not be needed anymore.
+	       We use to emit a clobber here but that doesn't let later
+	       passes optimize the instructions we emit.  By storing 0 into
+	       the register later passes know the first AND to zero out the
+	       bitfield being set in the register is unnecessary.  The store
+	       of 0 will be deleted as will at least the first AND.  */
+
+	    emit_move_insn (reg, const0_rtx);
+
+	    bytes -= bitsize / BITS_PER_UNIT;
+	    store_bit_field (reg, bitsize, endian_correction, word_mode,
+			     word);
+	  }
+      }
+}
+
+/* Fill in ARGS_SIZE and ARGS array based on the parameters found in
+   CALL_EXPR EXP.  
+
+   NUM_ACTUALS is the total number of parameters.
+
+   N_NAMED_ARGS is the total number of named arguments.
+
+   STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
+   value, or null.
+
+   FNDECL is the tree code for the target of this call (if known)
+
+   ARGS_SO_FAR holds state needed by the target to know where to place
+   the next argument.
+
+   REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
+   for arguments which are passed in registers.
+
+   OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
+   and may be modified by this routine.
+
+   OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
+   flags which may may be modified by this routine.
+
+   MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
+   that requires allocation of stack space.
+
+   CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
+   the thunked-to function.  */
+
+static void
+initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
+				 struct arg_data *args,
+				 struct args_size *args_size,
+				 int n_named_args ATTRIBUTE_UNUSED,
+				 tree exp, tree struct_value_addr_value,
+				 tree fndecl, tree fntype,
+				 CUMULATIVE_ARGS *args_so_far,
+				 int reg_parm_stack_space,
+				 rtx *old_stack_level, int *old_pending_adj,
+				 int *must_preallocate, int *ecf_flags,
+				 bool *may_tailcall, bool call_from_thunk_p)
+{
+  /* 1 if scanning parms front to back, -1 if scanning back to front.  */
+  int inc;
+
+  /* Count arg position in order args appear.  */
+  int argpos;
+
+  int i;
+
+  args_size->constant = 0;
+  args_size->var = 0;
+
+  /* In this loop, we consider args in the order they are written.
+     We fill up ARGS from the front or from the back if necessary
+     so that in any case the first arg to be pushed ends up at the front.  */
+
+  if (PUSH_ARGS_REVERSED)
+    {
+      i = num_actuals - 1, inc = -1;
+      /* In this case, must reverse order of args
+	 so that we compute and push the last arg first.  */
+    }
+  else
+    {
+      i = 0, inc = 1;
+    }
+
+  /* First fill in the actual arguments in the ARGS array, splitting
+     complex arguments if necessary.  */
+  {
+    int j = i;
+    call_expr_arg_iterator iter;
+    tree arg;
+
+    if (struct_value_addr_value)
+      {
+	args[j].tree_value = struct_value_addr_value;
+	j += inc;
+      }
+    FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
+      {
+	tree argtype = TREE_TYPE (arg);
+	if (targetm.calls.split_complex_arg
+	    && argtype
+	    && TREE_CODE (argtype) == COMPLEX_TYPE
+	    && targetm.calls.split_complex_arg (argtype))
+	  {
+	    tree subtype = TREE_TYPE (argtype);
+	    args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
+	    j += inc;
+	    args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
+	  }
+	else
+	  args[j].tree_value = arg;
+	j += inc;
+      }
+  }
+
+  /* I counts args in order (to be) pushed; ARGPOS counts in order written.  */
+  for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
+    {
+      tree type = TREE_TYPE (args[i].tree_value);
+      int unsignedp;
+      enum machine_mode mode;
+
+      /* Replace erroneous argument with constant zero.  */
+      if (type == error_mark_node || !COMPLETE_TYPE_P (type))
+	args[i].tree_value = integer_zero_node, type = integer_type_node;
+
+      /* If TYPE is a transparent union, pass things the way we would
+	 pass the first field of the union.  We have already verified that
+	 the modes are the same.  */
+      if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
+	type = TREE_TYPE (TYPE_FIELDS (type));
+
+      /* Decide where to pass this arg.
+
+	 args[i].reg is nonzero if all or part is passed in registers.
+
+	 args[i].partial is nonzero if part but not all is passed in registers,
+	 and the exact value says how many bytes are passed in registers.
+
+	 args[i].pass_on_stack is nonzero if the argument must at least be
+	 computed on the stack.  It may then be loaded back into registers
+	 if args[i].reg is nonzero.
+
+	 These decisions are driven by the FUNCTION_... macros and must agree
+	 with those made by function.c.  */
+
+      /* See if this argument should be passed by invisible reference.  */
+      if (pass_by_reference (args_so_far, TYPE_MODE (type),
+			     type, argpos < n_named_args))
+	{
+	  bool callee_copies;
+	  tree base;
+
+	  callee_copies
+	    = reference_callee_copied (args_so_far, TYPE_MODE (type),
+				       type, argpos < n_named_args);
+
+	  /* If we're compiling a thunk, pass through invisible references
+	     instead of making a copy.  */
+	  if (call_from_thunk_p
+	      || (callee_copies
+		  && !TREE_ADDRESSABLE (type)
+		  && (base = get_base_address (args[i].tree_value))
+		  && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
+	    {
+	      /* We can't use sibcalls if a callee-copied argument is
+		 stored in the current function's frame.  */
+	      if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
+		*may_tailcall = false;
+
+	      args[i].tree_value = build_fold_addr_expr (args[i].tree_value);
+	      type = TREE_TYPE (args[i].tree_value);
+
+	      if (*ecf_flags & ECF_CONST)
+		*ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
+	    }
+	  else
+	    {
+	      /* We make a copy of the object and pass the address to the
+		 function being called.  */
+	      rtx copy;
+
+	      if (!COMPLETE_TYPE_P (type)
+		  || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
+		  || (flag_stack_check == GENERIC_STACK_CHECK
+		      && compare_tree_int (TYPE_SIZE_UNIT (type),
+					   STACK_CHECK_MAX_VAR_SIZE) > 0))
+		{
+		  /* This is a variable-sized object.  Make space on the stack
+		     for it.  */
+		  rtx size_rtx = expr_size (args[i].tree_value);
+
+		  if (*old_stack_level == 0)
+		    {
+		      emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
+		      *old_pending_adj = pending_stack_adjust;
+		      pending_stack_adjust = 0;
+		    }
+
+		  copy = gen_rtx_MEM (BLKmode,
+				      allocate_dynamic_stack_space
+				      (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
+		  set_mem_attributes (copy, type, 1);
+		}
+	      else
+		copy = assign_temp (type, 0, 1, 0);
+
+	      store_expr (args[i].tree_value, copy, 0, false);
+
+	      /* Just change the const function to pure and then let
+		 the next test clear the pure based on
+		 callee_copies.  */
+	      if (*ecf_flags & ECF_CONST)
+		{
+		  *ecf_flags &= ~ECF_CONST;
+		  *ecf_flags |= ECF_PURE;
+		}
+
+	      if (!callee_copies && *ecf_flags & ECF_PURE)
+		*ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
+
+	      args[i].tree_value
+		= build_fold_addr_expr (make_tree (type, copy));
+	      type = TREE_TYPE (args[i].tree_value);
+	      *may_tailcall = false;
+	    }
+	}
+
+      mode = TYPE_MODE (type);
+      unsignedp = TYPE_UNSIGNED (type);
+
+      if (targetm.calls.promote_function_args (fndecl
+					       ? TREE_TYPE (fndecl)
+					       : fntype))
+	mode = promote_mode (type, mode, &unsignedp, 1);
+
+      args[i].unsignedp = unsignedp;
+      args[i].mode = mode;
+
+      args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
+				  argpos < n_named_args);
+#ifdef FUNCTION_INCOMING_ARG
+      /* If this is a sibling call and the machine has register windows, the
+	 register window has to be unwinded before calling the routine, so
+	 arguments have to go into the incoming registers.  */
+      args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
+						     argpos < n_named_args);
+#else
+      args[i].tail_call_reg = args[i].reg;
+#endif
+
+      if (args[i].reg)
+	args[i].partial
+	  = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
+					     argpos < n_named_args);
+
+      args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
+
+      /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
+	 it means that we are to pass this arg in the register(s) designated
+	 by the PARALLEL, but also to pass it in the stack.  */
+      if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
+	  && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
+	args[i].pass_on_stack = 1;
+
+      /* If this is an addressable type, we must preallocate the stack
+	 since we must evaluate the object into its final location.
+
+	 If this is to be passed in both registers and the stack, it is simpler
+	 to preallocate.  */
+      if (TREE_ADDRESSABLE (type)
+	  || (args[i].pass_on_stack && args[i].reg != 0))
+	*must_preallocate = 1;
+
+      /* Compute the stack-size of this argument.  */
+      if (args[i].reg == 0 || args[i].partial != 0
+	  || reg_parm_stack_space > 0
+	  || args[i].pass_on_stack)
+	locate_and_pad_parm (mode, type,
+#ifdef STACK_PARMS_IN_REG_PARM_AREA
+			     1,
+#else
+			     args[i].reg != 0,
+#endif
+			     args[i].pass_on_stack ? 0 : args[i].partial,
+			     fndecl, args_size, &args[i].locate);
+#ifdef BLOCK_REG_PADDING
+      else
+	/* The argument is passed entirely in registers.  See at which
+	   end it should be padded.  */
+	args[i].locate.where_pad =
+	  BLOCK_REG_PADDING (mode, type,
+			     int_size_in_bytes (type) <= UNITS_PER_WORD);
+#endif
+
+      /* Update ARGS_SIZE, the total stack space for args so far.  */
+
+      args_size->constant += args[i].locate.size.constant;
+      if (args[i].locate.size.var)
+	ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
+
+      /* Increment ARGS_SO_FAR, which has info about which arg-registers
+	 have been used, etc.  */
+
+      FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
+			    argpos < n_named_args);
+    }
+}
+
+/* Update ARGS_SIZE to contain the total size for the argument block.
+   Return the original constant component of the argument block's size.
+
+   REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
+   for arguments passed in registers.  */
+
+static int
+compute_argument_block_size (int reg_parm_stack_space,
+			     struct args_size *args_size,
+			     tree fndecl ATTRIBUTE_UNUSED,
+			     tree fntype ATTRIBUTE_UNUSED,
+			     int preferred_stack_boundary ATTRIBUTE_UNUSED)
+{
+  int unadjusted_args_size = args_size->constant;
+
+  /* For accumulate outgoing args mode we don't need to align, since the frame
+     will be already aligned.  Align to STACK_BOUNDARY in order to prevent
+     backends from generating misaligned frame sizes.  */
+  if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
+    preferred_stack_boundary = STACK_BOUNDARY;
+
+  /* Compute the actual size of the argument block required.  The variable
+     and constant sizes must be combined, the size may have to be rounded,
+     and there may be a minimum required size.  */
+
+  if (args_size->var)
+    {
+      args_size->var = ARGS_SIZE_TREE (*args_size);
+      args_size->constant = 0;
+
+      preferred_stack_boundary /= BITS_PER_UNIT;
+      if (preferred_stack_boundary > 1)
+	{
+	  /* We don't handle this case yet.  To handle it correctly we have
+	     to add the delta, round and subtract the delta.
+	     Currently no machine description requires this support.  */
+	  gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
+	  args_size->var = round_up (args_size->var, preferred_stack_boundary);
+	}
+
+      if (reg_parm_stack_space > 0)
+	{
+	  args_size->var
+	    = size_binop (MAX_EXPR, args_size->var,
+			  ssize_int (reg_parm_stack_space));
+
+	  /* The area corresponding to register parameters is not to count in
+	     the size of the block we need.  So make the adjustment.  */
+	  if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
+	    args_size->var
+	      = size_binop (MINUS_EXPR, args_size->var,
+			    ssize_int (reg_parm_stack_space));
+	}
+    }
+  else
+    {
+      preferred_stack_boundary /= BITS_PER_UNIT;
+      if (preferred_stack_boundary < 1)
+	preferred_stack_boundary = 1;
+      args_size->constant = (((args_size->constant
+			       + stack_pointer_delta
+			       + preferred_stack_boundary - 1)
+			      / preferred_stack_boundary
+			      * preferred_stack_boundary)
+			     - stack_pointer_delta);
+
+      args_size->constant = MAX (args_size->constant,
+				 reg_parm_stack_space);
+
+      if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
+	args_size->constant -= reg_parm_stack_space;
+    }
+  return unadjusted_args_size;
+}
+
+/* Precompute parameters as needed for a function call.
+
+   FLAGS is mask of ECF_* constants.
+
+   NUM_ACTUALS is the number of arguments.
+
+   ARGS is an array containing information for each argument; this
+   routine fills in the INITIAL_VALUE and VALUE fields for each
+   precomputed argument.  */
+
+static void
+precompute_arguments (int num_actuals, struct arg_data *args)
+{
+  int i;
+
+  /* If this is a libcall, then precompute all arguments so that we do not
+     get extraneous instructions emitted as part of the libcall sequence.  */
+
+  /* If we preallocated the stack space, and some arguments must be passed
+     on the stack, then we must precompute any parameter which contains a
+     function call which will store arguments on the stack.
+     Otherwise, evaluating the parameter may clobber previous parameters
+     which have already been stored into the stack.  (we have code to avoid
+     such case by saving the outgoing stack arguments, but it results in
+     worse code)  */
+  if (!ACCUMULATE_OUTGOING_ARGS)
+    return;
+
+  for (i = 0; i < num_actuals; i++)
+    {
+      enum machine_mode mode;
+
+      if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
+	continue;
+
+      /* If this is an addressable type, we cannot pre-evaluate it.  */
+      gcc_assert (!TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)));
+
+      args[i].initial_value = args[i].value
+	= expand_normal (args[i].tree_value);
+
+      mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
+      if (mode != args[i].mode)
+	{
+	  args[i].value
+	    = convert_modes (args[i].mode, mode,
+			     args[i].value, args[i].unsignedp);
+#if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
+	  /* CSE will replace this only if it contains args[i].value
+	     pseudo, so convert it down to the declared mode using
+	     a SUBREG.  */
+	  if (REG_P (args[i].value)
+	      && GET_MODE_CLASS (args[i].mode) == MODE_INT)
+	    {
+	      args[i].initial_value
+		= gen_lowpart_SUBREG (mode, args[i].value);
+	      SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
+	      SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
+					    args[i].unsignedp);
+	    }
+#endif
+	}
+    }
+}
+
+/* Given the current state of MUST_PREALLOCATE and information about
+   arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
+   compute and return the final value for MUST_PREALLOCATE.  */
+
+static int
+finalize_must_preallocate (int must_preallocate, int num_actuals, 
+			   struct arg_data *args, struct args_size *args_size)
+{
+  /* See if we have or want to preallocate stack space.
