diff gcc/explow.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/explow.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,1536 @@
+/* Subroutines for manipulating rtx's in semantically interesting ways.
+   Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
+   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+   Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "toplev.h"
+#include "rtl.h"
+#include "tree.h"
+#include "tm_p.h"
+#include "flags.h"
+#include "except.h"
+#include "function.h"
+#include "expr.h"
+#include "optabs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "ggc.h"
+#include "recog.h"
+#include "langhooks.h"
+#include "target.h"
+#include "output.h"
+
+static rtx break_out_memory_refs (rtx);
+static void emit_stack_probe (rtx);
+
+
+/* Truncate and perhaps sign-extend C as appropriate for MODE.  */
+
+HOST_WIDE_INT
+trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
+{
+  int width = GET_MODE_BITSIZE (mode);
+
+  /* You want to truncate to a _what_?  */
+  gcc_assert (SCALAR_INT_MODE_P (mode));
+
+  /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
+  if (mode == BImode)
+    return c & 1 ? STORE_FLAG_VALUE : 0;
+
+  /* Sign-extend for the requested mode.  */
+
+  if (width < HOST_BITS_PER_WIDE_INT)
+    {
+      HOST_WIDE_INT sign = 1;
+      sign <<= width - 1;
+      c &= (sign << 1) - 1;
+      c ^= sign;
+      c -= sign;
+    }
+
+  return c;
+}
+
+/* Return an rtx for the sum of X and the integer C.  */
+
+rtx
+plus_constant (rtx x, HOST_WIDE_INT c)
+{
+  RTX_CODE code;
+  rtx y;
+  enum machine_mode mode;
+  rtx tem;
+  int all_constant = 0;
+
+  if (c == 0)
+    return x;
+
+ restart:
+
+  code = GET_CODE (x);
+  mode = GET_MODE (x);
+  y = x;
+
+  switch (code)
+    {
+    case CONST_INT:
+      return GEN_INT (INTVAL (x) + c);
+
+    case CONST_DOUBLE:
+      {
+	unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
+	HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
+	unsigned HOST_WIDE_INT l2 = c;
+	HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
+	unsigned HOST_WIDE_INT lv;
+	HOST_WIDE_INT hv;
+
+	add_double (l1, h1, l2, h2, &lv, &hv);
+
+	return immed_double_const (lv, hv, VOIDmode);
+      }
+
+    case MEM:
+      /* If this is a reference to the constant pool, try replacing it with
+	 a reference to a new constant.  If the resulting address isn't
+	 valid, don't return it because we have no way to validize it.  */
+      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
+	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
+	{
+	  tem
+	    = force_const_mem (GET_MODE (x),
+			       plus_constant (get_pool_constant (XEXP (x, 0)),
+					      c));
+	  if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
+	    return tem;
+	}
+      break;
+
+    case CONST:
+      /* If adding to something entirely constant, set a flag
+	 so that we can add a CONST around the result.  */
+      x = XEXP (x, 0);
+      all_constant = 1;
+      goto restart;
+
+    case SYMBOL_REF:
+    case LABEL_REF:
+      all_constant = 1;
+      break;
+
+    case PLUS:
+      /* The interesting case is adding the integer to a sum.
+	 Look for constant term in the sum and combine
+	 with C.  For an integer constant term, we make a combined
+	 integer.  For a constant term that is not an explicit integer,
+	 we cannot really combine, but group them together anyway.
+
+	 Restart or use a recursive call in case the remaining operand is
+	 something that we handle specially, such as a SYMBOL_REF.
+
+	 We may not immediately return from the recursive call here, lest
+	 all_constant gets lost.  */
+
+      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
+	{
+	  c += INTVAL (XEXP (x, 1));
+
+	  if (GET_MODE (x) != VOIDmode)
+	    c = trunc_int_for_mode (c, GET_MODE (x));
+
+	  x = XEXP (x, 0);
+	  goto restart;
+	}
+      else if (CONSTANT_P (XEXP (x, 1)))
+	{
+	  x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
+	  c = 0;
+	}
+      else if (find_constant_term_loc (&y))
+	{
+	  /* We need to be careful since X may be shared and we can't
+	     modify it in place.  */
+	  rtx copy = copy_rtx (x);
+	  rtx *const_loc = find_constant_term_loc (&copy);
+
+	  *const_loc = plus_constant (*const_loc, c);
+	  x = copy;
+	  c = 0;
+	}
+      break;
+
+    default:
+      break;
+    }
+
+  if (c != 0)
+    x = gen_rtx_PLUS (mode, x, GEN_INT (c));
+
+  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
+    return x;
+  else if (all_constant)
+    return gen_rtx_CONST (mode, x);
+  else
+    return x;
+}
+
+/* If X is a sum, return a new sum like X but lacking any constant terms.
+   Add all the removed constant terms into *CONSTPTR.
