diff gcc/config/m68k/m68k.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/config/m68k/m68k.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,5795 @@
+/* Subroutines for insn-output.c for Motorola 68000 family.
+   Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
+   2001, 2003, 2004, 2005, 2006, 2007, 2008
+   Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "function.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "real.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "output.h"
+#include "insn-attr.h"
+#include "recog.h"
+#include "toplev.h"
+#include "expr.h"
+#include "reload.h"
+#include "tm_p.h"
+#include "target.h"
+#include "target-def.h"
+#include "debug.h"
+#include "flags.h"
+#include "df.h"
+/* ??? Need to add a dependency between m68k.o and sched-int.h.  */
+#include "sched-int.h"
+#include "insn-codes.h"
+
+enum reg_class regno_reg_class[] =
+{
+  DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
+  DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
+  ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
+  ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
+  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+  ADDR_REGS
+};
+
+
+/* The minimum number of integer registers that we want to save with the
+   movem instruction.  Using two movel instructions instead of a single
+   moveml is about 15% faster for the 68020 and 68030 at no expense in
+   code size.  */
+#define MIN_MOVEM_REGS 3
+
+/* The minimum number of floating point registers that we want to save
+   with the fmovem instruction.  */
+#define MIN_FMOVEM_REGS 1
+
+/* Structure describing stack frame layout.  */
+struct m68k_frame
+{
+  /* Stack pointer to frame pointer offset.  */
+  HOST_WIDE_INT offset;
+
+  /* Offset of FPU registers.  */
+  HOST_WIDE_INT foffset;
+
+  /* Frame size in bytes (rounded up).  */
+  HOST_WIDE_INT size;
+
+  /* Data and address register.  */
+  int reg_no;
+  unsigned int reg_mask;
+
+  /* FPU registers.  */
+  int fpu_no;
+  unsigned int fpu_mask;
+
+  /* Offsets relative to ARG_POINTER.  */
+  HOST_WIDE_INT frame_pointer_offset;
+  HOST_WIDE_INT stack_pointer_offset;
+
+  /* Function which the above information refers to.  */
+  int funcdef_no;
+};
+
+/* Current frame information calculated by m68k_compute_frame_layout().  */
+static struct m68k_frame current_frame;
+
+/* Structure describing an m68k address.
+
+   If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
+   with null fields evaluating to 0.  Here:
+
+   - BASE satisfies m68k_legitimate_base_reg_p
+   - INDEX satisfies m68k_legitimate_index_reg_p
+   - OFFSET satisfies m68k_legitimate_constant_address_p
+
+   INDEX is either HImode or SImode.  The other fields are SImode.
+
+   If CODE is PRE_DEC, the address is -(BASE).  If CODE is POST_INC,
+   the address is (BASE)+.  */
+struct m68k_address {
+  enum rtx_code code;
+  rtx base;
+  rtx index;
+  rtx offset;
+  int scale;
+};
+
+static int m68k_sched_adjust_cost (rtx, rtx, rtx, int);
+static int m68k_sched_issue_rate (void);
+static int m68k_sched_variable_issue (FILE *, int, rtx, int);
+static void m68k_sched_md_init_global (FILE *, int, int);
+static void m68k_sched_md_finish_global (FILE *, int);
+static void m68k_sched_md_init (FILE *, int, int);
+static void m68k_sched_dfa_pre_advance_cycle (void);
+static void m68k_sched_dfa_post_advance_cycle (void);
+static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
+
+static bool m68k_handle_option (size_t, const char *, int);
+static rtx find_addr_reg (rtx);
+static const char *singlemove_string (rtx *);
+#ifdef M68K_TARGET_COFF
+static void m68k_coff_asm_named_section (const char *, unsigned int, tree);
+#endif /* M68K_TARGET_COFF */
+static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
+					  HOST_WIDE_INT, tree);
+static rtx m68k_struct_value_rtx (tree, int);
+static tree m68k_handle_fndecl_attribute (tree *node, tree name,
+					  tree args, int flags,
+					  bool *no_add_attrs);
+static void m68k_compute_frame_layout (void);
+static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
+static bool m68k_ok_for_sibcall_p (tree, tree);
+static bool m68k_rtx_costs (rtx, int, int, int *, bool);
+#if M68K_HONOR_TARGET_STRICT_ALIGNMENT
+static bool m68k_return_in_memory (const_tree, const_tree);
+#endif
+
+
+/* Specify the identification number of the library being built */
+const char *m68k_library_id_string = "_current_shared_library_a5_offset_";
+
+/* Nonzero if the last compare/test insn had FP operands.  The
+   sCC expanders peek at this to determine what to do for the
+   68060, which has no fsCC instructions.  */
+int m68k_last_compare_had_fp_operands;
+
+/* Initialize the GCC target structure.  */
+
+#if INT_OP_GROUP == INT_OP_DOT_WORD
+#undef TARGET_ASM_ALIGNED_HI_OP
+#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
+#endif
+
+#if INT_OP_GROUP == INT_OP_NO_DOT
+#undef TARGET_ASM_BYTE_OP
+#define TARGET_ASM_BYTE_OP "\tbyte\t"
+#undef TARGET_ASM_ALIGNED_HI_OP
+#define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
+#undef TARGET_ASM_ALIGNED_SI_OP
+#define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
+#endif
+
+#if INT_OP_GROUP == INT_OP_DC
+#undef TARGET_ASM_BYTE_OP
+#define TARGET_ASM_BYTE_OP "\tdc.b\t"
+#undef TARGET_ASM_ALIGNED_HI_OP
+#define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
+#undef TARGET_ASM_ALIGNED_SI_OP
+#define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
+#endif
+
+#undef TARGET_ASM_UNALIGNED_HI_OP
+#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
+#undef TARGET_ASM_UNALIGNED_SI_OP
+#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
+
+#undef TARGET_ASM_OUTPUT_MI_THUNK
+#define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
+#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
+#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
+
+#undef TARGET_ASM_FILE_START_APP_OFF
+#define TARGET_ASM_FILE_START_APP_OFF true
+
+#undef TARGET_SCHED_ADJUST_COST
+#define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
+
+#undef TARGET_SCHED_ISSUE_RATE
+#define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
+
+#undef TARGET_SCHED_VARIABLE_ISSUE
+#define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
+
+#undef TARGET_SCHED_INIT_GLOBAL
+#define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
+
+#undef TARGET_SCHED_FINISH_GLOBAL
+#define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
+
+#undef TARGET_SCHED_INIT
+#define TARGET_SCHED_INIT m68k_sched_md_init
+
+#undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
+#define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
+
+#undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
+#define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
+
+#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
+#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD	\
+  m68k_sched_first_cycle_multipass_dfa_lookahead
+
+#undef TARGET_HANDLE_OPTION
+#define TARGET_HANDLE_OPTION m68k_handle_option
+
+#undef TARGET_RTX_COSTS
+#define TARGET_RTX_COSTS m68k_rtx_costs
+
+#undef TARGET_ATTRIBUTE_TABLE
+#define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
+
+#undef TARGET_PROMOTE_PROTOTYPES
+#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
+
+#undef TARGET_STRUCT_VALUE_RTX
+#define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
+
+#undef TARGET_CANNOT_FORCE_CONST_MEM
+#define TARGET_CANNOT_FORCE_CONST_MEM m68k_illegitimate_symbolic_constant_p
+
+#undef TARGET_FUNCTION_OK_FOR_SIBCALL
+#define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
+
+#if M68K_HONOR_TARGET_STRICT_ALIGNMENT
+#undef TARGET_RETURN_IN_MEMORY
+#define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
+#endif
+
+static const struct attribute_spec m68k_attribute_table[] =
+{
+  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
+  { "interrupt", 0, 0, true,  false, false, m68k_handle_fndecl_attribute },
+  { "interrupt_handler", 0, 0, true,  false, false, m68k_handle_fndecl_attribute },
+  { "interrupt_thread", 0, 0, true,  false, false, m68k_handle_fndecl_attribute },
+  { NULL,                0, 0, false, false, false, NULL }
+};
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+/* Base flags for 68k ISAs.  */
+#define FL_FOR_isa_00    FL_ISA_68000
+#define FL_FOR_isa_10    (FL_FOR_isa_00 | FL_ISA_68010)
+/* FL_68881 controls the default setting of -m68881.  gcc has traditionally
+   generated 68881 code for 68020 and 68030 targets unless explicitly told
+   not to.  */
+#define FL_FOR_isa_20    (FL_FOR_isa_10 | FL_ISA_68020 \
+			  | FL_BITFIELD | FL_68881)
+#define FL_FOR_isa_40    (FL_FOR_isa_20 | FL_ISA_68040)
+#define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
+
+/* Base flags for ColdFire ISAs.  */
+#define FL_FOR_isa_a     (FL_COLDFIRE | FL_ISA_A)
+#define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
+/* Note ISA_B doesn't necessarily include USP (user stack pointer) support.  */
+#define FL_FOR_isa_b     (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
+/* ISA_C is not upwardly compatible with ISA_B.  */
+#define FL_FOR_isa_c     (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
+
+enum m68k_isa
+{
+  /* Traditional 68000 instruction sets.  */
+  isa_00,
+  isa_10,
+  isa_20,
+  isa_40,
+  isa_cpu32,
+  /* ColdFire instruction set variants.  */
+  isa_a,
+  isa_aplus,
+  isa_b,
+  isa_c,
+  isa_max
+};
+
+/* Information about one of the -march, -mcpu or -mtune arguments.  */
+struct m68k_target_selection
+{
+  /* The argument being described.  */
+  const char *name;
+
+  /* For -mcpu, this is the device selected by the option.
+     For -mtune and -march, it is a representative device
+     for the microarchitecture or ISA respectively.  */
+  enum target_device device;
+
+  /* The M68K_DEVICE fields associated with DEVICE.  See the comment
+     in m68k-devices.def for details.  FAMILY is only valid for -mcpu.  */
+  const char *family;
+  enum uarch_type microarch;
+  enum m68k_isa isa;
+  unsigned long flags;
+};
+
+/* A list of all devices in m68k-devices.def.  Used for -mcpu selection.  */
+static const struct m68k_target_selection all_devices[] =
+{
+#define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
+  { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
+#include "m68k-devices.def"
+#undef M68K_DEVICE
+  { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
+};
+
+/* A list of all ISAs, mapping each one to a representative device.
+   Used for -march selection.  */
+static const struct m68k_target_selection all_isas[] =
+{
+  { "68000",    m68000,     NULL,  u68000,   isa_00,    FL_FOR_isa_00 },
+  { "68010",    m68010,     NULL,  u68010,   isa_10,    FL_FOR_isa_10 },
+  { "68020",    m68020,     NULL,  u68020,   isa_20,    FL_FOR_isa_20 },
+  { "68030",    m68030,     NULL,  u68030,   isa_20,    FL_FOR_isa_20 },
+  { "68040",    m68040,     NULL,  u68040,   isa_40,    FL_FOR_isa_40 },
+  { "68060",    m68060,     NULL,  u68060,   isa_40,    FL_FOR_isa_40 },
+  { "cpu32",    cpu32,      NULL,  ucpu32,   isa_20,    FL_FOR_isa_cpu32 },
+  { "isaa",     mcf5206e,   NULL,  ucfv2,    isa_a,     (FL_FOR_isa_a
+							 | FL_CF_HWDIV) },
+  { "isaaplus", mcf5271,    NULL,  ucfv2,    isa_aplus, (FL_FOR_isa_aplus
+							 | FL_CF_HWDIV) },
+  { "isab",     mcf5407,    NULL,  ucfv4,    isa_b,     FL_FOR_isa_b },
+  { "isac",     unk_device, NULL,  ucfv4,    isa_c,     (FL_FOR_isa_c
+							 | FL_CF_HWDIV) },
+  { NULL,       unk_device, NULL,  unk_arch, isa_max,   0 }
+};
+
+/* A list of all microarchitectures, mapping each one to a representative
+   device.  Used for -mtune selection.  */
+static const struct m68k_target_selection all_microarchs[] =
+{
+  { "68000",    m68000,     NULL,  u68000,    isa_00,  FL_FOR_isa_00 },
+  { "68010",    m68010,     NULL,  u68010,    isa_10,  FL_FOR_isa_10 },
+  { "68020",    m68020,     NULL,  u68020,    isa_20,  FL_FOR_isa_20 },
+  { "68020-40", m68020,     NULL,  u68020_40, isa_20,  FL_FOR_isa_20 },
+  { "68020-60", m68020,     NULL,  u68020_60, isa_20,  FL_FOR_isa_20 },
+  { "68030",    m68030,     NULL,  u68030,    isa_20,  FL_FOR_isa_20 },
+  { "68040",    m68040,     NULL,  u68040,    isa_40,  FL_FOR_isa_40 },
+  { "68060",    m68060,     NULL,  u68060,    isa_40,  FL_FOR_isa_40 },
+  { "cpu32",    cpu32,      NULL,  ucpu32,    isa_20,  FL_FOR_isa_cpu32 },
+  { "cfv1",     mcf51qe,    NULL,  ucfv1,     isa_c,   FL_FOR_isa_c },
+  { "cfv2",     mcf5206,    NULL,  ucfv2,     isa_a,   FL_FOR_isa_a },
+  { "cfv3",     mcf5307,    NULL,  ucfv3,     isa_a,   (FL_FOR_isa_a
+							| FL_CF_HWDIV) },
+  { "cfv4",     mcf5407,    NULL,  ucfv4,     isa_b,   FL_FOR_isa_b },
+  { "cfv4e",    mcf547x,    NULL,  ucfv4e,    isa_b,   (FL_FOR_isa_b
+							| FL_CF_USP
+							| FL_CF_EMAC
+							| FL_CF_FPU) },
+  { NULL,       unk_device, NULL,  unk_arch,  isa_max, 0 }
+};
+
+/* The entries associated with the -mcpu, -march and -mtune settings,
+   or null for options that have not been used.  */
+const struct m68k_target_selection *m68k_cpu_entry;
+const struct m68k_target_selection *m68k_arch_entry;
+const struct m68k_target_selection *m68k_tune_entry;
+
+/* Which CPU we are generating code for.  */
+enum target_device m68k_cpu;
+
+/* Which microarchitecture to tune for.  */
+enum uarch_type m68k_tune;
+
+/* Which FPU to use.  */
+enum fpu_type m68k_fpu;
+
+/* The set of FL_* flags that apply to the target processor.  */
+unsigned int m68k_cpu_flags;
+
+/* The set of FL_* flags that apply to the processor to be tuned for.  */
+unsigned int m68k_tune_flags;
+
+/* Asm templates for calling or jumping to an arbitrary symbolic address,
+   or NULL if such calls or jumps are not supported.  The address is held
+   in operand 0.  */
+const char *m68k_symbolic_call;
+const char *m68k_symbolic_jump;
+
+/* Enum variable that corresponds to m68k_symbolic_call values.  */
+enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
+
+
+/* See whether TABLE has an entry with name NAME.  Return true and
+   store the entry in *ENTRY if so, otherwise return false and
+   leave *ENTRY alone.  */
+
+static bool
+m68k_find_selection (const struct m68k_target_selection **entry,
+		     const struct m68k_target_selection *table,
+		     const char *name)
+{
+  size_t i;
+
+  for (i = 0; table[i].name; i++)
+    if (strcmp (table[i].name, name) == 0)
+      {
+	*entry = table + i;
+	return true;
+      }
+  return false;
+}
+
+/* Implement TARGET_HANDLE_OPTION.  */
+
+static bool
+m68k_handle_option (size_t code, const char *arg, int value)
+{
+  switch (code)
+    {
+    case OPT_march_:
+      return m68k_find_selection (&m68k_arch_entry, all_isas, arg);
+
+    case OPT_mcpu_:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, arg);
+
+    case OPT_mtune_:
+      return m68k_find_selection (&m68k_tune_entry, all_microarchs, arg);
+
+    case OPT_m5200:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "5206");
+
+    case OPT_m5206e:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "5206e");
+
+    case OPT_m528x:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "528x");
+
+    case OPT_m5307:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "5307");
+
+    case OPT_m5407:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "5407");
+
+    case OPT_mcfv4e:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "547x");
+
+    case OPT_m68000:
+    case OPT_mc68000:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "68000");
+
+    case OPT_m68010:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "68010");
+
+    case OPT_m68020:
+    case OPT_mc68020:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "68020");
+
+    case OPT_m68020_40:
+      return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
+				   "68020-40")
+	      && m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
+
+    case OPT_m68020_60:
+      return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
+				   "68020-60")
+	      && m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
+
+    case OPT_m68030:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "68030");
+
+    case OPT_m68040:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "68040");
+
+    case OPT_m68060:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "68060");
+
+    case OPT_m68302:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "68302");
+
+    case OPT_m68332:
+    case OPT_mcpu32:
+      return m68k_find_selection (&m68k_cpu_entry, all_devices, "68332");
+
+    case OPT_mshared_library_id_:
+      if (value > MAX_LIBRARY_ID)
+	error ("-mshared-library-id=%s is not between 0 and %d",
+	       arg, MAX_LIBRARY_ID);
+      else
+        {
+	  char *tmp;
+	  asprintf (&tmp, "%d", (value * -4) - 4);
+	  m68k_library_id_string = tmp;
+	}
+      return true;
+
+    default:
+      return true;
+    }
+}
+
+/* Sometimes certain combinations of command options do not make
+   sense on a particular target machine.  You can define a macro
+   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
+   defined, is executed once just after all the command options have
+   been parsed.
+
+   Don't use this macro to turn on various extra optimizations for
+   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
+
+void
+override_options (void)
+{
+  const struct m68k_target_selection *entry;
+  unsigned long target_mask;
+
+  /* User can choose:
+
+     -mcpu=
+     -march=
+     -mtune=
+
+     -march=ARCH should generate code that runs any processor
+     implementing architecture ARCH.  -mcpu=CPU should override -march
+     and should generate code that runs on processor CPU, making free
+     use of any instructions that CPU understands.  -mtune=UARCH applies
+     on top of -mcpu or -march and optimizes the code for UARCH.  It does
+     not change the target architecture.  */
+  if (m68k_cpu_entry)
+    {
+      /* Complain if the -march setting is for a different microarchitecture,
+	 or includes flags that the -mcpu setting doesn't.  */
+      if (m68k_arch_entry
+	  && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
+	      || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
+	warning (0, "-mcpu=%s conflicts with -march=%s",
+		 m68k_cpu_entry->name, m68k_arch_entry->name);
+
+      entry = m68k_cpu_entry;
+    }
+  else
+    entry = m68k_arch_entry;
+
+  if (!entry)
+    entry = all_devices + TARGET_CPU_DEFAULT;
+
+  m68k_cpu_flags = entry->flags;
+
+  /* Use the architecture setting to derive default values for
+     certain flags.  */
+  target_mask = 0;
+
+  /* ColdFire is lenient about alignment.  */
+  if (!TARGET_COLDFIRE)
+    target_mask |= MASK_STRICT_ALIGNMENT;
+
+  if ((m68k_cpu_flags & FL_BITFIELD) != 0)
+    target_mask |= MASK_BITFIELD;
+  if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
+    target_mask |= MASK_CF_HWDIV;
+  if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
+    target_mask |= MASK_HARD_FLOAT;
+  target_flags |= target_mask & ~target_flags_explicit;
+
+  /* Set the directly-usable versions of the -mcpu and -mtune settings.  */
+  m68k_cpu = entry->device;
+  if (m68k_tune_entry)
+    {
+      m68k_tune = m68k_tune_entry->microarch;
+      m68k_tune_flags = m68k_tune_entry->flags;
+    }
+#ifdef M68K_DEFAULT_TUNE
+  else if (!m68k_cpu_entry && !m68k_arch_entry)
+    {
+      enum target_device dev;
+      dev = all_microarchs[M68K_DEFAULT_TUNE].device;
+      m68k_tune_flags = all_devices[dev]->flags;
+    }
+#endif
+  else
+    {
+      m68k_tune = entry->microarch;
+      m68k_tune_flags = entry->flags;
+    }
+
+  /* Set the type of FPU.  */
+  m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
+	      : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
+	      : FPUTYPE_68881);
+
+  /* Sanity check to ensure that msep-data and mid-sahred-library are not
+   * both specified together.  Doing so simply doesn't make sense.
+   */
+  if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
+    error ("cannot specify both -msep-data and -mid-shared-library");
+
+  /* If we're generating code for a separate A5 relative data segment,
+   * we've got to enable -fPIC as well.  This might be relaxable to
+   * -fpic but it hasn't been tested properly.
