diff gcc/config/fp-bit.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children f6334be47118
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/config/fp-bit.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,1671 @@
+/* This is a software floating point library which can be used
+   for targets without hardware floating point. 
+   Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003,
+   2004, 2005, 2008, 2009 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
+<http://www.gnu.org/licenses/>.  */
+
+/* This implements IEEE 754 format arithmetic, but does not provide a
+   mechanism for setting the rounding mode, or for generating or handling
+   exceptions.
+
+   The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
+   Wilson, all of Cygnus Support.  */
+
+/* The intended way to use this file is to make two copies, add `#define FLOAT'
+   to one copy, then compile both copies and add them to libgcc.a.  */
+
+#include "tconfig.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "config/fp-bit.h"
+
+/* The following macros can be defined to change the behavior of this file:
+   FLOAT: Implement a `float', aka SFmode, fp library.  If this is not
+     defined, then this file implements a `double', aka DFmode, fp library.
+   FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e.
+     don't include float->double conversion which requires the double library.
+     This is useful only for machines which can't support doubles, e.g. some
+     8-bit processors.
+   CMPtype: Specify the type that floating point compares should return.
+     This defaults to SItype, aka int.
+   US_SOFTWARE_GOFAST: This makes all entry points use the same names as the
+     US Software goFast library.
+   _DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding
+     two integers to the FLO_union_type.
+   NO_DENORMALS: Disable handling of denormals.
+   NO_NANS: Disable nan and infinity handling
+   SMALL_MACHINE: Useful when operations on QIs and HIs are faster
+     than on an SI */
+
+/* We don't currently support extended floats (long doubles) on machines
+   without hardware to deal with them.
+
+   These stubs are just to keep the linker from complaining about unresolved
+   references which can be pulled in from libio & libstdc++, even if the
+   user isn't using long doubles.  However, they may generate an unresolved
+   external to abort if abort is not used by the function, and the stubs
+   are referenced from within libc, since libgcc goes before and after the
+   system library.  */
+
+#ifdef DECLARE_LIBRARY_RENAMES
+  DECLARE_LIBRARY_RENAMES
+#endif
+
+#ifdef EXTENDED_FLOAT_STUBS
+extern void abort (void);
+void __extendsfxf2 (void) { abort(); }
+void __extenddfxf2 (void) { abort(); }
+void __truncxfdf2 (void) { abort(); }
+void __truncxfsf2 (void) { abort(); }
+void __fixxfsi (void) { abort(); }
+void __floatsixf (void) { abort(); }
+void __addxf3 (void) { abort(); }
+void __subxf3 (void) { abort(); }
+void __mulxf3 (void) { abort(); }
+void __divxf3 (void) { abort(); }
+void __negxf2 (void) { abort(); }
+void __eqxf2 (void) { abort(); }
+void __nexf2 (void) { abort(); }
+void __gtxf2 (void) { abort(); }
+void __gexf2 (void) { abort(); }
+void __lexf2 (void) { abort(); }
+void __ltxf2 (void) { abort(); }
+
+void __extendsftf2 (void) { abort(); }
+void __extenddftf2 (void) { abort(); }
+void __trunctfdf2 (void) { abort(); }
+void __trunctfsf2 (void) { abort(); }
+void __fixtfsi (void) { abort(); }
+void __floatsitf (void) { abort(); }
+void __addtf3 (void) { abort(); }
+void __subtf3 (void) { abort(); }
+void __multf3 (void) { abort(); }
+void __divtf3 (void) { abort(); }
+void __negtf2 (void) { abort(); }
+void __eqtf2 (void) { abort(); }
+void __netf2 (void) { abort(); }
+void __gttf2 (void) { abort(); }
+void __getf2 (void) { abort(); }
+void __letf2 (void) { abort(); }
+void __lttf2 (void) { abort(); }
+#else	/* !EXTENDED_FLOAT_STUBS, rest of file */
+
+/* IEEE "special" number predicates */
+
+#ifdef NO_NANS
+
+#define nan() 0
+#define isnan(x) 0
+#define isinf(x) 0
+#else
+
+#if   defined L_thenan_sf
+const fp_number_type __thenan_sf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
+#elif defined L_thenan_df
+const fp_number_type __thenan_df = { CLASS_SNAN, 0, 0, {(fractype) 0} };
+#elif defined L_thenan_tf
+const fp_number_type __thenan_tf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
+#elif defined TFLOAT
+extern const fp_number_type __thenan_tf;
+#elif defined FLOAT
+extern const fp_number_type __thenan_sf;
+#else
+extern const fp_number_type __thenan_df;
+#endif
+
+INLINE
+static const fp_number_type *
+makenan (void)
+{
+#ifdef TFLOAT
+  return & __thenan_tf;
+#elif defined FLOAT  
+  return & __thenan_sf;
+#else
+  return & __thenan_df;
+#endif
+}
+
+INLINE
+static int
+isnan (const fp_number_type *x)
