diff gcc/expr.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 58ad6c70ea60
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/expr.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,10188 @@
+/* Convert tree expression to rtl instructions, for GNU compiler.
+   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+   Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "machmode.h"
+#include "real.h"
+#include "rtl.h"
+#include "tree.h"
+#include "flags.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "except.h"
+#include "function.h"
+#include "insn-config.h"
+#include "insn-attr.h"
+/* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
+#include "expr.h"
+#include "optabs.h"
+#include "libfuncs.h"
+#include "recog.h"
+#include "reload.h"
+#include "output.h"
+#include "typeclass.h"
+#include "toplev.h"
+#include "ggc.h"
+#include "langhooks.h"
+#include "intl.h"
+#include "tm_p.h"
+#include "tree-iterator.h"
+#include "tree-pass.h"
+#include "tree-flow.h"
+#include "target.h"
+#include "timevar.h"
+#include "df.h"
+#include "diagnostic.h"
+
+/* Decide whether a function's arguments should be processed
+   from first to last or from last to first.
+
+   They should if the stack and args grow in opposite directions, but
+   only if we have push insns.  */
+
+#ifdef PUSH_ROUNDING
+
+#ifndef PUSH_ARGS_REVERSED
+#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
+#define PUSH_ARGS_REVERSED	/* If it's last to first.  */
+#endif
+#endif
+
+#endif
+
+#ifndef STACK_PUSH_CODE
+#ifdef STACK_GROWS_DOWNWARD
+#define STACK_PUSH_CODE PRE_DEC
+#else
+#define STACK_PUSH_CODE PRE_INC
+#endif
+#endif
+
+
+/* If this is nonzero, we do not bother generating VOLATILE
+   around volatile memory references, and we are willing to
+   output indirect addresses.  If cse is to follow, we reject
+   indirect addresses so a useful potential cse is generated;
+   if it is used only once, instruction combination will produce
+   the same indirect address eventually.  */
+int cse_not_expected;
+
+/* This structure is used by move_by_pieces to describe the move to
+   be performed.  */
+struct move_by_pieces
+{
+  rtx to;
+  rtx to_addr;
+  int autinc_to;
+  int explicit_inc_to;
+  rtx from;
+  rtx from_addr;
+  int autinc_from;
+  int explicit_inc_from;
+  unsigned HOST_WIDE_INT len;
+  HOST_WIDE_INT offset;
+  int reverse;
+};
+
+/* This structure is used by store_by_pieces to describe the clear to
+   be performed.  */
+
+struct store_by_pieces
+{
+  rtx to;
+  rtx to_addr;
+  int autinc_to;
+  int explicit_inc_to;
+  unsigned HOST_WIDE_INT len;
+  HOST_WIDE_INT offset;
+  rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
+  void *constfundata;
+  int reverse;
+};
+
+static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
+						     unsigned int,
+						     unsigned int);
+static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
+			      struct move_by_pieces *);
+static bool block_move_libcall_safe_for_call_parm (void);
+static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
+static tree emit_block_move_libcall_fn (int);
+static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
+static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
+static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
+static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
+static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
+			       struct store_by_pieces *);
+static tree clear_storage_libcall_fn (int);
+static rtx compress_float_constant (rtx, rtx);
+static rtx get_subtarget (rtx);
+static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
+				     HOST_WIDE_INT, enum machine_mode,
+				     tree, tree, int, alias_set_type);
+static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
+static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
+			tree, tree, alias_set_type, bool);
+
+static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
+
+static int is_aligning_offset (const_tree, const_tree);
+static void expand_operands (tree, tree, rtx, rtx*, rtx*,
+			     enum expand_modifier);
+static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
+static rtx do_store_flag (tree, rtx, enum machine_mode, int);
+#ifdef PUSH_ROUNDING
+static void emit_single_push_insn (enum machine_mode, rtx, tree);
+#endif
+static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
+static rtx const_vector_from_tree (tree);
+static void write_complex_part (rtx, rtx, bool);
+
+/* Record for each mode whether we can move a register directly to or
+   from an object of that mode in memory.  If we can't, we won't try
+   to use that mode directly when accessing a field of that mode.  */
+
+static char direct_load[NUM_MACHINE_MODES];
+static char direct_store[NUM_MACHINE_MODES];
+
+/* Record for each mode whether we can float-extend from memory.  */
+
+static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
+
+/* This macro is used to determine whether move_by_pieces should be called
+   to perform a structure copy.  */
+#ifndef MOVE_BY_PIECES_P
+#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
+  (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
+   < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
+#endif
+
+/* This macro is used to determine whether clear_by_pieces should be
+   called to clear storage.  */
+#ifndef CLEAR_BY_PIECES_P
+#define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
+  (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
+   < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
+#endif
+
+/* This macro is used to determine whether store_by_pieces should be
+   called to "memset" storage with byte values other than zero.  */
+#ifndef SET_BY_PIECES_P
+#define SET_BY_PIECES_P(SIZE, ALIGN) \
+  (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
+   < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
+#endif
+
+/* This macro is used to determine whether store_by_pieces should be
+   called to "memcpy" storage when the source is a constant string.  */
+#ifndef STORE_BY_PIECES_P
+#define STORE_BY_PIECES_P(SIZE, ALIGN) \
+  (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
+   < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
+#endif
+
+/* This array records the insn_code of insns to perform block moves.  */
+enum insn_code movmem_optab[NUM_MACHINE_MODES];
+
+/* This array records the insn_code of insns to perform block sets.  */
+enum insn_code setmem_optab[NUM_MACHINE_MODES];
+
+/* These arrays record the insn_code of three different kinds of insns
+   to perform block compares.  */
+enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
+enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
+enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
+
+/* Synchronization primitives.  */
+enum insn_code sync_add_optab[NUM_MACHINE_MODES];
+enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
+enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
+enum insn_code sync_and_optab[NUM_MACHINE_MODES];
+enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
+enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
+enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
+enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
+enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
+enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
+enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
+enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
+enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
+enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
+enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
+enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
+enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
+enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
+enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
+enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
+enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
+enum insn_code sync_lock_release[NUM_MACHINE_MODES];
+
+/* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow.  */
+
+#ifndef SLOW_UNALIGNED_ACCESS
+#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
+#endif
+
+/* This is run to set up which modes can be used
+   directly in memory and to initialize the block move optab.  It is run
+   at the beginning of compilation and when the target is reinitialized.  */
+
+void
+init_expr_target (void)
+{
+  rtx insn, pat;
+  enum machine_mode mode;
+  int num_clobbers;
+  rtx mem, mem1;
+  rtx reg;
+
+  /* Try indexing by frame ptr and try by stack ptr.
+     It is known that on the Convex the stack ptr isn't a valid index.
+     With luck, one or the other is valid on any machine.  */
+  mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
+  mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
+
+  /* A scratch register we can modify in-place below to avoid
+     useless RTL allocations.  */
+  reg = gen_rtx_REG (VOIDmode, -1);
+
+  insn = rtx_alloc (INSN);
+  pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
+  PATTERN (insn) = pat;
+
+  for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
+       mode = (enum machine_mode) ((int) mode + 1))
+    {
+      int regno;
+
+      direct_load[(int) mode] = direct_store[(int) mode] = 0;
+      PUT_MODE (mem, mode);
+      PUT_MODE (mem1, mode);
+      PUT_MODE (reg, mode);
+
+      /* See if there is some register that can be used in this mode and
+	 directly loaded or stored from memory.  */
+
+      if (mode != VOIDmode && mode != BLKmode)
+	for (regno = 0; regno < FIRST_PSEUDO_REGISTER
+	     && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
+	     regno++)
+	  {
+	    if (! HARD_REGNO_MODE_OK (regno, mode))
+	      continue;
+
+	    SET_REGNO (reg, regno);
+
+	    SET_SRC (pat) = mem;
+	    SET_DEST (pat) = reg;
+	    if (recog (pat, insn, &num_clobbers) >= 0)
+	      direct_load[(int) mode] = 1;
+
+	    SET_SRC (pat) = mem1;
+	    SET_DEST (pat) = reg;
+	    if (recog (pat, insn, &num_clobbers) >= 0)
+	      direct_load[(int) mode] = 1;
+
+	    SET_SRC (pat) = reg;
+	    SET_DEST (pat) = mem;
+	    if (recog (pat, insn, &num_clobbers) >= 0)
+	      direct_store[(int) mode] = 1;
+
+	    SET_SRC (pat) = reg;
+	    SET_DEST (pat) = mem1;
+	    if (recog (pat, insn, &num_clobbers) >= 0)
+	      direct_store[(int) mode] = 1;
+	  }
+    }
+
+  mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
+
+  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
+       mode = GET_MODE_WIDER_MODE (mode))
+    {
+      enum machine_mode srcmode;
+      for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
+	   srcmode = GET_MODE_WIDER_MODE (srcmode))
+	{
+	  enum insn_code ic;
+
+	  ic = can_extend_p (mode, srcmode, 0);
+	  if (ic == CODE_FOR_nothing)
+	    continue;
+
+	  PUT_MODE (mem, srcmode);
+
+	  if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
+	    float_extend_from_mem[mode][srcmode] = true;
+	}
+    }
+}
+
+/* This is run at the start of compiling a function.  */
+
+void
+init_expr (void)
+{
+  memset (&crtl->expr, 0, sizeof (crtl->expr));
+}
+
+/* Copy data from FROM to TO, where the machine modes are not the same.
+   Both modes may be integer, or both may be floating, or both may be
+   fixed-point.
+   UNSIGNEDP should be nonzero if FROM is an unsigned type.
+   This causes zero-extension instead of sign-extension.  */
+
+void
+convert_move (rtx to, rtx from, int unsignedp)
+{
+  enum machine_mode to_mode = GET_MODE (to);
+  enum machine_mode from_mode = GET_MODE (from);
+  int to_real = SCALAR_FLOAT_MODE_P (to_mode);
+  int from_real = SCALAR_FLOAT_MODE_P (from_mode);
+  enum insn_code code;
+  rtx libcall;
+
+  /* rtx code for making an equivalent value.  */
+  enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
+			      : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
+
+
+  gcc_assert (to_real == from_real);
+  gcc_assert (to_mode != BLKmode);
+  gcc_assert (from_mode != BLKmode);
+
+  /* If the source and destination are already the same, then there's
+     nothing to do.  */
+  if (to == from)
+    return;
+
+  /* If FROM is a SUBREG that indicates that we have already done at least
+     the required extension, strip it.  We don't handle such SUBREGs as
+     TO here.  */
+
+  if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
+      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
+	  >= GET_MODE_SIZE (to_mode))
+      && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
+    from = gen_lowpart (to_mode, from), from_mode = to_mode;
+
+  gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
+
+  if (to_mode == from_mode
+      || (from_mode == VOIDmode && CONSTANT_P (from)))
+    {
+      emit_move_insn (to, from);
+      return;
+    }
+
+  if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
+    {
+      gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
+
+      if (VECTOR_MODE_P (to_mode))
+	from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
+      else
+	to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
+
+      emit_move_insn (to, from);
+      return;
+    }
+
+  if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
+    {
+      convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
+      convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
+      return;
+    }
+
+  if (to_real)
+    {
+      rtx value, insns;
+      convert_optab tab;
+
+      gcc_assert ((GET_MODE_PRECISION (from_mode)
+		   != GET_MODE_PRECISION (to_mode))
+		  || (DECIMAL_FLOAT_MODE_P (from_mode)
+		      != DECIMAL_FLOAT_MODE_P (to_mode)));
+
+      if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
+	/* Conversion between decimal float and binary float, same size.  */
+	tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
+      else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
+	tab = sext_optab;
+      else
+	tab = trunc_optab;
+
+      /* Try converting directly if the insn is supported.  */
+
+      code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
+      if (code != CODE_FOR_nothing)
+	{
+	  emit_unop_insn (code, to, from,
+			  tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
+	  return;
+	}
+
+      /* Otherwise use a libcall.  */
+      libcall = convert_optab_libfunc (tab, to_mode, from_mode);
+
+      /* Is this conversion implemented yet?  */
+      gcc_assert (libcall);
+
+      start_sequence ();
+      value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
+				       1, from, from_mode);
+      insns = get_insns ();
+      end_sequence ();
+      emit_libcall_block (insns, to, value,
+			  tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
+								       from)
+			  : gen_rtx_FLOAT_EXTEND (to_mode, from));
+      return;
+    }
+
+  /* Handle pointer conversion.  */			/* SPEE 900220.  */
+  /* Targets are expected to provide conversion insns between PxImode and
+     xImode for all MODE_PARTIAL_INT modes they use, but no others.  */
+  if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
+    {
+      enum machine_mode full_mode
+	= smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
+
+      gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
+		  != CODE_FOR_nothing);
+
+      if (full_mode != from_mode)
+	from = convert_to_mode (full_mode, from, unsignedp);
+      emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
+		      to, from, UNKNOWN);
+      return;
+    }
+  if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
+    {
+      rtx new_from;
+      enum machine_mode full_mode
+	= smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
+
+      gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
+		  != CODE_FOR_nothing);
+
+      if (to_mode == full_mode)
+	{
+	  emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
+			  to, from, UNKNOWN);
+	  return;
+	}
+
+      new_from = gen_reg_rtx (full_mode);
+      emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
+		      new_from, from, UNKNOWN);
+
+      /* else proceed to integer conversions below.  */
+      from_mode = full_mode;
+      from = new_from;
+    }
+
+   /* Make sure both are fixed-point modes or both are not.  */
+   gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
+	       ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
+   if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
+    {
+      /* If we widen from_mode to to_mode and they are in the same class,
+	 we won't saturate the result.
+	 Otherwise, always saturate the result to play safe.  */
+      if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
+	  && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
+	expand_fixed_convert (to, from, 0, 0);
+      else
+	expand_fixed_convert (to, from, 0, 1);
+      return;
+    }
+
+  /* Now both modes are integers.  */
+
+  /* Handle expanding beyond a word.  */
+  if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
+      && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
+    {
+      rtx insns;
+      rtx lowpart;
+      rtx fill_value;
+      rtx lowfrom;
+      int i;
+      enum machine_mode lowpart_mode;
+      int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
+
+      /* Try converting directly if the insn is supported.  */
+      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
+	  != CODE_FOR_nothing)
+	{
+	  /* If FROM is a SUBREG, put it into a register.  Do this
+	     so that we always generate the same set of insns for
+	     better cse'ing; if an intermediate assignment occurred,
+	     we won't be doing the operation directly on the SUBREG.  */
+	  if (optimize > 0 && GET_CODE (from) == SUBREG)
+	    from = force_reg (from_mode, from);
+	  emit_unop_insn (code, to, from, equiv_code);
+	  return;
+	}
+      /* Next, try converting via full word.  */
+      else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
+	       && ((code = can_extend_p (to_mode, word_mode, unsignedp))
+		   != CODE_FOR_nothing))
+	{
+	  rtx word_to = gen_reg_rtx (word_mode);
+	  if (REG_P (to))
+	    {
+	      if (reg_overlap_mentioned_p (to, from))
+		from = force_reg (from_mode, from);
+	      emit_clobber (to);
+	    }
+	  convert_move (word_to, from, unsignedp);
+	  emit_unop_insn (code, to, word_to, equiv_code);
+	  return;
+	}
+
+      /* No special multiword conversion insn; do it by hand.  */
+      start_sequence ();
+
+      /* Since we will turn this into a no conflict block, we must ensure
+	 that the source does not overlap the target.  */
+
+      if (reg_overlap_mentioned_p (to, from))
+	from = force_reg (from_mode, from);
+
+      /* Get a copy of FROM widened to a word, if necessary.  */
+      if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
+	lowpart_mode = word_mode;
+      else
+	lowpart_mode = from_mode;
+
+      lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
+
+      lowpart = gen_lowpart (lowpart_mode, to);
+      emit_move_insn (lowpart, lowfrom);
+
+      /* Compute the value to put in each remaining word.  */
+      if (unsignedp)
+	fill_value = const0_rtx;
+      else
+	{
+#ifdef HAVE_slt
+	  if (HAVE_slt
+	      && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
+	      && STORE_FLAG_VALUE == -1)
+	    {
+	      emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
+			     lowpart_mode, 0);
+	      fill_value = gen_reg_rtx (word_mode);
+	      emit_insn (gen_slt (fill_value));
+	    }
+	  else
+#endif
+	    {
+	      fill_value
+		= expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
+				size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
+				NULL_RTX, 0);
+	      fill_value = convert_to_mode (word_mode, fill_value, 1);
+	    }
+	}
+
+      /* Fill the remaining words.  */
+      for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
+	{
+	  int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
+	  rtx subword = operand_subword (to, index, 1, to_mode);
+
+	  gcc_assert (subword);
+
+	  if (fill_value != subword)
+	    emit_move_insn (subword, fill_value);
+	}
+
+      insns = get_insns ();
+      end_sequence ();
+
+      emit_insn (insns);
+      return;
+    }
+
+  /* Truncating multi-word to a word or less.  */
+  if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
+      && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
+    {
+      if (!((MEM_P (from)
+	     && ! MEM_VOLATILE_P (from)
+	     && direct_load[(int) to_mode]
+	     && ! mode_dependent_address_p (XEXP (from, 0)))
+	    || REG_P (from)
+	    || GET_CODE (from) == SUBREG))
+	from = force_reg (from_mode, from);
+      convert_move (to, gen_lowpart (word_mode, from), 0);
+      return;
+    }
+
+  /* Now follow all the conversions between integers
+     no more than a word long.  */
+
+  /* For truncation, usually we can just refer to FROM in a narrower mode.  */
+  if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
+      && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
+				GET_MODE_BITSIZE (from_mode)))
+    {
+      if (!((MEM_P (from)
+	     && ! MEM_VOLATILE_P (from)
+	     && direct_load[(int) to_mode]
+	     && ! mode_dependent_address_p (XEXP (from, 0)))
+	    || REG_P (from)
+	    || GET_CODE (from) == SUBREG))
+	from = force_reg (from_mode, from);
+      if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
+	  && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
+	from = copy_to_reg (from);
+      emit_move_insn (to, gen_lowpart (to_mode, from));
+      return;
+    }
+
+  /* Handle extension.  */
+  if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
+    {
+      /* Convert directly if that works.  */
+      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
+	  != CODE_FOR_nothing)
+	{
+	  emit_unop_insn (code, to, from, equiv_code);
+	  return;
+	}
+      else
+	{
+	  enum machine_mode intermediate;
+	  rtx tmp;
+	  tree shift_amount;
+
+	  /* Search for a mode to convert via.  */
+	  for (intermediate = from_mode; intermediate != VOIDmode;
+	       intermediate = GET_MODE_WIDER_MODE (intermediate))
+	    if (((can_extend_p (to_mode, intermediate, unsignedp)
+		  != CODE_FOR_nothing)
+		 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
+		     && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
+					       GET_MODE_BITSIZE (intermediate))))
+		&& (can_extend_p (intermediate, from_mode, unsignedp)
+		    != CODE_FOR_nothing))
+	      {
+		convert_move (to, convert_to_mode (intermediate, from,
+						   unsignedp), unsignedp);
+		return;
+	      }
+
+	  /* No suitable intermediate mode.
