diff gcc/config/picochip/picochip.md @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/config/picochip/picochip.md	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,2687 @@
+;; GCC machine description for picochip
+;; Copyright (C) 2008, 2009 Free Software Foundation, Inc.
+;; Contributed by picoChip Designs Ltd (http://www.picochip.com)
+;; Maintained by Daniel Towner (dant@picochip.com) and Hariharan
+;; Sandanagobalane (hariharan@picochip.com)
+;;
+;; This file is part of GCC.
+;;
+;; GCC is free software; you can redistribute it and/or modify
+;; it under the terms of the GNU General Public License as published by
+;; the Free Software Foundation; either version 3, or (at your option)
+;; any later version.
+;;
+;; GCC is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+;; GNU General Public License for more details.
+;;
+;; You should have received a copy of the GNU General Public License
+;; along with GCC; see the file COPYING3.  If not, see
+;; <http://www.gnu.org/licenses/>.
+
+;; -------------------------------------------------------------------------
+
+;; In addition to the normal output operand formats, the following
+;; letter formats are also available:
+;;
+;;  The following can be used for constants, or the constant part of a
+;;  memory offset.
+;;   Q - Output constant unaltered (byte mode).
+;;   M - Alias for Q, which only works with memory operands.
+;;   H - Divide constant by 2 (i.e., HImode is 2 bytes)
+;;   S - Divide constant by 4 (i.e., SImode is 4 bytes)
+;;
+;;  The following can be used for two part addresses (i.e., base +
+;;  offset or base[offset]).
+;;   o - Output offset only.
+;;   b - Output base only.
+;;
+;;  The following are used on SI registers and constants
+;;   R - Output register pair (i.e., R[n:m])
+;;   L - Output lower word/register
+;;   U - Output upper word/register
+;;
+;;  The following are used on DI mode registers.
+;;   X - Output 3rd register
+;;   Y - Output 4th register
+;;
+;;  Miscellaneous
+;;   | - Output VLIW separator
+;;   r - Output register value of memory operand.
+;;   I - Output an opcode (e.g., ADD for plus, LSL for lshift)
+;;   i - Output an opcode in symbolic notation (e.g., + for plus)
+
+;; Define the length of an instruction.  Used to allow different types
+;; of branches to be used for different branch offsets.  Default to 6
+;; bytes, which is the longest possible single instruction.
+(define_attr "length" "" (const_int 6))
+
+;; Define some constants which are used in conjuction with branch
+;; scheduling.  Branches must be 10-bit signed, which equates to
+;; [-512,511]. However, to compensate for the lack of branch alignment
+;; these offsets are reduced by a factor of 2.
+
+(define_constants
+  [
+   (MIN_BRANCH_OFFSET -256)
+   (MAX_BRANCH_OFFSET 255)
+   (SHORT_BRANCH_LENGTH 6)    ; The size of a schedulable short branch.
+   (LONG_BRANCH_LENGTH 16)    ; The size of an expanded JMP?? macro.
+   ]
+)
+
+;; Define identifiers for various special instructions.  These
+;; instructions may then be used in RTL expansions, or builtins.
+(define_constants
+  [
+   ; Special instruction builtins.
+   (UNSPEC_SBC             0) ; Sign-bit count
+   (UNSPEC_ADDS            1) ; Saturating addition
+   (UNSPEC_SUBS            2) ; Saturating subtraction
+   (UNSPEC_BREV            3) ; Bit reversal
+
+   ; Special internal instructions (only used by compiler)
+   (UNSPEC_COPYSW          5) ; Get status word
+   (UNSPEC_ADDC            6) ; Add with carry.
+
+   ; Scalar port communication builtins
+   (UNSPEC_PUT             7) ; Communication (put):       port[op0] := op1
+   (UNSPEC_GET             8) ; Communication (get):       op0 := get_port[op1]
+   (UNSPEC_TESTPORT        9) ; Communication (test):      op0 := testport[op1]
+
+   ; Array port communication builtins.  These all take extra
+   ; arguments giving information about the array access being used.
+   (UNSPEC_PUT_ARRAY      10) ; Array put
+   (UNSPEC_GET_ARRAY      11) ; Array get
+   (UNSPEC_TESTPORT_ARRAY 12) ; Array test port
+
+   ;; Array port expansions
+   (UNSPEC_CALL_GET_ARRAY 13) ;
+   (UNSPEC_CALL_PUT_ARRAY 14) ;
+   (UNSPEC_CALL_TESTPORT_ARRAY 15) ;
+
+   ; Array port low-level fn calls
+   (UNSPEC_CALL_GET_FN  16)
+   (UNSPEC_CALL_TESTPORT_FN  17)
+
+   ; Halt instruction.
+   (UNSPEC_HALT 18)
+
+   ; Internal TSTPORT instruction, used to generate a single TSTPORT
+   ; instruction for use in the testport branch split.
+   (UNSPEC_INTERNAL_TESTPORT        19)
+  ]
+)
+
+;; Register ID's
+(define_constants
+  [
+   (LINK_REGNUM           12) ; Function link register.
+   (CC_REGNUM             17) ; Condition flags.
+   (ACC_REGNUM             16) ; Condition flags.
+   ]
+)
+
+;;============================================================================
+;; Predicates and constraints
+;;============================================================================
+
+(include "predicates.md")
+(include "constraints.md")
+
+;;============================================================================
+;; First operand shifting patterns.  These allow certain instructions
+;; (e.g., add, and, or, xor, sub) to apply a shift-by-constant to
+;; their first operand.
+;;
+;; Note that only the first operand is matched by the shift, to ensure
+;; that non-commutative instructions (like subtract) work
+;; properly.  When a commutative instruction, with a shift in the
+;; second operand is found, the compiler will reorder the operands to
+;; match.
+;;============================================================================
+
+(define_insn "*firstOpGenericAshift"
+  [(set (match_operand:HI 0 "register_operand" "=r")
+	(match_operator:HI 1 "picochip_first_op_shift_operator"
+			[(ashift:HI
+			  (match_operand:HI 2 "register_operand" "r")
+			  (match_operand:HI 3 "picochip_J_operand" "J"))
+			 (match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "%I1.0 [LSL %2,%3],%4,%0\t// %0 := (%2 << %3) %i1 %4"
+  [(set_attr "type" "picoAlu")
+   ;; A long constant must be used if the operator instruction doesn't
+   ;; accept immediates, or if the constant is too big to fit the
+   ;; immediate. Note that the following condition is written in the
+   ;; way which uses the least number of predicates.
+   (set (attr "longConstant")
+     (cond [(ior (match_operand 4 "register_operand")
+                 (and (match_operand 1 "picochip_first_op_shift_operator_imm")
+		      (match_operand 1 "picochip_J_operand")))
+              (const_string "false")]
+              (const_string "true")))])
+
+;; During combine, ashift gets converted into a multiply, necessitating the following pattern.
+;; Note that we do a log_2(imm) to get the actual LSL operand.
+
+(define_insn "*firstOpGenericAshift"
+  [(set (match_operand:HI 0 "register_operand" "=r")
+        (match_operator:HI 1 "picochip_first_op_shift_operator"
+                        [(mult:HI
+                          (match_operand:HI 2 "register_operand" "r")
+                          (match_operand:HI 3 "power_of_2_imm_operand" "n"))
+                         (match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "%I1.0 [LSL %2,%P3],%4,%0\t// %0 := (%2 << %3) %i1 %4"
+  [(set_attr "type" "picoAlu")
+   ;; A long constant must be used if the operator instruction doesn't
+   ;; accept immediates, or if the constant is too big to fit the
+   ;; immediate. Note that the following condition is written in the
+   ;; way which uses the least number of predicates.
+   (set (attr "longConstant")
+     (cond [(ior (match_operand 4 "register_operand")
+                 (and (match_operand 1 "picochip_first_op_shift_operator_imm")
+                      (match_operand 1 "picochip_J_operand")))
+              (const_string "false")]
+              (const_string "true")))])
+
+(define_insn "*firstOpGenericAshiftrt"
+  [(set (match_operand:HI 0 "register_operand" "=r")
+	(match_operator:HI 1 "picochip_first_op_shift_operator"
+			[(ashiftrt:HI
+			  (match_operand:HI 2 "register_operand" "r")
+			  (match_operand:HI 3 "picochip_J_operand" "J"))
+			 (match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "%I1.0 [ASR %2,%3],%4,%0\t// %0 := (%2 >>{arith} %3) %i1 %4"
+  [(set_attr "type" "picoAlu")
+   ;; A long constant must be used if the operator instruction doesn't
+   ;; accept immediates, or if the constant is too big to fit the
+   ;; immediate. Note that the following condition is written in the
+   ;; way which uses the least number of predicates.
+   (set (attr "longConstant")
+     (cond [(ior (match_operand 4 "register_operand")
+                 (and (match_operand 1 "picochip_first_op_shift_operator_imm")
+		      (match_operand 1 "picochip_J_operand")))
+              (const_string "false")]
+              (const_string "true")))])
+
+(define_insn "*firstOpGenericLshiftrt"
+  [(set (match_operand:HI 0 "register_operand" "=r")
+	(match_operator:HI 1 "picochip_first_op_shift_operator"
+			[(lshiftrt:HI
+			  (match_operand:HI 2 "register_operand" "r")
+			  (match_operand:HI 3 "picochip_J_operand" "J"))
+			 (match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "%I1.0 [LSR %2,%3],%4,%0\t// %0 := (%2 >> %3) %i1 %4"
+  [(set_attr "type" "picoAlu")
+   ;; A long constant must be used if the operator instruction doesn't
+   ;; accept immediates, or if the constant is too big to fit the
+   ;; immediate. Note that the following condition is written in the
+   ;; way which uses the least number of predicates.
+   (set (attr "longConstant")
+     (cond [(ior (match_operand 4 "register_operand")
+                 (and (match_operand 1 "picochip_first_op_shift_operator_imm")
+		      (match_operand 1 "picochip_J_operand")))
+              (const_string "false")]
+              (const_string "true")))])
+
+;;===========================================================================
+;; Jump instructions.
+;;===========================================================================
+
+(define_insn "indirect_jump"
+  [(set (pc) (match_operand:HI 0 "register_operand" "r"))]
+  ""
+  "JR (%0)\t// Indirect_jump to %0 %>"
+  [(set_attr "type" "realBranch")
+   (set_attr "length" "3")])
+
+(define_insn "jump"
+  [(set (pc)
+        (label_ref (match_operand 0 "" "")))]
+  ""
+  "* return picochip_output_jump(insn);"
+  [(set (attr "length")
+	(if_then_else
+	 (and (ge (minus (match_dup 0) (pc)) (const_int MIN_BRANCH_OFFSET))
+	      (le (minus (match_dup 0) (pc)) (const_int MAX_BRANCH_OFFSET)))
+	 (const_int SHORT_BRANCH_LENGTH)
+	 (const_int LONG_BRANCH_LENGTH)))
+   (set (attr "type")
+	(if_then_else
+	 (eq_attr "length" "6")
+	 (const_string "realBranch")
+	 (const_string "unknown")))])
+
+(define_insn "*fn_return"
+  [(return)
+   (use (reg:HI LINK_REGNUM))]
+  ""
+  "JR (R12)\t// Return to caller %>"
+  [(set_attr "length" "2")
+   (set_attr "type" "realBranch")
+   (set_attr "longConstant" "false")])
+
+;; Peephole either 2 LDWs or STWs into LDL/STL.
