diff gcc/config/arm/arm1136jfs.md @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 04ced10e8804
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/config/arm/arm1136jfs.md	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,376 @@
+;; ARM 1136J[F]-S Pipeline Description
+;; Copyright (C) 2003, 2007 Free Software Foundation, Inc.
+;; Written by CodeSourcery, LLC.
+;;
+;; This file is part of GCC.
+;;
+;; GCC is free software; you can redistribute it and/or modify it
+;; under the terms of the GNU General Public License as published by
+;; the Free Software Foundation; either version 3, or (at your option)
+;; any later version.
+;;
+;; GCC is distributed in the hope that it will be useful, but
+;; WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+;; General Public License for more details.
+;;
+;; You should have received a copy of the GNU General Public License
+;; along with GCC; see the file COPYING3.  If not see
+;; <http://www.gnu.org/licenses/>.  */
+
+;; These descriptions are based on the information contained in the
+;; ARM1136JF-S Technical Reference Manual, Copyright (c) 2003 ARM
+;; Limited.
+;;
+
+;; This automaton provides a pipeline description for the ARM
+;; 1136J-S and 1136JF-S cores.
+;;
+;; The model given here assumes that the condition for all conditional
+;; instructions is "true", i.e., that all of the instructions are
+;; actually executed.
+
+(define_automaton "arm1136jfs")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Pipelines
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; There are three distinct pipelines (page 1-26 and following):
+;;
+;; - A 4-stage decode pipeline, shared by all three.  It has fetch (1),
+;;   fetch (2), decode, and issue stages.  Since this is always involved,
+;;   we do not model it in the scheduler.
+;;
+;; - A 4-stage ALU pipeline.  It has shifter, ALU (main integer operations),
+;;   and saturation stages.  The fourth stage is writeback; see below.
+;;
+;; - A 4-stage multiply-accumulate pipeline.  It has three stages, called
+;;   MAC1 through MAC3, and a fourth writeback stage.
+;;
+;;   The 4th-stage writeback is shared between the ALU and MAC pipelines,
+;;   which operate in lockstep.  Results from either pipeline will be
+;;   moved into the writeback stage.  Because the two pipelines operate
+;;   in lockstep, we schedule them as a single "execute" pipeline.
+;;
+;; - A 4-stage LSU pipeline.  It has address generation, data cache (1),
+;;   data cache (2), and writeback stages.  (Note that this pipeline,
+;;   including the writeback stage, is independent from the ALU & LSU pipes.)  
+
+(define_cpu_unit "e_1,e_2,e_3,e_wb" "arm1136jfs")     ; ALU and MAC
+; e_1 = Sh/Mac1, e_2 = ALU/Mac2, e_3 = SAT/Mac3
+(define_cpu_unit "l_a,l_dc1,l_dc2,l_wb" "arm1136jfs") ; Load/Store
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; ALU Instructions
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; ALU instructions require eight cycles to execute, and use the ALU
+;; pipeline in each of the eight stages.  The results are available
+;; after the alu stage has finished.
+;;
+;; If the destination register is the PC, the pipelines are stalled
+;; for several cycles.  That case is not modelled here.
+
+;; ALU operations with no shifted operand
+(define_insn_reservation "11_alu_op" 2
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "alu"))
+ "e_1,e_2,e_3,e_wb")
+
+;; ALU operations with a shift-by-constant operand
+(define_insn_reservation "11_alu_shift_op" 2
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "alu_shift"))
+ "e_1,e_2,e_3,e_wb")
+
+;; ALU operations with a shift-by-register operand
+;; These really stall in the decoder, in order to read
+;; the shift value in a second cycle. Pretend we take two cycles in
+;; the shift stage.
+(define_insn_reservation "11_alu_shift_reg_op" 3
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "alu_shift_reg"))
+ "e_1*2,e_2,e_3,e_wb")
+
+;; alu_ops can start sooner, if there is no shifter dependency
+(define_bypass 1 "11_alu_op,11_alu_shift_op"
+	       "11_alu_op")
+(define_bypass 1 "11_alu_op,11_alu_shift_op"
+	       "11_alu_shift_op"
+	       "arm_no_early_alu_shift_value_dep")
+(define_bypass 1 "11_alu_op,11_alu_shift_op"
+	       "11_alu_shift_reg_op"
+	       "arm_no_early_alu_shift_dep")
+(define_bypass 2 "11_alu_shift_reg_op"
+	       "11_alu_op")
+(define_bypass 2 "11_alu_shift_reg_op"
+	       "11_alu_shift_op"
+	       "arm_no_early_alu_shift_value_dep")
+(define_bypass 2 "11_alu_shift_reg_op"
+	       "11_alu_shift_reg_op"
+	       "arm_no_early_alu_shift_dep")
+
+(define_bypass 1 "11_alu_op,11_alu_shift_op"
+	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
+	       "arm_no_early_mul_dep")
+(define_bypass 2 "11_alu_shift_reg_op"
+	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
+	       "arm_no_early_mul_dep")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Multiplication Instructions
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; Multiplication instructions loop in the first two execute stages until
+;; the instruction has been passed through the multiplier array enough
+;; times.