+
+     If we would have to push a partially-in-regs parm
+     before other stack parms, preallocate stack space instead.
+
+     If the size of some parm is not a multiple of the required stack
+     alignment, we must preallocate.
+
+     If the total size of arguments that would otherwise create a copy in
+     a temporary (such as a CALL) is more than half the total argument list
+     size, preallocation is faster.
+
+     Another reason to preallocate is if we have a machine (like the m88k)
+     where stack alignment is required to be maintained between every
+     pair of insns, not just when the call is made.  However, we assume here
+     that such machines either do not have push insns (and hence preallocation
+     would occur anyway) or the problem is taken care of with
+     PUSH_ROUNDING.  */
+
+  if (! must_preallocate)
+    {
+      int partial_seen = 0;
+      int copy_to_evaluate_size = 0;
+      int i;
+
+      for (i = 0; i < num_actuals && ! must_preallocate; i++)
+	{
+	  if (args[i].partial > 0 && ! args[i].pass_on_stack)
+	    partial_seen = 1;
+	  else if (partial_seen && args[i].reg == 0)
+	    must_preallocate = 1;
+
+	  if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
+	      && (TREE_CODE (args[i].tree_value) == CALL_EXPR
+		  || TREE_CODE (args[i].tree_value) == TARGET_EXPR
+		  || TREE_CODE (args[i].tree_value) == COND_EXPR
+		  || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
+	    copy_to_evaluate_size
+	      += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
+	}
+
+      if (copy_to_evaluate_size * 2 >= args_size->constant
+	  && args_size->constant > 0)
+	must_preallocate = 1;
+    }
+  return must_preallocate;
+}
+
+/* If we preallocated stack space, compute the address of each argument
+   and store it into the ARGS array.
+
+   We need not ensure it is a valid memory address here; it will be
+   validized when it is used.
+
+   ARGBLOCK is an rtx for the address of the outgoing arguments.  */
+
+static void
+compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
+{
+  if (argblock)
+    {
+      rtx arg_reg = argblock;
+      int i, arg_offset = 0;
+
+      if (GET_CODE (argblock) == PLUS)
+	arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
+
+      for (i = 0; i < num_actuals; i++)
+	{
+	  rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
+	  rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
+	  rtx addr;
+	  unsigned int align, boundary;
+	  unsigned int units_on_stack = 0;
+	  enum machine_mode partial_mode = VOIDmode;
+
+	  /* Skip this parm if it will not be passed on the stack.  */
+	  if (! args[i].pass_on_stack
+	      && args[i].reg != 0
+	      && args[i].partial == 0)
+	    continue;
+
+	  if (GET_CODE (offset) == CONST_INT)
+	    addr = plus_constant (arg_reg, INTVAL (offset));
+	  else
+	    addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
+
+	  addr = plus_constant (addr, arg_offset);
+
+	  if (args[i].partial != 0)
+	    {
+	      /* Only part of the parameter is being passed on the stack.
+		 Generate a simple memory reference of the correct size.  */
+	      units_on_stack = args[i].locate.size.constant;
+	      partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
+					    MODE_INT, 1);
+	      args[i].stack = gen_rtx_MEM (partial_mode, addr);
+	      set_mem_size (args[i].stack, GEN_INT (units_on_stack));
+	    }
+	  else
+	    {
+	      args[i].stack = gen_rtx_MEM (args[i].mode, addr);
+	      set_mem_attributes (args[i].stack,
+				  TREE_TYPE (args[i].tree_value), 1);
+	    }
+	  align = BITS_PER_UNIT;
+	  boundary = args[i].locate.boundary;
+	  if (args[i].locate.where_pad != downward)
+	    align = boundary;
+	  else if (GET_CODE (offset) == CONST_INT)
+	    {
+	      align = INTVAL (offset) * BITS_PER_UNIT | boundary;
+	      align = align & -align;
+	    }
+	  set_mem_align (args[i].stack, align);
+
+	  if (GET_CODE (slot_offset) == CONST_INT)
+	    addr = plus_constant (arg_reg, INTVAL (slot_offset));
+	  else
+	    addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
+
+	  addr = plus_constant (addr, arg_offset);
+
+	  if (args[i].partial != 0)
+	    {
+	      /* Only part of the parameter is being passed on the stack.
+		 Generate a simple memory reference of the correct size.
+	       */
+	      args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
+	      set_mem_size (args[i].stack_slot, GEN_INT (units_on_stack));
+	    }
+	  else
+	    {
+	      args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
+	      set_mem_attributes (args[i].stack_slot,
+				  TREE_TYPE (args[i].tree_value), 1);
+	    }
+	  set_mem_align (args[i].stack_slot, args[i].locate.boundary);
+
+	  /* Function incoming arguments may overlap with sibling call
+	     outgoing arguments and we cannot allow reordering of reads
+	     from function arguments with stores to outgoing arguments
+	     of sibling calls.  */
+	  set_mem_alias_set (args[i].stack, 0);
+	  set_mem_alias_set (args[i].stack_slot, 0);
+	}
+    }
+}
+
+/* Given a FNDECL and EXP, return an rtx suitable for use as a target address
+   in a call instruction.
+
+   FNDECL is the tree node for the target function.  For an indirect call
+   FNDECL will be NULL_TREE.
+
+   ADDR is the operand 0 of CALL_EXPR for this call.  */
+
+static rtx
+rtx_for_function_call (tree fndecl, tree addr)
+{
+  rtx funexp;
+
+  /* Get the function to call, in the form of RTL.  */
+  if (fndecl)
+    {
+      /* If this is the first use of the function, see if we need to
+	 make an external definition for it.  */
+      if (!TREE_USED (fndecl) && fndecl != current_function_decl)
+	{
+	  assemble_external (fndecl);
+	  TREE_USED (fndecl) = 1;
+	}
+
+      /* Get a SYMBOL_REF rtx for the function address.  */
+      funexp = XEXP (DECL_RTL (fndecl), 0);
+    }
+  else
+    /* Generate an rtx (probably a pseudo-register) for the address.  */
+    {
+      push_temp_slots ();
+      funexp = expand_normal (addr);
+      pop_temp_slots ();	/* FUNEXP can't be BLKmode.  */
+    }
+  return funexp;
+}
+
+/* Return true if and only if SIZE storage units (usually bytes)
+   starting from address ADDR overlap with already clobbered argument
+   area.  This function is used to determine if we should give up a
+   sibcall.  */
+
+static bool
+mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
+{
+  HOST_WIDE_INT i;
+
+  if (addr == crtl->args.internal_arg_pointer)
+    i = 0;
+  else if (GET_CODE (addr) == PLUS
+	   && XEXP (addr, 0) == crtl->args.internal_arg_pointer
+	   && GET_CODE (XEXP (addr, 1)) == CONST_INT)
+    i = INTVAL (XEXP (addr, 1));
+  /* Return true for arg pointer based indexed addressing.  */
+  else if (GET_CODE (addr) == PLUS
+	   && (XEXP (addr, 0) == crtl->args.internal_arg_pointer
+	       || XEXP (addr, 1) == crtl->args.internal_arg_pointer))
+    return true;
+  else
+    return false;
+
+#ifdef ARGS_GROW_DOWNWARD
+  i = -i - size;
+#endif
+  if (size > 0)
+    {
+      unsigned HOST_WIDE_INT k;
+
+      for (k = 0; k < size; k++)
+	if (i + k < stored_args_map->n_bits
+	    && TEST_BIT (stored_args_map, i + k))
+	  return true;
+    }
+
+  return false;
+}
+
+/* Do the register loads required for any wholly-register parms or any
+   parms which are passed both on the stack and in a register.  Their
+   expressions were already evaluated.
+
+   Mark all register-parms as living through the call, putting these USE
+   insns in the CALL_INSN_FUNCTION_USAGE field.
+
+   When IS_SIBCALL, perform the check_sibcall_argument_overlap
+   checking, setting *SIBCALL_FAILURE if appropriate.  */
+
+static void
+load_register_parameters (struct arg_data *args, int num_actuals,
+			  rtx *call_fusage, int flags, int is_sibcall,
+			  int *sibcall_failure)
+{
+  int i, j;
+
+  for (i = 0; i < num_actuals; i++)
+    {
+      rtx reg = ((flags & ECF_SIBCALL)
+		 ? args[i].tail_call_reg : args[i].reg);
+      if (reg)
+	{
+	  int partial = args[i].partial;
+	  int nregs;
+	  int size = 0;
+	  rtx before_arg = get_last_insn ();
+	  /* Set non-negative if we must move a word at a time, even if
+	     just one word (e.g, partial == 4 && mode == DFmode).  Set
+	     to -1 if we just use a normal move insn.  This value can be
+	     zero if the argument is a zero size structure.  */
+	  nregs = -1;
+	  if (GET_CODE (reg) == PARALLEL)
+	    ;
+	  else if (partial)
+	    {
+	      gcc_assert (partial % UNITS_PER_WORD == 0);
+	      nregs = partial / UNITS_PER_WORD;
+	    }
+	  else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
+	    {
+	      size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
+	      nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
+	    }
+	  else
+	    size = GET_MODE_SIZE (args[i].mode);
+
+	  /* Handle calls that pass values in multiple non-contiguous
+	     locations.  The Irix 6 ABI has examples of this.  */
+
+	  if (GET_CODE (reg) == PARALLEL)
+	    emit_group_move (reg, args[i].parallel_value);
+
+	  /* If simple case, just do move.  If normal partial, store_one_arg
+	     has already loaded the register for us.  In all other cases,
+	     load the register(s) from memory.  */
+
+	  else if (nregs == -1)
+	    {
+	      emit_move_insn (reg, args[i].value);
+#ifdef BLOCK_REG_PADDING
+	      /* Handle case where we have a value that needs shifting
+		 up to the msb.  eg. a QImode value and we're padding
+		 upward on a BYTES_BIG_ENDIAN machine.  */
+	      if (size < UNITS_PER_WORD
+		  && (args[i].locate.where_pad
+		      == (BYTES_BIG_ENDIAN ? upward : downward)))
+		{
+		  rtx x;
+		  int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
+
+		  /* Assigning REG here rather than a temp makes CALL_FUSAGE
+		     report the whole reg as used.  Strictly speaking, the
+		     call only uses SIZE bytes at the msb end, but it doesn't
+		     seem worth generating rtl to say that.  */
+		  reg = gen_rtx_REG (word_mode, REGNO (reg));
+		  x = expand_shift (LSHIFT_EXPR, word_mode, reg,
+				    build_int_cst (NULL_TREE, shift),
+				    reg, 1);
+		  if (x != reg)
+		    emit_move_insn (reg, x);
+		}
+#endif
+	    }
+
+	  /* If we have pre-computed the values to put in the registers in
+	     the case of non-aligned structures, copy them in now.  */
+
+	  else if (args[i].n_aligned_regs != 0)
+	    for (j = 0; j < args[i].n_aligned_regs; j++)
+	      emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
+			      args[i].aligned_regs[j]);
+
+	  else if (partial == 0 || args[i].pass_on_stack)
+	    {
+	      rtx mem = validize_mem (args[i].value);
+
+	      /* Check for overlap with already clobbered argument area.  */
+	      if (is_sibcall
+		  && mem_overlaps_already_clobbered_arg_p (XEXP (args[i].value, 0),
+							   size))
+		*sibcall_failure = 1;
+
+	      /* Handle a BLKmode that needs shifting.  */
+	      if (nregs == 1 && size < UNITS_PER_WORD
+#ifdef BLOCK_REG_PADDING
+		  && args[i].locate.where_pad == downward
+#else
+		  && BYTES_BIG_ENDIAN
+#endif
+		 )
+		{
+		  rtx tem = operand_subword_force (mem, 0, args[i].mode);
+		  rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
+		  rtx x = gen_reg_rtx (word_mode);
+		  int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
+		  enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
+							: LSHIFT_EXPR;
+
+		  emit_move_insn (x, tem);
+		  x = expand_shift (dir, word_mode, x,
+				    build_int_cst (NULL_TREE, shift),
+				    ri, 1);
+		  if (x != ri)
+		    emit_move_insn (ri, x);
+		}
+	      else
+		move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
+	    }
+
+	  /* When a parameter is a block, and perhaps in other cases, it is
+	     possible that it did a load from an argument slot that was
+	     already clobbered.  */
+	  if (is_sibcall
+	      && check_sibcall_argument_overlap (before_arg, &args[i], 0))
+	    *sibcall_failure = 1;
+
+	  /* Handle calls that pass values in multiple non-contiguous
+	     locations.  The Irix 6 ABI has examples of this.  */
+	  if (GET_CODE (reg) == PARALLEL)
+	    use_group_regs (call_fusage, reg);
+	  else if (nregs == -1)
+	    use_reg (call_fusage, reg);
+	  else if (nregs > 0)
+	    use_regs (call_fusage, REGNO (reg), nregs);
+	}
+    }
+}
+
+/* We need to pop PENDING_STACK_ADJUST bytes.  But, if the arguments
+   wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
+   bytes, then we would need to push some additional bytes to pad the
+   arguments.  So, we compute an adjust to the stack pointer for an
+   amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
+   bytes.  Then, when the arguments are pushed the stack will be perfectly
+   aligned.  ARGS_SIZE->CONSTANT is set to the number of bytes that should
+   be popped after the call.  Returns the adjustment.  */
+
+static int
+combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
+					   struct args_size *args_size,
+					   unsigned int preferred_unit_stack_boundary)
+{
+  /* The number of bytes to pop so that the stack will be
+     under-aligned by UNADJUSTED_ARGS_SIZE bytes.  */
+  HOST_WIDE_INT adjustment;
+  /* The alignment of the stack after the arguments are pushed, if we
+     just pushed the arguments without adjust the stack here.  */
+  unsigned HOST_WIDE_INT unadjusted_alignment;
+
+  unadjusted_alignment
+    = ((stack_pointer_delta + unadjusted_args_size)
+       % preferred_unit_stack_boundary);
+
+  /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
+     as possible -- leaving just enough left to cancel out the
+     UNADJUSTED_ALIGNMENT.  In other words, we want to ensure that the
+     PENDING_STACK_ADJUST is non-negative, and congruent to
+     -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY.  */
+
+  /* Begin by trying to pop all the bytes.  */
+  unadjusted_alignment
+    = (unadjusted_alignment
+       - (pending_stack_adjust % preferred_unit_stack_boundary));
+  adjustment = pending_stack_adjust;
+  /* Push enough additional bytes that the stack will be aligned
+     after the arguments are pushed.  */
+  if (preferred_unit_stack_boundary > 1)
+    {
+      if (unadjusted_alignment > 0)
+	adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
+      else
+	adjustment += unadjusted_alignment;
+    }
+
+  /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
+     bytes after the call.  The right number is the entire
+     PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
+     by the arguments in the first place.  */
+  args_size->constant
+    = pending_stack_adjust - adjustment + unadjusted_args_size;
+
+  return adjustment;
+}
+
+/* Scan X expression if it does not dereference any argument slots
+   we already clobbered by tail call arguments (as noted in stored_args_map
+   bitmap).