+   X itself is not altered.  The result != X if and only if
+   it is not isomorphic to X.  */
+
+rtx
+eliminate_constant_term (rtx x, rtx *constptr)
+{
+  rtx x0, x1;
+  rtx tem;
+
+  if (GET_CODE (x) != PLUS)
+    return x;
+
+  /* First handle constants appearing at this level explicitly.  */
+  if (GET_CODE (XEXP (x, 1)) == CONST_INT
+      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
+						XEXP (x, 1)))
+      && GET_CODE (tem) == CONST_INT)
+    {
+      *constptr = tem;
+      return eliminate_constant_term (XEXP (x, 0), constptr);
+    }
+
+  tem = const0_rtx;
+  x0 = eliminate_constant_term (XEXP (x, 0), &tem);
+  x1 = eliminate_constant_term (XEXP (x, 1), &tem);
+  if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
+      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
+						*constptr, tem))
+      && GET_CODE (tem) == CONST_INT)
+    {
+      *constptr = tem;
+      return gen_rtx_PLUS (GET_MODE (x), x0, x1);
+    }
+
+  return x;
+}
+
+/* Return an rtx for the size in bytes of the value of EXP.  */
+
+rtx
+expr_size (tree exp)
+{
+  tree size;
+
+  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
+    size = TREE_OPERAND (exp, 1);
+  else
+    {
+      size = lang_hooks.expr_size (exp);
+      gcc_assert (size);
+      size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp);
+    }
+
+  return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
+}
+
+/* Return a wide integer for the size in bytes of the value of EXP, or -1
+   if the size can vary or is larger than an integer.  */
+
+HOST_WIDE_INT
+int_expr_size (tree exp)
+{
+  tree size;
+
+  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
+    size = TREE_OPERAND (exp, 1);
+  else
+    {
+      size = lang_hooks.expr_size (exp);
+      gcc_assert (size);
+    }
+
+  if (size == 0 || !host_integerp (size, 0))
+    return -1;
+
+  return tree_low_cst (size, 0);
+}
+
+/* Return a copy of X in which all memory references
+   and all constants that involve symbol refs
+   have been replaced with new temporary registers.
+   Also emit code to load the memory locations and constants
+   into those registers.
+
+   If X contains no such constants or memory references,
+   X itself (not a copy) is returned.
+
+   If a constant is found in the address that is not a legitimate constant
+   in an insn, it is left alone in the hope that it might be valid in the
+   address.
+
+   X may contain no arithmetic except addition, subtraction and multiplication.
+   Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
+
+static rtx
+break_out_memory_refs (rtx x)
+{
+  if (MEM_P (x)
+      || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
+	  && GET_MODE (x) != VOIDmode))
+    x = force_reg (GET_MODE (x), x);
+  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
+	   || GET_CODE (x) == MULT)
+    {
+      rtx op0 = break_out_memory_refs (XEXP (x, 0));
+      rtx op1 = break_out_memory_refs (XEXP (x, 1));
+
+      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
+	x = simplify_gen_binary (GET_CODE (x), Pmode, op0, op1);
+    }
+
+  return x;
+}
+
+/* Given X, a memory address in ptr_mode, convert it to an address
+   in Pmode, or vice versa (TO_MODE says which way).  We take advantage of
+   the fact that pointers are not allowed to overflow by commuting arithmetic
+   operations over conversions so that address arithmetic insns can be
+   used.  */
+
+rtx
+convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED, 
+			rtx x)
+{
+#ifndef POINTERS_EXTEND_UNSIGNED
+  gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
+  return x;
+#else /* defined(POINTERS_EXTEND_UNSIGNED) */
+  enum machine_mode from_mode;
+  rtx temp;
+  enum rtx_code code;
+
+  /* If X already has the right mode, just return it.  */
+  if (GET_MODE (x) == to_mode)
+    return x;
+
+  from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
+
+  /* Here we handle some special cases.  If none of them apply, fall through
+     to the default case.  */
+  switch (GET_CODE (x))
+    {
+    case CONST_INT:
+    case CONST_DOUBLE:
+      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
+	code = TRUNCATE;
+      else if (POINTERS_EXTEND_UNSIGNED < 0)
+	break;
+      else if (POINTERS_EXTEND_UNSIGNED > 0)
+	code = ZERO_EXTEND;
+      else
+	code = SIGN_EXTEND;
+      temp = simplify_unary_operation (code, to_mode, x, from_mode);
+      if (temp)
+	return temp;
+      break;
+
+    case SUBREG:
+      if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
+	  && GET_MODE (SUBREG_REG (x)) == to_mode)
+	return SUBREG_REG (x);
+      break;
+
+    case LABEL_REF:
+      temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
+      LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
+      return temp;
+      break;
+
+    case SYMBOL_REF:
+      temp = shallow_copy_rtx (x);
+      PUT_MODE (temp, to_mode);
+      return temp;
+      break;
+
+    case CONST:
+      return gen_rtx_CONST (to_mode,
+			    convert_memory_address (to_mode, XEXP (x, 0)));
+      break;
+
+    case PLUS:
+    case MULT:
+      /* For addition we can safely permute the conversion and addition
+	 operation if one operand is a constant and converting the constant
+	 does not change it or if one operand is a constant and we are
+	 using a ptr_extend instruction  (POINTERS_EXTEND_UNSIGNED < 0).
+	 We can always safely permute them if we are making the address
+	 narrower.  */
+      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
+	  || (GET_CODE (x) == PLUS
+	      && GET_CODE (XEXP (x, 1)) == CONST_INT
+	      && (XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))
+                 || POINTERS_EXTEND_UNSIGNED < 0)))
+	return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
+			       convert_memory_address (to_mode, XEXP (x, 0)),
+			       XEXP (x, 1));
+      break;
+
+    default:
+      break;
+    }
+
+  return convert_modes (to_mode, from_mode,
+			x, POINTERS_EXTEND_UNSIGNED);
+#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
+}
+
+/* Return something equivalent to X but valid as a memory address
+   for something of mode MODE.  When X is not itself valid, this
+   works by copying X or subexpressions of it into registers.  */
+
+rtx
+memory_address (enum machine_mode mode, rtx x)
+{
+  rtx oldx = x;
+
+  x = convert_memory_address (Pmode, x);
+
+  /* By passing constant addresses through registers
+     we get a chance to cse them.  */
+  if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
+    x = force_reg (Pmode, x);
+
+  /* We get better cse by rejecting indirect addressing at this stage.