+(define_peephole2
+  [(set (match_operand:HI 0 "register_operand" "")
+        (match_operand:HI 1 "memory_operand" ""))
+   (set (match_operand:HI 2 "register_operand" "")
+        (match_operand:HI 3 "memory_operand" ""))]
+  "ok_to_peephole_ldw(operands[0],operands[1],operands[2],operands[3])"
+  [(set (match_dup 4) (match_dup 5))]
+  "{
+     operands[4] = gen_min_reg(operands[0],operands[2]);
+     operands[5] = gen_SImode_mem(operands[1],operands[3]);
+   }")
+
+(define_peephole2
+  [(set (match_operand:HI 0 "memory_operand" "")
+        (match_operand:HI 1 "register_operand" ""))
+   (set (match_operand:HI 2 "memory_operand" "")
+        (match_operand:HI 3 "register_operand" ""))]
+  "ok_to_peephole_stw(operands[0],operands[1],operands[2],operands[3])"
+  [(set (match_dup 4) (match_dup 5))]
+  "{
+     operands[4] = gen_SImode_mem(operands[0],operands[2]);
+     operands[5] = gen_min_reg(operands[1],operands[3]);
+   }")
+
+
+;; We have instructions like add,subtract,ior,and that set condition
+;; codes if they are executed on slot 0. If we have
+;;    add a = b + c
+;;    if (a!=0)
+;;    {}
+;; We would have RTL sequence like
+;;    add.# rb,rc,ra   # will be replaced by slot no, after scheduling
+;;    sub.0 ra,0,r15
+;;    bnz
+;; Instead, we can just do
+;;    add.0 rb,rc,ra
+;;    bnz
+
+(define_peephole2
+  [(parallel [(set (match_operand:HI 0 "register_operand" "")
+                   (plus:HI (match_operand:HI 1 "register_operand" "")
+                            (match_operand:HI 2 "general_operand" "")))
+              (clobber (reg:CC CC_REGNUM))])
+   (parallel [(set (pc)
+                   (if_then_else
+                    (match_operator:CC 3 "picochip_peephole_comparison_operator"
+                            [(match_dup 0) (const_int 0)])
+                   (label_ref       (match_operand    6 "" ""))
+                   (pc)))
+              (clobber (reg:CC CC_REGNUM))])]
+  ""
+  [(parallel [(set (match_dup 0)
+                   (plus:HI (match_dup 1) (match_dup 2)))
+              (set (reg:CC CC_REGNUM)
+                   (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+   (parallel [(set (pc)
+                   (if_then_else
+                    (match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
+                   (label_ref (match_dup 6))
+                   (pc)))
+              (use (match_dup 7))])]
+  "{
+     operands[7] = GEN_INT(0);
+   }")
+
+(define_peephole2
+  [(parallel [(set (match_operand:HI 0 "register_operand" "")
+                   (plus:HI (match_operand:HI 1 "register_operand" "")
+                     (match_operand:HI 2 "general_operand" "")))
+              (clobber (reg:CC CC_REGNUM))])
+   (set (reg:CC CC_REGNUM)
+         (match_operator:CC 3 "picochip_peephole_comparison_operator"
+                   [(match_dup 0) (const_int 0)]))
+   (parallel [(set (pc)
+                    (if_then_else
+                          (match_operator 4 "comparison_operator"
+                              [(reg:CC CC_REGNUM) (const_int 0)])
+                     (label_ref (match_operand 5 "" ""))
+                     (pc)))
+               (use (match_operand:HI 6 "const_int_operand" ""))])]
+  ""
+  [(parallel [(set (match_dup 0)
+                   (plus:HI (match_dup 1) (match_dup 2)))
+              (set (reg:CC CC_REGNUM)
+                   (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+   (parallel [(set (pc)
+                   (if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
+                    (label_ref (match_dup 5))
+                    (pc)))
+              (use (match_dup 6))])]
+  "{
+     operands[7] = GEN_INT(0);
+   }")
+
+
+;; If peephole happens before the cbranch split
+
+(define_peephole2
+  [(parallel [(set (match_operand:HI 0 "register_operand" "")
+                    (minus:HI (match_operand:HI 1 "general_operand" "")
+                              (match_operand:HI 2 "register_operand" "")))
+              (clobber (reg:CC CC_REGNUM))])
+   (parallel [(set (pc)
+                   (if_then_else
+                    (match_operator:CC 3 "picochip_peephole_comparison_operator"
+                            [(match_dup 0) (const_int 0)])
+                     (label_ref       (match_operand    6 "" ""))
+                     (pc)))
+              (clobber (reg:CC CC_REGNUM))])]
+  ""
+  [(parallel [(set (match_dup 0)
+                   (minus:HI (match_dup 1) (match_dup 2)))
+              (set (reg:CC CC_REGNUM)
+                   (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+   (parallel [(set (pc)
+                   (if_then_else
+                       (match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
+                        (label_ref (match_dup 6))
+                        (pc)))
+              (use (match_dup 7))])]
+  "{
+     operands[7] = GEN_INT(0);
+   }")
+
+
+;; If peephole happens after the cbranch split
+
+(define_peephole2
+  [(parallel [(set (match_operand:HI 0 "register_operand" "")
+                   (minus:HI (match_operand:HI 1 "general_operand" "")
+                             (match_operand:HI 2 "register_operand" "")))
+              (clobber (reg:CC CC_REGNUM))])
+   (set (reg:CC CC_REGNUM)
+         (match_operator:CC 3 "picochip_peephole_comparison_operator"
+                 [(match_dup 0) (const_int 0)]))
+    (parallel [(set (pc)
+                     (if_then_else
+                         (match_operator 4 "comparison_operator"
+                             [(reg:CC CC_REGNUM) (const_int 0)])
+                      (label_ref (match_operand 5 "" ""))
+                      (pc)))
+                (use (match_operand:HI 6 "const_int_operand" ""))])]
+  ""
+  [(parallel [(set (match_dup 0)
+                   (minus:HI (match_dup 1) (match_dup 2)))
+              (set (reg:CC CC_REGNUM)
+                   (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+   (parallel [(set (pc)
+                   (if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
+                                 (label_ref (match_dup 5))
+                                 (pc)))
+              (use (match_dup 6))])]
+  "{
+      operands[7] = GEN_INT(0);
+   }")
+
+;; If peephole happens before the cbranch split
+
+(define_peephole2
+   [(parallel[(set (match_operand:HI 0 "register_operand" "")
+                   (and:HI (match_operand:HI 1 "register_operand" "")
+                           (match_operand:HI 2 "general_operand" "")))
+              (clobber (reg:CC CC_REGNUM))])
+   (parallel [(set (pc)
+                   (if_then_else
+                    (match_operator:CC 3 "picochip_peephole_comparison_operator"
+                            [(match_dup 0) (const_int 0)])
+                   (label_ref       (match_operand    6 "" ""))
+                   (pc)))
+              (clobber (reg:CC CC_REGNUM))])]
+  ""
+  [(parallel [(set (match_dup 0)
+                   (and:HI (match_dup 1) (match_dup 2)))
+              (set (reg:CC CC_REGNUM)
+                   (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+   (parallel [(set (pc)
+                   (if_then_else
+                       (match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
+                                 (label_ref (match_dup 6))
+                                 (pc)))
+              (use (match_dup 7))])]
+  "{
+     operands[7] = GEN_INT(0);
+   }")
+
+(define_peephole2
+   [(parallel[(set (match_operand:HI 0 "register_operand" "")
+                   (and:HI (match_operand:HI 1 "register_operand" "")
+                           (match_operand:HI 2 "general_operand" "")))
+              (clobber (reg:CC CC_REGNUM))])
+   (set (reg:CC CC_REGNUM)
+        (match_operator:CC 3 "picochip_peephole_comparison_operator"
+                    [(match_dup 0) (const_int 0)]))
+  (parallel [(set (pc)
+                  (if_then_else
+                      (match_operator 4 "comparison_operator"
+                         [(reg:CC CC_REGNUM) (const_int 0)])
+                   (label_ref (match_operand 5 "" ""))
+                   (pc)))
+              (use (match_operand:HI 6 "const_int_operand" ""))])]
+  ""
+  [(parallel [(set (match_dup 0)
+                   (and:HI (match_dup 1) (match_dup 2)))
+              (set (reg:CC CC_REGNUM)
+                   (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+   (parallel [(set (pc)
+                   (if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
+                                 (label_ref (match_dup 5))
+                                 (pc)))
+              (use (match_dup 6))])]
+  "{
+      operands[7] = GEN_INT(0);
+   }")
+
+;; If peephole happens before the cbranch split
+
+(define_peephole2
+   [(parallel[(set (match_operand:HI 0 "register_operand" "")
+                   (ior:HI (match_operand:HI 1 "register_operand" "")
+                           (match_operand:HI 2 "general_operand" "")))
+              (clobber (reg:CC CC_REGNUM))])
+   (parallel [(set (pc)
+                   (if_then_else
+                    (match_operator:CC 3 "picochip_peephole_comparison_operator"
+                          [(match_dup 0) (const_int 0)])
+                   (label_ref       (match_operand    6 "" ""))
+                   (pc)))
+              (clobber (reg:CC CC_REGNUM))])]
+  ""
+  [(parallel [(set (match_dup 0)
+                   (ior:HI (match_dup 1) (match_dup 2)))
+              (set (reg:CC CC_REGNUM)
+                   (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+   (parallel [(set (pc)
+                   (if_then_else
+                       (match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
+                                 (label_ref (match_dup 6))
+                                 (pc)))
+              (use (match_dup 7))])]
+  "{
+     operands[7] = GEN_INT(0);
+   }")
+
+(define_peephole2
+   [(parallel[(set (match_operand:HI 0 "register_operand" "")
+                   (ior:HI (match_operand:HI 1 "register_operand" "")
+                           (match_operand:HI 2 "general_operand" "")))
+              (clobber (reg:CC CC_REGNUM))])
+   (set (reg:CC CC_REGNUM)
+        (match_operator:CC 3 "picochip_peephole_comparison_operator"
+              [(match_dup 0) (const_int 0)]))
+  (parallel [(set (pc)
+                  (if_then_else
+                     (match_operator 4 "comparison_operator"
+                        [(reg:CC CC_REGNUM) (const_int 0)])
+                   (label_ref (match_operand 5 "" ""))
+                   (pc)))
+             (use (match_operand:HI 6 "const_int_operand" ""))])]
+  ""
+  [(parallel [(set (match_dup 0)
+                   (ior:HI (match_dup 1) (match_dup 2)))
+              (set (reg:CC CC_REGNUM)
+                   (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+   (parallel [(set (pc)
+                   (if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
+                                 (label_ref (match_dup 5))
+                                 (pc)))
+              (use (match_dup 6))])]
+  "{
+      operands[7] = GEN_INT(0);
+   }")
+
+;; Conditional branch (HI). This is split into separate compare and
+;; branch instructions if scheduling is enabled.  The branch
+;; instruction is supplied with the type of comparison on which the
+;; branch should occur.
+
+(define_insn_and_split "cbranchhi4"
+  [(set (pc)
+        (if_then_else
+            (match_operator:CC 0 "comparison_operator"
+                            [(match_operand:HI 1 "register_operand" "r")
+                             (match_operand:HI 2 "picochip_comparison_operand" "ri")])
+            (label_ref       (match_operand    3 "" ""))
+            (pc)))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "* return picochip_output_cbranch(operands);"
+  "reload_completed
+   && (picochip_schedule_type != DFA_TYPE_NONE || flag_delayed_branch)"
+  [(set (reg:CC CC_REGNUM) (match_dup 0))
+   (parallel [(set (pc)
+                   (if_then_else (match_op_dup:HI 0 [(reg:CC CC_REGNUM) (const_int 0)])
+                                 (label_ref (match_dup 3))
+                                 (pc)))
+              (use (match_dup 4))])]
+  "{
+     operands[4] = GEN_INT(GET_CODE(operands[0]));
+   }")
+
+;; The only difference between this and the next pattern is that the next pattern
+;; might introduce subtracts whose first operand is a constant. This would have to
+;; be a longConstant. But, we know that such a situation wouldnt arise for supported
+;; comparison operator and hence this pattern assumes that the second constraint combo
+;; would still generate a normal instruction.
+
+(define_insn "*supported_compare"
+  [(set (reg:CC CC_REGNUM)
+        (match_operator:CC 0 "picochip_supported_comparison_operator"
+                        [(match_operand:HI 1 "register_operand" "r,r,r")
+                         (match_operand:HI 2 "picochip_comparison_operand" "r,J,i")]))]
+  ""
+  "* return picochip_output_compare(operands);"
+  [; Must be picoAlu because it sets the condition flags.
+   (set_attr "type" "picoAlu,picoAlu,picoAlu")
+   (set_attr "longConstant" "false,false,true")
+   (set_attr "length" "2,2,4")
+   ])
+
+(define_insn "*compare"
+  [(set (reg:CC CC_REGNUM)
+        (match_operator:CC 0 "comparison_operator"
+                        [(match_operand:HI 1 "register_operand" "r,r,r")
+                         (match_operand:HI 2 "picochip_comparison_operand" "r,M,i")]))]
+  ""
+  "* return picochip_output_compare(operands);"
+  [; Must be picoAlu because it sets the condition flags.
+   (set_attr "type" "picoAlu,picoAlu,picoAlu")
+   (set_attr "longConstant" "false,true,true")
+   (set_attr "length" "2,4,4")
+   ])
+
+; Match a branch instruction, created from a tstport/cbranch split.
+; We use a "use" clause so GCC doesnt try to use this pattern generally.
+(define_insn "*branch"
+  [(set (pc)
+        (if_then_else
+            (match_operator 2 "comparison_operator"
+                 [(reg:CC CC_REGNUM) (const_int 0)])
+                      (label_ref (match_operand 0 "" ""))
+                      (pc)))
+   (use (match_operand:HI 1 "const_int_operand" ""))]
+  ""
+  "* return picochip_output_branch(operands, insn);"
+  [(set (attr "length")
+        (if_then_else
+         (and (ge (minus (match_dup 0) (pc)) (const_int MIN_BRANCH_OFFSET))
+              (le (minus (match_dup 0) (pc)) (const_int MAX_BRANCH_OFFSET)))
+         (const_int SHORT_BRANCH_LENGTH)
+         (const_int LONG_BRANCH_LENGTH)))
+    (set (attr "type")
+        (if_then_else
+         (eq_attr "length" "6")
+         (const_string "realBranch")
+         (const_string "unknown")))])
+
+;; If a movqi is used which accesses memory on a machine which doesn't
+;; have byte addressing, synthesise the instruction using word load/store
+;; operations. The movqi's that are required during reload phase are
+;; handled using reload_inqi/reload_outqi.
+
+(define_expand "movqi"
+  [(set (match_operand:QI 0 "nonimmediate_operand" "")
+	(match_operand:QI 1 "general_operand" ""))]
+  ""
+{
+
+     if (!reload_completed &&
+         !TARGET_HAS_BYTE_ACCESS &&
+         (MEM == GET_CODE(operands[0]) || MEM == GET_CODE(operands[1])))
+     {
+       rtx address;
+       rtx wordAddress;
+       rtx const1;
+       rtx shiftVal;
+       rtx loadedValue;
+       rtx addressMask;
+
+       warn_of_byte_access();
+
+       /* Load the constant 1 into a register. */
+       const1 = gen_reg_rtx(HImode);
+       emit_insn(gen_rtx_SET(HImode, const1, GEN_INT(1)));
+
+       /* Load the address mask with the bitwise complement of 1. */
+       addressMask = gen_reg_rtx(HImode);
+       emit_insn(gen_rtx_SET(HImode, addressMask, GEN_INT(-2)));
+
+       /* Handle loads first, in case we are dealing with a mem := mem
+        * instruction. */
+       if (MEM == GET_CODE(operands[1]))
+       {
+	 /* Loads work as follows. The entire word containing the desired byte
+          * is loaded. The bottom bit of the address indicates which
+          * byte is required. The desired byte is moved into the most
+          * significant byte, and then an arithmetic shift right
+          * invoked to achieve sign extension. The desired byte is
+          * moved to the MSB by XOR'ing the bottom address bit by 1,
+          * multiplying the result by 8, and then shifting left by
+          * that amount. Note that shifts only operate on the bottom
+          * 4-bits of the source offset, so although the XOR may
+          * produce a value which has its upper bits set, only bit 4
+          * (i.e., the inverted, shifted bottom address bit) actually
+          * gets used.