+   */
+  if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
+    flag_pic = 2;
+
+  /* -mpcrel -fPIC uses 32-bit pc-relative displacements.  Raise an
+     error if the target does not support them.  */
+  if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
+    error ("-mpcrel -fPIC is not currently supported on selected cpu");
+
+  /* ??? A historic way of turning on pic, or is this intended to
+     be an embedded thing that doesn't have the same name binding
+     significance that it does on hosted ELF systems?  */
+  if (TARGET_PCREL && flag_pic == 0)
+    flag_pic = 1;
+
+  if (!flag_pic)
+    {
+      m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
+
+      m68k_symbolic_jump = "jra %a0";
+    }
+  else if (TARGET_ID_SHARED_LIBRARY)
+    /* All addresses must be loaded from the GOT.  */
+    ;
+  else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
+    {
+      if (TARGET_PCREL)
+	m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
+      else
+	m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
+
+      if (TARGET_ISAC)
+	/* No unconditional long branch */;
+      else if (TARGET_PCREL)
+	m68k_symbolic_jump = "bra%.l %c0";
+      else
+	m68k_symbolic_jump = "bra%.l %p0";
+      /* Turn off function cse if we are doing PIC.  We always want
+	 function call to be done as `bsr foo@PLTPC'.  */
+      /* ??? It's traditional to do this for -mpcrel too, but it isn't
+	 clear how intentional that is.  */
+      flag_no_function_cse = 1;
+    }
+
+  switch (m68k_symbolic_call_var)
+    {
+    case M68K_SYMBOLIC_CALL_JSR:
+      m68k_symbolic_call = "jsr %a0";
+      break;
+
+    case M68K_SYMBOLIC_CALL_BSR_C:
+      m68k_symbolic_call = "bsr%.l %c0";
+      break;
+
+    case M68K_SYMBOLIC_CALL_BSR_P:
+      m68k_symbolic_call = "bsr%.l %p0";
+      break;
+
+    case M68K_SYMBOLIC_CALL_NONE:
+      gcc_assert (m68k_symbolic_call == NULL);
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+#ifndef ASM_OUTPUT_ALIGN_WITH_NOP
+  if (align_labels > 2)
+    {
+      warning (0, "-falign-labels=%d is not supported", align_labels);
+      align_labels = 0;
+    }
+  if (align_loops > 2)
+    {
+      warning (0, "-falign-loops=%d is not supported", align_loops);
+      align_loops = 0;
+    }
+#endif
+
+  SUBTARGET_OVERRIDE_OPTIONS;
+
+  /* Setup scheduling options.  */
+  if (TUNE_CFV1)
+    m68k_sched_cpu = CPU_CFV1;
+  else if (TUNE_CFV2)
+    m68k_sched_cpu = CPU_CFV2;
+  else if (TUNE_CFV3)
+    m68k_sched_cpu = CPU_CFV3;
+  else if (TUNE_CFV4)
+    m68k_sched_cpu = CPU_CFV4;
+  else
+    {
+      m68k_sched_cpu = CPU_UNKNOWN;
+      flag_schedule_insns = 0;
+      flag_schedule_insns_after_reload = 0;
+      flag_modulo_sched = 0;
+    }
+
+  if (m68k_sched_cpu != CPU_UNKNOWN)
+    {
+      if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
+	m68k_sched_mac = MAC_CF_EMAC;
+      else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
+	m68k_sched_mac = MAC_CF_MAC;
+      else
+	m68k_sched_mac = MAC_NO;
+    }
+}
+
+/* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
+   given argument and NAME is the argument passed to -mcpu.  Return NULL
+   if -mcpu was not passed.  */
+
+const char *
+m68k_cpp_cpu_ident (const char *prefix)
+{
+  if (!m68k_cpu_entry)
+    return NULL;
+  return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
+}
+
+/* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
+   given argument and NAME is the name of the representative device for
+   the -mcpu argument's family.  Return NULL if -mcpu was not passed.  */
+
+const char *
+m68k_cpp_cpu_family (const char *prefix)
+{
+  if (!m68k_cpu_entry)
+    return NULL;
+  return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
+}
+
+/* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
+   "interrupt_handler" attribute and interrupt_thread if FUNC has an
+   "interrupt_thread" attribute.  Otherwise, return
+   m68k_fk_normal_function.  */
+
+enum m68k_function_kind
+m68k_get_function_kind (tree func)
+{
+  tree a;
+
+  gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
+  
+  a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
+  if (a != NULL_TREE)
+    return m68k_fk_interrupt_handler;
+
+  a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
+  if (a != NULL_TREE)
+    return m68k_fk_interrupt_handler;
+
+  a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
+  if (a != NULL_TREE)
+    return m68k_fk_interrupt_thread;
+
+  return m68k_fk_normal_function;
+}
+
+/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
+   struct attribute_spec.handler.  */
+static tree
+m68k_handle_fndecl_attribute (tree *node, tree name,
+			      tree args ATTRIBUTE_UNUSED,
+			      int flags ATTRIBUTE_UNUSED,
+			      bool *no_add_attrs)
+{
+  if (TREE_CODE (*node) != FUNCTION_DECL)
+    {
+      warning (OPT_Wattributes, "%qs attribute only applies to functions",
+	       IDENTIFIER_POINTER (name));
+      *no_add_attrs = true;
+    }
+
+  if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
+    {
+      error ("multiple interrupt attributes not allowed");
+      *no_add_attrs = true;
+    }
+
+  if (!TARGET_FIDOA
+      && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
+    {
+      error ("interrupt_thread is available only on fido");
+      *no_add_attrs = true;
+    }
+
+  return NULL_TREE;
+}
+
+static void
+m68k_compute_frame_layout (void)
+{
+  int regno, saved;
+  unsigned int mask;
+  enum m68k_function_kind func_kind =
+    m68k_get_function_kind (current_function_decl);
+  bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
+  bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
+
+  /* Only compute the frame once per function.
+     Don't cache information until reload has been completed.  */
+  if (current_frame.funcdef_no == current_function_funcdef_no
+      && reload_completed)
+    return;
+
+  current_frame.size = (get_frame_size () + 3) & -4;
+
+  mask = saved = 0;
+
+  /* Interrupt thread does not need to save any register.  */
+  if (!interrupt_thread)
+    for (regno = 0; regno < 16; regno++)
+      if (m68k_save_reg (regno, interrupt_handler))
+	{
+	  mask |= 1 << (regno - D0_REG);
+	  saved++;
+	}
+  current_frame.offset = saved * 4;
+  current_frame.reg_no = saved;
+  current_frame.reg_mask = mask;
+
+  current_frame.foffset = 0;
+  mask = saved = 0;
+  if (TARGET_HARD_FLOAT)
+    {
+      /* Interrupt thread does not need to save any register.  */
+      if (!interrupt_thread)
+	for (regno = 16; regno < 24; regno++)
+	  if (m68k_save_reg (regno, interrupt_handler))
+	    {
+	      mask |= 1 << (regno - FP0_REG);
+	      saved++;
+	    }
+      current_frame.foffset = saved * TARGET_FP_REG_SIZE;
+      current_frame.offset += current_frame.foffset;
+    }
+  current_frame.fpu_no = saved;
+  current_frame.fpu_mask = mask;
+
+  /* Remember what function this frame refers to.  */
+  current_frame.funcdef_no = current_function_funcdef_no;
+}
+
+HOST_WIDE_INT
+m68k_initial_elimination_offset (int from, int to)
+{
+  int argptr_offset;
+  /* The arg pointer points 8 bytes before the start of the arguments,
+     as defined by FIRST_PARM_OFFSET.  This makes it coincident with the
+     frame pointer in most frames.  */
+  argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
+  if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
+    return argptr_offset;
+
+  m68k_compute_frame_layout ();
+
+  gcc_assert (to == STACK_POINTER_REGNUM);
+  switch (from)
+    {
+    case ARG_POINTER_REGNUM:
+      return current_frame.offset + current_frame.size - argptr_offset;
+    case FRAME_POINTER_REGNUM:
+      return current_frame.offset + current_frame.size;
+    default:
+      gcc_unreachable ();
+    }
+}
+
+/* Refer to the array `regs_ever_live' to determine which registers
+   to save; `regs_ever_live[I]' is nonzero if register number I
+   is ever used in the function.  This function is responsible for
+   knowing which registers should not be saved even if used.
+   Return true if we need to save REGNO.  */
+
+static bool
+m68k_save_reg (unsigned int regno, bool interrupt_handler)
+{
+  if (flag_pic && regno == PIC_REG)
+    {
+      if (crtl->saves_all_registers)
+	return true;
+      if (crtl->uses_pic_offset_table)
+	return true;
+      /* Reload may introduce constant pool references into a function
+	 that thitherto didn't need a PIC register.  Note that the test
+	 above will not catch that case because we will only set
+	 crtl->uses_pic_offset_table when emitting
+	 the address reloads.  */
+      if (crtl->uses_const_pool)
+	return true;
+    }
+
+  if (crtl->calls_eh_return)
+    {
+      unsigned int i;
+      for (i = 0; ; i++)
+	{
+	  unsigned int test = EH_RETURN_DATA_REGNO (i);
+	  if (test == INVALID_REGNUM)
+	    break;
+	  if (test == regno)
+	    return true;
+	}
+    }
+
+  /* Fixed regs we never touch.  */
+  if (fixed_regs[regno])
+    return false;
+
+  /* The frame pointer (if it is such) is handled specially.  */
+  if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
+    return false;
+
+  /* Interrupt handlers must also save call_used_regs
+     if they are live or when calling nested functions.  */
+  if (interrupt_handler)
+    {
+      if (df_regs_ever_live_p (regno))
+	return true;
+
+      if (!current_function_is_leaf && call_used_regs[regno])
+	return true;
+    }
+
+  /* Never need to save registers that aren't touched.  */
+  if (!df_regs_ever_live_p (regno))
+    return false;
+
+  /* Otherwise save everything that isn't call-clobbered.  */
+  return !call_used_regs[regno];
+}
+
+/* Emit RTL for a MOVEM or FMOVEM instruction.  BASE + OFFSET represents
+   the lowest memory address.  COUNT is the number of registers to be
+   moved, with register REGNO + I being moved if bit I of MASK is set.
+   STORE_P specifies the direction of the move and ADJUST_STACK_P says
+   whether or not this is pre-decrement (if STORE_P) or post-increment
+   (if !STORE_P) operation.  */
+
+static rtx
+m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
+		 unsigned int count, unsigned int regno,
+		 unsigned int mask, bool store_p, bool adjust_stack_p)
+{
+  int i;
+  rtx body, addr, src, operands[2];
+  enum machine_mode mode;
+
+  body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
+  mode = reg_raw_mode[regno];
+  i = 0;
+
+  if (adjust_stack_p)
+    {
+      src = plus_constant (base, (count
+				  * GET_MODE_SIZE (mode)
+				  * (HOST_WIDE_INT) (store_p ? -1 : 1)));
+      XVECEXP (body, 0, i++) = gen_rtx_SET (VOIDmode, base, src);
+    }
+
+  for (; mask != 0; mask >>= 1, regno++)
+    if (mask & 1)
+      {
+	addr = plus_constant (base, offset);
+	operands[!store_p] = gen_frame_mem (mode, addr);
+	operands[store_p] = gen_rtx_REG (mode, regno);
+	XVECEXP (body, 0, i++)
+	  = gen_rtx_SET (VOIDmode, operands[0], operands[1]);
+	offset += GET_MODE_SIZE (mode);
+      }
+  gcc_assert (i == XVECLEN (body, 0));
+
+  return emit_insn (body);
+}
+
+/* Make INSN a frame-related instruction.  */
+
+static void
+m68k_set_frame_related (rtx insn)
+{
+  rtx body;
+  int i;
+
+  RTX_FRAME_RELATED_P (insn) = 1;
+  body = PATTERN (insn);
+  if (GET_CODE (body) == PARALLEL)
+    for (i = 0; i < XVECLEN (body, 0); i++)
+      RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
+}
+
+/* Emit RTL for the "prologue" define_expand.  */
+
+void
+m68k_expand_prologue (void)
+{
+  HOST_WIDE_INT fsize_with_regs;
+  rtx limit, src, dest, insn;
+
+  m68k_compute_frame_layout ();
+
+  /* If the stack limit is a symbol, we can check it here,
+     before actually allocating the space.  */
+  if (crtl->limit_stack
+      && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
+    {
+      limit = plus_constant (stack_limit_rtx, current_frame.size + 4);
+      if (!LEGITIMATE_CONSTANT_P (limit))
+	{
+	  emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
+	  limit = gen_rtx_REG (Pmode, D0_REG);
+	}
+      emit_insn (gen_cmpsi (stack_pointer_rtx, limit));
+      emit_insn (gen_conditional_trap (gen_rtx_LTU (VOIDmode,
+						    cc0_rtx, const0_rtx),
+				       const1_rtx));
+    }
+
+  fsize_with_regs = current_frame.size;
+  if (TARGET_COLDFIRE)
+    {
+      /* ColdFire's move multiple instructions do not allow pre-decrement
+	 addressing.  Add the size of movem saves to the initial stack
+	 allocation instead.  */
+      if (current_frame.reg_no >= MIN_MOVEM_REGS)
+	fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
+      if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
+	fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
+    }
+
+  if (frame_pointer_needed)
+    {
+      if (fsize_with_regs == 0 && TUNE_68040)
+	{
+	  /* On the 68040, two separate moves are faster than link.w 0.  */
+	  dest = gen_frame_mem (Pmode,
+				gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
+	  m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
+	  m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
+						  stack_pointer_rtx));
+	}
+      else if (fsize_with_regs < 0x8000 || TARGET_68020)
+	m68k_set_frame_related
+	  (emit_insn (gen_link (frame_pointer_rtx,
+				GEN_INT (-4 - fsize_with_regs))));
+      else
+ 	{
+	  m68k_set_frame_related
+	    (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
+	  m68k_set_frame_related
+	    (emit_insn (gen_addsi3 (stack_pointer_rtx,
+				    stack_pointer_rtx,
+				    GEN_INT (-fsize_with_regs))));
+	}
+
+      /* If the frame pointer is needed, emit a special barrier that
+	 will prevent the scheduler from moving stores to the frame
+	 before the stack adjustment.  */
+      emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
+    }
+  else if (fsize_with_regs != 0)
+    m68k_set_frame_related
+      (emit_insn (gen_addsi3 (stack_pointer_rtx,
+			      stack_pointer_rtx,
+			      GEN_INT (-fsize_with_regs))));
+
+  if (current_frame.fpu_mask)
+    {
+      gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
+      if (TARGET_68881)
+	m68k_set_frame_related
+	  (m68k_emit_movem (stack_pointer_rtx,
+			    current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
+			    current_frame.fpu_no, FP0_REG,
+			    current_frame.fpu_mask, true, true));
+      else
+	{
+	  int offset;
+
+	  /* If we're using moveml to save the integer registers,
+	     the stack pointer will point to the bottom of the moveml
+	     save area.  Find the stack offset of the first FP register.  */
+	  if (current_frame.reg_no < MIN_MOVEM_REGS)
+	    offset = 0;
+	  else
+	    offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
+	  m68k_set_frame_related
+	    (m68k_emit_movem (stack_pointer_rtx, offset,
+			      current_frame.fpu_no, FP0_REG,
+			      current_frame.fpu_mask, true, false));
+	}
+    }
+
+  /* If the stack limit is not a symbol, check it here.
+     This has the disadvantage that it may be too late...  */
+  if (crtl->limit_stack)
+    {
+      if (REG_P (stack_limit_rtx))
+	{
+	  emit_insn (gen_cmpsi (stack_pointer_rtx, stack_limit_rtx));
+	  emit_insn (gen_conditional_trap (gen_rtx_LTU (VOIDmode,
+							cc0_rtx, const0_rtx),
+					   const1_rtx));
+	}
+      else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
+	warning (0, "stack limit expression is not supported");
+    }
+
+  if (current_frame.reg_no < MIN_MOVEM_REGS)
+    {
+      /* Store each register separately in the same order moveml does.  */
+      int i;
+
+      for (i = 16; i-- > 0; )
+	if (current_frame.reg_mask & (1 << i))
+	  {
+	    src = gen_rtx_REG (SImode, D0_REG + i);
+	    dest = gen_frame_mem (SImode,
+				  gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
+	    m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
+	  }
+    }
+  else
+    {
+      if (TARGET_COLDFIRE)
+	/* The required register save space has already been allocated.
+	   The first register should be stored at (%sp).  */
+	m68k_set_frame_related
+	  (m68k_emit_movem (stack_pointer_rtx, 0,
+			    current_frame.reg_no, D0_REG,
+			    current_frame.reg_mask, true, false));
+      else
+	m68k_set_frame_related
+	  (m68k_emit_movem (stack_pointer_rtx,
+			    current_frame.reg_no * -GET_MODE_SIZE (SImode),
+			    current_frame.reg_no, D0_REG,
+			    current_frame.reg_mask, true, true));
+    }
+
+  if (flag_pic
+      && !TARGET_SEP_DATA
+      && crtl->uses_pic_offset_table)
+    insn = emit_insn (gen_load_got (pic_offset_table_rtx));
+}
+
+/* Return true if a simple (return) instruction is sufficient for this
+   instruction (i.e. if no epilogue is needed).  */
+
+bool
+m68k_use_return_insn (void)
+{
+  if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
+    return false;
+
+  m68k_compute_frame_layout ();
+  return current_frame.offset == 0;
+}
+
+/* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
+   SIBCALL_P says which.
+
+   The function epilogue should not depend on the current stack pointer!
+   It should use the frame pointer only, if there is a frame pointer.
+   This is mandatory because of alloca; we also take advantage of it to
+   omit stack adjustments before returning.  */
+
+void
+m68k_expand_epilogue (bool sibcall_p)
+{
+  HOST_WIDE_INT fsize, fsize_with_regs;
+  bool big, restore_from_sp;
+
+  m68k_compute_frame_layout ();
+
+  fsize = current_frame.size;
+  big = false;
+  restore_from_sp = false;
+
+  /* FIXME : current_function_is_leaf below is too strong.
+     What we really need to know there is if there could be pending
+     stack adjustment needed at that point.  */
+  restore_from_sp = (!frame_pointer_needed
+		     || (!cfun->calls_alloca
+			 && current_function_is_leaf));
+
+  /* fsize_with_regs is the size we need to adjust the sp when
+     popping the frame.  */
+  fsize_with_regs = fsize;
+  if (TARGET_COLDFIRE && restore_from_sp)
+    {
+      /* ColdFire's move multiple instructions do not allow post-increment
+	 addressing.  Add the size of movem loads to the final deallocation
+	 instead.  */
+      if (current_frame.reg_no >= MIN_MOVEM_REGS)
+	fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
+      if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
+	fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
+    }
+
+  if (current_frame.offset + fsize >= 0x8000
+      && !restore_from_sp
+      && (current_frame.reg_mask || current_frame.fpu_mask))
+    {
+      if (TARGET_COLDFIRE
+	  && (current_frame.reg_no >= MIN_MOVEM_REGS
+	      || current_frame.fpu_no >= MIN_FMOVEM_REGS))
+	{
+	  /* ColdFire's move multiple instructions do not support the
+	     (d8,Ax,Xi) addressing mode, so we're as well using a normal
+	     stack-based restore.  */
+	  emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
+			  GEN_INT (-(current_frame.offset + fsize)));
+	  emit_insn (gen_addsi3 (stack_pointer_rtx,
+				 gen_rtx_REG (Pmode, A1_REG),
+				 frame_pointer_rtx));
+	  restore_from_sp = true;
+	}
+      else
+	{
+	  emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
+	  fsize = 0;
+	  big = true;
+	}
+    }
+
+  if (current_frame.reg_no < MIN_MOVEM_REGS)
+    {
+      /* Restore each register separately in the same order moveml does.  */
+      int i;
+      HOST_WIDE_INT offset;
+
+      offset = current_frame.offset + fsize;
+      for (i = 0; i < 16; i++)
+        if (current_frame.reg_mask & (1 << i))
+          {
+	    rtx addr;
+
+	    if (big)
+	      {
+		/* Generate the address -OFFSET(%fp,%a1.l).  */
+		addr = gen_rtx_REG (Pmode, A1_REG);
+		addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
+		addr = plus_constant (addr, -offset);
+	      }
+	    else if (restore_from_sp)
+	      addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
+	    else
+	      addr = plus_constant (frame_pointer_rtx, -offset);
+	    emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
+			    gen_frame_mem (SImode, addr));
+	    offset -= GET_MODE_SIZE (SImode);
+	  }
+    }
+  else if (current_frame.reg_mask)
+    {
+      if (big)
+	m68k_emit_movem (gen_rtx_PLUS (Pmode,
+				       gen_rtx_REG (Pmode, A1_REG),
+				       frame_pointer_rtx),
+			 -(current_frame.offset + fsize),
+			 current_frame.reg_no, D0_REG,
+			 current_frame.reg_mask, false, false);
+      else if (restore_from_sp)
+	m68k_emit_movem (stack_pointer_rtx, 0,
+			 current_frame.reg_no, D0_REG,
+			 current_frame.reg_mask, false,
+			 !TARGET_COLDFIRE);
+      else
+	m68k_emit_movem (frame_pointer_rtx,
+			 -(current_frame.offset + fsize),
+			 current_frame.reg_no, D0_REG,
+			 current_frame.reg_mask, false, false);
+    }
+
+  if (current_frame.fpu_no > 0)
+    {
+      if (big)
+	m68k_emit_movem (gen_rtx_PLUS (Pmode,
+				       gen_rtx_REG (Pmode, A1_REG),
+				       frame_pointer_rtx),
+			 -(current_frame.foffset + fsize),
+			 current_frame.fpu_no, FP0_REG,
+			 current_frame.fpu_mask, false, false);
+      else if (restore_from_sp)
+	{
+	  if (TARGET_COLDFIRE)
+	    {
+	      int offset;
+
+	      /* If we used moveml to restore the integer registers, the
+		 stack pointer will still point to the bottom of the moveml
+		 save area.  Find the stack offset of the first FP
+		 register.  */
+	      if (current_frame.reg_no < MIN_MOVEM_REGS)
+		offset = 0;
+	      else
+		offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
+	      m68k_emit_movem (stack_pointer_rtx, offset,
+			       current_frame.fpu_no, FP0_REG,
+			       current_frame.fpu_mask, false, false);
+	    }
+	  else
+	    m68k_emit_movem (stack_pointer_rtx, 0,
+			     current_frame.fpu_no, FP0_REG,
+			     current_frame.fpu_mask, false, true);
+	}
+      else
+	m68k_emit_movem (frame_pointer_rtx,
+			 -(current_frame.foffset + fsize),
+			 current_frame.fpu_no, FP0_REG,
+			 current_frame.fpu_mask, false, false);
+    }
+
+  if (frame_pointer_needed)
+    emit_insn (gen_unlink (frame_pointer_rtx));
+  else if (fsize_with_regs)
+    emit_insn (gen_addsi3 (stack_pointer_rtx,
+			   stack_pointer_rtx,
+			   GEN_INT (fsize_with_regs)));
+
+  if (crtl->calls_eh_return)
+    emit_insn (gen_addsi3 (stack_pointer_rtx,
+			   stack_pointer_rtx,
+			   EH_RETURN_STACKADJ_RTX));
+
+  if (!sibcall_p)
+    emit_jump_insn (gen_rtx_RETURN (VOIDmode));
+}
+
+/* Return true if X is a valid comparison operator for the dbcc 
+   instruction.  
+
+   Note it rejects floating point comparison operators.
+   (In the future we could use Fdbcc).