+   Return nonzero if X expression dereferences such argument slots,
+   zero otherwise.  */
+
+static int
+check_sibcall_argument_overlap_1 (rtx x)
+{
+  RTX_CODE code;
+  int i, j;
+  const char *fmt;
+
+  if (x == NULL_RTX)
+    return 0;
+
+  code = GET_CODE (x);
+
+  if (code == MEM)
+    return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
+						 GET_MODE_SIZE (GET_MODE (x)));
+
+  /* Scan all subexpressions.  */
+  fmt = GET_RTX_FORMAT (code);
+  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
+    {
+      if (*fmt == 'e')
+	{
+	  if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
+	    return 1;
+	}
+      else if (*fmt == 'E')
+	{
+	  for (j = 0; j < XVECLEN (x, i); j++)
+	    if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
+	      return 1;
+	}
+    }
+  return 0;
+}
+
+/* Scan sequence after INSN if it does not dereference any argument slots
+   we already clobbered by tail call arguments (as noted in stored_args_map
+   bitmap).  If MARK_STORED_ARGS_MAP, add stack slots for ARG to
+   stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
+   should be 0).  Return nonzero if sequence after INSN dereferences such argument
+   slots, zero otherwise.  */
+
+static int
+check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
+{
+  int low, high;
+
+  if (insn == NULL_RTX)
+    insn = get_insns ();
+  else
+    insn = NEXT_INSN (insn);
+
+  for (; insn; insn = NEXT_INSN (insn))
+    if (INSN_P (insn)
+	&& check_sibcall_argument_overlap_1 (PATTERN (insn)))
+      break;
+
+  if (mark_stored_args_map)
+    {
+#ifdef ARGS_GROW_DOWNWARD
+      low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
+#else
+      low = arg->locate.slot_offset.constant;
+#endif
+
+      for (high = low + arg->locate.size.constant; low < high; low++)
+	SET_BIT (stored_args_map, low);
+    }
+  return insn != NULL_RTX;
+}
+
+/* Given that a function returns a value of mode MODE at the most
+   significant end of hard register VALUE, shift VALUE left or right
+   as specified by LEFT_P.  Return true if some action was needed.  */
+
+bool
+shift_return_value (enum machine_mode mode, bool left_p, rtx value)
+{
+  HOST_WIDE_INT shift;
+
+  gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
+  shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
+  if (shift == 0)
+    return false;
+
+  /* Use ashr rather than lshr for right shifts.  This is for the benefit
+     of the MIPS port, which requires SImode values to be sign-extended
+     when stored in 64-bit registers.  */
+  if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
+			   value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
+    gcc_unreachable ();
+  return true;
+}
+
+/* If X is a likely-spilled register value, copy it to a pseudo
+   register and return that register.  Return X otherwise.  */
+
+static rtx
+avoid_likely_spilled_reg (rtx x)
+{
+  rtx new_rtx;
+
+  if (REG_P (x)
+      && HARD_REGISTER_P (x)
+      && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
+    {
+      /* Make sure that we generate a REG rather than a CONCAT.
+	 Moves into CONCATs can need nontrivial instructions,
+	 and the whole point of this function is to avoid
+	 using the hard register directly in such a situation.  */
+      generating_concat_p = 0;
+      new_rtx = gen_reg_rtx (GET_MODE (x));
+      generating_concat_p = 1;
+      emit_move_insn (new_rtx, x);
+      return new_rtx;
+    }
+  return x;
+}
+
+/* Generate all the code for a CALL_EXPR exp
+   and return an rtx for its value.
+   Store the value in TARGET (specified as an rtx) if convenient.
+   If the value is stored in TARGET then TARGET is returned.
+   If IGNORE is nonzero, then we ignore the value of the function call.  */
+
+rtx
+expand_call (tree exp, rtx target, int ignore)
+{
+  /* Nonzero if we are currently expanding a call.  */
+  static int currently_expanding_call = 0;
+
+  /* RTX for the function to be called.  */
+  rtx funexp;
+  /* Sequence of insns to perform a normal "call".  */
+  rtx normal_call_insns = NULL_RTX;
+  /* Sequence of insns to perform a tail "call".  */
+  rtx tail_call_insns = NULL_RTX;
+  /* Data type of the function.  */
+  tree funtype;
+  tree type_arg_types;
+  /* Declaration of the function being called,
+     or 0 if the function is computed (not known by name).  */
+  tree fndecl = 0;
+  /* The type of the function being called.  */
+  tree fntype;
+  bool try_tail_call = CALL_EXPR_TAILCALL (exp);
+  int pass;
+
+  /* Register in which non-BLKmode value will be returned,
+     or 0 if no value or if value is BLKmode.  */
+  rtx valreg;
+  /* Address where we should return a BLKmode value;
+     0 if value not BLKmode.  */
+  rtx structure_value_addr = 0;
+  /* Nonzero if that address is being passed by treating it as
+     an extra, implicit first parameter.  Otherwise,
+     it is passed by being copied directly into struct_value_rtx.  */
+  int structure_value_addr_parm = 0;
+  /* Holds the value of implicit argument for the struct value.  */
+  tree structure_value_addr_value = NULL_TREE;
+  /* Size of aggregate value wanted, or zero if none wanted
+     or if we are using the non-reentrant PCC calling convention
+     or expecting the value in registers.  */
+  HOST_WIDE_INT struct_value_size = 0;
+  /* Nonzero if called function returns an aggregate in memory PCC style,
+     by returning the address of where to find it.  */
+  int pcc_struct_value = 0;
+  rtx struct_value = 0;
+
+  /* Number of actual parameters in this call, including struct value addr.  */
+  int num_actuals;
+  /* Number of named args.  Args after this are anonymous ones
+     and they must all go on the stack.  */
+  int n_named_args;
+  /* Number of complex actual arguments that need to be split.  */
+  int num_complex_actuals = 0;
+
+  /* Vector of information about each argument.
+     Arguments are numbered in the order they will be pushed,
+     not the order they are written.  */
+  struct arg_data *args;
+
+  /* Total size in bytes of all the stack-parms scanned so far.  */
+  struct args_size args_size;
+  struct args_size adjusted_args_size;
+  /* Size of arguments before any adjustments (such as rounding).  */
+  int unadjusted_args_size;
+  /* Data on reg parms scanned so far.  */
+  CUMULATIVE_ARGS args_so_far;
+  /* Nonzero if a reg parm has been scanned.  */
+  int reg_parm_seen;
+  /* Nonzero if this is an indirect function call.  */
+
+  /* Nonzero if we must avoid push-insns in the args for this call.
+     If stack space is allocated for register parameters, but not by the
+     caller, then it is preallocated in the fixed part of the stack frame.
+     So the entire argument block must then be preallocated (i.e., we
+     ignore PUSH_ROUNDING in that case).  */
+
+  int must_preallocate = !PUSH_ARGS;
+
+  /* Size of the stack reserved for parameter registers.  */
+  int reg_parm_stack_space = 0;
+
+  /* Address of space preallocated for stack parms
+     (on machines that lack push insns), or 0 if space not preallocated.  */
+  rtx argblock = 0;
+
+  /* Mask of ECF_ flags.  */
+  int flags = 0;
+#ifdef REG_PARM_STACK_SPACE
+  /* Define the boundary of the register parm stack space that needs to be
+     saved, if any.  */
+  int low_to_save, high_to_save;
+  rtx save_area = 0;		/* Place that it is saved */
+#endif
+
+  int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
+  char *initial_stack_usage_map = stack_usage_map;
+  char *stack_usage_map_buf = NULL;
+
+  int old_stack_allocated;
+
+  /* State variables to track stack modifications.  */
+  rtx old_stack_level = 0;
+  int old_stack_arg_under_construction = 0;
+  int old_pending_adj = 0;
+  int old_inhibit_defer_pop = inhibit_defer_pop;
+
+  /* Some stack pointer alterations we make are performed via
+     allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
+     which we then also need to save/restore along the way.  */
+  int old_stack_pointer_delta = 0;
+
+  rtx call_fusage;
+  tree p = CALL_EXPR_FN (exp);
+  tree addr = CALL_EXPR_FN (exp);
+  int i;
+  /* The alignment of the stack, in bits.  */
+  unsigned HOST_WIDE_INT preferred_stack_boundary;
+  /* The alignment of the stack, in bytes.  */
+  unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
+  /* The static chain value to use for this call.  */
+  rtx static_chain_value;
+  /* See if this is "nothrow" function call.  */
+  if (TREE_NOTHROW (exp))
+    flags |= ECF_NOTHROW;
+
+  /* See if we can find a DECL-node for the actual function, and get the
+     function attributes (flags) from the function decl or type node.  */
+  fndecl = get_callee_fndecl (exp);
+  if (fndecl)
+    {
+      fntype = TREE_TYPE (fndecl);
+      flags |= flags_from_decl_or_type (fndecl);
+    }
+  else
+    {
+      fntype = TREE_TYPE (TREE_TYPE (p));
+      flags |= flags_from_decl_or_type (fntype);
+    }
+
+  struct_value = targetm.calls.struct_value_rtx (fntype, 0);
+
+  /* Warn if this value is an aggregate type,
+     regardless of which calling convention we are using for it.  */
+  if (AGGREGATE_TYPE_P (TREE_TYPE (exp)))
+    warning (OPT_Waggregate_return, "function call has aggregate value");
+
+  /* If the result of a non looping pure or const function call is
+     ignored (or void), and none of its arguments are volatile, we can
+     avoid expanding the call and just evaluate the arguments for
+     side-effects.  */
+  if ((flags & (ECF_CONST | ECF_PURE))
+      && (!(flags & ECF_LOOPING_CONST_OR_PURE))
+      && (ignore || target == const0_rtx
+	  || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
+    {
+      bool volatilep = false;
+      tree arg;
+      call_expr_arg_iterator iter;
+
+      FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
+	if (TREE_THIS_VOLATILE (arg))
+	  {
+	    volatilep = true;
+	    break;
+	  }
+
+      if (! volatilep)
+	{
+	  FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
+	    expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
+	  return const0_rtx;
+	}
+    }
+
+#ifdef REG_PARM_STACK_SPACE
+  reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
+#endif
+
+  if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
+      && reg_parm_stack_space > 0 && PUSH_ARGS)
+    must_preallocate = 1;
+
+  /* Set up a place to return a structure.  */
+
+  /* Cater to broken compilers.  */
+  if (aggregate_value_p (exp, (!fndecl ? fntype : fndecl)))
+    {
+      /* This call returns a big structure.  */
+      flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
+
+#ifdef PCC_STATIC_STRUCT_RETURN
+      {
+	pcc_struct_value = 1;
+      }
+#else /* not PCC_STATIC_STRUCT_RETURN */
+      {
+	struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
+
+	if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
+	  structure_value_addr = XEXP (target, 0);
+	else
+	  {
+	    /* For variable-sized objects, we must be called with a target
+	       specified.  If we were to allocate space on the stack here,
+	       we would have no way of knowing when to free it.  */
+	    rtx d = assign_temp (TREE_TYPE (exp), 0, 1, 1);
+
+	    mark_temp_addr_taken (d);
+	    structure_value_addr = XEXP (d, 0);
+	    target = 0;
+	  }
+      }
+#endif /* not PCC_STATIC_STRUCT_RETURN */
+    }
+
+  /* Figure out the amount to which the stack should be aligned.  */
+  preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
+  if (fndecl)
+    {
+      struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
+      /* Without automatic stack alignment, we can't increase preferred
+	 stack boundary.  With automatic stack alignment, it is
+	 unnecessary since unless we can guarantee that all callers will
+	 align the outgoing stack properly, callee has to align its
+	 stack anyway.  */
+      if (i
+	  && i->preferred_incoming_stack_boundary
+	  && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
+	preferred_stack_boundary = i->preferred_incoming_stack_boundary;
+    }
+
+  /* Operand 0 is a pointer-to-function; get the type of the function.  */
+  funtype = TREE_TYPE (addr);
+  gcc_assert (POINTER_TYPE_P (funtype));
+  funtype = TREE_TYPE (funtype);
+
+  /* Count whether there are actual complex arguments that need to be split
+     into their real and imaginary parts.  Munge the type_arg_types
+     appropriately here as well.  */
+  if (targetm.calls.split_complex_arg)
+    {
+      call_expr_arg_iterator iter;
+      tree arg;
+      FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
+	{
+	  tree type = TREE_TYPE (arg);
+	  if (type && TREE_CODE (type) == COMPLEX_TYPE
+	      && targetm.calls.split_complex_arg (type))
+	    num_complex_actuals++;
+	}
+      type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
+    }
+  else
+    type_arg_types = TYPE_ARG_TYPES (funtype);
+
+  if (flags & ECF_MAY_BE_ALLOCA)
+    cfun->calls_alloca = 1;
+
+  /* If struct_value_rtx is 0, it means pass the address
+     as if it were an extra parameter.  Put the argument expression
+     in structure_value_addr_value.  */
+  if (structure_value_addr && struct_value == 0)
+    {
+      /* If structure_value_addr is a REG other than
+	 virtual_outgoing_args_rtx, we can use always use it.  If it
+	 is not a REG, we must always copy it into a register.
+	 If it is virtual_outgoing_args_rtx, we must copy it to another
+	 register in some cases.  */
+      rtx temp = (!REG_P (structure_value_addr)
+		  || (ACCUMULATE_OUTGOING_ARGS
+		      && stack_arg_under_construction
+		      && structure_value_addr == virtual_outgoing_args_rtx)
+		  ? copy_addr_to_reg (convert_memory_address
+				      (Pmode, structure_value_addr))
+		  : structure_value_addr);
+
+      structure_value_addr_value =
+	make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
+      structure_value_addr_parm = 1;
+    }
+
+  /* Count the arguments and set NUM_ACTUALS.  */
+  num_actuals =
+    call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
+
+  /* Compute number of named args.