+
+;; Multiply and multiply-accumulate results are available after four stages.
+(define_insn_reservation "11_mult1" 4
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "insn" "mul,mla"))
+ "e_1*2,e_2,e_3,e_wb")
+
+;; The *S variants set the condition flags, which requires three more cycles.
+(define_insn_reservation "11_mult2" 4
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "insn" "muls,mlas"))
+ "e_1*2,e_2,e_3,e_wb")
+
+(define_bypass 3 "11_mult1,11_mult2"
+	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
+	       "arm_no_early_mul_dep")
+(define_bypass 3 "11_mult1,11_mult2"
+	       "11_alu_op")
+(define_bypass 3 "11_mult1,11_mult2"
+	       "11_alu_shift_op"
+	       "arm_no_early_alu_shift_value_dep")
+(define_bypass 3 "11_mult1,11_mult2"
+	       "11_alu_shift_reg_op"
+	       "arm_no_early_alu_shift_dep")
+(define_bypass 3 "11_mult1,11_mult2"
+	       "11_store1"
+	       "arm_no_early_store_addr_dep")
+
+;; Signed and unsigned multiply long results are available across two cycles;
+;; the less significant word is available one cycle before the more significant
+;; word.  Here we conservatively wait until both are available, which is
+;; after three iterations and the memory cycle.  The same is also true of
+;; the two multiply-accumulate instructions.
+(define_insn_reservation "11_mult3" 5
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "insn" "smull,umull,smlal,umlal"))
+ "e_1*3,e_2,e_3,e_wb*2")
+
+;; The *S variants set the condition flags, which requires three more cycles.
+(define_insn_reservation "11_mult4" 5
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "insn" "smulls,umulls,smlals,umlals"))
+ "e_1*3,e_2,e_3,e_wb*2")
+
+(define_bypass 4 "11_mult3,11_mult4"
+	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
+	       "arm_no_early_mul_dep")
+(define_bypass 4 "11_mult3,11_mult4"
+	       "11_alu_op")
+(define_bypass 4 "11_mult3,11_mult4"
+	       "11_alu_shift_op"
+	       "arm_no_early_alu_shift_value_dep")
+(define_bypass 4 "11_mult3,11_mult4"
+	       "11_alu_shift_reg_op"
+	       "arm_no_early_alu_shift_dep")
+(define_bypass 4 "11_mult3,11_mult4"
+	       "11_store1"
+	       "arm_no_early_store_addr_dep")
+
+;; Various 16x16->32 multiplies and multiply-accumulates, using combinations
+;; of high and low halves of the argument registers.  They take a single
+;; pass through the pipeline and make the result available after three
+;; cycles.
+(define_insn_reservation "11_mult5" 3
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "insn" "smulxy,smlaxy,smulwy,smlawy,smuad,smuadx,smlad,smladx,smusd,smusdx,smlsd,smlsdx"))
+ "e_1,e_2,e_3,e_wb")
+
+(define_bypass 2 "11_mult5"
+	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
+	       "arm_no_early_mul_dep")
+(define_bypass 2 "11_mult5"
+	       "11_alu_op")
+(define_bypass 2 "11_mult5"
+	       "11_alu_shift_op"
+	       "arm_no_early_alu_shift_value_dep")
+(define_bypass 2 "11_mult5"
+	       "11_alu_shift_reg_op"
+	       "arm_no_early_alu_shift_dep")
+(define_bypass 2 "11_mult5"
+	       "11_store1"
+	       "arm_no_early_store_addr_dep")
+
+;; The same idea, then the 32-bit result is added to a 64-bit quantity.
+(define_insn_reservation "11_mult6" 4
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "insn" "smlalxy"))
+ "e_1*2,e_2,e_3,e_wb*2")
+
+;; Signed 32x32 multiply, then the most significant 32 bits are extracted
+;; and are available after the memory stage.
+(define_insn_reservation "11_mult7" 4
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "insn" "smmul,smmulr"))
+ "e_1*2,e_2,e_3,e_wb")
+
+(define_bypass 3 "11_mult6,11_mult7"
+	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
+	       "arm_no_early_mul_dep")
+(define_bypass 3 "11_mult6,11_mult7"
+	       "11_alu_op")
+(define_bypass 3 "11_mult6,11_mult7"
+	       "11_alu_shift_op"
+	       "arm_no_early_alu_shift_value_dep")
+(define_bypass 3 "11_mult6,11_mult7"
+	       "11_alu_shift_reg_op"
+	       "arm_no_early_alu_shift_dep")
+(define_bypass 3 "11_mult6,11_mult7"
+	       "11_store1"
+	       "arm_no_early_store_addr_dep")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Branch Instructions
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; These vary greatly depending on their arguments and the results of
+;; stat prediction.  Cycle count ranges from zero (unconditional branch,
+;; folded dynamic prediction) to seven (incorrect predictions, etc).  We
+;; assume an optimal case for now, because the cost of a cache miss
+;; overwhelms the cost of everything else anyhow.
