diff gcc/cfgloopmanip.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/cfgloopmanip.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,1722 @@
+/* Loop manipulation code for GNU compiler.
+   Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009 Free Software
+   Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "hard-reg-set.h"
+#include "obstack.h"
+#include "basic-block.h"
+#include "cfgloop.h"
+#include "cfglayout.h"
+#include "cfghooks.h"
+#include "output.h"
+#include "tree-flow.h"
+
+static void duplicate_subloops (struct loop *, struct loop *);
+static void copy_loops_to (struct loop **, int,
+			   struct loop *);
+static void loop_redirect_edge (edge, basic_block);
+static void remove_bbs (basic_block *, int);
+static bool rpe_enum_p (const_basic_block, const void *);
+static int find_path (edge, basic_block **);
+static void fix_loop_placements (struct loop *, bool *);
+static bool fix_bb_placement (basic_block);
+static void fix_bb_placements (basic_block, bool *);
+static void unloop (struct loop *, bool *);
+
+#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
+
+/* Checks whether basic block BB is dominated by DATA.  */
+static bool
+rpe_enum_p (const_basic_block bb, const void *data)
+{
+  return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
+}
+
+/* Remove basic blocks BBS.  NBBS is the number of the basic blocks.  */
+
+static void
+remove_bbs (basic_block *bbs, int nbbs)
+{
+  int i;
+
+  for (i = 0; i < nbbs; i++)
+    delete_basic_block (bbs[i]);
+}
+
+/* Find path -- i.e. the basic blocks dominated by edge E and put them
+   into array BBS, that will be allocated large enough to contain them.
+   E->dest must have exactly one predecessor for this to work (it is
+   easy to achieve and we do not put it here because we do not want to
+   alter anything by this function).  The number of basic blocks in the
+   path is returned.  */
+static int
+find_path (edge e, basic_block **bbs)
+{
+  gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
+
+  /* Find bbs in the path.  */
+  *bbs = XCNEWVEC (basic_block, n_basic_blocks);
+  return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
+			     n_basic_blocks, e->dest);
+}
+
+/* Fix placement of basic block BB inside loop hierarchy --
+   Let L be a loop to that BB belongs.  Then every successor of BB must either
+     1) belong to some superloop of loop L, or
+     2) be a header of loop K such that K->outer is superloop of L
+   Returns true if we had to move BB into other loop to enforce this condition,
+   false if the placement of BB was already correct (provided that placements
+   of its successors are correct).  */
+static bool
+fix_bb_placement (basic_block bb)
+{
+  edge e;
+  edge_iterator ei;
+  struct loop *loop = current_loops->tree_root, *act;
+
+  FOR_EACH_EDGE (e, ei, bb->succs)
+    {
+      if (e->dest == EXIT_BLOCK_PTR)
+	continue;
+
+      act = e->dest->loop_father;
+      if (act->header == e->dest)
+	act = loop_outer (act);
+
+      if (flow_loop_nested_p (loop, act))
+	loop = act;
+    }
+
+  if (loop == bb->loop_father)
+    return false;
+
+  remove_bb_from_loops (bb);
+  add_bb_to_loop (bb, loop);
+
+  return true;
+}
+
+/* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
+   of LOOP to that leads at least one exit edge of LOOP, and set it
+   as the immediate superloop of LOOP.  Return true if the immediate superloop
+   of LOOP changed.  */
+
+static bool
+fix_loop_placement (struct loop *loop)
+{
+  unsigned i;
+  edge e;
+  VEC (edge, heap) *exits = get_loop_exit_edges (loop);
+  struct loop *father = current_loops->tree_root, *act;
+  bool ret = false;
+
+  for (i = 0; VEC_iterate (edge, exits, i, e); i++)
+    {
+      act = find_common_loop (loop, e->dest->loop_father);
+      if (flow_loop_nested_p (father, act))
+	father = act;
+    }
+
+  if (father != loop_outer (loop))
+    {
+      for (act = loop_outer (loop); act != father; act = loop_outer (act))
+	act->num_nodes -= loop->num_nodes;
+      flow_loop_tree_node_remove (loop);
+      flow_loop_tree_node_add (father, loop);
+
+      /* The exit edges of LOOP no longer exits its original immediate
+	 superloops; remove them from the appropriate exit lists.  */
+      for (i = 0; VEC_iterate (edge, exits, i, e); i++)
+	rescan_loop_exit (e, false, false);
+
+      ret = true;
+    }
+
+  VEC_free (edge, heap, exits);
+  return ret;
+}
+
+/* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
+   enforce condition condition stated in description of fix_bb_placement. We
+   start from basic block FROM that had some of its successors removed, so that
+   his placement no longer has to be correct, and iteratively fix placement of
+   its predecessors that may change if placement of FROM changed.  Also fix
+   placement of subloops of FROM->loop_father, that might also be altered due
+   to this change; the condition for them is similar, except that instead of
+   successors we consider edges coming out of the loops.