+     Let the combiner create indirect addresses where appropriate.
+     For now, generate the code so that the subexpressions useful to share
+     are visible.  But not if cse won't be done!  */
+  else
+    {
+      if (! cse_not_expected && !REG_P (x))
+	x = break_out_memory_refs (x);
+
+      /* At this point, any valid address is accepted.  */
+      if (memory_address_p (mode, x))
+	goto done;
+
+      /* If it was valid before but breaking out memory refs invalidated it,
+	 use it the old way.  */
+      if (memory_address_p (mode, oldx))
+	{
+	  x = oldx;
+	  goto done;
+	}
+
+      /* Perform machine-dependent transformations on X
+	 in certain cases.  This is not necessary since the code
+	 below can handle all possible cases, but machine-dependent
+	 transformations can make better code.  */
+      LEGITIMIZE_ADDRESS (x, oldx, mode, done);
+
+      /* PLUS and MULT can appear in special ways
+	 as the result of attempts to make an address usable for indexing.
+	 Usually they are dealt with by calling force_operand, below.
+	 But a sum containing constant terms is special
+	 if removing them makes the sum a valid address:
+	 then we generate that address in a register
+	 and index off of it.  We do this because it often makes
+	 shorter code, and because the addresses thus generated
+	 in registers often become common subexpressions.  */
+      if (GET_CODE (x) == PLUS)
+	{
+	  rtx constant_term = const0_rtx;
+	  rtx y = eliminate_constant_term (x, &constant_term);
+	  if (constant_term == const0_rtx
+	      || ! memory_address_p (mode, y))
+	    x = force_operand (x, NULL_RTX);
+	  else
+	    {
+	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
+	      if (! memory_address_p (mode, y))
+		x = force_operand (x, NULL_RTX);
+	      else
+		x = y;
+	    }
+	}
+
+      else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
+	x = force_operand (x, NULL_RTX);
+
+      /* If we have a register that's an invalid address,
+	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
+      else if (REG_P (x))
+	x = copy_to_reg (x);
+
+      /* Last resort: copy the value to a register, since
+	 the register is a valid address.  */
+      else
+	x = force_reg (Pmode, x);
+    }
+
+ done:
+
+  gcc_assert (memory_address_p (mode, x));
+  /* If we didn't change the address, we are done.  Otherwise, mark
+     a reg as a pointer if we have REG or REG + CONST_INT.  */
+  if (oldx == x)
+    return x;
+  else if (REG_P (x))
+    mark_reg_pointer (x, BITS_PER_UNIT);
+  else if (GET_CODE (x) == PLUS
+	   && REG_P (XEXP (x, 0))
+	   && GET_CODE (XEXP (x, 1)) == CONST_INT)
+    mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
+
+  /* OLDX may have been the address on a temporary.  Update the address
+     to indicate that X is now used.  */
+  update_temp_slot_address (oldx, x);
+
+  return x;
+}
+
+/* Convert a mem ref into one with a valid memory address.
+   Pass through anything else unchanged.  */
+
+rtx
+validize_mem (rtx ref)
+{
+  if (!MEM_P (ref))
+    return ref;
+  ref = use_anchored_address (ref);
+  if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
+    return ref;
+
+  /* Don't alter REF itself, since that is probably a stack slot.  */
+  return replace_equiv_address (ref, XEXP (ref, 0));
+}
+
+/* If X is a memory reference to a member of an object block, try rewriting
+   it to use an anchor instead.  Return the new memory reference on success
+   and the old one on failure.  */
+
+rtx
+use_anchored_address (rtx x)
+{
+  rtx base;
+  HOST_WIDE_INT offset;
+
+  if (!flag_section_anchors)
+    return x;
+
+  if (!MEM_P (x))
+    return x;
+
+  /* Split the address into a base and offset.  */
+  base = XEXP (x, 0);
+  offset = 0;
+  if (GET_CODE (base) == CONST
+      && GET_CODE (XEXP (base, 0)) == PLUS
+      && GET_CODE (XEXP (XEXP (base, 0), 1)) == CONST_INT)
+    {
+      offset += INTVAL (XEXP (XEXP (base, 0), 1));
+      base = XEXP (XEXP (base, 0), 0);
+    }
+
+  /* Check whether BASE is suitable for anchors.  */
+  if (GET_CODE (base) != SYMBOL_REF
+      || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
+      || SYMBOL_REF_ANCHOR_P (base)
+      || SYMBOL_REF_BLOCK (base) == NULL
+      || !targetm.use_anchors_for_symbol_p (base))
+    return x;
+
+  /* Decide where BASE is going to be.  */
+  place_block_symbol (base);
+
+  /* Get the anchor we need to use.  */
+  offset += SYMBOL_REF_BLOCK_OFFSET (base);
+  base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
+			     SYMBOL_REF_TLS_MODEL (base));
+
+  /* Work out the offset from the anchor.  */
+  offset -= SYMBOL_REF_BLOCK_OFFSET (base);
+
+  /* If we're going to run a CSE pass, force the anchor into a register.