+{
+  return __builtin_expect (x->class == CLASS_SNAN || x->class == CLASS_QNAN,
+			   0);
+}
+
+INLINE
+static int
+isinf (const fp_number_type *  x)
+{
+  return __builtin_expect (x->class == CLASS_INFINITY, 0);
+}
+
+#endif /* NO_NANS */
+
+INLINE
+static int
+iszero (const fp_number_type *  x)
+{
+  return x->class == CLASS_ZERO;
+}
+
+INLINE 
+static void
+flip_sign ( fp_number_type *  x)
+{
+  x->sign = !x->sign;
+}
+
+/* Count leading zeroes in N.  */
+INLINE
+static int
+clzusi (USItype n)
+{
+  extern int __clzsi2 (USItype);
+  if (sizeof (USItype) == sizeof (unsigned int))
+    return __builtin_clz (n);
+  else if (sizeof (USItype) == sizeof (unsigned long))
+    return __builtin_clzl (n);
+  else if (sizeof (USItype) == sizeof (unsigned long long))
+    return __builtin_clzll (n);
+  else
+    return __clzsi2 (n);
+}
+
+extern FLO_type pack_d (const fp_number_type * );
+
+#if defined(L_pack_df) || defined(L_pack_sf) || defined(L_pack_tf)
+FLO_type
+pack_d (const fp_number_type *src)
+{
+  FLO_union_type dst;
+  fractype fraction = src->fraction.ll;	/* wasn't unsigned before? */
+  int sign = src->sign;
+  int exp = 0;
+
+  if (LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && (isnan (src) || isinf (src)))
+    {
+      /* We can't represent these values accurately.  By using the
+	 largest possible magnitude, we guarantee that the conversion
+	 of infinity is at least as big as any finite number.  */
+      exp = EXPMAX;
+      fraction = ((fractype) 1 << FRACBITS) - 1;
+    }
+  else if (isnan (src))
+    {
+      exp = EXPMAX;
+      if (src->class == CLASS_QNAN || 1)
+	{
+#ifdef QUIET_NAN_NEGATED
+	  fraction |= QUIET_NAN - 1;
+#else
+	  fraction |= QUIET_NAN;
+#endif
+	}
+    }
+  else if (isinf (src))
+    {
+      exp = EXPMAX;
+      fraction = 0;
+    }
+  else if (iszero (src))
+    {
+      exp = 0;
+      fraction = 0;
+    }
+  else if (fraction == 0)
+    {
+      exp = 0;
+    }
+  else
+    {
+      if (__builtin_expect (src->normal_exp < NORMAL_EXPMIN, 0))
+	{
+#ifdef NO_DENORMALS
+	  /* Go straight to a zero representation if denormals are not
+ 	     supported.  The denormal handling would be harmless but
+ 	     isn't unnecessary.  */
+	  exp = 0;
+	  fraction = 0;
+#else /* NO_DENORMALS */
+	  /* This number's exponent is too low to fit into the bits
+	     available in the number, so we'll store 0 in the exponent and
+	     shift the fraction to the right to make up for it.  */
+
+	  int shift = NORMAL_EXPMIN - src->normal_exp;
+
+	  exp = 0;
+
+	  if (shift > FRAC_NBITS - NGARDS)
+	    {
+	      /* No point shifting, since it's more that 64 out.  */
+	      fraction = 0;
+	    }
+	  else
+	    {
+	      int lowbit = (fraction & (((fractype)1 << shift) - 1)) ? 1 : 0;
+	      fraction = (fraction >> shift) | lowbit;
+	    }
+	  if ((fraction & GARDMASK) == GARDMSB)
+	    {
+	      if ((fraction & (1 << NGARDS)))
+		fraction += GARDROUND + 1;
+	    }
+	  else
+	    {
+	      /* Add to the guards to round up.  */
+	      fraction += GARDROUND;
+	    }
+	  /* Perhaps the rounding means we now need to change the
+             exponent, because the fraction is no longer denormal.  */
+	  if (fraction >= IMPLICIT_1)
+	    {
+	      exp += 1;
+	    }
+	  fraction >>= NGARDS;
+#endif /* NO_DENORMALS */
+	}
+      else if (!LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS)
+	       && __builtin_expect (src->normal_exp > EXPBIAS, 0))
+	{
+	  exp = EXPMAX;
+	  fraction = 0;
+	}
+      else
+	{
+	  exp = src->normal_exp + EXPBIAS;
+	  if (!ROUND_TOWARDS_ZERO)
+	    {
+	      /* IF the gard bits are the all zero, but the first, then we're
+		 half way between two numbers, choose the one which makes the
+		 lsb of the answer 0.  */
+	      if ((fraction & GARDMASK) == GARDMSB)
+		{
+		  if (fraction & (1 << NGARDS))
+		    fraction += GARDROUND + 1;
+		}
+	      else
+		{
+		  /* Add a one to the guards to round up */
+		  fraction += GARDROUND;
+		}
+	      if (fraction >= IMPLICIT_2)
+		{
+		  fraction >>= 1;
+		  exp += 1;
+		}
+	    }
+	  fraction >>= NGARDS;
+
+	  if (LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && exp > EXPMAX)
+	    {
+	      /* Saturate on overflow.  */
+	      exp = EXPMAX;
+	      fraction = ((fractype) 1 << FRACBITS) - 1;
+	    }
+	}
+    }
+
+  /* We previously used bitfields to store the number, but this doesn't
+     handle little/big endian systems conveniently, so use shifts and
+     masks */
+#ifdef FLOAT_BIT_ORDER_MISMATCH
+  dst.bits.fraction = fraction;
+  dst.bits.exp = exp;
+  dst.bits.sign = sign;
+#else
+# if defined TFLOAT && defined HALFFRACBITS
+ {
+   halffractype high, low, unity;
+   int lowsign, lowexp;
+
+   unity = (halffractype) 1 << HALFFRACBITS;
+
+   /* Set HIGH to the high double's significand, masking out the implicit 1.