+ 
+   If the changes may invalidate the information about irreducible regions,
+   IRRED_INVALIDATED is set to true.  */
+
+static void
+fix_bb_placements (basic_block from,
+		   bool *irred_invalidated)
+{
+  sbitmap in_queue;
+  basic_block *queue, *qtop, *qbeg, *qend;
+  struct loop *base_loop;
+  edge e;
+
+  /* We pass through blocks back-reachable from FROM, testing whether some
+     of their successors moved to outer loop.  It may be necessary to
+     iterate several times, but it is finite, as we stop unless we move
+     the basic block up the loop structure.  The whole story is a bit
+     more complicated due to presence of subloops, those are moved using
+     fix_loop_placement.  */
+
+  base_loop = from->loop_father;
+  if (base_loop == current_loops->tree_root)
+    return;
+
+  in_queue = sbitmap_alloc (last_basic_block);
+  sbitmap_zero (in_queue);
+  SET_BIT (in_queue, from->index);
+  /* Prevent us from going out of the base_loop.  */
+  SET_BIT (in_queue, base_loop->header->index);
+
+  queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
+  qtop = queue + base_loop->num_nodes + 1;
+  qbeg = queue;
+  qend = queue + 1;
+  *qbeg = from;
+
+  while (qbeg != qend)
+    {
+      edge_iterator ei;
+      from = *qbeg;
+      qbeg++;
+      if (qbeg == qtop)
+	qbeg = queue;
+      RESET_BIT (in_queue, from->index);
+
+      if (from->loop_father->header == from)
+	{
+	  /* Subloop header, maybe move the loop upward.  */
+	  if (!fix_loop_placement (from->loop_father))
+	    continue;
+	}
+      else
+	{
+	  /* Ordinary basic block.  */
+	  if (!fix_bb_placement (from))
+	    continue;
+	}
+
+      FOR_EACH_EDGE (e, ei, from->succs)
+	{
+	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
+	    *irred_invalidated = true;
+	}
+
+      /* Something has changed, insert predecessors into queue.  */
+      FOR_EACH_EDGE (e, ei, from->preds)
+	{
+	  basic_block pred = e->src;
+	  struct loop *nca;
+
+	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
+	    *irred_invalidated = true;
+
+	  if (TEST_BIT (in_queue, pred->index))
+	    continue;
+
+	  /* If it is subloop, then it either was not moved, or
+	     the path up the loop tree from base_loop do not contain
+	     it.  */
+	  nca = find_common_loop (pred->loop_father, base_loop);
+	  if (pred->loop_father != base_loop
+	      && (nca == base_loop
+		  || nca != pred->loop_father))
+	    pred = pred->loop_father->header;
+	  else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
+	    {
+	      /* No point in processing it.  */
+	      continue;
+	    }
+
+	  if (TEST_BIT (in_queue, pred->index))
+	    continue;
+
+	  /* Schedule the basic block.  */
+	  *qend = pred;
+	  qend++;
+	  if (qend == qtop)
+	    qend = queue;
+	  SET_BIT (in_queue, pred->index);
+	}
+    }
+  free (in_queue);
+  free (queue);
+}
+
+/* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
+   and update loop structures and dominators.  Return true if we were able
+   to remove the path, false otherwise (and nothing is affected then).  */
+bool
+remove_path (edge e)
+{
+  edge ae;
+  basic_block *rem_bbs, *bord_bbs, from, bb;
+  VEC (basic_block, heap) *dom_bbs;
+  int i, nrem, n_bord_bbs, nreml;
+  sbitmap seen;
+  bool irred_invalidated = false;
+  struct loop **deleted_loop;
+
+  if (!can_remove_branch_p (e))
+    return false;
+
+  /* Keep track of whether we need to update information about irreducible
+     regions.  This is the case if the removed area is a part of the
+     irreducible region, or if the set of basic blocks that belong to a loop
+     that is inside an irreducible region is changed, or if such a loop is
+     removed.  */
+  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
+    irred_invalidated = true;
+
+  /* We need to check whether basic blocks are dominated by the edge
+     e, but we only have basic block dominators.  This is easy to
+     fix -- when e->dest has exactly one predecessor, this corresponds
+     to blocks dominated by e->dest, if not, split the edge.  */
+  if (!single_pred_p (e->dest))
+    e = single_pred_edge (split_edge (e));
+
+  /* It may happen that by removing path we remove one or more loops
+     we belong to.  In this case first unloop the loops, then proceed
+     normally.   We may assume that e->dest is not a header of any loop,
+     as it now has exactly one predecessor.  */
+  while (loop_outer (e->src->loop_father)
+	 && dominated_by_p (CDI_DOMINATORS,
+			    e->src->loop_father->latch, e->dest))
+    unloop (e->src->loop_father, &irred_invalidated);
+
+  /* Identify the path.  */
+  nrem = find_path (e, &rem_bbs);
+
+  n_bord_bbs = 0;
+  bord_bbs = XCNEWVEC (basic_block, n_basic_blocks);
+  seen = sbitmap_alloc (last_basic_block);
+  sbitmap_zero (seen);
+
+  /* Find "border" hexes -- i.e. those with predecessor in removed path.  */
+  for (i = 0; i < nrem; i++)
+    SET_BIT (seen, rem_bbs[i]->index);
+  for (i = 0; i < nrem; i++)
+    {
+      edge_iterator ei;
+      bb = rem_bbs[i];
+      FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
+	if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
+	  {
+	    SET_BIT (seen, ae->dest->index);
+	    bord_bbs[n_bord_bbs++] = ae->dest;
+	  
+	    if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
+	      irred_invalidated = true;
+	  }
+    }
+
+  /* Remove the path.  */
+  from = e->src;
+  remove_branch (e);
+  dom_bbs = NULL;
+
+  /* Cancel loops contained in the path.  */
+  deleted_loop = XNEWVEC (struct loop *, nrem);
+  nreml = 0;
+  for (i = 0; i < nrem; i++)
+    if (rem_bbs[i]->loop_father->header == rem_bbs[i])
+      deleted_loop[nreml++] = rem_bbs[i]->loop_father;
+
+  for (i = 0; i < nreml; i++)
+    cancel_loop_tree (deleted_loop[i]);
+  free (deleted_loop);
+
+  remove_bbs (rem_bbs, nrem);
+  free (rem_bbs);
+
+  /* Find blocks whose dominators may be affected.  */
+  sbitmap_zero (seen);
+  for (i = 0; i < n_bord_bbs; i++)
+    {
+      basic_block ldom;
+
+      bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
+      if (TEST_BIT (seen, bb->index))
+	continue;
+      SET_BIT (seen, bb->index);
+
+      for (ldom = first_dom_son (CDI_DOMINATORS, bb);
+	   ldom;
+	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
+	if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
+	  VEC_safe_push (basic_block, heap, dom_bbs, ldom);
+    }
+
+  free (seen);
+
+  /* Recount dominators.  */
+  iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
+  VEC_free (basic_block, heap, dom_bbs);
+  free (bord_bbs);
+
+  /* Fix placements of basic blocks inside loops and the placement of
+     loops in the loop tree.  */
+  fix_bb_placements (from, &irred_invalidated);
+  fix_loop_placements (from->loop_father, &irred_invalidated);
+
+  if (irred_invalidated
+      && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
+    mark_irreducible_loops ();
+
+  return true;
+}
+
+/* Creates place for a new LOOP in loops structure.  */
+
+static void
+place_new_loop (struct loop *loop)
+{
+  loop->num = number_of_loops ();
+  VEC_safe_push (loop_p, gc, current_loops->larray, loop);
+}
+
+/* Given LOOP structure with filled header and latch, find the body of the
+   corresponding loop and add it to loops tree.  Insert the LOOP as a son of
+   outer.  */
+
+void
+add_loop (struct loop *loop, struct loop *outer)
+{
+  basic_block *bbs;
+  int i, n;
+  struct loop *subloop;
+  edge e;
+  edge_iterator ei;
+
+  /* Add it to loop structure.  */
+  place_new_loop (loop);
+  flow_loop_tree_node_add (outer, loop);
+
+  /* Find its nodes.  */
+  bbs = XNEWVEC (basic_block, n_basic_blocks);
+  n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
+
+  for (i = 0; i < n; i++)
+    {
+      if (bbs[i]->loop_father == outer)
+	{
+	  remove_bb_from_loops (bbs[i]);
+	  add_bb_to_loop (bbs[i], loop);
+	  continue;
+	}
+
+      loop->num_nodes++;
+
+      /* If we find a direct subloop of OUTER, move it to LOOP.  */
+      subloop = bbs[i]->loop_father;
+      if (loop_outer (subloop) == outer
+	  && subloop->header == bbs[i])
+	{
+	  flow_loop_tree_node_remove (subloop);
+	  flow_loop_tree_node_add (loop, subloop);
+	}
+    }
+
+  /* Update the information about loop exit edges.  */
+  for (i = 0; i < n; i++)
+    {
+      FOR_EACH_EDGE (e, ei, bbs[i]->succs)
+	{
+	  rescan_loop_exit (e, false, false);
+	}
+    }
+
+  free (bbs);
+}
+
+/* Multiply all frequencies in LOOP by NUM/DEN.  */
+void
+scale_loop_frequencies (struct loop *loop, int num, int den)
+{
+  basic_block *bbs;
+
+  bbs = get_loop_body (loop);
+  scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
+  free (bbs);
+}
+
+/* Recompute dominance information for basic blocks outside LOOP.  */
+
+static void
+update_dominators_in_loop (struct loop *loop)
+{
+  VEC (basic_block, heap) *dom_bbs = NULL;
+  sbitmap seen;
+  basic_block *body;
+  unsigned i;
+
+  seen = sbitmap_alloc (last_basic_block);
+  sbitmap_zero (seen);
+  body = get_loop_body (loop);
+
+  for (i = 0; i < loop->num_nodes; i++)
+    SET_BIT (seen, body[i]->index);
+
+  for (i = 0; i < loop->num_nodes; i++)
+    {
+      basic_block ldom;
+
+      for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
+	   ldom;
+	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
+	if (!TEST_BIT (seen, ldom->index))
+	  {
+	    SET_BIT (seen, ldom->index);
+	    VEC_safe_push (basic_block, heap, dom_bbs, ldom);
+	  }
+    }
+
+  iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
+  free (body);
+  free (seen);
+  VEC_free (basic_block, heap, dom_bbs);
+}
+
+/* Creates an if region as shown above. CONDITION is used to create
+   the test for the if. 