+          */
+
+         /* Ensure the address is in a register. */
+         address = gen_reg_rtx(HImode);
+         emit_insn(gen_rtx_SET(HImode, address, XEXP(operands[1], 0)));
+
+         /* Compute the word address by masking out the bottom bit. */
+         wordAddress = gen_reg_rtx(HImode);
+         emit_insn(gen_andhi3(wordAddress, address, addressMask));
+
+         /* Compute the shift value. This is the bottom address bit,
+          * inverted, and multiplied by 8. */
+         shiftVal = gen_reg_rtx(HImode);
+         emit_insn(gen_xorhi3(shiftVal, address, const1));
+         emit_insn(gen_ashlhi3(shiftVal, shiftVal, GEN_INT(3)));
+
+         /* Emit the memory load. */
+         loadedValue = gen_reg_rtx(HImode);
+         emit_insn(gen_rtx_SET(HImode, loadedValue, gen_rtx_MEM(HImode, wordAddress)));
+
+	 /* Shift the desired byte to the most significant byte. */
+	 rtx topByteValue = gen_reg_rtx (HImode);
+	 emit_insn (gen_ashlhi3 (topByteValue, loadedValue, shiftVal));
+
+         /* Sign extend the top-byte back into the bottom byte. */
+	 rtx signExtendedValue = gen_reg_rtx(HImode);
+         emit_insn(gen_ashrhi3(signExtendedValue, topByteValue, GEN_INT(8)));
+
+         /* Final extraction of QI mode register. */
+        operands[1] = gen_rtx_SUBREG(QImode, signExtendedValue, 0);
+
+       }
+
+       if (MEM == GET_CODE(operands[0]) && GET_CODE(operands[1]) != MEM)
+       {
+         rtx zeroingByteMask;
+         rtx temp;
+         rtx tempQiMode;
+         rtx tempHiMode;
+
+         /* Get the address. */
+         address = gen_reg_rtx(HImode);
+         emit_insn(gen_rtx_SET(HImode, address, XEXP(operands[0], 0)));
+
+         /* Compute the word aligned address. */
+         wordAddress = gen_reg_rtx(HImode);
+         emit_insn(gen_andhi3(wordAddress, address, addressMask));
+
+         /* Compute the shift value. */
+         shiftVal = gen_reg_rtx(HImode);
+         emit_insn(gen_andhi3(shiftVal, address, const1));
+         emit_insn(gen_ashlhi3(shiftVal, shiftVal, GEN_INT(3)));
+
+         /* Emit the memory load. */
+         loadedValue = gen_reg_rtx(HImode);
+         emit_insn(gen_rtx_SET(HImode, loadedValue, gen_rtx_MEM(HImode, wordAddress)));
+
+         /* Zero out the destination bits by AND'ing with 0xFF00
+          * shifted appropriately. */
+         zeroingByteMask = gen_reg_rtx(HImode);
+         emit_insn(gen_rtx_SET(HImode, zeroingByteMask, GEN_INT(-256)));
+         emit_insn(gen_lshrhi3(zeroingByteMask, zeroingByteMask, shiftVal));
+         emit_insn(gen_andhi3(loadedValue, loadedValue, zeroingByteMask));
+
+	 /* Grab the incoming QI register, and ensure that the top bits
+	  * are zeroed out. This is because the register may be
+	  * storing a signed value, in which case the top-bits will be
+	  * sign bits. These must be removed to ensure that the
+	  * read-modify-write (which uses an OR) doesn't pick up those
+	  * bits, instead of the original memory value which is being
+	  * modified.
+  	  */
+         /*if (register_operand(operands[1],QImode))
+         {
+           tempHiMode = XEXP(operands[1], 0);
+         }
+         else
+         {
+           tempHiMode = operands[1];
+         }*/
+         //tempHiMode = force_reg(QImode, operands[1]);
+         tempHiMode = simplify_gen_subreg(HImode, operands[1], QImode, 0);
+         temp = gen_reg_rtx(HImode);
+	 emit_insn(gen_rtx_SET(HImode, temp, tempHiMode));
+         rtx lsbByteMask = gen_reg_rtx (HImode);
+	 emit_insn (gen_rtx_SET (HImode, lsbByteMask, GEN_INT (0xFF)));
+	 emit_insn (gen_andhi3 (temp, temp, lsbByteMask));
+
+         /* Shift the incoming byte value by the appropriate amount,
+          * and OR into the load value. */
+         emit_insn(gen_ashlhi3(temp, temp, shiftVal));
+         emit_insn(gen_iorhi3(loadedValue, loadedValue, temp));
+
+         /* Rewrite the original assignment, to assign the new value
+          * to the word address. */
+         operands[0] = gen_rtx_MEM(HImode, wordAddress);
+         operands[1] = loadedValue;
+
+       }
+
+     }
+})
+
+(define_insn "*movqi_sign_extend"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(sign_extend:HI (match_operand:QI 1 "memory_operand" "a,m")))]
+  "TARGET_HAS_BYTE_ACCESS"
+  "@
+     LDB (%a1),%0\t\t// %0 = Mem(%a1)
+     LDB %a1,%0\t\t// %0 = Mem(%M1{byte})"
+  [(set_attr "type" "mem,mem")
+   (set_attr "longConstant" "true,false")
+   (set_attr "length" "4,4")])
+
+;; movqi instructions for machines with and without byte access.
+(define_insn "*movqi_byte"
+  [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,r,r,r,a,m")
+	(match_operand:QI 1 "general_operand" "r,a,m,I,i,r,r"))]
+  "TARGET_HAS_BYTE_ACCESS"
+  "@
+     COPY.%# %1, %0\t// %0 := %1
+     LDB (%a1),%0\t\t// %0 = Mem(%a1)
+     LDB %a1,%0\t\t// %0 = Mem(%M1{byte})
+     COPY.%# %1,%0\t\t// %0 := #%1 (QI) (short constant)
+     COPY.%# %1,%0\t\t// %0 := #%1 (QI) (long constant)
+     STB %1,(%a0)\t\t// Mem(%a0) := %1
+     STB %1,%a0\t\t// Mem(%M0{byte}) := %1"
+  [(set_attr "type" "basicAlu,mem,mem,basicAlu,basicAlu,mem,mem")
+   (set_attr "longConstant" "false,true,false,false,true,true,false")
+   (set_attr "length" "2,4,4,2,4,4,4")])
+
+;; Machines which don't have byte access can copy registers, and load
+;; constants, but can't access memory.  The define_expand for movqi
+;; should already have rewritten memory accesses using word
+;; operations.  The exception is qi reloads, which are handled using
+;; the reload_? patterns.
+(define_insn "*movqi_nobyte"
+  [(set (match_operand:QI 0 "register_operand" "=r,r")
+	(match_operand:QI 1 "picochip_register_or_immediate_operand" "r,i"))]
+  "!TARGET_HAS_BYTE_ACCESS"
+  "@
+     COPY.%# %1,%0\t// %0 := %1
+     COPY.%# %1,%0\t\t// %0 := #%1 (QI)")
+
+(define_insn "movhi"
+  [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,a,m,r,r")
+	(match_operand:HI 1 "general_operand" "r,a,m,r,r,I,i"))]
+  ""
+  "@
+    COPY.%# %1,%0\t\t// %0 := %1
+    LDW (%a1),%0\t\t// %0 := Mem(%a1)
+    LDW %a1,%0\t\t// %0 = Mem(%M1{byte})
+    STW %1,(%a0)\t\t// Mem(%a0) := %1
+    STW %1,%a0\t\t// Mem(%M0{byte}) := %1
+    COPY.%# %1,%0\t// %0 := %1 (short constant)
+    COPY.%# %1,%0\t// %0 := %1 (long constant)"
+   [(set_attr "type" "basicAlu,mem,mem,mem,mem,basicAlu,basicAlu")
+    (set_attr "longConstant" "false,true,false,true,false,false,true")
+    (set_attr "length" "2,4,4,4,4,2,4")])
+
+(define_insn "movsi"
+  [(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,a,m")
+	(match_operand:SI 1 "general_operand" "r,a,m,i,r,r"))]
+  ""
+  "@
+    // %R0 := %R1 (SI)\n\tCOPY.%# %L1,%L0 %| COPY.1 %U1,%U0
+    LDL (%a1),%R0\t\t// %R0 = Mem(%a1)
+    LDL %a1,%R0\t\t// %R0 = Mem(%M1{byte})
+    // %R0 := #%1 (SI)\n\tCOPY.%# %L1,%L0 %| COPY.%# %U1,%U0
+    STL %R1,(%a0)\t\t// Mem(%a0) := %R1
+    STL %R1,%a0\t\t// Mem(%M0{byte}) := %R1"
+  [(set_attr "type" "unknown,mem,mem,unknown,mem,mem")
+   (set_attr "longConstant" "false,true,false,true,false,false")
+   (set_attr "length" "4,4,4,6,4,4")])
+
+; Split an SI mode register copy into separate HI mode copies, which
+; can be VLIW'd with other instructions.  Only split the instruction
+; when VLIW scheduling is enabled.  Splitting the instruction saves
+; some code space.
+;
+; This is predicated in reload_completed.  This ensures that the
+; instructions aren't broken up too early which can result in the
+; SImode code being converted into inefficient HI mode code.
+
+(define_split
+  [(set (match_operand:SI 0 "register_operand" "")
+        (match_operand:SI 1 "register_operand" ""))]
+  "reload_completed && picochip_schedule_type == DFA_TYPE_SPEED"
+  [(set (match_dup 2) (match_dup 3))
+   (set (match_dup 4) (match_dup 5))]
+  "{
+     operands[2] = gen_lowpart (HImode, operands[0]);
+     operands[3] = gen_lowpart (HImode, operands[1]);
+     operands[4] = gen_highpart (HImode, operands[0]);
+     operands[5] = gen_highpart (HImode, operands[1]);
+ }")
+
+; SI Mode split for load constant.
+(define_split
+  [(set (match_operand:SI 0 "register_operand" "")
+        (match_operand:SI 1 "const_int_operand" ""))]
+  ""
+  [(set (match_dup 2) (match_dup 3))
+   (set (match_dup 4) (match_dup 5))]
+  "{
+     operands[2] = gen_lowpart (HImode, operands[0]);
+     operands[3] = picochip_get_low_const(operands[1]);
+     operands[4] = gen_highpart (HImode, operands[0]);
+     operands[5] = picochip_get_high_const(operands[1]);
+ }")
+
+(define_insn "movsf"
+  [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,m")
+	(match_operand:SF 1 "general_operand" "r,m,i,r"))]
+  ""
+  "@
+    // %R0 := %R1 (SF)\n\tCOPY.%# %L1,%L0 %| COPY.1 %U1,%U0
+    LDL %a1,%R0\t\t// %R0 :={SF} Mem(%M1{byte})
+    // %R0 := #%1 (SF)\n\tCOPY.%# %L1,%L0\n\tCOPY.%# %U1,%U0
+    STL %R1,%a0\t\t// Mem(%M0{byte}) :={SF} %R1")
+
+;;===========================================================================
+;; NOP
+;;===========================================================================
+
+;; No-operation (NOP)
+(define_insn "nop"
+  [(const_int 0)]
+  ""
+  "NOP\t// nop"
+  [(set_attr "length" "1")])
+
+;;===========================================================================
+;; Function Calls.  Define expands are used to ensure that the correct
+;; type of pattern is emitted, and then the define_insn's match the
+;; pattern using the correct types.
+;;
+;; Note: The comments output as part of these instructions are detected by
+;; the linker. Don't change the comments!
+;;===========================================================================
+
+(define_expand "call"
+  [(parallel [(call (match_operand:QI 0 "memory_operand" "")
+	 (match_operand 1 "const_int_operand" ""))
+         (clobber (reg:HI LINK_REGNUM))])]
+  ""
+  "")
+
+(define_insn "call_for_divmod"
+  [(call (match_operand:QI 0 "memory_operand" "")
+	 (match_operand 1 "const_int_operand" ""))]
+  ""
+  "JL (%M0)\t// fn_call %M0%>"
+  [(set_attr "length" "4")
+   (set_attr "type" "realBranch")
+   (set_attr "longConstant" "true")])
+
+(define_insn "*call_using_symbol"
+  [(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
+	 (match_operand 1 "const_int_operand" ""))
+         (clobber (reg:HI LINK_REGNUM))]
+  ""
+  "JL (%M0)\t// fn_call %M0%>"
+  [(set_attr "length" "4")
+   (set_attr "type" "realBranch")
+   (set_attr "longConstant" "true")])
+
+(define_insn "*call_using_register"
+  [(call (mem:QI (match_operand:HI 0 "register_operand" "r"))
+	 (match_operand 1 "const_int_operand" ""))
+         (clobber (reg:HI LINK_REGNUM))]
+  ""
+  "JL (%r0)\t// fn_call_unknown %r0%>"
+  [(set_attr "length" "2")
+   (set_attr "type" "realBranch")
+   (set_attr "longConstant" "false")])
+
+(define_expand "call_value"
+  [(parallel [(set (match_operand:HI       0 "" "")
+	(call:HI (match_operand:QI 1 "memory_operand" "g")
+	      (match_operand 2 "const_int_operand" "")))
+         (clobber (reg:HI LINK_REGNUM))])]
+  ""
+  "")
+
+(define_insn "*call_value_using_symbol"
+  [(set (match_operand:HI 0 "" "")
+	(call:HI (mem:QI (match_operand:HI 1 "immediate_operand" "i"))
+	      (match_operand 2 "const_int_operand" "")))
+         (clobber (reg:HI LINK_REGNUM))]
+  ""
+  "JL (%M1)\t// fn_call %M1 (value return)%>"
+  [(set_attr "length" "4")
+   (set_attr "type" "realBranch")
+   (set_attr "longConstant" "true")])
+
+(define_insn "*call_value_using_register"
+  [(set (match_operand:HI 0 "" "")
+	(call:HI (mem:QI (match_operand:HI 1 "register_operand" "r"))
+	      (match_operand 2 "const_int_operand" "")))
+         (clobber (reg:HI LINK_REGNUM))]
+  ""
+  "JL (%r1)// fn_call_unknown %r1 (value return)%>"
+  [(set_attr "length" "2")
+   (set_attr "type" "realBranch")
+   (set_attr "longConstant" "false")])
+
+;;===========================================================================
+;; Addition
+;;===========================================================================
+
+;; Note that the addition of a negative value is transformed into the
+;; subtraction of a positive value, so that the add/sub immediate slot
+;; can make better use of the 4-bit range.
