diff gcc/config/sparc/lb1spc.asm @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/config/sparc/lb1spc.asm	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,784 @@
+/* This is an assembly language implementation of mulsi3, divsi3, and modsi3
+   for the sparc processor.
+
+   These routines are derived from the SPARC Architecture Manual, version 8,
+   slightly edited to match the desired calling convention, and also to
+   optimize them for our purposes.  */
+
+#ifdef L_mulsi3
+.text
+	.align 4
+	.global .umul
+	.proc 4
+.umul:
+	or	%o0, %o1, %o4	! logical or of multiplier and multiplicand
+	mov	%o0, %y		! multiplier to Y register
+	andncc	%o4, 0xfff, %o5	! mask out lower 12 bits
+	be	mul_shortway	! can do it the short way
+	andcc	%g0, %g0, %o4	! zero the partial product and clear NV cc
+	!
+	! long multiply
+	!
+	mulscc	%o4, %o1, %o4	! first iteration of 33
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4	! 32nd iteration
+	mulscc	%o4, %g0, %o4	! last iteration only shifts
+	! the upper 32 bits of product are wrong, but we do not care
+	retl
+	rd	%y, %o0
+	!
+	! short multiply
+	!
+mul_shortway:
+	mulscc	%o4, %o1, %o4	! first iteration of 13
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4
+	mulscc	%o4, %o1, %o4	! 12th iteration
+	mulscc	%o4, %g0, %o4	! last iteration only shifts
+	rd	%y, %o5
+	sll	%o4, 12, %o4	! left shift partial product by 12 bits
+	srl	%o5, 20, %o5	! right shift partial product by 20 bits
+	retl
+	or	%o5, %o4, %o0	! merge for true product
+#endif
+
+#ifdef L_divsi3
+/*
+ * Division and remainder, from Appendix E of the SPARC Version 8
+ * Architecture Manual, with fixes from Gordon Irlam.
+ */
+
+/*
+ * Input: dividend and divisor in %o0 and %o1 respectively.
+ *
+ * m4 parameters:
+ *  .div	name of function to generate
+ *  div		div=div => %o0 / %o1; div=rem => %o0 % %o1
+ *  true		true=true => signed; true=false => unsigned
+ *
+ * Algorithm parameters:
+ *  N		how many bits per iteration we try to get (4)
+ *  WORDSIZE	total number of bits (32)
+ *
+ * Derived constants:
+ *  TOPBITS	number of bits in the top decade of a number
+ *
+ * Important variables:
+ *  Q		the partial quotient under development (initially 0)
+ *  R		the remainder so far, initially the dividend
+ *  ITER	number of main division loop iterations required;
+ *		equal to ceil(log2(quotient) / N).  Note that this
+ *		is the log base (2^N) of the quotient.
+ *  V		the current comparand, initially divisor*2^(ITER*N-1)
+ *
+ * Cost:
+ *  Current estimate for non-large dividend is
+ *	ceil(log2(quotient) / N) * (10 + 7N/2) + C
+ *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
+ *  different path, as the upper bits of the quotient must be developed
+ *  one bit at a time.
+ */
+        .global .udiv
+        .align 4
+        .proc 4
+        .text
+.udiv:
+         b ready_to_divide
+         mov 0, %g3             ! result is always positive
+
+        .global .div
+        .align 4
+        .proc 4
+        .text
+.div:
+	! compute sign of result; if neither is negative, no problem
+	orcc	%o1, %o0, %g0	! either negative?
+	bge	ready_to_divide	! no, go do the divide
+	xor	%o1, %o0, %g3	! compute sign in any case
+	tst	%o1
+	bge	1f
+	tst	%o0
+	! %o1 is definitely negative; %o0 might also be negative
+	bge	ready_to_divide	! if %o0 not negative...
+	sub	%g0, %o1, %o1	! in any case, make %o1 nonneg
+1:	! %o0 is negative, %o1 is nonnegative
+	sub	%g0, %o0, %o0	! make %o0 nonnegative
+
+
+ready_to_divide:
+
+	! Ready to divide.  Compute size of quotient; scale comparand.
+	orcc	%o1, %g0, %o5
+	bne	1f
+	mov	%o0, %o3
+
+	! Divide by zero trap.  If it returns, return 0 (about as
+	! wrong as possible, but that is what SunOS does...).