+
+   It also rejects some comparisons when CC_NO_OVERFLOW is set.  */
+   
+int
+valid_dbcc_comparison_p_2 (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
+{
+  switch (GET_CODE (x))
+    {
+      case EQ: case NE: case GTU: case LTU:
+      case GEU: case LEU:
+        return 1;
+
+      /* Reject some when CC_NO_OVERFLOW is set.  This may be over
+         conservative */
+      case GT: case LT: case GE: case LE:
+        return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
+      default:
+        return 0;
+    }
+}
+
+/* Return nonzero if flags are currently in the 68881 flag register.  */
+int
+flags_in_68881 (void)
+{
+  /* We could add support for these in the future */
+  return cc_status.flags & CC_IN_68881;
+}
+
+/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P.  */
+
+static bool
+m68k_ok_for_sibcall_p (tree decl, tree exp)
+{
+  enum m68k_function_kind kind;
+  
+  /* We cannot use sibcalls for nested functions because we use the
+     static chain register for indirect calls.  */
+  if (CALL_EXPR_STATIC_CHAIN (exp))
+    return false;
+
+  kind = m68k_get_function_kind (current_function_decl);
+  if (kind == m68k_fk_normal_function)
+    /* We can always sibcall from a normal function, because it's
+       undefined if it is calling an interrupt function.  */
+    return true;
+
+  /* Otherwise we can only sibcall if the function kind is known to be
+     the same.  */
+  if (decl && m68k_get_function_kind (decl) == kind)
+    return true;
+  
+  return false;
+}
+
+/* Convert X to a legitimate function call memory reference and return the
+   result.  */
+
+rtx
+m68k_legitimize_call_address (rtx x)
+{
+  gcc_assert (MEM_P (x));
+  if (call_operand (XEXP (x, 0), VOIDmode))
+    return x;
+  return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
+}
+
+/* Likewise for sibling calls.  */
+
+rtx
+m68k_legitimize_sibcall_address (rtx x)
+{
+  gcc_assert (MEM_P (x));
+  if (sibcall_operand (XEXP (x, 0), VOIDmode))
+    return x;
+
+  emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
+  return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
+}
+
+/* Output a dbCC; jCC sequence.  Note we do not handle the 
+   floating point version of this sequence (Fdbcc).  We also
+   do not handle alternative conditions when CC_NO_OVERFLOW is
+   set.  It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
+   kick those out before we get here.  */
+
+void
+output_dbcc_and_branch (rtx *operands)
+{
+  switch (GET_CODE (operands[3]))
+    {
+      case EQ:
+	output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
+	break;
+
+      case NE:
+	output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
+	break;
+
+      case GT:
+	output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
+	break;
+
+      case GTU:
+	output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
+	break;
+
+      case LT:
+	output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
+	break;
+
+      case LTU:
+	output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
+	break;
+
+      case GE:
+	output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
+	break;
+
+      case GEU:
+	output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
+	break;
+
+      case LE:
+	output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
+	break;
+
+      case LEU:
+	output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
+	break;
+
+      default:
+	gcc_unreachable ();
+    }
+
+  /* If the decrement is to be done in SImode, then we have
+     to compensate for the fact that dbcc decrements in HImode.  */
+  switch (GET_MODE (operands[0]))
+    {
+      case SImode:
+        output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
+        break;
+
+      case HImode:
+        break;
+
+      default:
+        gcc_unreachable ();
+    }
+}
+
+const char *
+output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
+{
+  rtx loperands[7];
+  enum rtx_code op_code = GET_CODE (op);
+
+  /* This does not produce a useful cc.  */
+  CC_STATUS_INIT;
+
+  /* The m68k cmp.l instruction requires operand1 to be a reg as used
+     below.  Swap the operands and change the op if these requirements
+     are not fulfilled.  */
+  if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
+    {
+      rtx tmp = operand1;
+
+      operand1 = operand2;
+      operand2 = tmp;
+      op_code = swap_condition (op_code);
+    }
+  loperands[0] = operand1;
+  if (GET_CODE (operand1) == REG)
+    loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
+  else
+    loperands[1] = adjust_address (operand1, SImode, 4);
+  if (operand2 != const0_rtx)
+    {
+      loperands[2] = operand2;
+      if (GET_CODE (operand2) == REG)
+	loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
+      else
+	loperands[3] = adjust_address (operand2, SImode, 4);
+    }
+  loperands[4] = gen_label_rtx ();
+  if (operand2 != const0_rtx)
+    output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
+  else
+    {
+      if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
+	output_asm_insn ("tst%.l %0", loperands);
+      else
+	output_asm_insn ("cmp%.w #0,%0", loperands);
+
+      output_asm_insn ("jne %l4", loperands);
+
+      if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
+	output_asm_insn ("tst%.l %1", loperands);
+      else
+	output_asm_insn ("cmp%.w #0,%1", loperands);
+    }
+
+  loperands[5] = dest;
+
+  switch (op_code)
+    {
+      case EQ:
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[4]));
+        output_asm_insn ("seq %5", loperands);
+        break;
+
+      case NE:
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[4]));
+        output_asm_insn ("sne %5", loperands);
+        break;
+
+      case GT:
+        loperands[6] = gen_label_rtx ();
+        output_asm_insn ("shi %5\n\tjra %l6", loperands);
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[4]));
+        output_asm_insn ("sgt %5", loperands);
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[6]));
+        break;
+
+      case GTU:
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[4]));
+        output_asm_insn ("shi %5", loperands);
+        break;
+
+      case LT:
+        loperands[6] = gen_label_rtx ();
+        output_asm_insn ("scs %5\n\tjra %l6", loperands);
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[4]));
+        output_asm_insn ("slt %5", loperands);
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[6]));
+        break;
+
+      case LTU:
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[4]));
+        output_asm_insn ("scs %5", loperands);
+        break;
+
+      case GE:
+        loperands[6] = gen_label_rtx ();
+        output_asm_insn ("scc %5\n\tjra %l6", loperands);
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[4]));
+        output_asm_insn ("sge %5", loperands);
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[6]));
+        break;
+
+      case GEU:
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[4]));
+        output_asm_insn ("scc %5", loperands);
+        break;
+
+      case LE:
+        loperands[6] = gen_label_rtx ();
+        output_asm_insn ("sls %5\n\tjra %l6", loperands);
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[4]));
+        output_asm_insn ("sle %5", loperands);
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[6]));
+        break;
+
+      case LEU:
+        (*targetm.asm_out.internal_label) (asm_out_file, "L",
+					   CODE_LABEL_NUMBER (loperands[4]));
+        output_asm_insn ("sls %5", loperands);
+        break;
+
+      default:
+	gcc_unreachable ();
+    }
+  return "";
+}
+
+const char *
+output_btst (rtx *operands, rtx countop, rtx dataop, rtx insn, int signpos)
+{
+  operands[0] = countop;
+  operands[1] = dataop;
+
+  if (GET_CODE (countop) == CONST_INT)
+    {
+      register int count = INTVAL (countop);
+      /* If COUNT is bigger than size of storage unit in use,
+	 advance to the containing unit of same size.  */
+      if (count > signpos)
+	{
+	  int offset = (count & ~signpos) / 8;
+	  count = count & signpos;
+	  operands[1] = dataop = adjust_address (dataop, QImode, offset);
+	}
+      if (count == signpos)
+	cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
+      else
+	cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
+
+      /* These three statements used to use next_insns_test_no...
+	 but it appears that this should do the same job.  */
+      if (count == 31
+	  && next_insn_tests_no_inequality (insn))
+	return "tst%.l %1";
+      if (count == 15
+	  && next_insn_tests_no_inequality (insn))
+	return "tst%.w %1";
+      if (count == 7
+	  && next_insn_tests_no_inequality (insn))
+	return "tst%.b %1";
+      /* Try to use `movew to ccr' followed by the appropriate branch insn.
+         On some m68k variants unfortunately that's slower than btst.
+         On 68000 and higher, that should also work for all HImode operands. */
+      if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
+	{
+	  if (count == 3 && DATA_REG_P (operands[1])
+	      && next_insn_tests_no_inequality (insn))
+	    {
+	    cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
+	    return "move%.w %1,%%ccr";
+	    }
+	  if (count == 2 && DATA_REG_P (operands[1])
+	      && next_insn_tests_no_inequality (insn))
+	    {
+	    cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
+	    return "move%.w %1,%%ccr";
+	    }
+	  /* count == 1 followed by bvc/bvs and
+	     count == 0 followed by bcc/bcs are also possible, but need
+	     m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
+	}
+
+      cc_status.flags = CC_NOT_NEGATIVE;
+    }
+  return "btst %0,%1";
+}
+
+/* Return true if X is a legitimate base register.  STRICT_P says
+   whether we need strict checking.  */
+
+bool
+m68k_legitimate_base_reg_p (rtx x, bool strict_p)
+{
+  /* Allow SUBREG everywhere we allow REG.  This results in better code.  */
+  if (!strict_p && GET_CODE (x) == SUBREG)
+    x = SUBREG_REG (x);
+
+  return (REG_P (x)
+	  && (strict_p
+	      ? REGNO_OK_FOR_BASE_P (REGNO (x))
+	      : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
+}
+
+/* Return true if X is a legitimate index register.  STRICT_P says
+   whether we need strict checking.  */
+
+bool
+m68k_legitimate_index_reg_p (rtx x, bool strict_p)
+{
+  if (!strict_p && GET_CODE (x) == SUBREG)
+    x = SUBREG_REG (x);
+
+  return (REG_P (x)
+	  && (strict_p
+	      ? REGNO_OK_FOR_INDEX_P (REGNO (x))
+	      : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
+}
+
+/* Return true if X is a legitimate index expression for a (d8,An,Xn) or
+   (bd,An,Xn) addressing mode.  Fill in the INDEX and SCALE fields of
+   ADDRESS if so.  STRICT_P says whether we need strict checking.  */
+
+static bool
+m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
+{
+  int scale;
+
+  /* Check for a scale factor.  */
+  scale = 1;
+  if ((TARGET_68020 || TARGET_COLDFIRE)
+      && GET_CODE (x) == MULT
+      && GET_CODE (XEXP (x, 1)) == CONST_INT
+      && (INTVAL (XEXP (x, 1)) == 2
+	  || INTVAL (XEXP (x, 1)) == 4
+	  || (INTVAL (XEXP (x, 1)) == 8
+	      && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
+    {
+      scale = INTVAL (XEXP (x, 1));
+      x = XEXP (x, 0);
+    }
+
+  /* Check for a word extension.  */
+  if (!TARGET_COLDFIRE
+      && GET_CODE (x) == SIGN_EXTEND
+      && GET_MODE (XEXP (x, 0)) == HImode)
+    x = XEXP (x, 0);
+
+  if (m68k_legitimate_index_reg_p (x, strict_p))
+    {
+      address->scale = scale;
+      address->index = x;
+      return true;
+    }
+
+  return false;
+}
+
+/* Return true if X is an illegitimate symbolic constant.  */
+
+bool
+m68k_illegitimate_symbolic_constant_p (rtx x)
+{
+  rtx base, offset;
+
+  if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
+    {
+      split_const (x, &base, &offset);
+      if (GET_CODE (base) == SYMBOL_REF
+	  && !offset_within_block_p (base, INTVAL (offset)))
+	return true;
+    }
+  return false;
+}
+
+/* Return true if X is a legitimate constant address that can reach
+   bytes in the range [X, X + REACH).  STRICT_P says whether we need
+   strict checking.  */
+
+static bool
+m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
+{
+  rtx base, offset;
+
+  if (!CONSTANT_ADDRESS_P (x))
+    return false;
+
+  if (flag_pic
+      && !(strict_p && TARGET_PCREL)
+      && symbolic_operand (x, VOIDmode))
+    return false;
+
+  if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
+    {
+      split_const (x, &base, &offset);
+      if (GET_CODE (base) == SYMBOL_REF
+	  && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
+	return false;
+    }
+
+  return true;
+}
+
+/* Return true if X is a LABEL_REF for a jump table.  Assume that unplaced
+   labels will become jump tables.  */
+
+static bool
+m68k_jump_table_ref_p (rtx x)
+{
+  if (GET_CODE (x) != LABEL_REF)
+    return false;
+
+  x = XEXP (x, 0);
+  if (!NEXT_INSN (x) && !PREV_INSN (x))
+    return true;
+
+  x = next_nonnote_insn (x);
+  return x && JUMP_TABLE_DATA_P (x);
+}
+
+/* Return true if X is a legitimate address for values of mode MODE.
+   STRICT_P says whether strict checking is needed.  If the address
+   is valid, describe its components in *ADDRESS.  */
+
+static bool
+m68k_decompose_address (enum machine_mode mode, rtx x,
+			bool strict_p, struct m68k_address *address)
+{
+  unsigned int reach;
+
+  memset (address, 0, sizeof (*address));
+
+  if (mode == BLKmode)
+    reach = 1;
+  else
+    reach = GET_MODE_SIZE (mode);
+
+  /* Check for (An) (mode 2).  */
+  if (m68k_legitimate_base_reg_p (x, strict_p))
+    {
+      address->base = x;
+      return true;
+    }
+
+  /* Check for -(An) and (An)+ (modes 3 and 4).  */
+  if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
+      && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
+    {
+      address->code = GET_CODE (x);
+      address->base = XEXP (x, 0);
+      return true;
+    }
+
+  /* Check for (d16,An) (mode 5).  */
+  if (GET_CODE (x) == PLUS
+      && GET_CODE (XEXP (x, 1)) == CONST_INT
+      && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
+      && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
+    {
+      address->base = XEXP (x, 0);
+      address->offset = XEXP (x, 1);
+      return true;
+    }
+
+  /* Check for GOT loads.  These are (bd,An,Xn) addresses if
+     TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
+     addresses.  */
+  if (flag_pic
+      && GET_CODE (x) == PLUS
+      && XEXP (x, 0) == pic_offset_table_rtx
+      && (GET_CODE (XEXP (x, 1)) == SYMBOL_REF
+	  || GET_CODE (XEXP (x, 1)) == LABEL_REF))
+    {
+      address->base = XEXP (x, 0);
+      address->offset = XEXP (x, 1);
+      return true;
+    }
+
+  /* The ColdFire FPU only accepts addressing modes 2-5.  */
+  if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
+    return false;
+
+  /* Check for (xxx).w and (xxx).l.  Also, in the TARGET_PCREL case,
+     check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
+     All these modes are variations of mode 7.  */
+  if (m68k_legitimate_constant_address_p (x, reach, strict_p))
+    {
+      address->offset = x;
+      return true;
+    }
+
+  /* Check for (d8,PC,Xn), a mode 7 form.  This case is needed for
+     tablejumps.
+
+     ??? do_tablejump creates these addresses before placing the target
+     label, so we have to assume that unplaced labels are jump table
+     references.  It seems unlikely that we would ever generate indexed
+     accesses to unplaced labels in other cases.  */
+  if (GET_CODE (x) == PLUS
+      && m68k_jump_table_ref_p (XEXP (x, 1))
+      && m68k_decompose_index (XEXP (x, 0), strict_p, address))
+    {
+      address->offset = XEXP (x, 1);
+      return true;
+    }
+
+  /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
+     (bd,An,Xn.SIZE*SCALE) addresses.  */
+
+  if (TARGET_68020)
+    {
+      /* Check for a nonzero base displacement.  */
+      if (GET_CODE (x) == PLUS
+	  && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
+	{
+	  address->offset = XEXP (x, 1);
+	  x = XEXP (x, 0);
+	}
+
+      /* Check for a suppressed index register.  */
+      if (m68k_legitimate_base_reg_p (x, strict_p))
+	{
+	  address->base = x;
+	  return true;
+	}
+
+      /* Check for a suppressed base register.  Do not allow this case
+	 for non-symbolic offsets as it effectively gives gcc freedom
+	 to treat data registers as base registers, which can generate
+	 worse code.  */
+      if (address->offset
+	  && symbolic_operand (address->offset, VOIDmode)
+	  && m68k_decompose_index (x, strict_p, address))
+	return true;
+    }
+  else
+    {
+      /* Check for a nonzero base displacement.  */
+      if (GET_CODE (x) == PLUS
+	  && GET_CODE (XEXP (x, 1)) == CONST_INT
+	  && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
+	{
+	  address->offset = XEXP (x, 1);
+	  x = XEXP (x, 0);
+	}
+    }
+
+  /* We now expect the sum of a base and an index.  */
+  if (GET_CODE (x) == PLUS)
+    {
+      if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
+	  && m68k_decompose_index (XEXP (x, 1), strict_p, address))
+	{
+	  address->base = XEXP (x, 0);
+	  return true;
+	}
+
+      if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
+	  && m68k_decompose_index (XEXP (x, 0), strict_p, address))
+	{
+	  address->base = XEXP (x, 1);
+	  return true;
+	}
+    }
+  return false;
+}
+
+/* Return true if X is a legitimate address for values of mode MODE.
+   STRICT_P says whether strict checking is needed.  */
+
+bool
+m68k_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
+{
+  struct m68k_address address;
+
+  return m68k_decompose_address (mode, x, strict_p, &address);
+}
+
+/* Return true if X is a memory, describing its address in ADDRESS if so.
+   Apply strict checking if called during or after reload.  */
+
+static bool
+m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
+{
+  return (MEM_P (x)
+	  && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
+				     reload_in_progress || reload_completed,
+				     address));
+}
+
+/* Return true if X matches the 'Q' constraint.  It must be a memory
+   with a base address and no constant offset or index.  */
+
+bool
+m68k_matches_q_p (rtx x)
+{
+  struct m68k_address address;
+
+  return (m68k_legitimate_mem_p (x, &address)
+	  && address.code == UNKNOWN
+	  && address.base
+	  && !address.offset
+	  && !address.index);
+}
+
+/* Return true if X matches the 'U' constraint.  It must be a base address
+   with a constant offset and no index.  */
+
+bool
+m68k_matches_u_p (rtx x)
+{
+  struct m68k_address address;
+
+  return (m68k_legitimate_mem_p (x, &address)
+	  && address.code == UNKNOWN
+	  && address.base
+	  && address.offset
+	  && !address.index);
+}
+
+/* Legitimize PIC addresses.  If the address is already
+   position-independent, we return ORIG.  Newly generated
+   position-independent addresses go to REG.  If we need more
+   than one register, we lose.  
+
+   An address is legitimized by making an indirect reference
+   through the Global Offset Table with the name of the symbol
+   used as an offset.  
+
+   The assembler and linker are responsible for placing the 
+   address of the symbol in the GOT.  The function prologue
+   is responsible for initializing a5 to the starting address
+   of the GOT.
+
+   The assembler is also responsible for translating a symbol name
+   into a constant displacement from the start of the GOT.  