+
+   |
+   |     -------------                 -------------
+   |     |  pred_bb  |                 |  pred_bb  |
+   |     -------------                 -------------
+   |           |                             |
+   |           |                             | ENTRY_EDGE
+   |           | ENTRY_EDGE                  V
+   |           |             ====>     -------------
+   |           |                       |  cond_bb  |
+   |           |                       | CONDITION |
+   |           |                       -------------
+   |           V                        /         \
+   |     -------------         e_false /           \ e_true
+   |     |  succ_bb  |                V             V
+   |     -------------         -----------       -----------
+   |                           | false_bb |      | true_bb |
+   |                           -----------       -----------
+   |                                   \           /
+   |                                    \         /
+   |                                     V       V
+   |                                   -------------
+   |                                   |  join_bb  |
+   |                                   -------------
+   |                                         | exit_edge (result)
+   |                                         V
+   |                                    -----------
+   |                                    | succ_bb |
+   |                                    -----------
+   |
+ */
+
+edge
+create_empty_if_region_on_edge (edge entry_edge, tree condition)
+{
+
+  basic_block succ_bb, cond_bb, true_bb, false_bb, join_bb;
+  edge e_true, e_false, exit_edge;
+  gimple cond_stmt;
+  tree simple_cond;
+  gimple_stmt_iterator gsi;
+
+  succ_bb = entry_edge->dest;
+  cond_bb = split_edge (entry_edge);
+  
+  /* Insert condition in cond_bb.  */
+  gsi = gsi_last_bb (cond_bb);
+  simple_cond =
+    force_gimple_operand_gsi (&gsi, condition, true, NULL,
+			      false, GSI_NEW_STMT);
+  cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
+  gsi = gsi_last_bb (cond_bb);
+  gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
+  
+  join_bb = split_edge (single_succ_edge (cond_bb));
+
+  e_true = single_succ_edge (cond_bb);
+  true_bb = split_edge (e_true);
+
+  e_false = make_edge (cond_bb, join_bb, 0);
+  false_bb = split_edge (e_false);
+
+  e_true->flags &= ~EDGE_FALLTHRU;
+  e_true->flags |= EDGE_TRUE_VALUE;
+  e_false->flags &= ~EDGE_FALLTHRU;
+  e_false->flags |= EDGE_FALSE_VALUE;
+
+  set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
+  set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
+  set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
+  set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
+
+  exit_edge = single_succ_edge (join_bb);
+
+  if (single_pred_p (exit_edge->dest))
+    set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
+
+  return exit_edge;
+}
+
+/* create_empty_loop_on_edge
+   |
+   |     -------------                 ------------------------
+   |     |  pred_bb  |                 |  pred_bb              |
+   |     -------------                 |  IV_0 = INITIAL_VALUE |
+   |           |                       ------------------------
+   |           |                       ______    | ENTRY_EDGE
+   |           | ENTRY_EDGE           /      V   V
+   |           |             ====>   |     -----------------------------
+   |           |                     |     | IV_BEFORE = phi (IV_0, IV) |
+   |           |                     |     | loop_header                |
+   |           V                     |     | IV_BEFORE <= UPPER_BOUND   |
+   |     -------------               |     -----------------------\-----
+   |     |  succ_bb  |               |         |                   \
+   |     -------------               |         |                    \ exit_e
+   |                                 |         V                     V---------
+   |                                 |      --------------           | succ_bb |
+   |                                 |      | loop_latch  |          ----------
+   |                                 |      |IV = IV_BEFORE + STRIDE
+   |                                 |      --------------
+   |                                  \       /
+   |                                   \ ___ /
+
+   Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
+   that is used before the increment of IV. IV_BEFORE should be used for 
+   adding code to the body that uses the IV.  OUTER is the outer loop in
+   which the new loop should be inserted.  */
+
+struct loop *
+create_empty_loop_on_edge (edge entry_edge, 
+			   tree initial_value,
+			   tree stride, tree upper_bound,
+			   tree iv,
+			   tree *iv_before,
+			   struct loop *outer)
+{
+  basic_block loop_header, loop_latch, succ_bb, pred_bb;
+  struct loop *loop;
+  int freq;
+  gcov_type cnt;
+  gimple_stmt_iterator gsi;
+  bool insert_after;
+  gimple_seq stmts;
+  gimple cond_expr;
+  tree exit_test;
+  edge exit_e;
+  int prob;
+  tree upper_bound_gimplified;
+  
+  gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
+
+  /* Create header, latch and wire up the loop.  */
+  pred_bb = entry_edge->src;
+  loop_header = split_edge (entry_edge);
+  loop_latch = split_edge (single_succ_edge (loop_header));
+  succ_bb = single_succ (loop_latch);
+  make_edge (loop_header, succ_bb, 0);
+  redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
+
+  /* Set immediate dominator information.  */
+  set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
+  set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
+  set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
+
+  /* Initialize a loop structure and put it in a loop hierarchy.  */
+  loop = alloc_loop ();
+  loop->header = loop_header;
+  loop->latch = loop_latch;