+	     Generate what we need with	shifts.  */
+	  shift_amount = build_int_cst (NULL_TREE,
+					GET_MODE_BITSIZE (to_mode)
+					- GET_MODE_BITSIZE (from_mode));
+	  from = gen_lowpart (to_mode, force_reg (from_mode, from));
+	  tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
+			      to, unsignedp);
+	  tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
+			      to, unsignedp);
+	  if (tmp != to)
+	    emit_move_insn (to, tmp);
+	  return;
+	}
+    }
+
+  /* Support special truncate insns for certain modes.  */
+  if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
+    {
+      emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
+		      to, from, UNKNOWN);
+      return;
+    }
+
+  /* Handle truncation of volatile memrefs, and so on;
+     the things that couldn't be truncated directly,
+     and for which there was no special instruction.
+
+     ??? Code above formerly short-circuited this, for most integer
+     mode pairs, with a force_reg in from_mode followed by a recursive
+     call to this routine.  Appears always to have been wrong.  */
+  if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
+    {
+      rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
+      emit_move_insn (to, temp);
+      return;
+    }
+
+  /* Mode combination is not recognized.  */
+  gcc_unreachable ();
+}
+
+/* Return an rtx for a value that would result
+   from converting X to mode MODE.
+   Both X and MODE may be floating, or both integer.
+   UNSIGNEDP is nonzero if X is an unsigned value.
+   This can be done by referring to a part of X in place
+   or by copying to a new temporary with conversion.  */
+
+rtx
+convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
+{
+  return convert_modes (mode, VOIDmode, x, unsignedp);
+}
+
+/* Return an rtx for a value that would result
+   from converting X from mode OLDMODE to mode MODE.
+   Both modes may be floating, or both integer.
+   UNSIGNEDP is nonzero if X is an unsigned value.
+
+   This can be done by referring to a part of X in place
+   or by copying to a new temporary with conversion.
+
+   You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.  */
+
+rtx
+convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
+{
+  rtx temp;
+
+  /* If FROM is a SUBREG that indicates that we have already done at least
+     the required extension, strip it.  */
+
+  if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
+      && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
+      && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
+    x = gen_lowpart (mode, x);
+
+  if (GET_MODE (x) != VOIDmode)
+    oldmode = GET_MODE (x);
+
+  if (mode == oldmode)
+    return x;
+
+  /* There is one case that we must handle specially: If we are converting
+     a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
+     we are to interpret the constant as unsigned, gen_lowpart will do
+     the wrong if the constant appears negative.  What we want to do is
+     make the high-order word of the constant zero, not all ones.  */
+
+  if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
+      && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
+      && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
+    {
+      HOST_WIDE_INT val = INTVAL (x);
+
+      if (oldmode != VOIDmode
+	  && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
+	{
+	  int width = GET_MODE_BITSIZE (oldmode);
+
+	  /* We need to zero extend VAL.  */
+	  val &= ((HOST_WIDE_INT) 1 << width) - 1;
+	}
+
+      return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
+    }
+
+  /* We can do this with a gen_lowpart if both desired and current modes
+     are integer, and this is either a constant integer, a register, or a
+     non-volatile MEM.  Except for the constant case where MODE is no
+     wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand.  */
+
+  if ((GET_CODE (x) == CONST_INT
+       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
+      || (GET_MODE_CLASS (mode) == MODE_INT
+	  && GET_MODE_CLASS (oldmode) == MODE_INT
+	  && (GET_CODE (x) == CONST_DOUBLE
+	      || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
+		  && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
+		       && direct_load[(int) mode])
+		      || (REG_P (x)
+			  && (! HARD_REGISTER_P (x)
+			      || HARD_REGNO_MODE_OK (REGNO (x), mode))
+			  && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
+						    GET_MODE_BITSIZE (GET_MODE (x)))))))))
+    {
+      /* ?? If we don't know OLDMODE, we have to assume here that
+	 X does not need sign- or zero-extension.   This may not be
+	 the case, but it's the best we can do.  */
+      if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
+	  && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
+	{
+	  HOST_WIDE_INT val = INTVAL (x);
+	  int width = GET_MODE_BITSIZE (oldmode);
+
+	  /* We must sign or zero-extend in this case.  Start by
+	     zero-extending, then sign extend if we need to.  */
+	  val &= ((HOST_WIDE_INT) 1 << width) - 1;
+	  if (! unsignedp
+	      && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
+	    val |= (HOST_WIDE_INT) (-1) << width;
+
+	  return gen_int_mode (val, mode);
+	}
+
+      return gen_lowpart (mode, x);
+    }
+
+  /* Converting from integer constant into mode is always equivalent to an
+     subreg operation.  */
+  if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
+    {
+      gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
+      return simplify_gen_subreg (mode, x, oldmode, 0);
+    }
+
+  temp = gen_reg_rtx (mode);
+  convert_move (temp, x, unsignedp);
+  return temp;
+}
+
+/* STORE_MAX_PIECES is the number of bytes at a time that we can
+   store efficiently.  Due to internal GCC limitations, this is
+   MOVE_MAX_PIECES limited by the number of bytes GCC can represent
+   for an immediate constant.  */
+
+#define STORE_MAX_PIECES  MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
+
+/* Determine whether the LEN bytes can be moved by using several move
+   instructions.  Return nonzero if a call to move_by_pieces should
+   succeed.  */
+
+int
+can_move_by_pieces (unsigned HOST_WIDE_INT len,
+		    unsigned int align ATTRIBUTE_UNUSED)
+{
+  return MOVE_BY_PIECES_P (len, align);
+}
+
+/* Generate several move instructions to copy LEN bytes from block FROM to
+   block TO.  (These are MEM rtx's with BLKmode).
+
+   If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
+   used to push FROM to the stack.
+
+   ALIGN is maximum stack alignment we can assume.
+
+   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
+   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
+   stpcpy.  */
+
+rtx
+move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
+		unsigned int align, int endp)
+{
+  struct move_by_pieces data;
+  rtx to_addr, from_addr = XEXP (from, 0);
+  unsigned int max_size = MOVE_MAX_PIECES + 1;
+  enum machine_mode mode = VOIDmode, tmode;
+  enum insn_code icode;
+
+  align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
+
+  data.offset = 0;
+  data.from_addr = from_addr;
+  if (to)
+    {
+      to_addr = XEXP (to, 0);
+      data.to = to;
+      data.autinc_to
+	= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
+	   || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
+      data.reverse
+	= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
+    }
+  else
+    {
+      to_addr = NULL_RTX;
+      data.to = NULL_RTX;
+      data.autinc_to = 1;
+#ifdef STACK_GROWS_DOWNWARD
+      data.reverse = 1;
+#else
+      data.reverse = 0;
+#endif
+    }
+  data.to_addr = to_addr;
+  data.from = from;
+  data.autinc_from
+    = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
+       || GET_CODE (from_addr) == POST_INC
+       || GET_CODE (from_addr) == POST_DEC);
+
+  data.explicit_inc_from = 0;
+  data.explicit_inc_to = 0;
+  if (data.reverse) data.offset = len;
+  data.len = len;
+
+  /* If copying requires more than two move insns,
+     copy addresses to registers (to make displacements shorter)
+     and use post-increment if available.  */
+  if (!(data.autinc_from && data.autinc_to)
+      && move_by_pieces_ninsns (len, align, max_size) > 2)
+    {
+      /* Find the mode of the largest move...  */
+      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+	   tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
+	if (GET_MODE_SIZE (tmode) < max_size)
+	  mode = tmode;
+
+      if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
+	{
+	  data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
+	  data.autinc_from = 1;
+	  data.explicit_inc_from = -1;
+	}
+      if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
+	{
+	  data.from_addr = copy_addr_to_reg (from_addr);
+	  data.autinc_from = 1;
+	  data.explicit_inc_from = 1;
+	}
+      if (!data.autinc_from && CONSTANT_P (from_addr))
+	data.from_addr = copy_addr_to_reg (from_addr);
+      if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
+	{
+	  data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
+	  data.autinc_to = 1;
+	  data.explicit_inc_to = -1;
+	}
+      if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
+	{
+	  data.to_addr = copy_addr_to_reg (to_addr);
+	  data.autinc_to = 1;
+	  data.explicit_inc_to = 1;
+	}
+      if (!data.autinc_to && CONSTANT_P (to_addr))
+	data.to_addr = copy_addr_to_reg (to_addr);
+    }
+
+  tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
+  if (align >= GET_MODE_ALIGNMENT (tmode))
+    align = GET_MODE_ALIGNMENT (tmode);
+  else
+    {
+      enum machine_mode xmode;
+
+      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
+	   tmode != VOIDmode;
+	   xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
+	if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
+	    || SLOW_UNALIGNED_ACCESS (tmode, align))
+	  break;
+
+      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
+    }
+
+  /* First move what we can in the largest integer mode, then go to
+     successively smaller modes.  */
+
+  while (max_size > 1)
+    {
+      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+	   tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
+	if (GET_MODE_SIZE (tmode) < max_size)
+	  mode = tmode;
+
+      if (mode == VOIDmode)
+	break;
+
+      icode = optab_handler (mov_optab, mode)->insn_code;
+      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
+	move_by_pieces_1 (GEN_FCN (icode), mode, &data);
+
+      max_size = GET_MODE_SIZE (mode);
+    }
+
+  /* The code above should have handled everything.  */
+  gcc_assert (!data.len);
+
+  if (endp)
+    {
+      rtx to1;
+
+      gcc_assert (!data.reverse);
+      if (data.autinc_to)
+	{
+	  if (endp == 2)
+	    {
+	      if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
+		emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
+	      else
+		data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
+								-1));
+	    }
+	  to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
+					   data.offset);
+	}
+      else
+	{
+	  if (endp == 2)
+	    --data.offset;
+	  to1 = adjust_address (data.to, QImode, data.offset);
+	}
+      return to1;
+    }
+  else
+    return data.to;
+}
+
+/* Return number of insns required to move L bytes by pieces.
+   ALIGN (in bits) is maximum alignment we can assume.  */
+
+static unsigned HOST_WIDE_INT
+move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
+		       unsigned int max_size)
+{
+  unsigned HOST_WIDE_INT n_insns = 0;
+  enum machine_mode tmode;
+
+  tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
+  if (align >= GET_MODE_ALIGNMENT (tmode))
+    align = GET_MODE_ALIGNMENT (tmode);
+  else
+    {
+      enum machine_mode tmode, xmode;
+
+      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
+	   tmode != VOIDmode;
+	   xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
+	if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
+	    || SLOW_UNALIGNED_ACCESS (tmode, align))
+	  break;
+
+      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
+    }
+
+  while (max_size > 1)
+    {
+      enum machine_mode mode = VOIDmode;
+      enum insn_code icode;
+
+      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+	   tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
+	if (GET_MODE_SIZE (tmode) < max_size)
+	  mode = tmode;
+
+      if (mode == VOIDmode)
+	break;
+
+      icode = optab_handler (mov_optab, mode)->insn_code;
+      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
+	n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
+
+      max_size = GET_MODE_SIZE (mode);
+    }
+
+  gcc_assert (!l);
+  return n_insns;
+}
+
+/* Subroutine of move_by_pieces.  Move as many bytes as appropriate
+   with move instructions for mode MODE.  GENFUN is the gen_... function
+   to make a move insn for that mode.  DATA has all the other info.  */
+
+static void
+move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
+		  struct move_by_pieces *data)
+{
+  unsigned int size = GET_MODE_SIZE (mode);
+  rtx to1 = NULL_RTX, from1;
+
+  while (data->len >= size)
+    {
+      if (data->reverse)
+	data->offset -= size;
+
+      if (data->to)
+	{
+	  if (data->autinc_to)
+	    to1 = adjust_automodify_address (data->to, mode, data->to_addr,
+					     data->offset);
+	  else
+	    to1 = adjust_address (data->to, mode, data->offset);
+	}
+
+      if (data->autinc_from)
+	from1 = adjust_automodify_address (data->from, mode, data->from_addr,
+					   data->offset);
+      else
+	from1 = adjust_address (data->from, mode, data->offset);
+
+      if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
+	emit_insn (gen_add2_insn (data->to_addr,
+				  GEN_INT (-(HOST_WIDE_INT)size)));
+      if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
+	emit_insn (gen_add2_insn (data->from_addr,
+				  GEN_INT (-(HOST_WIDE_INT)size)));
+
+      if (data->to)
+	emit_insn ((*genfun) (to1, from1));
+      else
+	{
+#ifdef PUSH_ROUNDING
+	  emit_single_push_insn (mode, from1, NULL);
+#else
+	  gcc_unreachable ();
+#endif
+	}
+
+      if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
+	emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
+      if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
+	emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
+
+      if (! data->reverse)
+	data->offset += size;
+
+      data->len -= size;
+    }
+}
+
+/* Emit code to move a block Y to a block X.  This may be done with
+   string-move instructions, with multiple scalar move instructions,
+   or with a library call.
+
+   Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
+   SIZE is an rtx that says how long they are.
+   ALIGN is the maximum alignment we can assume they have.
+   METHOD describes what kind of copy this is, and what mechanisms may be used.