+
+   A quick example may make things a little clearer:
+
+   When not generating PIC code to store the value 12345 into _foo
+   we would generate the following code:
+
+	movel #12345, _foo
+
+   When generating PIC two transformations are made.  First, the compiler
+   loads the address of foo into a register.  So the first transformation makes:
+
+	lea	_foo, a0
+	movel   #12345, a0@
+
+   The code in movsi will intercept the lea instruction and call this
+   routine which will transform the instructions into:
+
+	movel   a5@(_foo:w), a0
+	movel   #12345, a0@
+   
+
+   That (in a nutshell) is how *all* symbol and label references are 
+   handled.  */
+
+rtx
+legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
+		        rtx reg)
+{
+  rtx pic_ref = orig;
+
+  /* First handle a simple SYMBOL_REF or LABEL_REF */
+  if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
+    {
+      gcc_assert (reg);
+
+      if (TARGET_COLDFIRE && TARGET_XGOT)
+	/* When compiling with -mxgot switch the code for the above
+	   example will look like this:
+
+	   movel a5, a0
+	   addl _foo@GOT, a0
+	   movel a0@, a0
+	   movel #12345, a0@  */
+	{
+	  rtx pic_offset;
+
+	  /* Wrap ORIG in UNSPEC_GOTOFF to tip m68k_output_addr_const_extra
+	     to put @GOT after reference.  */
+	  pic_offset = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, orig),
+				       UNSPEC_GOTOFF);
+	  pic_offset = gen_rtx_CONST (Pmode, pic_offset);
+	  emit_move_insn (reg, pic_offset);
+	  emit_insn (gen_addsi3 (reg, reg, pic_offset_table_rtx));
+	  pic_ref = gen_rtx_MEM (Pmode, reg);
+	}
+      else
+	pic_ref = gen_rtx_MEM (Pmode,
+			       gen_rtx_PLUS (Pmode,
+					     pic_offset_table_rtx, orig));
+      crtl->uses_pic_offset_table = 1;
+      MEM_READONLY_P (pic_ref) = 1;
+      emit_move_insn (reg, pic_ref);
+      return reg;
+    }
+  else if (GET_CODE (orig) == CONST)
+    {
+      rtx base;
+
+      /* Make sure this has not already been legitimized.  */
+      if (GET_CODE (XEXP (orig, 0)) == PLUS
+	  && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
+	return orig;
+
+      gcc_assert (reg);
+
+      /* legitimize both operands of the PLUS */
+      gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
+      
+      base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
+      orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
+				     base == reg ? 0 : reg);
+
+      if (GET_CODE (orig) == CONST_INT)
+	return plus_constant (base, INTVAL (orig));
+      pic_ref = gen_rtx_PLUS (Pmode, base, orig);
+      /* Likewise, should we set special REG_NOTEs here?  */
+    }
+  return pic_ref;
+}
+
+
+
+#define USE_MOVQ(i)	((unsigned) ((i) + 128) <= 255)
+
+/* Return the type of move that should be used for integer I.  */
+
+M68K_CONST_METHOD
+m68k_const_method (HOST_WIDE_INT i)
+{
+  unsigned u;
+
+  if (USE_MOVQ (i))
+    return MOVQ;
+
+  /* The ColdFire doesn't have byte or word operations.  */
+  /* FIXME: This may not be useful for the m68060 either.  */
+  if (!TARGET_COLDFIRE)
+    {
+      /* if -256 < N < 256 but N is not in range for a moveq
+	 N^ff will be, so use moveq #N^ff, dreg; not.b dreg.  */
+      if (USE_MOVQ (i ^ 0xff))
+	return NOTB;
+      /* Likewise, try with not.w */
+      if (USE_MOVQ (i ^ 0xffff))
+	return NOTW;
+      /* This is the only value where neg.w is useful */
+      if (i == -65408)
+	return NEGW;
+    }
+
+  /* Try also with swap.  */
+  u = i;
+  if (USE_MOVQ ((u >> 16) | (u << 16)))
+    return SWAP;
+
+  if (TARGET_ISAB)
+    {
+      /* Try using MVZ/MVS with an immediate value to load constants.  */
+      if (i >= 0 && i <= 65535)
+	return MVZ;
+      if (i >= -32768 && i <= 32767)
+	return MVS;
+    }
+
+  /* Otherwise, use move.l */
+  return MOVL;
+}
+
+/* Return the cost of moving constant I into a data register.  */
+
+static int
+const_int_cost (HOST_WIDE_INT i)
+{
+  switch (m68k_const_method (i))
+    {
+    case MOVQ:
+      /* Constants between -128 and 127 are cheap due to moveq.  */
+      return 0;
+    case MVZ:
+    case MVS:
+    case NOTB:
+    case NOTW:
+    case NEGW:
+    case SWAP:
+      /* Constants easily generated by moveq + not.b/not.w/neg.w/swap.  */
+      return 1;
+    case MOVL:
+      return 2;
+    default:
+      gcc_unreachable ();
+    }
+}
+
+static bool
+m68k_rtx_costs (rtx x, int code, int outer_code, int *total,
+		bool speed ATTRIBUTE_UNUSED)
+{
+  switch (code)
+    {
+    case CONST_INT:
+      /* Constant zero is super cheap due to clr instruction.  */
+      if (x == const0_rtx)
+	*total = 0;
+      else
+        *total = const_int_cost (INTVAL (x));
+      return true;
+
+    case CONST:
+    case LABEL_REF:
+    case SYMBOL_REF:
+      *total = 3;
+      return true;
+
+    case CONST_DOUBLE:
+      /* Make 0.0 cheaper than other floating constants to
+         encourage creating tstsf and tstdf insns.  */
+      if (outer_code == COMPARE
+          && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
+	*total = 4;
+      else
+	*total = 5;
+      return true;
+
+    /* These are vaguely right for a 68020.  */
+    /* The costs for long multiply have been adjusted to work properly
+       in synth_mult on the 68020, relative to an average of the time
+       for add and the time for shift, taking away a little more because
+       sometimes move insns are needed.  */
+    /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
+       terms.  */
+#define MULL_COST				\
+  (TUNE_68060 ? 2				\
+   : TUNE_68040 ? 5				\
+   : (TUNE_CFV2 && TUNE_EMAC) ? 3		\
+   : (TUNE_CFV2 && TUNE_MAC) ? 4		\
+   : TUNE_CFV2 ? 8				\
+   : TARGET_COLDFIRE ? 3 : 13)
+
+#define MULW_COST				\
+  (TUNE_68060 ? 2				\
+   : TUNE_68040 ? 3				\
+   : TUNE_68000_10 ? 5				\
+   : (TUNE_CFV2 && TUNE_EMAC) ? 3		\
+   : (TUNE_CFV2 && TUNE_MAC) ? 2		\
+   : TUNE_CFV2 ? 8				\
+   : TARGET_COLDFIRE ? 2 : 8)
+
+#define DIVW_COST				\
+  (TARGET_CF_HWDIV ? 11				\
+   : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
+
+    case PLUS:
+      /* An lea costs about three times as much as a simple add.  */
+      if (GET_MODE (x) == SImode
+	  && GET_CODE (XEXP (x, 1)) == REG
+	  && GET_CODE (XEXP (x, 0)) == MULT
+	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
+	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+	  && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
+	      || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
+	      || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
+	{
+	    /* lea an@(dx:l:i),am */
+	    *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
+	    return true;
+	}
+      return false;
+
+    case ASHIFT:
+    case ASHIFTRT:
+    case LSHIFTRT:
+      if (TUNE_68060)
+	{
+          *total = COSTS_N_INSNS(1);
+	  return true;
+	}
+      if (TUNE_68000_10)
+        {
+	  if (GET_CODE (XEXP (x, 1)) == CONST_INT)
+	    {
+	      if (INTVAL (XEXP (x, 1)) < 16)
+	        *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
+	      else
+	        /* We're using clrw + swap for these cases.  */
+	        *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
+	    }
+	  else
+	    *total = COSTS_N_INSNS (10); /* Worst case.  */
+	  return true;
+        }
+      /* A shift by a big integer takes an extra instruction.  */
+      if (GET_CODE (XEXP (x, 1)) == CONST_INT
+	  && (INTVAL (XEXP (x, 1)) == 16))
+	{
+	  *total = COSTS_N_INSNS (2);	 /* clrw;swap */
+	  return true;
+	}
+      if (GET_CODE (XEXP (x, 1)) == CONST_INT
+	  && !(INTVAL (XEXP (x, 1)) > 0
+	       && INTVAL (XEXP (x, 1)) <= 8))
+	{
+	  *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3);	 /* lsr #i,dn */
+	  return true;
+	}
+      return false;
+
+    case MULT:
+      if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
+	   || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
+	  && GET_MODE (x) == SImode)
+        *total = COSTS_N_INSNS (MULW_COST);
+      else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
+        *total = COSTS_N_INSNS (MULW_COST);
+      else
+        *total = COSTS_N_INSNS (MULL_COST);
+      return true;
+
+    case DIV:
+    case UDIV:
+    case MOD:
+    case UMOD:
+      if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
+        *total = COSTS_N_INSNS (DIVW_COST);	/* div.w */
+      else if (TARGET_CF_HWDIV)
+        *total = COSTS_N_INSNS (18);
+      else
+	*total = COSTS_N_INSNS (43);		/* div.l */
+      return true;
+
+    default:
+      return false;
+    }
+}
+
+/* Return an instruction to move CONST_INT OPERANDS[1] into data register
+   OPERANDS[0].  */
+
+static const char *
+output_move_const_into_data_reg (rtx *operands)
+{
+  HOST_WIDE_INT i;
+
+  i = INTVAL (operands[1]);
+  switch (m68k_const_method (i))
+    {
+    case MVZ:
+      return "mvzw %1,%0";
+    case MVS:
+      return "mvsw %1,%0";
+    case MOVQ:
+      return "moveq %1,%0";
+    case NOTB:
+      CC_STATUS_INIT;
+      operands[1] = GEN_INT (i ^ 0xff);
+      return "moveq %1,%0\n\tnot%.b %0";
+    case NOTW:
+      CC_STATUS_INIT;
+      operands[1] = GEN_INT (i ^ 0xffff);
+      return "moveq %1,%0\n\tnot%.w %0";
+    case NEGW:
+      CC_STATUS_INIT;
+      return "moveq #-128,%0\n\tneg%.w %0";
+    case SWAP:
+      {
+	unsigned u = i;
+
+	operands[1] = GEN_INT ((u << 16) | (u >> 16));
+	return "moveq %1,%0\n\tswap %0";
+      }
+    case MOVL:
+      return "move%.l %1,%0";
+    default:
+      gcc_unreachable ();
+    }
+}
+
+/* Return true if I can be handled by ISA B's mov3q instruction.  */
+
+bool
+valid_mov3q_const (HOST_WIDE_INT i)
+{
+  return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
+}
+
+/* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
+   I is the value of OPERANDS[1].  */
+
+static const char *
+output_move_simode_const (rtx *operands)
+{
+  rtx dest;
+  HOST_WIDE_INT src;
+
+  dest = operands[0];
+  src = INTVAL (operands[1]);
+  if (src == 0
+      && (DATA_REG_P (dest) || MEM_P (dest))
+      /* clr insns on 68000 read before writing.  */
+      && ((TARGET_68010 || TARGET_COLDFIRE)
+	  || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
+    return "clr%.l %0";
+  else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
+    return "mov3q%.l %1,%0";
+  else if (src == 0 && ADDRESS_REG_P (dest))
+    return "sub%.l %0,%0";
+  else if (DATA_REG_P (dest))
+    return output_move_const_into_data_reg (operands);
+  else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
+    {
+      if (valid_mov3q_const (src))
+        return "mov3q%.l %1,%0";
+      return "move%.w %1,%0";
+    }
+  else if (MEM_P (dest)
+	   && GET_CODE (XEXP (dest, 0)) == PRE_DEC
+	   && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
+	   && IN_RANGE (src, -0x8000, 0x7fff))
+    {
+      if (valid_mov3q_const (src))
+        return "mov3q%.l %1,%-";
+      return "pea %a1";
+    }
+  return "move%.l %1,%0";
+}
+
+const char *
+output_move_simode (rtx *operands)
+{
+  if (GET_CODE (operands[1]) == CONST_INT)
+    return output_move_simode_const (operands);
+  else if ((GET_CODE (operands[1]) == SYMBOL_REF
+	    || GET_CODE (operands[1]) == CONST)
+	   && push_operand (operands[0], SImode))
+    return "pea %a1";
+  else if ((GET_CODE (operands[1]) == SYMBOL_REF
+	    || GET_CODE (operands[1]) == CONST)
+	   && ADDRESS_REG_P (operands[0]))
+    return "lea %a1,%0";
+  return "move%.l %1,%0";
+}
+
+const char *
+output_move_himode (rtx *operands)
+{
+ if (GET_CODE (operands[1]) == CONST_INT)
+    {
+      if (operands[1] == const0_rtx
+	  && (DATA_REG_P (operands[0])
+	      || GET_CODE (operands[0]) == MEM)
+	  /* clr insns on 68000 read before writing.  */
+	  && ((TARGET_68010 || TARGET_COLDFIRE)
+	      || !(GET_CODE (operands[0]) == MEM
+		   && MEM_VOLATILE_P (operands[0]))))
+	return "clr%.w %0";
+      else if (operands[1] == const0_rtx
+	       && ADDRESS_REG_P (operands[0]))
+	return "sub%.l %0,%0";
+      else if (DATA_REG_P (operands[0])
+	       && INTVAL (operands[1]) < 128
+	       && INTVAL (operands[1]) >= -128)
+	return "moveq %1,%0";
+      else if (INTVAL (operands[1]) < 0x8000
+	       && INTVAL (operands[1]) >= -0x8000)
+	return "move%.w %1,%0";
+    }
+  else if (CONSTANT_P (operands[1]))
+    return "move%.l %1,%0";
+  return "move%.w %1,%0";
+}
+
+const char *
+output_move_qimode (rtx *operands)
+{
+  /* 68k family always modifies the stack pointer by at least 2, even for
+     byte pushes.  The 5200 (ColdFire) does not do this.  */
+  
+  /* This case is generated by pushqi1 pattern now.  */
+  gcc_assert (!(GET_CODE (operands[0]) == MEM
+		&& GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
+		&& XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
+		&& ! ADDRESS_REG_P (operands[1])
+		&& ! TARGET_COLDFIRE));
+
+  /* clr and st insns on 68000 read before writing.  */
+  if (!ADDRESS_REG_P (operands[0])
+      && ((TARGET_68010 || TARGET_COLDFIRE)
+	  || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
+    {
+      if (operands[1] == const0_rtx)
+	return "clr%.b %0";
+      if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
+	  && GET_CODE (operands[1]) == CONST_INT
+	  && (INTVAL (operands[1]) & 255) == 255)
+	{
+	  CC_STATUS_INIT;
+	  return "st %0";
+	}
+    }
+  if (GET_CODE (operands[1]) == CONST_INT
+      && DATA_REG_P (operands[0])
+      && INTVAL (operands[1]) < 128
+      && INTVAL (operands[1]) >= -128)
+    return "moveq %1,%0";
+  if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
+    return "sub%.l %0,%0";
+  if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
+    return "move%.l %1,%0";
+  /* 68k family (including the 5200 ColdFire) does not support byte moves to
+     from address registers.  */
+  if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
+    return "move%.w %1,%0";
+  return "move%.b %1,%0";
+}
+
+const char *
+output_move_stricthi (rtx *operands)
+{
+  if (operands[1] == const0_rtx
+      /* clr insns on 68000 read before writing.  */
+      && ((TARGET_68010 || TARGET_COLDFIRE)
+	  || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
+    return "clr%.w %0";
+  return "move%.w %1,%0";
+}
+
+const char *
+output_move_strictqi (rtx *operands)
+{
+  if (operands[1] == const0_rtx
+      /* clr insns on 68000 read before writing.  */
+      && ((TARGET_68010 || TARGET_COLDFIRE)
+          || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
+    return "clr%.b %0";
+  return "move%.b %1,%0";
+}
+
+/* Return the best assembler insn template
+   for moving operands[1] into operands[0] as a fullword.  */
+
+static const char *
+singlemove_string (rtx *operands)
+{
+  if (GET_CODE (operands[1]) == CONST_INT)
+    return output_move_simode_const (operands);
+  return "move%.l %1,%0";
+}
+
+
+/* Output assembler or rtl code to perform a doubleword move insn
+   with operands OPERANDS.
+   Pointers to 3 helper functions should be specified:
+   HANDLE_REG_ADJUST to adjust a register by a small value,
+   HANDLE_COMPADR to compute an address and
+   HANDLE_MOVSI to move 4 bytes.  */
+
+static void
+handle_move_double (rtx operands[2],
+		    void (*handle_reg_adjust) (rtx, int),
+		    void (*handle_compadr) (rtx [2]),
+		    void (*handle_movsi) (rtx [2]))
+{
+  enum
+    {
+      REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
+    } optype0, optype1;
+  rtx latehalf[2];
+  rtx middlehalf[2];
+  rtx xops[2];
+  rtx addreg0 = 0, addreg1 = 0;
+  int dest_overlapped_low = 0;
+  int size = GET_MODE_SIZE (GET_MODE (operands[0]));
+
+  middlehalf[0] = 0;
+  middlehalf[1] = 0;
+
+  /* First classify both operands.  */
+
+  if (REG_P (operands[0]))
+    optype0 = REGOP;
+  else if (offsettable_memref_p (operands[0]))
+    optype0 = OFFSOP;
+  else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
+    optype0 = POPOP;
+  else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
+    optype0 = PUSHOP;
+  else if (GET_CODE (operands[0]) == MEM)
+    optype0 = MEMOP;
+  else
+    optype0 = RNDOP;
+
+  if (REG_P (operands[1]))
+    optype1 = REGOP;
+  else if (CONSTANT_P (operands[1]))
+    optype1 = CNSTOP;
+  else if (offsettable_memref_p (operands[1]))
+    optype1 = OFFSOP;
+  else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
+    optype1 = POPOP;
+  else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
+    optype1 = PUSHOP;
+  else if (GET_CODE (operands[1]) == MEM)
+    optype1 = MEMOP;
+  else
+    optype1 = RNDOP;
+
+  /* Check for the cases that the operand constraints are not supposed
+     to allow to happen.  Generating code for these cases is
+     painful.  */
+  gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
+
+  /* If one operand is decrementing and one is incrementing
+     decrement the former register explicitly
+     and change that operand into ordinary indexing.  */
+
+  if (optype0 == PUSHOP && optype1 == POPOP)
+    {
+      operands[0] = XEXP (XEXP (operands[0], 0), 0);
+
+      handle_reg_adjust (operands[0], -size);
+
+      if (GET_MODE (operands[1]) == XFmode)
+	operands[0] = gen_rtx_MEM (XFmode, operands[0]);
+      else if (GET_MODE (operands[0]) == DFmode)
+	operands[0] = gen_rtx_MEM (DFmode, operands[0]);
+      else
+	operands[0] = gen_rtx_MEM (DImode, operands[0]);
+      optype0 = OFFSOP;
+    }
+  if (optype0 == POPOP && optype1 == PUSHOP)
+    {
+      operands[1] = XEXP (XEXP (operands[1], 0), 0);
+
+      handle_reg_adjust (operands[1], -size);
+
+      if (GET_MODE (operands[1]) == XFmode)
+	operands[1] = gen_rtx_MEM (XFmode, operands[1]);
+      else if (GET_MODE (operands[1]) == DFmode)
+	operands[1] = gen_rtx_MEM (DFmode, operands[1]);
+      else
+	operands[1] = gen_rtx_MEM (DImode, operands[1]);
+      optype1 = OFFSOP;
+    }
+
+  /* If an operand is an unoffsettable memory ref, find a register
+     we can increment temporarily to make it refer to the second word.  */
+
+  if (optype0 == MEMOP)
+    addreg0 = find_addr_reg (XEXP (operands[0], 0));
+
+  if (optype1 == MEMOP)
+    addreg1 = find_addr_reg (XEXP (operands[1], 0));
+
+  /* Ok, we can do one word at a time.
+     Normally we do the low-numbered word first,
+     but if either operand is autodecrementing then we
+     do the high-numbered word first.
+
+     In either case, set up in LATEHALF the operands to use
+     for the high-numbered word and in some cases alter the
+     operands in OPERANDS to be suitable for the low-numbered word.  */
+
+  if (size == 12)
+    {
+      if (optype0 == REGOP)
+	{
+	  latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
+	  middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
+	}
+      else if (optype0 == OFFSOP)
+	{
+	  middlehalf[0] = adjust_address (operands[0], SImode, 4);
+	  latehalf[0] = adjust_address (operands[0], SImode, size - 4);
+	}
+      else
+	{
+	  middlehalf[0] = adjust_address (operands[0], SImode, 0);
+	  latehalf[0] = adjust_address (operands[0], SImode, 0);
+	}
+
+      if (optype1 == REGOP)
+	{
+	  latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
+	  middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
+	}
+      else if (optype1 == OFFSOP)
+	{
+	  middlehalf[1] = adjust_address (operands[1], SImode, 4);
+	  latehalf[1] = adjust_address (operands[1], SImode, size - 4);
+	}
+      else if (optype1 == CNSTOP)
+	{
+	  if (GET_CODE (operands[1]) == CONST_DOUBLE)
+	    {
+	      REAL_VALUE_TYPE r;
+	      long l[3];
+
+	      REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
+	      REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
+	      operands[1] = GEN_INT (l[0]);
+	      middlehalf[1] = GEN_INT (l[1]);
+	      latehalf[1] = GEN_INT (l[2]);
+	    }
+	  else
+	    {
+	      /* No non-CONST_DOUBLE constant should ever appear
+		 here.  */
+	      gcc_assert (!CONSTANT_P (operands[1]));
+	    }
+	}
+      else
+	{
+	  middlehalf[1] = adjust_address (operands[1], SImode, 0);
+	  latehalf[1] = adjust_address (operands[1], SImode, 0);
+	}
+    }
+  else
+    /* size is not 12: */
+    {
+      if (optype0 == REGOP)
+	latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
+      else if (optype0 == OFFSOP)
+	latehalf[0] = adjust_address (operands[0], SImode, size - 4);
+      else
+	latehalf[0] = adjust_address (operands[0], SImode, 0);
+
+      if (optype1 == REGOP)
+	latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
+      else if (optype1 == OFFSOP)
+	latehalf[1] = adjust_address (operands[1], SImode, size - 4);
+      else if (optype1 == CNSTOP)
+	split_double (operands[1], &operands[1], &latehalf[1]);
+      else
+	latehalf[1] = adjust_address (operands[1], SImode, 0);
+    }
+
+  /* If insn is effectively movd N(sp),-(sp) then we will do the
+     high word first.  We should use the adjusted operand 1 (which is N+4(sp))
+     for the low word as well, to compensate for the first decrement of sp.  */
+  if (optype0 == PUSHOP
+      && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
+      && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
+    operands[1] = middlehalf[1] = latehalf[1];
+
+  /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
+     if the upper part of reg N does not appear in the MEM, arrange to
+     emit the move late-half first.  Otherwise, compute the MEM address
+     into the upper part of N and use that as a pointer to the memory
+     operand.  */
+  if (optype0 == REGOP
+      && (optype1 == OFFSOP || optype1 == MEMOP))
+    {
+      rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
+
+      if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
+	  && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
+	{
+	  /* If both halves of dest are used in the src memory address,
+	     compute the address into latehalf of dest.
+	     Note that this can't happen if the dest is two data regs.  */
+	compadr:
+	  xops[0] = latehalf[0];
+	  xops[1] = XEXP (operands[1], 0);
+
+	  handle_compadr (xops);
+	  if (GET_MODE (operands[1]) == XFmode)
+	    {
+	      operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
+	      middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
+	      latehalf[1] = adjust_address (operands[1], DImode, size - 4);
+	    }
+	  else
+	    {
+	      operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
+	      latehalf[1] = adjust_address (operands[1], DImode, size - 4);
+	    }
+	}
+      else if (size == 12
+	       && reg_overlap_mentioned_p (middlehalf[0],
+					   XEXP (operands[1], 0)))
+	{
+	  /* Check for two regs used by both source and dest.
+	     Note that this can't happen if the dest is all data regs.
+	     It can happen if the dest is d6, d7, a0.