+  add_loop (loop, outer);
+
+  /* TODO: Fix frequencies and counts.  */
+  freq = EDGE_FREQUENCY (entry_edge);
+  cnt = entry_edge->count;
+
+  prob = REG_BR_PROB_BASE / 2;
+
+  scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
+
+  /* Update dominators.  */
+  update_dominators_in_loop (loop);
+
+  /* Construct IV code in loop.  */
+  initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
+  if (stmts)
+    {
+      gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
+      gsi_commit_edge_inserts ();
+    }
+
+  standard_iv_increment_position (loop, &gsi, &insert_after);
+  create_iv (initial_value, stride, iv, loop, &gsi, insert_after,
+	     iv_before, NULL);
+
+  /* Modify edge flags.  */
+  exit_e = single_exit (loop);
+  exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
+  single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
+
+  gsi = gsi_last_bb (exit_e->src);
+
+  upper_bound_gimplified = 
+    force_gimple_operand_gsi (&gsi, upper_bound, true, NULL,
+			      false, GSI_NEW_STMT);
+  gsi = gsi_last_bb (exit_e->src);
+  
+  cond_expr = gimple_build_cond 
+    (LE_EXPR, *iv_before, upper_bound_gimplified, NULL_TREE, NULL_TREE);
+
+  exit_test = gimple_cond_lhs (cond_expr);
+  exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
+					false, GSI_NEW_STMT);
+  gimple_cond_set_lhs (cond_expr, exit_test);
+  gsi = gsi_last_bb (exit_e->src);
+  gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
+
+  return loop;
+}
+
+/* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
+   latch to header and update loop tree and dominators
+   accordingly. Everything between them plus LATCH_EDGE destination must
+   be dominated by HEADER_EDGE destination, and back-reachable from
+   LATCH_EDGE source.  HEADER_EDGE is redirected to basic block SWITCH_BB,
+   FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
+   TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
+   Returns the newly created loop.  Frequencies and counts in the new loop
+   are scaled by FALSE_SCALE and in the old one by TRUE_SCALE.  */
+
+struct loop *
+loopify (edge latch_edge, edge header_edge,
+	 basic_block switch_bb, edge true_edge, edge false_edge,
+	 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
+{
+  basic_block succ_bb = latch_edge->dest;
+  basic_block pred_bb = header_edge->src;
+  struct loop *loop = alloc_loop ();
+  struct loop *outer = loop_outer (succ_bb->loop_father);
+  int freq;
+  gcov_type cnt;
+  edge e;
+  edge_iterator ei;
+
+  loop->header = header_edge->dest;
+  loop->latch = latch_edge->src;
+
+  freq = EDGE_FREQUENCY (header_edge);
+  cnt = header_edge->count;
+
+  /* Redirect edges.  */
+  loop_redirect_edge (latch_edge, loop->header);
+  loop_redirect_edge (true_edge, succ_bb);
+
+  /* During loop versioning, one of the switch_bb edge is already properly
+     set. Do not redirect it again unless redirect_all_edges is true.  */
+  if (redirect_all_edges)
+    {
+      loop_redirect_edge (header_edge, switch_bb);
+      loop_redirect_edge (false_edge, loop->header);
+
+      /* Update dominators.  */
+      set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
+      set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
+    }
+
+  set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
+
+  /* Compute new loop.  */
+  add_loop (loop, outer);
+
+  /* Add switch_bb to appropriate loop.  */
+  if (switch_bb->loop_father)
+    remove_bb_from_loops (switch_bb);
+  add_bb_to_loop (switch_bb, outer);
+
+  /* Fix frequencies.  */
+  if (redirect_all_edges)
+    {
+      switch_bb->frequency = freq;
+      switch_bb->count = cnt;
+      FOR_EACH_EDGE (e, ei, switch_bb->succs)
+	{
+	  e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
+	}
+    }
+  scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
+  scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
+  update_dominators_in_loop (loop);
+
+  return loop;
+}
+
+/* Remove the latch edge of a LOOP and update loops to indicate that
+   the LOOP was removed.  After this function, original loop latch will
+   have no successor, which caller is expected to fix somehow.
+
+   If this may cause the information about irreducible regions to become
+   invalid, IRRED_INVALIDATED is set to true.  */
+
+static void
+unloop (struct loop *loop, bool *irred_invalidated)
+{
+  basic_block *body;
+  struct loop *ploop;
+  unsigned i, n;
+  basic_block latch = loop->latch;
+  bool dummy = false;
+
+  if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
+    *irred_invalidated = true;
+
+  /* This is relatively straightforward.  The dominators are unchanged, as
+     loop header dominates loop latch, so the only thing we have to care of
+     is the placement of loops and basic blocks inside the loop tree.  We
+     move them all to the loop->outer, and then let fix_bb_placements do
+     its work.  */
+
+  body = get_loop_body (loop);
+  n = loop->num_nodes;
+  for (i = 0; i < n; i++)
+    if (body[i]->loop_father == loop)
+      {
+	remove_bb_from_loops (body[i]);
+	add_bb_to_loop (body[i], loop_outer (loop));
+      }
+  free(body);
+
+  while (loop->inner)
+    {
+      ploop = loop->inner;
+      flow_loop_tree_node_remove (ploop);
+      flow_loop_tree_node_add (loop_outer (loop), ploop);
+    }
+
+  /* Remove the loop and free its data.  */
+  delete_loop (loop);
+
+  remove_edge (single_succ_edge (latch));
+
+  /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
+     there is an irreducible region inside the cancelled loop, the flags will
+     be still correct.  */
+  fix_bb_placements (latch, &dummy);
+}
+
+/* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
+   condition stated in description of fix_loop_placement holds for them.
+   It is used in case when we removed some edges coming out of LOOP, which
+   may cause the right placement of LOOP inside loop tree to change.