+     First, do a raw count of the args for INIT_CUMULATIVE_ARGS.  */
+
+  if (type_arg_types != 0)
+    n_named_args
+      = (list_length (type_arg_types)
+	 /* Count the struct value address, if it is passed as a parm.  */
+	 + structure_value_addr_parm);
+  else
+    /* If we know nothing, treat all args as named.  */
+    n_named_args = num_actuals;
+
+  /* Start updating where the next arg would go.
+
+     On some machines (such as the PA) indirect calls have a different
+     calling convention than normal calls.  The fourth argument in
+     INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
+     or not.  */
+  INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
+
+  /* Now possibly adjust the number of named args.
+     Normally, don't include the last named arg if anonymous args follow.
+     We do include the last named arg if
+     targetm.calls.strict_argument_naming() returns nonzero.
+     (If no anonymous args follow, the result of list_length is actually
+     one too large.  This is harmless.)
+
+     If targetm.calls.pretend_outgoing_varargs_named() returns
+     nonzero, and targetm.calls.strict_argument_naming() returns zero,
+     this machine will be able to place unnamed args that were passed
+     in registers into the stack.  So treat all args as named.  This
+     allows the insns emitting for a specific argument list to be
+     independent of the function declaration.
+
+     If targetm.calls.pretend_outgoing_varargs_named() returns zero,
+     we do not have any reliable way to pass unnamed args in
+     registers, so we must force them into memory.  */
+
+  if (type_arg_types != 0
+      && targetm.calls.strict_argument_naming (&args_so_far))
+    ;
+  else if (type_arg_types != 0
+	   && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
+    /* Don't include the last named arg.  */
+    --n_named_args;
+  else
+    /* Treat all args as named.  */
+    n_named_args = num_actuals;
+
+  /* Make a vector to hold all the information about each arg.  */
+  args = XALLOCAVEC (struct arg_data, num_actuals);
+  memset (args, 0, num_actuals * sizeof (struct arg_data));
+
+  /* Build up entries in the ARGS array, compute the size of the
+     arguments into ARGS_SIZE, etc.  */
+  initialize_argument_information (num_actuals, args, &args_size,
+				   n_named_args, exp,
+				   structure_value_addr_value, fndecl, fntype,
+				   &args_so_far, reg_parm_stack_space,
+				   &old_stack_level, &old_pending_adj,
+				   &must_preallocate, &flags,
+				   &try_tail_call, CALL_FROM_THUNK_P (exp));
+
+  if (args_size.var)
+    must_preallocate = 1;
+
+  /* Now make final decision about preallocating stack space.  */
+  must_preallocate = finalize_must_preallocate (must_preallocate,
+						num_actuals, args,
+						&args_size);
+
+  /* If the structure value address will reference the stack pointer, we
+     must stabilize it.  We don't need to do this if we know that we are
+     not going to adjust the stack pointer in processing this call.  */
+
+  if (structure_value_addr
+      && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
+	  || reg_mentioned_p (virtual_outgoing_args_rtx,
+			      structure_value_addr))
+      && (args_size.var
+	  || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
+    structure_value_addr = copy_to_reg (structure_value_addr);
+
+  /* Tail calls can make things harder to debug, and we've traditionally
+     pushed these optimizations into -O2.  Don't try if we're already
+     expanding a call, as that means we're an argument.  Don't try if
+     there's cleanups, as we know there's code to follow the call.  */
+
+  if (currently_expanding_call++ != 0
+      || !flag_optimize_sibling_calls
+      || args_size.var
+      || lookup_expr_eh_region (exp) >= 0
+      || dbg_cnt (tail_call) == false)
+    try_tail_call = 0;
+
+  /*  Rest of purposes for tail call optimizations to fail.  */
+  if (
+#ifdef HAVE_sibcall_epilogue
+      !HAVE_sibcall_epilogue
+#else
+      1
+#endif
+      || !try_tail_call
+      /* Doing sibling call optimization needs some work, since
+	 structure_value_addr can be allocated on the stack.
+	 It does not seem worth the effort since few optimizable
+	 sibling calls will return a structure.  */
+      || structure_value_addr != NULL_RTX
+#ifdef REG_PARM_STACK_SPACE
+      /* If outgoing reg parm stack space changes, we can not do sibcall.  */
+      || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
+	  != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
+      || (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
+#endif
+      /* Check whether the target is able to optimize the call
+	 into a sibcall.  */
+      || !targetm.function_ok_for_sibcall (fndecl, exp)
+      /* Functions that do not return exactly once may not be sibcall
+	 optimized.  */
+      || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
+      || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
+      /* If the called function is nested in the current one, it might access
+	 some of the caller's arguments, but could clobber them beforehand if
+	 the argument areas are shared.  */
+      || (fndecl && decl_function_context (fndecl) == current_function_decl)
+      /* If this function requires more stack slots than the current
+	 function, we cannot change it into a sibling call.
+	 crtl->args.pretend_args_size is not part of the
+	 stack allocated by our caller.  */
+      || args_size.constant > (crtl->args.size
+			       - crtl->args.pretend_args_size)
+      /* If the callee pops its own arguments, then it must pop exactly
+	 the same number of arguments as the current function.  */
+      || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
+	  != RETURN_POPS_ARGS (current_function_decl,
+			       TREE_TYPE (current_function_decl),
+			       crtl->args.size))
+      || !lang_hooks.decls.ok_for_sibcall (fndecl))
+    try_tail_call = 0;
+
+  /* Check if caller and callee disagree in promotion of function
+     return value.  */
+  if (try_tail_call)
+    {
+      enum machine_mode caller_mode, caller_promoted_mode;
+      enum machine_mode callee_mode, callee_promoted_mode;
+      int caller_unsignedp, callee_unsignedp;
+      tree caller_res = DECL_RESULT (current_function_decl);
+
+      caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
+      caller_mode = caller_promoted_mode = DECL_MODE (caller_res);
+      callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
+      callee_mode = callee_promoted_mode = TYPE_MODE (TREE_TYPE (funtype));
+      if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
+	caller_promoted_mode
+	  = promote_mode (TREE_TYPE (caller_res), caller_mode,
+			  &caller_unsignedp, 1);
+      if (targetm.calls.promote_function_return (funtype))
+	callee_promoted_mode
+	  = promote_mode (TREE_TYPE (funtype), callee_mode,
+			  &callee_unsignedp, 1);
+      if (caller_mode != VOIDmode
+	  && (caller_promoted_mode != callee_promoted_mode
+	      || ((caller_mode != caller_promoted_mode
+		   || callee_mode != callee_promoted_mode)
+		  && (caller_unsignedp != callee_unsignedp
+		      || GET_MODE_BITSIZE (caller_mode)
+			 < GET_MODE_BITSIZE (callee_mode)))))
+	try_tail_call = 0;
+    }
+
+  /* Ensure current function's preferred stack boundary is at least
+     what we need.  Stack alignment may also increase preferred stack
+     boundary.  */
+  if (crtl->preferred_stack_boundary < preferred_stack_boundary)
+    crtl->preferred_stack_boundary = preferred_stack_boundary;
+  else
+    preferred_stack_boundary = crtl->preferred_stack_boundary;
+
+  preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
+
+  /* We want to make two insn chains; one for a sibling call, the other
+     for a normal call.  We will select one of the two chains after
+     initial RTL generation is complete.  */
+  for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
+    {
+      int sibcall_failure = 0;
+      /* We want to emit any pending stack adjustments before the tail
+	 recursion "call".  That way we know any adjustment after the tail
+	 recursion call can be ignored if we indeed use the tail
+	 call expansion.  */
+      int save_pending_stack_adjust = 0;
+      int save_stack_pointer_delta = 0;
+      rtx insns;
+      rtx before_call, next_arg_reg, after_args;
+
+      if (pass == 0)
+	{
+	  /* State variables we need to save and restore between
+	     iterations.  */
+	  save_pending_stack_adjust = pending_stack_adjust;
+	  save_stack_pointer_delta = stack_pointer_delta;
+	}
+      if (pass)
+	flags &= ~ECF_SIBCALL;
+      else
+	flags |= ECF_SIBCALL;
+
+      /* Other state variables that we must reinitialize each time
+	 through the loop (that are not initialized by the loop itself).  */
+      argblock = 0;
+      call_fusage = 0;
+
+      /* Start a new sequence for the normal call case.
+
+	 From this point on, if the sibling call fails, we want to set
+	 sibcall_failure instead of continuing the loop.  */
+      start_sequence ();
+
+      /* Don't let pending stack adjusts add up to too much.
+	 Also, do all pending adjustments now if there is any chance
+	 this might be a call to alloca or if we are expanding a sibling
+	 call sequence.
+	 Also do the adjustments before a throwing call, otherwise
+	 exception handling can fail; PR 19225. */
+      if (pending_stack_adjust >= 32
+	  || (pending_stack_adjust > 0
+	      && (flags & ECF_MAY_BE_ALLOCA))
+	  || (pending_stack_adjust > 0
+	      && flag_exceptions && !(flags & ECF_NOTHROW))
+	  || pass == 0)
+	do_pending_stack_adjust ();
+
+      /* Precompute any arguments as needed.  */
+      if (pass)
+	precompute_arguments (num_actuals, args);
+
+      /* Now we are about to start emitting insns that can be deleted
+	 if a libcall is deleted.  */
+      if (pass && (flags & ECF_MALLOC))
+	start_sequence ();
+
+      if (pass == 0 && crtl->stack_protect_guard)
+	stack_protect_epilogue ();
+
+      adjusted_args_size = args_size;
+      /* Compute the actual size of the argument block required.  The variable
+	 and constant sizes must be combined, the size may have to be rounded,
+	 and there may be a minimum required size.  When generating a sibcall
+	 pattern, do not round up, since we'll be re-using whatever space our
+	 caller provided.  */
+      unadjusted_args_size
+	= compute_argument_block_size (reg_parm_stack_space,
+				       &adjusted_args_size,
+				       fndecl, fntype,
+				       (pass == 0 ? 0
+					: preferred_stack_boundary));
+
+      old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
+
+      /* The argument block when performing a sibling call is the
+	 incoming argument block.  */
+      if (pass == 0)
+	{
+	  argblock = crtl->args.internal_arg_pointer;
+	  argblock
+#ifdef STACK_GROWS_DOWNWARD
+	    = plus_constant (argblock, crtl->args.pretend_args_size);
+#else
+	    = plus_constant (argblock, -crtl->args.pretend_args_size);
+#endif
+	  stored_args_map = sbitmap_alloc (args_size.constant);
+	  sbitmap_zero (stored_args_map);
+	}
+
+      /* If we have no actual push instructions, or shouldn't use them,
+	 make space for all args right now.  */
+      else if (adjusted_args_size.var != 0)
+	{
+	  if (old_stack_level == 0)
+	    {
+	      emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
+	      old_stack_pointer_delta = stack_pointer_delta;
+	      old_pending_adj = pending_stack_adjust;
+	      pending_stack_adjust = 0;
+	      /* stack_arg_under_construction says whether a stack arg is
+		 being constructed at the old stack level.  Pushing the stack
+		 gets a clean outgoing argument block.  */
+	      old_stack_arg_under_construction = stack_arg_under_construction;
+	      stack_arg_under_construction = 0;
+	    }
+	  argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
+	}
+      else
+	{
+	  /* Note that we must go through the motions of allocating an argument
+	     block even if the size is zero because we may be storing args
+	     in the area reserved for register arguments, which may be part of
+	     the stack frame.  */
+
+	  int needed = adjusted_args_size.constant;
+
+	  /* Store the maximum argument space used.  It will be pushed by
+	     the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
+	     checking).  */
+
+	  if (needed > crtl->outgoing_args_size)
+	    crtl->outgoing_args_size = needed;
+
+	  if (must_preallocate)
+	    {
+	      if (ACCUMULATE_OUTGOING_ARGS)
+		{
+		  /* Since the stack pointer will never be pushed, it is
+		     possible for the evaluation of a parm to clobber
+		     something we have already written to the stack.
+		     Since most function calls on RISC machines do not use
+		     the stack, this is uncommon, but must work correctly.
+
+		     Therefore, we save any area of the stack that was already
+		     written and that we are using.  Here we set up to do this
+		     by making a new stack usage map from the old one.  The
+		     actual save will be done by store_one_arg.
+
+		     Another approach might be to try to reorder the argument
+		     evaluations to avoid this conflicting stack usage.  */
+
+		  /* Since we will be writing into the entire argument area,
+		     the map must be allocated for its entire size, not just
+		     the part that is the responsibility of the caller.  */
+		  if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
+		    needed += reg_parm_stack_space;
+
+#ifdef ARGS_GROW_DOWNWARD
+		  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
+						     needed + 1);
+#else
+		  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
+						     needed);
+#endif
+		  if (stack_usage_map_buf)
+		    free (stack_usage_map_buf);
+		  stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
+		  stack_usage_map = stack_usage_map_buf;
+
+		  if (initial_highest_arg_in_use)
+		    memcpy (stack_usage_map, initial_stack_usage_map,
+			    initial_highest_arg_in_use);
+
+		  if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
+		    memset (&stack_usage_map[initial_highest_arg_in_use], 0,
+			   (highest_outgoing_arg_in_use
+			    - initial_highest_arg_in_use));
+		  needed = 0;
+
+		  /* The address of the outgoing argument list must not be
+		     copied to a register here, because argblock would be left
+		     pointing to the wrong place after the call to
+		     allocate_dynamic_stack_space below.  */
+
+		  argblock = virtual_outgoing_args_rtx;
+		}
+	      else
+		{
+		  if (inhibit_defer_pop == 0)
+		    {
+		      /* Try to reuse some or all of the pending_stack_adjust
+			 to get this space.  */
+		      needed
+			= (combine_pending_stack_adjustment_and_call
+			   (unadjusted_args_size,
+			    &adjusted_args_size,
+			    preferred_unit_stack_boundary));
+
+		      /* combine_pending_stack_adjustment_and_call computes
+			 an adjustment before the arguments are allocated.