+
+(define_insn "addhi3"
+  [(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
+	(plus:HI (match_operand:HI 1 "register_operand" "r,r,r,r")
+		 (match_operand:HI 2 "general_operand" "r,M,n,i")))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  {  if (CONST_INT == GET_CODE(operands[2]) &&
+         INTVAL(operands[2]) > -16 &&
+         INTVAL(operands[2]) < 0)
+       return "SUB.%# %1,-(%2),%0\t// %0 := %1 + %2 (HI)";
+     else
+       return "ADD.%# %1,%2,%0\t// %0 := %1 + %2 (HI)";
+  }
+  [(set_attr "type" "basicAlu,basicAlu,basicAlu,basicAlu")
+   (set_attr "longConstant" "false,false,true,true")
+   (set_attr "length" "2,2,4,4")]
+  )
+
+
+;; If we peepholed the compare instruction out, we need to make sure the add
+;; goes in slot 0. This pattern is just to accomplish that.
+
+(define_insn "addhi3_with_use_clause"
+  [(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
+        (plus:HI (match_operand:HI 1 "register_operand" "r,r,r,r")
+                 (match_operand:HI 2 "general_operand" "r,M,n,i")))
+   (set (reg:CC CC_REGNUM)
+        (match_operator:CC 3 "picochip_peephole_comparison_operator"
+                        [(const_int 0)
+                         (const_int 0)]))]
+  ""
+  {  if (CONST_INT == GET_CODE(operands[2]) &&
+         INTVAL(operands[2]) > -16 &&
+         INTVAL(operands[2]) < 0)
+       return "SUB.0 %1,-(%2),%0\t// %0 := %1 + %2 (HI)";
+     else
+       return "ADD.0 %1,%2,%0\t// %0 := %1 + %2 (HI)";
+  }
+  [(set_attr "type" "picoAlu,picoAlu,picoAlu,picoAlu")
+   (set_attr "longConstant" "false,false,true,true")
+   (set_attr "length" "2,2,4,4")]
+  )
+
+;; Match an addition in which the first operand has been shifted
+;; (e.g., the comms array functions can emit such instructions).
+(define_insn "*addWith1stOpShift"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(plus:HI (ashift:HI (match_operand:HI 1 "register_operand" "r,r")
+			    (match_operand:HI 2 "const_int_operand" ""))
+		 (match_operand:HI 3 "immediate_operand" "I,i")))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "ADD.0 [LSL %1,%2],%3,%0\t// %0 := (%1 << %2) + %3"
+  [(set_attr "type" "picoAlu,picoAlu")
+   (set_attr "longConstant" "false,true")])
+
+(define_insn_and_split "addsi3"
+  [(set (match_operand:SI 0 "register_operand" "=r,r")
+	(plus:SI (match_operand:SI 1 "register_operand" "r,r")
+		 (match_operand:SI 2 "general_operand" "r,i")))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "// %0 := %1 + %2 (SI)\n\tADD.0 %L1,%L2,%L0\n\tADDC.0 %U1,%U2,%U0"
+  "reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
+  [(match_dup 4)
+   (match_dup 5)]
+  "
+{
+  rtx op0_high = gen_highpart (HImode, operands[0]);
+  rtx op1_high = gen_highpart (HImode, operands[1]);
+  rtx op0_low  = gen_lowpart (HImode, operands[0]);
+  rtx op1_low  = gen_lowpart (HImode, operands[1]);
+  rtx op2_high, op2_low;
+
+  if (CONST_INT == GET_CODE(operands[2]))
+  {
+    op2_high = picochip_get_high_const(operands[2]);
+    op2_low = picochip_get_low_const(operands[2]);
+  } else {
+    op2_high = gen_highpart (HImode, operands[2]);
+    op2_low  = gen_lowpart (HImode, operands[2]);
+  }
+
+  operands[4] = gen_add_multi_lower (op0_low, op1_low, op2_low);
+  operands[5] = gen_add_multi_upper (op0_high, op1_high, op2_high);
+
+}")
+
+;; Perform the lowest part of a multi-part addition (SI/DI). This sets
+;; the flags, so is an picoAlu instruction (we could use a
+;; conventional addhi, but the addhi is better off being a treated as
+;; a basicAlu instruction, rather than a picoAlu instruction).
+(define_insn "add_multi_lower"
+  [(set (match_operand:HI 0 "register_operand" "=r,r,r")
+	(plus:HI (match_operand:HI 1 "register_operand" "r,r,r")
+		 (match_operand:HI 2 "general_operand" "r,M,i")))
+   (set (reg:CC CC_REGNUM)
+	(compare:CC (plus:HI (match_dup 1)
+			     (match_dup 2))
+		    (const_int 0)))]
+  ""
+  {  if (CONST_INT == GET_CODE(operands[2]) &&
+         INTVAL(operands[2]) > -16 &&
+         INTVAL(operands[2]) < 0)
+       return "SUB.%# %1,-(%2),%0\t// %0+carry := %1 + %2 (low multi-part)";
+     else
+       return "ADD.%# %1,%2,%0\t// %0+carry := %1 + %2 (low multi-part)";
+  }
+  [(set_attr "type" "picoAlu,picoAlu,picoAlu")
+   (set_attr "longConstant" "false,false,true")
+   (set_attr "length" "2,2,4")])
+
+;; Perform the central part of a multi-part addition (DI). This uses
+;; the CC register, and also sets the CC register, so needs to be
+;; placed in the first ALU slot.  Note that the ADDC must
+;; use the long constant to represent immediates.
+(define_insn "add_multi_mid"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(plus:HI (match_operand:HI 1 "register_operand" "r,r")
+		 (plus:HI (match_operand:HI 2 "general_operand" "r,i")
+			  (reg:CC CC_REGNUM))))
+   (set (reg:CC CC_REGNUM)
+	(compare:CC (plus:HI (match_dup 1)
+			     (match_dup 2))
+		    (const_int 0)))]
+  ""
+  "ADDC.%# %1,%2,%0\t// %0+carry := carry + %1 + %2 (mid multi-part)"
+  [(set_attr "type" "picoAlu,picoAlu")
+   (set_attr "longConstant" "false,true")
+   (set_attr "length" "2,4")])
+
+;; Perform the highest part of a multi-part addition (SI/DI). This
+;; uses the CC register, but doesn't require any registers to be set,
+;; so may be scheduled in either of the ALU's.  Note that the ADDC must
+;; use the long constant to represent immediates.
+(define_insn "add_multi_upper"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(plus:HI (match_operand:HI 1 "register_operand" "r,r")
+		 (plus:HI (match_operand:HI 2 "general_operand" "r,i")
+			  (reg:CC CC_REGNUM))))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "ADDC.%# %1,%2,%0\t// %0 := carry + %1 + %2 (high multi-part)"
+  [(set_attr "type" "basicAlu,basicAlu")
+   (set_attr "longConstant" "false,true")
+   (set_attr "length" "2,4")])
+
+;; The lea instruction is a special type of add operation, which looks
+;; like a movhi (reg := address). It expands into reg := fp +
+;; offset.  Ideally there should be two variants, which take different
+;; sized offsets (i.e., using the long constant, or not, as
+;; appropriate).  However, the address operand may have arbitrary
+;; values added to it later (i.e., the AP will be eliminated, possibly
+;; converting a small offset into a long offset), so a long offset is
+;; always assumed.
+
+;; Note that the lea can use an addition, and hence may modify the CC
+;; register.  This upsets scheduling, so instead the lea is placed in
+;; ALU 1 where it cannot modify CC.
+
+(define_insn "*lea_add"
+ [(set (match_operand:HI 0 "nonimmediate_operand" "=r")
+       (plus:HI (match_operand:HI 1 "register_operand" "r")
+		(match_operand:HI 2 "immediate_operand" "i")))]
+ ""
+ "ADD.1 %1,%2,%0\t// lea (add)")
+
+;; Note that, though this instruction looks similar to movhi pattern,
+;; "p" constraint cannot be specified for operands other than 
+;; address_operand, hence the extra pattern below.
+(define_insn "*lea_move"
+  [(set (match_operand:HI 0 "nonimmediate_operand" "=r")
+        (match_operand:HI 1 "address_operand" "p"))]
+  ""
+  {
+    if (REG == GET_CODE(operands[1]))
+      return "COPY.1 %1,%0\t// %0 := %1 (lea)";
+    else
+      return "ADD.1 %b1,%o1,%0\t\t// %0 := %b1 + %o1 (lea)";
+  }
+  [(set_attr "type" "nonCcAlu")
+   (set_attr "longConstant" "true")
+   (set_attr "length" "4")])
+
+
+;;===========================================================================
+;; Subtraction.  Note that these patterns never take immediate second
+;; operands, since those cases are handled by canonicalising the
+;; instruction into the addition of a negative costant.
+;; But, if the first operand needs to be a negative constant, it
+;; is supported here.
+;;===========================================================================
+
+(define_insn "subhi3"
+  [(set (match_operand:HI 0 "register_operand" "=r,r,r")
+	(minus:HI (match_operand:HI 1 "general_operand" "r,I,i")
+		  (match_operand:HI 2 "register_operand" "r,r,r")))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "SUB.%# %1,%2,%0 // %0 := %1 - %2 (HI)"
+  [(set_attr "type" "basicAlu,basicAlu,basicAlu")
+   (set_attr "longConstant" "false,true,true")
+   (set_attr "length" "2,4,4")])
+
+;; If we peepholed the compare instruction out, we need to make sure the
+;; sub goes in slot 0. This pattern is just to accomplish that.
+
+(define_insn "subhi3_with_use_clause"
+  [(set (match_operand:HI 0 "register_operand" "=r,r,r")
+	(minus:HI (match_operand:HI 1 "general_operand" "r,I,i")
+		  (match_operand:HI 2 "register_operand" "r,r,r")))
+   (set (reg:CC CC_REGNUM)
+        (match_operator:CC 3 "picochip_peephole_comparison_operator"
+                        [(const_int 0)
+                         (const_int 0)]))]
+  ""
+  "SUB.0 %1,%2,%0 // %0 := %1 - %2 (HI)"
+  [(set_attr "type" "picoAlu,picoAlu,picoAlu")
+   (set_attr "longConstant" "false,true,true")
+   (set_attr "length" "2,4,4")])
+
+(define_insn_and_split "subsi3"
+  [(set (match_operand:SI 0 "register_operand" "=r,r")
+	(minus:SI (match_operand:SI 1 "general_operand" "r,i")
+		  (match_operand:SI 2 "register_operand" "r,r")))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "// %0 := %1 - %2 (SI)\n\tSUB.%# %L1,%L2,%L0\n\tSUBB.%# %U1,%U2,%U0"
+  "reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
+  [(match_dup 4)
+   (match_dup 5)]
+  "
+{
+  rtx op0_high = gen_highpart (HImode, operands[0]);
+  rtx op0_low  = gen_lowpart (HImode, operands[0]);
+  rtx op2_high = gen_highpart (HImode, operands[2]);
+  rtx op2_low = gen_lowpart (HImode, operands[2]);
+  rtx op1_high,op1_low;
+
+  if (CONST_INT == GET_CODE(operands[1]))
+  {
+    op1_high = picochip_get_high_const(operands[1]);
+    op1_low = picochip_get_low_const(operands[1]);
+  } else {
+    op1_high = gen_highpart (HImode, operands[1]);
+    op1_low  = gen_lowpart (HImode, operands[1]);
+  }
+
+
+  operands[4] = gen_sub_multi_lower (op0_low, op1_low, op2_low);
+  operands[5] = gen_sub_multi_upper (op0_high, op1_high, op2_high);
+
+}")
+
+;; Match the patterns emitted by the multi-part subtraction splitting.
+;; This sets the CC register, so it needs to go into slot 0.
+(define_insn "sub_multi_lower"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(minus:HI (match_operand:HI 1 "general_operand" "r,i")
+		  (match_operand:HI 2 "register_operand" "r,r")))
+   (set (reg:CC CC_REGNUM)
+	(compare:CC (minus:HI (match_dup 1) (match_dup 2))
+		    (const_int 0)))]
+  ""
+  "SUB.%# %1,%2,%0\t// %0+carry := %1 - %2 (lower SI)"
+  [(set_attr "type" "picoAlu,picoAlu")
+   (set_attr "longConstant" "false,true")
+   (set_attr "length" "2,4")])
+
+;; Perform the central part of a multi-part addition (DI). This uses
+;; the CC register, and also sets the CC register, so needs to be
+;; placed in the first ALU.
+(define_insn "sub_multi_mid"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(minus:HI (match_operand:HI 1 "general_operand" "r,i")
+		  (minus:HI (match_operand:HI 2 "register_operand" "r,r")
+			    (reg:CC CC_REGNUM))))
+   (set (reg:CC CC_REGNUM)
+	(compare:CC (minus:HI (match_dup 1)
+			      (match_dup 2))
+		    (const_int 0)))]
+  ""
+  "SUBB.%# %1,%2,%0\t// %0+carry := carry - %1 - %2 (mid multi-part)"
+  [(set_attr "type" "picoAlu,picoAlu")
+   (set_attr "longConstant" "false,true")
+   (set_attr "length" "2,4")])
+
+(define_insn "sub_multi_upper"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(minus:HI (match_operand:HI 1 "general_operand" "r,i")
+		  (minus:HI (match_operand:HI 2 "register_operand" "r,r")
+			    (reg:CC CC_REGNUM))))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "SUBB.%# %1,%2,%0\t// %0 := carry - %1 - %2 (upper SI)"
+  [(set_attr "type" "basicAlu,basicAlu")
+   (set_attr "longConstant" "false,true")
+   (set_attr "length" "2,4")])
+
+;;===========================================================================
+;; Multiplication (signed)
+;;===========================================================================
+
+(define_insn "multiply_machi"
+  [(set (reg:HI ACC_REGNUM)
+        (mult:HI (match_operand:HI 0 "register_operand" "r,r")
+                 (match_operand:HI 1
+                        "picochip_register_or_immediate_operand" "r,i")))]
+  "TARGET_HAS_MAC_UNIT"
+  "MUL %0,%1,acc0\t// acc0 := %0 * %1 (signed)"
+  [(set_attr "length" "3,5")
+   (set_attr "type" "mac,mac")
+   (set_attr "longConstant" "false,true")])
+
+(define_expand "mulhi3"
+  [(set (match_operand:HI 0 "register_operand" "")
+	(mult:HI (match_operand:HI 1 "register_operand" "")
+		 (match_operand:HI 2 "picochip_register_or_immediate_operand" "")))]
+  "TARGET_HAS_MULTIPLY"
+  "")
+
+;; Different types of mulhi, depending on the AE type. If the AE has MUL unit,
+;; use the following pattern.