+ 
+   IRRED_INVALIDATED is set to true if a change in the loop structures might
+   invalidate the information about irreducible regions.  */
+
+static void
+fix_loop_placements (struct loop *loop, bool *irred_invalidated)
+{
+  struct loop *outer;
+
+  while (loop_outer (loop))
+    {
+      outer = loop_outer (loop);
+      if (!fix_loop_placement (loop))
+	break;
+
+      /* Changing the placement of a loop in the loop tree may alter the
+	 validity of condition 2) of the description of fix_bb_placement
+	 for its preheader, because the successor is the header and belongs
+	 to the loop.  So call fix_bb_placements to fix up the placement
+	 of the preheader and (possibly) of its predecessors.  */
+      fix_bb_placements (loop_preheader_edge (loop)->src,
+			 irred_invalidated);
+      loop = outer;
+    }
+}
+
+/* Copies copy of LOOP as subloop of TARGET loop, placing newly
+   created loop into loops structure.  */
+struct loop *
+duplicate_loop (struct loop *loop, struct loop *target)
+{
+  struct loop *cloop;
+  cloop = alloc_loop ();
+  place_new_loop (cloop);
+
+  /* Mark the new loop as copy of LOOP.  */
+  set_loop_copy (loop, cloop);
+
+  /* Add it to target.  */
+  flow_loop_tree_node_add (target, cloop);
+
+  return cloop;
+}
+
+/* Copies structure of subloops of LOOP into TARGET loop, placing
+   newly created loops into loop tree.  */
+static void
+duplicate_subloops (struct loop *loop, struct loop *target)
+{
+  struct loop *aloop, *cloop;
+
+  for (aloop = loop->inner; aloop; aloop = aloop->next)
+    {
+      cloop = duplicate_loop (aloop, target);
+      duplicate_subloops (aloop, cloop);
+    }
+}
+
+/* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
+   into TARGET loop, placing newly created loops into loop tree.  */
+static void
+copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
+{
+  struct loop *aloop;
+  int i;
+
+  for (i = 0; i < n; i++)
+    {
+      aloop = duplicate_loop (copied_loops[i], target);
+      duplicate_subloops (copied_loops[i], aloop);
+    }
+}
+
+/* Redirects edge E to basic block DEST.  */
+static void
+loop_redirect_edge (edge e, basic_block dest)
+{
+  if (e->dest == dest)
+    return;
+
+  redirect_edge_and_branch_force (e, dest);
+}
+
+/* Check whether LOOP's body can be duplicated.  */
+bool
+can_duplicate_loop_p (const struct loop *loop)
+{
+  int ret;
+  basic_block *bbs = get_loop_body (loop);
+
+  ret = can_copy_bbs_p (bbs, loop->num_nodes);
+  free (bbs);
+
+  return ret;
+}
+
+/* Sets probability and count of edge E to zero.  The probability and count
+   is redistributed evenly to the remaining edges coming from E->src.  */
+
+static void
+set_zero_probability (edge e)
+{
+  basic_block bb = e->src;
+  edge_iterator ei;
+  edge ae, last = NULL;
+  unsigned n = EDGE_COUNT (bb->succs);
+  gcov_type cnt = e->count, cnt1;
+  unsigned prob = e->probability, prob1;
+
+  gcc_assert (n > 1);
+  cnt1 = cnt / (n - 1);
+  prob1 = prob / (n - 1);
+
+  FOR_EACH_EDGE (ae, ei, bb->succs)
+    {
+      if (ae == e)
+	continue;
+
+      ae->probability += prob1;
+      ae->count += cnt1;
+      last = ae;
+    }
+
+  /* Move the rest to one of the edges.  */
+  last->probability += prob % (n - 1);
+  last->count += cnt % (n - 1);
+
+  e->probability = 0;
+  e->count = 0;
+}
+
+/* Duplicates body of LOOP to given edge E NDUPL times.  Takes care of updating
+   loop structure and dominators.  E's destination must be LOOP header for
+   this to work, i.e. it must be entry or latch edge of this loop; these are
+   unique, as the loops must have preheaders for this function to work
+   correctly (in case E is latch, the function unrolls the loop, if E is entry
+   edge, it peels the loop).  Store edges created by copying ORIG edge from
+   copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
+   original LOOP body, the other copies are numbered in order given by control
+   flow through them) into TO_REMOVE array.  Returns false if duplication is
+   impossible.  */
+
+bool
+duplicate_loop_to_header_edge (struct loop *loop, edge e,
+			       unsigned int ndupl, sbitmap wont_exit,
+			       edge orig, VEC (edge, heap) **to_remove,
+			       int flags)
+{
+  struct loop *target, *aloop;
+  struct loop **orig_loops;
+  unsigned n_orig_loops;
+  basic_block header = loop->header, latch = loop->latch;
+  basic_block *new_bbs, *bbs, *first_active;
+  basic_block new_bb, bb, first_active_latch = NULL;
+  edge ae, latch_edge;
+  edge spec_edges[2], new_spec_edges[2];
+#define SE_LATCH 0
+#define SE_ORIG 1
+  unsigned i, j, n;
+  int is_latch = (latch == e->src);
+  int scale_act = 0, *scale_step = NULL, scale_main = 0;
+  int scale_after_exit = 0;
+  int p, freq_in, freq_le, freq_out_orig;
+  int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
+  int add_irreducible_flag;
+  basic_block place_after;
+  bitmap bbs_to_scale = NULL;
+  bitmap_iterator bi;
+
+  gcc_assert (e->dest == loop->header);
+  gcc_assert (ndupl > 0);
+
+  if (orig)
+    {
+      /* Orig must be edge out of the loop.  */
+      gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
+      gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
+    }
+
+  n = loop->num_nodes;
+  bbs = get_loop_body_in_dom_order (loop);
+  gcc_assert (bbs[0] == loop->header);
+  gcc_assert (bbs[n  - 1] == loop->latch);
+
+  /* Check whether duplication is possible.  */
+  if (!can_copy_bbs_p (bbs, loop->num_nodes))
+    {
+      free (bbs);
+      return false;
+    }
+  new_bbs = XNEWVEC (basic_block, loop->num_nodes);
+
+  /* In case we are doing loop peeling and the loop is in the middle of
+     irreducible region, the peeled copies will be inside it too.  */
+  add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
+  gcc_assert (!is_latch || !add_irreducible_flag);
+
+  /* Find edge from latch.  */
+  latch_edge = loop_latch_edge (loop);
+
+  if (flags & DLTHE_FLAG_UPDATE_FREQ)
+    {
+      /* Calculate coefficients by that we have to scale frequencies
+	 of duplicated loop bodies.  */
+      freq_in = header->frequency;
+      freq_le = EDGE_FREQUENCY (latch_edge);
+      if (freq_in == 0)
+	freq_in = 1;
+      if (freq_in < freq_le)
+	freq_in = freq_le;
+      freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
+      if (freq_out_orig > freq_in - freq_le)
+	freq_out_orig = freq_in - freq_le;
+      prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
+      prob_pass_wont_exit =
+	      RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
+
+      if (orig
+	  && REG_BR_PROB_BASE - orig->probability != 0)
+	{
+	  /* The blocks that are dominated by a removed exit edge ORIG have
+	     frequencies scaled by this.  */
+	  scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
+				   REG_BR_PROB_BASE - orig->probability);
+	  bbs_to_scale = BITMAP_ALLOC (NULL);
+	  for (i = 0; i < n; i++)
+	    {
+	      if (bbs[i] != orig->src
+		  && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
+		bitmap_set_bit (bbs_to_scale, i);
+	    }
+	}
+
+      scale_step = XNEWVEC (int, ndupl);
+
+      for (i = 1; i <= ndupl; i++)
+	scale_step[i - 1] = TEST_BIT (wont_exit, i)
+				? prob_pass_wont_exit
+				: prob_pass_thru;
+
+      /* Complete peeling is special as the probability of exit in last
+	 copy becomes 1.  */
+      if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