+     We will then be able to reuse registers for several accesses, if the
+     target costs say that that's worthwhile.  */
+  if (!cse_not_expected)
+    base = force_reg (GET_MODE (base), base);
+
+  return replace_equiv_address (x, plus_constant (base, offset));
+}
+
+/* Copy the value or contents of X to a new temp reg and return that reg.  */
+
+rtx
+copy_to_reg (rtx x)
+{
+  rtx temp = gen_reg_rtx (GET_MODE (x));
+
+  /* If not an operand, must be an address with PLUS and MULT so
+     do the computation.  */
+  if (! general_operand (x, VOIDmode))
+    x = force_operand (x, temp);
+
+  if (x != temp)
+    emit_move_insn (temp, x);
+
+  return temp;
+}
+
+/* Like copy_to_reg but always give the new register mode Pmode
+   in case X is a constant.  */
+
+rtx
+copy_addr_to_reg (rtx x)
+{
+  return copy_to_mode_reg (Pmode, x);
+}
+
+/* Like copy_to_reg but always give the new register mode MODE
+   in case X is a constant.  */
+
+rtx
+copy_to_mode_reg (enum machine_mode mode, rtx x)
+{
+  rtx temp = gen_reg_rtx (mode);
+
+  /* If not an operand, must be an address with PLUS and MULT so
+     do the computation.  */
+  if (! general_operand (x, VOIDmode))
+    x = force_operand (x, temp);
+
+  gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
+  if (x != temp)
+    emit_move_insn (temp, x);
+  return temp;
+}
+
+/* Load X into a register if it is not already one.
+   Use mode MODE for the register.
+   X should be valid for mode MODE, but it may be a constant which
+   is valid for all integer modes; that's why caller must specify MODE.
+
+   The caller must not alter the value in the register we return,
+   since we mark it as a "constant" register.  */
+
+rtx
+force_reg (enum machine_mode mode, rtx x)
+{
+  rtx temp, insn, set;
+
+  if (REG_P (x))
+    return x;
+
+  if (general_operand (x, mode))
+    {
+      temp = gen_reg_rtx (mode);
+      insn = emit_move_insn (temp, x);
+    }
+  else
+    {
+      temp = force_operand (x, NULL_RTX);
+      if (REG_P (temp))
+	insn = get_last_insn ();
+      else
+	{
+	  rtx temp2 = gen_reg_rtx (mode);
+	  insn = emit_move_insn (temp2, temp);
+	  temp = temp2;
+	}
+    }
+
+  /* Let optimizers know that TEMP's value never changes
+     and that X can be substituted for it.  Don't get confused
+     if INSN set something else (such as a SUBREG of TEMP).  */
+  if (CONSTANT_P (x)
+      && (set = single_set (insn)) != 0
+      && SET_DEST (set) == temp
+      && ! rtx_equal_p (x, SET_SRC (set)))
+    set_unique_reg_note (insn, REG_EQUAL, x);
+
+  /* Let optimizers know that TEMP is a pointer, and if so, the
+     known alignment of that pointer.  */
+  {
+    unsigned align = 0;
+    if (GET_CODE (x) == SYMBOL_REF)
+      {
+        align = BITS_PER_UNIT;
+	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
+	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
+      }
+    else if (GET_CODE (x) == LABEL_REF)
+      align = BITS_PER_UNIT;
+    else if (GET_CODE (x) == CONST
+	     && GET_CODE (XEXP (x, 0)) == PLUS
+	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
+	     && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
+      {
+	rtx s = XEXP (XEXP (x, 0), 0);
+	rtx c = XEXP (XEXP (x, 0), 1);
+	unsigned sa, ca;
+
+	sa = BITS_PER_UNIT;
+	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
+	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
+
+	ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
+
+	align = MIN (sa, ca);
+      }
+
+    if (align || (MEM_P (x) && MEM_POINTER (x)))
+      mark_reg_pointer (temp, align);
+  }
+
+  return temp;
+}
+
+/* If X is a memory ref, copy its contents to a new temp reg and return
+   that reg.  Otherwise, return X.  */
+
+rtx
+force_not_mem (rtx x)
+{
+  rtx temp;
+
+  if (!MEM_P (x) || GET_MODE (x) == BLKmode)
+    return x;
+
+  temp = gen_reg_rtx (GET_MODE (x));
+
+  if (MEM_POINTER (x))
+    REG_POINTER (temp) = 1;
+
+  emit_move_insn (temp, x);
+  return temp;
+}
+
+/* Copy X to TARGET (if it's nonzero and a reg)
+   or to a new temp reg and return that reg.
+   MODE is the mode to use for X in case it is a constant.  */
+
+rtx
+copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
+{
+  rtx temp;
+
+  if (target && REG_P (target))
+    temp = target;
+  else
+    temp = gen_reg_rtx (mode);
+
+  emit_move_insn (temp, x);
+  return temp;
+}
+
+/* Return the mode to use to store a scalar of TYPE and MODE.
+   PUNSIGNEDP points to the signedness of the type and may be adjusted
+   to show what signedness to use on extension operations.