+			 Account for them and see whether or not the stack
+			 needs to go up or down.  */
+		      needed = unadjusted_args_size - needed;
+
+		      if (needed < 0)
+			{
+			  /* We're releasing stack space.  */
+			  /* ??? We can avoid any adjustment at all if we're
+			     already aligned.  FIXME.  */
+			  pending_stack_adjust = -needed;
+			  do_pending_stack_adjust ();
+			  needed = 0;
+			}
+		      else
+			/* We need to allocate space.  We'll do that in
+			   push_block below.  */
+			pending_stack_adjust = 0;
+		    }
+
+		  /* Special case this because overhead of `push_block' in
+		     this case is non-trivial.  */
+		  if (needed == 0)
+		    argblock = virtual_outgoing_args_rtx;
+		  else
+		    {
+		      argblock = push_block (GEN_INT (needed), 0, 0);
+#ifdef ARGS_GROW_DOWNWARD
+		      argblock = plus_constant (argblock, needed);
+#endif
+		    }
+
+		  /* We only really need to call `copy_to_reg' in the case
+		     where push insns are going to be used to pass ARGBLOCK
+		     to a function call in ARGS.  In that case, the stack
+		     pointer changes value from the allocation point to the
+		     call point, and hence the value of
+		     VIRTUAL_OUTGOING_ARGS_RTX changes as well.  But might
+		     as well always do it.  */
+		  argblock = copy_to_reg (argblock);
+		}
+	    }
+	}
+
+      if (ACCUMULATE_OUTGOING_ARGS)
+	{
+	  /* The save/restore code in store_one_arg handles all
+	     cases except one: a constructor call (including a C
+	     function returning a BLKmode struct) to initialize
+	     an argument.  */
+	  if (stack_arg_under_construction)
+	    {
+	      rtx push_size
+		= GEN_INT (adjusted_args_size.constant
+			   + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
+			   					      : TREE_TYPE (fndecl))) ? 0
+			      : reg_parm_stack_space));
+	      if (old_stack_level == 0)
+		{
+		  emit_stack_save (SAVE_BLOCK, &old_stack_level,
+				   NULL_RTX);
+		  old_stack_pointer_delta = stack_pointer_delta;
+		  old_pending_adj = pending_stack_adjust;
+		  pending_stack_adjust = 0;
+		  /* stack_arg_under_construction says whether a stack
+		     arg is being constructed at the old stack level.
+		     Pushing the stack gets a clean outgoing argument
+		     block.  */
+		  old_stack_arg_under_construction
+		    = stack_arg_under_construction;
+		  stack_arg_under_construction = 0;
+		  /* Make a new map for the new argument list.  */
+		  if (stack_usage_map_buf)
+		    free (stack_usage_map_buf);
+		  stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
+		  stack_usage_map = stack_usage_map_buf;
+		  highest_outgoing_arg_in_use = 0;
+		}
+	      allocate_dynamic_stack_space (push_size, NULL_RTX,
+					    BITS_PER_UNIT);
+	    }
+
+	  /* If argument evaluation might modify the stack pointer,
+	     copy the address of the argument list to a register.  */
+	  for (i = 0; i < num_actuals; i++)
+	    if (args[i].pass_on_stack)
+	      {
+		argblock = copy_addr_to_reg (argblock);
+		break;
+	      }
+	}
+
+      compute_argument_addresses (args, argblock, num_actuals);
+
+      /* If we push args individually in reverse order, perform stack alignment
+	 before the first push (the last arg).  */
+      if (PUSH_ARGS_REVERSED && argblock == 0
+	  && adjusted_args_size.constant != unadjusted_args_size)
+	{
+	  /* When the stack adjustment is pending, we get better code
+	     by combining the adjustments.  */
+	  if (pending_stack_adjust
+	      && ! inhibit_defer_pop)
+	    {
+	      pending_stack_adjust
+		= (combine_pending_stack_adjustment_and_call
+		   (unadjusted_args_size,
+		    &adjusted_args_size,
+		    preferred_unit_stack_boundary));
+	      do_pending_stack_adjust ();
+	    }
+	  else if (argblock == 0)
+	    anti_adjust_stack (GEN_INT (adjusted_args_size.constant
+					- unadjusted_args_size));
+	}
+      /* Now that the stack is properly aligned, pops can't safely
+	 be deferred during the evaluation of the arguments.  */
+      NO_DEFER_POP;
+
+      funexp = rtx_for_function_call (fndecl, addr);
+
+      /* Figure out the register where the value, if any, will come back.  */
+      valreg = 0;
+      if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
+	  && ! structure_value_addr)
+	{
+	  if (pcc_struct_value)
+	    valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
+					  fndecl, NULL, (pass == 0));
+	  else
+	    valreg = hard_function_value (TREE_TYPE (exp), fndecl, fntype,
+					  (pass == 0));
+
+	  /* If VALREG is a PARALLEL whose first member has a zero
+	     offset, use that.  This is for targets such as m68k that
+	     return the same value in multiple places.  */
+	  if (GET_CODE (valreg) == PARALLEL)
+	    {
+	      rtx elem = XVECEXP (valreg, 0, 0);
+	      rtx where = XEXP (elem, 0);
+	      rtx offset = XEXP (elem, 1);
+	      if (offset == const0_rtx
+		  && GET_MODE (where) == GET_MODE (valreg))
+		valreg = where;
+	    }
+	}
+
+      /* Precompute all register parameters.  It isn't safe to compute anything
+	 once we have started filling any specific hard regs.  */
+      precompute_register_parameters (num_actuals, args, &reg_parm_seen);
+
+      if (CALL_EXPR_STATIC_CHAIN (exp))
+	static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
+      else
+	static_chain_value = 0;
+
+#ifdef REG_PARM_STACK_SPACE
+      /* Save the fixed argument area if it's part of the caller's frame and
+	 is clobbered by argument setup for this call.  */
+      if (ACCUMULATE_OUTGOING_ARGS && pass)
+	save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
+					      &low_to_save, &high_to_save);
+#endif
+
+      /* Now store (and compute if necessary) all non-register parms.
+	 These come before register parms, since they can require block-moves,
+	 which could clobber the registers used for register parms.
+	 Parms which have partial registers are not stored here,
+	 but we do preallocate space here if they want that.  */
+
+      for (i = 0; i < num_actuals; i++)
+	{
+	  if (args[i].reg == 0 || args[i].pass_on_stack)
+	    {
+	      rtx before_arg = get_last_insn ();
+
+	      if (store_one_arg (&args[i], argblock, flags,
+				 adjusted_args_size.var != 0,
+				 reg_parm_stack_space)
+		  || (pass == 0
+		      && check_sibcall_argument_overlap (before_arg,
+							 &args[i], 1)))
+		sibcall_failure = 1;
+	      }
+
+	  if (((flags & ECF_CONST)
+	       || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
+	      && args[i].stack)
+	    call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
+					     gen_rtx_USE (VOIDmode,
+							  args[i].stack),
+					     call_fusage);
+	}
+
+      /* If we have a parm that is passed in registers but not in memory
+	 and whose alignment does not permit a direct copy into registers,
+	 make a group of pseudos that correspond to each register that we
+	 will later fill.  */
+      if (STRICT_ALIGNMENT)
+	store_unaligned_arguments_into_pseudos (args, num_actuals);
+
+      /* Now store any partially-in-registers parm.
+	 This is the last place a block-move can happen.  */
+      if (reg_parm_seen)
+	for (i = 0; i < num_actuals; i++)
+	  if (args[i].partial != 0 && ! args[i].pass_on_stack)
+	    {
+	      rtx before_arg = get_last_insn ();
+
+	      if (store_one_arg (&args[i], argblock, flags,
+				 adjusted_args_size.var != 0,
+				 reg_parm_stack_space)
+		  || (pass == 0
+		      && check_sibcall_argument_overlap (before_arg,
+							 &args[i], 1)))
+		sibcall_failure = 1;
+	    }
+
+      /* If we pushed args in forward order, perform stack alignment
+	 after pushing the last arg.  */
+      if (!PUSH_ARGS_REVERSED && argblock == 0)
+	anti_adjust_stack (GEN_INT (adjusted_args_size.constant
+				    - unadjusted_args_size));
+
+      /* If register arguments require space on the stack and stack space
+	 was not preallocated, allocate stack space here for arguments
+	 passed in registers.  */
+      if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
+          && !ACCUMULATE_OUTGOING_ARGS
+	  && must_preallocate == 0 && reg_parm_stack_space > 0)
+	anti_adjust_stack (GEN_INT (reg_parm_stack_space));
+
+      /* Pass the function the address in which to return a
+	 structure value.  */
+      if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
+	{
+	  structure_value_addr
+	    = convert_memory_address (Pmode, structure_value_addr);
+	  emit_move_insn (struct_value,
+			  force_reg (Pmode,
+				     force_operand (structure_value_addr,
+						    NULL_RTX)));
+
+	  if (REG_P (struct_value))
+	    use_reg (&call_fusage, struct_value);
+	}
+
+      after_args = get_last_insn ();
+      funexp = prepare_call_address (funexp, static_chain_value,
+				     &call_fusage, reg_parm_seen, pass == 0);
+
+      load_register_parameters (args, num_actuals, &call_fusage, flags,
+				pass == 0, &sibcall_failure);
+
+      /* Save a pointer to the last insn before the call, so that we can
+	 later safely search backwards to find the CALL_INSN.  */
+      before_call = get_last_insn ();
+
+      /* Set up next argument register.  For sibling calls on machines
+	 with register windows this should be the incoming register.  */
+#ifdef FUNCTION_INCOMING_ARG
+      if (pass == 0)
+	next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
+					      void_type_node, 1);
+      else
+#endif
+	next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
+				     void_type_node, 1);
+
+      /* All arguments and registers used for the call must be set up by
+	 now!  */
+
+      /* Stack must be properly aligned now.  */
+      gcc_assert (!pass
+		  || !(stack_pointer_delta % preferred_unit_stack_boundary));
+
+      /* Generate the actual call instruction.  */
+      emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
+		   adjusted_args_size.constant, struct_value_size,
+		   next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
+		   flags, & args_so_far);
+
+      /* If the call setup or the call itself overlaps with anything
+	 of the argument setup we probably clobbered our call address.
+	 In that case we can't do sibcalls.  */
+      if (pass == 0
+	  && check_sibcall_argument_overlap (after_args, 0, 0))
+	sibcall_failure = 1;
+
+      /* If a non-BLKmode value is returned at the most significant end
+	 of a register, shift the register right by the appropriate amount
+	 and update VALREG accordingly.  BLKmode values are handled by the
+	 group load/store machinery below.  */
+      if (!structure_value_addr
+	  && !pcc_struct_value
+	  && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
+	  && targetm.calls.return_in_msb (TREE_TYPE (exp)))
+	{
+	  if (shift_return_value (TYPE_MODE (TREE_TYPE (exp)), false, valreg))
+	    sibcall_failure = 1;
+	  valreg = gen_rtx_REG (TYPE_MODE (TREE_TYPE (exp)), REGNO (valreg));
+	}
+
+      if (pass && (flags & ECF_MALLOC))
+	{
+	  rtx temp = gen_reg_rtx (GET_MODE (valreg));
+	  rtx last, insns;
+
+	  /* The return value from a malloc-like function is a pointer.  */
+	  if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
+	    mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
+
+	  emit_move_insn (temp, valreg);
+
+	  /* The return value from a malloc-like function can not alias
+	     anything else.  */
+	  last = get_last_insn ();
+	  add_reg_note (last, REG_NOALIAS, temp);
+
+	  /* Write out the sequence.  */
+	  insns = get_insns ();
+	  end_sequence ();
+	  emit_insn (insns);
+	  valreg = temp;
+	}
+
+      /* For calls to `setjmp', etc., inform
+	 function.c:setjmp_warnings that it should complain if
+	 nonvolatile values are live.  For functions that cannot
+	 return, inform flow that control does not fall through.  */
+
+      if ((flags & ECF_NORETURN) || pass == 0)
+	{
+	  /* The barrier must be emitted
+	     immediately after the CALL_INSN.  Some ports emit more
+	     than just a CALL_INSN above, so we must search for it here.  */
+
+	  rtx last = get_last_insn ();
+	  while (!CALL_P (last))
+	    {
+	      last = PREV_INSN (last);
+	      /* There was no CALL_INSN?  */
+	      gcc_assert (last != before_call);
+	    }
+
+	  emit_barrier_after (last);
+
+	  /* Stack adjustments after a noreturn call are dead code.
+	     However when NO_DEFER_POP is in effect, we must preserve
+	     stack_pointer_delta.  */
+	  if (inhibit_defer_pop == 0)
+	    {
+	      stack_pointer_delta = old_stack_allocated;
+	      pending_stack_adjust = 0;
+	    }
+	}
+
+      /* If value type not void, return an rtx for the value.  */
+
+      if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
+	  || ignore)
+	target = const0_rtx;
+      else if (structure_value_addr)
+	{
+	  if (target == 0 || !MEM_P (target))
+	    {
+	      target
+		= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
+			       memory_address (TYPE_MODE (TREE_TYPE (exp)),
+					       structure_value_addr));
+	      set_mem_attributes (target, exp, 1);
+	    }
+	}
+      else if (pcc_struct_value)
+	{
+	  /* This is the special C++ case where we need to
+	     know what the true target was.  We take care to
+	     never use this value more than once in one expression.  */
+	  target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
+				copy_to_reg (valreg));
+	  set_mem_attributes (target, exp, 1);
+	}
+      /* Handle calls that return values in multiple non-contiguous locations.
+	 The Irix 6 ABI has examples of this.  */
+      else if (GET_CODE (valreg) == PARALLEL)
+	{
+	  if (target == 0)
+	    {
+	      /* This will only be assigned once, so it can be readonly.  */
+	      tree nt = build_qualified_type (TREE_TYPE (exp),
+					      (TYPE_QUALS (TREE_TYPE (exp))
+					       | TYPE_QUAL_CONST));
+
+	      target = assign_temp (nt, 0, 1, 1);
+	    }
+
+	  if (! rtx_equal_p (target, valreg))
+	    emit_group_store (target, valreg, TREE_TYPE (exp),
+			      int_size_in_bytes (TREE_TYPE (exp)));
+
+	  /* We can not support sibling calls for this case.  */
+	  sibcall_failure = 1;
+	}
+      else if (target
+	       && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
+	       && GET_MODE (target) == GET_MODE (valreg))
+	{
+	  bool may_overlap = false;
+
+	  /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
+	     reg to a plain register.  */
+	  if (!REG_P (target) || HARD_REGISTER_P (target))
+	    valreg = avoid_likely_spilled_reg (valreg);
+
+	  /* If TARGET is a MEM in the argument area, and we have
+	     saved part of the argument area, then we can't store
+	     directly into TARGET as it may get overwritten when we
+	     restore the argument save area below.  Don't work too
+	     hard though and simply force TARGET to a register if it
+	     is a MEM; the optimizer is quite likely to sort it out.  */
+	  if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
+	    for (i = 0; i < num_actuals; i++)
+	      if (args[i].save_area)
+		{
+		  may_overlap = true;
+		  break;
+		}
+
+	  if (may_overlap)
+	    target = copy_to_reg (valreg);
+	  else
+	    {
+	      /* TARGET and VALREG cannot be equal at this point
+		 because the latter would not have
+		 REG_FUNCTION_VALUE_P true, while the former would if
+		 it were referring to the same register.