+	     But in that case, latehalf is an addr reg, so
+	     the code at compadr does ok.  */
+
+	  if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
+	      || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
+	    goto compadr;
+
+	  /* JRV says this can't happen: */
+	  gcc_assert (!addreg0 && !addreg1);
+
+	  /* Only the middle reg conflicts; simply put it last.  */
+	  handle_movsi (operands);
+	  handle_movsi (latehalf);
+	  handle_movsi (middlehalf);
+
+	  return;
+	}
+      else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
+	/* If the low half of dest is mentioned in the source memory
+	   address, the arrange to emit the move late half first.  */
+	dest_overlapped_low = 1;
+    }
+
+  /* If one or both operands autodecrementing,
+     do the two words, high-numbered first.  */
+
+  /* Likewise,  the first move would clobber the source of the second one,
+     do them in the other order.  This happens only for registers;
+     such overlap can't happen in memory unless the user explicitly
+     sets it up, and that is an undefined circumstance.  */
+
+  if (optype0 == PUSHOP || optype1 == PUSHOP
+      || (optype0 == REGOP && optype1 == REGOP
+	  && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
+	      || REGNO (operands[0]) == REGNO (latehalf[1])))
+      || dest_overlapped_low)
+    {
+      /* Make any unoffsettable addresses point at high-numbered word.  */
+      if (addreg0)
+	handle_reg_adjust (addreg0, size - 4);
+      if (addreg1)
+	handle_reg_adjust (addreg1, size - 4);
+
+      /* Do that word.  */
+      handle_movsi (latehalf);
+
+      /* Undo the adds we just did.  */
+      if (addreg0)
+	handle_reg_adjust (addreg0, -4);
+      if (addreg1)
+	handle_reg_adjust (addreg1, -4);
+
+      if (size == 12)
+	{
+	  handle_movsi (middlehalf);
+
+	  if (addreg0)
+	    handle_reg_adjust (addreg0, -4);
+	  if (addreg1)
+	    handle_reg_adjust (addreg1, -4);
+	}
+
+      /* Do low-numbered word.  */
+
+      handle_movsi (operands);
+      return;
+    }
+
+  /* Normal case: do the two words, low-numbered first.  */
+
+  handle_movsi (operands);
+
+  /* Do the middle one of the three words for long double */
+  if (size == 12)
+    {
+      if (addreg0)
+	handle_reg_adjust (addreg0, 4);
+      if (addreg1)
+	handle_reg_adjust (addreg1, 4);
+
+      handle_movsi (middlehalf);
+    }
+
+  /* Make any unoffsettable addresses point at high-numbered word.  */
+  if (addreg0)
+    handle_reg_adjust (addreg0, 4);
+  if (addreg1)
+    handle_reg_adjust (addreg1, 4);
+
+  /* Do that word.  */
+  handle_movsi (latehalf);
+
+  /* Undo the adds we just did.  */
+  if (addreg0)
+    handle_reg_adjust (addreg0, -(size - 4));
+  if (addreg1)
+    handle_reg_adjust (addreg1, -(size - 4));
+
+  return;
+}
+
+/* Output assembler code to adjust REG by N.  */
+static void
+output_reg_adjust (rtx reg, int n)
+{
+  const char *s;
+
+  gcc_assert (GET_MODE (reg) == SImode
+	      && -12 <= n && n != 0 && n <= 12);
+
+  switch (n)
+    {
+    case 12:
+      s = "add%.l #12,%0";
+      break;
+
+    case 8:
+      s = "addq%.l #8,%0";
+      break;
+
+    case 4:
+      s = "addq%.l #4,%0";
+      break;
+
+    case -12:
+      s = "sub%.l #12,%0";
+      break;
+
+    case -8:
+      s = "subq%.l #8,%0";
+      break;
+
+    case -4:
+      s = "subq%.l #4,%0";
+      break;
+
+    default:
+      gcc_unreachable ();
+      s = NULL;
+    }
+
+  output_asm_insn (s, &reg);
+}
+
+/* Emit rtl code to adjust REG by N.  */
+static void
+emit_reg_adjust (rtx reg1, int n)
+{
+  rtx reg2;
+
+  gcc_assert (GET_MODE (reg1) == SImode
+	      && -12 <= n && n != 0 && n <= 12);
+
+  reg1 = copy_rtx (reg1);
+  reg2 = copy_rtx (reg1);
+
+  if (n < 0)
+    emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
+  else if (n > 0)
+    emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
+  else
+    gcc_unreachable ();
+}
+
+/* Output assembler to load address OPERANDS[0] to register OPERANDS[1].  */
+static void
+output_compadr (rtx operands[2])
+{
+  output_asm_insn ("lea %a1,%0", operands);
+}
+
+/* Output the best assembler insn for moving operands[1] into operands[0]
+   as a fullword.  */
+static void
+output_movsi (rtx operands[2])
+{
+  output_asm_insn (singlemove_string (operands), operands);
+}
+
+/* Copy OP and change its mode to MODE.  */
+static rtx
+copy_operand (rtx op, enum machine_mode mode)
+{
+  /* ??? This looks really ugly.  There must be a better way
+     to change a mode on the operand.  */
+  if (GET_MODE (op) != VOIDmode)
+    {
+      if (REG_P (op))
+	op = gen_rtx_REG (mode, REGNO (op));
+      else
+	{
+	  op = copy_rtx (op);
+	  PUT_MODE (op, mode);
+	}
+    }
+
+  return op;
+}
+
+/* Emit rtl code for moving operands[1] into operands[0] as a fullword.  */
+static void
+emit_movsi (rtx operands[2])
+{
+  operands[0] = copy_operand (operands[0], SImode);
+  operands[1] = copy_operand (operands[1], SImode);
+
+  emit_insn (gen_movsi (operands[0], operands[1]));
+}
+
+/* Output assembler code to perform a doubleword move insn
+   with operands OPERANDS.  */
+const char *
+output_move_double (rtx *operands)
+{
+  handle_move_double (operands,
+		      output_reg_adjust, output_compadr, output_movsi);
+
+  return "";
+}
+
+/* Output rtl code to perform a doubleword move insn
+   with operands OPERANDS.  */
+void
+m68k_emit_move_double (rtx operands[2])
+{
+  handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
+}
+
+/* Ensure mode of ORIG, a REG rtx, is MODE.  Returns either ORIG or a
+   new rtx with the correct mode.  */
+
+static rtx
+force_mode (enum machine_mode mode, rtx orig)
+{
+  if (mode == GET_MODE (orig))
+    return orig;
+
+  if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
+    abort ();
+
+  return gen_rtx_REG (mode, REGNO (orig));
+}
+
+static int
+fp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
+{
+  return reg_renumber && FP_REG_P (op);
+}
+
+/* Emit insns to move operands[1] into operands[0].
+
+   Return 1 if we have written out everything that needs to be done to
+   do the move.  Otherwise, return 0 and the caller will emit the move
+   normally.
+
+   Note SCRATCH_REG may not be in the proper mode depending on how it
+   will be used.  This routine is responsible for creating a new copy
+   of SCRATCH_REG in the proper mode.  */
+
+int
+emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
+{
+  register rtx operand0 = operands[0];
+  register rtx operand1 = operands[1];
+  register rtx tem;
+
+  if (scratch_reg
+      && reload_in_progress && GET_CODE (operand0) == REG
+      && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
+    operand0 = reg_equiv_mem[REGNO (operand0)];
+  else if (scratch_reg
+	   && reload_in_progress && GET_CODE (operand0) == SUBREG
+	   && GET_CODE (SUBREG_REG (operand0)) == REG
+	   && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
+    {
+     /* We must not alter SUBREG_BYTE (operand0) since that would confuse
+	the code which tracks sets/uses for delete_output_reload.  */
+      rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
+				 reg_equiv_mem [REGNO (SUBREG_REG (operand0))],
+				 SUBREG_BYTE (operand0));
+      operand0 = alter_subreg (&temp);
+    }
+
+  if (scratch_reg
+      && reload_in_progress && GET_CODE (operand1) == REG
+      && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
+    operand1 = reg_equiv_mem[REGNO (operand1)];
+  else if (scratch_reg
+	   && reload_in_progress && GET_CODE (operand1) == SUBREG
+	   && GET_CODE (SUBREG_REG (operand1)) == REG
+	   && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
+    {
+     /* We must not alter SUBREG_BYTE (operand0) since that would confuse
+	the code which tracks sets/uses for delete_output_reload.  */
+      rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
+				 reg_equiv_mem [REGNO (SUBREG_REG (operand1))],
+				 SUBREG_BYTE (operand1));
+      operand1 = alter_subreg (&temp);
+    }
+
+  if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
+      && ((tem = find_replacement (&XEXP (operand0, 0)))
+	  != XEXP (operand0, 0)))
+    operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
+  if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
+      && ((tem = find_replacement (&XEXP (operand1, 0)))
+	  != XEXP (operand1, 0)))
+    operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
+
+  /* Handle secondary reloads for loads/stores of FP registers where
+     the address is symbolic by using the scratch register */
+  if (fp_reg_operand (operand0, mode)
+      && ((GET_CODE (operand1) == MEM
+	   && ! memory_address_p (DFmode, XEXP (operand1, 0)))
+	  || ((GET_CODE (operand1) == SUBREG
+	       && GET_CODE (XEXP (operand1, 0)) == MEM
+	       && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
+      && scratch_reg)
+    {
+      if (GET_CODE (operand1) == SUBREG)
+	operand1 = XEXP (operand1, 0);
+
+      /* SCRATCH_REG will hold an address.  We want
+	 it in SImode regardless of what mode it was originally given
+	 to us.  */
+      scratch_reg = force_mode (SImode, scratch_reg);
+
+      /* D might not fit in 14 bits either; for such cases load D into
+	 scratch reg.  */
+      if (!memory_address_p (Pmode, XEXP (operand1, 0)))
+	{
+	  emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
+	  emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
+						       Pmode,
+						       XEXP (XEXP (operand1, 0), 0),
+						       scratch_reg));
+	}
+      else
+	emit_move_insn (scratch_reg, XEXP (operand1, 0));
+      emit_insn (gen_rtx_SET (VOIDmode, operand0,
+			      gen_rtx_MEM (mode, scratch_reg)));
+      return 1;
+    }
+  else if (fp_reg_operand (operand1, mode)
+	   && ((GET_CODE (operand0) == MEM
+		&& ! memory_address_p (DFmode, XEXP (operand0, 0)))
+	       || ((GET_CODE (operand0) == SUBREG)
+		   && GET_CODE (XEXP (operand0, 0)) == MEM
+		   && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
+	   && scratch_reg)
+    {
+      if (GET_CODE (operand0) == SUBREG)
+	operand0 = XEXP (operand0, 0);
+
+      /* SCRATCH_REG will hold an address and maybe the actual data.  We want
+	 it in SIMODE regardless of what mode it was originally given
+	 to us.  */
+      scratch_reg = force_mode (SImode, scratch_reg);
+
+      /* D might not fit in 14 bits either; for such cases load D into
+	 scratch reg.  */
+      if (!memory_address_p (Pmode, XEXP (operand0, 0)))
+	{
+	  emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
+	  emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
+								        0)),
+						       Pmode,
+						       XEXP (XEXP (operand0, 0),
+								   0),
+						       scratch_reg));
+	}
+      else
+	emit_move_insn (scratch_reg, XEXP (operand0, 0));
+      emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_MEM (mode, scratch_reg),
+			      operand1));
+      return 1;
+    }
+  /* Handle secondary reloads for loads of FP registers from constant
+     expressions by forcing the constant into memory.
+
+     use scratch_reg to hold the address of the memory location.
+
+     The proper fix is to change PREFERRED_RELOAD_CLASS to return
+     NO_REGS when presented with a const_int and an register class
+     containing only FP registers.  Doing so unfortunately creates
+     more problems than it solves.   Fix this for 2.5.  */
+  else if (fp_reg_operand (operand0, mode)
+	   && CONSTANT_P (operand1)
+	   && scratch_reg)
+    {
+      rtx xoperands[2];
+
+      /* SCRATCH_REG will hold an address and maybe the actual data.  We want
+	 it in SIMODE regardless of what mode it was originally given
+	 to us.  */
+      scratch_reg = force_mode (SImode, scratch_reg);
+
+      /* Force the constant into memory and put the address of the
+	 memory location into scratch_reg.  */
+      xoperands[0] = scratch_reg;
+      xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
+      emit_insn (gen_rtx_SET (mode, scratch_reg, xoperands[1]));
+
+      /* Now load the destination register.  */
+      emit_insn (gen_rtx_SET (mode, operand0,
+			      gen_rtx_MEM (mode, scratch_reg)));
+      return 1;
+    }
+
+  /* Now have insn-emit do whatever it normally does.  */
+  return 0;
+}
+
+/* Split one or more DImode RTL references into pairs of SImode
+   references.  The RTL can be REG, offsettable MEM, integer constant, or
+   CONST_DOUBLE.  "operands" is a pointer to an array of DImode RTL to
+   split and "num" is its length.  lo_half and hi_half are output arrays
+   that parallel "operands".  */
+
+void
+split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
+{
+  while (num--)
+    {
+      rtx op = operands[num];
+
+      /* simplify_subreg refuses to split volatile memory addresses,
+	 but we still have to handle it.  */
+      if (GET_CODE (op) == MEM)
+	{
+	  lo_half[num] = adjust_address (op, SImode, 4);
+	  hi_half[num] = adjust_address (op, SImode, 0);
+	}
+      else
+	{
+	  lo_half[num] = simplify_gen_subreg (SImode, op,
+					      GET_MODE (op) == VOIDmode
+					      ? DImode : GET_MODE (op), 4);
+	  hi_half[num] = simplify_gen_subreg (SImode, op,
+					      GET_MODE (op) == VOIDmode
+					      ? DImode : GET_MODE (op), 0);
+	}
+    }
+}
+
+/* Split X into a base and a constant offset, storing them in *BASE
+   and *OFFSET respectively.  */
+
+static void
+m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
+{
+  *offset = 0;
+  if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
+    {
+      *offset += INTVAL (XEXP (x, 1));
+      x = XEXP (x, 0);
+    }
+  *base = x;
+}
+
+/* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
+   instruction.  STORE_P says whether the move is a load or store.
+
+   If the instruction uses post-increment or pre-decrement addressing,
+   AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
+   adjustment.  This adjustment will be made by the first element of
+   PARALLEL, with the loads or stores starting at element 1.  If the
+   instruction does not use post-increment or pre-decrement addressing,
+   AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
+   start at element 0.  */
+
+bool
+m68k_movem_pattern_p (rtx pattern, rtx automod_base,
+		      HOST_WIDE_INT automod_offset, bool store_p)
+{
+  rtx base, mem_base, set, mem, reg, last_reg;
+  HOST_WIDE_INT offset, mem_offset;
+  int i, first, len;
+  enum reg_class rclass;
+
+  len = XVECLEN (pattern, 0);
+  first = (automod_base != NULL);
+
+  if (automod_base)
+    {
+      /* Stores must be pre-decrement and loads must be post-increment.  */
+      if (store_p != (automod_offset < 0))
+	return false;
+
+      /* Work out the base and offset for lowest memory location.  */
+      base = automod_base;
+      offset = (automod_offset < 0 ? automod_offset : 0);
+    }
+  else
+    {
+      /* Allow any valid base and offset in the first access.  */
+      base = NULL;
+      offset = 0;
+    }
+
+  last_reg = NULL;
+  rclass = NO_REGS;
+  for (i = first; i < len; i++)
+    {
+      /* We need a plain SET.  */
+      set = XVECEXP (pattern, 0, i);
+      if (GET_CODE (set) != SET)
+	return false;
+
+      /* Check that we have a memory location...  */
+      mem = XEXP (set, !store_p);
+      if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
+	return false;
+
+      /* ...with the right address.  */
+      if (base == NULL)
+	{
+	  m68k_split_offset (XEXP (mem, 0), &base, &offset);
+	  /* The ColdFire instruction only allows (An) and (d16,An) modes.
+	     There are no mode restrictions for 680x0 besides the
+	     automodification rules enforced above.  */
+	  if (TARGET_COLDFIRE
+	      && !m68k_legitimate_base_reg_p (base, reload_completed))
+	    return false;
+	}
+      else
+	{
+	  m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
+	  if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
+	    return false;
+	}
+
+      /* Check that we have a register of the required mode and class.  */
+      reg = XEXP (set, store_p);
+      if (!REG_P (reg)
+	  || !HARD_REGISTER_P (reg)
+	  || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
+	return false;
+
+      if (last_reg)
+	{
+	  /* The register must belong to RCLASS and have a higher number
+	     than the register in the previous SET.  */
+	  if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
+	      || REGNO (last_reg) >= REGNO (reg))
+	    return false;
+	}
+      else
+	{
+	  /* Work out which register class we need.  */
+	  if (INT_REGNO_P (REGNO (reg)))
+	    rclass = GENERAL_REGS;
+	  else if (FP_REGNO_P (REGNO (reg)))
+	    rclass = FP_REGS;
+	  else
+	    return false;
+	}
+
+      last_reg = reg;
+      offset += GET_MODE_SIZE (GET_MODE (reg));
+    }
+
+  /* If we have an automodification, check whether the final offset is OK.  */
+  if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
+    return false;
+
+  /* Reject unprofitable cases.  */
+  if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
+    return false;
+
+  return true;
+}
+
+/* Return the assembly code template for a movem or fmovem instruction
+   whose pattern is given by PATTERN.  Store the template's operands
+   in OPERANDS.
+
+   If the instruction uses post-increment or pre-decrement addressing,
+   AUTOMOD_OFFSET is the total adjustment, otherwise it is 0.  STORE_P
+   is true if this is a store instruction.  */
+
+const char *
+m68k_output_movem (rtx *operands, rtx pattern,
+		   HOST_WIDE_INT automod_offset, bool store_p)
+{
+  unsigned int mask;
+  int i, first;
+
+  gcc_assert (GET_CODE (pattern) == PARALLEL);
+  mask = 0;
+  first = (automod_offset != 0);
+  for (i = first; i < XVECLEN (pattern, 0); i++)
+    {
+      /* When using movem with pre-decrement addressing, register X + D0_REG
+	 is controlled by bit 15 - X.  For all other addressing modes,
+	 register X + D0_REG is controlled by bit X.  Confusingly, the
+	 register mask for fmovem is in the opposite order to that for
+	 movem.  */
+      unsigned int regno;
+
+      gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
+      gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
+      regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
+      if (automod_offset < 0)
+	{
+	  if (FP_REGNO_P (regno))
+	    mask |= 1 << (regno - FP0_REG);
+	  else
+	    mask |= 1 << (15 - (regno - D0_REG));
+	}
+      else
+	{
+	  if (FP_REGNO_P (regno))
+	    mask |= 1 << (7 - (regno - FP0_REG));
+	  else
+	    mask |= 1 << (regno - D0_REG);
+	}
+    }
+  CC_STATUS_INIT;
+
+  if (automod_offset == 0)
+    operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
+  else if (automod_offset < 0)
+    operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
+  else
+    operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
+  operands[1] = GEN_INT (mask);
+  if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
+    {
+      if (store_p)
+	return "fmovem %1,%a0";
+      else
+	return "fmovem %a0,%1";
+    }
+  else
+    {
+      if (store_p)
+	return "movem%.l %1,%a0";
+      else
+	return "movem%.l %a0,%1";
+    }
+}
+
+/* Return a REG that occurs in ADDR with coefficient 1.
+   ADDR can be effectively incremented by incrementing REG.  */
+
+static rtx
+find_addr_reg (rtx addr)
+{
+  while (GET_CODE (addr) == PLUS)
+    {
+      if (GET_CODE (XEXP (addr, 0)) == REG)
+	addr = XEXP (addr, 0);
+      else if (GET_CODE (XEXP (addr, 1)) == REG)
+	addr = XEXP (addr, 1);
+      else if (CONSTANT_P (XEXP (addr, 0)))
+	addr = XEXP (addr, 1);
+      else if (CONSTANT_P (XEXP (addr, 1)))
+	addr = XEXP (addr, 0);
+      else
+	gcc_unreachable ();
+    }
+  gcc_assert (GET_CODE (addr) == REG);
+  return addr;
+}
+
+/* Output assembler code to perform a 32-bit 3-operand add.  */
+
+const char *
+output_addsi3 (rtx *operands)
+{
+  if (! operands_match_p (operands[0], operands[1]))
+    {
+      if (!ADDRESS_REG_P (operands[1]))
+	{
+	  rtx tmp = operands[1];
+
+	  operands[1] = operands[2];
+	  operands[2] = tmp;
+	}
+
+      /* These insns can result from reloads to access
+	 stack slots over 64k from the frame pointer.  */
+      if (GET_CODE (operands[2]) == CONST_INT
+	  && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
+        return "move%.l %2,%0\n\tadd%.l %1,%0";
+      if (GET_CODE (operands[2]) == REG)
+	return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
+      return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
+    }
+  if (GET_CODE (operands[2]) == CONST_INT)
+    {
+      if (INTVAL (operands[2]) > 0
+	  && INTVAL (operands[2]) <= 8)
+	return "addq%.l %2,%0";
+      if (INTVAL (operands[2]) < 0
+	  && INTVAL (operands[2]) >= -8)
+        {
+	  operands[2] = GEN_INT (- INTVAL (operands[2]));
+	  return "subq%.l %2,%0";
+	}
+      /* On the CPU32 it is faster to use two addql instructions to
+	 add a small integer (8 < N <= 16) to a register.
+	 Likewise for subql.  */
+      if (TUNE_CPU32 && REG_P (operands[0]))
+	{
+	  if (INTVAL (operands[2]) > 8
+	      && INTVAL (operands[2]) <= 16)
+	    {
+	      operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
+	      return "addq%.l #8,%0\n\taddq%.l %2,%0";
+	    }
+	  if (INTVAL (operands[2]) < -8
+	      && INTVAL (operands[2]) >= -16)
+	    {
+	      operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
+	      return "subq%.l #8,%0\n\tsubq%.l %2,%0";
+	    }
+	}
+      if (ADDRESS_REG_P (operands[0])
+	  && INTVAL (operands[2]) >= -0x8000
+	  && INTVAL (operands[2]) < 0x8000)
+	{
+	  if (TUNE_68040)
+	    return "add%.w %2,%0";
+	  else
+	    return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
+	}
+    }
+  return "add%.l %2,%0";
+}
+
+/* Store in cc_status the expressions that the condition codes will
+   describe after execution of an instruction whose pattern is EXP.