+
+   FOR_CALL is nonzero if this call is promoting args for a call.  */
+
+#if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
+#define PROMOTE_FUNCTION_MODE PROMOTE_MODE
+#endif
+
+enum machine_mode
+promote_mode (const_tree type, enum machine_mode mode, int *punsignedp,
+	      int for_call ATTRIBUTE_UNUSED)
+{
+  const enum tree_code code = TREE_CODE (type);
+  int unsignedp = *punsignedp;
+
+#ifndef PROMOTE_MODE
+  if (! for_call)
+    return mode;
+#endif
+
+  switch (code)
+    {
+#ifdef PROMOTE_FUNCTION_MODE
+    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
+    case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
+#ifdef PROMOTE_MODE
+      if (for_call)
+	{
+#endif
+	  PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
+#ifdef PROMOTE_MODE
+	}
+      else
+	{
+	  PROMOTE_MODE (mode, unsignedp, type);
+	}
+#endif
+      break;
+#endif
+
+#ifdef POINTERS_EXTEND_UNSIGNED
+    case REFERENCE_TYPE:
+    case POINTER_TYPE:
+      mode = Pmode;
+      unsignedp = POINTERS_EXTEND_UNSIGNED;
+      break;
+#endif
+
+    default:
+      break;
+    }
+
+  *punsignedp = unsignedp;
+  return mode;
+}
+
+/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
+   This pops when ADJUST is positive.  ADJUST need not be constant.  */
+
+void
+adjust_stack (rtx adjust)
+{
+  rtx temp;
+
+  if (adjust == const0_rtx)
+    return;
+
+  /* We expect all variable sized adjustments to be multiple of
+     PREFERRED_STACK_BOUNDARY.  */
+  if (GET_CODE (adjust) == CONST_INT)
+    stack_pointer_delta -= INTVAL (adjust);
+
+  temp = expand_binop (Pmode,
+#ifdef STACK_GROWS_DOWNWARD
+		       add_optab,
+#else
+		       sub_optab,
+#endif
+		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
+		       OPTAB_LIB_WIDEN);
+
+  if (temp != stack_pointer_rtx)
+    emit_move_insn (stack_pointer_rtx, temp);
+}
+
+/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
+   This pushes when ADJUST is positive.  ADJUST need not be constant.  */
+
+void
+anti_adjust_stack (rtx adjust)
+{
+  rtx temp;
+
+  if (adjust == const0_rtx)
+    return;
+
+  /* We expect all variable sized adjustments to be multiple of
+     PREFERRED_STACK_BOUNDARY.  */
+  if (GET_CODE (adjust) == CONST_INT)
+    stack_pointer_delta += INTVAL (adjust);
+
+  temp = expand_binop (Pmode,
+#ifdef STACK_GROWS_DOWNWARD
+		       sub_optab,
+#else
+		       add_optab,
+#endif
+		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
+		       OPTAB_LIB_WIDEN);
+
+  if (temp != stack_pointer_rtx)
+    emit_move_insn (stack_pointer_rtx, temp);
+}
+
+/* Round the size of a block to be pushed up to the boundary required
+   by this machine.  SIZE is the desired size, which need not be constant.  */
+
+static rtx
+round_push (rtx size)
+{
+  int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
+
+  if (align == 1)
+    return size;
+
+  if (GET_CODE (size) == CONST_INT)
+    {
+      HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
+
+      if (INTVAL (size) != new_size)
+	size = GEN_INT (new_size);
+    }
+  else
+    {
+      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
+	 but we know it can't.  So add ourselves and then do
+	 TRUNC_DIV_EXPR.  */
+      size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
+			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
+      size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
+			    NULL_RTX, 1);
+      size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
+    }
+
+  return size;
+}
+
+/* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
+   to a previously-created save area.  If no save area has been allocated,
+   this function will allocate one.  If a save area is specified, it
+   must be of the proper mode.
+
+   The insns are emitted after insn AFTER, if nonzero, otherwise the insns
+   are emitted at the current position.  */
+
+void
+emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
+{
+  rtx sa = *psave;
+  /* The default is that we use a move insn and save in a Pmode object.  */
+  rtx (*fcn) (rtx, rtx) = gen_move_insn;
+  enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
+
+  /* See if this machine has anything special to do for this kind of save.  */
+  switch (save_level)
+    {
+#ifdef HAVE_save_stack_block
+    case SAVE_BLOCK:
+      if (HAVE_save_stack_block)
+	fcn = gen_save_stack_block;
+      break;
+#endif
+#ifdef HAVE_save_stack_function
+    case SAVE_FUNCTION:
+      if (HAVE_save_stack_function)
+	fcn = gen_save_stack_function;
+      break;
+#endif
+#ifdef HAVE_save_stack_nonlocal
+    case SAVE_NONLOCAL:
+      if (HAVE_save_stack_nonlocal)
+	fcn = gen_save_stack_nonlocal;
+      break;
+#endif
+    default:
+      break;
+    }
+
+  /* If there is no save area and we have to allocate one, do so.  Otherwise
+     verify the save area is the proper mode.  */
+
+  if (sa == 0)
+    {
+      if (mode != VOIDmode)
+	{
+	  if (save_level == SAVE_NONLOCAL)
+	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
+	  else
+	    *psave = sa = gen_reg_rtx (mode);
+	}
+    }
+
+  if (after)
+    {
+      rtx seq;
+
+      start_sequence ();
+      do_pending_stack_adjust ();
+      /* We must validize inside the sequence, to ensure that any instructions
+	 created by the validize call also get moved to the right place.  */
+      if (sa != 0)
+	sa = validize_mem (sa);
+      emit_insn (fcn (sa, stack_pointer_rtx));
+      seq = get_insns ();
+      end_sequence ();
+      emit_insn_after (seq, after);
+    }
+  else
+    {
+      do_pending_stack_adjust ();
+      if (sa != 0)
+	sa = validize_mem (sa);
+      emit_insn (fcn (sa, stack_pointer_rtx));
+    }
+}
+
+/* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
+   area made by emit_stack_save.  If it is zero, we have nothing to do.