+      Set LOW to the low double's full significand.  */
+   high = (fraction >> (FRACBITS - HALFFRACBITS)) & (unity - 1);
+   low = fraction & (unity * 2 - 1);
+
+   /* Get the initial sign and exponent of the low double.  */
+   lowexp = exp - HALFFRACBITS - 1;
+   lowsign = sign;
+
+   /* HIGH should be rounded like a normal double, making |LOW| <=
+      0.5 ULP of HIGH.  Assume round-to-nearest.  */
+   if (exp < EXPMAX)
+     if (low > unity || (low == unity && (high & 1) == 1))
+       {
+	 /* Round HIGH up and adjust LOW to match.  */
+	 high++;
+	 if (high == unity)
+	   {
+	     /* May make it infinite, but that's OK.  */
+	     high = 0;
+	     exp++;
+	   }
+	 low = unity * 2 - low;
+	 lowsign ^= 1;
+       }
+
+   high |= (halffractype) exp << HALFFRACBITS;
+   high |= (halffractype) sign << (HALFFRACBITS + EXPBITS);
+
+   if (exp == EXPMAX || exp == 0 || low == 0)
+     low = 0;
+   else
+     {
+       while (lowexp > 0 && low < unity)
+	 {
+	   low <<= 1;
+	   lowexp--;
+	 }
+
+       if (lowexp <= 0)
+	 {
+	   halffractype roundmsb, round;
+	   int shift;
+
+	   shift = 1 - lowexp;
+	   roundmsb = (1 << (shift - 1));
+	   round = low & ((roundmsb << 1) - 1);
+
+	   low >>= shift;
+	   lowexp = 0;
+
+	   if (round > roundmsb || (round == roundmsb && (low & 1) == 1))
+	     {
+	       low++;
+	       if (low == unity)
+		 /* LOW rounds up to the smallest normal number.  */
+		 lowexp++;
+	     }
+	 }
+
+       low &= unity - 1;
+       low |= (halffractype) lowexp << HALFFRACBITS;
+       low |= (halffractype) lowsign << (HALFFRACBITS + EXPBITS);
+     }
+   dst.value_raw = ((fractype) high << HALFSHIFT) | low;
+ }
+# else
+  dst.value_raw = fraction & ((((fractype)1) << FRACBITS) - (fractype)1);
+  dst.value_raw |= ((fractype) (exp & ((1 << EXPBITS) - 1))) << FRACBITS;
+  dst.value_raw |= ((fractype) (sign & 1)) << (FRACBITS | EXPBITS);
+# endif
+#endif
+
+#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
+#ifdef TFLOAT
+  {
+    qrtrfractype tmp1 = dst.words[0];
+    qrtrfractype tmp2 = dst.words[1];
+    dst.words[0] = dst.words[3];
+    dst.words[1] = dst.words[2];
+    dst.words[2] = tmp2;
+    dst.words[3] = tmp1;
+  }
+#else
+  {
+    halffractype tmp = dst.words[0];
+    dst.words[0] = dst.words[1];
+    dst.words[1] = tmp;
+  }
+#endif
+#endif
+
+  return dst.value;
+}
+#endif
+
+#if defined(L_unpack_df) || defined(L_unpack_sf) || defined(L_unpack_tf)
+void
+unpack_d (FLO_union_type * src, fp_number_type * dst)
+{
+  /* We previously used bitfields to store the number, but this doesn't
+     handle little/big endian systems conveniently, so use shifts and
+     masks */
+  fractype fraction;
+  int exp;
+  int sign;
+
+#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
+  FLO_union_type swapped;
+
+#ifdef TFLOAT
+  swapped.words[0] = src->words[3];
+  swapped.words[1] = src->words[2];
+  swapped.words[2] = src->words[1];
+  swapped.words[3] = src->words[0];
+#else
+  swapped.words[0] = src->words[1];
+  swapped.words[1] = src->words[0];
+#endif
+  src = &swapped;
+#endif
+  
+#ifdef FLOAT_BIT_ORDER_MISMATCH
+  fraction = src->bits.fraction;
+  exp = src->bits.exp;
+  sign = src->bits.sign;
+#else
+# if defined TFLOAT && defined HALFFRACBITS
+ {
+   halffractype high, low;
+   
+   high = src->value_raw >> HALFSHIFT;
+   low = src->value_raw & (((fractype)1 << HALFSHIFT) - 1);
+
+   fraction = high & ((((fractype)1) << HALFFRACBITS) - 1);
+   fraction <<= FRACBITS - HALFFRACBITS;
+   exp = ((int)(high >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
+   sign = ((int)(high >> (((HALFFRACBITS + EXPBITS))))) & 1;
+
+   if (exp != EXPMAX && exp != 0 && low != 0)
+     {
+       int lowexp = ((int)(low >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
+       int lowsign = ((int)(low >> (((HALFFRACBITS + EXPBITS))))) & 1;
+       int shift;
+       fractype xlow;
+
+       xlow = low & ((((fractype)1) << HALFFRACBITS) - 1);
+       if (lowexp)
+	 xlow |= (((halffractype)1) << HALFFRACBITS);
+       else
+	 lowexp = 1;
+       shift = (FRACBITS - HALFFRACBITS) - (exp - lowexp);
+       if (shift > 0)
+	 xlow <<= shift;
+       else if (shift < 0)
+	 xlow >>= -shift;
+       if (sign == lowsign)
+	 fraction += xlow;
+       else if (fraction >= xlow)
+	 fraction -= xlow;
+       else
+	 {
+	   /* The high part is a power of two but the full number is lower.