+   Do not alter them if the instruction would not alter the cc's.  */
+
+/* On the 68000, all the insns to store in an address register fail to
+   set the cc's.  However, in some cases these instructions can make it
+   possibly invalid to use the saved cc's.  In those cases we clear out
+   some or all of the saved cc's so they won't be used.  */
+
+void
+notice_update_cc (rtx exp, rtx insn)
+{
+  if (GET_CODE (exp) == SET)
+    {
+      if (GET_CODE (SET_SRC (exp)) == CALL)
+	CC_STATUS_INIT; 
+      else if (ADDRESS_REG_P (SET_DEST (exp)))
+	{
+	  if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
+	    cc_status.value1 = 0;
+	  if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
+	    cc_status.value2 = 0; 
+	}
+      /* fmoves to memory or data registers do not set the condition
+	 codes.  Normal moves _do_ set the condition codes, but not in
+	 a way that is appropriate for comparison with 0, because -0.0
+	 would be treated as a negative nonzero number.  Note that it
+	 isn't appropriate to conditionalize this restriction on
+	 HONOR_SIGNED_ZEROS because that macro merely indicates whether
+	 we care about the difference between -0.0 and +0.0.  */
+      else if (!FP_REG_P (SET_DEST (exp))
+	       && SET_DEST (exp) != cc0_rtx
+	       && (FP_REG_P (SET_SRC (exp))
+		   || GET_CODE (SET_SRC (exp)) == FIX
+		   || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
+	CC_STATUS_INIT; 
+      /* A pair of move insns doesn't produce a useful overall cc.  */
+      else if (!FP_REG_P (SET_DEST (exp))
+	       && !FP_REG_P (SET_SRC (exp))
+	       && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
+	       && (GET_CODE (SET_SRC (exp)) == REG
+		   || GET_CODE (SET_SRC (exp)) == MEM
+		   || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
+	CC_STATUS_INIT; 
+      else if (SET_DEST (exp) != pc_rtx)
+	{
+	  cc_status.flags = 0;
+	  cc_status.value1 = SET_DEST (exp);
+	  cc_status.value2 = SET_SRC (exp);
+	}
+    }
+  else if (GET_CODE (exp) == PARALLEL
+	   && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
+    {
+      rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
+      rtx src  = SET_SRC  (XVECEXP (exp, 0, 0));
+
+      if (ADDRESS_REG_P (dest))
+	CC_STATUS_INIT;
+      else if (dest != pc_rtx)
+	{
+	  cc_status.flags = 0;
+	  cc_status.value1 = dest;
+	  cc_status.value2 = src;
+	}
+    }
+  else
+    CC_STATUS_INIT;
+  if (cc_status.value2 != 0
+      && ADDRESS_REG_P (cc_status.value2)
+      && GET_MODE (cc_status.value2) == QImode)
+    CC_STATUS_INIT;
+  if (cc_status.value2 != 0)
+    switch (GET_CODE (cc_status.value2))
+      {
+      case ASHIFT: case ASHIFTRT: case LSHIFTRT:
+      case ROTATE: case ROTATERT:
+	/* These instructions always clear the overflow bit, and set
+	   the carry to the bit shifted out.  */
+	cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
+	break;
+
+      case PLUS: case MINUS: case MULT:
+      case DIV: case UDIV: case MOD: case UMOD: case NEG:
+	if (GET_MODE (cc_status.value2) != VOIDmode)
+	  cc_status.flags |= CC_NO_OVERFLOW;
+	break;
+      case ZERO_EXTEND:
+	/* (SET r1 (ZERO_EXTEND r2)) on this machine
+	   ends with a move insn moving r2 in r2's mode.
+	   Thus, the cc's are set for r2.
+	   This can set N bit spuriously.  */
+	cc_status.flags |= CC_NOT_NEGATIVE; 
+
+      default:
+	break;
+      }
+  if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
+      && cc_status.value2
+      && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
+    cc_status.value2 = 0;
+  if (((cc_status.value1 && FP_REG_P (cc_status.value1))
+       || (cc_status.value2 && FP_REG_P (cc_status.value2))))
+    cc_status.flags = CC_IN_68881;
+  if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
+      && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
+    {
+      cc_status.flags = CC_IN_68881;
+      if (!FP_REG_P (XEXP (cc_status.value2, 0)))
+	cc_status.flags |= CC_REVERSED;
+    }
+}
+
+const char *
+output_move_const_double (rtx *operands)
+{
+  int code = standard_68881_constant_p (operands[1]);
+
+  if (code != 0)
+    {
+      static char buf[40];
+
+      sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
+      return buf;
+    }
+  return "fmove%.d %1,%0";
+}
+
+const char *
+output_move_const_single (rtx *operands)
+{
+  int code = standard_68881_constant_p (operands[1]);
+
+  if (code != 0)
+    {
+      static char buf[40];
+
+      sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
+      return buf;
+    }
+  return "fmove%.s %f1,%0";
+}
+
+/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
+   from the "fmovecr" instruction.
+   The value, anded with 0xff, gives the code to use in fmovecr
+   to get the desired constant.  */
+
+/* This code has been fixed for cross-compilation.  */
+  
+static int inited_68881_table = 0;
+
+static const char *const strings_68881[7] = {
+  "0.0",
+  "1.0",
+  "10.0",
+  "100.0",
+  "10000.0",
+  "1e8",
+  "1e16"
+};
+
+static const int codes_68881[7] = {
+  0x0f,
+  0x32,
+  0x33,
+  0x34,
+  0x35,
+  0x36,
+  0x37
+};
+
+REAL_VALUE_TYPE values_68881[7];
+
+/* Set up values_68881 array by converting the decimal values
+   strings_68881 to binary.  */
+
+void
+init_68881_table (void)
+{
+  int i;
+  REAL_VALUE_TYPE r;
+  enum machine_mode mode;
+
+  mode = SFmode;
+  for (i = 0; i < 7; i++)
+    {
+      if (i == 6)
+        mode = DFmode;
+      r = REAL_VALUE_ATOF (strings_68881[i], mode);
+      values_68881[i] = r;
+    }
+  inited_68881_table = 1;
+}
+
+int
+standard_68881_constant_p (rtx x)
+{
+  REAL_VALUE_TYPE r;
+  int i;
+
+  /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
+     used at all on those chips.  */
+  if (TUNE_68040_60)
+    return 0;
+
+  if (! inited_68881_table)
+    init_68881_table ();
+
+  REAL_VALUE_FROM_CONST_DOUBLE (r, x);
+
+  /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
+     is rejected.  */
+  for (i = 0; i < 6; i++)
+    {
+      if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
+        return (codes_68881[i]);
+    }
+  
+  if (GET_MODE (x) == SFmode)
+    return 0;
+
+  if (REAL_VALUES_EQUAL (r, values_68881[6]))
+    return (codes_68881[6]);
+
+  /* larger powers of ten in the constants ram are not used
+     because they are not equal to a `double' C constant.  */
+  return 0;
+}
+
+/* If X is a floating-point constant, return the logarithm of X base 2,
+   or 0 if X is not a power of 2.  */
+
+int
+floating_exact_log2 (rtx x)
+{
+  REAL_VALUE_TYPE r, r1;
+  int exp;
+
+  REAL_VALUE_FROM_CONST_DOUBLE (r, x);
+
+  if (REAL_VALUES_LESS (r, dconst1))
+    return 0;
+
+  exp = real_exponent (&r);
+  real_2expN (&r1, exp, DFmode);
+  if (REAL_VALUES_EQUAL (r1, r))
+    return exp;
+
+  return 0;
+}
+
+/* A C compound statement to output to stdio stream STREAM the
+   assembler syntax for an instruction operand X.  X is an RTL
+   expression.
+
+   CODE is a value that can be used to specify one of several ways
+   of printing the operand.  It is used when identical operands
+   must be printed differently depending on the context.  CODE
+   comes from the `%' specification that was used to request
+   printing of the operand.  If the specification was just `%DIGIT'
+   then CODE is 0; if the specification was `%LTR DIGIT' then CODE
+   is the ASCII code for LTR.
+
+   If X is a register, this macro should print the register's name.
+   The names can be found in an array `reg_names' whose type is
+   `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
+
+   When the machine description has a specification `%PUNCT' (a `%'
+   followed by a punctuation character), this macro is called with
+   a null pointer for X and the punctuation character for CODE.
+
+   The m68k specific codes are:
+
+   '.' for dot needed in Motorola-style opcode names.
+   '-' for an operand pushing on the stack:
+       sp@-, -(sp) or -(%sp) depending on the style of syntax.
+   '+' for an operand pushing on the stack:
+       sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
+   '@' for a reference to the top word on the stack:
+       sp@, (sp) or (%sp) depending on the style of syntax.
+   '#' for an immediate operand prefix (# in MIT and Motorola syntax
+       but & in SGS syntax).
+   '!' for the cc register (used in an `and to cc' insn).
+   '$' for the letter `s' in an op code, but only on the 68040.
+   '&' for the letter `d' in an op code, but only on the 68040.
+   '/' for register prefix needed by longlong.h.
+   '?' for m68k_library_id_string
+
+   'b' for byte insn (no effect, on the Sun; this is for the ISI).
+   'd' to force memory addressing to be absolute, not relative.
+   'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
+   'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
+       or print pair of registers as rx:ry.
+   'p' print an address with @PLTPC attached, but only if the operand
+       is not locally-bound.  */
+
+void
+print_operand (FILE *file, rtx op, int letter)
+{
+  if (letter == '.')
+    {
+      if (MOTOROLA)
+	fprintf (file, ".");
+    }
+  else if (letter == '#')
+    asm_fprintf (file, "%I");
+  else if (letter == '-')
+    asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
+  else if (letter == '+')
+    asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
+  else if (letter == '@')
+    asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
+  else if (letter == '!')
+    asm_fprintf (file, "%Rfpcr");
+  else if (letter == '$')
+    {
+      if (TARGET_68040)
+	fprintf (file, "s");
+    }
+  else if (letter == '&')
+    {
+      if (TARGET_68040)
+	fprintf (file, "d");
+    }
+  else if (letter == '/')
+    asm_fprintf (file, "%R");
+  else if (letter == '?')
+    asm_fprintf (file, m68k_library_id_string);
+  else if (letter == 'p')
+    {
+      output_addr_const (file, op);
+      if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
+	fprintf (file, "@PLTPC");
+    }
+  else if (GET_CODE (op) == REG)
+    {
+      if (letter == 'R')
+	/* Print out the second register name of a register pair.
+	   I.e., R (6) => 7.  */
+	fputs (M68K_REGNAME(REGNO (op) + 1), file);
+      else
+	fputs (M68K_REGNAME(REGNO (op)), file);
+    }
+  else if (GET_CODE (op) == MEM)
+    {
+      output_address (XEXP (op, 0));
+      if (letter == 'd' && ! TARGET_68020
+	  && CONSTANT_ADDRESS_P (XEXP (op, 0))
+	  && !(GET_CODE (XEXP (op, 0)) == CONST_INT
+	       && INTVAL (XEXP (op, 0)) < 0x8000
+	       && INTVAL (XEXP (op, 0)) >= -0x8000))
+	fprintf (file, MOTOROLA ? ".l" : ":l");
+    }
+  else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
+    {
+      REAL_VALUE_TYPE r;
+      long l;
+      REAL_VALUE_FROM_CONST_DOUBLE (r, op);
+      REAL_VALUE_TO_TARGET_SINGLE (r, l);
+      asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
+    }
+  else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
+    {
+      REAL_VALUE_TYPE r;
+      long l[3];
+      REAL_VALUE_FROM_CONST_DOUBLE (r, op);
+      REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
+      asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
+		   l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
+    }
+  else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
+    {
+      REAL_VALUE_TYPE r;
+      long l[2];
+      REAL_VALUE_FROM_CONST_DOUBLE (r, op);
+      REAL_VALUE_TO_TARGET_DOUBLE (r, l);
+      asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
+    }
+  else
+    {
+      /* Use `print_operand_address' instead of `output_addr_const'
+	 to ensure that we print relevant PIC stuff.  */
+      asm_fprintf (file, "%I");
+      if (TARGET_PCREL
+	  && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
+	print_operand_address (file, op);
+      else
+	output_addr_const (file, op);
+    }
+}
+
+/* m68k implementation of OUTPUT_ADDR_CONST_EXTRA.  */
+
+bool
+m68k_output_addr_const_extra (FILE *file, rtx x)
+{
+  if (GET_CODE (x) != UNSPEC || XINT (x, 1) != UNSPEC_GOTOFF)
+    return false;
+
+  output_addr_const (file, XVECEXP (x, 0, 0));
+  /* ??? What is the non-MOTOROLA syntax?  */
+  fputs ("@GOT", file);
+  return true;
+}
+
+
+/* A C compound statement to output to stdio stream STREAM the
+   assembler syntax for an instruction operand that is a memory
+   reference whose address is ADDR.  ADDR is an RTL expression.
+
+   Note that this contains a kludge that knows that the only reason
+   we have an address (plus (label_ref...) (reg...)) when not generating
+   PIC code is in the insn before a tablejump, and we know that m68k.md
+   generates a label LInnn: on such an insn.
+
+   It is possible for PIC to generate a (plus (label_ref...) (reg...))
+   and we handle that just like we would a (plus (symbol_ref...) (reg...)).
+
+   This routine is responsible for distinguishing between -fpic and -fPIC 
+   style relocations in an address.  When generating -fpic code the
+   offset is output in word mode (e.g. movel a5@(_foo:w), a0).  When generating
+   -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
+
+void
+print_operand_address (FILE *file, rtx addr)
+{
+  struct m68k_address address;
+
+  if (!m68k_decompose_address (QImode, addr, true, &address))
+    gcc_unreachable ();
+
+  if (address.code == PRE_DEC)
+    fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
+	     M68K_REGNAME (REGNO (address.base)));
+  else if (address.code == POST_INC)
+    fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
+	     M68K_REGNAME (REGNO (address.base)));
+  else if (!address.base && !address.index)
+    {
+      /* A constant address.  */
+      gcc_assert (address.offset == addr);
+      if (GET_CODE (addr) == CONST_INT)
+	{
+	  /* (xxx).w or (xxx).l.  */
+	  if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
+	    fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
+	  else
+	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
+	}
+      else if (TARGET_PCREL)
+	{
+	  /* (d16,PC) or (bd,PC,Xn) (with suppressed index register).  */
+	  fputc ('(', file);
+	  output_addr_const (file, addr);
+	  asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
+	}
+      else
+	{
+	  /* (xxx).l.  We need a special case for SYMBOL_REF if the symbol
+	     name ends in `.<letter>', as the last 2 characters can be
+	     mistaken as a size suffix.  Put the name in parentheses.  */
+	  if (GET_CODE (addr) == SYMBOL_REF
+	      && strlen (XSTR (addr, 0)) > 2
+	      && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
+	    {
+	      putc ('(', file);
+	      output_addr_const (file, addr);
+	      putc (')', file);
+	    }
+	  else
+	    output_addr_const (file, addr);
+	}
+    }
+  else
+    {
+      int labelno;
+
+      /* If ADDR is a (d8,pc,Xn) address, this is the number of the
+	 label being accessed, otherwise it is -1.  */
+      labelno = (address.offset
+		 && !address.base
+		 && GET_CODE (address.offset) == LABEL_REF
+		 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
+		 : -1);
+      if (MOTOROLA)
+	{
+	  /* Print the "offset(base" component.  */
+	  if (labelno >= 0)
+	    asm_fprintf (file, "%LL%d(%Rpc,", labelno);
+	  else
+	    {
+	      if (address.offset)
+		{
+		  output_addr_const (file, address.offset);
+		  if (flag_pic && address.base == pic_offset_table_rtx)
+		    {
+		      fprintf (file, "@GOT");
+		      if (flag_pic == 1 && TARGET_68020)
+			fprintf (file, ".w");
+		    }
+		}
+	      putc ('(', file);
+	      if (address.base)
+		fputs (M68K_REGNAME (REGNO (address.base)), file);
+	    }
+	  /* Print the ",index" component, if any.  */
+	  if (address.index)
+	    {
+	      if (address.base)
+		putc (',', file);
+	      fprintf (file, "%s.%c",
+		       M68K_REGNAME (REGNO (address.index)),
+		       GET_MODE (address.index) == HImode ? 'w' : 'l');
+	      if (address.scale != 1)
+		fprintf (file, "*%d", address.scale);
+	    }
+	  putc (')', file);
+	}
+      else /* !MOTOROLA */
+	{
+	  if (!address.offset && !address.index)
+	    fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
+	  else
+	    {
+	      /* Print the "base@(offset" component.  */
+	      if (labelno >= 0)
+		asm_fprintf (file, "%Rpc@(%LL%d", labelno);
+	      else
+		{
+		  if (address.base)
+		    fputs (M68K_REGNAME (REGNO (address.base)), file);
+		  fprintf (file, "@(");
+		  if (address.offset)
+		    {
+		      output_addr_const (file, address.offset);
+		      if (address.base == pic_offset_table_rtx && TARGET_68020)
+			switch (flag_pic)
+			  {
+			  case 1:
+			    fprintf (file, ":w"); break;
+			  case 2:
+			    fprintf (file, ":l"); break;
+			  default:
+			    break;
+			  }
+		    }
+		}
+	      /* Print the ",index" component, if any.  */
+	      if (address.index)
+		{
+		  fprintf (file, ",%s:%c",
+			   M68K_REGNAME (REGNO (address.index)),
+			   GET_MODE (address.index) == HImode ? 'w' : 'l');
+		  if (address.scale != 1)
+		    fprintf (file, ":%d", address.scale);
+		}
+	      putc (')', file);
+	    }
+	}
+    }
+}
+
+/* Check for cases where a clr insns can be omitted from code using
+   strict_low_part sets.  For example, the second clrl here is not needed:
+   clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
+
+   MODE is the mode of this STRICT_LOW_PART set.  FIRST_INSN is the clear
+   insn we are checking for redundancy.  TARGET is the register set by the
+   clear insn.  */
+
+bool
+strict_low_part_peephole_ok (enum machine_mode mode, rtx first_insn,
+                             rtx target)
+{
+  rtx p = first_insn;
+
+  while ((p = PREV_INSN (p)))
+    {
+      if (NOTE_INSN_BASIC_BLOCK_P (p))
+	return false;
+
+      if (NOTE_P (p))
+	continue;
+
+      /* If it isn't an insn, then give up.  */
+      if (!INSN_P (p))
+	return false;
+
+      if (reg_set_p (target, p))
+	{
+	  rtx set = single_set (p);
+	  rtx dest;
+
+	  /* If it isn't an easy to recognize insn, then give up.  */
+	  if (! set)
+	    return false;
+
+	  dest = SET_DEST (set);
+
+	  /* If this sets the entire target register to zero, then our
+	     first_insn is redundant.  */
+	  if (rtx_equal_p (dest, target)
+	      && SET_SRC (set) == const0_rtx)
+	    return true;
+	  else if (GET_CODE (dest) == STRICT_LOW_PART
+		   && GET_CODE (XEXP (dest, 0)) == REG
+		   && REGNO (XEXP (dest, 0)) == REGNO (target)
+		   && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
+		       <= GET_MODE_SIZE (mode)))
+	    /* This is a strict low part set which modifies less than
+	       we are using, so it is safe.  */
+	    ;
+	  else
+	    return false;
+	}
+    }
+
+  return false;
+}
+
+/* Operand predicates for implementing asymmetric pc-relative addressing
+   on m68k.  The m68k supports pc-relative addressing (mode 7, register 2)
+   when used as a source operand, but not as a destination operand.
+
+   We model this by restricting the meaning of the basic predicates
+   (general_operand, memory_operand, etc) to forbid the use of this
+   addressing mode, and then define the following predicates that permit
+   this addressing mode.  These predicates can then be used for the
+   source operands of the appropriate instructions.
+
+   n.b.  While it is theoretically possible to change all machine patterns
+   to use this addressing more where permitted by the architecture,
+   it has only been implemented for "common" cases: SImode, HImode, and
+   QImode operands, and only for the principle operations that would
+   require this addressing mode: data movement and simple integer operations.
+
+   In parallel with these new predicates, two new constraint letters
+   were defined: 'S' and 'T'.  'S' is the -mpcrel analog of 'm'.
+   'T' replaces 's' in the non-pcrel case.  It is a no-op in the pcrel case.
+   In the pcrel case 's' is only valid in combination with 'a' registers.
+   See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
+   of how these constraints are used.
+
+   The use of these predicates is strictly optional, though patterns that
+   don't will cause an extra reload register to be allocated where one
+   was not necessary:
+
+	lea (abc:w,%pc),%a0	; need to reload address
+	moveq &1,%d1		; since write to pc-relative space
+	movel %d1,%a0@		; is not allowed
+	...
+	lea (abc:w,%pc),%a1	; no need to reload address here
+	movel %a1@,%d0		; since "movel (abc:w,%pc),%d0" is ok
+
+   For more info, consult tiemann@cygnus.com.
+
+
+   All of the ugliness with predicates and constraints is due to the
+   simple fact that the m68k does not allow a pc-relative addressing
+   mode as a destination.  gcc does not distinguish between source and
+   destination addresses.  Hence, if we claim that pc-relative address
+   modes are valid, e.g. GO_IF_LEGITIMATE_ADDRESS accepts them, then we
+   end up with invalid code.  To get around this problem, we left
+   pc-relative modes as invalid addresses, and then added special
+   predicates and constraints to accept them.
+
+   A cleaner way to handle this is to modify gcc to distinguish
+   between source and destination addresses.  We can then say that
+   pc-relative is a valid source address but not a valid destination
+   address, and hopefully avoid a lot of the predicate and constraint
+   hackery.  Unfortunately, this would be a pretty big change.  It would
+   be a useful change for a number of ports, but there aren't any current
+   plans to undertake this.