+
+		 If they refer to the same register, this move will be
+		 a no-op, except when function inlining is being
+		 done.  */
+	      emit_move_insn (target, valreg);
+
+	      /* If we are setting a MEM, this code must be executed.
+		 Since it is emitted after the call insn, sibcall
+		 optimization cannot be performed in that case.  */
+	      if (MEM_P (target))
+		sibcall_failure = 1;
+	    }
+	}
+      else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
+	{
+	  target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
+
+	  /* We can not support sibling calls for this case.  */
+	  sibcall_failure = 1;
+	}
+      else
+	target = copy_to_reg (avoid_likely_spilled_reg (valreg));
+
+      if (targetm.calls.promote_function_return(funtype))
+	{
+	  /* If we promoted this return value, make the proper SUBREG.
+	     TARGET might be const0_rtx here, so be careful.  */
+	  if (REG_P (target)
+	      && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
+	      && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
+	    {
+	      tree type = TREE_TYPE (exp);
+	      int unsignedp = TYPE_UNSIGNED (type);
+	      int offset = 0;
+	      enum machine_mode pmode;
+
+	      pmode = promote_mode (type, TYPE_MODE (type), &unsignedp, 1);
+	      /* If we don't promote as expected, something is wrong.  */
+	      gcc_assert (GET_MODE (target) == pmode);
+
+	      if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
+		  && (GET_MODE_SIZE (GET_MODE (target))
+		      > GET_MODE_SIZE (TYPE_MODE (type))))
+		{
+		  offset = GET_MODE_SIZE (GET_MODE (target))
+		    - GET_MODE_SIZE (TYPE_MODE (type));
+		  if (! BYTES_BIG_ENDIAN)
+		    offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
+		  else if (! WORDS_BIG_ENDIAN)
+		    offset %= UNITS_PER_WORD;
+		}
+	      target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
+	      SUBREG_PROMOTED_VAR_P (target) = 1;
+	      SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
+	    }
+	}
+
+      /* If size of args is variable or this was a constructor call for a stack
+	 argument, restore saved stack-pointer value.  */
+
+      if (old_stack_level)
+	{
+	  emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
+	  stack_pointer_delta = old_stack_pointer_delta;
+	  pending_stack_adjust = old_pending_adj;
+	  old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
+	  stack_arg_under_construction = old_stack_arg_under_construction;
+	  highest_outgoing_arg_in_use = initial_highest_arg_in_use;
+	  stack_usage_map = initial_stack_usage_map;
+	  sibcall_failure = 1;
+	}
+      else if (ACCUMULATE_OUTGOING_ARGS && pass)
+	{
+#ifdef REG_PARM_STACK_SPACE
+	  if (save_area)
+	    restore_fixed_argument_area (save_area, argblock,
+					 high_to_save, low_to_save);
+#endif
+
+	  /* If we saved any argument areas, restore them.  */
+	  for (i = 0; i < num_actuals; i++)
+	    if (args[i].save_area)
+	      {
+		enum machine_mode save_mode = GET_MODE (args[i].save_area);
+		rtx stack_area
+		  = gen_rtx_MEM (save_mode,
+				 memory_address (save_mode,
+						 XEXP (args[i].stack_slot, 0)));
+
+		if (save_mode != BLKmode)
+		  emit_move_insn (stack_area, args[i].save_area);
+		else
+		  emit_block_move (stack_area, args[i].save_area,
+				   GEN_INT (args[i].locate.size.constant),
+				   BLOCK_OP_CALL_PARM);
+	      }
+
+	  highest_outgoing_arg_in_use = initial_highest_arg_in_use;
+	  stack_usage_map = initial_stack_usage_map;
+	}
+
+      /* If this was alloca, record the new stack level for nonlocal gotos.
+	 Check for the handler slots since we might not have a save area
+	 for non-local gotos.  */
+
+      if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
+	update_nonlocal_goto_save_area ();
+
+      /* Free up storage we no longer need.  */
+      for (i = 0; i < num_actuals; ++i)
+	if (args[i].aligned_regs)
+	  free (args[i].aligned_regs);
+
+      insns = get_insns ();
+      end_sequence ();
+
+      if (pass == 0)
+	{
+	  tail_call_insns = insns;
+
+	  /* Restore the pending stack adjustment now that we have
+	     finished generating the sibling call sequence.  */
+
+	  pending_stack_adjust = save_pending_stack_adjust;
+	  stack_pointer_delta = save_stack_pointer_delta;
+
+	  /* Prepare arg structure for next iteration.  */
+	  for (i = 0; i < num_actuals; i++)
+	    {
+	      args[i].value = 0;
+	      args[i].aligned_regs = 0;
+	      args[i].stack = 0;
+	    }
+
+	  sbitmap_free (stored_args_map);
+	}
+      else
+	{
+	  normal_call_insns = insns;
+
+	  /* Verify that we've deallocated all the stack we used.  */
+	  gcc_assert ((flags & ECF_NORETURN)
+		      || (old_stack_allocated
+			  == stack_pointer_delta - pending_stack_adjust));
+	}
+
+      /* If something prevents making this a sibling call,
+	 zero out the sequence.  */
+      if (sibcall_failure)
+	tail_call_insns = NULL_RTX;
+      else
+	break;
+    }
+
+  /* If tail call production succeeded, we need to remove REG_EQUIV notes on
+     arguments too, as argument area is now clobbered by the call.  */
+  if (tail_call_insns)
+    {
+      emit_insn (tail_call_insns);
+      crtl->tail_call_emit = true;
+    }
+  else
+    emit_insn (normal_call_insns);
+
+  currently_expanding_call--;
+
+  if (stack_usage_map_buf)
+    free (stack_usage_map_buf);
+
+  return target;
+}
+
+/* A sibling call sequence invalidates any REG_EQUIV notes made for
+   this function's incoming arguments.
+
+   At the start of RTL generation we know the only REG_EQUIV notes
+   in the rtl chain are those for incoming arguments, so we can look
+   for REG_EQUIV notes between the start of the function and the
+   NOTE_INSN_FUNCTION_BEG.
+
+   This is (slight) overkill.  We could keep track of the highest
+   argument we clobber and be more selective in removing notes, but it
+   does not seem to be worth the effort.  */
+
+void
+fixup_tail_calls (void)
+{
+  rtx insn;
+
+  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+    {
+      rtx note;
+
+      /* There are never REG_EQUIV notes for the incoming arguments
+	 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it.  */
+      if (NOTE_P (insn)
+	  && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
+	break;
+
+      note = find_reg_note (insn, REG_EQUIV, 0);
+      if (note)
+	remove_note (insn, note);
+      note = find_reg_note (insn, REG_EQUIV, 0);
+      gcc_assert (!note);
+    }
+}
+
+/* Traverse a list of TYPES and expand all complex types into their
+   components.  */
+static tree
+split_complex_types (tree types)
+{
+  tree p;
+
+  /* Before allocating memory, check for the common case of no complex.  */
+  for (p = types; p; p = TREE_CHAIN (p))
+    {
+      tree type = TREE_VALUE (p);
+      if (TREE_CODE (type) == COMPLEX_TYPE
+	  && targetm.calls.split_complex_arg (type))
+	goto found;
+    }
+  return types;
+
+ found:
+  types = copy_list (types);
+
+  for (p = types; p; p = TREE_CHAIN (p))
+    {
+      tree complex_type = TREE_VALUE (p);
+
+      if (TREE_CODE (complex_type) == COMPLEX_TYPE
+	  && targetm.calls.split_complex_arg (complex_type))
+	{
+	  tree next, imag;
+
+	  /* Rewrite complex type with component type.  */
+	  TREE_VALUE (p) = TREE_TYPE (complex_type);
+	  next = TREE_CHAIN (p);
+
+	  /* Add another component type for the imaginary part.  */
+	  imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
+	  TREE_CHAIN (p) = imag;
+	  TREE_CHAIN (imag) = next;
+
+	  /* Skip the newly created node.  */
+	  p = TREE_CHAIN (p);
+	}
+    }
+
+  return types;
+}
+
+/* Output a library call to function FUN (a SYMBOL_REF rtx).
+   The RETVAL parameter specifies whether return value needs to be saved, other
+   parameters are documented in the emit_library_call function below.  */
+
+static rtx
+emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
+			   enum libcall_type fn_type,
+			   enum machine_mode outmode, int nargs, va_list p)
+{
+  /* Total size in bytes of all the stack-parms scanned so far.  */
+  struct args_size args_size;
+  /* Size of arguments before any adjustments (such as rounding).  */
+  struct args_size original_args_size;
+  int argnum;
+  rtx fun;
+  /* Todo, choose the correct decl type of orgfun. Sadly this information
+     isn't present here, so we default to native calling abi here.  */
+  tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
+  tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
+  int inc;
+  int count;
+  rtx argblock = 0;
+  CUMULATIVE_ARGS args_so_far;
+  struct arg
+  {
+    rtx value;
+    enum machine_mode mode;
+    rtx reg;
+    int partial;
+    struct locate_and_pad_arg_data locate;
+    rtx save_area;
+  };
+  struct arg *argvec;
+  int old_inhibit_defer_pop = inhibit_defer_pop;
+  rtx call_fusage = 0;
+  rtx mem_value = 0;
+  rtx valreg;
+  int pcc_struct_value = 0;
+  int struct_value_size = 0;
+  int flags;
+  int reg_parm_stack_space = 0;
+  int needed;
+  rtx before_call;
+  tree tfom;			/* type_for_mode (outmode, 0) */
+
+#ifdef REG_PARM_STACK_SPACE
+  /* Define the boundary of the register parm stack space that needs to be
+     save, if any.  */
+  int low_to_save = 0, high_to_save = 0;
+  rtx save_area = 0;            /* Place that it is saved.  */
+#endif
+
+  /* Size of the stack reserved for parameter registers.  */
+  int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
+  char *initial_stack_usage_map = stack_usage_map;
+  char *stack_usage_map_buf = NULL;
+
+  rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
+
+#ifdef REG_PARM_STACK_SPACE
+  reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
+#endif
+
+  /* By default, library functions can not throw.  */
+  flags = ECF_NOTHROW;
+
+  switch (fn_type)
+    {
+    case LCT_NORMAL:
+      break;
+    case LCT_CONST:
+      flags |= ECF_CONST;
+      break;
+    case LCT_PURE:
+      flags |= ECF_PURE;
+      break;
+    case LCT_NORETURN:
+      flags |= ECF_NORETURN;
+      break;
+    case LCT_THROW:
+      flags = ECF_NORETURN;
+      break;
+    case LCT_RETURNS_TWICE:
+      flags = ECF_RETURNS_TWICE;
+      break;
+    }
+  fun = orgfun;
+
+  /* Ensure current function's preferred stack boundary is at least
+     what we need.  */
+  if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
+    crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
+
+  /* If this kind of value comes back in memory,
+     decide where in memory it should come back.  */
+  if (outmode != VOIDmode)
+    {
+      tfom = lang_hooks.types.type_for_mode (outmode, 0);
+      if (aggregate_value_p (tfom, 0))
+	{
+#ifdef PCC_STATIC_STRUCT_RETURN
+	  rtx pointer_reg
+	    = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
+	  mem_value = gen_rtx_MEM (outmode, pointer_reg);
+	  pcc_struct_value = 1;
+	  if (value == 0)
+	    value = gen_reg_rtx (outmode);
+#else /* not PCC_STATIC_STRUCT_RETURN */
+	  struct_value_size = GET_MODE_SIZE (outmode);
+	  if (value != 0 && MEM_P (value))
+	    mem_value = value;
+	  else
+	    mem_value = assign_temp (tfom, 0, 1, 1);
+#endif
+	  /* This call returns a big structure.  */
+	  flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
+	}
+    }
+  else
+    tfom = void_type_node;
+
+  /* ??? Unfinished: must pass the memory address as an argument.  */
+
+  /* Copy all the libcall-arguments out of the varargs data
+     and into a vector ARGVEC.
+
+     Compute how to pass each argument.  We only support a very small subset
+     of the full argument passing conventions to limit complexity here since
+     library functions shouldn't have many args.  */
+
+  argvec = XALLOCAVEC (struct arg, nargs + 1);
+  memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
+
+#ifdef INIT_CUMULATIVE_LIBCALL_ARGS
+  INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
+#else
+  INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
+#endif
+
+  args_size.constant = 0;
+  args_size.var = 0;
+
+  count = 0;
+
+  push_temp_slots ();
+
+  /* If there's a structure value address to be passed,
+     either pass it in the special place, or pass it as an extra argument.  */
+  if (mem_value && struct_value == 0 && ! pcc_struct_value)
+    {
+      rtx addr = XEXP (mem_value, 0);
+
+      nargs++;
+
+      /* Make sure it is a reasonable operand for a move or push insn.  */
+      if (!REG_P (addr) && !MEM_P (addr)
+	  && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
+	addr = force_operand (addr, NULL_RTX);
+
+      argvec[count].value = addr;
+      argvec[count].mode = Pmode;
+      argvec[count].partial = 0;
+
+      argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
+      gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
+						   NULL_TREE, 1) == 0);
+
+      locate_and_pad_parm (Pmode, NULL_TREE,
+#ifdef STACK_PARMS_IN_REG_PARM_AREA
+			   1,
+#else
+			   argvec[count].reg != 0,
+#endif
+			   0, NULL_TREE, &args_size, &argvec[count].locate);
+
+      if (argvec[count].reg == 0 || argvec[count].partial != 0
+	  || reg_parm_stack_space > 0)
+	args_size.constant += argvec[count].locate.size.constant;
+
+      FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
+
+      count++;
+    }
+
+  for (; count < nargs; count++)
+    {
+      rtx val = va_arg (p, rtx);
+      enum machine_mode mode = va_arg (p, enum machine_mode);
+
+      /* We cannot convert the arg value to the mode the library wants here;
+	 must do it earlier where we know the signedness of the arg.  */
+      gcc_assert (mode != BLKmode
+		  && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
+
+      /* Make sure it is a reasonable operand for a move or push insn.  */
+      if (!REG_P (val) && !MEM_P (val)
+	  && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
+	val = force_operand (val, NULL_RTX);
+
+      if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
+	{
+	  rtx slot;
+	  int must_copy
+	    = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
+
+	  /* If this was a CONST function, it is now PURE since it now
+	     reads memory.  */
+	  if (flags & ECF_CONST)
+	    {
+	      flags &= ~ECF_CONST;
+	      flags |= ECF_PURE;
+	    }
+
+	  if (MEM_P (val) && !must_copy)
+	    slot = val;
+	  else
+	    {
+	      slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
+				  0, 1, 1);
+	      emit_move_insn (slot, val);
+	    }
+
+	  call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
+					   gen_rtx_USE (VOIDmode, slot),
+					   call_fusage);
+	  if (must_copy)
+	    call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
+					     gen_rtx_CLOBBER (VOIDmode,
+							      slot),
+					     call_fusage);
+
+	  mode = Pmode;
+	  val = force_operand (XEXP (slot, 0), NULL_RTX);
+	}
+
+      argvec[count].value = val;
+      argvec[count].mode = mode;
+
+      argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
+
+      argvec[count].partial
+	= targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
+
+      locate_and_pad_parm (mode, NULL_TREE,
+#ifdef STACK_PARMS_IN_REG_PARM_AREA
+			   1,
+#else
+			   argvec[count].reg != 0,
+#endif
+			   argvec[count].partial,
+			   NULL_TREE, &args_size, &argvec[count].locate);
+
+      gcc_assert (!argvec[count].locate.size.var);
+
+      if (argvec[count].reg == 0 || argvec[count].partial != 0
+	  || reg_parm_stack_space > 0)
+	args_size.constant += argvec[count].locate.size.constant;
+
+      FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
+    }
+
+  /* If this machine requires an external definition for library
+     functions, write one out.  */
+  assemble_external_libcall (fun);
+
+  original_args_size = args_size;
+  args_size.constant = (((args_size.constant
+			  + stack_pointer_delta
+			  + STACK_BYTES - 1)
+			  / STACK_BYTES
+			  * STACK_BYTES)
+			 - stack_pointer_delta);
+
+  args_size.constant = MAX (args_size.constant,
+			    reg_parm_stack_space);
+
+  if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
+    args_size.constant -= reg_parm_stack_space;
+
+  if (args_size.constant > crtl->outgoing_args_size)
+    crtl->outgoing_args_size = args_size.constant;
+
+  if (ACCUMULATE_OUTGOING_ARGS)
+    {
+      /* Since the stack pointer will never be pushed, it is possible for
+	 the evaluation of a parm to clobber something we have already
+	 written to the stack.  Since most function calls on RISC machines
+	 do not use the stack, this is uncommon, but must work correctly.