+	{
+	  int wanted_freq = EDGE_FREQUENCY (e);
+
+	  if (wanted_freq > freq_in)
+	    wanted_freq = freq_in;
+
+	  gcc_assert (!is_latch);
+	  /* First copy has frequency of incoming edge.  Each subsequent
+	     frequency should be reduced by prob_pass_wont_exit.  Caller
+	     should've managed the flags so all except for original loop
+	     has won't exist set.  */
+	  scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
+	  /* Now simulate the duplication adjustments and compute header
+	     frequency of the last copy.  */
+	  for (i = 0; i < ndupl; i++)
+	    wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
+	  scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
+	}
+      else if (is_latch)
+	{
+	  prob_pass_main = TEST_BIT (wont_exit, 0)
+				? prob_pass_wont_exit
+				: prob_pass_thru;
+	  p = prob_pass_main;
+	  scale_main = REG_BR_PROB_BASE;
+	  for (i = 0; i < ndupl; i++)
+	    {
+	      scale_main += p;
+	      p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
+	    }
+	  scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
+	  scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
+	}
+      else
+	{
+	  scale_main = REG_BR_PROB_BASE;
+	  for (i = 0; i < ndupl; i++)
+	    scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
+	  scale_act = REG_BR_PROB_BASE - prob_pass_thru;
+	}
+      for (i = 0; i < ndupl; i++)
+	gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
+      gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
+		  && scale_act >= 0  && scale_act <= REG_BR_PROB_BASE);
+    }
+
+  /* Loop the new bbs will belong to.  */
+  target = e->src->loop_father;
+
+  /* Original loops.  */
+  n_orig_loops = 0;
+  for (aloop = loop->inner; aloop; aloop = aloop->next)
+    n_orig_loops++;
+  orig_loops = XCNEWVEC (struct loop *, n_orig_loops);
+  for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
+    orig_loops[i] = aloop;
+
+  set_loop_copy (loop, target);
+
+  first_active = XNEWVEC (basic_block, n);
+  if (is_latch)
+    {
+      memcpy (first_active, bbs, n * sizeof (basic_block));
+      first_active_latch = latch;
+    }
+
+  spec_edges[SE_ORIG] = orig;
+  spec_edges[SE_LATCH] = latch_edge;
+
+  place_after = e->src;
+  for (j = 0; j < ndupl; j++)
+    {
+      /* Copy loops.  */
+      copy_loops_to (orig_loops, n_orig_loops, target);
+
+      /* Copy bbs.  */
+      copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
+		place_after);
+      place_after = new_spec_edges[SE_LATCH]->src;
+
+      if (flags & DLTHE_RECORD_COPY_NUMBER)
+	for (i = 0; i < n; i++)
+	  {
+	    gcc_assert (!new_bbs[i]->aux);
+	    new_bbs[i]->aux = (void *)(size_t)(j + 1);
+	  }
+
+      /* Note whether the blocks and edges belong to an irreducible loop.  */
+      if (add_irreducible_flag)
+	{
+	  for (i = 0; i < n; i++)
+	    new_bbs[i]->flags |= BB_DUPLICATED;
+	  for (i = 0; i < n; i++)
+	    {
+	      edge_iterator ei;
+	      new_bb = new_bbs[i];
+	      if (new_bb->loop_father == target)
+		new_bb->flags |= BB_IRREDUCIBLE_LOOP;
+
+	      FOR_EACH_EDGE (ae, ei, new_bb->succs)
+		if ((ae->dest->flags & BB_DUPLICATED)
+		    && (ae->src->loop_father == target
+			|| ae->dest->loop_father == target))
+		  ae->flags |= EDGE_IRREDUCIBLE_LOOP;
+	    }
+	  for (i = 0; i < n; i++)
+	    new_bbs[i]->flags &= ~BB_DUPLICATED;
+	}
+
+      /* Redirect the special edges.  */
+      if (is_latch)
+	{
+	  redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
+	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
+					  loop->header);
+	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
+	  latch = loop->latch = new_bbs[n - 1];
+	  e = latch_edge = new_spec_edges[SE_LATCH];
+	}
+      else
+	{
+	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
+					  loop->header);
+	  redirect_edge_and_branch_force (e, new_bbs[0]);
+	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
+	  e = new_spec_edges[SE_LATCH];
+	}
+
+      /* Record exit edge in this copy.  */
+      if (orig && TEST_BIT (wont_exit, j + 1))
+	{
+	  if (to_remove)
+	    VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
+	  set_zero_probability (new_spec_edges[SE_ORIG]);
+
+	  /* Scale the frequencies of the blocks dominated by the exit.  */
+	  if (bbs_to_scale)
+	    {
+	      EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
+		{
+		  scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
+					     REG_BR_PROB_BASE);
+		}
+	    }
+	}
+
+      /* Record the first copy in the control flow order if it is not
+	 the original loop (i.e. in case of peeling).  */
+      if (!first_active_latch)
+	{
+	  memcpy (first_active, new_bbs, n * sizeof (basic_block));
+	  first_active_latch = new_bbs[n - 1];
+	}
+
+      /* Set counts and frequencies.  */
+      if (flags & DLTHE_FLAG_UPDATE_FREQ)
+	{
+	  scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
+	  scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
+	}
+    }
+  free (new_bbs);
+  free (orig_loops);
+
+  /* Record the exit edge in the original loop body, and update the frequencies.  */
+  if (orig && TEST_BIT (wont_exit, 0))
+    {
+      if (to_remove)
+	VEC_safe_push (edge, heap, *to_remove, orig);
+      set_zero_probability (orig);
+
+      /* Scale the frequencies of the blocks dominated by the exit.  */
+      if (bbs_to_scale)
+	{
+	  EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
+	    {
+	      scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
+					 REG_BR_PROB_BASE);
+	    }
+	}
+    }
+
+  /* Update the original loop.  */
+  if (!is_latch)
+    set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
+  if (flags & DLTHE_FLAG_UPDATE_FREQ)
+    {
+      scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
+      free (scale_step);
+    }
+
+  /* Update dominators of outer blocks if affected.  */
+  for (i = 0; i < n; i++)
+    {
+      basic_block dominated, dom_bb;
+      VEC (basic_block, heap) *dom_bbs;
+      unsigned j;
+
+      bb = bbs[i];
+      bb->aux = 0;
+
+      dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
+      for (j = 0; VEC_iterate (basic_block, dom_bbs, j, dominated); j++)
+	{
+	  if (flow_bb_inside_loop_p (loop, dominated))
+	    continue;
+	  dom_bb = nearest_common_dominator (
+			CDI_DOMINATORS, first_active[i], first_active_latch);
+	  set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
+	}
+      VEC_free (basic_block, heap, dom_bbs);
+    }
+  free (first_active);
+
+  free (bbs);
+  BITMAP_FREE (bbs_to_scale);
+
+  return true;
+}
+
+/* A callback for make_forwarder block, to redirect all edges except for
+   MFB_KJ_EDGE to the entry part.  E is the edge for that we should decide
+   whether to redirect it.  */
+
+edge mfb_kj_edge;
+bool
+mfb_keep_just (edge e)
+{
+  return e != mfb_kj_edge;
+}
+
+/* True when a candidate preheader BLOCK has predecessors from LOOP.  */
+
+static bool
+has_preds_from_loop (basic_block block, struct loop *loop)
+{
+  edge e;
+  edge_iterator ei;
+  
+  FOR_EACH_EDGE (e, ei, block->preds)
+    if (e->src->loop_father == loop)
+      return true;
+  return false;
+}
+
+/* Creates a pre-header for a LOOP.  Returns newly created block.  Unless
+   CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
+   entry; otherwise we also force preheader block to have only one successor.