+
+   Return the address of the new block, if memcpy is called and returns it,
+   0 otherwise.  */
+
+rtx
+emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
+		       unsigned int expected_align, HOST_WIDE_INT expected_size)
+{
+  bool may_use_call;
+  rtx retval = 0;
+  unsigned int align;
+
+  switch (method)
+    {
+    case BLOCK_OP_NORMAL:
+    case BLOCK_OP_TAILCALL:
+      may_use_call = true;
+      break;
+
+    case BLOCK_OP_CALL_PARM:
+      may_use_call = block_move_libcall_safe_for_call_parm ();
+
+      /* Make inhibit_defer_pop nonzero around the library call
+	 to force it to pop the arguments right away.  */
+      NO_DEFER_POP;
+      break;
+
+    case BLOCK_OP_NO_LIBCALL:
+      may_use_call = false;
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
+
+  gcc_assert (MEM_P (x));
+  gcc_assert (MEM_P (y));
+  gcc_assert (size);
+
+  /* Make sure we've got BLKmode addresses; store_one_arg can decide that
+     block copy is more efficient for other large modes, e.g. DCmode.  */
+  x = adjust_address (x, BLKmode, 0);
+  y = adjust_address (y, BLKmode, 0);
+
+  /* Set MEM_SIZE as appropriate for this block copy.  The main place this
+     can be incorrect is coming from __builtin_memcpy.  */
+  if (GET_CODE (size) == CONST_INT)
+    {
+      if (INTVAL (size) == 0)
+	return 0;
+
+      x = shallow_copy_rtx (x);
+      y = shallow_copy_rtx (y);
+      set_mem_size (x, size);
+      set_mem_size (y, size);
+    }
+
+  if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
+    move_by_pieces (x, y, INTVAL (size), align, 0);
+  else if (emit_block_move_via_movmem (x, y, size, align,
+				       expected_align, expected_size))
+    ;
+  else if (may_use_call)
+    retval = emit_block_move_via_libcall (x, y, size,
+					  method == BLOCK_OP_TAILCALL);
+  else
+    emit_block_move_via_loop (x, y, size, align);
+
+  if (method == BLOCK_OP_CALL_PARM)
+    OK_DEFER_POP;
+
+  return retval;
+}
+
+rtx
+emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
+{
+  return emit_block_move_hints (x, y, size, method, 0, -1);
+}
+
+/* A subroutine of emit_block_move.  Returns true if calling the
+   block move libcall will not clobber any parameters which may have
+   already been placed on the stack.  */
+
+static bool
+block_move_libcall_safe_for_call_parm (void)
+{
+#if defined (REG_PARM_STACK_SPACE)
+  tree fn;
+#endif
+
+  /* If arguments are pushed on the stack, then they're safe.  */
+  if (PUSH_ARGS)
+    return true;
+
+  /* If registers go on the stack anyway, any argument is sure to clobber
+     an outgoing argument.  */
+#if defined (REG_PARM_STACK_SPACE)
+  fn = emit_block_move_libcall_fn (false);
+  if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
+      && REG_PARM_STACK_SPACE (fn) != 0)
+    return false;
+#endif
+
+  /* If any argument goes in memory, then it might clobber an outgoing
+     argument.  */
+  {
+    CUMULATIVE_ARGS args_so_far;
+    tree fn, arg;
+
+    fn = emit_block_move_libcall_fn (false);
+    INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
+
+    arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
+    for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
+      {
+	enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
+	rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
+	if (!tmp || !REG_P (tmp))
+	  return false;
+	if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
+	  return false;
+	FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
+      }
+  }
+  return true;
+}
+
+/* A subroutine of emit_block_move.  Expand a movmem pattern;
+   return true if successful.  */
+
+static bool
+emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
+			    unsigned int expected_align, HOST_WIDE_INT expected_size)
+{
+  rtx opalign = GEN_INT (align / BITS_PER_UNIT);
+  int save_volatile_ok = volatile_ok;
+  enum machine_mode mode;
+
+  if (expected_align < align)
+    expected_align = align;
+
+  /* Since this is a move insn, we don't care about volatility.  */
+  volatile_ok = 1;
+
+  /* Try the most limited insn first, because there's no point
+     including more than one in the machine description unless
+     the more limited one has some advantage.  */
+
+  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
+       mode = GET_MODE_WIDER_MODE (mode))
+    {
+      enum insn_code code = movmem_optab[(int) mode];
+      insn_operand_predicate_fn pred;
+
+      if (code != CODE_FOR_nothing
+	  /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
+	     here because if SIZE is less than the mode mask, as it is
+	     returned by the macro, it will definitely be less than the
+	     actual mode mask.  */
+	  && ((GET_CODE (size) == CONST_INT
+	       && ((unsigned HOST_WIDE_INT) INTVAL (size)
+		   <= (GET_MODE_MASK (mode) >> 1)))
+	      || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
+	  && ((pred = insn_data[(int) code].operand[0].predicate) == 0
+	      || (*pred) (x, BLKmode))
+	  && ((pred = insn_data[(int) code].operand[1].predicate) == 0
+	      || (*pred) (y, BLKmode))
+	  && ((pred = insn_data[(int) code].operand[3].predicate) == 0
+	      || (*pred) (opalign, VOIDmode)))
+	{
+	  rtx op2;
+	  rtx last = get_last_insn ();
+	  rtx pat;
+
+	  op2 = convert_to_mode (mode, size, 1);
+	  pred = insn_data[(int) code].operand[2].predicate;
+	  if (pred != 0 && ! (*pred) (op2, mode))
+	    op2 = copy_to_mode_reg (mode, op2);
+
+	  /* ??? When called via emit_block_move_for_call, it'd be
+	     nice if there were some way to inform the backend, so
+	     that it doesn't fail the expansion because it thinks
+	     emitting the libcall would be more efficient.  */
+
+	  if (insn_data[(int) code].n_operands == 4)
+	    pat = GEN_FCN ((int) code) (x, y, op2, opalign);
+	  else
+	    pat = GEN_FCN ((int) code) (x, y, op2, opalign,
+					GEN_INT (expected_align
+						 / BITS_PER_UNIT),
+					GEN_INT (expected_size));
+	  if (pat)
+	    {
+	      emit_insn (pat);
+	      volatile_ok = save_volatile_ok;
+	      return true;
+	    }
+	  else
+	    delete_insns_since (last);
+	}
+    }
+
+  volatile_ok = save_volatile_ok;
+  return false;
+}
+
+/* A subroutine of emit_block_move.  Expand a call to memcpy.
+   Return the return value from memcpy, 0 otherwise.  */
+
+rtx
+emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
+{
+  rtx dst_addr, src_addr;
+  tree call_expr, fn, src_tree, dst_tree, size_tree;
+  enum machine_mode size_mode;
+  rtx retval;
+
+  /* Emit code to copy the addresses of DST and SRC and SIZE into new
+     pseudos.  We can then place those new pseudos into a VAR_DECL and
+     use them later.  */
+
+  dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
+  src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
+
+  dst_addr = convert_memory_address (ptr_mode, dst_addr);
+  src_addr = convert_memory_address (ptr_mode, src_addr);
+
+  dst_tree = make_tree (ptr_type_node, dst_addr);
+  src_tree = make_tree (ptr_type_node, src_addr);
+
+  size_mode = TYPE_MODE (sizetype);
+
+  size = convert_to_mode (size_mode, size, 1);
+  size = copy_to_mode_reg (size_mode, size);
+
+  /* It is incorrect to use the libcall calling conventions to call
+     memcpy in this context.  This could be a user call to memcpy and
+     the user may wish to examine the return value from memcpy.  For
+     targets where libcalls and normal calls have different conventions
+     for returning pointers, we could end up generating incorrect code.  */
+
+  size_tree = make_tree (sizetype, size);
+
+  fn = emit_block_move_libcall_fn (true);
+  call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
+  CALL_EXPR_TAILCALL (call_expr) = tailcall;
+
+  retval = expand_normal (call_expr);
+
+  return retval;
+}
+
+/* A subroutine of emit_block_move_via_libcall.  Create the tree node
+   for the function we use for block copies.  The first time FOR_CALL
+   is true, we call assemble_external.  */
+
+static GTY(()) tree block_move_fn;
+
+void
+init_block_move_fn (const char *asmspec)
+{
+  if (!block_move_fn)
+    {
+      tree args, fn;
+
+      fn = get_identifier ("memcpy");
+      args = build_function_type_list (ptr_type_node, ptr_type_node,
+				       const_ptr_type_node, sizetype,
+				       NULL_TREE);
+
+      fn = build_decl (FUNCTION_DECL, fn, args);
+      DECL_EXTERNAL (fn) = 1;
+      TREE_PUBLIC (fn) = 1;
+      DECL_ARTIFICIAL (fn) = 1;
+      TREE_NOTHROW (fn) = 1;
+      DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
+      DECL_VISIBILITY_SPECIFIED (fn) = 1;
+
+      block_move_fn = fn;
+    }
+
+  if (asmspec)
+    set_user_assembler_name (block_move_fn, asmspec);
+}
+
+static tree
+emit_block_move_libcall_fn (int for_call)
+{
+  static bool emitted_extern;
+
+  if (!block_move_fn)
+    init_block_move_fn (NULL);
+
+  if (for_call && !emitted_extern)
+    {
+      emitted_extern = true;
+      make_decl_rtl (block_move_fn);
+      assemble_external (block_move_fn);
+    }
+
+  return block_move_fn;
+}
+
+/* A subroutine of emit_block_move.  Copy the data via an explicit
+   loop.  This is used only when libcalls are forbidden.  */
+/* ??? It'd be nice to copy in hunks larger than QImode.  */
+
+static void
+emit_block_move_via_loop (rtx x, rtx y, rtx size,
+			  unsigned int align ATTRIBUTE_UNUSED)
+{
+  rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
+  enum machine_mode iter_mode;
+
+  iter_mode = GET_MODE (size);
+  if (iter_mode == VOIDmode)
+    iter_mode = word_mode;
+
+  top_label = gen_label_rtx ();
+  cmp_label = gen_label_rtx ();
+  iter = gen_reg_rtx (iter_mode);
+
+  emit_move_insn (iter, const0_rtx);
+
+  x_addr = force_operand (XEXP (x, 0), NULL_RTX);
+  y_addr = force_operand (XEXP (y, 0), NULL_RTX);
+  do_pending_stack_adjust ();
+
+  emit_jump (cmp_label);
+  emit_label (top_label);
+
+  tmp = convert_modes (Pmode, iter_mode, iter, true);
+  x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
+  y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
+  x = change_address (x, QImode, x_addr);
+  y = change_address (y, QImode, y_addr);
+
+  emit_move_insn (x, y);
+
+  tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
+			     true, OPTAB_LIB_WIDEN);
+  if (tmp != iter)
+    emit_move_insn (iter, tmp);
+
+  emit_label (cmp_label);
+
+  emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
+			   true, top_label);
+}
+
+/* Copy all or part of a value X into registers starting at REGNO.
+   The number of registers to be filled is NREGS.  */
+
+void
+move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
+{
+  int i;
+#ifdef HAVE_load_multiple
+  rtx pat;
+  rtx last;
+#endif
+
+  if (nregs == 0)
+    return;
+
+  if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
+    x = validize_mem (force_const_mem (mode, x));
+
+  /* See if the machine can do this with a load multiple insn.  */
+#ifdef HAVE_load_multiple
+  if (HAVE_load_multiple)
+    {
+      last = get_last_insn ();
+      pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
+			       GEN_INT (nregs));
+      if (pat)
+	{
+	  emit_insn (pat);
+	  return;
+	}
+      else
+	delete_insns_since (last);
+    }
+#endif
+
+  for (i = 0; i < nregs; i++)
+    emit_move_insn (gen_rtx_REG (word_mode, regno + i),
+		    operand_subword_force (x, i, mode));
+}
+
+/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
+   The number of registers to be filled is NREGS.  */
+
+void
+move_block_from_reg (int regno, rtx x, int nregs)
+{
+  int i;
+
+  if (nregs == 0)
+    return;
+
+  /* See if the machine can do this with a store multiple insn.  */
+#ifdef HAVE_store_multiple
+  if (HAVE_store_multiple)
+    {
+      rtx last = get_last_insn ();
+      rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
+				    GEN_INT (nregs));
+      if (pat)
+	{
+	  emit_insn (pat);
+	  return;
+	}
+      else
+	delete_insns_since (last);
+    }
+#endif
+
+  for (i = 0; i < nregs; i++)
+    {
+      rtx tem = operand_subword (x, i, 1, BLKmode);
+
+      gcc_assert (tem);
+
+      emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
+    }
+}
+
+/* Generate a PARALLEL rtx for a new non-consecutive group of registers from
+   ORIG, where ORIG is a non-consecutive group of registers represented by
+   a PARALLEL.  The clone is identical to the original except in that the
+   original set of registers is replaced by a new set of pseudo registers.
+   The new set has the same modes as the original set.  */
+
+rtx
+gen_group_rtx (rtx orig)
+{
+  int i, length;
+  rtx *tmps;
+
+  gcc_assert (GET_CODE (orig) == PARALLEL);
+
+  length = XVECLEN (orig, 0);
+  tmps = XALLOCAVEC (rtx, length);
+
+  /* Skip a NULL entry in first slot.  */
+  i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
+
+  if (i)
+    tmps[0] = 0;
+
+  for (; i < length; i++)
+    {
+      enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
+      rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
+
+      tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
+    }
+
+  return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
+}
+
+/* A subroutine of emit_group_load.  Arguments as for emit_group_load,
+   except that values are placed in TMPS[i], and must later be moved
+   into corresponding XEXP (XVECEXP (DST, 0, i), 0) element.  */
+
+static void
+emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
+{
+  rtx src;
+  int start, i;
+  enum machine_mode m = GET_MODE (orig_src);
+
+  gcc_assert (GET_CODE (dst) == PARALLEL);
+
+  if (m != VOIDmode
+      && !SCALAR_INT_MODE_P (m)
+      && !MEM_P (orig_src)
+      && GET_CODE (orig_src) != CONCAT)
+    {
+      enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
+      if (imode == BLKmode)
+	src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
+      else
+	src = gen_reg_rtx (imode);
+      if (imode != BLKmode)
+	src = gen_lowpart (GET_MODE (orig_src), src);
+      emit_move_insn (src, orig_src);
+      /* ...and back again.  */
+      if (imode != BLKmode)
+	src = gen_lowpart (imode, src);
+      emit_group_load_1 (tmps, dst, src, type, ssize);
+      return;
+    }
+
+  /* Check for a NULL entry, used to indicate that the parameter goes
+     both on the stack and in registers.  */
+  if (XEXP (XVECEXP (dst, 0, 0), 0))
+    start = 0;
+  else
+    start = 1;
+
+  /* Process the pieces.  */
+  for (i = start; i < XVECLEN (dst, 0); i++)
+    {
+      enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
+      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
+      unsigned int bytelen = GET_MODE_SIZE (mode);
+      int shift = 0;
+
+      /* Handle trailing fragments that run over the size of the struct.  */
+      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
+	{
+	  /* Arrange to shift the fragment to where it belongs.