+	ta	0x2    		! ST_DIV0
+	retl
+	clr	%o0
+
+1:
+	cmp	%o3, %o5		! if %o1 exceeds %o0, done
+	blu	got_result		! (and algorithm fails otherwise)
+	clr	%o2
+	sethi	%hi(1 << (32 - 4 - 1)), %g1
+	cmp	%o3, %g1
+	blu	not_really_big
+	clr	%o4
+
+	! Here the dividend is >= 2**(31-N) or so.  We must be careful here,
+	! as our usual N-at-a-shot divide step will cause overflow and havoc.
+	! The number of bits in the result here is N*ITER+SC, where SC <= N.
+	! Compute ITER in an unorthodox manner: know we need to shift V into
+	! the top decade: so do not even bother to compare to R.
+	1:
+		cmp	%o5, %g1
+		bgeu	3f
+		mov	1, %g2
+		sll	%o5, 4, %o5
+		b	1b
+		add	%o4, 1, %o4
+
+	! Now compute %g2.
+	2:	addcc	%o5, %o5, %o5
+		bcc	not_too_big
+		add	%g2, 1, %g2
+
+		! We get here if the %o1 overflowed while shifting.
+		! This means that %o3 has the high-order bit set.
+		! Restore %o5 and subtract from %o3.
+		sll	%g1, 4, %g1	! high order bit
+		srl	%o5, 1, %o5	! rest of %o5
+		add	%o5, %g1, %o5
+		b	do_single_div
+		sub	%g2, 1, %g2
+
+	not_too_big:
+	3:	cmp	%o5, %o3
+		blu	2b
+		nop
+		be	do_single_div
+		nop
+	/* NB: these are commented out in the V8-SPARC manual as well */
+	/* (I do not understand this) */
+	! %o5 > %o3: went too far: back up 1 step
+	!	srl	%o5, 1, %o5
+	!	dec	%g2
+	! do single-bit divide steps
+	!
+	! We have to be careful here.  We know that %o3 >= %o5, so we can do the
+	! first divide step without thinking.  BUT, the others are conditional,
+	! and are only done if %o3 >= 0.  Because both %o3 and %o5 may have the high-
+	! order bit set in the first step, just falling into the regular
+	! division loop will mess up the first time around.
+	! So we unroll slightly...
+	do_single_div:
+		subcc	%g2, 1, %g2
+		bl	end_regular_divide
+		nop
+		sub	%o3, %o5, %o3
+		mov	1, %o2
+		b	end_single_divloop
+		nop
+	single_divloop:
+		sll	%o2, 1, %o2
+		bl	1f
+		srl	%o5, 1, %o5
+		! %o3 >= 0
+		sub	%o3, %o5, %o3
+		b	2f
+		add	%o2, 1, %o2
+	1:	! %o3 < 0
+		add	%o3, %o5, %o3
+		sub	%o2, 1, %o2
+	2:
+	end_single_divloop:
+		subcc	%g2, 1, %g2
+		bge	single_divloop
+		tst	%o3
+		b,a	end_regular_divide
+
+not_really_big:
+1:
+	sll	%o5, 4, %o5
+	cmp	%o5, %o3
+	bleu	1b
+	addcc	%o4, 1, %o4
+	be	got_result
+	sub	%o4, 1, %o4
+
+	tst	%o3	! set up for initial iteration
+divloop:
+	sll	%o2, 4, %o2
+	! depth 1, accumulated bits 0
+	bl	L1.16
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 2, accumulated bits 1
+	bl	L2.17
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 3, accumulated bits 3
+	bl	L3.19
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 4, accumulated bits 7
+	bl	L4.23
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (7*2+1), %o2
+	
+L4.23:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (7*2-1), %o2
+	
+	
+L3.19:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 4, accumulated bits 5
+	bl	L4.21
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (5*2+1), %o2
+	
+L4.21:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (5*2-1), %o2
+	
+L2.17:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 3, accumulated bits 1
+	bl	L3.17
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 4, accumulated bits 3
+	bl	L4.19
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (3*2+1), %o2
+	
+L4.19:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (3*2-1), %o2
+
+L3.17:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 4, accumulated bits 1
+	bl	L4.17
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (1*2+1), %o2
+
+L4.17:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (1*2-1), %o2
+	
+L1.16:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 2, accumulated bits -1
+	bl	L2.15
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 3, accumulated bits -1
+	bl	L3.15
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 4, accumulated bits -1
+	bl	L4.15
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-1*2+1), %o2
+	
+L4.15:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-1*2-1), %o2
+	
+L3.15:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 4, accumulated bits -3
+	bl	L4.13
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-3*2+1), %o2
+	
+L4.13:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-3*2-1), %o2
+	
+L2.15:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 3, accumulated bits -3
+	bl	L3.13
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 4, accumulated bits -5
+	bl	L4.11
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-5*2+1), %o2
+	
+L4.11:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-5*2-1), %o2
+	
+L3.13:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 4, accumulated bits -7
+	bl	L4.9
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-7*2+1), %o2
+
+L4.9:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-7*2-1), %o2
+	
+	9:
+end_regular_divide:
+	subcc	%o4, 1, %o4
+	bge	divloop
+	tst	%o3
+	bl,a	got_result
+	! non-restoring fixup here (one instruction only!)