+   When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
+   to be a fallthru predecessor to the loop header and to have only 
+   predecessors from outside of the loop.
+   The function also updates dominators.  */
+
+basic_block
+create_preheader (struct loop *loop, int flags)
+{
+  edge e, fallthru;
+  basic_block dummy;
+  int nentry = 0;
+  bool irred = false;
+  bool latch_edge_was_fallthru;
+  edge one_succ_pred = NULL, single_entry = NULL;
+  edge_iterator ei;
+
+  FOR_EACH_EDGE (e, ei, loop->header->preds)
+    {
+      if (e->src == loop->latch)
+	continue;
+      irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
+      nentry++;
+      single_entry = e;
+      if (single_succ_p (e->src))
+	one_succ_pred = e;
+    }
+  gcc_assert (nentry);
+  if (nentry == 1)
+    {
+      bool need_forwarder_block = false;
+      
+      /* We do not allow entry block to be the loop preheader, since we
+	     cannot emit code there.  */
+      if (single_entry->src == ENTRY_BLOCK_PTR)
+        need_forwarder_block = true;
+      else
+        {
+          /* If we want simple preheaders, also force the preheader to have
+             just a single successor.  */
+          if ((flags & CP_SIMPLE_PREHEADERS)
+              && !single_succ_p (single_entry->src))
+            need_forwarder_block = true;
+          /* If we want fallthru preheaders, also create forwarder block when
+             preheader ends with a jump or has predecessors from loop.  */
+          else if ((flags & CP_FALLTHRU_PREHEADERS)
+                   && (JUMP_P (BB_END (single_entry->src))
+                       || has_preds_from_loop (single_entry->src, loop)))
+            need_forwarder_block = true;
+        }
+      if (! need_forwarder_block)
+	return NULL;
+    }
+
+  mfb_kj_edge = loop_latch_edge (loop);
+  latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
+  fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
+  dummy = fallthru->src;
+  loop->header = fallthru->dest;
+
+  /* Try to be clever in placing the newly created preheader.  The idea is to
+     avoid breaking any "fallthruness" relationship between blocks.
+
+     The preheader was created just before the header and all incoming edges
+     to the header were redirected to the preheader, except the latch edge.
+     So the only problematic case is when this latch edge was a fallthru
+     edge: it is not anymore after the preheader creation so we have broken
+     the fallthruness.  We're therefore going to look for a better place.  */
+  if (latch_edge_was_fallthru)
+    {
+      if (one_succ_pred)
+	e = one_succ_pred;
+      else
+	e = EDGE_PRED (dummy, 0);
+
+      move_block_after (dummy, e->src);
+    }
+
+  if (irred)
+    {
+      dummy->flags |= BB_IRREDUCIBLE_LOOP;
+      single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
+    }
+
+  if (dump_file)
+    fprintf (dump_file, "Created preheader block for loop %i\n",
+	     loop->num);
+  
+  if (flags & CP_FALLTHRU_PREHEADERS)
+    gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
+                && !JUMP_P (BB_END (dummy)));
+
+  return dummy;
+}
+
+/* Create preheaders for each loop; for meaning of FLAGS see create_preheader.  */
+
+void
+create_preheaders (int flags)
+{
+  loop_iterator li;
+  struct loop *loop;
+
+  if (!current_loops)
+    return;
+
+  FOR_EACH_LOOP (li, loop, 0)
+    create_preheader (loop, flags);
+  loops_state_set (LOOPS_HAVE_PREHEADERS);
+}
+
+/* Forces all loop latches to have only single successor.  */
+
+void
+force_single_succ_latches (void)
+{
+  loop_iterator li;
+  struct loop *loop;
+  edge e;
+
+  FOR_EACH_LOOP (li, loop, 0)
+    {
+      if (loop->latch != loop->header && single_succ_p (loop->latch))
+	continue;
+
+      e = find_edge (loop->latch, loop->header);
+
+      split_edge (e);
+    }
+  loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
+}
+
+/* This function is called from loop_version.  It splits the entry edge
+   of the loop we want to version, adds the versioning condition, and
+   adjust the edges to the two versions of the loop appropriately.
+   e is an incoming edge. Returns the basic block containing the
+   condition.
+
+   --- edge e ---- > [second_head]
+
+   Split it and insert new conditional expression and adjust edges.
+
+    --- edge e ---> [cond expr] ---> [first_head]
+			|
+			+---------> [second_head]
+
+  THEN_PROB is the probability of then branch of the condition.  */
+
+static basic_block
+lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
+			   edge e, void *cond_expr, unsigned then_prob)
+{
+  basic_block new_head = NULL;
+  edge e1;
+
+  gcc_assert (e->dest == second_head);
+
+  /* Split edge 'e'. This will create a new basic block, where we can
+     insert conditional expr.  */
+  new_head = split_edge (e);
+
+  lv_add_condition_to_bb (first_head, second_head, new_head,
+			  cond_expr);
+
+  /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there.  */
+  e = single_succ_edge (new_head);
+  e1 = make_edge (new_head, first_head,
+		  current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
+  e1->probability = then_prob;
+  e->probability = REG_BR_PROB_BASE - then_prob;
+  e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
+  e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
+
+  set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
+  set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
+
+  /* Adjust loop header phi nodes.  */
+  lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
+
+  return new_head;
+}
+
+/* Main entry point for Loop Versioning transformation.