+
+   Put any emitted insns after insn AFTER, if nonzero, otherwise at
+   current position.  */
+
+void
+emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
+{
+  /* The default is that we use a move insn.  */
+  rtx (*fcn) (rtx, rtx) = gen_move_insn;
+
+  /* See if this machine has anything special to do for this kind of save.  */
+  switch (save_level)
+    {
+#ifdef HAVE_restore_stack_block
+    case SAVE_BLOCK:
+      if (HAVE_restore_stack_block)
+	fcn = gen_restore_stack_block;
+      break;
+#endif
+#ifdef HAVE_restore_stack_function
+    case SAVE_FUNCTION:
+      if (HAVE_restore_stack_function)
+	fcn = gen_restore_stack_function;
+      break;
+#endif
+#ifdef HAVE_restore_stack_nonlocal
+    case SAVE_NONLOCAL:
+      if (HAVE_restore_stack_nonlocal)
+	fcn = gen_restore_stack_nonlocal;
+      break;
+#endif
+    default:
+      break;
+    }
+
+  if (sa != 0)
+    {
+      sa = validize_mem (sa);
+      /* These clobbers prevent the scheduler from moving
+	 references to variable arrays below the code
+	 that deletes (pops) the arrays.  */
+      emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
+      emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
+    }
+
+  discard_pending_stack_adjust ();
+
+  if (after)
+    {
+      rtx seq;
+
+      start_sequence ();
+      emit_insn (fcn (stack_pointer_rtx, sa));
+      seq = get_insns ();
+      end_sequence ();
+      emit_insn_after (seq, after);
+    }
+  else
+    emit_insn (fcn (stack_pointer_rtx, sa));
+}
+
+/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
+   function.  This function should be called whenever we allocate or
+   deallocate dynamic stack space.  */
+
+void
+update_nonlocal_goto_save_area (void)
+{
+  tree t_save;
+  rtx r_save;
+
+  /* The nonlocal_goto_save_area object is an array of N pointers.  The
+     first one is used for the frame pointer save; the rest are sized by
+     STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
+     of the stack save area slots.  */
+  t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
+		   integer_one_node, NULL_TREE, NULL_TREE);
+  r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
+
+  emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
+}
+
+/* Return an rtx representing the address of an area of memory dynamically
+   pushed on the stack.  This region of memory is always aligned to
+   a multiple of BIGGEST_ALIGNMENT.
+
+   Any required stack pointer alignment is preserved.
+
+   SIZE is an rtx representing the size of the area.
+   TARGET is a place in which the address can be placed.
+
+   KNOWN_ALIGN is the alignment (in bits) that we know SIZE has.  */
+
+rtx
+allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
+{
+  /* If we're asking for zero bytes, it doesn't matter what we point
+     to since we can't dereference it.  But return a reasonable
+     address anyway.  */
+  if (size == const0_rtx)
+    return virtual_stack_dynamic_rtx;
+
+  /* Otherwise, show we're calling alloca or equivalent.  */
+  cfun->calls_alloca = 1;
+
+  /* Ensure the size is in the proper mode.  */
+  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
+    size = convert_to_mode (Pmode, size, 1);
+
+  /* We can't attempt to minimize alignment necessary, because we don't
+     know the final value of preferred_stack_boundary yet while executing
+     this code.  */
+  crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
+
+  /* We will need to ensure that the address we return is aligned to
+     BIGGEST_ALIGNMENT.  If STACK_DYNAMIC_OFFSET is defined, we don't
+     always know its final value at this point in the compilation (it
+     might depend on the size of the outgoing parameter lists, for
+     example), so we must align the value to be returned in that case.
+     (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
+     STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
+     We must also do an alignment operation on the returned value if
+     the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
+
+     If we have to align, we must leave space in SIZE for the hole
+     that might result from the alignment operation.  */
+
+#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
+#define MUST_ALIGN 1
+#else
+#define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
+#endif
+
+  if (MUST_ALIGN)
+    size
+      = force_operand (plus_constant (size,
+				      BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
+		       NULL_RTX);
+
+#ifdef SETJMP_VIA_SAVE_AREA
+  /* If setjmp restores regs from a save area in the stack frame,
+     avoid clobbering the reg save area.  Note that the offset of
+     virtual_incoming_args_rtx includes the preallocated stack args space.
+     It would be no problem to clobber that, but it's on the wrong side
+     of the old save area.
+
+     What used to happen is that, since we did not know for sure
+     whether setjmp() was invoked until after RTL generation, we
+     would use reg notes to store the "optimized" size and fix things
+     up later.  These days we know this information before we ever
+     start building RTL so the reg notes are unnecessary.  */
+  if (!cfun->calls_setjmp)
+    {
+      int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
+
+      /* ??? Code below assumes that the save area needs maximal
+	 alignment.  This constraint may be too strong.  */
+      gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
+
+      if (GET_CODE (size) == CONST_INT)
+	{
+	  HOST_WIDE_INT new_size = INTVAL (size) / align * align;
+
+	  if (INTVAL (size) != new_size)
+	    size = GEN_INT (new_size);
+	}
+      else
+	{
+	  /* Since we know overflow is not possible, we avoid using
+	     CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead.  */
+	  size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
+				GEN_INT (align), NULL_RTX, 1);
+	  size = expand_mult (Pmode, size,
+			      GEN_INT (align), NULL_RTX, 1);
+	}
+    }
+  else
+    {
+      rtx dynamic_offset
+	= expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
+			stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
+
+      size = expand_binop (Pmode, add_optab, size, dynamic_offset,
+			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
+    }
+#endif /* SETJMP_VIA_SAVE_AREA */
+
+  /* Round the size to a multiple of the required stack alignment.
+     Since the stack if presumed to be rounded before this allocation,
+     this will maintain the required alignment.
+
+     If the stack grows downward, we could save an insn by subtracting
+     SIZE from the stack pointer and then aligning the stack pointer.