+(define_insn "*mulhi3_mul"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(mult:HI (match_operand:HI 1 "register_operand" "r,r")
+		 (match_operand:HI 2
+			"picochip_register_or_immediate_operand" "r,i")))]
+  "TARGET_HAS_MUL_UNIT"
+  "MULL %1,%2,%0 // %0 := %1 * %2 (HI)"
+  [(set_attr "length" "3,5")
+   (set_attr "type" "mul,mul")
+   (set_attr "longConstant" "false,true")])
+
+;; If the AE has MAC unit, instead, use the following pattern.
+(define_insn_and_split "*mulhi3_mac"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(mult:HI (match_operand:HI 1 "register_operand" "r,r")
+		 (match_operand:HI 2
+			"picochip_register_or_immediate_operand" "r,i")))]
+  "TARGET_HAS_MAC_UNIT"
+  "// %0 := %1 * %2\n\tMUL %1,%2,acc0\n\tREADACC acc0,frac,%0"
+  "TARGET_HAS_MAC_UNIT && reload_completed"
+  [(match_dup 3)
+   (match_dup 4)]
+  "
+{
+    rtx const_rtx = GEN_INT(0);
+    operands[3] = (gen_multiply_machi(operands[1], operands[2]));
+    operands[4] = (gen_movhi_mac(operands[0],const_rtx));
+} "
+)
+
+(define_insn "umultiply_machisi"
+  [(set (reg:SI ACC_REGNUM)
+	(mult:SI (zero_extend:SI (match_operand:HI 0 "register_operand" "r"))
+		 (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))))]
+  "TARGET_HAS_MAC_UNIT"
+  "MULUU %0,%1,acc0\t// acc0 := %0 * %1 (unsigned)"
+  [(set_attr "length" "3")
+   (set_attr "type" "mac")
+   (set_attr "longConstant" "false")])
+
+(define_insn "multiply_machisi"
+  [(set (reg:SI ACC_REGNUM)
+        (mult:SI (sign_extend:SI (match_operand:HI 0 "register_operand" "r,r"))
+                 (sign_extend:SI (match_operand:HI 1
+                        "picochip_register_or_immediate_operand" "r,i"))))]
+  "TARGET_HAS_MAC_UNIT"
+  "MUL %0,%1,acc0\t// acc0 := %0 * %1 (signed)"
+  [(set_attr "length" "3,5")
+   (set_attr "type" "mac,mac")
+   (set_attr "longConstant" "false,true")])
+
+;; We want to prevent GCC from thinking ACC is a normal register and using
+;; this pattern. We want it to be used only when you use MAC unit 
+;; multiplication. Added a "use" clause for that sake.
+(define_insn "movsi_mac"
+   [(set (match_operand:SI 0 "register_operand" "=r")
+        (reg:SI ACC_REGNUM))
+    (use (match_operand:SI 1 "const_int_operand" ""))]
+  "TARGET_HAS_MAC_UNIT"
+  "READACC32 acc0,%R0 \t// %0 := acc0 "
+  [(set_attr "length" "3")
+   (set_attr "type" "mac")
+   (set_attr "longConstant" "false")])
+
+;; We want to prevent GCC from thinking ACC is a normal register and using
+;; this pattern. We want it to be used only when you use MAC unit 
+;; multiplication. Added a "use" clause for that sake.
+(define_insn "movhi_mac"
+   [(set (match_operand:HI 0 "register_operand" "=r")
+        (reg:HI ACC_REGNUM) )
+    (use (match_operand:HI 1 "const_int_operand" ""))]
+  "TARGET_HAS_MAC_UNIT"
+  "READACC acc0,frac,%0 \t// %0 := acc0 "
+  [(set_attr "length" "3")
+   (set_attr "type" "mac")
+   (set_attr "longConstant" "false")])
+
+;; 16-bit to 32-bit widening signed multiplication.
+(define_expand "mulhisi3"
+  [(set (match_operand:SI 0 "register_operand" "=&r")
+	(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
+		 (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+  "TARGET_HAS_MULTIPLY"
+  ""
+)
+
+(define_insn_and_split "*mulhisi3_mul"
+  [(set (match_operand:SI 0 "register_operand" "=&r")
+	(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
+		 (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+  "TARGET_HAS_MUL_UNIT"
+  "// %0 := %1 * %2 (HI->SI)\;MULL %1,%2,%L0\;MULH %1,%2,%U0";
+  "TARGET_HAS_MUL_UNIT && reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
+  [(match_dup 3)
+   (match_dup 4)]
+  "
+{
+  rtx op0_high = gen_highpart (HImode, operands[0]);
+  rtx op0_low  = gen_lowpart (HImode, operands[0]);
+  operands[3] = gen_mulhisi3_mul_lower(op0_low,operands[1],operands[2]);
+  operands[4] = gen_mulhisi3_mul_higher(op0_high,operands[1],operands[2]);
+}
+  "
+)
+
+(define_insn "mulhisi3_mul_lower"
+  [(set (match_operand:HI 0 "register_operand" "=&r")
+	(subreg:HI 
+         (mult:SI 
+          (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
+	  (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) 0))]
+  "TARGET_HAS_MUL_UNIT"
+  "MULL %1,%2,%0"
+  [(set_attr "length" "3")
+   (set_attr "type" "mul")
+   (set_attr "longConstant" "false")])
+
+(define_insn "mulhisi3_mul_higher"
+  [(set (match_operand:HI 0 "register_operand" "=&r")
+	(subreg:HI 
+         (mult:SI 
+          (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
+	  (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) 2))]
+  "TARGET_HAS_MUL_UNIT"
+  "MULH %1,%2,%0"
+  [(set_attr "length" "3")
+   (set_attr "type" "mul")
+   (set_attr "longConstant" "false")])
+
+(define_insn_and_split "*mulhisi3_mac"
+  [(set (match_operand:SI 0 "register_operand" "=&r")
+	(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
+		 (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+  "TARGET_HAS_MAC_UNIT"
+  "// %0 := %1 * %2 (HI->SI) STAN2\;MUL %1,%2,acc0\;READACC32 acc0,%R0";
+  "TARGET_HAS_MAC_UNIT && reload_completed"
+  [(match_dup 3)
+   (match_dup 4)]
+  "
+{
+    rtx const_rtx = gen_int_mode(0,SImode);
+    operands[3] = (gen_multiply_machisi(operands[1], operands[2]));
+    operands[4] = (gen_movsi_mac(operands[0],const_rtx));
+} "
+)
+		
+;;===========================================================================
+;; Widening multiplication (unsigned)
+;;===========================================================================
+
+(define_expand "umulhisi3"
+  [(set (match_operand:SI 0 "register_operand" "=&r")
+	(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
+		 (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+  "TARGET_HAS_MULTIPLY"
+  ""
+)
+
+(define_insn_and_split "*umulhisi3_mul"
+  [(set (match_operand:SI 0 "register_operand" "=&r")
+	(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
+		 (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+  "TARGET_HAS_MUL_UNIT"
+  "// %0 := %1 * %2 (uHI->uSI Type 1)\;MULUL %1,%2,%L0\n\tMULUH %1,%2,%U0";
+  "TARGET_HAS_MUL_UNIT && reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
+  [(match_dup 3)
+   (match_dup 4)]
+  "
+{
+  rtx op0_high = gen_highpart (HImode, operands[0]);
+  rtx op0_low  = gen_lowpart (HImode, operands[0]);
+  operands[3] = gen_umulhisi3_mul_lower(op0_low,operands[1],operands[2]);
+  operands[4] = gen_umulhisi3_mul_higher(op0_high,operands[1],operands[2]);
+}
+  "
+  )
+
+(define_insn "umulhisi3_mul_lower"
+  [(set (match_operand:HI 0 "register_operand" "=&r")
+	(subreg:HI 
+         (mult:SI 
+          (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
+	  (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))) 0))]
+  "TARGET_HAS_MUL_UNIT"
+  "MULUL %1,%2,%0"
+  [(set_attr "length" "3")
+   (set_attr "type" "mul")
+   (set_attr "longConstant" "false")])
+
+(define_insn "umulhisi3_mul_higher"
+  [(set (match_operand:HI 0 "register_operand" "=&r")
+	(subreg:HI 
+         (mult:SI 
+          (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
+	  (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))) 2))]
+  "TARGET_HAS_MUL_UNIT"
+  "MULUH %1,%2,%0"
+  [(set_attr "length" "3")
+   (set_attr "type" "mul")
+   (set_attr "longConstant" "false")])
+
+(define_insn_and_split "*umulhisi3_mac"
+  [(set (match_operand:SI 0 "register_operand" "=&r")
+	(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
+		 (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+  "TARGET_HAS_MAC_UNIT"
+  "// %0 := %1 * %2 (uHI->uSI Type 3)\;MULUU %1,%2,acc0\;READACC32 acc0,%R0";
+  "TARGET_HAS_MAC_UNIT && reload_completed"
+  [(match_dup 3)
+   (match_dup 4)]
+  "
+{
+    rtx const_rtx = gen_int_mode(0,SImode);
+    operands[3] = (gen_umultiply_machisi(operands[1], operands[2]));
+    operands[4] = (gen_movsi_mac(operands[0],const_rtx));
+} "
+)
+
+;;===========================================================================
+;; Division (signed)
+;;===========================================================================
+
+;; Perform a divmod operation as a function call.  This results in some
+;; registers being clobbered (r0-6, r12 - ignore r13,14 as these are
+;; known not to be affected).
+(define_expand "divmodhi4"
+  [
+   ; Copy the inputs to r0 and r1.
+   (set (reg:HI 0) (match_operand:HI 1 "register_operand" ""))
+   (set (reg:HI 1) (match_operand:HI 2 "register_operand" ""))
+   ; Make the function call - note that r12 (link) is clobbered. Note also
+   ; that an explicit call is generated. This ensures that gcc notices that
+   ; any function containing a div/mod is not a leaf function. 
+   (parallel [(match_dup 4)
+	      (set (reg:HI 0) (div:HI (reg:HI 0) (reg:HI 1)))
+              (set (reg:HI 1) (mod:HI (reg:HI 0) (reg:HI 1)))
+              (clobber (reg:HI 2))
+              (clobber (reg:HI 3))
+              (clobber (reg:HI 4))
+              (clobber (reg:HI 5))
+              (clobber (reg:HI 12))
+              (clobber (reg:CC CC_REGNUM))
+	      ])
+   ; Set the quotient (returned in register 0)
+   (set (match_operand:HI 0 "register_operand" "") (reg:HI 0))
+   ; Set the remainder (returned in register 1)
+   (set (match_operand:HI 3 "register_operand" "") (reg:HI 1))]
+  ""
+{
+  rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_divmodhi4");
+  operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
+})
+
+; Match a call to divmodhi4.  As this is a call, the link register
+; (r12), and registers r0-5 must be clobbered.  Ignore clobbering of
+; r13/4 as these aren't used by the divide function).
+(define_insn "*divmodhi4_call"
+  [(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
+	 (match_operand 1 "const_int_operand" ""))
+   (set (reg:HI 0) (div:HI (reg:HI 0) (reg:HI 1)))
+   (set (reg:HI 1) (mod:HI (reg:HI 0) (reg:HI 1)))
+   (clobber (reg:HI 2))
+   (clobber (reg:HI 3))
+   (clobber (reg:HI 4))
+   (clobber (reg:HI 5))
+   (clobber (reg:HI 12))
+   (clobber (reg:CC CC_REGNUM))
+]
+  ""
+  "JL (%0)\t// call %0%>"
+  [(set_attr "length" "4")
+   (set_attr "longConstant" "true")
+   (set_attr "type" "call")])
+
+;; Perform a udivmod operation as a function call.  This results in some
+;; registers being clobbered (r0-6, r12 - ignore r13,14 as these are
+;; known not to be affected).
+(define_expand "udivmodhi4"
+  [
+   ; Copy the inputs to r0 and r1.
+   (set (reg:HI 0) (match_operand:HI 1 "register_operand" ""))
+   (set (reg:HI 1) (match_operand:HI 2 "register_operand" ""))
+   ; Make the function call - note that r12 (link) is clobbered. Note also
+   ; that an explicit call is generated. This ensures that gcc notices that
+   ; any function containing a div/mod is not a leaf function. 
+   (parallel [(match_dup 4)
+	      (set (reg:HI 0) (udiv:HI (reg:HI 0) (reg:HI 1)))
+              (set (reg:HI 1) (umod:HI (reg:HI 0) (reg:HI 1)))
+              (clobber (reg:HI 2))
+              (clobber (reg:HI 3))
+              (clobber (reg:HI 4))
+              (clobber (reg:HI 5))
+              (clobber (reg:HI 12))
+              (clobber (reg:CC CC_REGNUM))
+	      ])
+   ; Set the quotient (returned in register 0)
+   (set (match_operand:HI 0 "register_operand" "") (reg:HI 0))
+   ; Set the remainder (returned in register 1)
+   (set (match_operand:HI 3 "register_operand" "") (reg:HI 1))]
+  ""
+{
+  rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_udivmodhi4");
+  operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
+})
+
+; Match a call to udivmodhi4.  As this is a call, the link register
+; (r12), and registers r0-5 must be clobbered.  Ignore clobbering of
+; r13/4 as these aren't used by the divide function).