+	      This code will leave the implicit 1 in FRACTION, but we'd
+	      have added that below anyway.  */
+	   fraction = (((fractype) 1 << FRACBITS) - xlow) << 1;
+	   exp--;
+	 }
+     }
+ }
+# else
+  fraction = src->value_raw & ((((fractype)1) << FRACBITS) - 1);
+  exp = ((int)(src->value_raw >> FRACBITS)) & ((1 << EXPBITS) - 1);
+  sign = ((int)(src->value_raw >> (FRACBITS + EXPBITS))) & 1;
+# endif
+#endif
+
+  dst->sign = sign;
+  if (exp == 0)
+    {
+      /* Hmm.  Looks like 0 */
+      if (fraction == 0
+#ifdef NO_DENORMALS
+	  || 1
+#endif
+	  )
+	{
+	  /* tastes like zero */
+	  dst->class = CLASS_ZERO;
+	}
+      else
+	{
+	  /* Zero exponent with nonzero fraction - it's denormalized,
+	     so there isn't a leading implicit one - we'll shift it so
+	     it gets one.  */
+	  dst->normal_exp = exp - EXPBIAS + 1;
+	  fraction <<= NGARDS;
+
+	  dst->class = CLASS_NUMBER;
+#if 1
+	  while (fraction < IMPLICIT_1)
+	    {
+	      fraction <<= 1;
+	      dst->normal_exp--;
+	    }
+#endif
+	  dst->fraction.ll = fraction;
+	}
+    }
+  else if (!LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS)
+	   && __builtin_expect (exp == EXPMAX, 0))
+    {
+      /* Huge exponent*/
+      if (fraction == 0)
+	{
+	  /* Attached to a zero fraction - means infinity */
+	  dst->class = CLASS_INFINITY;
+	}
+      else
+	{
+	  /* Nonzero fraction, means nan */
+#ifdef QUIET_NAN_NEGATED
+	  if ((fraction & QUIET_NAN) == 0)
+#else
+	  if (fraction & QUIET_NAN)
+#endif
+	    {
+	      dst->class = CLASS_QNAN;
+	    }
+	  else
+	    {
+	      dst->class = CLASS_SNAN;
+	    }
+	  /* Keep the fraction part as the nan number */
+	  dst->fraction.ll = fraction;
+	}
+    }
+  else
+    {
+      /* Nothing strange about this number */
+      dst->normal_exp = exp - EXPBIAS;
+      dst->class = CLASS_NUMBER;
+      dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1;
+    }
+}
+#endif /* L_unpack_df || L_unpack_sf */
+
+#if defined(L_addsub_sf) || defined(L_addsub_df) || defined(L_addsub_tf)
+static const fp_number_type *
+_fpadd_parts (fp_number_type * a,
+	      fp_number_type * b,
+	      fp_number_type * tmp)
+{
+  intfrac tfraction;
+
+  /* Put commonly used fields in local variables.  */
+  int a_normal_exp;
+  int b_normal_exp;
+  fractype a_fraction;
+  fractype b_fraction;
+
+  if (isnan (a))
+    {
+      return a;
+    }
+  if (isnan (b))
+    {
+      return b;
+    }
+  if (isinf (a))
+    {
+      /* Adding infinities with opposite signs yields a NaN.  */
+      if (isinf (b) && a->sign != b->sign)
+	return makenan ();
+      return a;
+    }
+  if (isinf (b))
+    {
+      return b;
+    }
+  if (iszero (b))
+    {
+      if (iszero (a))
+	{
+	  *tmp = *a;
+	  tmp->sign = a->sign & b->sign;
+	  return tmp;
+	}
+      return a;
+    }
+  if (iszero (a))
+    {
+      return b;
+    }
+
+  /* Got two numbers. shift the smaller and increment the exponent till
+     they're the same */
+  {
+    int diff;
+    int sdiff;
+
+    a_normal_exp = a->normal_exp;
+    b_normal_exp = b->normal_exp;
+    a_fraction = a->fraction.ll;
+    b_fraction = b->fraction.ll;
+
+    diff = a_normal_exp - b_normal_exp;
+    sdiff = diff;
+
+    if (diff < 0)
+      diff = -diff;
+    if (diff < FRAC_NBITS)
+      {
+	if (sdiff > 0)
+	  {
+	    b_normal_exp += diff;
+	    LSHIFT (b_fraction, diff);
+	  }
+	else if (sdiff < 0)
+	  {
+	    a_normal_exp += diff;
+	    LSHIFT (a_fraction, diff);
+	  }
+      }
+    else
+      {
+	/* Somethings's up.. choose the biggest */
+	if (a_normal_exp > b_normal_exp)
+	  {
+	    b_normal_exp = a_normal_exp;
+	    b_fraction = 0;
+	  }
+	else
+	  {
+	    a_normal_exp = b_normal_exp;
+	    a_fraction = 0;
+	  }
+      }
+  }
+
+  if (a->sign != b->sign)
+    {
+      if (a->sign)
+	{
+	  tfraction = -a_fraction + b_fraction;
+	}
+      else
+	{
+	  tfraction = a_fraction - b_fraction;
+	}
+      if (tfraction >= 0)
+	{
+	  tmp->sign = 0;
+	  tmp->normal_exp = a_normal_exp;
+	  tmp->fraction.ll = tfraction;
+	}
+      else
+	{
+	  tmp->sign = 1;
+	  tmp->normal_exp = a_normal_exp;
+	  tmp->fraction.ll = -tfraction;
+	}
+      /* and renormalize it */
+
+      while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll)
+	{
+	  tmp->fraction.ll <<= 1;
+	  tmp->normal_exp--;
+	}
+    }
+  else
+    {
+      tmp->sign = a->sign;
+      tmp->normal_exp = a_normal_exp;
+      tmp->fraction.ll = a_fraction + b_fraction;
+    }
+  tmp->class = CLASS_NUMBER;
+  /* Now the fraction is added, we have to shift down to renormalize the
+     number */
+
+  if (tmp->fraction.ll >= IMPLICIT_2)
+    {
+      LSHIFT (tmp->fraction.ll, 1);
+      tmp->normal_exp++;
+    }
+  return tmp;
+}
+
+FLO_type
+add (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  fp_number_type tmp;
+  const fp_number_type *res;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  res = _fpadd_parts (&a, &b, &tmp);
+
+  return pack_d (res);
+}
+
+FLO_type
+sub (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  fp_number_type tmp;
+  const fp_number_type *res;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  b.sign ^= 1;
+
+  res = _fpadd_parts (&a, &b, &tmp);
+
+  return pack_d (res);
+}
+#endif /* L_addsub_sf || L_addsub_df */
+
+#if defined(L_mul_sf) || defined(L_mul_df) || defined(L_mul_tf)
+static inline __attribute__ ((__always_inline__)) const fp_number_type *
+_fpmul_parts ( fp_number_type *  a,
+	       fp_number_type *  b,
+	       fp_number_type * tmp)
+{
+  fractype low = 0;
+  fractype high = 0;
+
+  if (isnan (a))
+    {
+      a->sign = a->sign != b->sign;
+      return a;
+    }
+  if (isnan (b))
+    {
+      b->sign = a->sign != b->sign;
+      return b;
+    }
+  if (isinf (a))
+    {
+      if (iszero (b))
+	return makenan ();
+      a->sign = a->sign != b->sign;
+      return a;
+    }
+  if (isinf (b))
+    {
+      if (iszero (a))
+	{
+	  return makenan ();
+	}
+      b->sign = a->sign != b->sign;
+      return b;
+    }
+  if (iszero (a))
+    {
+      a->sign = a->sign != b->sign;
+      return a;
+    }
+  if (iszero (b))
+    {
+      b->sign = a->sign != b->sign;
+      return b;
+    }
+
+  /* Calculate the mantissa by multiplying both numbers to get a
+     twice-as-wide number.  */
+  {
+#if defined(NO_DI_MODE) || defined(TFLOAT)
+    {
+      fractype x = a->fraction.ll;
+      fractype ylow = b->fraction.ll;
+      fractype yhigh = 0;
+      int bit;
+
+      /* ??? This does multiplies one bit at a time.  Optimize.  */
+      for (bit = 0; bit < FRAC_NBITS; bit++)
+	{
+	  int carry;
+
+	  if (x & 1)
+	    {
+	      carry = (low += ylow) < ylow;
+	      high += yhigh + carry;
+	    }
+	  yhigh <<= 1;
+	  if (ylow & FRACHIGH)
+	    {
+	      yhigh |= 1;
+	    }
+	  ylow <<= 1;
+	  x >>= 1;
+	}
+    }
+#elif defined(FLOAT) 
+    /* Multiplying two USIs to get a UDI, we're safe.  */
+    {
+      UDItype answer = (UDItype)a->fraction.ll * (UDItype)b->fraction.ll;
+      
+      high = answer >> BITS_PER_SI;
+      low = answer;
+    }
+#else
+    /* fractype is DImode, but we need the result to be twice as wide.