+	     extract_bit_field loads to the lsb of the reg.  */
+	  if (
+#ifdef BLOCK_REG_PADDING
+	      BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
+	      == (BYTES_BIG_ENDIAN ? upward : downward)
+#else
+	      BYTES_BIG_ENDIAN
+#endif
+	      )
+	    shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
+	  bytelen = ssize - bytepos;
+	  gcc_assert (bytelen > 0);
+	}
+
+      /* If we won't be loading directly from memory, protect the real source
+	 from strange tricks we might play; but make sure that the source can
+	 be loaded directly into the destination.  */
+      src = orig_src;
+      if (!MEM_P (orig_src)
+	  && (!CONSTANT_P (orig_src)
+	      || (GET_MODE (orig_src) != mode
+		  && GET_MODE (orig_src) != VOIDmode)))
+	{
+	  if (GET_MODE (orig_src) == VOIDmode)
+	    src = gen_reg_rtx (mode);
+	  else
+	    src = gen_reg_rtx (GET_MODE (orig_src));
+
+	  emit_move_insn (src, orig_src);
+	}
+
+      /* Optimize the access just a bit.  */
+      if (MEM_P (src)
+	  && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
+	      || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
+	  && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
+	  && bytelen == GET_MODE_SIZE (mode))
+	{
+	  tmps[i] = gen_reg_rtx (mode);
+	  emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
+	}
+      else if (COMPLEX_MODE_P (mode)
+	       && GET_MODE (src) == mode
+	       && bytelen == GET_MODE_SIZE (mode))
+	/* Let emit_move_complex do the bulk of the work.  */
+	tmps[i] = src;
+      else if (GET_CODE (src) == CONCAT)
+	{
+	  unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
+	  unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
+
+	  if ((bytepos == 0 && bytelen == slen0)
+	      || (bytepos != 0 && bytepos + bytelen <= slen))
+	    {
+	      /* The following assumes that the concatenated objects all
+		 have the same size.  In this case, a simple calculation
+		 can be used to determine the object and the bit field
+		 to be extracted.  */
+	      tmps[i] = XEXP (src, bytepos / slen0);
+	      if (! CONSTANT_P (tmps[i])
+		  && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
+		tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
+					     (bytepos % slen0) * BITS_PER_UNIT,
+					     1, NULL_RTX, mode, mode);
+	    }
+	  else
+	    {
+	      rtx mem;
+
+	      gcc_assert (!bytepos);
+	      mem = assign_stack_temp (GET_MODE (src), slen, 0);
+	      emit_move_insn (mem, src);
+	      tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
+					   0, 1, NULL_RTX, mode, mode);
+	    }
+	}
+      /* FIXME: A SIMD parallel will eventually lead to a subreg of a
+	 SIMD register, which is currently broken.  While we get GCC
+	 to emit proper RTL for these cases, let's dump to memory.  */
+      else if (VECTOR_MODE_P (GET_MODE (dst))
+	       && REG_P (src))
+	{
+	  int slen = GET_MODE_SIZE (GET_MODE (src));
+	  rtx mem;
+
+	  mem = assign_stack_temp (GET_MODE (src), slen, 0);
+	  emit_move_insn (mem, src);
+	  tmps[i] = adjust_address (mem, mode, (int) bytepos);
+	}
+      else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
+               && XVECLEN (dst, 0) > 1)
+        tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
+      else if (CONSTANT_P (src))
+	{
+	  HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
+
+	  if (len == ssize)
+	    tmps[i] = src;
+	  else
+	    {
+	      rtx first, second;
+
+	      gcc_assert (2 * len == ssize);
+	      split_double (src, &first, &second);
+	      if (i)
+		tmps[i] = second;
+	      else
+		tmps[i] = first;
+	    }
+	}
+      else if (REG_P (src) && GET_MODE (src) == mode)
+	tmps[i] = src;
+      else
+	tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
+				     bytepos * BITS_PER_UNIT, 1, NULL_RTX,
+				     mode, mode);
+
+      if (shift)
+	tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
+				build_int_cst (NULL_TREE, shift), tmps[i], 0);
+    }
+}
+
+/* Emit code to move a block SRC of type TYPE to a block DST,
+   where DST is non-consecutive registers represented by a PARALLEL.
+   SSIZE represents the total size of block ORIG_SRC in bytes, or -1
+   if not known.  */
+
+void
+emit_group_load (rtx dst, rtx src, tree type, int ssize)
+{
+  rtx *tmps;
+  int i;
+
+  tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
+  emit_group_load_1 (tmps, dst, src, type, ssize);
+
+  /* Copy the extracted pieces into the proper (probable) hard regs.  */
+  for (i = 0; i < XVECLEN (dst, 0); i++)
+    {
+      rtx d = XEXP (XVECEXP (dst, 0, i), 0);
+      if (d == NULL)
+	continue;
+      emit_move_insn (d, tmps[i]);
+    }
+}
+
+/* Similar, but load SRC into new pseudos in a format that looks like
+   PARALLEL.  This can later be fed to emit_group_move to get things
+   in the right place.  */
+
+rtx
+emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
+{
+  rtvec vec;
+  int i;
+
+  vec = rtvec_alloc (XVECLEN (parallel, 0));
+  emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
+
+  /* Convert the vector to look just like the original PARALLEL, except
+     with the computed values.  */
+  for (i = 0; i < XVECLEN (parallel, 0); i++)
+    {
+      rtx e = XVECEXP (parallel, 0, i);
+      rtx d = XEXP (e, 0);
+
+      if (d)
+	{
+	  d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
+	  e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
+	}
+      RTVEC_ELT (vec, i) = e;
+    }
+
+  return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
+}
+
+/* Emit code to move a block SRC to block DST, where SRC and DST are
+   non-consecutive groups of registers, each represented by a PARALLEL.  */
+
+void
+emit_group_move (rtx dst, rtx src)
+{
+  int i;
+
+  gcc_assert (GET_CODE (src) == PARALLEL
+	      && GET_CODE (dst) == PARALLEL
+	      && XVECLEN (src, 0) == XVECLEN (dst, 0));
+
+  /* Skip first entry if NULL.  */
+  for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
+    emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
+		    XEXP (XVECEXP (src, 0, i), 0));
+}
+
+/* Move a group of registers represented by a PARALLEL into pseudos.  */
+
+rtx
+emit_group_move_into_temps (rtx src)
+{
+  rtvec vec = rtvec_alloc (XVECLEN (src, 0));
+  int i;
+
+  for (i = 0; i < XVECLEN (src, 0); i++)
+    {
+      rtx e = XVECEXP (src, 0, i);
+      rtx d = XEXP (e, 0);
+
+      if (d)
+	e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
+      RTVEC_ELT (vec, i) = e;
+    }
+
+  return gen_rtx_PARALLEL (GET_MODE (src), vec);
+}
+
+/* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
+   where SRC is non-consecutive registers represented by a PARALLEL.
+   SSIZE represents the total size of block ORIG_DST, or -1 if not
+   known.  */
+
+void
+emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
+{
+  rtx *tmps, dst;
+  int start, finish, i;
+  enum machine_mode m = GET_MODE (orig_dst);
+
+  gcc_assert (GET_CODE (src) == PARALLEL);
+
+  if (!SCALAR_INT_MODE_P (m)
+      && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
+    {
+      enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
+      if (imode == BLKmode)
+        dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
+      else
+        dst = gen_reg_rtx (imode);
+      emit_group_store (dst, src, type, ssize);
+      if (imode != BLKmode)
+        dst = gen_lowpart (GET_MODE (orig_dst), dst);
+      emit_move_insn (orig_dst, dst);
+      return;
+    }
+
+  /* Check for a NULL entry, used to indicate that the parameter goes
+     both on the stack and in registers.  */
+  if (XEXP (XVECEXP (src, 0, 0), 0))
+    start = 0;
+  else
+    start = 1;
+  finish = XVECLEN (src, 0);
+
+  tmps = XALLOCAVEC (rtx, finish);
+
+  /* Copy the (probable) hard regs into pseudos.  */
+  for (i = start; i < finish; i++)
+    {
+      rtx reg = XEXP (XVECEXP (src, 0, i), 0);
+      if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
+	{
+	  tmps[i] = gen_reg_rtx (GET_MODE (reg));
+	  emit_move_insn (tmps[i], reg);
+	}
+      else
+	tmps[i] = reg;
+    }
+
+  /* If we won't be storing directly into memory, protect the real destination
+     from strange tricks we might play.  */
+  dst = orig_dst;
+  if (GET_CODE (dst) == PARALLEL)
+    {
+      rtx temp;
+
+      /* We can get a PARALLEL dst if there is a conditional expression in
+	 a return statement.  In that case, the dst and src are the same,
+	 so no action is necessary.  */
+      if (rtx_equal_p (dst, src))
+	return;
+
+      /* It is unclear if we can ever reach here, but we may as well handle
+	 it.  Allocate a temporary, and split this into a store/load to/from
+	 the temporary.  */
+
+      temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
+      emit_group_store (temp, src, type, ssize);
+      emit_group_load (dst, temp, type, ssize);
+      return;
+    }
+  else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
+    {
+      enum machine_mode outer = GET_MODE (dst);
+      enum machine_mode inner;
+      HOST_WIDE_INT bytepos;
+      bool done = false;
+      rtx temp;
+
+      if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
+	dst = gen_reg_rtx (outer);
+
+      /* Make life a bit easier for combine.  */
+      /* If the first element of the vector is the low part
+	 of the destination mode, use a paradoxical subreg to
+	 initialize the destination.  */
+      if (start < finish)
+	{
+	  inner = GET_MODE (tmps[start]);
+	  bytepos = subreg_lowpart_offset (inner, outer);
+	  if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
+	    {
+	      temp = simplify_gen_subreg (outer, tmps[start],
+					  inner, 0);
+	      if (temp)
+		{
+		  emit_move_insn (dst, temp);
+		  done = true;
+		  start++;
+		}
+	    }
+	}
+
+      /* If the first element wasn't the low part, try the last.  */
+      if (!done
+	  && start < finish - 1)
+	{
+	  inner = GET_MODE (tmps[finish - 1]);
+	  bytepos = subreg_lowpart_offset (inner, outer);
+	  if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
+	    {
+	      temp = simplify_gen_subreg (outer, tmps[finish - 1],
+					  inner, 0);
+	      if (temp)
+		{
+		  emit_move_insn (dst, temp);
+		  done = true;
+		  finish--;
+		}
+	    }
+	}
+
+      /* Otherwise, simply initialize the result to zero.  */
+      if (!done)
+        emit_move_insn (dst, CONST0_RTX (outer));
+    }
+
+  /* Process the pieces.  */
+  for (i = start; i < finish; i++)
+    {
+      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
+      enum machine_mode mode = GET_MODE (tmps[i]);
+      unsigned int bytelen = GET_MODE_SIZE (mode);
+      unsigned int adj_bytelen = bytelen;
+      rtx dest = dst;
+
+      /* Handle trailing fragments that run over the size of the struct.  */
+      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
+	adj_bytelen = ssize - bytepos;
+
+      if (GET_CODE (dst) == CONCAT)
+	{
+	  if (bytepos + adj_bytelen
+	      <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
+	    dest = XEXP (dst, 0);
+	  else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
+	    {
+	      bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
+	      dest = XEXP (dst, 1);
+	    }
+	  else
+	    {
+	      enum machine_mode dest_mode = GET_MODE (dest);
+	      enum machine_mode tmp_mode = GET_MODE (tmps[i]);
+
+	      gcc_assert (bytepos == 0 && XVECLEN (src, 0));
+
+	      if (GET_MODE_ALIGNMENT (dest_mode)
+		  >= GET_MODE_ALIGNMENT (tmp_mode))
+		{
+		  dest = assign_stack_temp (dest_mode,
+					    GET_MODE_SIZE (dest_mode),
+					    0);
+		  emit_move_insn (adjust_address (dest,
+						  tmp_mode,
+						  bytepos),
+				  tmps[i]);
+		  dst = dest;
+		}
+	      else
+		{
+		  dest = assign_stack_temp (tmp_mode,
+					    GET_MODE_SIZE (tmp_mode),
+					    0);
+		  emit_move_insn (dest, tmps[i]);
+		  dst = adjust_address (dest, dest_mode, bytepos);
+		}
+	      break;
+	    }
+	}
+
+      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
+	{
+	  /* store_bit_field always takes its value from the lsb.
+	     Move the fragment to the lsb if it's not already there.  */
+	  if (
+#ifdef BLOCK_REG_PADDING
+	      BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
+	      == (BYTES_BIG_ENDIAN ? upward : downward)
+#else
+	      BYTES_BIG_ENDIAN
+#endif
+	      )
+	    {
+	      int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
+	      tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
+				      build_int_cst (NULL_TREE, shift),
+				      tmps[i], 0);
+	    }
+	  bytelen = adj_bytelen;
+	}
+
+      /* Optimize the access just a bit.  */
+      if (MEM_P (dest)
+	  && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
+	      || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
+	  && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
+	  && bytelen == GET_MODE_SIZE (mode))
+	emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
+      else
+	store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
+			 mode, tmps[i]);
+    }
+
+  /* Copy from the pseudo into the (probable) hard reg.  */
+  if (orig_dst != dst)
+    emit_move_insn (orig_dst, dst);
+}
+
+/* Generate code to copy a BLKmode object of TYPE out of a
+   set of registers starting with SRCREG into TGTBLK.  If TGTBLK
+   is null, a stack temporary is created.  TGTBLK is returned.
+
+   The purpose of this routine is to handle functions that return
+   BLKmode structures in registers.  Some machines (the PA for example)
+   want to return all small structures in registers regardless of the
+   structure's alignment.  */
+
+rtx
+copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
+{
+  unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
+  rtx src = NULL, dst = NULL;
+  unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
+  unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
+  enum machine_mode copy_mode;
+
+  if (tgtblk == 0)
+    {
+      tgtblk = assign_temp (build_qualified_type (type,
+						  (TYPE_QUALS (type)
+						   | TYPE_QUAL_CONST)),
+			    0, 1, 1);
+      preserve_temp_slots (tgtblk);
+    }
+
+  /* This code assumes srcreg is at least a full word.  If it isn't, copy it
+     into a new pseudo which is a full word.  */
+
+  if (GET_MODE (srcreg) != BLKmode
+      && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
+    srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
+
+  /* If the structure doesn't take up a whole number of words, see whether
+     SRCREG is padded on the left or on the right.  If it's on the left,
+     set PADDING_CORRECTION to the number of bits to skip.
+
+     In most ABIs, the structure will be returned at the least end of
+     the register, which translates to right padding on little-endian
+     targets and left padding on big-endian targets.  The opposite
+     holds if the structure is returned at the most significant
+     end of the register.  */
+  if (bytes % UNITS_PER_WORD != 0
+      && (targetm.calls.return_in_msb (type)
+	  ? !BYTES_BIG_ENDIAN
+	  : BYTES_BIG_ENDIAN))
+    padding_correction
+      = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
+
+  /* Copy the structure BITSIZE bits at a time.  If the target lives in
+     memory, take care of not reading/writing past its end by selecting
+     a copy mode suited to BITSIZE.  This should always be possible given
+     how it is computed.
+
+     We could probably emit more efficient code for machines which do not use
+     strict alignment, but it doesn't seem worth the effort at the current
+     time.  */
+
+  copy_mode = word_mode;
+  if (MEM_P (tgtblk))
+    {
+      enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
+      if (mem_mode != BLKmode)
+	copy_mode = mem_mode;
+    }
+
+  for (bitpos = 0, xbitpos = padding_correction;
+       bitpos < bytes * BITS_PER_UNIT;
+       bitpos += bitsize, xbitpos += bitsize)
+    {
+      /* We need a new source operand each time xbitpos is on a
+	 word boundary and when xbitpos == padding_correction
+	 (the first time through).  */
+      if (xbitpos % BITS_PER_WORD == 0
+	  || xbitpos == padding_correction)
+	src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
+				     GET_MODE (srcreg));
+
+      /* We need a new destination operand each time bitpos is on
+	 a word boundary.  */
+      if (bitpos % BITS_PER_WORD == 0)
+	dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
+
+      /* Use xbitpos for the source extraction (right justified) and
+	 bitpos for the destination store (left justified).  */
+      store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
+		       extract_bit_field (src, bitsize,
+					  xbitpos % BITS_PER_WORD, 1,
+					  NULL_RTX, copy_mode, copy_mode));
+    }
+
+  return tgtblk;
+}
+
+/* Add a USE expression for REG to the (possibly empty) list pointed
+   to by CALL_FUSAGE.  REG must denote a hard register.  */
+
+void
+use_reg (rtx *call_fusage, rtx reg)
+{
+  gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
+
+  *call_fusage
+    = gen_rtx_EXPR_LIST (VOIDmode,
+			 gen_rtx_USE (VOIDmode, reg), *call_fusage);
+}
+
+/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
+   starting at REGNO.  All of these registers must be hard registers.  */
+
+void
+use_regs (rtx *call_fusage, int regno, int nregs)
+{
+  int i;
+
+  gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
+
+  for (i = 0; i < nregs; i++)
+    use_reg (call_fusage, regno_reg_rtx[regno + i]);
+}
+
+/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
+   PARALLEL REGS.  This is for calls that pass values in multiple
+   non-contiguous locations.  The Irix 6 ABI has examples of this.  */
+
+void
+use_group_regs (rtx *call_fusage, rtx regs)
+{
+  int i;
+
+  for (i = 0; i < XVECLEN (regs, 0); i++)
+    {
+      rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
+
+      /* A NULL entry means the parameter goes both on the stack and in
+	 registers.  This can also be a MEM for targets that pass values
+	 partially on the stack and partially in registers.  */
+      if (reg != 0 && REG_P (reg))
+	use_reg (call_fusage, reg);
+    }
+}
+
+
+/* Determine whether the LEN bytes generated by CONSTFUN can be
+   stored to memory using several move instructions.  CONSTFUNDATA is
+   a pointer which will be passed as argument in every CONSTFUN call.
+   ALIGN is maximum alignment we can assume.  MEMSETP is true if this is
+   a memset operation and false if it's a copy of a constant string.