+
+(define_insn_reservation "11_branches" 0
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "branch"))
+ "nothing")
+
+;; Call latencies are not predictable.  A semi-arbitrary very large
+;; number is used as "positive infinity" so that everything should be
+;; finished by the time of return.
+(define_insn_reservation "11_call" 32
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "call"))
+ "nothing")
+
+;; Branches are predicted. A correctly predicted branch will be no
+;; cost, but we're conservative here, and use the timings a
+;; late-register would give us.
+(define_bypass 1 "11_alu_op,11_alu_shift_op"
+	       "11_branches")
+(define_bypass 2 "11_alu_shift_reg_op"
+	       "11_branches")
+(define_bypass 2 "11_load1,11_load2"
+	       "11_branches")
+(define_bypass 3 "11_load34"
+	       "11_branches")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Load/Store Instructions
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; The models for load/store instructions do not accurately describe
+;; the difference between operations with a base register writeback.
+;; These models assume that all memory references hit in dcache.  Also,
+;; if the PC is one of the registers involved, there are additional stalls
+;; not modelled here.  Addressing modes are also not modelled.
+
+(define_insn_reservation "11_load1" 3
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "load1"))
+ "l_a+e_1,l_dc1,l_dc2,l_wb")
+
+;; Load byte results are not available until the writeback stage, where
+;; the correct byte is extracted.
+
+(define_insn_reservation "11_loadb" 4
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "load_byte"))
+ "l_a+e_1,l_dc1,l_dc2,l_wb")
+
+(define_insn_reservation "11_store1" 0
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "store1"))
+ "l_a+e_1,l_dc1,l_dc2,l_wb")
+
+;; Load/store double words into adjacent registers.  The timing and
+;; latencies are different depending on whether the address is 64-bit
+;; aligned.  This model assumes that it is.
+(define_insn_reservation "11_load2" 3
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "load2"))
+ "l_a+e_1,l_dc1,l_dc2,l_wb")
+
+(define_insn_reservation "11_store2" 0
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "store2"))
+ "l_a+e_1,l_dc1,l_dc2,l_wb")
+
+;; Load/store multiple registers.  Two registers are stored per cycle.
+;; Actual timing depends on how many registers are affected, so we
+;; optimistically schedule a low latency.
+(define_insn_reservation "11_load34" 4
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "load3,load4"))
+ "l_a+e_1,l_dc1*2,l_dc2,l_wb")
+
+(define_insn_reservation "11_store34" 0
+ (and (eq_attr "tune" "arm1136js,arm1136jfs")
+      (eq_attr "type" "store3,store4"))
+ "l_a+e_1,l_dc1*2,l_dc2,l_wb")
+
+;; A store can start immediately after an alu op, if that alu op does
+;; not provide part of the address to access.
+(define_bypass 1 "11_alu_op,11_alu_shift_op"
+	       "11_store1"
+	       "arm_no_early_store_addr_dep")
+(define_bypass 2 "11_alu_shift_reg_op"
+	       "11_store1"
+	       "arm_no_early_store_addr_dep")
+
+;; An alu op can start sooner after a load, if that alu op does not
+;; have an early register dependency on the load
+(define_bypass 2 "11_load1"
+	       "11_alu_op")
+(define_bypass 2 "11_load1"
+	       "11_alu_shift_op"
+	       "arm_no_early_alu_shift_value_dep")
+(define_bypass 2 "11_load1"
+	       "11_alu_shift_reg_op"
+	       "arm_no_early_alu_shift_dep")
+
+(define_bypass 3 "11_loadb"
+	       "11_alu_op")
+(define_bypass 3 "11_loadb"
+	       "11_alu_shift_op"
+	       "arm_no_early_alu_shift_value_dep")
+(define_bypass 3 "11_loadb"
+	       "11_alu_shift_reg_op"
+	       "arm_no_early_alu_shift_dep")
+
+;; A mul op can start sooner after a load, if that mul op does not
+;; have an early multiply dependency
+(define_bypass 2 "11_load1"
+	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
+	       "arm_no_early_mul_dep")
+(define_bypass 3 "11_load34"
+	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
+	       "arm_no_early_mul_dep")
+(define_bypass 3 "11_loadb"
+	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
+	       "arm_no_early_mul_dep")
+
+;; A store can start sooner after a load, if that load does not
+;; produce part of the address to access
+(define_bypass 2 "11_load1"
+	       "11_store1"
+	       "arm_no_early_store_addr_dep")
+(define_bypass 3 "11_loadb"
+	       "11_store1"
+	       "arm_no_early_store_addr_dep")