+       Assuming a widening multiply from DImode to TImode is not
+       available, build one by hand.  */
+    {
+      USItype nl = a->fraction.ll;
+      USItype nh = a->fraction.ll >> BITS_PER_SI;
+      USItype ml = b->fraction.ll;
+      USItype mh = b->fraction.ll >> BITS_PER_SI;
+      UDItype pp_ll = (UDItype) ml * nl;
+      UDItype pp_hl = (UDItype) mh * nl;
+      UDItype pp_lh = (UDItype) ml * nh;
+      UDItype pp_hh = (UDItype) mh * nh;
+      UDItype res2 = 0;
+      UDItype res0 = 0;
+      UDItype ps_hh__ = pp_hl + pp_lh;
+      if (ps_hh__ < pp_hl)
+	res2 += (UDItype)1 << BITS_PER_SI;
+      pp_hl = (UDItype)(USItype)ps_hh__ << BITS_PER_SI;
+      res0 = pp_ll + pp_hl;
+      if (res0 < pp_ll)
+	res2++;
+      res2 += (ps_hh__ >> BITS_PER_SI) + pp_hh;
+      high = res2;
+      low = res0;
+    }
+#endif
+  }
+
+  tmp->normal_exp = a->normal_exp + b->normal_exp
+    + FRAC_NBITS - (FRACBITS + NGARDS);
+  tmp->sign = a->sign != b->sign;
+  while (high >= IMPLICIT_2)
+    {
+      tmp->normal_exp++;
+      if (high & 1)
+	{
+	  low >>= 1;
+	  low |= FRACHIGH;
+	}
+      high >>= 1;
+    }
+  while (high < IMPLICIT_1)
+    {
+      tmp->normal_exp--;
+
+      high <<= 1;
+      if (low & FRACHIGH)
+	high |= 1;
+      low <<= 1;
+    }
+
+  if (!ROUND_TOWARDS_ZERO && (high & GARDMASK) == GARDMSB)
+    {
+      if (high & (1 << NGARDS))
+	{
+	  /* Because we're half way, we would round to even by adding
+	     GARDROUND + 1, except that's also done in the packing
+	     function, and rounding twice will lose precision and cause
+	     the result to be too far off.  Example: 32-bit floats with
+	     bit patterns 0xfff * 0x3f800400 ~= 0xfff (less than 0.5ulp
+	     off), not 0x1000 (more than 0.5ulp off).  */
+	}
+      else if (low)
+	{
+	  /* We're a further than half way by a small amount corresponding
+	     to the bits set in "low".  Knowing that, we round here and
+	     not in pack_d, because there we don't have "low" available
+	     anymore.  */
+	  high += GARDROUND + 1;
+
+	  /* Avoid further rounding in pack_d.  */
+	  high &= ~(fractype) GARDMASK;
+	}
+    }
+  tmp->fraction.ll = high;
+  tmp->class = CLASS_NUMBER;
+  return tmp;
+}
+
+FLO_type
+multiply (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  fp_number_type tmp;
+  const fp_number_type *res;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  res = _fpmul_parts (&a, &b, &tmp);
+
+  return pack_d (res);
+}
+#endif /* L_mul_sf || L_mul_df || L_mul_tf */
+
+#if defined(L_div_sf) || defined(L_div_df) || defined(L_div_tf)
+static inline __attribute__ ((__always_inline__)) const fp_number_type *
+_fpdiv_parts (fp_number_type * a,
+	      fp_number_type * b)
+{
+  fractype bit;
+  fractype numerator;
+  fractype denominator;
+  fractype quotient;
+
+  if (isnan (a))
+    {
+      return a;
+    }
+  if (isnan (b))
+    {
+      return b;
+    }
+
+  a->sign = a->sign ^ b->sign;
+
+  if (isinf (a) || iszero (a))
+    {
+      if (a->class == b->class)
+	return makenan ();
+      return a;
+    }
+
+  if (isinf (b))
+    {
+      a->fraction.ll = 0;
+      a->normal_exp = 0;
+      return a;
+    }
+  if (iszero (b))
+    {
+      a->class = CLASS_INFINITY;
+      return a;
+    }
+
+  /* Calculate the mantissa by multiplying both 64bit numbers to get a
+     128 bit number */
+  {
+    /* quotient =
+       ( numerator / denominator) * 2^(numerator exponent -  denominator exponent)
+     */
+
+    a->normal_exp = a->normal_exp - b->normal_exp;
+    numerator = a->fraction.ll;
+    denominator = b->fraction.ll;
+
+    if (numerator < denominator)
+      {
+	/* Fraction will be less than 1.0 */
+	numerator *= 2;
+	a->normal_exp--;
+      }
+    bit = IMPLICIT_1;
+    quotient = 0;
+    /* ??? Does divide one bit at a time.  Optimize.  */
+    while (bit)
+      {
+	if (numerator >= denominator)
+	  {
+	    quotient |= bit;
+	    numerator -= denominator;
+	  }
+	bit >>= 1;
+	numerator *= 2;
+      }
+
+    if (!ROUND_TOWARDS_ZERO && (quotient & GARDMASK) == GARDMSB)
+      {
+	if (quotient & (1 << NGARDS))
+	  {
+	    /* Because we're half way, we would round to even by adding
+	       GARDROUND + 1, except that's also done in the packing
+	       function, and rounding twice will lose precision and cause
+	       the result to be too far off.  */
+	  }
+	else if (numerator)
+	  {
+	    /* We're a further than half way by the small amount
+	       corresponding to the bits set in "numerator".  Knowing
+	       that, we round here and not in pack_d, because there we
+	       don't have "numerator" available anymore.  */