+   Return nonzero if a call to store_by_pieces should succeed.  */
+
+int
+can_store_by_pieces (unsigned HOST_WIDE_INT len,
+		     rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
+		     void *constfundata, unsigned int align, bool memsetp)
+{
+  unsigned HOST_WIDE_INT l;
+  unsigned int max_size;
+  HOST_WIDE_INT offset = 0;
+  enum machine_mode mode, tmode;
+  enum insn_code icode;
+  int reverse;
+  rtx cst;
+
+  if (len == 0)
+    return 1;
+
+  if (! (memsetp 
+	 ? SET_BY_PIECES_P (len, align)
+	 : STORE_BY_PIECES_P (len, align)))
+    return 0;
+
+  tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
+  if (align >= GET_MODE_ALIGNMENT (tmode))
+    align = GET_MODE_ALIGNMENT (tmode);
+  else
+    {
+      enum machine_mode xmode;
+
+      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
+	   tmode != VOIDmode;
+	   xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
+	if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
+	    || SLOW_UNALIGNED_ACCESS (tmode, align))
+	  break;
+
+      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
+    }
+
+  /* We would first store what we can in the largest integer mode, then go to
+     successively smaller modes.  */
+
+  for (reverse = 0;
+       reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
+       reverse++)
+    {
+      l = len;
+      mode = VOIDmode;
+      max_size = STORE_MAX_PIECES + 1;
+      while (max_size > 1)
+	{
+	  for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+	       tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
+	    if (GET_MODE_SIZE (tmode) < max_size)
+	      mode = tmode;
+
+	  if (mode == VOIDmode)
+	    break;
+
+	  icode = optab_handler (mov_optab, mode)->insn_code;
+	  if (icode != CODE_FOR_nothing
+	      && align >= GET_MODE_ALIGNMENT (mode))
+	    {
+	      unsigned int size = GET_MODE_SIZE (mode);
+
+	      while (l >= size)
+		{
+		  if (reverse)
+		    offset -= size;
+
+		  cst = (*constfun) (constfundata, offset, mode);
+		  if (!LEGITIMATE_CONSTANT_P (cst))
+		    return 0;
+
+		  if (!reverse)
+		    offset += size;
+
+		  l -= size;
+		}
+	    }
+
+	  max_size = GET_MODE_SIZE (mode);
+	}
+
+      /* The code above should have handled everything.  */
+      gcc_assert (!l);
+    }
+
+  return 1;
+}
+
+/* Generate several move instructions to store LEN bytes generated by
+   CONSTFUN to block TO.  (A MEM rtx with BLKmode).  CONSTFUNDATA is a
+   pointer which will be passed as argument in every CONSTFUN call.
+   ALIGN is maximum alignment we can assume.  MEMSETP is true if this is
+   a memset operation and false if it's a copy of a constant string.
+   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
+   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
+   stpcpy.  */
+
+rtx
+store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
+		 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
+		 void *constfundata, unsigned int align, bool memsetp, int endp)
+{
+  struct store_by_pieces data;
+
+  if (len == 0)
+    {
+      gcc_assert (endp != 2);
+      return to;
+    }
+
+  gcc_assert (memsetp
+	      ? SET_BY_PIECES_P (len, align)
+	      : STORE_BY_PIECES_P (len, align));
+  data.constfun = constfun;
+  data.constfundata = constfundata;
+  data.len = len;
+  data.to = to;
+  store_by_pieces_1 (&data, align);
+  if (endp)
+    {
+      rtx to1;
+
+      gcc_assert (!data.reverse);
+      if (data.autinc_to)
+	{
+	  if (endp == 2)
+	    {
+	      if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
+		emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
+	      else
+		data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
+								-1));
+	    }
+	  to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
+					   data.offset);
+	}
+      else
+	{
+	  if (endp == 2)
+	    --data.offset;
+	  to1 = adjust_address (data.to, QImode, data.offset);
+	}
+      return to1;
+    }
+  else
+    return data.to;
+}
+
+/* Generate several move instructions to clear LEN bytes of block TO.  (A MEM
+   rtx with BLKmode).  ALIGN is maximum alignment we can assume.  */
+
+static void
+clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
+{
+  struct store_by_pieces data;
+
+  if (len == 0)
+    return;
+
+  data.constfun = clear_by_pieces_1;
+  data.constfundata = NULL;
+  data.len = len;
+  data.to = to;
+  store_by_pieces_1 (&data, align);
+}
+
+/* Callback routine for clear_by_pieces.
+   Return const0_rtx unconditionally.  */
+
+static rtx
+clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
+		   HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
+		   enum machine_mode mode ATTRIBUTE_UNUSED)
+{
+  return const0_rtx;
+}
+
+/* Subroutine of clear_by_pieces and store_by_pieces.
+   Generate several move instructions to store LEN bytes of block TO.  (A MEM
+   rtx with BLKmode).  ALIGN is maximum alignment we can assume.  */
+
+static void
+store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
+		   unsigned int align ATTRIBUTE_UNUSED)
+{
+  rtx to_addr = XEXP (data->to, 0);
+  unsigned int max_size = STORE_MAX_PIECES + 1;
+  enum machine_mode mode = VOIDmode, tmode;
+  enum insn_code icode;
+
+  data->offset = 0;
+  data->to_addr = to_addr;
+  data->autinc_to
+    = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
+       || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
+
+  data->explicit_inc_to = 0;
+  data->reverse
+    = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
+  if (data->reverse)
+    data->offset = data->len;
+
+  /* If storing requires more than two move insns,
+     copy addresses to registers (to make displacements shorter)
+     and use post-increment if available.  */
+  if (!data->autinc_to
+      && move_by_pieces_ninsns (data->len, align, max_size) > 2)
+    {
+      /* Determine the main mode we'll be using.  */
+      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+	   tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
+	if (GET_MODE_SIZE (tmode) < max_size)
+	  mode = tmode;
+
+      if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
+	{
+	  data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
+	  data->autinc_to = 1;
+	  data->explicit_inc_to = -1;
+	}
+
+      if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
+	  && ! data->autinc_to)
+	{
+	  data->to_addr = copy_addr_to_reg (to_addr);
+	  data->autinc_to = 1;
+	  data->explicit_inc_to = 1;
+	}
+
+      if ( !data->autinc_to && CONSTANT_P (to_addr))
+	data->to_addr = copy_addr_to_reg (to_addr);
+    }
+
+  tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
+  if (align >= GET_MODE_ALIGNMENT (tmode))
+    align = GET_MODE_ALIGNMENT (tmode);
+  else
+    {
+      enum machine_mode xmode;
+
+      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
+	   tmode != VOIDmode;
+	   xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
+	if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
+	    || SLOW_UNALIGNED_ACCESS (tmode, align))
+	  break;
+
+      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
+    }
+
+  /* First store what we can in the largest integer mode, then go to
+     successively smaller modes.  */
+
+  while (max_size > 1)
+    {
+      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+	   tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
+	if (GET_MODE_SIZE (tmode) < max_size)
+	  mode = tmode;
+
+      if (mode == VOIDmode)
+	break;
+
+      icode = optab_handler (mov_optab, mode)->insn_code;
+      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
+	store_by_pieces_2 (GEN_FCN (icode), mode, data);
+
+      max_size = GET_MODE_SIZE (mode);
+    }
+
+  /* The code above should have handled everything.  */
+  gcc_assert (!data->len);
+}
+
+/* Subroutine of store_by_pieces_1.  Store as many bytes as appropriate
+   with move instructions for mode MODE.  GENFUN is the gen_... function
+   to make a move insn for that mode.  DATA has all the other info.  */
+
+static void
+store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
+		   struct store_by_pieces *data)
+{
+  unsigned int size = GET_MODE_SIZE (mode);
+  rtx to1, cst;
+
+  while (data->len >= size)
+    {
+      if (data->reverse)
+	data->offset -= size;
+
+      if (data->autinc_to)
+	to1 = adjust_automodify_address (data->to, mode, data->to_addr,
+					 data->offset);
+      else
+	to1 = adjust_address (data->to, mode, data->offset);
+
+      if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
+	emit_insn (gen_add2_insn (data->to_addr,
+				  GEN_INT (-(HOST_WIDE_INT) size)));
+
+      cst = (*data->constfun) (data->constfundata, data->offset, mode);
+      emit_insn ((*genfun) (to1, cst));
+
+      if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
+	emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
+
+      if (! data->reverse)
+	data->offset += size;
+
+      data->len -= size;
+    }
+}
+
+/* Write zeros through the storage of OBJECT.  If OBJECT has BLKmode, SIZE is
+   its length in bytes.  */
+
+rtx
+clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
+		     unsigned int expected_align, HOST_WIDE_INT expected_size)
+{
+  enum machine_mode mode = GET_MODE (object);
+  unsigned int align;
+
+  gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
+
+  /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
+     just move a zero.  Otherwise, do this a piece at a time.  */
+  if (mode != BLKmode
+      && GET_CODE (size) == CONST_INT
+      && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
+    {
+      rtx zero = CONST0_RTX (mode);
+      if (zero != NULL)
+	{
+	  emit_move_insn (object, zero);
+	  return NULL;
+	}
+
+      if (COMPLEX_MODE_P (mode))
+	{
+	  zero = CONST0_RTX (GET_MODE_INNER (mode));
+	  if (zero != NULL)
+	    {
+	      write_complex_part (object, zero, 0);
+	      write_complex_part (object, zero, 1);
+	      return NULL;
+	    }
+	}
+    }
+
+  if (size == const0_rtx)
+    return NULL;
+
+  align = MEM_ALIGN (object);
+
+  if (GET_CODE (size) == CONST_INT
+      && CLEAR_BY_PIECES_P (INTVAL (size), align))
+    clear_by_pieces (object, INTVAL (size), align);
+  else if (set_storage_via_setmem (object, size, const0_rtx, align,
+				   expected_align, expected_size))
+    ;
+  else
+    return set_storage_via_libcall (object, size, const0_rtx,
+				    method == BLOCK_OP_TAILCALL);
+
+  return NULL;
+}
+
+rtx
+clear_storage (rtx object, rtx size, enum block_op_methods method)
+{
+  return clear_storage_hints (object, size, method, 0, -1);
+}
+
+
+/* A subroutine of clear_storage.  Expand a call to memset.
+   Return the return value of memset, 0 otherwise.  */
+
+rtx
+set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
+{
+  tree call_expr, fn, object_tree, size_tree, val_tree;
+  enum machine_mode size_mode;
+  rtx retval;
+
+  /* Emit code to copy OBJECT and SIZE into new pseudos.  We can then
+     place those into new pseudos into a VAR_DECL and use them later.  */
+
+  object = copy_to_mode_reg (Pmode, XEXP (object, 0));
+
+  size_mode = TYPE_MODE (sizetype);
+  size = convert_to_mode (size_mode, size, 1);
+  size = copy_to_mode_reg (size_mode, size);
+
+  /* It is incorrect to use the libcall calling conventions to call
+     memset in this context.  This could be a user call to memset and
+     the user may wish to examine the return value from memset.  For
+     targets where libcalls and normal calls have different conventions
+     for returning pointers, we could end up generating incorrect code.  */
+
+  object_tree = make_tree (ptr_type_node, object);
+  if (GET_CODE (val) != CONST_INT)
+    val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
+  size_tree = make_tree (sizetype, size);
+  val_tree = make_tree (integer_type_node, val);
+
+  fn = clear_storage_libcall_fn (true);
+  call_expr = build_call_expr (fn, 3,
+			       object_tree, integer_zero_node, size_tree);
+  CALL_EXPR_TAILCALL (call_expr) = tailcall;
+
+  retval = expand_normal (call_expr);
+
+  return retval;
+}
+
+/* A subroutine of set_storage_via_libcall.  Create the tree node
+   for the function we use for block clears.  The first time FOR_CALL
+   is true, we call assemble_external.  */
+
+tree block_clear_fn;
+
+void
+init_block_clear_fn (const char *asmspec)
+{
+  if (!block_clear_fn)
+    {
+      tree fn, args;
+
+      fn = get_identifier ("memset");
+      args = build_function_type_list (ptr_type_node, ptr_type_node,
+				       integer_type_node, sizetype,
+				       NULL_TREE);
+
+      fn = build_decl (FUNCTION_DECL, fn, args);
+      DECL_EXTERNAL (fn) = 1;
+      TREE_PUBLIC (fn) = 1;
+      DECL_ARTIFICIAL (fn) = 1;
+      TREE_NOTHROW (fn) = 1;
+      DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
+      DECL_VISIBILITY_SPECIFIED (fn) = 1;
+
+      block_clear_fn = fn;
+    }
+
+  if (asmspec)
+    set_user_assembler_name (block_clear_fn, asmspec);
+}
+
+static tree
+clear_storage_libcall_fn (int for_call)
+{
+  static bool emitted_extern;
+
+  if (!block_clear_fn)
+    init_block_clear_fn (NULL);
+
+  if (for_call && !emitted_extern)
+    {
+      emitted_extern = true;
+      make_decl_rtl (block_clear_fn);
+      assemble_external (block_clear_fn);
+    }
+
+  return block_clear_fn;
+}
+
+/* Expand a setmem pattern; return true if successful.  */
+
+bool
+set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
+			unsigned int expected_align, HOST_WIDE_INT expected_size)
+{
+  /* Try the most limited insn first, because there's no point
+     including more than one in the machine description unless
+     the more limited one has some advantage.  */
+
+  rtx opalign = GEN_INT (align / BITS_PER_UNIT);
+  enum machine_mode mode;
+
+  if (expected_align < align)
+    expected_align = align;
+
+  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
+       mode = GET_MODE_WIDER_MODE (mode))
+    {
+      enum insn_code code = setmem_optab[(int) mode];
+      insn_operand_predicate_fn pred;
+
+      if (code != CODE_FOR_nothing
+	  /* We don't need MODE to be narrower than
+	     BITS_PER_HOST_WIDE_INT here because if SIZE is less than
+	     the mode mask, as it is returned by the macro, it will
+	     definitely be less than the actual mode mask.  */
+	  && ((GET_CODE (size) == CONST_INT
+	       && ((unsigned HOST_WIDE_INT) INTVAL (size)
+		   <= (GET_MODE_MASK (mode) >> 1)))
+	      || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
+	  && ((pred = insn_data[(int) code].operand[0].predicate) == 0
+	      || (*pred) (object, BLKmode))
+	  && ((pred = insn_data[(int) code].operand[3].predicate) == 0
+	      || (*pred) (opalign, VOIDmode)))
+	{
+	  rtx opsize, opchar;
+	  enum machine_mode char_mode;
+	  rtx last = get_last_insn ();
+	  rtx pat;
+
+	  opsize = convert_to_mode (mode, size, 1);
+	  pred = insn_data[(int) code].operand[1].predicate;
+	  if (pred != 0 && ! (*pred) (opsize, mode))
+	    opsize = copy_to_mode_reg (mode, opsize);
+
+	  opchar = val;
+	  char_mode = insn_data[(int) code].operand[2].mode;
+	  if (char_mode != VOIDmode)
+	    {
+	      opchar = convert_to_mode (char_mode, opchar, 1);
+	      pred = insn_data[(int) code].operand[2].predicate;
+	      if (pred != 0 && ! (*pred) (opchar, char_mode))
+		opchar = copy_to_mode_reg (char_mode, opchar);
+	    }
+
+	  if (insn_data[(int) code].n_operands == 4)
+	    pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
+	  else
+	    pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
+					GEN_INT (expected_align
+						 / BITS_PER_UNIT),
+					GEN_INT (expected_size));
+	  if (pat)
+	    {
+	      emit_insn (pat);
+	      return true;
+	    }
+	  else
+	    delete_insns_since (last);
+	}
+    }
+
+  return false;
+}
+
+
+/* Write to one of the components of the complex value CPLX.  Write VAL to
+   the real part if IMAG_P is false, and the imaginary part if its true.  */
+
+static void
+write_complex_part (rtx cplx, rtx val, bool imag_p)
+{
+  enum machine_mode cmode;
+  enum machine_mode imode;
+  unsigned ibitsize;
+
+  if (GET_CODE (cplx) == CONCAT)
+    {
+      emit_move_insn (XEXP (cplx, imag_p), val);
+      return;
+    }
+
+  cmode = GET_MODE (cplx);
+  imode = GET_MODE_INNER (cmode);
+  ibitsize = GET_MODE_BITSIZE (imode);
+
+  /* For MEMs simplify_gen_subreg may generate an invalid new address
+     because, e.g., the original address is considered mode-dependent
+     by the target, which restricts simplify_subreg from invoking
+     adjust_address_nv.  Instead of preparing fallback support for an
+     invalid address, we call adjust_address_nv directly.  */
+  if (MEM_P (cplx))
+    {
+      emit_move_insn (adjust_address_nv (cplx, imode,
+					 imag_p ? GET_MODE_SIZE (imode) : 0),
+		      val);
+      return;
+    }
+
+  /* If the sub-object is at least word sized, then we know that subregging
+     will work.  This special case is important, since store_bit_field
+     wants to operate on integer modes, and there's rarely an OImode to
+     correspond to TCmode.  */
+  if (ibitsize >= BITS_PER_WORD
+      /* For hard regs we have exact predicates.  Assume we can split
+	 the original object if it spans an even number of hard regs.