+     The problem with this is that the stack pointer may be unaligned
+     between the execution of the subtraction and alignment insns and
+     some machines do not allow this.  Even on those that do, some
+     signal handlers malfunction if a signal should occur between those
+     insns.  Since this is an extremely rare event, we have no reliable
+     way of knowing which systems have this problem.  So we avoid even
+     momentarily mis-aligning the stack.  */
+
+  /* If we added a variable amount to SIZE,
+     we can no longer assume it is aligned.  */
+#if !defined (SETJMP_VIA_SAVE_AREA)
+  if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
+#endif
+    size = round_push (size);
+
+  do_pending_stack_adjust ();
+
+ /* We ought to be called always on the toplevel and stack ought to be aligned
+    properly.  */
+  gcc_assert (!(stack_pointer_delta
+		% (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
+
+  /* If needed, check that we have the required amount of stack.
+     Take into account what has already been checked.  */
+  if (flag_stack_check == GENERIC_STACK_CHECK)
+    probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
+		       size);
+  else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
+    probe_stack_range (STACK_CHECK_PROTECT, size);
+
+  /* Don't use a TARGET that isn't a pseudo or is the wrong mode.  */
+  if (target == 0 || !REG_P (target)
+      || REGNO (target) < FIRST_PSEUDO_REGISTER
+      || GET_MODE (target) != Pmode)
+    target = gen_reg_rtx (Pmode);
+
+  mark_reg_pointer (target, known_align);
+
+  /* Perform the required allocation from the stack.  Some systems do
+     this differently than simply incrementing/decrementing from the
+     stack pointer, such as acquiring the space by calling malloc().  */
+#ifdef HAVE_allocate_stack
+  if (HAVE_allocate_stack)
+    {
+      enum machine_mode mode = STACK_SIZE_MODE;
+      insn_operand_predicate_fn pred;
+
+      /* We don't have to check against the predicate for operand 0 since
+	 TARGET is known to be a pseudo of the proper mode, which must
+	 be valid for the operand.  For operand 1, convert to the
+	 proper mode and validate.  */
+      if (mode == VOIDmode)
+	mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
+
+      pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
+      if (pred && ! ((*pred) (size, mode)))
+	size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
+
+      emit_insn (gen_allocate_stack (target, size));
+    }
+  else
+#endif
+    {
+#ifndef STACK_GROWS_DOWNWARD
+      emit_move_insn (target, virtual_stack_dynamic_rtx);
+#endif
+
+      /* Check stack bounds if necessary.  */
+      if (crtl->limit_stack)
+	{
+	  rtx available;
+	  rtx space_available = gen_label_rtx ();
+#ifdef STACK_GROWS_DOWNWARD
+	  available = expand_binop (Pmode, sub_optab,
+				    stack_pointer_rtx, stack_limit_rtx,
+				    NULL_RTX, 1, OPTAB_WIDEN);
+#else
+	  available = expand_binop (Pmode, sub_optab,
+				    stack_limit_rtx, stack_pointer_rtx,
+				    NULL_RTX, 1, OPTAB_WIDEN);
+#endif
+	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
+				   space_available);
+#ifdef HAVE_trap
+	  if (HAVE_trap)
+	    emit_insn (gen_trap ());
+	  else
+#endif
+	    error ("stack limits not supported on this target");
+	  emit_barrier ();
+	  emit_label (space_available);
+	}
+
+      anti_adjust_stack (size);
+
+#ifdef STACK_GROWS_DOWNWARD
+      emit_move_insn (target, virtual_stack_dynamic_rtx);
+#endif
+    }
+
+  if (MUST_ALIGN)
+    {
+      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
+	 but we know it can't.  So add ourselves and then do
+	 TRUNC_DIV_EXPR.  */
+      target = expand_binop (Pmode, add_optab, target,
+			     GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
+			     NULL_RTX, 1, OPTAB_LIB_WIDEN);
+      target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
+			      GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
+			      NULL_RTX, 1);
+      target = expand_mult (Pmode, target,
+			    GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
+			    NULL_RTX, 1);
+    }
+
+  /* Record the new stack level for nonlocal gotos.  */
+  if (cfun->nonlocal_goto_save_area != 0)
+    update_nonlocal_goto_save_area ();
+
+  return target;
+}
+
+/* A front end may want to override GCC's stack checking by providing a
+   run-time routine to call to check the stack, so provide a mechanism for
+   calling that routine.  */
+
+static GTY(()) rtx stack_check_libfunc;
+
+void
+set_stack_check_libfunc (rtx libfunc)
+{
+  stack_check_libfunc = libfunc;
+}
+
+/* Emit one stack probe at ADDRESS, an address within the stack.  */
+
+static void
+emit_stack_probe (rtx address)
+{
+  rtx memref = gen_rtx_MEM (word_mode, address);
+
+  MEM_VOLATILE_P (memref) = 1;
+
+  if (STACK_CHECK_PROBE_LOAD)
+    emit_move_insn (gen_reg_rtx (word_mode), memref);
+  else
+    emit_move_insn (memref, const0_rtx);
+}
+
+/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
+   FIRST is a constant and size is a Pmode RTX.  These are offsets from the
+   current stack pointer.  STACK_GROWS_DOWNWARD says whether to add or
+   subtract from the stack.  If SIZE is constant, this is done
+   with a fixed number of probes.  Otherwise, we must make a loop.  */
+
+#ifdef STACK_GROWS_DOWNWARD
+#define STACK_GROW_OP MINUS
+#else
+#define STACK_GROW_OP PLUS
+#endif
+
+void
+probe_stack_range (HOST_WIDE_INT first, rtx size)
+{
+  /* First ensure SIZE is Pmode.  */
+  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
+    size = convert_to_mode (Pmode, size, 1);
+
+  /* Next see if the front end has set up a function for us to call to