+	    quotient += GARDROUND + 1;
+
+	    /* Avoid further rounding in pack_d.  */
+	    quotient &= ~(fractype) GARDMASK;
+	  }
+      }
+
+    a->fraction.ll = quotient;
+    return (a);
+  }
+}
+
+FLO_type
+divide (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  const fp_number_type *res;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  res = _fpdiv_parts (&a, &b);
+
+  return pack_d (res);
+}
+#endif /* L_div_sf || L_div_df */
+
+#if defined(L_fpcmp_parts_sf) || defined(L_fpcmp_parts_df) \
+    || defined(L_fpcmp_parts_tf)
+/* according to the demo, fpcmp returns a comparison with 0... thus
+   a<b -> -1
+   a==b -> 0
+   a>b -> +1
+ */
+
+int
+__fpcmp_parts (fp_number_type * a, fp_number_type * b)
+{
+#if 0
+  /* either nan -> unordered. Must be checked outside of this routine.  */
+  if (isnan (a) && isnan (b))
+    {
+      return 1;			/* still unordered! */
+    }
+#endif
+
+  if (isnan (a) || isnan (b))
+    {
+      return 1;			/* how to indicate unordered compare? */
+    }
+  if (isinf (a) && isinf (b))
+    {
+      /* +inf > -inf, but +inf != +inf */
+      /* b    \a| +inf(0)| -inf(1)
+       ______\+--------+--------
+       +inf(0)| a==b(0)| a<b(-1)
+       -------+--------+--------
+       -inf(1)| a>b(1) | a==b(0)
+       -------+--------+--------
+       So since unordered must be nonzero, just line up the columns...
+       */
+      return b->sign - a->sign;
+    }
+  /* but not both...  */
+  if (isinf (a))
+    {
+      return a->sign ? -1 : 1;
+    }
+  if (isinf (b))
+    {
+      return b->sign ? 1 : -1;
+    }
+  if (iszero (a) && iszero (b))
+    {
+      return 0;
+    }
+  if (iszero (a))
+    {
+      return b->sign ? 1 : -1;
+    }
+  if (iszero (b))
+    {
+      return a->sign ? -1 : 1;
+    }
+  /* now both are "normal".  */
+  if (a->sign != b->sign)
+    {
+      /* opposite signs */
+      return a->sign ? -1 : 1;
+    }
+  /* same sign; exponents? */
+  if (a->normal_exp > b->normal_exp)
+    {
+      return a->sign ? -1 : 1;
+    }
+  if (a->normal_exp < b->normal_exp)
+    {
+      return a->sign ? 1 : -1;
+    }
+  /* same exponents; check size.  */
+  if (a->fraction.ll > b->fraction.ll)
+    {
+      return a->sign ? -1 : 1;
+    }
+  if (a->fraction.ll < b->fraction.ll)
+    {
+      return a->sign ? 1 : -1;
+    }
+  /* after all that, they're equal.  */
+  return 0;
+}
+#endif
+
+#if defined(L_compare_sf) || defined(L_compare_df) || defined(L_compoare_tf)
+CMPtype
+compare (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  return __fpcmp_parts (&a, &b);
+}
+#endif /* L_compare_sf || L_compare_df */
+
+#ifndef US_SOFTWARE_GOFAST
+
+/* These should be optimized for their specific tasks someday.  */
+
+#if defined(L_eq_sf) || defined(L_eq_df) || defined(L_eq_tf)
+CMPtype
+_eq_f2 (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  if (isnan (&a) || isnan (&b))
+    return 1;			/* false, truth == 0 */
+
+  return __fpcmp_parts (&a, &b) ;
+}
+#endif /* L_eq_sf || L_eq_df */
+
+#if defined(L_ne_sf) || defined(L_ne_df) || defined(L_ne_tf)
+CMPtype
+_ne_f2 (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  if (isnan (&a) || isnan (&b))
+    return 1;			/* true, truth != 0 */
+
+  return  __fpcmp_parts (&a, &b) ;
+}
+#endif /* L_ne_sf || L_ne_df */
+
+#if defined(L_gt_sf) || defined(L_gt_df) || defined(L_gt_tf)
+CMPtype
+_gt_f2 (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  if (isnan (&a) || isnan (&b))
+    return -1;			/* false, truth > 0 */
+
+  return __fpcmp_parts (&a, &b);
+}
+#endif /* L_gt_sf || L_gt_df */
+
+#if defined(L_ge_sf) || defined(L_ge_df) || defined(L_ge_tf)
+CMPtype
+_ge_f2 (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  if (isnan (&a) || isnan (&b))
+    return -1;			/* false, truth >= 0 */
+  return __fpcmp_parts (&a, &b) ;
+}
+#endif /* L_ge_sf || L_ge_df */
+
+#if defined(L_lt_sf) || defined(L_lt_df) || defined(L_lt_tf)
+CMPtype
+_lt_f2 (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  if (isnan (&a) || isnan (&b))
+    return 1;			/* false, truth < 0 */
+
+  return __fpcmp_parts (&a, &b);
+}
+#endif /* L_lt_sf || L_lt_df */
+
+#if defined(L_le_sf) || defined(L_le_df) || defined(L_le_tf)
+CMPtype
+_le_f2 (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  if (isnan (&a) || isnan (&b))
+    return 1;			/* false, truth <= 0 */
+
+  return __fpcmp_parts (&a, &b) ;
+}
+#endif /* L_le_sf || L_le_df */
+
+#endif /* ! US_SOFTWARE_GOFAST */
+
+#if defined(L_unord_sf) || defined(L_unord_df) || defined(L_unord_tf)
+CMPtype
+_unord_f2 (FLO_type arg_a, FLO_type arg_b)