+(define_insn "*udivmodhi4_call"
+  [(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
+	 (match_operand 1 "const_int_operand" ""))
+   (set (reg:HI 0) (udiv:HI (reg:HI 0) (reg:HI 1)))
+   (set (reg:HI 1) (umod:HI (reg:HI 0) (reg:HI 1)))
+   (clobber (reg:HI 2))
+   (clobber (reg:HI 3))
+   (clobber (reg:HI 4))
+   (clobber (reg:HI 5))
+   (clobber (reg:HI 12))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "JL (%0)\t// call %0%>"
+  [(set_attr "length" "4")
+   (set_attr "longConstant" "true")
+   (set_attr "type" "call")])
+
+(define_expand "udivmodsi4"
+  [
+   ; Make the function call
+   (set (reg:SI 0) (match_operand:SI 1 "register_operand" ""))
+   (set (reg:SI 2) (match_operand:SI 2 "register_operand" ""))
+   (parallel [
+     (match_dup 4)
+     (set (reg:SI 4) (udiv:SI (reg:SI 0) (reg:SI 2)))
+     (set (reg:SI 6) (umod:SI (reg:SI 0) (reg:SI 2)))
+     (clobber (reg:SI 0))
+     (clobber (reg:SI 2))
+     (clobber (reg:HI 12))
+   (clobber (reg:CC CC_REGNUM))])
+   (set (match_operand:SI 0 "register_operand" "") (reg:SI 4))
+   (set (match_operand:SI 3 "register_operand" "") (reg:SI 6))]
+  ""
+{
+  rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_udivmodsi4");
+  operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
+})
+
+(define_insn "*udivmodsi4_call"
+  [(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
+	 (match_operand 1 "const_int_operand" ""))
+   (set (reg:SI 4) (udiv:SI (reg:SI 0) (reg:SI 2)))
+   (set (reg:SI 6) (umod:SI (reg:SI 0) (reg:SI 2)))
+   (clobber (reg:SI 0))
+   (clobber (reg:SI 2))
+   (clobber (reg:HI 12))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "JL (%0)\t// call %0%>"
+  [(set_attr "length" "4")
+   (set_attr "longConstant" "true")
+   (set_attr "type" "call")])
+
+(define_expand "divmodsi4"
+  [
+   ; Make the function call
+   (set (reg:SI 0) (match_operand:SI 1 "register_operand" ""))
+   (set (reg:SI 2) (match_operand:SI 2 "register_operand" ""))
+   (parallel [
+     (match_dup 4)
+     (set (reg:SI 4) (div:SI (reg:SI 0) (reg:SI 2)))
+     (set (reg:SI 6) (mod:SI (reg:SI 0) (reg:SI 2)))
+     (clobber (reg:SI 0))
+     (clobber (reg:SI 2))
+     (clobber (reg:HI 12))
+     (clobber (reg:CC CC_REGNUM))])
+   (set (match_operand:SI 0 "register_operand" "") (reg:SI 4))
+   (set (match_operand:SI 3 "register_operand" "") (reg:SI 6))]
+  ""
+{
+  rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_divmodsi4");
+  operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
+})
+
+(define_insn "*divmodsi4_call"
+  [(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
+	 (match_operand 1 "const_int_operand" ""))
+   (set (reg:SI 4) (div:SI (reg:SI 0) (reg:SI 2)))
+   (set (reg:SI 6) (mod:SI (reg:SI 0) (reg:SI 2)))
+   (clobber (reg:SI 0))
+   (clobber (reg:SI 2))
+   (clobber (reg:HI 12))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "JL (%0)\t// call %0%>"
+  [(set_attr "length" "4")
+   (set_attr "longConstant" "true")
+   (set_attr "type" "call")])
+
+;;===========================================================================
+;; Bitwise AND.  The QI/SI mode instructions are automatically
+;; synthesised from the HI mode instruction.
+;;===========================================================================
+
+(define_insn "andhi3"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(and:HI (match_operand:HI 1 "register_operand" "r,r")
+		(match_operand:HI 2 "general_operand" "r,n")))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "AND.%# %1,%2,%0 // %0 := %1 AND %2 (HI)"
+  [(set_attr "type" "basicAlu,basicAlu")
+   (set_attr "longConstant" "false,true")
+   (set_attr "length" "3,5")])
+
+;; If we peepholed the compare instruction out, we need to make sure the
+;; "and" goes in slot 0. This pattern is just to accomplish that.
+
+(define_insn "andhi3_with_use_clause"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+        (and:HI (match_operand:HI 1 "register_operand" "r,r")
+                (match_operand:HI 2 "general_operand" "r,n")))
+   (set (reg:CC CC_REGNUM)
+        (match_operator:CC 3 "picochip_peephole_comparison_operator"
+                        [(const_int 0)
+                         (const_int 0)]))]
+  ""
+  "AND.0 %1,%2,%0 // %0 := %1 AND %2 (HI)"
+  [(set_attr "type" "picoAlu,picoAlu")
+   (set_attr "longConstant" "false,true")
+   (set_attr "length" "3,5")])
+
+;;===========================================================================
+;; Bitwise inclusive-OR.  The QI mode instruction is automatically
+;; synthesised from the HI mode instruction.
+;;===========================================================================
+
+(define_insn "iorhi3"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(ior:HI (match_operand:HI 1 "register_operand" "r,r")
+		(match_operand:HI 2 "register_operand" "r,n")))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "OR.%# %1,%2,%0 // %0 := %1 IOR %2 (HI)"
+  [(set_attr "type" "basicAlu,basicAlu")
+   (set_attr "longConstant" "false,true")
+   (set_attr "length" "3,5")])
+
+(define_insn "iorhi3_with_use_clause"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+        (ior:HI (match_operand:HI 1 "register_operand" "r,r")
+                (match_operand:HI 2 "general_operand" "r,n")))
+   (set (reg:CC CC_REGNUM)
+        (match_operator:CC 3 "picochip_peephole_comparison_operator"
+                        [(const_int 0)
+                         (const_int 0)]))]
+  ""
+  "OR.0 %1,%2,%0 // %0 := %1 IOR %2 (HI)"
+  [(set_attr "type" "picoAlu,picoAlu")
+   (set_attr "longConstant" "false,true")
+   (set_attr "length" "3,5")])
+
+;;===========================================================================
+;; Bitwise exclusive-OR.  The QI/SI mode instructions are automatically
+;; synthesised from the HI mode instruction.
+;;===========================================================================
+
+(define_insn "xorhi3"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(xor:HI (match_operand:HI 1 "register_operand" "r,r")
+		(match_operand:HI 2 "picochip_register_or_immediate_operand" "r,n")))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "XOR.%# %1,%2,%0 // %0 := %1 XOR %2 (HI)"
+  [(set_attr "type" "basicAlu,basicAlu")
+   (set_attr "longConstant" "false,true")
+   (set_attr "length" "3,5")])
+
+;;===========================================================================
+;; Arithmetic shift left.
+;;===========================================================================
+
+(define_insn "ashlhi3"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(ashift:HI (match_operand:HI 1 "register_operand" "r,r")
+		(match_operand:HI 2 "general_operand" "r,J")))]
+  ""
+  "LSL.%# %1,%2,%0 // %0 := %1 << %2"
+  [(set_attr "type" "picoAlu,basicAlu")
+   (set_attr "length" "3,3")])
+
+;;===========================================================================
+;; Arithmetic shift right.
+;;===========================================================================
+
+(define_insn "builtin_asri"
+  [(set (match_operand:HI 0 "register_operand" "=r")
+	(ashiftrt:HI (match_operand:HI 1 "register_operand" "r")
+		     (match_operand:HI 2 "immediate_operand" "")))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "ASR.%# %1,%2,%0\t// %0 = %1 >>{arith} %2"
+  [(set_attr "type" "basicAlu")
+   (set_attr "length" "3")])
+
+;; The picoChip ISA doesn't have a variable arithmetic shift right, so
+;; synthesise it.  Shifts by constants are directly supported.
+
+(define_expand "ashrhi3"
+  [(match_operand:HI 0 "register_operand" "")
+   (match_operand:HI 1 "register_operand" "")
+   (match_operand:HI 2 "picochip_register_or_immediate_operand" "")]
+  ""
+{
+  if (GET_CODE(operands[2]) == CONST_INT)
+    /* Shift by constant is easy. */
+    emit_insn (gen_builtin_asri (operands[0], operands[1], operands[2]));
+  else
+  {
+    /* Synthesise a variable shift. */
+
+    /* Fill a temporary with the sign bits. */
+    rtx tmp1 = gen_reg_rtx (HImode);
+    emit_insn (gen_builtin_asri (tmp1, operands[1], GEN_INT(15)));
+
+    /* Shift the unsigned value. */
+    rtx tmp2 = gen_reg_rtx (HImode);
+    emit_insn (gen_lshrhi3 (tmp2, operands[1], operands[2]));
+
+    /* The word of sign bits must be shifted back to the left, to zero
+     * out the unwanted lower bits.  The amount to shift left by is (15 -
+     * count). Since the shifts are computed modulo 16 (i.e., only the
+     * lower 4 bits of the count are used), the shift amount (15 - count)
+     * is equivalent to !count. */
+    rtx tmp3 = gen_reg_rtx (HImode);
+    rtx tmp3_1 = GEN_INT (-1);
+    emit_insn (gen_xorhi3 (tmp3, operands[2], tmp3_1));
+    rtx tmp4 = gen_reg_rtx (HImode);
+    emit_insn (gen_ashlhi3 (tmp4, tmp1, tmp3));
+
+    /* Combine the sign bits with the shifted value. */
+    emit_insn (gen_iorhi3 (operands[0], tmp2, tmp4));
+
+  }
+  DONE;
+})
+
+;;===========================================================================
+;; Logical shift right.
+;;===========================================================================
+
+(define_insn "lshrhi3"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(lshiftrt:HI (match_operand:HI 1 "register_operand" "r,r")
+		(match_operand:HI 2 "general_operand" "r,J")))]
+  ""
+  "LSR.%# %1,%2,%0 // %0 := %1 >> %2"
+  [(set_attr "type" "picoAlu,basicAlu")
+   (set_attr "length" "3,3")])
+
+;;===========================================================================
+;; Negate.
+;;===========================================================================
+
+;; Negations are performed by subtracting from the constant 0, which
+;; is loaded into a register.  By using a register containing 0, the
+;; chances of being able to CSE with another 0 value are increased.
+
+(define_expand "neghi2"
+  [(set (match_dup 2) (match_dup 3))
+   (parallel [(set (match_operand:HI 0 "register_operand" "=r")
+		   (minus:HI (match_dup 2)
+			     (match_operand:HI 1 "register_operand" "r")))
+	      (clobber (reg:CC CC_REGNUM))])]
+  ""
+  "operands[2] = gen_reg_rtx(HImode);
+   operands[3] = GEN_INT(0x00000000);")
+
+(define_expand "negsi2"
+  [(set (match_dup 2) (match_dup 3))
+   (parallel [(set (match_operand:SI 0 "register_operand" "=r")
+		   (minus:SI (match_dup 2)
+			     (match_operand:SI 1 "register_operand" "r")))
+	      (clobber (reg:CC CC_REGNUM))])]
+  ""
+  "operands[2] = gen_reg_rtx(SImode);
+   operands[3] = GEN_INT(0x00000000);")
+
+;;===========================================================================
+;; Absolute value. Taken from the Hacker's Delight, page 17. The second of the
+;; four options given there produces the smallest, fastest code.
+;;===========================================================================
+
+(define_insn_and_split "abshi2"
+  [(set (match_operand:HI 0 "register_operand" "")
+   (abs:HI (match_operand:HI 1 "register_operand" "")))]
+ ""
+ "#"
+ ""
+ [(parallel [(set (match_dup 2)
+                  (plus:HI (ashiftrt:HI (match_dup 1) (const_int 15))
+			   (match_dup 1)))
+             (clobber (reg:CC CC_REGNUM))])
+  (parallel [(set (match_dup 0)
+                  (xor:HI (ashiftrt:HI (match_dup 1) (const_int 15))
+			  (match_dup 2)))
+             (clobber (reg:CC CC_REGNUM))])]
+{
+  operands[2] = gen_reg_rtx (HImode);
+})
+
+;;===========================================================================
+;; Bitwise complement.  Use auto-synthesised variant for SI mode. Though this
+;; internally uses xor, the compiler doesnt automatically synthesize it using
+;; xor, if this pattern was removed.
+;;===========================================================================
+
+(define_insn "one_cmplhi2"
+  [(set (match_operand:HI 0 "register_operand" "=r")
+        (not:HI (match_operand:HI 1 "register_operand" "0")))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "XOR.%# %1,-1,%0 // %0 := ~%1"
+  [(set_attr "type" "basicAlu")
+   (set_attr "longConstant" "true")
+   (set_attr "length" "5")])
+
+;;===========================================================================
+;; Count leading zeros. The special sign-bit-count instruction can be used
+;; to help us here.
+;;    op1:=clz(op1)
+;; The code works by checking to see if the top bit is set. If it is,
+;; then there are no leading zeros. If the top bit is cleared, then
+;; the SBC instruction is used to determine how many more leading
+;; zeros are present, and adding one more for the initial zero.
+;;===========================================================================
+
+(define_insn "clzhi2"
+  [(set (match_operand:HI 0 "register_operand" "=&r")
+	(clz:HI (match_operand:HI 1 "register_operand" "r")))]
+  ""
+  "// Count leading zeros\;SBC %1,%0\;ASR.0 %1,15,r15 %| ADD.1 %0,1,%0\;COPYNE 0,%0"
+  [(set_attr "length" "11")])
+
+;;===========================================================================
+;; Count trailing zeros. This can be achieved efficiently by reversing
+;; using the bitrev instruction, and then counting the leading zeros as
+;; described above.
+;;===========================================================================
+
+(define_insn "ctzhi2"
+  [(set (match_operand:HI 0 "register_operand" "=&r")
+	(ctz:HI (match_operand:HI 1 "register_operand" "r")))]
+  ""
+  "// Count trailing zeros\;BREV %1,%0\;SBC %0,%0\;AND.0 %1,0x0001,r15 %| ADD.1 %0,1,%0\;COPYNE 0,%0"
+  [(set_attr "length" "15")])
+
+;;===========================================================================
+;; Find the first set bit, starting from the least significant bit position.
+;; This is very similar to the ctz function, except that the bit index is one
+;; greater than the number of trailing zeros (i.e., SBC + 2), and the
+;; result of ffs on the zero value is defined.
+;;===========================================================================
+
+(define_insn "ffshi2"
+  [(set (match_operand:HI 0 "register_operand" "=&r")
+	(ffs:HI (match_operand:HI 1 "register_operand" "r")))]
+  ""
+  "// First first bit\;BREV %1,%0\;SBC %0,%0\;AND.0 %1,0x0001,r15 %| ADD.1 %0,2,%0\;COPYNE 1,%0\;SUB.0 %1,0x0000,r15\;COPYEQ 0,%0"
+  [(set_attr "length" "20")])
+
+;;===========================================================================
+;; Tablejump Instruction.  Jump to an absolute address.