+
+   This transformation given a condition and a loop, creates
+   -if (condition) { loop_copy1 } else { loop_copy2 },
+   where loop_copy1 is the loop transformed in one way, and loop_copy2
+   is the loop transformed in another way (or unchanged). 'condition'
+   may be a run time test for things that were not resolved by static
+   analysis (overlapping ranges (anti-aliasing), alignment, etc.).
+
+   THEN_PROB is the probability of the then edge of the if.  THEN_SCALE
+   is the ratio by that the frequencies in the original loop should
+   be scaled.  ELSE_SCALE is the ratio by that the frequencies in the
+   new loop should be scaled.
+   
+   If PLACE_AFTER is true, we place the new loop after LOOP in the
+   instruction stream, otherwise it is placed before LOOP.  */
+
+struct loop *
+loop_version (struct loop *loop,
+	      void *cond_expr, basic_block *condition_bb,
+	      unsigned then_prob, unsigned then_scale, unsigned else_scale,
+	      bool place_after)
+{
+  basic_block first_head, second_head;
+  edge entry, latch_edge, true_edge, false_edge;
+  int irred_flag;
+  struct loop *nloop;
+  basic_block cond_bb;
+
+  /* Record entry and latch edges for the loop */
+  entry = loop_preheader_edge (loop);
+  irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
+  entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
+
+  /* Note down head of loop as first_head.  */
+  first_head = entry->dest;
+
+  /* Duplicate loop.  */
+  if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
+					       NULL, NULL, NULL, 0))
+    return NULL;
+
+  /* After duplication entry edge now points to new loop head block.
+     Note down new head as second_head.  */
+  second_head = entry->dest;
+
+  /* Split loop entry edge and insert new block with cond expr.  */
+  cond_bb =  lv_adjust_loop_entry_edge (first_head, second_head,
+					entry, cond_expr, then_prob);
+  if (condition_bb)
+    *condition_bb = cond_bb;
+
+  if (!cond_bb)
+    {
+      entry->flags |= irred_flag;
+      return NULL;
+    }
+
+  latch_edge = single_succ_edge (get_bb_copy (loop->latch));
+
+  extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
+  nloop = loopify (latch_edge,
+		   single_pred_edge (get_bb_copy (loop->header)),
+		   cond_bb, true_edge, false_edge,
+		   false /* Do not redirect all edges.  */,
+		   then_scale, else_scale);
+
+  /* loopify redirected latch_edge. Update its PENDING_STMTS.  */
+  lv_flush_pending_stmts (latch_edge);
+
+  /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS.  */
+  extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
+  lv_flush_pending_stmts (false_edge);
+  /* Adjust irreducible flag.  */
+  if (irred_flag)
+    {
+      cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
+      loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
+      loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
+      single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
+    }
+
+  if (place_after)
+    {
+      basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
+      unsigned i;
+
+      after = loop->latch;
+
+      for (i = 0; i < nloop->num_nodes; i++)
+	{
+	  move_block_after (bbs[i], after);
+	  after = bbs[i];
+	}
+      free (bbs);
+    }
+
+  /* At this point condition_bb is loop preheader with two successors,
+     first_head and second_head.   Make sure that loop preheader has only
+     one successor.  */
+  split_edge (loop_preheader_edge (loop));
+  split_edge (loop_preheader_edge (nloop));
+
+  return nloop;
+}
+
+/* The structure of loops might have changed.  Some loops might get removed
+   (and their headers and latches were set to NULL), loop exists might get
+   removed (thus the loop nesting may be wrong), and some blocks and edges
+   were changed (so the information about bb --> loop mapping does not have
+   to be correct).  But still for the remaining loops the header dominates
+   the latch, and loops did not get new subloops (new loops might possibly
+   get created, but we are not interested in them).  Fix up the mess.
+
+   If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
+   marked in it.  */
+
+void
+fix_loop_structure (bitmap changed_bbs)
+{
+  basic_block bb;
+  struct loop *loop, *ploop;
+  loop_iterator li;
+  bool record_exits = false;
+  struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
+
+  /* Remove the old bb -> loop mapping.  Remember the depth of the blocks in
+     the loop hierarchy, so that we can recognize blocks whose loop nesting
+     relationship has changed.  */
+  FOR_EACH_BB (bb)
+    {
+      if (changed_bbs)
+	bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
+      bb->loop_father = current_loops->tree_root;
+    }
+
+  if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
+    {
+      release_recorded_exits ();
+      record_exits = true;
+    }
+
+  /* Remove the dead loops from structures.  We start from the innermost
+     loops, so that when we remove the loops, we know that the loops inside
+     are preserved, and do not waste time relinking loops that will be
+     removed later.  */
+  FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
+    {
+      if (loop->header)
+	continue;
+
+      while (loop->inner)
+	{
+	  ploop = loop->inner;
+	  flow_loop_tree_node_remove (ploop);
+	  flow_loop_tree_node_add (loop_outer (loop), ploop);
+	}
+
+      /* Remove the loop and free its data.  */
+      delete_loop (loop);
+    }
+
+  /* Rescan the bodies of loops, starting from the outermost ones.  We assume
+     that no optimization interchanges the order of the loops, i.e., it cannot
+     happen that L1 was superloop of L2 before and it is subloop of L2 now
+     (without explicitly updating loop information).  At the same time, we also
+     determine the new loop structure.  */
+  current_loops->tree_root->num_nodes = n_basic_blocks;
+  FOR_EACH_LOOP (li, loop, 0)
+    {
+      superloop[loop->num] = loop->header->loop_father;
+      loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
+    }
+
+  /* Now fix the loop nesting.  */
+  FOR_EACH_LOOP (li, loop, 0)
+    {
+      ploop = superloop[loop->num];
+      if (ploop != loop_outer (loop))
+	{
+	  flow_loop_tree_node_remove (loop);
+	  flow_loop_tree_node_add (ploop, loop);
+	}
+    }
+  free (superloop);
+
+  /* Mark the blocks whose loop has changed.  */
+  if (changed_bbs)
+    {
+      FOR_EACH_BB (bb)
+	{
+	  if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
+	    bitmap_set_bit (changed_bbs, bb->index);
+
+    	  bb->aux = NULL;
+	}
+    }
+
+  if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
+    create_preheaders (CP_SIMPLE_PREHEADERS);
+
+  if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
+    force_single_succ_latches ();
+
+  if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
+    mark_irreducible_loops ();
+
+  if (record_exits)
+    record_loop_exits ();
+
+#ifdef ENABLE_CHECKING
+  verify_loop_structure ();
+#endif
+}