+	 This special case is important for SCmode on 64-bit platforms
+	 where the natural size of floating-point regs is 32-bit.  */
+      || (REG_P (cplx)
+	  && REGNO (cplx) < FIRST_PSEUDO_REGISTER
+	  && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
+    {
+      rtx part = simplify_gen_subreg (imode, cplx, cmode,
+				      imag_p ? GET_MODE_SIZE (imode) : 0);
+      if (part)
+        {
+	  emit_move_insn (part, val);
+	  return;
+	}
+      else
+	/* simplify_gen_subreg may fail for sub-word MEMs.  */
+	gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
+    }
+
+  store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
+}
+
+/* Extract one of the components of the complex value CPLX.  Extract the
+   real part if IMAG_P is false, and the imaginary part if it's true.  */
+
+static rtx
+read_complex_part (rtx cplx, bool imag_p)
+{
+  enum machine_mode cmode, imode;
+  unsigned ibitsize;
+
+  if (GET_CODE (cplx) == CONCAT)
+    return XEXP (cplx, imag_p);
+
+  cmode = GET_MODE (cplx);
+  imode = GET_MODE_INNER (cmode);
+  ibitsize = GET_MODE_BITSIZE (imode);
+
+  /* Special case reads from complex constants that got spilled to memory.  */
+  if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
+    {
+      tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
+      if (decl && TREE_CODE (decl) == COMPLEX_CST)
+	{
+	  tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
+	  if (CONSTANT_CLASS_P (part))
+	    return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
+	}
+    }
+
+  /* For MEMs simplify_gen_subreg may generate an invalid new address
+     because, e.g., the original address is considered mode-dependent
+     by the target, which restricts simplify_subreg from invoking
+     adjust_address_nv.  Instead of preparing fallback support for an
+     invalid address, we call adjust_address_nv directly.  */
+  if (MEM_P (cplx))
+    return adjust_address_nv (cplx, imode,
+			      imag_p ? GET_MODE_SIZE (imode) : 0);
+
+  /* If the sub-object is at least word sized, then we know that subregging
+     will work.  This special case is important, since extract_bit_field
+     wants to operate on integer modes, and there's rarely an OImode to
+     correspond to TCmode.  */
+  if (ibitsize >= BITS_PER_WORD
+      /* For hard regs we have exact predicates.  Assume we can split
+	 the original object if it spans an even number of hard regs.
+	 This special case is important for SCmode on 64-bit platforms
+	 where the natural size of floating-point regs is 32-bit.  */
+      || (REG_P (cplx)
+	  && REGNO (cplx) < FIRST_PSEUDO_REGISTER
+	  && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
+    {
+      rtx ret = simplify_gen_subreg (imode, cplx, cmode,
+				     imag_p ? GET_MODE_SIZE (imode) : 0);
+      if (ret)
+        return ret;
+      else
+	/* simplify_gen_subreg may fail for sub-word MEMs.  */
+	gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
+    }
+
+  return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
+			    true, NULL_RTX, imode, imode);
+}
+
+/* A subroutine of emit_move_insn_1.  Yet another lowpart generator.
+   NEW_MODE and OLD_MODE are the same size.  Return NULL if X cannot be
+   represented in NEW_MODE.  If FORCE is true, this will never happen, as
+   we'll force-create a SUBREG if needed.  */
+
+static rtx
+emit_move_change_mode (enum machine_mode new_mode,
+		       enum machine_mode old_mode, rtx x, bool force)
+{
+  rtx ret;
+
+  if (push_operand (x, GET_MODE (x)))
+    {
+      ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
+      MEM_COPY_ATTRIBUTES (ret, x);
+    }
+  else if (MEM_P (x))
+    {
+      /* We don't have to worry about changing the address since the
+	 size in bytes is supposed to be the same.  */
+      if (reload_in_progress)
+	{
+	  /* Copy the MEM to change the mode and move any
+	     substitutions from the old MEM to the new one.  */
+	  ret = adjust_address_nv (x, new_mode, 0);
+	  copy_replacements (x, ret);
+	}
+      else
+	ret = adjust_address (x, new_mode, 0);
+    }
+  else
+    {
+      /* Note that we do want simplify_subreg's behavior of validating
+	 that the new mode is ok for a hard register.  If we were to use
+	 simplify_gen_subreg, we would create the subreg, but would
+	 probably run into the target not being able to implement it.  */
+      /* Except, of course, when FORCE is true, when this is exactly what
+	 we want.  Which is needed for CCmodes on some targets.  */
+      if (force)
+	ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
+      else
+	ret = simplify_subreg (new_mode, x, old_mode, 0);
+    }
+
+  return ret;
+}
+
+/* A subroutine of emit_move_insn_1.  Generate a move from Y into X using
+   an integer mode of the same size as MODE.  Returns the instruction
+   emitted, or NULL if such a move could not be generated.  */
+
+static rtx
+emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
+{
+  enum machine_mode imode;
+  enum insn_code code;
+
+  /* There must exist a mode of the exact size we require.  */
+  imode = int_mode_for_mode (mode);
+  if (imode == BLKmode)
+    return NULL_RTX;
+
+  /* The target must support moves in this mode.  */
+  code = optab_handler (mov_optab, imode)->insn_code;
+  if (code == CODE_FOR_nothing)
+    return NULL_RTX;
+
+  x = emit_move_change_mode (imode, mode, x, force);
+  if (x == NULL_RTX)
+    return NULL_RTX;
+  y = emit_move_change_mode (imode, mode, y, force);
+  if (y == NULL_RTX)
+    return NULL_RTX;
+  return emit_insn (GEN_FCN (code) (x, y));
+}
+
+/* A subroutine of emit_move_insn_1.  X is a push_operand in MODE.
+   Return an equivalent MEM that does not use an auto-increment.  */
+
+static rtx
+emit_move_resolve_push (enum machine_mode mode, rtx x)
+{
+  enum rtx_code code = GET_CODE (XEXP (x, 0));
+  HOST_WIDE_INT adjust;
+  rtx temp;
+
+  adjust = GET_MODE_SIZE (mode);
+#ifdef PUSH_ROUNDING
+  adjust = PUSH_ROUNDING (adjust);
+#endif
+  if (code == PRE_DEC || code == POST_DEC)
+    adjust = -adjust;
+  else if (code == PRE_MODIFY || code == POST_MODIFY)
+    {
+      rtx expr = XEXP (XEXP (x, 0), 1);
+      HOST_WIDE_INT val;
+
+      gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
+      gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
+      val = INTVAL (XEXP (expr, 1));
+      if (GET_CODE (expr) == MINUS)
+	val = -val;
+      gcc_assert (adjust == val || adjust == -val);
+      adjust = val;
+    }
+
+  /* Do not use anti_adjust_stack, since we don't want to update
+     stack_pointer_delta.  */
+  temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
+			      GEN_INT (adjust), stack_pointer_rtx,
+			      0, OPTAB_LIB_WIDEN);
+  if (temp != stack_pointer_rtx)
+    emit_move_insn (stack_pointer_rtx, temp);
+
+  switch (code)
+    {
+    case PRE_INC:
+    case PRE_DEC:
+    case PRE_MODIFY:
+      temp = stack_pointer_rtx;
+      break;
+    case POST_INC:
+    case POST_DEC:
+    case POST_MODIFY:
+      temp = plus_constant (stack_pointer_rtx, -adjust);
+      break;
+    default:
+      gcc_unreachable ();
+    }
+
+  return replace_equiv_address (x, temp);
+}
+
+/* A subroutine of emit_move_complex.  Generate a move from Y into X.
+   X is known to satisfy push_operand, and MODE is known to be complex.
+   Returns the last instruction emitted.  */
+
+rtx
+emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
+{
+  enum machine_mode submode = GET_MODE_INNER (mode);
+  bool imag_first;
+
+#ifdef PUSH_ROUNDING
+  unsigned int submodesize = GET_MODE_SIZE (submode);
+
+  /* In case we output to the stack, but the size is smaller than the
+     machine can push exactly, we need to use move instructions.  */
+  if (PUSH_ROUNDING (submodesize) != submodesize)
+    {
+      x = emit_move_resolve_push (mode, x);
+      return emit_move_insn (x, y);
+    }
+#endif
+
+  /* Note that the real part always precedes the imag part in memory
+     regardless of machine's endianness.  */
+  switch (GET_CODE (XEXP (x, 0)))
+    {
+    case PRE_DEC:
+    case POST_DEC:
+      imag_first = true;
+      break;
+    case PRE_INC:
+    case POST_INC:
+      imag_first = false;
+      break;
+    default:
+      gcc_unreachable ();
+    }
+
+  emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
+		  read_complex_part (y, imag_first));
+  return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
+			 read_complex_part (y, !imag_first));
+}
+
+/* A subroutine of emit_move_complex.  Perform the move from Y to X
+   via two moves of the parts.  Returns the last instruction emitted.  */
+
+rtx
+emit_move_complex_parts (rtx x, rtx y)
+{
+  /* Show the output dies here.  This is necessary for SUBREGs
+     of pseudos since we cannot track their lifetimes correctly;
+     hard regs shouldn't appear here except as return values.  */
+  if (!reload_completed && !reload_in_progress
+      && REG_P (x) && !reg_overlap_mentioned_p (x, y))
+    emit_clobber (x);
+
+  write_complex_part (x, read_complex_part (y, false), false);
+  write_complex_part (x, read_complex_part (y, true), true);
+
+  return get_last_insn ();
+}
+
+/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
+   MODE is known to be complex.  Returns the last instruction emitted.  */
+
+static rtx
+emit_move_complex (enum machine_mode mode, rtx x, rtx y)
+{
+  bool try_int;
+
+  /* Need to take special care for pushes, to maintain proper ordering
+     of the data, and possibly extra padding.  */
+  if (push_operand (x, mode))
+    return emit_move_complex_push (mode, x, y);
+
+  /* See if we can coerce the target into moving both values at once.  */
+
+  /* Move floating point as parts.  */
+  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
+      && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
+    try_int = false;
+  /* Not possible if the values are inherently not adjacent.  */
+  else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
+    try_int = false;
+  /* Is possible if both are registers (or subregs of registers).  */
+  else if (register_operand (x, mode) && register_operand (y, mode))
+    try_int = true;
+  /* If one of the operands is a memory, and alignment constraints
+     are friendly enough, we may be able to do combined memory operations.
+     We do not attempt this if Y is a constant because that combination is
+     usually better with the by-parts thing below.  */
+  else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
+	   && (!STRICT_ALIGNMENT
+	       || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
+    try_int = true;
+  else
+    try_int = false;
+
+  if (try_int)
+    {
+      rtx ret;
+
+      /* For memory to memory moves, optimal behavior can be had with the
+	 existing block move logic.  */
+      if (MEM_P (x) && MEM_P (y))
+	{
+	  emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
+			   BLOCK_OP_NO_LIBCALL);
+	  return get_last_insn ();
+	}
+
+      ret = emit_move_via_integer (mode, x, y, true);
+      if (ret)
+	return ret;
+    }
+
+  return emit_move_complex_parts (x, y);
+}
+
+/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
+   MODE is known to be MODE_CC.  Returns the last instruction emitted.  */
+
+static rtx
+emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
+{
+  rtx ret;
+
+  /* Assume all MODE_CC modes are equivalent; if we have movcc, use it.  */
+  if (mode != CCmode)
+    {
+      enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
+      if (code != CODE_FOR_nothing)
+	{
+	  x = emit_move_change_mode (CCmode, mode, x, true);
+	  y = emit_move_change_mode (CCmode, mode, y, true);
+	  return emit_insn (GEN_FCN (code) (x, y));
+	}
+    }
+
+  /* Otherwise, find the MODE_INT mode of the same width.  */
+  ret = emit_move_via_integer (mode, x, y, false);
+  gcc_assert (ret != NULL);
+  return ret;
+}
+
+/* Return true if word I of OP lies entirely in the
+   undefined bits of a paradoxical subreg.  */
+
+static bool
+undefined_operand_subword_p (const_rtx op, int i)
+{
+  enum machine_mode innermode, innermostmode;
+  int offset;
+  if (GET_CODE (op) != SUBREG)
+    return false;
+  innermode = GET_MODE (op);
+  innermostmode = GET_MODE (SUBREG_REG (op));
+  offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
+  /* The SUBREG_BYTE represents offset, as if the value were stored in
+     memory, except for a paradoxical subreg where we define
+     SUBREG_BYTE to be 0; undo this exception as in
+     simplify_subreg.  */
+  if (SUBREG_BYTE (op) == 0
+      && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
+    {
+      int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
+      if (WORDS_BIG_ENDIAN)
+	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
+      if (BYTES_BIG_ENDIAN)
+	offset += difference % UNITS_PER_WORD;
+    }
+  if (offset >= GET_MODE_SIZE (innermostmode)
+      || offset <= -GET_MODE_SIZE (word_mode))
+    return true;
+  return false;
+}
+
+/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
+   MODE is any multi-word or full-word mode that lacks a move_insn
+   pattern.  Note that you will get better code if you define such
+   patterns, even if they must turn into multiple assembler instructions.  */
+
+static rtx
+emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
+{
+  rtx last_insn = 0;
+  rtx seq, inner;
+  bool need_clobber;
+  int i;
+
+  gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
+
+  /* If X is a push on the stack, do the push now and replace
+     X with a reference to the stack pointer.  */
+  if (push_operand (x, mode))
+    x = emit_move_resolve_push (mode, x);
+
+  /* If we are in reload, see if either operand is a MEM whose address
+     is scheduled for replacement.  */
+  if (reload_in_progress && MEM_P (x)
+      && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
+    x = replace_equiv_address_nv (x, inner);
+  if (reload_in_progress && MEM_P (y)
+      && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
+    y = replace_equiv_address_nv (y, inner);
+
+  start_sequence ();
+
+  need_clobber = false;
+  for (i = 0;
+       i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
+       i++)
+    {
+      rtx xpart = operand_subword (x, i, 1, mode);
+      rtx ypart;
+
+      /* Do not generate code for a move if it would come entirely
+	 from the undefined bits of a paradoxical subreg.  */
+      if (undefined_operand_subword_p (y, i))
+	continue;
+
+      ypart = operand_subword (y, i, 1, mode);
+
+      /* If we can't get a part of Y, put Y into memory if it is a
+	 constant.  Otherwise, force it into a register.  Then we must
+	 be able to get a part of Y.  */
+      if (ypart == 0 && CONSTANT_P (y))
+	{
+	  y = use_anchored_address (force_const_mem (mode, y));
+	  ypart = operand_subword (y, i, 1, mode);
+	}
+      else if (ypart == 0)
+	ypart = operand_subword_force (y, i, mode);
+
+      gcc_assert (xpart && ypart);
+
+      need_clobber |= (GET_CODE (xpart) == SUBREG);
+
+      last_insn = emit_move_insn (xpart, ypart);
+    }
+
+  seq = get_insns ();
+  end_sequence ();
+
+  /* Show the output dies here.  This is necessary for SUBREGs
+     of pseudos since we cannot track their lifetimes correctly;
+     hard regs shouldn't appear here except as return values.
+     We never want to emit such a clobber after reload.  */
+  if (x != y
+      && ! (reload_in_progress || reload_completed)
+      && need_clobber != 0)
+    emit_clobber (x);
+
+  emit_insn (seq);
+
+  return last_insn;
+}
+
+/* Low level part of emit_move_insn.