+;;===========================================================================
+
+(define_insn "tablejump"
+  [(set (pc) (unspec:HI [(match_operand:HI 0 "register_operand" "r")] 1))
+   (use (label_ref (match_operand 1 "" "")))
+   (clobber (match_dup 0))]
+  ""
+  "JR (%0)\t // Table jump to %0 %>"
+  [(set_attr "length" "2")
+   (set_attr "type" "realBranch")])
+
+;; Given the memory address of a QImode value, and a scratch register,
+;; store the memory operand into the given output operand.  The scratch
+;; operand will not conflict with either of the operands.  The other
+;; two operands may conflict with each other.
+
+(define_insn "synthesised_loadqi_unaligned"
+  [(set (match_operand:QI 0 "register_operand" "=r")
+        (match_operand:QI 1 "memory_operand" "m"))
+   (clobber (match_operand:HI 2 "register_operand" "=&r"))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "// Synthesised loadqi %0 = Mem(%1) (Scratch %2)\n\tAND.0 %1,-2,%2\n\tLDW (%2)0,%0 %| AND.0 %1,1,%2\n\tLSL.0 %2,3,%2\n\tSUB.0 8,%2,%2\n\tLSL.0 %0,%2,%0\n\tASR.0 %0,8,%0"
+  ; Approximate length only.  Probably a little shorter than this.
+  [(set_attr "length" "40")])
+
+;; Given a memory operand whose alignment is known (the HImode aligned
+;; base is operand 0, and the number of bits by which to shift is in
+;; operand 5),
+(define_expand "synthesised_storeqi_aligned"
+  [; s1 = mem_op
+   (set (match_operand:HI 2 "register_operand" "")
+	(match_operand:HI 0 "memory_operand" ""))
+   ; s1 = s1 and mask
+   (parallel [(set (match_dup 2) (and:HI (match_dup 2) (match_dup 5)))
+   (clobber (reg:CC CC_REGNUM))])
+   ; s2 = source << bitShift
+   (set (match_dup 3)
+	(ashift:HI (subreg:HI (match_operand:QI 1 "register_operand" "") 0)
+		   (match_operand:HI 4 "const_int_operand" "")))
+   ; s1 = s1 or s2
+   (parallel [(set (match_dup 2) (ior:HI (match_dup 2) (match_dup 3)))
+   (clobber (reg:CC CC_REGNUM))])
+   ; mem_op = s1
+   (set (match_dup 0) (match_dup 2))]
+  "!TARGET_HAS_BYTE_ACCESS"
+{
+  /* Create the byte mask 0xFF00. */
+  operands[5] = gen_int_mode(((~0xFF) >> INTVAL (operands[4])), HImode);
+})
+
+;; Reload instructions.  See picochip_secondary_reload for an
+;; explanation of why an SI mode register is used as a scratch.  The
+;; memory operand must be stored in a register (i.e., it can't be an
+;; offset to another register - this would require another scratch
+;; register into which the address of the offset could be computed).
+
+(define_expand "reload_inqi"
+  [(parallel [(match_operand:QI 0 "register_operand" "=&r")
+              (match_operand:QI 1 "memory_operand" "m")
+	      (match_operand:SI 2 "register_operand" "=&r")])]
+  "!TARGET_HAS_BYTE_ACCESS"
+{
+  rtx scratch, seq;
+
+  /* Get the scratch register.  Given an SI mode value, we have a
+     choice of two HI mode scratch registers, so we can be sure that at
+     least one of the scratch registers will be different to the output
+     register, operand[0]. */
+
+  if (REGNO (operands[0]) == REGNO (operands[2]))
+    scratch = gen_rtx_REG (HImode, REGNO (operands[2]) + 1);
+  else
+    scratch = gen_rtx_REG (HImode, REGNO (operands[2]));
+
+  /* Ensure that the scratch doesn't overlap either of the other
+     two operands - however, the other two may overlap each
+     other. */
+  gcc_assert (REGNO(scratch) != REGNO(operands[0]));
+  gcc_assert (REGNO(scratch) != REGNO(operands[1]));
+
+  gcc_assert (GET_CODE (operands[1]) == MEM);
+
+  if (picochip_word_aligned_memory_reference(XEXP(operands[1], 0)))
+  {
+    /* Aligned reloads are easy, since they can use word-loads. */
+    seq = gen_synthesised_loadqi_aligned(operands[0], operands[1], scratch);
+  }
+  else
+  {
+    /* Emit the instruction using a define_insn. */
+    seq = gen_synthesised_loadqi_unaligned(operands[0], operands[1], scratch);
+  }
+  emit_insn (seq);
+
+  DONE;
+
+})
+
+(define_expand "reload_outqi"
+  [(parallel [(match_operand 0 "memory_operand" "=m")
+	      (match_operand:QI 1 "register_operand" "r")
+	      (match_operand:SI 2 "register_operand" "=&r")])]
+  "!TARGET_HAS_BYTE_ACCESS"
+{
+  rtx scratch1 = gen_rtx_REG(HImode, REGNO(operands[2]));
+  rtx scratch2 = gen_rtx_REG(HImode, REGNO(operands[2]) + 1);
+  rtx seq;
+
+  gcc_assert (GET_CODE (operands[0]) == MEM);
+
+  if (picochip_word_aligned_memory_reference(XEXP(operands[0], 0)))
+    {
+      rtx alignedAddr, bitShift;
+
+      /* Convert the address of the known alignment into two operands
+       * representing the aligned base address, and the number of shift bits
+       * required to access the required value. */
+      picochip_get_hi_aligned_mem(operands[0], &alignedAddr, &bitShift);
+
+      /* Emit an aligned store of the source, with the given bit offset. */
+      seq = gen_synthesised_storeqi_aligned(alignedAddr, operands[1], scratch1, scratch2, bitShift);
+
+    }
+  else
+    {
+      /* This isnt exercised at all. Moreover, with new devices, byte access
+         is available in all variants. */
+      gcc_unreachable();
+    }
+
+  emit_insn (seq);
+  DONE;
+
+})
+
+;; Perform a byte load of an alignable memory operand.
+; op0 = register to load. op1 = memory operand from which to load
+; op2 = op1, aligned to HI, op3 = const bit shift required to extract byte,
+; op4 = INTVAL(8 - op3)
+(define_expand "synthesised_loadqi_aligned"
+  [; Load memory operand into register
+   (set (match_operand:HI 2 "register_operand" "=r")
+	(match_dup 3))
+   ; Shift required byte into top byte of word.
+   (set (match_dup 2)
+	(ashift:HI (match_dup 2)
+		   (match_dup 4)))
+   ; Arithmetic shift of byte to sign extend, and move to lowest register.
+   (parallel[(set (subreg:HI (match_dup 0) 0)
+	(ashiftrt:HI (match_dup 2) 
+		     (const_int 8)))
+   (clobber (reg:CC CC_REGNUM))])
+   (use (match_operand:QI 1 "picochip_alignable_memory_operand" "g"))]
+  "!TARGET_HAS_BYTE_ACCESS"
+{
+  rtx alignedAddr, bitShift;
+
+  /* Convert the address of the known alignment into two operands
+   * representing the aligned base address, and the number of shift bits
+   * required to access the required value. */
+  picochip_get_hi_aligned_mem(operands[1], &alignedAddr, &bitShift);
+
+  operands[3] = alignedAddr;
+  operands[4] = GEN_INT(8 - INTVAL(bitShift));
+})
+
+;;============================================================================
+;; Special instructions.
+;;============================================================================
+
+; Count sign-bits.
+(define_insn "sbc"
+  [(set (match_operand:HI             0 "register_operand" "=r")
+	(unspec:HI [(match_operand:HI 1 "register_operand" "r")]
+		   UNSPEC_SBC))]
+  ""
+  "SBC %1,%0\t\t// %0 := SBC(%1)"
+  [(set_attr "type" "picoAlu")
+   (set_attr "length" "2")])
+
+; Bit reversal.
+(define_insn "brev"
+  [(set (match_operand:HI             0 "register_operand" "=r")
+	(unspec:HI [(match_operand:HI 1 "register_operand" "r")]
+		   UNSPEC_BREV))]
+  ""
+  "BREV %1,%0\t\t// %0 := BREV(%1)"
+  [(set_attr "length" "2")
+   (set_attr "type" "picoAlu")])
+
+; Byte swap.
+(define_insn "bswaphi2"
+  [(set (match_operand:HI             0 "register_operand" "=r")
+	(bswap:HI (match_operand:HI 1 "register_operand" "r")))]
+  ""
+  "BYTESWAP %1,%0\t\t// %0 := ByteSwap(%1)"
+  [(set_attr "length" "2")
+   (set_attr "type" "picoAlu")])
+
+; Read status word.
+(define_insn "copysw"
+  [(set (match_operand:HI 0 "register_operand" "=r")
+	(unspec_volatile:HI [(reg:CC CC_REGNUM)] UNSPEC_COPYSW))]
+  ""
+  "COPYSW.%# %0\t// %0 := Flags"
+  [(set_attr "type" "basicAlu")
+   (set_attr "length" "2")])
+
+; Saturating addition.
+(define_insn "sataddhi3"
+  [(set (match_operand:HI             0 "register_operand" "=r")
+	(unspec:HI [(match_operand:HI 1 "register_operand" "r")
+		    (match_operand:HI 2 "register_operand" "r")]
+		   UNSPEC_ADDS))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "ADDS %1,%2,%0\t// %0 := sat(%1 + %2)"
+  [(set_attr "type" "picoAlu")
+   (set_attr "length" "3")])
+
+; Saturating subtraction.
+(define_insn "satsubhi3"
+  [(set (match_operand:HI             0 "register_operand" "=r")
+	(unspec:HI [(match_operand:HI 1 "register_operand" "r")
+		    (match_operand:HI 2 "register_operand" "r")]
+		   UNSPEC_SUBS))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "SUBS %1,%2,%0\t// %0 := sat(%1 - %2)"
+  [(set_attr "type" "picoAlu")
+   (set_attr "length" "3")])
+
+(define_insn "halt"
+  [(unspec_volatile [(match_operand:HI 0 "const_int_operand" "i")]
+	UNSPEC_HALT)]
+  ""
+  "HALT\t// (id %0)"
+  [(set_attr "length" "1")
+   (set_attr "type" "unknown")])
+
+(define_insn "internal_testport"
+  [(set (reg:CC CC_REGNUM)
+        (unspec_volatile:CC [(match_operand:HI 0 "const_int_operand" "i")]
+           UNSPEC_INTERNAL_TESTPORT))]
+  ""
+  "TSTPORT %0"
+  [(set_attr "length" "2")
+   (set_attr "longConstant" "false")
+   (set_attr "type" "picoAlu")])
+
+;;============================================================================
+;; Communications builtins.
+;;
+;; Each builtin comes in two forms: a single port version, which maps
+;; to a single instruction, and an array port version.  The array port
+;; version is treated as a special type of instruction, which is then
+;; split into a number of smaller instructions, if the index of the
+;; port can't be converted into a constant.  When the RTL split is
+;; performed, a function call is emitted, in which the index of the
+;; port to use is used to compute the address of the function to call
+;; (i.e., each array port is a function in its own right, and the
+;; functions are stored as an array which is then indexed to determine
+;; the correct function). The communication function port array is
+;; created by the linker if and only if it is required (in a
+;; collect2-like manner).
+;;============================================================================
+
+; Simple scalar get.
+(define_insn "commsGet"
+  [(set (match_operand:SI             0 "register_operand" "=r")
+	(unspec_volatile:SI
+	 [(match_operand:HI 1 "immediate_operand" "n")]
+	 UNSPEC_GET))]
+  ""
+  "GET %1,%R0\t// %R0 := PORT(%1)"
+  [(set_attr "type" "comms")
+   (set_attr "length" "2")])
+
+; Entry point for array get (the actual port index is computed as the
+; sum of the index, and the base).
+;
+; op0 - Destination
+; op1 - Requested port index
+; op2 - size of port array (constant)
+; op3 - base index of port array (constant)
+
+(define_expand "commsArrayGet"
+  [(parallel
+      [(set (reg:SI 0)
+            (unspec_volatile:SI [(match_operand:HI 1 "general_operand" "")
+	 	     	 (match_operand:HI 2 "immediate_operand" "")
+		     	 (match_operand:HI 3 "immediate_operand" "")]
+	 	UNSPEC_CALL_GET_ARRAY))
+       (clobber (reg:HI LINK_REGNUM))])
+   (set (match_operand:SI 0 "register_operand" "") (reg:SI 0))]
+  ""
+  "")
+
+;; The actual array get instruction. When the array index is a constant,
+;; an exact instruction may be generated. When the index is variable,
+;; a call to a special function is generated. This code could be
+;; split into individual RTL instructions, but it is so rarely
+;; used, that we won't bother.
+(define_insn "*commsArrayGetInstruction"
+  [(set (reg:SI 0)
+        (unspec_volatile:SI [(match_operand:HI 0 "general_operand" "r,i")
+	 	     (match_operand:HI 1 "immediate_operand" "")
+		     (match_operand:HI 2 "immediate_operand" "")]
+	 	UNSPEC_CALL_GET_ARRAY))
+   (clobber (reg:HI LINK_REGNUM))]
+  ""
+{
+  return picochip_output_get_array (which_alternative, operands);
+})
+
+; Scalar Put instruction.
+(define_insn "commsPut"
+  [(unspec_volatile [(match_operand:HI 0 "const_int_operand" "")
+		     (match_operand:SI 1 "register_operand" "r")]
+		    UNSPEC_PUT)]
+  ""
+  "PUT %R1,%0\t// PORT(%0) := %R1"
+  [(set_attr "type" "comms")
+   (set_attr "length" "2")])
+
+; Entry point for array put. The operands accepted are:
+;   op0 - Value to put
+;   op1 - Requested port index
+;   op2 - size of port array
+;   op3 - base index of port array
+; The arguments are marshalled into the fixed registers, so that
+; the actual put instruction can expand into a call if necessary
+; (e.g., if the index is variable at run-time).