+{
+  fp_number_type a;
+  fp_number_type b;
+  FLO_union_type au, bu;
+
+  au.value = arg_a;
+  bu.value = arg_b;
+
+  unpack_d (&au, &a);
+  unpack_d (&bu, &b);
+
+  return (isnan (&a) || isnan (&b));
+}
+#endif /* L_unord_sf || L_unord_df */
+
+#if defined(L_si_to_sf) || defined(L_si_to_df) || defined(L_si_to_tf)
+FLO_type
+si_to_float (SItype arg_a)
+{
+  fp_number_type in;
+
+  in.class = CLASS_NUMBER;
+  in.sign = arg_a < 0;
+  if (!arg_a)
+    {
+      in.class = CLASS_ZERO;
+    }
+  else
+    {
+      USItype uarg;
+      int shift;
+      in.normal_exp = FRACBITS + NGARDS;
+      if (in.sign) 
+	{
+	  /* Special case for minint, since there is no +ve integer
+	     representation for it */
+	  if (arg_a == (- MAX_SI_INT - 1))
+	    {
+	      return (FLO_type)(- MAX_SI_INT - 1);
+	    }
+	  uarg = (-arg_a);
+	}
+      else
+	uarg = arg_a;
+
+      in.fraction.ll = uarg;
+      shift = clzusi (uarg) - (BITS_PER_SI - 1 - FRACBITS - NGARDS);
+      if (shift > 0)
+	{
+	  in.fraction.ll <<= shift;
+	  in.normal_exp -= shift;
+	}
+    }
+  return pack_d (&in);
+}
+#endif /* L_si_to_sf || L_si_to_df */
+
+#if defined(L_usi_to_sf) || defined(L_usi_to_df) || defined(L_usi_to_tf)
+FLO_type
+usi_to_float (USItype arg_a)
+{
+  fp_number_type in;
+
+  in.sign = 0;
+  if (!arg_a)
+    {
+      in.class = CLASS_ZERO;
+    }
+  else
+    {
+      int shift;
+      in.class = CLASS_NUMBER;
+      in.normal_exp = FRACBITS + NGARDS;
+      in.fraction.ll = arg_a;
+
+      shift = clzusi (arg_a) - (BITS_PER_SI - 1 - FRACBITS - NGARDS);
+      if (shift < 0)
+	{
+	  fractype guard = in.fraction.ll & (((fractype)1 << -shift) - 1);
+	  in.fraction.ll >>= -shift;
+	  in.fraction.ll |= (guard != 0);
+	  in.normal_exp -= shift;
+	}
+      else if (shift > 0)
+	{
+	  in.fraction.ll <<= shift;
+	  in.normal_exp -= shift;
+	}
+    }
+  return pack_d (&in);
+}
+#endif
+
+#if defined(L_sf_to_si) || defined(L_df_to_si) || defined(L_tf_to_si)
+SItype
+float_to_si (FLO_type arg_a)
+{
+  fp_number_type a;
+  SItype tmp;
+  FLO_union_type au;
+
+  au.value = arg_a;
+  unpack_d (&au, &a);
+
+  if (iszero (&a))
+    return 0;
+  if (isnan (&a))
+    return 0;
+  /* get reasonable MAX_SI_INT...  */
+  if (isinf (&a))
+    return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
+  /* it is a number, but a small one */
+  if (a.normal_exp < 0)
+    return 0;
+  if (a.normal_exp > BITS_PER_SI - 2)
+    return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
+  tmp = a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
+  return a.sign ? (-tmp) : (tmp);
+}
+#endif /* L_sf_to_si || L_df_to_si */
+
+#if defined(L_sf_to_usi) || defined(L_df_to_usi) || defined(L_tf_to_usi)
+#if defined US_SOFTWARE_GOFAST || defined(L_tf_to_usi)
+/* While libgcc2.c defines its own __fixunssfsi and __fixunsdfsi routines,
+   we also define them for GOFAST because the ones in libgcc2.c have the
+   wrong names and I'd rather define these here and keep GOFAST CYG-LOC's
+   out of libgcc2.c.  We can't define these here if not GOFAST because then
+   there'd be duplicate copies.  */
+
+USItype
+float_to_usi (FLO_type arg_a)
+{
+  fp_number_type a;
+  FLO_union_type au;
+
+  au.value = arg_a;
+  unpack_d (&au, &a);
+
+  if (iszero (&a))
+    return 0;
+  if (isnan (&a))
+    return 0;
+  /* it is a negative number */
+  if (a.sign)
+    return 0;
+  /* get reasonable MAX_USI_INT...  */
+  if (isinf (&a))
+    return MAX_USI_INT;
+  /* it is a number, but a small one */
+  if (a.normal_exp < 0)
+    return 0;
+  if (a.normal_exp > BITS_PER_SI - 1)
+    return MAX_USI_INT;
+  else if (a.normal_exp > (FRACBITS + NGARDS))
+    return a.fraction.ll << (a.normal_exp - (FRACBITS + NGARDS));
+  else
+    return a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
+}
+#endif /* US_SOFTWARE_GOFAST */
+#endif /* L_sf_to_usi || L_df_to_usi */
+
+#if defined(L_negate_sf) || defined(L_negate_df) || defined(L_negate_tf)
+FLO_type
+negate (FLO_type arg_a)
+{
+  fp_number_type a;
+  FLO_union_type au;
+
+  au.value = arg_a;
+  unpack_d (&au, &a);
+
+  flip_sign (&a);
+  return pack_d (&a);
+}
+#endif /* L_negate_sf || L_negate_df */
+
+#ifdef FLOAT
+
+#if defined(L_make_sf)
+SFtype
+__make_fp(fp_class_type class,
+	     unsigned int sign,
+	     int exp, 
+	     USItype frac)
+{
+  fp_number_type in;
+
+  in.class = class;
+  in.sign = sign;
+  in.normal_exp = exp;
+  in.fraction.ll = frac;
+  return pack_d (&in);
+}
+#endif /* L_make_sf */
+
+#ifndef FLOAT_ONLY
+
+/* This enables one to build an fp library that supports float but not double.