+   Called just like emit_move_insn, but assumes X and Y
+   are basically valid.  */
+
+rtx
+emit_move_insn_1 (rtx x, rtx y)
+{
+  enum machine_mode mode = GET_MODE (x);
+  enum insn_code code;
+
+  gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
+
+  code = optab_handler (mov_optab, mode)->insn_code;
+  if (code != CODE_FOR_nothing)
+    return emit_insn (GEN_FCN (code) (x, y));
+
+  /* Expand complex moves by moving real part and imag part.  */
+  if (COMPLEX_MODE_P (mode))
+    return emit_move_complex (mode, x, y);
+
+  if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
+      || ALL_FIXED_POINT_MODE_P (mode))
+    {
+      rtx result = emit_move_via_integer (mode, x, y, true);
+
+      /* If we can't find an integer mode, use multi words.  */
+      if (result)
+	return result;
+      else
+	return emit_move_multi_word (mode, x, y);
+    }
+
+  if (GET_MODE_CLASS (mode) == MODE_CC)
+    return emit_move_ccmode (mode, x, y);
+
+  /* Try using a move pattern for the corresponding integer mode.  This is
+     only safe when simplify_subreg can convert MODE constants into integer
+     constants.  At present, it can only do this reliably if the value
+     fits within a HOST_WIDE_INT.  */
+  if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
+    {
+      rtx ret = emit_move_via_integer (mode, x, y, false);
+      if (ret)
+	return ret;
+    }
+
+  return emit_move_multi_word (mode, x, y);
+}
+
+/* Generate code to copy Y into X.
+   Both Y and X must have the same mode, except that
+   Y can be a constant with VOIDmode.
+   This mode cannot be BLKmode; use emit_block_move for that.
+
+   Return the last instruction emitted.  */
+
+rtx
+emit_move_insn (rtx x, rtx y)
+{
+  enum machine_mode mode = GET_MODE (x);
+  rtx y_cst = NULL_RTX;
+  rtx last_insn, set;
+
+  gcc_assert (mode != BLKmode
+	      && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
+
+  if (CONSTANT_P (y))
+    {
+      if (optimize
+	  && SCALAR_FLOAT_MODE_P (GET_MODE (x))
+	  && (last_insn = compress_float_constant (x, y)))
+	return last_insn;
+
+      y_cst = y;
+
+      if (!LEGITIMATE_CONSTANT_P (y))
+	{
+	  y = force_const_mem (mode, y);
+
+	  /* If the target's cannot_force_const_mem prevented the spill,
+	     assume that the target's move expanders will also take care
+	     of the non-legitimate constant.  */
+	  if (!y)
+	    y = y_cst;
+	  else
+	    y = use_anchored_address (y);
+	}
+    }
+
+  /* If X or Y are memory references, verify that their addresses are valid
+     for the machine.  */
+  if (MEM_P (x)
+      && (! memory_address_p (GET_MODE (x), XEXP (x, 0))
+	  && ! push_operand (x, GET_MODE (x))))
+    x = validize_mem (x);
+
+  if (MEM_P (y)
+      && ! memory_address_p (GET_MODE (y), XEXP (y, 0)))
+    y = validize_mem (y);
+
+  gcc_assert (mode != BLKmode);
+
+  last_insn = emit_move_insn_1 (x, y);
+
+  if (y_cst && REG_P (x)
+      && (set = single_set (last_insn)) != NULL_RTX
+      && SET_DEST (set) == x
+      && ! rtx_equal_p (y_cst, SET_SRC (set)))
+    set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
+
+  return last_insn;
+}
+
+/* If Y is representable exactly in a narrower mode, and the target can
+   perform the extension directly from constant or memory, then emit the
+   move as an extension.  */
+
+static rtx
+compress_float_constant (rtx x, rtx y)
+{
+  enum machine_mode dstmode = GET_MODE (x);
+  enum machine_mode orig_srcmode = GET_MODE (y);
+  enum machine_mode srcmode;
+  REAL_VALUE_TYPE r;
+  int oldcost, newcost;
+  bool speed = optimize_insn_for_speed_p ();
+
+  REAL_VALUE_FROM_CONST_DOUBLE (r, y);
+
+  if (LEGITIMATE_CONSTANT_P (y))
+    oldcost = rtx_cost (y, SET, speed);
+  else
+    oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
+
+  for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
+       srcmode != orig_srcmode;
+       srcmode = GET_MODE_WIDER_MODE (srcmode))
+    {
+      enum insn_code ic;
+      rtx trunc_y, last_insn;
+
+      /* Skip if the target can't extend this way.  */
+      ic = can_extend_p (dstmode, srcmode, 0);
+      if (ic == CODE_FOR_nothing)
+	continue;
+
+      /* Skip if the narrowed value isn't exact.  */
+      if (! exact_real_truncate (srcmode, &r))
+	continue;
+
+      trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
+
+      if (LEGITIMATE_CONSTANT_P (trunc_y))
+	{
+	  /* Skip if the target needs extra instructions to perform
+	     the extension.  */
+	  if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
+	    continue;
+	  /* This is valid, but may not be cheaper than the original. */
+	  newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
+	  if (oldcost < newcost)
+	    continue;
+	}
+      else if (float_extend_from_mem[dstmode][srcmode])
+	{
+	  trunc_y = force_const_mem (srcmode, trunc_y);
+	  /* This is valid, but may not be cheaper than the original. */
+	  newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
+	  if (oldcost < newcost)
+	    continue;
+	  trunc_y = validize_mem (trunc_y);
+	}
+      else
+	continue;
+
+      /* For CSE's benefit, force the compressed constant pool entry
+	 into a new pseudo.  This constant may be used in different modes,
+	 and if not, combine will put things back together for us.  */
+      trunc_y = force_reg (srcmode, trunc_y);
+      emit_unop_insn (ic, x, trunc_y, UNKNOWN);
+      last_insn = get_last_insn ();
+
+      if (REG_P (x))
+	set_unique_reg_note (last_insn, REG_EQUAL, y);
+
+      return last_insn;
+    }
+
+  return NULL_RTX;
+}
+
+/* Pushing data onto the stack.  */
+
+/* Push a block of length SIZE (perhaps variable)
+   and return an rtx to address the beginning of the block.
+   The value may be virtual_outgoing_args_rtx.
+
+   EXTRA is the number of bytes of padding to push in addition to SIZE.
+   BELOW nonzero means this padding comes at low addresses;
+   otherwise, the padding comes at high addresses.  */
+
+rtx
+push_block (rtx size, int extra, int below)
+{
+  rtx temp;
+
+  size = convert_modes (Pmode, ptr_mode, size, 1);
+  if (CONSTANT_P (size))
+    anti_adjust_stack (plus_constant (size, extra));
+  else if (REG_P (size) && extra == 0)
+    anti_adjust_stack (size);
+  else
+    {
+      temp = copy_to_mode_reg (Pmode, size);
+      if (extra != 0)
+	temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
+			     temp, 0, OPTAB_LIB_WIDEN);
+      anti_adjust_stack (temp);
+    }
+
+#ifndef STACK_GROWS_DOWNWARD
+  if (0)
+#else
+  if (1)
+#endif
+    {
+      temp = virtual_outgoing_args_rtx;
+      if (extra != 0 && below)
+	temp = plus_constant (temp, extra);
+    }
+  else
+    {
+      if (GET_CODE (size) == CONST_INT)
+	temp = plus_constant (virtual_outgoing_args_rtx,
+			      -INTVAL (size) - (below ? 0 : extra));
+      else if (extra != 0 && !below)
+	temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
+			     negate_rtx (Pmode, plus_constant (size, extra)));
+      else
+	temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
+			     negate_rtx (Pmode, size));
+    }
+
+  return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
+}
+
+#ifdef PUSH_ROUNDING
+
+/* Emit single push insn.  */
+
+static void
+emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
+{
+  rtx dest_addr;
+  unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
+  rtx dest;
+  enum insn_code icode;
+  insn_operand_predicate_fn pred;
+
+  stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
+  /* If there is push pattern, use it.  Otherwise try old way of throwing
+     MEM representing push operation to move expander.  */
+  icode = optab_handler (push_optab, mode)->insn_code;
+  if (icode != CODE_FOR_nothing)
+    {
+      if (((pred = insn_data[(int) icode].operand[0].predicate)
+	   && !((*pred) (x, mode))))
+	x = force_reg (mode, x);
+      emit_insn (GEN_FCN (icode) (x));
+      return;
+    }
+  if (GET_MODE_SIZE (mode) == rounded_size)
+    dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
+  /* If we are to pad downward, adjust the stack pointer first and
+     then store X into the stack location using an offset.  This is
+     because emit_move_insn does not know how to pad; it does not have
+     access to type.  */
+  else if (FUNCTION_ARG_PADDING (mode, type) == downward)
+    {
+      unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
+      HOST_WIDE_INT offset;
+
+      emit_move_insn (stack_pointer_rtx,
+		      expand_binop (Pmode,
+#ifdef STACK_GROWS_DOWNWARD
+				    sub_optab,
+#else
+				    add_optab,
+#endif
+				    stack_pointer_rtx,
+				    GEN_INT (rounded_size),
+				    NULL_RTX, 0, OPTAB_LIB_WIDEN));
+
+      offset = (HOST_WIDE_INT) padding_size;
+#ifdef STACK_GROWS_DOWNWARD
+      if (STACK_PUSH_CODE == POST_DEC)
+	/* We have already decremented the stack pointer, so get the
+	   previous value.  */
+	offset += (HOST_WIDE_INT) rounded_size;
+#else
+      if (STACK_PUSH_CODE == POST_INC)
+	/* We have already incremented the stack pointer, so get the
+	   previous value.  */
+	offset -= (HOST_WIDE_INT) rounded_size;
+#endif
+      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
+    }
+  else
+    {
+#ifdef STACK_GROWS_DOWNWARD
+      /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC.  */
+      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+				GEN_INT (-(HOST_WIDE_INT) rounded_size));
+#else
+      /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC.  */
+      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+				GEN_INT (rounded_size));
+#endif
+      dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
+    }
+
+  dest = gen_rtx_MEM (mode, dest_addr);
+
+  if (type != 0)
+    {
+      set_mem_attributes (dest, type, 1);
+
+      if (flag_optimize_sibling_calls)
+	/* Function incoming arguments may overlap with sibling call
+	   outgoing arguments and we cannot allow reordering of reads
+	   from function arguments with stores to outgoing arguments
+	   of sibling calls.  */
+	set_mem_alias_set (dest, 0);
+    }
+  emit_move_insn (dest, x);
+}
+#endif
+
+/* Generate code to push X onto the stack, assuming it has mode MODE and
+   type TYPE.
+   MODE is redundant except when X is a CONST_INT (since they don't
+   carry mode info).
+   SIZE is an rtx for the size of data to be copied (in bytes),
+   needed only if X is BLKmode.
+
+   ALIGN (in bits) is maximum alignment we can assume.
+
+   If PARTIAL and REG are both nonzero, then copy that many of the first
+   bytes of X into registers starting with REG, and push the rest of X.
+   The amount of space pushed is decreased by PARTIAL bytes.
+   REG must be a hard register in this case.
+   If REG is zero but PARTIAL is not, take any all others actions for an
+   argument partially in registers, but do not actually load any
+   registers.
+
+   EXTRA is the amount in bytes of extra space to leave next to this arg.
+   This is ignored if an argument block has already been allocated.
+
+   On a machine that lacks real push insns, ARGS_ADDR is the address of
+   the bottom of the argument block for this call.  We use indexing off there
+   to store the arg.  On machines with push insns, ARGS_ADDR is 0 when a
+   argument block has not been preallocated.
+
+   ARGS_SO_FAR is the size of args previously pushed for this call.
+
+   REG_PARM_STACK_SPACE is nonzero if functions require stack space
+   for arguments passed in registers.  If nonzero, it will be the number
+   of bytes required.  */
+
+void
+emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
+		unsigned int align, int partial, rtx reg, int extra,
+		rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
+		rtx alignment_pad)
+{
+  rtx xinner;
+  enum direction stack_direction
+#ifdef STACK_GROWS_DOWNWARD
+    = downward;
+#else
+    = upward;
+#endif
+
+  /* Decide where to pad the argument: `downward' for below,
+     `upward' for above, or `none' for don't pad it.
+     Default is below for small data on big-endian machines; else above.  */
+  enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
+
+  /* Invert direction if stack is post-decrement.
+     FIXME: why?  */
+  if (STACK_PUSH_CODE == POST_DEC)
+    if (where_pad != none)
+      where_pad = (where_pad == downward ? upward : downward);
+
+  xinner = x;
+
+  if (mode == BLKmode
+      || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
+    {
+      /* Copy a block into the stack, entirely or partially.  */
+
+      rtx temp;
+      int used;
+      int offset;
+      int skip;
+
+      offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
+      used = partial - offset;
+
+      if (mode != BLKmode)
+	{
+	  /* A value is to be stored in an insufficiently aligned
+	     stack slot; copy via a suitably aligned slot if
+	     necessary.  */
+	  size = GEN_INT (GET_MODE_SIZE (mode));
+	  if (!MEM_P (xinner))
+	    {
+	      temp = assign_temp (type, 0, 1, 1);
+	      emit_move_insn (temp, xinner);
+	      xinner = temp;
+	    }
+	}
+
+      gcc_assert (size);
+
+      /* USED is now the # of bytes we need not copy to the stack
+	 because registers will take care of them.  */
+
+      if (partial != 0)
+	xinner = adjust_address (xinner, BLKmode, used);
+
+      /* If the partial register-part of the arg counts in its stack size,
+	 skip the part of stack space corresponding to the registers.
+	 Otherwise, start copying to the beginning of the stack space,
+	 by setting SKIP to 0.  */
+      skip = (reg_parm_stack_space == 0) ? 0 : used;
+
+#ifdef PUSH_ROUNDING
+      /* Do it with several push insns if that doesn't take lots of insns
+	 and if there is no difficulty with push insns that skip bytes
+	 on the stack for alignment purposes.  */
+      if (args_addr == 0
+	  && PUSH_ARGS
+	  && GET_CODE (size) == CONST_INT
+	  && skip == 0
+	  && MEM_ALIGN (xinner) >= align
+	  && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
+	  /* Here we avoid the case of a structure whose weak alignment
+	     forces many pushes of a small amount of data,
+	     and such small pushes do rounding that causes trouble.  */
+	  && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
+	      || align >= BIGGEST_ALIGNMENT
+	      || (PUSH_ROUNDING (align / BITS_PER_UNIT)
+		  == (align / BITS_PER_UNIT)))
+	  && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
+	{
+	  /* Push padding now if padding above and stack grows down,
+	     or if padding below and stack grows up.
+	     But if space already allocated, this has already been done.  */
+	  if (extra && args_addr == 0
+	      && where_pad != none && where_pad != stack_direction)
+	    anti_adjust_stack (GEN_INT (extra));
+
+	  move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
+	}
+      else
+#endif /* PUSH_ROUNDING  */
+	{
+	  rtx target;
+
+	  /* Otherwise make space on the stack and copy the data
+	     to the address of that space.  */
+
+	  /* Deduct words put into registers from the size we must copy.  */
+	  if (partial != 0)
+	    {
+	      if (GET_CODE (size) == CONST_INT)
+		size = GEN_INT (INTVAL (size) - used);
+	      else
+		size = expand_binop (GET_MODE (size), sub_optab, size,
+				     GEN_INT (used), NULL_RTX, 0,
+				     OPTAB_LIB_WIDEN);
+	    }
+
+	  /* Get the address of the stack space.
+	     In this case, we do not deal with EXTRA separately.
+	     A single stack adjust will do.  */
+	  if (! args_addr)
+	    {
+	      temp = push_block (size, extra, where_pad == downward);
+	      extra = 0;
+	    }
+	  else if (GET_CODE (args_so_far) == CONST_INT)
+	    temp = memory_address (BLKmode,
+				   plus_constant (args_addr,
+						  skip + INTVAL (args_so_far)));
+	  else
+	    temp = memory_address (BLKmode,
+				   plus_constant (gen_rtx_PLUS (Pmode,
+								args_addr,
+								args_so_far),
+						  skip));
+
+	  if (!ACCUMULATE_OUTGOING_ARGS)
+	    {
+	      /* If the source is referenced relative to the stack pointer,
+		 copy it to another register to stabilize it.  We do not need
+		 to do this if we know that we won't be changing sp.  */
+
+	      if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
+		  || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
+		temp = copy_to_reg (temp);
+	    }
+
+	  target = gen_rtx_MEM (BLKmode, temp);
+
+	  /* We do *not* set_mem_attributes here, because incoming arguments
+	     may overlap with sibling call outgoing arguments and we cannot
+	     allow reordering of reads from function arguments with stores
+	     to outgoing arguments of sibling calls.  We do, however, want
+	     to record the alignment of the stack slot.  */
+	  /* ALIGN may well be better aligned than TYPE, e.g. due to
+	     PARM_BOUNDARY.  Assume the caller isn't lying.  */
+	  set_mem_align (target, align);
+
+	  emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
+	}
+    }
+  else if (partial > 0)
+    {
+      /* Scalar partly in registers.  */
+
+      int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
+      int i;
+      int not_stack;
+      /* # bytes of start of argument
+	 that we must make space for but need not store.  */
+      int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
+      int args_offset = INTVAL (args_so_far);
+      int skip;
+
+      /* Push padding now if padding above and stack grows down,
+	 or if padding below and stack grows up.