+
+(define_expand "commsArrayPut"
+  [(set (reg:SI 0) (match_operand:SI 0 "general_operand" ""))
+   (parallel
+      [(unspec_volatile [(match_operand:HI 1 "general_operand" "")
+	 	     	 (match_operand:HI 2 "immediate_operand" "")
+		     	 (match_operand:HI 3 "immediate_operand" "")]
+	 	UNSPEC_CALL_PUT_ARRAY)
+       (use (reg:SI 0))
+       (clobber (reg:HI LINK_REGNUM))])]
+  ""
+  "")
+
+;; The actual array put instruction. When the array index is a constant,
+;; an exact instruction may be generated. When the index is variable,
+;; a call to a special function is generated. This code could be
+;; split into individual RTL instructions, but it is so rarely
+;; used, that we won't bother.
+(define_insn "*commsArrayPutInstruction"
+  [(unspec_volatile [(match_operand:HI 0 "general_operand" "r,i")
+	 	     (match_operand:HI 1 "immediate_operand" "")
+		     (match_operand:HI 2 "immediate_operand" "")]
+	 	UNSPEC_CALL_PUT_ARRAY)
+   (use (reg:SI 0))
+   (clobber (reg:HI LINK_REGNUM))]
+  ""
+{
+  return picochip_output_put_array (which_alternative, operands);
+})
+
+;; Scalar test port instruction.
+(define_insn "commsTestPort"
+  [(set (match_operand:HI             0 "register_operand" "=r")
+	(unspec_volatile:HI [(match_operand:HI 1 "const_int_operand" "")]
+		   UNSPEC_TESTPORT))
+   (clobber (reg:CC CC_REGNUM))]
+  ""
+  "// %0 := TestPort(%1)\;TSTPORT %1\;COPYSW.0 %0\;AND.0 %0,8,%0"
+  [(set_attr "length" "9")])
+
+; Entry point for array tstport (the actual port index is computed as the
+; sum of the index, and the base).
+;
+; op0 - Test value.
+; op1 - Requested port index
+; op2 - size of port array (constant)
+; op3 - base index of port array (constant)
+
+(define_expand "commsArrayTestPort"
+  [(parallel
+      [(set (match_operand:HI 0 "register_operand" "")
+            (unspec_volatile:HI [(match_operand:HI 1 "general_operand" "")
+	 	              (match_operand:HI 2 "immediate_operand" "")
+		     	      (match_operand:HI 3 "immediate_operand" "")]
+	 	UNSPEC_CALL_TESTPORT_ARRAY))
+       (clobber (reg:HI LINK_REGNUM))])]
+  ""
+  "")
+
+;; The actual array testport instruction. When the array index is a constant,
+;; an exact instruction may be generated. When the index is variable,
+;; a call to a special function is generated. This code could be
+;; split into individual RTL instructions, but it is so rarely
+;; used, that we won't bother.
+(define_insn "*commsArrayTestportInstruction"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+        (unspec_volatile:HI [(match_operand:HI 1 "general_operand" "r,i")
+	 	     	  (match_operand:HI 2 "immediate_operand" "")
+		     	  (match_operand:HI 3 "immediate_operand" "")]
+	 	UNSPEC_CALL_TESTPORT_ARRAY))
+   (clobber (reg:HI LINK_REGNUM))]
+  ""
+{
+  return picochip_output_testport_array (which_alternative, operands);
+})
+
+;; Merge a TSTPORT instruction with the branch to which it
+;; relates.  Often the TSTPORT function (generated by a built-in), is
+;; used to control conditional execution.  The normal sequence of
+;; instructions would be:
+;;    TSTPORT p
+;;    COPYSW temp
+;;    AND temp, 0x0008, temp
+;;    SUB temp,0,discard
+;;    BEQ label
+;; This can be made more efficient by detecting the special case where
+;; the result of a TSTPORT is used to branch, to allow the following
+;; RTL sequence to be generated instead:
+;;    TSTPORT p
+;;    BEQ label
+;; A big saving in cycles and bytes!
+
+(define_insn_and_split "tstport_branch"
+ [(set (pc)
+	(if_then_else
+	    (match_operator 0 "comparison_operator"
+	                    [(unspec_volatile:HI
+				[(match_operand:HI 1 "const_int_operand" "")]
+					   UNSPEC_TESTPORT)
+			     (const_int 0)])
+            (label_ref       (match_operand    2 "" ""))
+	    (pc)))
+   (clobber (reg:CC CC_REGNUM))]
+ ""
+ "#"
+ ""
+ [(set (reg:CC CC_REGNUM)
+       (unspec_volatile:CC [(match_dup 1)] UNSPEC_INTERNAL_TESTPORT))
+  (parallel [(set (pc)
+                  (if_then_else
+                       (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
+				(label_ref (match_dup 2))
+				(pc)))
+	     (use (match_dup 3))])]
+ "{
+    /* Note that the sense of the branch is reversed, since we are
+     * comparing flag != 0. */
+    gcc_assert (GET_CODE(operands[0]) == NE || GET_CODE(operands[0]) == EQ);
+    operands[4] = gen_rtx_fmt_ee(reverse_condition(GET_CODE(operands[0])),
+                  GET_MODE(operands[0]), XEXP(operands[0], 0), XEXP(operands[0], 1));
+    operands[3] = GEN_INT (0);
+  }")
+
+;;============================================================================
+;; Epilogue/Epilogue expansion.
+;;============================================================================
+
+(define_expand "prologue"
+  [(clobber (const_int 0))]
+  ""
+{
+  picochip_expand_prologue ();
+  DONE;
+})
+
+(define_expand "epilogue"
+  [(use (const_int 0))]
+  ""
+{
+  picochip_expand_epilogue (FALSE);
+  DONE;
+})
+
+;;============================================================================
+;; Trap instruction. This is used to indicate an error. For the
+;; picoChip processors this is handled by calling a HALT instruction,
+;; which stops the processor.
+;;============================================================================
+
+(define_insn "trap"
+  [(trap_if (const_int 1) (const_int 6))]
+  ""
+  "HALT\t// (Trap)"
+  [(set_attr "length" "2")])
+
+;;============================================================================
+;; Conditional copy instructions.  Only equal/not-equal comparisons are
+;; supported.  All other types of comparison remain as branch
+;; sequences.
+;;============================================================================
+
+;; Define expand seems to consider the resulting two instructions to be
+;; independent. It was moving the actual copy instruction further down
+;; with a call instruction in between. The call was clobbering the CC
+;; and hence the cond_copy was wrong. With a split, it works correctly.
+(define_expand "movhicc"
+  [(set (reg:CC CC_REGNUM) (match_operand 1 "comparison_operator" ""))
+   (parallel [(set (match_operand:HI 0 "register_operand" "=r,r")
+                   (if_then_else:HI (match_op_dup:HI 1 [(reg:CC CC_REGNUM) (const_int 0)])
+                                 (match_operand:HI 2 "picochip_register_or_immediate_operand" "0,0")
+                                 (match_operand:HI 3 "picochip_register_or_immediate_operand" "r,i")))
+              (use (match_dup 4))])]
+  ""
+  {if (!picochip_check_conditional_copy (operands))
+     FAIL;
+   operands[4] = GEN_INT(GET_CODE(operands[1]));
+  })
+
+;; We dont do any checks here. But this pattern is used only when movhicc 
+;; was checked. Put a "use" clause to make sure.
+(define_insn "*conditional_copy"
+  [(set (match_operand:HI 0 "register_operand" "=r,r")
+	(if_then_else:HI
+            (match_operator:HI 4 "picochip_peephole_comparison_operator"
+                 [(reg:CC CC_REGNUM) (const_int 0)])
+	 (match_operand:HI 1 "picochip_register_or_immediate_operand" "0,0")
+	 (match_operand:HI 2 "picochip_register_or_immediate_operand" "r,i")))
+   (use (match_operand:HI 3 "const_int_operand" ""))]
+  ""
+{
+
+  gcc_assert (GET_CODE(operands[4]) == EQ || GET_CODE(operands[4]) == NE);
+  /* Note that the comparison is reversed as the pattern matches
+     the *else* part of the if_then_else */
+  switch (GET_CODE(operands[4]))
+    {
+    case EQ: return "COPYNE %2,%0\t// if (NE) %0 := %2";
+    case NE: return "COPYEQ %2,%0\t// if (EQ) %0 := %2";
+    default:
+      gcc_unreachable();
+    }
+}
+  [(set_attr "length" "2")
+   (set_attr "type" "picoAlu,picoAlu")
+   (set_attr "longConstant" "false,true")])
+
+;; cmphi - This needs to be defined, to ensure that the conditional
+;; move works properly (because the if-cvt code uses this pattern to
+;; build the conditional move, even though normally we use cbranch to
+;; directly generate the instructions).
+
+(define_expand "cmphi"
+  [(match_operand:HI 0 "general_operand" "g")
+   (match_operand:HI 1 "general_operand" "g")]
+  ""
+  "DONE;")
+
+;;============================================================================
+;; Branch patterns - needed for conditional moves.  This is because
+;; they result in the bcc_gen_fctn array being initialised with the
+;; code to define_expand the following, and this in turn means that
+;; when noce_emit_cmove is called, the correct pattern can be
+;; generated, based upon the assumed presence of the following.  The
+;; following are never actually used, because the earlier cbranch
+;; patterns take precendence.
+;;============================================================================
+
+(define_expand "bne"
+  [(set (pc)
+	(if_then_else
+	    (ne (reg:CC CC_REGNUM) (const_int 0))
+	    (label_ref       (match_operand    0 "" ""))
+	    (pc)))]
+  ""
+  "gcc_unreachable();")
+
+(define_expand "beq"
+  [(set (pc)
+	(if_then_else
+	    (eq (reg:CC CC_REGNUM) (const_int 0))
+	    (label_ref       (match_operand    0 "" ""))
+	    (pc)))]
+  ""
+  "gcc_unreachable();")
+
+(define_expand "blt"
+  [(set (pc)
+	(if_then_else
+	    (lt (reg:CC CC_REGNUM) (const_int 0))
+	    (label_ref       (match_operand    0 "" ""))
+	    (pc)))]
+  ""
+  "gcc_unreachable();")
+
+(define_expand "bge"
+  [(set (pc)
+	(if_then_else
+	    (ge (reg:CC CC_REGNUM) (const_int 0))
+	    (label_ref       (match_operand    0 "" ""))
+	    (pc)))]
+  ""
+  "gcc_unreachable();")
+
+(define_expand "bgeu"
+  [(set (pc)
+	(if_then_else
+	    (geu (reg:CC CC_REGNUM) (const_int 0))
+	    (label_ref       (match_operand    0 "" ""))
+	    (pc)))]
+  ""
+  "gcc_unreachable();")
+
+(define_expand "bltu"
+  [(set (pc)
+	(if_then_else
+	    (ltu (reg:CC CC_REGNUM) (const_int 0))
+	    (label_ref       (match_operand    0 "" ""))
+	    (pc)))]
+  ""
+  "gcc_unreachable();")
+
+(define_expand "ble"
+  [(set (pc)
+	(if_then_else
+	    (le (reg:CC CC_REGNUM) (const_int 0))
+	    (label_ref       (match_operand    0 "" ""))
+	    (pc)))]
+  ""
+  "gcc_unreachable();")
+
+(define_expand "bgt"
+  [(set (pc)
+	(if_then_else
+	    (gt (reg:CC CC_REGNUM) (const_int 0))
+	    (label_ref       (match_operand    0 "" ""))
+	    (pc)))]
+  ""
+  "gcc_unreachable();")
+
+(define_expand "bleu"
+  [(set (pc)
+	(if_then_else
+	    (leu (reg:CC CC_REGNUM) (const_int 0))
+	    (label_ref       (match_operand    0 "" ""))
+	    (pc)))]
+  ""
+  "gcc_unreachable();")
+
+(define_expand "bgtu"
+  [(set (pc)
+	(if_then_else
+	    (gtu (reg:CC CC_REGNUM) (const_int 0))
+	    (label_ref       (match_operand    0 "" ""))
+	    (pc)))]
+  ""
+  "gcc_unreachable();")
+
+;;============================================================================
+;; Scheduling, including delay slot scheduling.
+;;============================================================================
+
+(automata_option "v")
+(automata_option "ndfa")
+
+;; Define each VLIW slot as a CPU resource.  Note the three flavours of
+;; branch.  `realBranch' is an actual branch instruction.  `macroBranch'
+;; is a directive to the assembler, which may expand into multiple
+;; instructions.  `call' is an actual branch instruction, but one which
+;; sets the link register, and hence can't be scheduled alongside
+;; other instructions which set the link register.  When the DFA
+;; scheduler is fixed to prevent it scheduling a JL with an R12
+;; setting register, the call type branches can be replaced by
+;; realBranch types instead.
+
+(define_attr "type"
+  "picoAlu,basicAlu,nonCcAlu,mem,call,realBranch,macroBranch,mul,mac,app,comms,unknown"
+  (const_string "unknown"))
+
+(define_attr "schedType" "none,space,speed"
+  (const (symbol_ref "picochip_schedule_type")))
+
+;; Define whether an instruction uses a long constant.
+
+(define_attr "longConstant"
+  "true,false" (const_string "false"))
+
+;; Define three EU slots.
+(define_query_cpu_unit "slot0,slot1,slot2")
+
+;; Pull in the pipeline descriptions for speed or space scheduling.
+(include "dfa_speed.md")
+(include "dfa_space.md")
+
+; Unknown instructions are assumed to take a single cycle, and use all
+; slots.  This enables them to actually output a sequence of
+; instructions without any limitation.  For the purposes of
+; scheduling, unknown instructions are a pain, and should be removed
+; completely.  This means that RTL patterns should always be used to
+; reduce complex sequences of instructions to individual instructions.
+(define_insn_reservation "unknownInsn" 1
+  (eq_attr "type" "unknown")
+  "(slot0+slot1+slot2)")
+
+; Allow any non-branch instructions to be placed in the branch
+; slot. Branch slots are always executed.
+(define_delay (eq_attr "type" "realBranch,call")
+  [(eq_attr "type" "!realBranch,macroBranch,call,unknown") (nil) (nil)])