+	sub	%o2, 1, %o2
+
+
+got_result:
+	! check to see if answer should be < 0
+	tst	%g3
+	bl,a	1f
+	sub %g0, %o2, %o2
+1:
+	retl
+	mov %o2, %o0
+#endif
+
+#ifdef L_modsi3
+/* This implementation was taken from glibc:
+ *
+ * Input: dividend and divisor in %o0 and %o1 respectively.
+ *
+ * Algorithm parameters:
+ *  N		how many bits per iteration we try to get (4)
+ *  WORDSIZE	total number of bits (32)
+ *
+ * Derived constants:
+ *  TOPBITS	number of bits in the top decade of a number
+ *
+ * Important variables:
+ *  Q		the partial quotient under development (initially 0)
+ *  R		the remainder so far, initially the dividend
+ *  ITER	number of main division loop iterations required;
+ *		equal to ceil(log2(quotient) / N).  Note that this
+ *		is the log base (2^N) of the quotient.
+ *  V		the current comparand, initially divisor*2^(ITER*N-1)
+ *
+ * Cost:
+ *  Current estimate for non-large dividend is
+ *	ceil(log2(quotient) / N) * (10 + 7N/2) + C
+ *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
+ *  different path, as the upper bits of the quotient must be developed
+ *  one bit at a time.
+ */
+.text
+	.align 4
+	.global	.urem
+	.proc 4
+.urem:
+	b	divide
+	mov	0, %g3		! result always positive
+
+        .align 4
+	.global .rem
+	.proc 4
+.rem:
+	! compute sign of result; if neither is negative, no problem
+	orcc	%o1, %o0, %g0	! either negative?
+	bge	2f			! no, go do the divide
+	mov	%o0, %g3		! sign of remainder matches %o0
+	tst	%o1
+	bge	1f
+	tst	%o0
+	! %o1 is definitely negative; %o0 might also be negative
+	bge	2f			! if %o0 not negative...
+	sub	%g0, %o1, %o1	! in any case, make %o1 nonneg
+1:	! %o0 is negative, %o1 is nonnegative
+	sub	%g0, %o0, %o0	! make %o0 nonnegative
+2:
+
+	! Ready to divide.  Compute size of quotient; scale comparand.
+divide:
+	orcc	%o1, %g0, %o5
+	bne	1f
+	mov	%o0, %o3
+
+		! Divide by zero trap.  If it returns, return 0 (about as
+		! wrong as possible, but that is what SunOS does...).
+		ta	0x2   !ST_DIV0
+		retl
+		clr	%o0
+
+1:
+	cmp	%o3, %o5		! if %o1 exceeds %o0, done
+	blu	got_result		! (and algorithm fails otherwise)
+	clr	%o2
+	sethi	%hi(1 << (32 - 4 - 1)), %g1
+	cmp	%o3, %g1
+	blu	not_really_big
+	clr	%o4
+
+	! Here the dividend is >= 2**(31-N) or so.  We must be careful here,
+	! as our usual N-at-a-shot divide step will cause overflow and havoc.
+	! The number of bits in the result here is N*ITER+SC, where SC <= N.
+	! Compute ITER in an unorthodox manner: know we need to shift V into
+	! the top decade: so do not even bother to compare to R.
+	1:
+		cmp	%o5, %g1
+		bgeu	3f
+		mov	1, %g2
+		sll	%o5, 4, %o5
+		b	1b
+		add	%o4, 1, %o4
+
+	! Now compute %g2.
+	2:	addcc	%o5, %o5, %o5
+		bcc	not_too_big
+		add	%g2, 1, %g2
+
+		! We get here if the %o1 overflowed while shifting.
+		! This means that %o3 has the high-order bit set.
+		! Restore %o5 and subtract from %o3.