+
+	 Therefore, we save any area of the stack that was already written
+	 and that we are using.  Here we set up to do this by making a new
+	 stack usage map from the old one.
+
+	 Another approach might be to try to reorder the argument
+	 evaluations to avoid this conflicting stack usage.  */
+
+      needed = args_size.constant;
+
+      /* Since we will be writing into the entire argument area, the
+	 map must be allocated for its entire size, not just the part that
+	 is the responsibility of the caller.  */
+      if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
+	needed += reg_parm_stack_space;
+
+#ifdef ARGS_GROW_DOWNWARD
+      highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
+					 needed + 1);
+#else
+      highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
+					 needed);
+#endif
+      stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
+      stack_usage_map = stack_usage_map_buf;
+
+      if (initial_highest_arg_in_use)
+	memcpy (stack_usage_map, initial_stack_usage_map,
+		initial_highest_arg_in_use);
+
+      if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
+	memset (&stack_usage_map[initial_highest_arg_in_use], 0,
+	       highest_outgoing_arg_in_use - initial_highest_arg_in_use);
+      needed = 0;
+
+      /* We must be careful to use virtual regs before they're instantiated,
+	 and real regs afterwards.  Loop optimization, for example, can create
+	 new libcalls after we've instantiated the virtual regs, and if we
+	 use virtuals anyway, they won't match the rtl patterns.  */
+
+      if (virtuals_instantiated)
+	argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
+      else
+	argblock = virtual_outgoing_args_rtx;
+    }
+  else
+    {
+      if (!PUSH_ARGS)
+	argblock = push_block (GEN_INT (args_size.constant), 0, 0);
+    }
+
+  /* If we push args individually in reverse order, perform stack alignment
+     before the first push (the last arg).  */
+  if (argblock == 0 && PUSH_ARGS_REVERSED)
+    anti_adjust_stack (GEN_INT (args_size.constant
+				- original_args_size.constant));
+
+  if (PUSH_ARGS_REVERSED)
+    {
+      inc = -1;
+      argnum = nargs - 1;
+    }
+  else
+    {
+      inc = 1;
+      argnum = 0;
+    }
+
+#ifdef REG_PARM_STACK_SPACE
+  if (ACCUMULATE_OUTGOING_ARGS)
+    {
+      /* The argument list is the property of the called routine and it
+	 may clobber it.  If the fixed area has been used for previous
+	 parameters, we must save and restore it.  */
+      save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
+					    &low_to_save, &high_to_save);
+    }
+#endif
+
+  /* Push the args that need to be pushed.  */
+
+  /* ARGNUM indexes the ARGVEC array in the order in which the arguments
+     are to be pushed.  */
+  for (count = 0; count < nargs; count++, argnum += inc)
+    {
+      enum machine_mode mode = argvec[argnum].mode;
+      rtx val = argvec[argnum].value;
+      rtx reg = argvec[argnum].reg;
+      int partial = argvec[argnum].partial;
+      int lower_bound = 0, upper_bound = 0, i;
+
+      if (! (reg != 0 && partial == 0))
+	{
+	  if (ACCUMULATE_OUTGOING_ARGS)
+	    {
+	      /* If this is being stored into a pre-allocated, fixed-size,
+		 stack area, save any previous data at that location.  */
+
+#ifdef ARGS_GROW_DOWNWARD
+	      /* stack_slot is negative, but we want to index stack_usage_map
+		 with positive values.  */
+	      upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
+	      lower_bound = upper_bound - argvec[argnum].locate.size.constant;
+#else
+	      lower_bound = argvec[argnum].locate.slot_offset.constant;
+	      upper_bound = lower_bound + argvec[argnum].locate.size.constant;
+#endif
+
+	      i = lower_bound;
+	      /* Don't worry about things in the fixed argument area;
+		 it has already been saved.  */
+	      if (i < reg_parm_stack_space)
+		i = reg_parm_stack_space;
+	      while (i < upper_bound && stack_usage_map[i] == 0)
+		i++;
+
+	      if (i < upper_bound)
+		{
+		  /* We need to make a save area.  */
+		  unsigned int size
+		    = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
+		  enum machine_mode save_mode
+		    = mode_for_size (size, MODE_INT, 1);
+		  rtx adr
+		    = plus_constant (argblock,
+				     argvec[argnum].locate.offset.constant);
+		  rtx stack_area
+		    = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
+
+		  if (save_mode == BLKmode)
+		    {
+		      argvec[argnum].save_area
+			= assign_stack_temp (BLKmode,
+					     argvec[argnum].locate.size.constant,
+					     0);
+
+		      emit_block_move (validize_mem (argvec[argnum].save_area),
+				       stack_area,
+				       GEN_INT (argvec[argnum].locate.size.constant),
+				       BLOCK_OP_CALL_PARM);
+		    }
+		  else
+		    {
+		      argvec[argnum].save_area = gen_reg_rtx (save_mode);
+
+		      emit_move_insn (argvec[argnum].save_area, stack_area);
+		    }
+		}
+	    }
+
+	  emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
+			  partial, reg, 0, argblock,
+			  GEN_INT (argvec[argnum].locate.offset.constant),
+			  reg_parm_stack_space,
+			  ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
+
+	  /* Now mark the segment we just used.  */
+	  if (ACCUMULATE_OUTGOING_ARGS)
+	    for (i = lower_bound; i < upper_bound; i++)
+	      stack_usage_map[i] = 1;
+
+	  NO_DEFER_POP;
+
+	  if ((flags & ECF_CONST)
+	      || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
+	    {
+	      rtx use;
+
+	      /* Indicate argument access so that alias.c knows that these
+		 values are live.  */
+	      if (argblock)
+		use = plus_constant (argblock,
+				     argvec[argnum].locate.offset.constant);
+	      else
+		/* When arguments are pushed, trying to tell alias.c where
+		   exactly this argument is won't work, because the
+		   auto-increment causes confusion.  So we merely indicate
+		   that we access something with a known mode somewhere on
+		   the stack.  */
+		use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
+				    gen_rtx_SCRATCH (Pmode));
+	      use = gen_rtx_MEM (argvec[argnum].mode, use);
+	      use = gen_rtx_USE (VOIDmode, use);
+	      call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
+	    }
+	}
+    }
+
+  /* If we pushed args in forward order, perform stack alignment
+     after pushing the last arg.  */
+  if (argblock == 0 && !PUSH_ARGS_REVERSED)
+    anti_adjust_stack (GEN_INT (args_size.constant
+				- original_args_size.constant));
+
+  if (PUSH_ARGS_REVERSED)
+    argnum = nargs - 1;
+  else
+    argnum = 0;
+
+  fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
+
+  /* Now load any reg parms into their regs.  */
+
+  /* ARGNUM indexes the ARGVEC array in the order in which the arguments
+     are to be pushed.  */
+  for (count = 0; count < nargs; count++, argnum += inc)
+    {
+      enum machine_mode mode = argvec[argnum].mode;
+      rtx val = argvec[argnum].value;
+      rtx reg = argvec[argnum].reg;
+      int partial = argvec[argnum].partial;
+
+      /* Handle calls that pass values in multiple non-contiguous
+	 locations.  The PA64 has examples of this for library calls.  */
+      if (reg != 0 && GET_CODE (reg) == PARALLEL)
+	emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
+      else if (reg != 0 && partial == 0)
+	emit_move_insn (reg, val);
+
+      NO_DEFER_POP;
+    }
+
+  /* Any regs containing parms remain in use through the call.  */
+  for (count = 0; count < nargs; count++)
+    {
+      rtx reg = argvec[count].reg;
+      if (reg != 0 && GET_CODE (reg) == PARALLEL)
+	use_group_regs (&call_fusage, reg);
+      else if (reg != 0)
+        {
+	  int partial = argvec[count].partial;
+	  if (partial)
+	    {
+	      int nregs;
+              gcc_assert (partial % UNITS_PER_WORD == 0);
+	      nregs = partial / UNITS_PER_WORD;
+	      use_regs (&call_fusage, REGNO (reg), nregs);
+	    }
+	  else
+	    use_reg (&call_fusage, reg);
+	}
+    }
+
+  /* Pass the function the address in which to return a structure value.  */
+  if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
+    {
+      emit_move_insn (struct_value,
+		      force_reg (Pmode,
+				 force_operand (XEXP (mem_value, 0),
+						NULL_RTX)));
+      if (REG_P (struct_value))
+	use_reg (&call_fusage, struct_value);
+    }
+
+  /* Don't allow popping to be deferred, since then
+     cse'ing of library calls could delete a call and leave the pop.  */
+  NO_DEFER_POP;
+  valreg = (mem_value == 0 && outmode != VOIDmode
+	    ? hard_libcall_value (outmode) : NULL_RTX);
+
+  /* Stack must be properly aligned now.  */
+  gcc_assert (!(stack_pointer_delta
+		& (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
+
+  before_call = get_last_insn ();
+
+  /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
+     will set inhibit_defer_pop to that value.  */
+  /* The return type is needed to decide how many bytes the function pops.
+     Signedness plays no role in that, so for simplicity, we pretend it's
+     always signed.  We also assume that the list of arguments passed has
+     no impact, so we pretend it is unknown.  */
+
+  emit_call_1 (fun, NULL,
+	       get_identifier (XSTR (orgfun, 0)),
+	       build_function_type (tfom, NULL_TREE),
+	       original_args_size.constant, args_size.constant,
+	       struct_value_size,
+	       FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
+	       valreg,
+	       old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
+
+  /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
+     that it should complain if nonvolatile values are live.  For
+     functions that cannot return, inform flow that control does not
+     fall through.  */
+
+  if (flags & ECF_NORETURN)
+    {
+      /* The barrier note must be emitted
+	 immediately after the CALL_INSN.  Some ports emit more than
+	 just a CALL_INSN above, so we must search for it here.  */
+
+      rtx last = get_last_insn ();
+      while (!CALL_P (last))
+	{
+	  last = PREV_INSN (last);
+	  /* There was no CALL_INSN?  */
+	  gcc_assert (last != before_call);
+	}
+
+      emit_barrier_after (last);
+    }
+
+  /* Now restore inhibit_defer_pop to its actual original value.  */
+  OK_DEFER_POP;
+
+  pop_temp_slots ();
+
+  /* Copy the value to the right place.  */
+  if (outmode != VOIDmode && retval)
+    {
+      if (mem_value)
+	{
+	  if (value == 0)
+	    value = mem_value;
+	  if (value != mem_value)
+	    emit_move_insn (value, mem_value);
+	}
+      else if (GET_CODE (valreg) == PARALLEL)
+	{
+	  if (value == 0)
+	    value = gen_reg_rtx (outmode);
+	  emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
+	}
+      else
+	{
+	  /* Convert to the proper mode if PROMOTE_MODE has been active.  */
+	  if (GET_MODE (valreg) != outmode)
+	    {
+	      int unsignedp = TYPE_UNSIGNED (tfom);
+
+	      gcc_assert (targetm.calls.promote_function_return (tfom));
+	      gcc_assert (promote_mode (tfom, outmode, &unsignedp, 0)
+			  == GET_MODE (valreg));
+
+	      valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
+	    }
+
+	  if (value != 0)
+	    emit_move_insn (value, valreg);
+	  else
+	    value = valreg;
+	}
+    }
+
+  if (ACCUMULATE_OUTGOING_ARGS)
+    {
+#ifdef REG_PARM_STACK_SPACE
+      if (save_area)
+	restore_fixed_argument_area (save_area, argblock,
+				     high_to_save, low_to_save);
+#endif
+
+      /* If we saved any argument areas, restore them.  */
+      for (count = 0; count < nargs; count++)
+	if (argvec[count].save_area)
+	  {
+	    enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
+	    rtx adr = plus_constant (argblock,
+				     argvec[count].locate.offset.constant);
+	    rtx stack_area = gen_rtx_MEM (save_mode,
+					  memory_address (save_mode, adr));
+
+	    if (save_mode == BLKmode)
+	      emit_block_move (stack_area,
+			       validize_mem (argvec[count].save_area),
+			       GEN_INT (argvec[count].locate.size.constant),
+			       BLOCK_OP_CALL_PARM);
+	    else
+	      emit_move_insn (stack_area, argvec[count].save_area);
+	  }
+
+      highest_outgoing_arg_in_use = initial_highest_arg_in_use;
+      stack_usage_map = initial_stack_usage_map;
+    }
+
+  if (stack_usage_map_buf)
+    free (stack_usage_map_buf);
+
+  return value;
+
+}
+
+/* Output a library call to function FUN (a SYMBOL_REF rtx)
+   (emitting the queue unless NO_QUEUE is nonzero),
+   for a value of mode OUTMODE,
+   with NARGS different arguments, passed as alternating rtx values
+   and machine_modes to convert them to.