+
+   ***************************************************************************/
+
+
+const char *
+output_andsi3 (rtx *operands)
+{
+  int logval;
+  if (GET_CODE (operands[2]) == CONST_INT
+      && (INTVAL (operands[2]) | 0xffff) == -1
+      && (DATA_REG_P (operands[0])
+	  || offsettable_memref_p (operands[0]))
+      && !TARGET_COLDFIRE)
+    {
+      if (GET_CODE (operands[0]) != REG)
+        operands[0] = adjust_address (operands[0], HImode, 2);
+      operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
+      /* Do not delete a following tstl %0 insn; that would be incorrect.  */
+      CC_STATUS_INIT;
+      if (operands[2] == const0_rtx)
+        return "clr%.w %0";
+      return "and%.w %2,%0";
+    }
+  if (GET_CODE (operands[2]) == CONST_INT
+      && (logval = exact_log2 (~ INTVAL (operands[2]))) >= 0
+      && (DATA_REG_P (operands[0])
+          || offsettable_memref_p (operands[0])))
+    {
+      if (DATA_REG_P (operands[0]))
+	operands[1] = GEN_INT (logval);
+      else
+        {
+	  operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
+	  operands[1] = GEN_INT (logval % 8);
+        }
+      /* This does not set condition codes in a standard way.  */
+      CC_STATUS_INIT;
+      return "bclr %1,%0";
+    }
+  return "and%.l %2,%0";
+}
+
+const char *
+output_iorsi3 (rtx *operands)
+{
+  register int logval;
+  if (GET_CODE (operands[2]) == CONST_INT
+      && INTVAL (operands[2]) >> 16 == 0
+      && (DATA_REG_P (operands[0])
+	  || offsettable_memref_p (operands[0]))
+      && !TARGET_COLDFIRE)
+    {
+      if (GET_CODE (operands[0]) != REG)
+        operands[0] = adjust_address (operands[0], HImode, 2);
+      /* Do not delete a following tstl %0 insn; that would be incorrect.  */
+      CC_STATUS_INIT;
+      if (INTVAL (operands[2]) == 0xffff)
+	return "mov%.w %2,%0";
+      return "or%.w %2,%0";
+    }
+  if (GET_CODE (operands[2]) == CONST_INT
+      && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
+      && (DATA_REG_P (operands[0])
+	  || offsettable_memref_p (operands[0])))
+    {
+      if (DATA_REG_P (operands[0]))
+	operands[1] = GEN_INT (logval);
+      else
+        {
+	  operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
+	  operands[1] = GEN_INT (logval % 8);
+	}
+      CC_STATUS_INIT;
+      return "bset %1,%0";
+    }
+  return "or%.l %2,%0";
+}
+
+const char *
+output_xorsi3 (rtx *operands)
+{
+  register int logval;
+  if (GET_CODE (operands[2]) == CONST_INT
+      && INTVAL (operands[2]) >> 16 == 0
+      && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
+      && !TARGET_COLDFIRE)
+    {
+      if (! DATA_REG_P (operands[0]))
+	operands[0] = adjust_address (operands[0], HImode, 2);
+      /* Do not delete a following tstl %0 insn; that would be incorrect.  */
+      CC_STATUS_INIT;
+      if (INTVAL (operands[2]) == 0xffff)
+	return "not%.w %0";
+      return "eor%.w %2,%0";
+    }
+  if (GET_CODE (operands[2]) == CONST_INT
+      && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
+      && (DATA_REG_P (operands[0])
+	  || offsettable_memref_p (operands[0])))
+    {
+      if (DATA_REG_P (operands[0]))
+	operands[1] = GEN_INT (logval);
+      else
+        {
+	  operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
+	  operands[1] = GEN_INT (logval % 8);
+	}
+      CC_STATUS_INIT;
+      return "bchg %1,%0";
+    }
+  return "eor%.l %2,%0";
+}
+
+/* Return the instruction that should be used for a call to address X,
+   which is known to be in operand 0.  */
+
+const char *
+output_call (rtx x)
+{
+  if (symbolic_operand (x, VOIDmode))
+    return m68k_symbolic_call;
+  else
+    return "jsr %a0";
+}
+
+/* Likewise sibling calls.  */
+
+const char *
+output_sibcall (rtx x)
+{
+  if (symbolic_operand (x, VOIDmode))
+    return m68k_symbolic_jump;
+  else
+    return "jmp %a0";
+}
+
+#ifdef M68K_TARGET_COFF
+
+/* Output assembly to switch to section NAME with attribute FLAGS.  */
+
+static void
+m68k_coff_asm_named_section (const char *name, unsigned int flags, 
+			     tree decl ATTRIBUTE_UNUSED)
+{
+  char flagchar;
+
+  if (flags & SECTION_WRITE)
+    flagchar = 'd';
+  else
+    flagchar = 'x';
+
+  fprintf (asm_out_file, "\t.section\t%s,\"%c\"\n", name, flagchar);
+}
+
+#endif /* M68K_TARGET_COFF */
+
+static void
+m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
+		      HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
+		      tree function)
+{
+  rtx this_slot, offset, addr, mem, insn;
+
+  /* Pretend to be a post-reload pass while generating rtl.  */
+  reload_completed = 1;
+
+  /* The "this" pointer is stored at 4(%sp).  */
+  this_slot = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, 4));
+
+  /* Add DELTA to THIS.  */
+  if (delta != 0)
+    {
+      /* Make the offset a legitimate operand for memory addition.  */
+      offset = GEN_INT (delta);
+      if ((delta < -8 || delta > 8)
+	  && (TARGET_COLDFIRE || USE_MOVQ (delta)))
+	{
+	  emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
+	  offset = gen_rtx_REG (Pmode, D0_REG);
+	}
+      emit_insn (gen_add3_insn (copy_rtx (this_slot),
+				copy_rtx (this_slot), offset));
+    }
+
+  /* If needed, add *(*THIS + VCALL_OFFSET) to THIS.  */
+  if (vcall_offset != 0)
+    {
+      /* Set the static chain register to *THIS.  */
+      emit_move_insn (static_chain_rtx, this_slot);
+      emit_move_insn (static_chain_rtx, gen_rtx_MEM (Pmode, static_chain_rtx));
+
+      /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET.  */
+      addr = plus_constant (static_chain_rtx, vcall_offset);
+      if (!m68k_legitimate_address_p (Pmode, addr, true))
+	{
+	  emit_insn (gen_rtx_SET (VOIDmode, static_chain_rtx, addr));
+	  addr = static_chain_rtx;
+	}
+
+      /* Load the offset into %d0 and add it to THIS.  */
+      emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
+		      gen_rtx_MEM (Pmode, addr));
+      emit_insn (gen_add3_insn (copy_rtx (this_slot),
+				copy_rtx (this_slot),
+				gen_rtx_REG (Pmode, D0_REG)));
+    }
+
+  /* Jump to the target function.  Use a sibcall if direct jumps are
+     allowed, otherwise load the address into a register first.  */
+  mem = DECL_RTL (function);
+  if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
+    {
+      gcc_assert (flag_pic);
+
+      if (!TARGET_SEP_DATA)
+	{
+	  /* Use the static chain register as a temporary (call-clobbered)
+	     GOT pointer for this function.  We can use the static chain
+	     register because it isn't live on entry to the thunk.  */
+	  SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
+	  emit_insn (gen_load_got (pic_offset_table_rtx));
+	}
+      legitimize_pic_address (XEXP (mem, 0), Pmode, static_chain_rtx);
+      mem = replace_equiv_address (mem, static_chain_rtx);
+    }
+  insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
+  SIBLING_CALL_P (insn) = 1;
+
+  /* Run just enough of rest_of_compilation.  */
+  insn = get_insns ();
+  split_all_insns_noflow ();
+  final_start_function (insn, file, 1);
+  final (insn, file, 1);
+  final_end_function ();
+
+  /* Clean up the vars set above.  */
+  reload_completed = 0;
+
+  /* Restore the original PIC register.  */
+  if (flag_pic)
+    SET_REGNO (pic_offset_table_rtx, PIC_REG);
+  free_after_compilation (cfun);
+}
+
+/* Worker function for TARGET_STRUCT_VALUE_RTX.  */
+
+static rtx
+m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
+		       int incoming ATTRIBUTE_UNUSED)
+{
+  return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
+}
+
+/* Return nonzero if register old_reg can be renamed to register new_reg.  */
+int
+m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
+			   unsigned int new_reg)
+{
+
+  /* Interrupt functions can only use registers that have already been
+     saved by the prologue, even if they would normally be
+     call-clobbered.  */
+
+  if ((m68k_get_function_kind (current_function_decl)
+       == m68k_fk_interrupt_handler)
+      && !df_regs_ever_live_p (new_reg))
+    return 0;
+
+  return 1;
+}
+
+/* Value is true if hard register REGNO can hold a value of machine-mode
+   MODE.  On the 68000, we let the cpu registers can hold any mode, but
+   restrict the 68881 registers to floating-point modes.  */
+
+bool
+m68k_regno_mode_ok (int regno, enum machine_mode mode)
+{
+  if (DATA_REGNO_P (regno))
+    {
+      /* Data Registers, can hold aggregate if fits in.  */
+      if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
+	return true;
+    }
+  else if (ADDRESS_REGNO_P (regno))
+    {
+      if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
+	return true;
+    }
+  else if (FP_REGNO_P (regno))
+    {
+      /* FPU registers, hold float or complex float of long double or
+	 smaller.  */
+      if ((GET_MODE_CLASS (mode) == MODE_FLOAT
+	   || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
+	  && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
+	return true;
+    }
+  return false;
+}
+
+/* Implement SECONDARY_RELOAD_CLASS.  */
+
+enum reg_class
+m68k_secondary_reload_class (enum reg_class rclass,
+			     enum machine_mode mode, rtx x)
+{
+  int regno;
+
+  regno = true_regnum (x);
+
+  /* If one operand of a movqi is an address register, the other
+     operand must be a general register or constant.  Other types
+     of operand must be reloaded through a data register.  */
+  if (GET_MODE_SIZE (mode) == 1
+      && reg_classes_intersect_p (rclass, ADDR_REGS)
+      && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
+    return DATA_REGS;
+
+  /* PC-relative addresses must be loaded into an address register first.  */
+  if (TARGET_PCREL
+      && !reg_class_subset_p (rclass, ADDR_REGS)
+      && symbolic_operand (x, VOIDmode))
+    return ADDR_REGS;
+
+  return NO_REGS;
+}
+
+/* Implement PREFERRED_RELOAD_CLASS.  */
+
+enum reg_class
+m68k_preferred_reload_class (rtx x, enum reg_class rclass)
+{
+  enum reg_class secondary_class;
+
+  /* If RCLASS might need a secondary reload, try restricting it to
+     a class that doesn't.  */
+  secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
+  if (secondary_class != NO_REGS
+      && reg_class_subset_p (secondary_class, rclass))
+    return secondary_class;
+
+  /* Prefer to use moveq for in-range constants.  */
+  if (GET_CODE (x) == CONST_INT
+      && reg_class_subset_p (DATA_REGS, rclass)
+      && IN_RANGE (INTVAL (x), -0x80, 0x7f))
+    return DATA_REGS;
+
+  /* ??? Do we really need this now?  */
+  if (GET_CODE (x) == CONST_DOUBLE
+      && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
+    {
+      if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
+	return FP_REGS;
+
+      return NO_REGS;
+    }
+
+  return rclass;
+}
+
+/* Return floating point values in a 68881 register.  This makes 68881 code
+   a little bit faster.  It also makes -msoft-float code incompatible with
+   hard-float code, so people have to be careful not to mix the two.
+   For ColdFire it was decided the ABI incompatibility is undesirable.
+   If there is need for a hard-float ABI it is probably worth doing it
+   properly and also passing function arguments in FP registers.  */
+rtx
+m68k_libcall_value (enum machine_mode mode)
+{
+  switch (mode) {
+  case SFmode:
+  case DFmode:
+  case XFmode:
+    if (TARGET_68881)
+      return gen_rtx_REG (mode, FP0_REG);
+    break;
+  default:
+    break;
+  }
+  return gen_rtx_REG (mode, D0_REG);
+}
+
+rtx
+m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
+{
+  enum machine_mode mode;
+
+  mode = TYPE_MODE (valtype);
+  switch (mode) {
+  case SFmode:
+  case DFmode:
+  case XFmode:
+    if (TARGET_68881)
+      return gen_rtx_REG (mode, FP0_REG);
+    break;
+  default:
+    break;
+  }
+
+  /* If the function returns a pointer, push that into %a0.  */
+  if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
+    /* For compatibility with the large body of existing code which
+       does not always properly declare external functions returning
+       pointer types, the m68k/SVR4 convention is to copy the value
+       returned for pointer functions from a0 to d0 in the function
+       epilogue, so that callers that have neglected to properly
+       declare the callee can still find the correct return value in
+       d0.  */
+    return gen_rtx_PARALLEL
+      (mode,
+       gen_rtvec (2,
+		  gen_rtx_EXPR_LIST (VOIDmode,
+				     gen_rtx_REG (mode, A0_REG),
+				     const0_rtx),
+		  gen_rtx_EXPR_LIST (VOIDmode,
+				     gen_rtx_REG (mode, D0_REG),
+				     const0_rtx)));
+  else if (POINTER_TYPE_P (valtype))
+    return gen_rtx_REG (mode, A0_REG);
+  else
+    return gen_rtx_REG (mode, D0_REG);
+}
+
+/* Worker function for TARGET_RETURN_IN_MEMORY.  */
+#if M68K_HONOR_TARGET_STRICT_ALIGNMENT
+static bool
+m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
+{
+  enum machine_mode mode = TYPE_MODE (type);
+
+  if (mode == BLKmode)
+    return true;
+
+  /* If TYPE's known alignment is less than the alignment of MODE that
+     would contain the structure, then return in memory.  We need to
+     do so to maintain the compatibility between code compiled with
+     -mstrict-align and that compiled with -mno-strict-align.  */
+  if (AGGREGATE_TYPE_P (type)
+      && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
+    return true;
+
+  return false;
+}
+#endif
+
+/* CPU to schedule the program for.  */
+enum attr_cpu m68k_sched_cpu;
+
+/* MAC to schedule the program for.  */
+enum attr_mac m68k_sched_mac;
+
+/* Operand type.  */
+enum attr_op_type
+  {
+    /* No operand.  */
+    OP_TYPE_NONE,
+
+    /* Integer register.  */
+    OP_TYPE_RN,
+
+    /* FP register.  */
+    OP_TYPE_FPN,
+
+    /* Implicit mem reference (e.g. stack).  */
+    OP_TYPE_MEM1,
+
+    /* Memory without offset or indexing.  EA modes 2, 3 and 4.  */
+    OP_TYPE_MEM234,
+
+    /* Memory with offset but without indexing.  EA mode 5.  */
+    OP_TYPE_MEM5,
+
+    /* Memory with indexing.  EA mode 6.  */
+    OP_TYPE_MEM6,
+
+    /* Memory referenced by absolute address.  EA mode 7.  */
+    OP_TYPE_MEM7,
+
+    /* Immediate operand that doesn't require extension word.  */
+    OP_TYPE_IMM_Q,
+
+    /* Immediate 16 bit operand.  */
+    OP_TYPE_IMM_W,
+
+    /* Immediate 32 bit operand.  */
+    OP_TYPE_IMM_L
+  };
+
+/* Return type of memory ADDR_RTX refers to.  */
+static enum attr_op_type
+sched_address_type (enum machine_mode mode, rtx addr_rtx)
+{
+  struct m68k_address address;
+
+  if (symbolic_operand (addr_rtx, VOIDmode))
+    return OP_TYPE_MEM7;
+
+  if (!m68k_decompose_address (mode, addr_rtx,
+			       reload_completed, &address))
+    {
+      gcc_assert (!reload_completed);
+      /* Reload will likely fix the address to be in the register.  */
+      return OP_TYPE_MEM234;
+    }
+
+  if (address.scale != 0)
+    return OP_TYPE_MEM6;
+
+  if (address.base != NULL_RTX)
+    {
+      if (address.offset == NULL_RTX)
+	return OP_TYPE_MEM234;
+
+      return OP_TYPE_MEM5;
+    }
+
+  gcc_assert (address.offset != NULL_RTX);
+
+  return OP_TYPE_MEM7;
+}
+
+/* Return X or Y (depending on OPX_P) operand of INSN.  */
+static rtx
+sched_get_operand (rtx insn, bool opx_p)
+{
+  int i;
+
+  if (recog_memoized (insn) < 0)
+    gcc_unreachable ();
+
+  extract_constrain_insn_cached (insn);
+
+  if (opx_p)
+    i = get_attr_opx (insn);
+  else
+    i = get_attr_opy (insn);
+
+  if (i >= recog_data.n_operands)
+    return NULL;
+
+  return recog_data.operand[i];
+}
+
+/* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
+   If ADDRESS_P is true, return type of memory location operand refers to.  */
+static enum attr_op_type
+sched_attr_op_type (rtx insn, bool opx_p, bool address_p)
+{
+  rtx op;
+
+  op = sched_get_operand (insn, opx_p);
+
+  if (op == NULL)
+    {
+      gcc_assert (!reload_completed);
+      return OP_TYPE_RN;
+    }
+
+  if (address_p)
+    return sched_address_type (QImode, op);
+
+  if (memory_operand (op, VOIDmode))
+    return sched_address_type (GET_MODE (op), XEXP (op, 0));
+
+  if (register_operand (op, VOIDmode))
+    {
+      if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
+	  || (reload_completed && FP_REG_P (op)))
+	return OP_TYPE_FPN;
+
+      return OP_TYPE_RN;
+    }
+
+  if (GET_CODE (op) == CONST_INT)
+    {
+      int ival;
+
+      ival = INTVAL (op);
+
+      /* Check for quick constants.  */
+      switch (get_attr_type (insn))
+	{
+	case TYPE_ALUQ_L:
+	  if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
+	    return OP_TYPE_IMM_Q;
+
+	  gcc_assert (!reload_completed);
+	  break;
+
+	case TYPE_MOVEQ_L:
+	  if (USE_MOVQ (ival))
+	    return OP_TYPE_IMM_Q;
+
+	  gcc_assert (!reload_completed);
+	  break;
+
+	case TYPE_MOV3Q_L:
+	  if (valid_mov3q_const (ival))
+	    return OP_TYPE_IMM_Q;
+
+	  gcc_assert (!reload_completed);
+	  break;
+
+	default:
+	  break;
+	}
+
+      if (IN_RANGE (ival, -0x8000, 0x7fff))
+	return OP_TYPE_IMM_W;
+
+      return OP_TYPE_IMM_L;
+    }
+
+  if (GET_CODE (op) == CONST_DOUBLE)
+    {
+      switch (GET_MODE (op))
+	{
+	case SFmode:
+	  return OP_TYPE_IMM_W;
+
+	case VOIDmode:
+	case DFmode:
+	  return OP_TYPE_IMM_L;
+
+	default:
+	  gcc_unreachable ();
+	}
+    }
+
+  if (GET_CODE (op) == CONST
+      || symbolic_operand (op, VOIDmode)
+      || LABEL_P (op))
+    {
+      switch (GET_MODE (op))
+	{
+	case QImode:
+	  return OP_TYPE_IMM_Q;
+
+	case HImode:
+	  return OP_TYPE_IMM_W;
+
+	case SImode:
+	  return OP_TYPE_IMM_L;
+
+	default:
+	  if (GET_CODE (op) == SYMBOL_REF)
+	    /* ??? Just a guess.  Probably we can guess better using length
+	       attribute of the instructions.  */
+	    return OP_TYPE_IMM_W;
+
+	  return OP_TYPE_IMM_L;
+	}
+    }
+
+  gcc_assert (!reload_completed);
+
+  if (FLOAT_MODE_P (GET_MODE (op)))
+    return OP_TYPE_FPN;
+
+  return OP_TYPE_RN;
+}
+
+/* Implement opx_type attribute.
+   Return type of INSN's operand X.
+   If ADDRESS_P is true, return type of memory location operand refers to.  */
+enum attr_opx_type
+m68k_sched_attr_opx_type (rtx insn, int address_p)
+{
+  switch (sched_attr_op_type (insn, true, address_p != 0))
+    {
+    case OP_TYPE_RN:
+      return OPX_TYPE_RN;
+
+    case OP_TYPE_FPN:
+      return OPX_TYPE_FPN;
+
+    case OP_TYPE_MEM1:
+      return OPX_TYPE_MEM1;
+
+    case OP_TYPE_MEM234:
+      return OPX_TYPE_MEM234;
+
+    case OP_TYPE_MEM5:
+      return OPX_TYPE_MEM5;
+
+    case OP_TYPE_MEM6:
+      return OPX_TYPE_MEM6;
+
+    case OP_TYPE_MEM7:
+      return OPX_TYPE_MEM7;
+
+    case OP_TYPE_IMM_Q:
+      return OPX_TYPE_IMM_Q;
+
+    case OP_TYPE_IMM_W:
+      return OPX_TYPE_IMM_W;
+
+    case OP_TYPE_IMM_L:
+      return OPX_TYPE_IMM_L;
+
+    default:
+      gcc_unreachable ();
+      return 0;
+    }
+}
+
+/* Implement opy_type attribute.
+   Return type of INSN's operand Y.