+		sll	%g1, 4, %g1	! high order bit
+		srl	%o5, 1, %o5		! rest of %o5
+		add	%o5, %g1, %o5
+		b	do_single_div
+		sub	%g2, 1, %g2
+
+	not_too_big:
+	3:	cmp	%o5, %o3
+		blu	2b
+		nop
+		be	do_single_div
+		nop
+	/* NB: these are commented out in the V8-SPARC manual as well */
+	/* (I do not understand this) */
+	! %o5 > %o3: went too far: back up 1 step
+	!	srl	%o5, 1, %o5
+	!	dec	%g2
+	! do single-bit divide steps
+	!
+	! We have to be careful here.  We know that %o3 >= %o5, so we can do the
+	! first divide step without thinking.  BUT, the others are conditional,
+	! and are only done if %o3 >= 0.  Because both %o3 and %o5 may have the high-
+	! order bit set in the first step, just falling into the regular
+	! division loop will mess up the first time around.
+	! So we unroll slightly...
+	do_single_div:
+		subcc	%g2, 1, %g2
+		bl	end_regular_divide
+		nop
+		sub	%o3, %o5, %o3
+		mov	1, %o2
+		b	end_single_divloop
+		nop
+	single_divloop:
+		sll	%o2, 1, %o2
+		bl	1f
+		srl	%o5, 1, %o5
+		! %o3 >= 0
+		sub	%o3, %o5, %o3
+		b	2f
+		add	%o2, 1, %o2
+	1:	! %o3 < 0
+		add	%o3, %o5, %o3
+		sub	%o2, 1, %o2
+	2:
+	end_single_divloop:
+		subcc	%g2, 1, %g2
+		bge	single_divloop
+		tst	%o3
+		b,a	end_regular_divide
+
+not_really_big:
+1:
+	sll	%o5, 4, %o5
+	cmp	%o5, %o3
+	bleu	1b
+	addcc	%o4, 1, %o4
+	be	got_result
+	sub	%o4, 1, %o4
+
+	tst	%o3	! set up for initial iteration
+divloop:
+	sll	%o2, 4, %o2
+		! depth 1, accumulated bits 0
+	bl	L1.16
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 2, accumulated bits 1
+	bl	L2.17
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 3, accumulated bits 3
+	bl	L3.19
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 4, accumulated bits 7
+	bl	L4.23
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (7*2+1), %o2
+L4.23:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (7*2-1), %o2
+	
+L3.19:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 4, accumulated bits 5
+	bl	L4.21
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (5*2+1), %o2
+	
+L4.21:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (5*2-1), %o2
+	
+L2.17:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 3, accumulated bits 1
+	bl	L3.17
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 4, accumulated bits 3
+	bl	L4.19
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (3*2+1), %o2
+	
+L4.19:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (3*2-1), %o2
+	
+L3.17:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 4, accumulated bits 1
+	bl	L4.17
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (1*2+1), %o2
+	
+L4.17:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (1*2-1), %o2
+	
+L1.16:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 2, accumulated bits -1
+	bl	L2.15
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 3, accumulated bits -1
+	bl	L3.15
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 4, accumulated bits -1
+	bl	L4.15
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-1*2+1), %o2
+	
+L4.15:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-1*2-1), %o2
+	
+L3.15:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 4, accumulated bits -3
+	bl	L4.13
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-3*2+1), %o2
+	
+L4.13:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-3*2-1), %o2
+	
+L2.15:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 3, accumulated bits -3
+	bl	L3.13
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	! depth 4, accumulated bits -5
+	bl	L4.11
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-5*2+1), %o2
+	
+L4.11:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-5*2-1), %o2
+	
+L3.13:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	! depth 4, accumulated bits -7
+	bl	L4.9
+	srl	%o5,1,%o5
+	! remainder is positive
+	subcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-7*2+1), %o2
+	
+L4.9:
+	! remainder is negative
+	addcc	%o3,%o5,%o3
+	b	9f
+	add	%o2, (-7*2-1), %o2
+	
+	9:
+end_regular_divide:
+	subcc	%o4, 1, %o4
+	bge	divloop
+	tst	%o3
+	bl,a	got_result
+	! non-restoring fixup here (one instruction only!)
+	add	%o3, %o1, %o3
+
+got_result:
+	! check to see if answer should be < 0
+	tst	%g3
+	bl,a	1f
+	sub %g0, %o3, %o3
+1:
+	retl
+	mov %o3, %o0
+
+#endif
+