+   Otherwise, we would get an undefined reference to __make_dp.
+   This is needed for some 8-bit ports that can't handle well values that
+   are 8-bytes in size, so we just don't support double for them at all.  */
+
+#if defined(L_sf_to_df)
+DFtype
+sf_to_df (SFtype arg_a)
+{
+  fp_number_type in;
+  FLO_union_type au;
+
+  au.value = arg_a;
+  unpack_d (&au, &in);
+
+  return __make_dp (in.class, in.sign, in.normal_exp,
+		    ((UDItype) in.fraction.ll) << F_D_BITOFF);
+}
+#endif /* L_sf_to_df */
+
+#if defined(L_sf_to_tf) && defined(TMODES)
+TFtype
+sf_to_tf (SFtype arg_a)
+{
+  fp_number_type in;
+  FLO_union_type au;
+
+  au.value = arg_a;
+  unpack_d (&au, &in);
+
+  return __make_tp (in.class, in.sign, in.normal_exp,
+		    ((UTItype) in.fraction.ll) << F_T_BITOFF);
+}
+#endif /* L_sf_to_df */
+
+#endif /* ! FLOAT_ONLY */
+#endif /* FLOAT */
+
+#ifndef FLOAT
+
+extern SFtype __make_fp (fp_class_type, unsigned int, int, USItype);
+
+#if defined(L_make_df)
+DFtype
+__make_dp (fp_class_type class, unsigned int sign, int exp, UDItype frac)
+{
+  fp_number_type in;
+
+  in.class = class;
+  in.sign = sign;
+  in.normal_exp = exp;
+  in.fraction.ll = frac;
+  return pack_d (&in);
+}
+#endif /* L_make_df */
+
+#if defined(L_df_to_sf)
+SFtype
+df_to_sf (DFtype arg_a)
+{
+  fp_number_type in;
+  USItype sffrac;
+  FLO_union_type au;
+
+  au.value = arg_a;
+  unpack_d (&au, &in);
+
+  sffrac = in.fraction.ll >> F_D_BITOFF;
+
+  /* We set the lowest guard bit in SFFRAC if we discarded any non
+     zero bits.  */
+  if ((in.fraction.ll & (((USItype) 1 << F_D_BITOFF) - 1)) != 0)
+    sffrac |= 1;
+
+  return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
+}
+#endif /* L_df_to_sf */
+
+#if defined(L_df_to_tf) && defined(TMODES) \
+    && !defined(FLOAT) && !defined(TFLOAT)
+TFtype
+df_to_tf (DFtype arg_a)
+{
+  fp_number_type in;
+  FLO_union_type au;
+
+  au.value = arg_a;
+  unpack_d (&au, &in);
+
+  return __make_tp (in.class, in.sign, in.normal_exp,
+		    ((UTItype) in.fraction.ll) << D_T_BITOFF);
+}
+#endif /* L_sf_to_df */
+
+#ifdef TFLOAT
+#if defined(L_make_tf)
+TFtype
+__make_tp(fp_class_type class,
+	     unsigned int sign,
+	     int exp, 
+	     UTItype frac)
+{
+  fp_number_type in;
+
+  in.class = class;
+  in.sign = sign;
+  in.normal_exp = exp;
+  in.fraction.ll = frac;
+  return pack_d (&in);
+}
+#endif /* L_make_tf */
+
+#if defined(L_tf_to_df)
+DFtype
+tf_to_df (TFtype arg_a)
+{
+  fp_number_type in;
+  UDItype sffrac;
+  FLO_union_type au;
+
+  au.value = arg_a;
+  unpack_d (&au, &in);
+
+  sffrac = in.fraction.ll >> D_T_BITOFF;
+
+  /* We set the lowest guard bit in SFFRAC if we discarded any non
+     zero bits.  */
+  if ((in.fraction.ll & (((UTItype) 1 << D_T_BITOFF) - 1)) != 0)
+    sffrac |= 1;
+
+  return __make_dp (in.class, in.sign, in.normal_exp, sffrac);
+}
+#endif /* L_tf_to_df */
+
+#if defined(L_tf_to_sf)
+SFtype
+tf_to_sf (TFtype arg_a)
+{
+  fp_number_type in;
+  USItype sffrac;
+  FLO_union_type au;
+
+  au.value = arg_a;
+  unpack_d (&au, &in);
+
+  sffrac = in.fraction.ll >> F_T_BITOFF;
+
+  /* We set the lowest guard bit in SFFRAC if we discarded any non
+     zero bits.  */
+  if ((in.fraction.ll & (((UTItype) 1 << F_T_BITOFF) - 1)) != 0)
+    sffrac |= 1;
+
+  return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
+}
+#endif /* L_tf_to_sf */
+#endif /* TFLOAT */
+
+#endif /* ! FLOAT */
+#endif /* !EXTENDED_FLOAT_STUBS */