+
+   FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
+   `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
+   other types of library calls.  */
+
+void
+emit_library_call (rtx orgfun, enum libcall_type fn_type,
+		   enum machine_mode outmode, int nargs, ...)
+{
+  va_list p;
+
+  va_start (p, nargs);
+  emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
+  va_end (p);
+}
+
+/* Like emit_library_call except that an extra argument, VALUE,
+   comes second and says where to store the result.
+   (If VALUE is zero, this function chooses a convenient way
+   to return the value.
+
+   This function returns an rtx for where the value is to be found.
+   If VALUE is nonzero, VALUE is returned.  */
+
+rtx
+emit_library_call_value (rtx orgfun, rtx value,
+			 enum libcall_type fn_type,
+			 enum machine_mode outmode, int nargs, ...)
+{
+  rtx result;
+  va_list p;
+
+  va_start (p, nargs);
+  result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
+				      nargs, p);
+  va_end (p);
+
+  return result;
+}
+
+/* Store a single argument for a function call
+   into the register or memory area where it must be passed.
+   *ARG describes the argument value and where to pass it.
+
+   ARGBLOCK is the address of the stack-block for all the arguments,
+   or 0 on a machine where arguments are pushed individually.
+
+   MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
+   so must be careful about how the stack is used.
+
+   VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
+   argument stack.  This is used if ACCUMULATE_OUTGOING_ARGS to indicate
+   that we need not worry about saving and restoring the stack.
+
+   FNDECL is the declaration of the function we are calling.
+
+   Return nonzero if this arg should cause sibcall failure,
+   zero otherwise.  */
+
+static int
+store_one_arg (struct arg_data *arg, rtx argblock, int flags,
+	       int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
+{
+  tree pval = arg->tree_value;
+  rtx reg = 0;
+  int partial = 0;
+  int used = 0;
+  int i, lower_bound = 0, upper_bound = 0;
+  int sibcall_failure = 0;
+
+  if (TREE_CODE (pval) == ERROR_MARK)
+    return 1;
+
+  /* Push a new temporary level for any temporaries we make for
+     this argument.  */
+  push_temp_slots ();
+
+  if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
+    {
+      /* If this is being stored into a pre-allocated, fixed-size, stack area,
+	 save any previous data at that location.  */
+      if (argblock && ! variable_size && arg->stack)
+	{
+#ifdef ARGS_GROW_DOWNWARD
+	  /* stack_slot is negative, but we want to index stack_usage_map
+	     with positive values.  */
+	  if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
+	    upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
+	  else
+	    upper_bound = 0;
+
+	  lower_bound = upper_bound - arg->locate.size.constant;
+#else
+	  if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
+	    lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
+	  else
+	    lower_bound = 0;
+
+	  upper_bound = lower_bound + arg->locate.size.constant;
+#endif
+
+	  i = lower_bound;
+	  /* Don't worry about things in the fixed argument area;
+	     it has already been saved.  */
+	  if (i < reg_parm_stack_space)
+	    i = reg_parm_stack_space;
+	  while (i < upper_bound && stack_usage_map[i] == 0)
+	    i++;
+
+	  if (i < upper_bound)
+	    {
+	      /* We need to make a save area.  */
+	      unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
+	      enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
+	      rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
+	      rtx stack_area = gen_rtx_MEM (save_mode, adr);
+
+	      if (save_mode == BLKmode)
+		{
+		  tree ot = TREE_TYPE (arg->tree_value);
+		  tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
+						       | TYPE_QUAL_CONST));
+
+		  arg->save_area = assign_temp (nt, 0, 1, 1);
+		  preserve_temp_slots (arg->save_area);
+		  emit_block_move (validize_mem (arg->save_area), stack_area,
+				   GEN_INT (arg->locate.size.constant),
+				   BLOCK_OP_CALL_PARM);
+		}
+	      else
+		{
+		  arg->save_area = gen_reg_rtx (save_mode);
+		  emit_move_insn (arg->save_area, stack_area);
+		}
+	    }
+	}
+    }
+
+  /* If this isn't going to be placed on both the stack and in registers,
+     set up the register and number of words.  */
+  if (! arg->pass_on_stack)
+    {
+      if (flags & ECF_SIBCALL)
+	reg = arg->tail_call_reg;
+      else
+	reg = arg->reg;
+      partial = arg->partial;
+    }
+
+  /* Being passed entirely in a register.  We shouldn't be called in
+     this case.  */
+  gcc_assert (reg == 0 || partial != 0);
+
+  /* If this arg needs special alignment, don't load the registers
+     here.  */
+  if (arg->n_aligned_regs != 0)
+    reg = 0;
+
+  /* If this is being passed partially in a register, we can't evaluate
+     it directly into its stack slot.  Otherwise, we can.  */
+  if (arg->value == 0)
+    {
+      /* stack_arg_under_construction is nonzero if a function argument is
+	 being evaluated directly into the outgoing argument list and
+	 expand_call must take special action to preserve the argument list
+	 if it is called recursively.
+
+	 For scalar function arguments stack_usage_map is sufficient to
+	 determine which stack slots must be saved and restored.  Scalar
+	 arguments in general have pass_on_stack == 0.
+
+	 If this argument is initialized by a function which takes the
+	 address of the argument (a C++ constructor or a C function
+	 returning a BLKmode structure), then stack_usage_map is
+	 insufficient and expand_call must push the stack around the
+	 function call.  Such arguments have pass_on_stack == 1.
+
+	 Note that it is always safe to set stack_arg_under_construction,
+	 but this generates suboptimal code if set when not needed.  */
+
+      if (arg->pass_on_stack)
+	stack_arg_under_construction++;
+
+      arg->value = expand_expr (pval,
+				(partial
+				 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
+				? NULL_RTX : arg->stack,
+				VOIDmode, EXPAND_STACK_PARM);
+
+      /* If we are promoting object (or for any other reason) the mode
+	 doesn't agree, convert the mode.  */
+
+      if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
+	arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
+				    arg->value, arg->unsignedp);
+
+      if (arg->pass_on_stack)
+	stack_arg_under_construction--;
+    }
+
+  /* Check for overlap with already clobbered argument area.  */
+  if ((flags & ECF_SIBCALL)
+      && MEM_P (arg->value)
+      && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
+					       arg->locate.size.constant))
+    sibcall_failure = 1;
+
+  /* Don't allow anything left on stack from computation
+     of argument to alloca.  */
+  if (flags & ECF_MAY_BE_ALLOCA)
+    do_pending_stack_adjust ();
+
+  if (arg->value == arg->stack)
+    /* If the value is already in the stack slot, we are done.  */
+    ;
+  else if (arg->mode != BLKmode)
+    {
+      int size;
+      unsigned int parm_align;
+
+      /* Argument is a scalar, not entirely passed in registers.
+	 (If part is passed in registers, arg->partial says how much
+	 and emit_push_insn will take care of putting it there.)
+
+	 Push it, and if its size is less than the
+	 amount of space allocated to it,
+	 also bump stack pointer by the additional space.
+	 Note that in C the default argument promotions
+	 will prevent such mismatches.  */
+
+      size = GET_MODE_SIZE (arg->mode);
+      /* Compute how much space the push instruction will push.
+	 On many machines, pushing a byte will advance the stack
+	 pointer by a halfword.  */
+#ifdef PUSH_ROUNDING
+      size = PUSH_ROUNDING (size);
+#endif
+      used = size;
+
+      /* Compute how much space the argument should get:
+	 round up to a multiple of the alignment for arguments.  */
+      if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
+	used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
+		 / (PARM_BOUNDARY / BITS_PER_UNIT))
+		* (PARM_BOUNDARY / BITS_PER_UNIT));
+
+      /* Compute the alignment of the pushed argument.  */
+      parm_align = arg->locate.boundary;
+      if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
+	{
+	  int pad = used - size;
+	  if (pad)
+	    {
+	      unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
+	      parm_align = MIN (parm_align, pad_align);
+	    }
+	}
+
+      /* This isn't already where we want it on the stack, so put it there.
+	 This can either be done with push or copy insns.  */
+      emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
+		      parm_align, partial, reg, used - size, argblock,
+		      ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
+		      ARGS_SIZE_RTX (arg->locate.alignment_pad));
+
+      /* Unless this is a partially-in-register argument, the argument is now
+	 in the stack.  */
+      if (partial == 0)
+	arg->value = arg->stack;
+    }
+  else
+    {
+      /* BLKmode, at least partly to be pushed.  */
+
+      unsigned int parm_align;
+      int excess;
+      rtx size_rtx;
+
+      /* Pushing a nonscalar.
+	 If part is passed in registers, PARTIAL says how much
+	 and emit_push_insn will take care of putting it there.  */
+
+      /* Round its size up to a multiple
+	 of the allocation unit for arguments.  */
+
+      if (arg->locate.size.var != 0)
+	{
+	  excess = 0;
+	  size_rtx = ARGS_SIZE_RTX (arg->locate.size);
+	}
+      else
+	{
+	  /* PUSH_ROUNDING has no effect on us, because emit_push_insn
+	     for BLKmode is careful to avoid it.  */
+	  excess = (arg->locate.size.constant
+		    - int_size_in_bytes (TREE_TYPE (pval))
+		    + partial);
+	  size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
+				  NULL_RTX, TYPE_MODE (sizetype), 0);
+	}
+
+      parm_align = arg->locate.boundary;
+
+      /* When an argument is padded down, the block is aligned to
+	 PARM_BOUNDARY, but the actual argument isn't.  */
+      if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
+	{
+	  if (arg->locate.size.var)
+	    parm_align = BITS_PER_UNIT;
+	  else if (excess)
+	    {
+	      unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
+	      parm_align = MIN (parm_align, excess_align);
+	    }
+	}
+
+      if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
+	{
+	  /* emit_push_insn might not work properly if arg->value and
+	     argblock + arg->locate.offset areas overlap.  */
+	  rtx x = arg->value;
+	  int i = 0;
+
+	  if (XEXP (x, 0) == crtl->args.internal_arg_pointer
+	      || (GET_CODE (XEXP (x, 0)) == PLUS
+		  && XEXP (XEXP (x, 0), 0) ==
+		     crtl->args.internal_arg_pointer
+		  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
+	    {
+	      if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
+		i = INTVAL (XEXP (XEXP (x, 0), 1));
+
+	      /* expand_call should ensure this.  */
+	      gcc_assert (!arg->locate.offset.var
+			  && arg->locate.size.var == 0
+			  && GET_CODE (size_rtx) == CONST_INT);
+
+	      if (arg->locate.offset.constant > i)
+		{
+		  if (arg->locate.offset.constant < i + INTVAL (size_rtx))
+		    sibcall_failure = 1;
+		}
+	      else if (arg->locate.offset.constant < i)
+		{
+		  /* Use arg->locate.size.constant instead of size_rtx
+		     because we only care about the part of the argument
+		     on the stack.  */
+		  if (i < (arg->locate.offset.constant
+			   + arg->locate.size.constant))
+		    sibcall_failure = 1;
+		}
+	      else
+		{
+		  /* Even though they appear to be at the same location,
+		     if part of the outgoing argument is in registers,
+		     they aren't really at the same location.  Check for
+		     this by making sure that the incoming size is the
+		     same as the outgoing size.  */
+		  if (arg->locate.size.constant != INTVAL (size_rtx))
+		    sibcall_failure = 1;
+		}
+	    }
+	}
+
+      emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
+		      parm_align, partial, reg, excess, argblock,
+		      ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
+		      ARGS_SIZE_RTX (arg->locate.alignment_pad));
+
+      /* Unless this is a partially-in-register argument, the argument is now
+	 in the stack.
+
+	 ??? Unlike the case above, in which we want the actual
+	 address of the data, so that we can load it directly into a
+	 register, here we want the address of the stack slot, so that
+	 it's properly aligned for word-by-word copying or something
+	 like that.  It's not clear that this is always correct.  */
+      if (partial == 0)
+	arg->value = arg->stack_slot;
+    }
+
+  if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
+    {
+      tree type = TREE_TYPE (arg->tree_value);
+      arg->parallel_value
+	= emit_group_load_into_temps (arg->reg, arg->value, type,
+				      int_size_in_bytes (type));
+    }
+
+  /* Mark all slots this store used.  */
+  if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
+      && argblock && ! variable_size && arg->stack)
+    for (i = lower_bound; i < upper_bound; i++)
+      stack_usage_map[i] = 1;
+
+  /* Once we have pushed something, pops can't safely
+     be deferred during the rest of the arguments.  */
+  NO_DEFER_POP;
+
+  /* Free any temporary slots made in processing this argument.  Show
+     that we might have taken the address of something and pushed that
+     as an operand.  */
+  preserve_temp_slots (NULL_RTX);
+  free_temp_slots ();
+  pop_temp_slots ();
+
+  return sibcall_failure;
+}
+
+/* Nonzero if we do not know how to pass TYPE solely in registers.  */
+
+bool
+must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
+			     const_tree type)
+{
+  if (!type)
+    return false;
+
+  /* If the type has variable size...  */
+  if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
+    return true;
+
+  /* If the type is marked as addressable (it is required
+     to be constructed into the stack)...  */
+  if (TREE_ADDRESSABLE (type))
+    return true;
+
+  return false;
+}
+
+/* Another version of the TARGET_MUST_PASS_IN_STACK hook.  This one
+   takes trailing padding of a structure into account.  */
+/* ??? Should be able to merge these two by examining BLOCK_REG_PADDING.  */
+
+bool
+must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
+{
+  if (!type)
+    return false;
+
+  /* If the type has variable size...  */
+  if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
+    return true;
+
+  /* If the type is marked as addressable (it is required
+     to be constructed into the stack)...  */
+  if (TREE_ADDRESSABLE (type))
+    return true;
+
+  /* If the padding and mode of the type is such that a copy into
+     a register would put it into the wrong part of the register.  */
+  if (mode == BLKmode
+      && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
+      && (FUNCTION_ARG_PADDING (mode, type)
+	  == (BYTES_BIG_ENDIAN ? upward : downward)))
+    return true;
+
+  return false;
+}