+   If ADDRESS_P is true, return type of memory location operand refers to.  */
+enum attr_opy_type
+m68k_sched_attr_opy_type (rtx insn, int address_p)
+{
+  switch (sched_attr_op_type (insn, false, address_p != 0))
+    {
+    case OP_TYPE_RN:
+      return OPY_TYPE_RN;
+
+    case OP_TYPE_FPN:
+      return OPY_TYPE_FPN;
+
+    case OP_TYPE_MEM1:
+      return OPY_TYPE_MEM1;
+
+    case OP_TYPE_MEM234:
+      return OPY_TYPE_MEM234;
+
+    case OP_TYPE_MEM5:
+      return OPY_TYPE_MEM5;
+
+    case OP_TYPE_MEM6:
+      return OPY_TYPE_MEM6;
+
+    case OP_TYPE_MEM7:
+      return OPY_TYPE_MEM7;
+
+    case OP_TYPE_IMM_Q:
+      return OPY_TYPE_IMM_Q;
+
+    case OP_TYPE_IMM_W:
+      return OPY_TYPE_IMM_W;
+
+    case OP_TYPE_IMM_L:
+      return OPY_TYPE_IMM_L;
+
+    default:
+      gcc_unreachable ();
+      return 0;
+    }
+}
+
+/* Return size of INSN as int.  */
+static int
+sched_get_attr_size_int (rtx insn)
+{
+  int size;
+
+  switch (get_attr_type (insn))
+    {
+    case TYPE_IGNORE:
+      /* There should be no references to m68k_sched_attr_size for 'ignore'
+	 instructions.  */
+      gcc_unreachable ();
+      return 0;
+
+    case TYPE_MUL_L:
+      size = 2;
+      break;
+
+    default:
+      size = 1;
+      break;
+    }
+
+  switch (get_attr_opx_type (insn))
+    {
+    case OPX_TYPE_NONE:
+    case OPX_TYPE_RN:
+    case OPX_TYPE_FPN:
+    case OPX_TYPE_MEM1:
+    case OPX_TYPE_MEM234:
+    case OPY_TYPE_IMM_Q:
+      break;
+
+    case OPX_TYPE_MEM5:
+    case OPX_TYPE_MEM6:
+      /* Here we assume that most absolute references are short.  */
+    case OPX_TYPE_MEM7:
+    case OPY_TYPE_IMM_W:
+      ++size;
+      break;
+
+    case OPY_TYPE_IMM_L:
+      size += 2;
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  switch (get_attr_opy_type (insn))
+    {
+    case OPY_TYPE_NONE:
+    case OPY_TYPE_RN:
+    case OPY_TYPE_FPN:
+    case OPY_TYPE_MEM1:
+    case OPY_TYPE_MEM234:
+    case OPY_TYPE_IMM_Q:
+      break;
+
+    case OPY_TYPE_MEM5:
+    case OPY_TYPE_MEM6:
+      /* Here we assume that most absolute references are short.  */
+    case OPY_TYPE_MEM7:
+    case OPY_TYPE_IMM_W:
+      ++size;
+      break;
+
+    case OPY_TYPE_IMM_L:
+      size += 2;
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  if (size > 3)
+    {
+      gcc_assert (!reload_completed);
+
+      size = 3;
+    }
+
+  return size;
+}
+
+/* Return size of INSN as attribute enum value.  */
+enum attr_size
+m68k_sched_attr_size (rtx insn)
+{
+  switch (sched_get_attr_size_int (insn))
+    {
+    case 1:
+      return SIZE_1;
+
+    case 2:
+      return SIZE_2;
+
+    case 3:
+      return SIZE_3;
+
+    default:
+      gcc_unreachable ();
+      return 0;
+    }
+}
+
+/* Return operand X or Y (depending on OPX_P) of INSN,
+   if it is a MEM, or NULL overwise.  */
+static enum attr_op_type
+sched_get_opxy_mem_type (rtx insn, bool opx_p)
+{
+  if (opx_p)
+    {
+      switch (get_attr_opx_type (insn))
+	{
+	case OPX_TYPE_NONE:
+	case OPX_TYPE_RN:
+	case OPX_TYPE_FPN:
+	case OPX_TYPE_IMM_Q:
+	case OPX_TYPE_IMM_W:
+	case OPX_TYPE_IMM_L:
+	  return OP_TYPE_RN;
+
+	case OPX_TYPE_MEM1:
+	case OPX_TYPE_MEM234:
+	case OPX_TYPE_MEM5:
+	case OPX_TYPE_MEM7:
+	  return OP_TYPE_MEM1;
+
+	case OPX_TYPE_MEM6:
+	  return OP_TYPE_MEM6;
+
+	default:
+	  gcc_unreachable ();
+	  return 0;
+	}
+    }
+  else
+    {
+      switch (get_attr_opy_type (insn))
+	{
+	case OPY_TYPE_NONE:
+	case OPY_TYPE_RN:
+	case OPY_TYPE_FPN:
+	case OPY_TYPE_IMM_Q:
+	case OPY_TYPE_IMM_W:
+	case OPY_TYPE_IMM_L:
+	  return OP_TYPE_RN;
+
+	case OPY_TYPE_MEM1:
+	case OPY_TYPE_MEM234:
+	case OPY_TYPE_MEM5:
+	case OPY_TYPE_MEM7:
+	  return OP_TYPE_MEM1;
+
+	case OPY_TYPE_MEM6:
+	  return OP_TYPE_MEM6;
+
+	default:
+	  gcc_unreachable ();
+	  return 0;
+	}
+    }
+}
+
+/* Implement op_mem attribute.  */
+enum attr_op_mem
+m68k_sched_attr_op_mem (rtx insn)
+{
+  enum attr_op_type opx;
+  enum attr_op_type opy;
+
+  opx = sched_get_opxy_mem_type (insn, true);
+  opy = sched_get_opxy_mem_type (insn, false);
+
+  if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
+    return OP_MEM_00;
+
+  if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
+    {
+      switch (get_attr_opx_access (insn))
+	{
+	case OPX_ACCESS_R:
+	  return OP_MEM_10;
+
+	case OPX_ACCESS_W:
+	  return OP_MEM_01;
+
+	case OPX_ACCESS_RW:
+	  return OP_MEM_11;
+
+	default:
+	  gcc_unreachable ();
+	  return 0;
+	}
+    }
+
+  if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
+    {
+      switch (get_attr_opx_access (insn))
+	{
+	case OPX_ACCESS_R:
+	  return OP_MEM_I0;
+
+	case OPX_ACCESS_W:
+	  return OP_MEM_0I;
+
+	case OPX_ACCESS_RW:
+	  return OP_MEM_I1;
+
+	default:
+	  gcc_unreachable ();
+	  return 0;
+	}
+    }
+
+  if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
+    return OP_MEM_10;
+
+  if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
+    {
+      switch (get_attr_opx_access (insn))
+	{
+	case OPX_ACCESS_W:
+	  return OP_MEM_11;
+
+	default:
+	  gcc_assert (!reload_completed);
+	  return OP_MEM_11;
+	}
+    }
+
+  if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
+    {
+      switch (get_attr_opx_access (insn))
+	{
+	case OPX_ACCESS_W:
+	  return OP_MEM_1I;
+
+	default:
+	  gcc_assert (!reload_completed);
+	  return OP_MEM_1I;
+	}
+    }
+
+  if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
+    return OP_MEM_I0;
+
+  if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
+    {
+      switch (get_attr_opx_access (insn))
+	{
+	case OPX_ACCESS_W:
+	  return OP_MEM_I1;
+
+	default:
+	  gcc_assert (!reload_completed);
+	  return OP_MEM_I1;
+	}
+    }
+
+  gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
+  gcc_assert (!reload_completed);
+  return OP_MEM_I1;
+}
+
+/* Jump instructions types.  Indexed by INSN_UID.
+   The same rtl insn can be expanded into different asm instructions
+   depending on the cc0_status.  To properly determine type of jump
+   instructions we scan instruction stream and map jumps types to this
+   array.  */
+static enum attr_type *sched_branch_type;
+
+/* Return the type of the jump insn.  */
+enum attr_type
+m68k_sched_branch_type (rtx insn)
+{
+  enum attr_type type;
+
+  type = sched_branch_type[INSN_UID (insn)];
+
+  gcc_assert (type != 0);
+
+  return type;
+}
+
+/* Data for ColdFire V4 index bypass.
+   Producer modifies register that is used as index in consumer with
+   specified scale.  */
+static struct
+{
+  /* Producer instruction.  */
+  rtx pro;
+
+  /* Consumer instruction.  */
+  rtx con;
+
+  /* Scale of indexed memory access within consumer.
+     Or zero if bypass should not be effective at the moment.  */
+  int scale;
+} sched_cfv4_bypass_data;
+
+/* An empty state that is used in m68k_sched_adjust_cost.  */
+static state_t sched_adjust_cost_state;
+
+/* Implement adjust_cost scheduler hook.
+   Return adjusted COST of dependency LINK between DEF_INSN and INSN.  */
+static int
+m68k_sched_adjust_cost (rtx insn, rtx link ATTRIBUTE_UNUSED, rtx def_insn,
+			int cost)
+{
+  int delay;
+
+  if (recog_memoized (def_insn) < 0
+      || recog_memoized (insn) < 0)
+    return cost;
+
+  if (sched_cfv4_bypass_data.scale == 1)
+    /* Handle ColdFire V4 bypass for indexed address with 1x scale.  */
+    {
+      /* haifa-sched.c: insn_cost () calls bypass_p () just before
+	 targetm.sched.adjust_cost ().  Hence, we can be relatively sure
+	 that the data in sched_cfv4_bypass_data is up to date.  */
+      gcc_assert (sched_cfv4_bypass_data.pro == def_insn
+		  && sched_cfv4_bypass_data.con == insn);
+
+      if (cost < 3)
+	cost = 3;
+
+      sched_cfv4_bypass_data.pro = NULL;
+      sched_cfv4_bypass_data.con = NULL;
+      sched_cfv4_bypass_data.scale = 0;
+    }
+  else
+    gcc_assert (sched_cfv4_bypass_data.pro == NULL
+		&& sched_cfv4_bypass_data.con == NULL
+		&& sched_cfv4_bypass_data.scale == 0);
+
+  /* Don't try to issue INSN earlier than DFA permits.
+     This is especially useful for instructions that write to memory,
+     as their true dependence (default) latency is better to be set to 0
+     to workaround alias analysis limitations.
+     This is, in fact, a machine independent tweak, so, probably,
+     it should be moved to haifa-sched.c: insn_cost ().  */
+  delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
+  if (delay > cost)
+    cost = delay;
+
+  return cost;
+}
+
+/* Return maximal number of insns that can be scheduled on a single cycle.  */
+static int
+m68k_sched_issue_rate (void)
+{
+  switch (m68k_sched_cpu)
+    {
+    case CPU_CFV1:
+    case CPU_CFV2:
+    case CPU_CFV3:
+      return 1;
+
+    case CPU_CFV4:
+      return 2;
+
+    default:
+      gcc_unreachable ();
+      return 0;
+    }
+}
+
+/* Maximal length of instruction for current CPU.
+   E.g. it is 3 for any ColdFire core.  */
+static int max_insn_size;
+
+/* Data to model instruction buffer of CPU.  */
+struct _sched_ib
+{
+  /* True if instruction buffer model is modeled for current CPU.  */
+  bool enabled_p;
+
+  /* Size of the instruction buffer in words.  */
+  int size;
+
+  /* Number of filled words in the instruction buffer.  */
+  int filled;
+
+  /* Additional information about instruction buffer for CPUs that have
+     a buffer of instruction records, rather then a plain buffer
+     of instruction words.  */
+  struct _sched_ib_records
+  {
+    /* Size of buffer in records.  */
+    int n_insns;
+
+    /* Array to hold data on adjustements made to the size of the buffer.  */
+    int *adjust;
+
+    /* Index of the above array.  */
+    int adjust_index;
+  } records;
+
+  /* An insn that reserves (marks empty) one word in the instruction buffer.  */
+  rtx insn;
+};
+
+static struct _sched_ib sched_ib;
+
+/* ID of memory unit.  */
+static int sched_mem_unit_code;
+
+/* Implementation of the targetm.sched.variable_issue () hook.
+   It is called after INSN was issued.  It returns the number of insns
+   that can possibly get scheduled on the current cycle.
+   It is used here to determine the effect of INSN on the instruction
+   buffer.  */
+static int
+m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
+			   int sched_verbose ATTRIBUTE_UNUSED,
+			   rtx insn, int can_issue_more)
+{
+  int insn_size;
+
+  if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
+    {
+      switch (m68k_sched_cpu)
+	{
+	case CPU_CFV1:
+	case CPU_CFV2:
+	  insn_size = sched_get_attr_size_int (insn);
+	  break;
+
+	case CPU_CFV3:
+	  insn_size = sched_get_attr_size_int (insn);
+	  
+	  /* ColdFire V3 and V4 cores have instruction buffers that can
+	     accumulate up to 8 instructions regardless of instructions'
+	     sizes.  So we should take care not to "prefetch" 24 one-word
+	     or 12 two-words instructions.
+	     To model this behavior we temporarily decrease size of the
+	     buffer by (max_insn_size - insn_size) for next 7 instructions.  */
+	  {
+	    int adjust;
+
+	    adjust = max_insn_size - insn_size;
+	    sched_ib.size -= adjust;
+
+	    if (sched_ib.filled > sched_ib.size)
+	      sched_ib.filled = sched_ib.size;
+
+	    sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
+	  }
+
+	  ++sched_ib.records.adjust_index;
+	  if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
+	    sched_ib.records.adjust_index = 0;
+
+	  /* Undo adjustement we did 7 instructions ago.  */
+	  sched_ib.size
+	    += sched_ib.records.adjust[sched_ib.records.adjust_index];
+
+	  break;
+
+	case CPU_CFV4:
+	  gcc_assert (!sched_ib.enabled_p);
+	  insn_size = 0;
+	  break;
+
+	default:
+	  gcc_unreachable ();
+	}
+
+      gcc_assert (insn_size <= sched_ib.filled);
+      --can_issue_more;
+    }
+  else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
+	   || asm_noperands (PATTERN (insn)) >= 0)
+    insn_size = sched_ib.filled;
+  else
+    insn_size = 0;
+
+  sched_ib.filled -= insn_size;
+
+  return can_issue_more;
+}
+
+/* Return how many instructions should scheduler lookahead to choose the
+   best one.  */
+static int
+m68k_sched_first_cycle_multipass_dfa_lookahead (void)
+{
+  return m68k_sched_issue_rate () - 1;
+}
+
+/* Implementation of targetm.sched.md_init_global () hook.
+   It is invoked once per scheduling pass and is used here
+   to initialize scheduler constants.  */
+static void
+m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
+			   int sched_verbose ATTRIBUTE_UNUSED,
+			   int n_insns ATTRIBUTE_UNUSED)
+{
+  /* Init branch types.  */
+  {
+    rtx insn;
+
+    sched_branch_type = XCNEWVEC (enum attr_type, get_max_uid () + 1);
+
+    for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
+      {
+	if (JUMP_P (insn))
+	  /* !!! FIXME: Implement real scan here.  */
+	  sched_branch_type[INSN_UID (insn)] = TYPE_BCC;
+      }
+  }
+
+#ifdef ENABLE_CHECKING
+  /* Check that all instructions have DFA reservations and
+     that all instructions can be issued from a clean state.  */
+  {
+    rtx insn;
+    state_t state;
+
+    state = alloca (state_size ());
+
+    for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
+      {
+ 	if (INSN_P (insn) && recog_memoized (insn) >= 0)
+	  {
+ 	    gcc_assert (insn_has_dfa_reservation_p (insn));
+
+ 	    state_reset (state);
+ 	    if (state_transition (state, insn) >= 0)
+ 	      gcc_unreachable ();
+ 	  }
+      }
+  }
+#endif
+
+  /* Setup target cpu.  */
+
+  /* ColdFire V4 has a set of features to keep its instruction buffer full
+     (e.g., a separate memory bus for instructions) and, hence, we do not model
+     buffer for this CPU.  */
+  sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
+
+  switch (m68k_sched_cpu)
+    {
+    case CPU_CFV4:
+      sched_ib.filled = 0;
+
+      /* FALLTHRU */
+
+    case CPU_CFV1:
+    case CPU_CFV2:
+      max_insn_size = 3;
+      sched_ib.records.n_insns = 0;
+      sched_ib.records.adjust = NULL;
+      break;
+
+    case CPU_CFV3:
+      max_insn_size = 3;
+      sched_ib.records.n_insns = 8;
+      sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
+
+  sched_adjust_cost_state = xmalloc (state_size ());
+  state_reset (sched_adjust_cost_state);
+
+  start_sequence ();
+  emit_insn (gen_ib ());
+  sched_ib.insn = get_insns ();
+  end_sequence ();
+}
+
+/* Scheduling pass is now finished.  Free/reset static variables.  */
+static void
+m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
+			     int verbose ATTRIBUTE_UNUSED)
+{
+  sched_ib.insn = NULL;
+
+  free (sched_adjust_cost_state);
+  sched_adjust_cost_state = NULL;
+
+  sched_mem_unit_code = 0;
+
+  free (sched_ib.records.adjust);
+  sched_ib.records.adjust = NULL;
+  sched_ib.records.n_insns = 0;
+  max_insn_size = 0;
+
+  free (sched_branch_type);
+  sched_branch_type = NULL;
+}
+
+/* Implementation of targetm.sched.md_init () hook.
+   It is invoked each time scheduler starts on the new block (basic block or
+   extended basic block).  */
+static void
+m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
+		    int sched_verbose ATTRIBUTE_UNUSED,
+		    int n_insns ATTRIBUTE_UNUSED)
+{
+  switch (m68k_sched_cpu)
+    {
+    case CPU_CFV1:
+    case CPU_CFV2:
+      sched_ib.size = 6;
+      break;
+
+    case CPU_CFV3:
+      sched_ib.size = sched_ib.records.n_insns * max_insn_size;
+
+      memset (sched_ib.records.adjust, 0,
+	      sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
+      sched_ib.records.adjust_index = 0;
+      break;
+
+    case CPU_CFV4:
+      gcc_assert (!sched_ib.enabled_p);
+      sched_ib.size = 0;
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  if (sched_ib.enabled_p)
+    /* haifa-sched.c: schedule_block () calls advance_cycle () just before
+       the first cycle.  Workaround that.  */
+    sched_ib.filled = -2;
+}
+
+/* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
+   It is invoked just before current cycle finishes and is used here
+   to track if instruction buffer got its two words this cycle.  */
+static void
+m68k_sched_dfa_pre_advance_cycle (void)
+{
+  if (!sched_ib.enabled_p)
+    return;
+
+  if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
+    {
+      sched_ib.filled += 2;
+
+      if (sched_ib.filled > sched_ib.size)
+	sched_ib.filled = sched_ib.size;
+    }
+}
+
+/* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
+   It is invoked just after new cycle begins and is used here
+   to setup number of filled words in the instruction buffer so that
+   instructions which won't have all their words prefetched would be
+   stalled for a cycle.  */
+static void
+m68k_sched_dfa_post_advance_cycle (void)
+{
+  int i;
+
+  if (!sched_ib.enabled_p)
+    return;
+
+  /* Setup number of prefetched instruction words in the instruction
+     buffer.  */
+  i = max_insn_size - sched_ib.filled;
+
+  while (--i >= 0)
+    {
+      if (state_transition (curr_state, sched_ib.insn) >= 0)
+	gcc_unreachable ();
+    }
+}
+
+/* Return X or Y (depending on OPX_P) operand of INSN,
+   if it is an integer register, or NULL overwise.  */
+static rtx
+sched_get_reg_operand (rtx insn, bool opx_p)
+{
+  rtx op = NULL;
+
+  if (opx_p)
+    {
+      if (get_attr_opx_type (insn) == OPX_TYPE_RN)
+	{
+	  op = sched_get_operand (insn, true);
+	  gcc_assert (op != NULL);
+
+	  if (!reload_completed && !REG_P (op))
+	    return NULL;
+	}
+    }
+  else
+    {
+      if (get_attr_opy_type (insn) == OPY_TYPE_RN)
+	{
+	  op = sched_get_operand (insn, false);
+	  gcc_assert (op != NULL);
+
+	  if (!reload_completed && !REG_P (op))
+	    return NULL;
+	}
+    }
+
+  return op;
+}
+
+/* Return true, if X or Y (depending on OPX_P) operand of INSN
+   is a MEM.  */
+static bool
+sched_mem_operand_p (rtx insn, bool opx_p)
+{
+  switch (sched_get_opxy_mem_type (insn, opx_p))
+    {
+    case OP_TYPE_MEM1:
+    case OP_TYPE_MEM6:
+      return true;
+
+    default:
+      return false;
+    }
+}
+
+/* Return X or Y (depending on OPX_P) operand of INSN,
+   if it is a MEM, or NULL overwise.  */
+static rtx
+sched_get_mem_operand (rtx insn, bool must_read_p, bool must_write_p)
+{
+  bool opx_p;
+  bool opy_p;
+
+  opx_p = false;
+  opy_p = false;
+
+  if (must_read_p)
+    {
+      opx_p = true;
+      opy_p = true;
+    }
+
+  if (must_write_p)
+    {
+      opx_p = true;
+      opy_p = false;
+    }
+
+  if (opy_p && sched_mem_operand_p (insn, false))
+    return sched_get_operand (insn, false);
+
+  if (opx_p && sched_mem_operand_p (insn, true))
+    return sched_get_operand (insn, true);
+
+  gcc_unreachable ();
+  return NULL;
+}
+
+/* Return non-zero if PRO modifies register used as part of
+   address in CON.  */
+int
+m68k_sched_address_bypass_p (rtx pro, rtx con)
+{
+  rtx pro_x;
+  rtx con_mem_read;
+
+  pro_x = sched_get_reg_operand (pro, true);
+  if (pro_x == NULL)
+    return 0;
+
+  con_mem_read = sched_get_mem_operand (con, true, false);
+  gcc_assert (con_mem_read != NULL);
+
+  if (reg_mentioned_p (pro_x, con_mem_read))
+    return 1;
+
+  return 0;
+}
+
+/* Helper function for m68k_sched_indexed_address_bypass_p.
+   if PRO modifies register used as index in CON,
+   return scale of indexed memory access in CON.  Return zero overwise.  */
+static int
+sched_get_indexed_address_scale (rtx pro, rtx con)
+{
+  rtx reg;
+  rtx mem;
+  struct m68k_address address;
+
+  reg = sched_get_reg_operand (pro, true);
+  if (reg == NULL)
+    return 0;
+
+  mem = sched_get_mem_operand (con, true, false);
+  gcc_assert (mem != NULL && MEM_P (mem));
+
+  if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
+			       &address))
+    gcc_unreachable ();
+
+  if (REGNO (reg) == REGNO (address.index))
+    {
+      gcc_assert (address.scale != 0);
+      return address.scale;
+    }
+
+  return 0;
+}
+
+/* Return non-zero if PRO modifies register used
+   as index with scale 2 or 4 in CON.  */
+int
+m68k_sched_indexed_address_bypass_p (rtx pro, rtx con)
+{
+  gcc_assert (sched_cfv4_bypass_data.pro == NULL
+	      && sched_cfv4_bypass_data.con == NULL
+	      && sched_cfv4_bypass_data.scale == 0);
+
+  switch (sched_get_indexed_address_scale (pro, con))
+    {
+    case 1:
+      /* We can't have a variable latency bypass, so
+	 remember to adjust the insn cost in adjust_cost hook.  */
+      sched_cfv4_bypass_data.pro = pro;
+      sched_cfv4_bypass_data.con = con;
+      sched_cfv4_bypass_data.scale = 1;
+      return 0;
+
+    case 2:
+    case 4:
+      return 1;
+
+    default:
+      return 0;
+    }
+}