+     check the stack.  */
+  if (stack_check_libfunc != 0)
+    {
+      rtx addr = memory_address (QImode,
+				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+					         stack_pointer_rtx,
+					         plus_constant (size, first)));
+
+      addr = convert_memory_address (ptr_mode, addr);
+      emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
+			 ptr_mode);
+    }
+
+  /* Next see if we have an insn to check the stack.  Use it if so.  */
+#ifdef HAVE_check_stack
+  else if (HAVE_check_stack)
+    {
+      insn_operand_predicate_fn pred;
+      rtx last_addr
+	= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+					 stack_pointer_rtx,
+					 plus_constant (size, first)),
+			 NULL_RTX);
+
+      pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
+      if (pred && ! ((*pred) (last_addr, Pmode)))
+	last_addr = copy_to_mode_reg (Pmode, last_addr);
+
+      emit_insn (gen_check_stack (last_addr));
+    }
+#endif
+
+  /* If we have to generate explicit probes, see if we have a constant
+     small number of them to generate.  If so, that's the easy case.  */
+  else if (GET_CODE (size) == CONST_INT
+	   && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
+    {
+      HOST_WIDE_INT offset;
+
+      /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
+	 for values of N from 1 until it exceeds LAST.  If only one
+	 probe is needed, this will not generate any code.  Then probe
+	 at LAST.  */
+      for (offset = first + STACK_CHECK_PROBE_INTERVAL;
+	   offset < INTVAL (size);
+	   offset = offset + STACK_CHECK_PROBE_INTERVAL)
+	emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+					  stack_pointer_rtx,
+					  GEN_INT (offset)));
+
+      emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+					stack_pointer_rtx,
+					plus_constant (size, first)));
+    }
+
+  /* In the variable case, do the same as above, but in a loop.  We emit loop
+     notes so that loop optimization can be done.  */
+  else
+    {
+      rtx test_addr
+	= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+					 stack_pointer_rtx,
+					 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
+			 NULL_RTX);
+      rtx last_addr
+	= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+					 stack_pointer_rtx,
+					 plus_constant (size, first)),
+			 NULL_RTX);
+      rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
+      rtx loop_lab = gen_label_rtx ();
+      rtx test_lab = gen_label_rtx ();
+      rtx end_lab = gen_label_rtx ();
+      rtx temp;
+
+      if (!REG_P (test_addr)
+	  || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
+	test_addr = force_reg (Pmode, test_addr);
+
+      emit_jump (test_lab);
+
+      emit_label (loop_lab);
+      emit_stack_probe (test_addr);
+
+#ifdef STACK_GROWS_DOWNWARD
+#define CMP_OPCODE GTU
+      temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
+			   1, OPTAB_WIDEN);
+#else
+#define CMP_OPCODE LTU
+      temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
+			   1, OPTAB_WIDEN);
+#endif
+
+      gcc_assert (temp == test_addr);
+
+      emit_label (test_lab);
+      emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
+			       NULL_RTX, Pmode, 1, loop_lab);
+      emit_jump (end_lab);
+      emit_label (end_lab);
+
+      emit_stack_probe (last_addr);
+    }
+}
+
+/* Return an rtx representing the register or memory location
+   in which a scalar value of data type VALTYPE
+   was returned by a function call to function FUNC.
+   FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
+   function is known, otherwise 0.
+   OUTGOING is 1 if on a machine with register windows this function
+   should return the register in which the function will put its result
+   and 0 otherwise.  */
+
+rtx
+hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
+		     int outgoing ATTRIBUTE_UNUSED)
+{
+  rtx val;
+
+  val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
+
+  if (REG_P (val)
+      && GET_MODE (val) == BLKmode)
+    {
+      unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
+      enum machine_mode tmpmode;
+
+      /* int_size_in_bytes can return -1.  We don't need a check here
+	 since the value of bytes will then be large enough that no
+	 mode will match anyway.  */
+
+      for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+	   tmpmode != VOIDmode;
+	   tmpmode = GET_MODE_WIDER_MODE (tmpmode))
+	{
+	  /* Have we found a large enough mode?  */
+	  if (GET_MODE_SIZE (tmpmode) >= bytes)
+	    break;
+	}
+
+      /* No suitable mode found.  */
+      gcc_assert (tmpmode != VOIDmode);
+
+      PUT_MODE (val, tmpmode);
+    }
+  return val;
+}
+
+/* Return an rtx representing the register or memory location
+   in which a scalar value of mode MODE was returned by a library call.  */
+
+rtx
+hard_libcall_value (enum machine_mode mode)
+{
+  return LIBCALL_VALUE (mode);
+}
+
+/* Look up the tree code for a given rtx code
+   to provide the arithmetic operation for REAL_ARITHMETIC.
+   The function returns an int because the caller may not know
+   what `enum tree_code' means.  */
+
+int
+rtx_to_tree_code (enum rtx_code code)
+{
+  enum tree_code tcode;
+
+  switch (code)
+    {
+    case PLUS:
+      tcode = PLUS_EXPR;
+      break;
+    case MINUS:
+      tcode = MINUS_EXPR;
+      break;
+    case MULT:
+      tcode = MULT_EXPR;
+      break;
+    case DIV:
+      tcode = RDIV_EXPR;
+      break;
+    case SMIN:
+      tcode = MIN_EXPR;
+      break;
+    case SMAX:
+      tcode = MAX_EXPR;
+      break;
+    default:
+      tcode = LAST_AND_UNUSED_TREE_CODE;
+      break;
+    }
+  return ((int) tcode);
+}
+
+#include "gt-explow.h"