+	 But if space already allocated, this has already been done.  */
+      if (extra && args_addr == 0
+	  && where_pad != none && where_pad != stack_direction)
+	anti_adjust_stack (GEN_INT (extra));
+
+      /* If we make space by pushing it, we might as well push
+	 the real data.  Otherwise, we can leave OFFSET nonzero
+	 and leave the space uninitialized.  */
+      if (args_addr == 0)
+	offset = 0;
+
+      /* Now NOT_STACK gets the number of words that we don't need to
+	 allocate on the stack.  Convert OFFSET to words too.  */
+      not_stack = (partial - offset) / UNITS_PER_WORD;
+      offset /= UNITS_PER_WORD;
+
+      /* If the partial register-part of the arg counts in its stack size,
+	 skip the part of stack space corresponding to the registers.
+	 Otherwise, start copying to the beginning of the stack space,
+	 by setting SKIP to 0.  */
+      skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
+
+      if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
+	x = validize_mem (force_const_mem (mode, x));
+
+      /* If X is a hard register in a non-integer mode, copy it into a pseudo;
+	 SUBREGs of such registers are not allowed.  */
+      if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
+	   && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
+	x = copy_to_reg (x);
+
+      /* Loop over all the words allocated on the stack for this arg.  */
+      /* We can do it by words, because any scalar bigger than a word
+	 has a size a multiple of a word.  */
+#ifndef PUSH_ARGS_REVERSED
+      for (i = not_stack; i < size; i++)
+#else
+      for (i = size - 1; i >= not_stack; i--)
+#endif
+	if (i >= not_stack + offset)
+	  emit_push_insn (operand_subword_force (x, i, mode),
+			  word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
+			  0, args_addr,
+			  GEN_INT (args_offset + ((i - not_stack + skip)
+						  * UNITS_PER_WORD)),
+			  reg_parm_stack_space, alignment_pad);
+    }
+  else
+    {
+      rtx addr;
+      rtx dest;
+
+      /* Push padding now if padding above and stack grows down,
+	 or if padding below and stack grows up.
+	 But if space already allocated, this has already been done.  */
+      if (extra && args_addr == 0
+	  && where_pad != none && where_pad != stack_direction)
+	anti_adjust_stack (GEN_INT (extra));
+
+#ifdef PUSH_ROUNDING
+      if (args_addr == 0 && PUSH_ARGS)
+	emit_single_push_insn (mode, x, type);
+      else
+#endif
+	{
+	  if (GET_CODE (args_so_far) == CONST_INT)
+	    addr
+	      = memory_address (mode,
+				plus_constant (args_addr,
+					       INTVAL (args_so_far)));
+	  else
+	    addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
+						       args_so_far));
+	  dest = gen_rtx_MEM (mode, addr);
+
+	  /* We do *not* set_mem_attributes here, because incoming arguments
+	     may overlap with sibling call outgoing arguments and we cannot
+	     allow reordering of reads from function arguments with stores
+	     to outgoing arguments of sibling calls.  We do, however, want
+	     to record the alignment of the stack slot.  */
+	  /* ALIGN may well be better aligned than TYPE, e.g. due to
+	     PARM_BOUNDARY.  Assume the caller isn't lying.  */
+	  set_mem_align (dest, align);
+
+	  emit_move_insn (dest, x);
+	}
+    }
+
+  /* If part should go in registers, copy that part
+     into the appropriate registers.  Do this now, at the end,
+     since mem-to-mem copies above may do function calls.  */
+  if (partial > 0 && reg != 0)
+    {
+      /* Handle calls that pass values in multiple non-contiguous locations.
+	 The Irix 6 ABI has examples of this.  */
+      if (GET_CODE (reg) == PARALLEL)
+	emit_group_load (reg, x, type, -1);
+      else
+	{
+	  gcc_assert (partial % UNITS_PER_WORD == 0);
+	  move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
+	}
+    }
+
+  if (extra && args_addr == 0 && where_pad == stack_direction)
+    anti_adjust_stack (GEN_INT (extra));
+
+  if (alignment_pad && args_addr == 0)
+    anti_adjust_stack (alignment_pad);
+}
+
+/* Return X if X can be used as a subtarget in a sequence of arithmetic
+   operations.  */
+
+static rtx
+get_subtarget (rtx x)
+{
+  return (optimize
+          || x == 0
+	   /* Only registers can be subtargets.  */
+	   || !REG_P (x)
+	   /* Don't use hard regs to avoid extending their life.  */
+	   || REGNO (x) < FIRST_PSEUDO_REGISTER
+	  ? 0 : x);
+}
+
+/* A subroutine of expand_assignment.  Optimize FIELD op= VAL, where
+   FIELD is a bitfield.  Returns true if the optimization was successful,
+   and there's nothing else to do.  */
+
+static bool
+optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
+				 unsigned HOST_WIDE_INT bitpos,
+				 enum machine_mode mode1, rtx str_rtx,
+				 tree to, tree src)
+{
+  enum machine_mode str_mode = GET_MODE (str_rtx);
+  unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
+  tree op0, op1;
+  rtx value, result;
+  optab binop;
+
+  if (mode1 != VOIDmode
+      || bitsize >= BITS_PER_WORD
+      || str_bitsize > BITS_PER_WORD
+      || TREE_SIDE_EFFECTS (to)
+      || TREE_THIS_VOLATILE (to))
+    return false;
+
+  STRIP_NOPS (src);
+  if (!BINARY_CLASS_P (src)
+      || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
+    return false;
+
+  op0 = TREE_OPERAND (src, 0);
+  op1 = TREE_OPERAND (src, 1);
+  STRIP_NOPS (op0);
+
+  if (!operand_equal_p (to, op0, 0))
+    return false;
+
+  if (MEM_P (str_rtx))
+    {
+      unsigned HOST_WIDE_INT offset1;
+
+      if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
+	str_mode = word_mode;
+      str_mode = get_best_mode (bitsize, bitpos,
+				MEM_ALIGN (str_rtx), str_mode, 0);
+      if (str_mode == VOIDmode)
+	return false;
+      str_bitsize = GET_MODE_BITSIZE (str_mode);
+
+      offset1 = bitpos;
+      bitpos %= str_bitsize;
+      offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
+      str_rtx = adjust_address (str_rtx, str_mode, offset1);
+    }
+  else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
+    return false;
+
+  /* If the bit field covers the whole REG/MEM, store_field
+     will likely generate better code.  */
+  if (bitsize >= str_bitsize)
+    return false;
+
+  /* We can't handle fields split across multiple entities.  */
+  if (bitpos + bitsize > str_bitsize)
+    return false;
+
+  if (BYTES_BIG_ENDIAN)
+    bitpos = str_bitsize - bitpos - bitsize;
+
+  switch (TREE_CODE (src))
+    {
+    case PLUS_EXPR:
+    case MINUS_EXPR:
+      /* For now, just optimize the case of the topmost bitfield
+	 where we don't need to do any masking and also
+	 1 bit bitfields where xor can be used.
+	 We might win by one instruction for the other bitfields
+	 too if insv/extv instructions aren't used, so that
+	 can be added later.  */
+      if (bitpos + bitsize != str_bitsize
+	  && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
+	break;
+
+      value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
+      value = convert_modes (str_mode,
+			     TYPE_MODE (TREE_TYPE (op1)), value,
+			     TYPE_UNSIGNED (TREE_TYPE (op1)));
+
+      /* We may be accessing data outside the field, which means
+	 we can alias adjacent data.  */
+      if (MEM_P (str_rtx))
+	{
+	  str_rtx = shallow_copy_rtx (str_rtx);
+	  set_mem_alias_set (str_rtx, 0);
+	  set_mem_expr (str_rtx, 0);
+	}
+
+      binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
+      if (bitsize == 1 && bitpos + bitsize != str_bitsize)
+	{
+	  value = expand_and (str_mode, value, const1_rtx, NULL);
+	  binop = xor_optab;
+	}
+      value = expand_shift (LSHIFT_EXPR, str_mode, value,
+			    build_int_cst (NULL_TREE, bitpos),
+			    NULL_RTX, 1);
+      result = expand_binop (str_mode, binop, str_rtx,
+			     value, str_rtx, 1, OPTAB_WIDEN);
+      if (result != str_rtx)
+	emit_move_insn (str_rtx, result);
+      return true;
+
+    case BIT_IOR_EXPR:
+    case BIT_XOR_EXPR:
+      if (TREE_CODE (op1) != INTEGER_CST)
+	break;
+      value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
+      value = convert_modes (GET_MODE (str_rtx),
+			     TYPE_MODE (TREE_TYPE (op1)), value,
+			     TYPE_UNSIGNED (TREE_TYPE (op1)));
+
+      /* We may be accessing data outside the field, which means
+	 we can alias adjacent data.  */
+      if (MEM_P (str_rtx))
+	{
+	  str_rtx = shallow_copy_rtx (str_rtx);
+	  set_mem_alias_set (str_rtx, 0);
+	  set_mem_expr (str_rtx, 0);
+	}
+
+      binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
+      if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
+	{
+	  rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
+			      - 1);
+	  value = expand_and (GET_MODE (str_rtx), value, mask,
+			      NULL_RTX);
+	}
+      value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
+			    build_int_cst (NULL_TREE, bitpos),
+			    NULL_RTX, 1);
+      result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
+			     value, str_rtx, 1, OPTAB_WIDEN);
+      if (result != str_rtx)
+	emit_move_insn (str_rtx, result);
+      return true;
+
+    default:
+      break;
+    }
+
+  return false;
+}
+
+
+/* Expand an assignment that stores the value of FROM into TO.  If NONTEMPORAL
+   is true, try generating a nontemporal store.  */
+
+void
+expand_assignment (tree to, tree from, bool nontemporal)
+{
+  rtx to_rtx = 0;
+  rtx result;
+
+  /* Don't crash if the lhs of the assignment was erroneous.  */
+  if (TREE_CODE (to) == ERROR_MARK)
+    {
+      result = expand_normal (from);
+      return;
+    }
+
+  /* Optimize away no-op moves without side-effects.  */
+  if (operand_equal_p (to, from, 0))
+    return;
+
+  /* Assignment of a structure component needs special treatment
+     if the structure component's rtx is not simply a MEM.
+     Assignment of an array element at a constant index, and assignment of
+     an array element in an unaligned packed structure field, has the same
+     problem.  */
+  if (handled_component_p (to)
+      || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
+    {
+      enum machine_mode mode1;
+      HOST_WIDE_INT bitsize, bitpos;
+      tree offset;
+      int unsignedp;
+      int volatilep = 0;
+      tree tem;
+
+      push_temp_slots ();
+      tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
+				 &unsignedp, &volatilep, true);
+
+      /* If we are going to use store_bit_field and extract_bit_field,
+	 make sure to_rtx will be safe for multiple use.  */
+
+      to_rtx = expand_normal (tem);
+
+      if (offset != 0)
+	{
+	  rtx offset_rtx;
+
+	  if (!MEM_P (to_rtx))
+	    {
+	      /* We can get constant negative offsets into arrays with broken
+		 user code.  Translate this to a trap instead of ICEing.  */
+	      gcc_assert (TREE_CODE (offset) == INTEGER_CST);
+	      expand_builtin_trap ();
+	      to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
+	    }
+
+	  offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
+#ifdef POINTERS_EXTEND_UNSIGNED
+	  if (GET_MODE (offset_rtx) != Pmode)
+	    offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
+#else
+	  if (GET_MODE (offset_rtx) != ptr_mode)
+	    offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
+#endif
+
+	  /* A constant address in TO_RTX can have VOIDmode, we must not try
+	     to call force_reg for that case.  Avoid that case.  */
+	  if (MEM_P (to_rtx)
+	      && GET_MODE (to_rtx) == BLKmode
+	      && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
+	      && bitsize > 0
+	      && (bitpos % bitsize) == 0
+	      && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
+	      && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
+	    {
+	      to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
+	      bitpos = 0;
+	    }
+
+	  to_rtx = offset_address (to_rtx, offset_rtx,
+				   highest_pow2_factor_for_target (to,
+				   				   offset));
+	}
+
+      /* Handle expand_expr of a complex value returning a CONCAT.  */
+      if (GET_CODE (to_rtx) == CONCAT)
+	{
+	  if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
+	    {
+	      gcc_assert (bitpos == 0);
+	      result = store_expr (from, to_rtx, false, nontemporal);
+	    }
+	  else
+	    {
+	      gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
+	      result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
+				   nontemporal);
+	    }
+	}
+      else
+	{
+	  if (MEM_P (to_rtx))
+	    {
+	      /* If the field is at offset zero, we could have been given the
+		 DECL_RTX of the parent struct.  Don't munge it.  */
+	      to_rtx = shallow_copy_rtx (to_rtx);
+
+	      set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
+
+	      /* Deal with volatile and readonly fields.  The former is only
+		 done for MEM.  Also set MEM_KEEP_ALIAS_SET_P if needed.  */
+	      if (volatilep)
+		MEM_VOLATILE_P (to_rtx) = 1;
+	      if (component_uses_parent_alias_set (to))
+		MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
+	    }
+
+	  if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
+					       to_rtx, to, from))
+	    result = NULL;
+	  else
+	    result = store_field (to_rtx, bitsize, bitpos, mode1, from,
+				  TREE_TYPE (tem), get_alias_set (to),
+				  nontemporal);
+	}
+
+      if (result)
+	preserve_temp_slots (result);
+      free_temp_slots ();
+      pop_temp_slots ();
+      return;
+    }
+
+  /* If the rhs is a function call and its value is not an aggregate,
+     call the function before we start to compute the lhs.
+     This is needed for correct code for cases such as
+     val = setjmp (buf) on machines where reference to val
+     requires loading up part of an address in a separate insn.
+
+     Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
+     since it might be a promoted variable where the zero- or sign- extension
+     needs to be done.  Handling this in the normal way is safe because no
+     computation is done before the call.  */
+  if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
+      && COMPLETE_TYPE_P (TREE_TYPE (from))
+      && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
+      && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
+	    && REG_P (DECL_RTL (to))))
+    {
+      rtx value;
+
+      push_temp_slots ();
+      value = expand_normal (from);
+      if (to_rtx == 0)
+	to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
+
+      /* Handle calls that return values in multiple non-contiguous locations.
+	 The Irix 6 ABI has examples of this.  */
+      if (GET_CODE (to_rtx) == PARALLEL)
+	emit_group_load (to_rtx, value, TREE_TYPE (from),
+			 int_size_in_bytes (TREE_TYPE (from)));
+      else if (GET_MODE (to_rtx) == BLKmode)
+	emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
+      else
+	{
+	  if (POINTER_TYPE_P (TREE_TYPE (to)))
+	    value = convert_memory_address (GET_MODE (to_rtx), value);
+	  emit_move_insn (to_rtx, value);
+	}
+      preserve_temp_slots (to_rtx);
+      free_temp_slots ();
+      pop_temp_slots ();
+      return;
+    }
+
+  /* Ordinary treatment.  Expand TO to get a REG or MEM rtx.
+     Don't re-expand if it was expanded already (in COMPONENT_REF case).  */
+
+  if (to_rtx == 0)
+    to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
+
+  /* Don't move directly into a return register.  */
+  if (TREE_CODE (to) == RESULT_DECL
+      && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
+    {
+      rtx temp;
+
+      push_temp_slots ();
+      temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
+
+      if (GET_CODE (to_rtx) == PARALLEL)
+	emit_group_load (to_rtx, temp, TREE_TYPE (from),
+			 int_size_in_bytes (TREE_TYPE (from)));
+      else
+	emit_move_insn (to_rtx, temp);
+
+      preserve_temp_slots (to_rtx);
+      free_temp_slots ();
+      pop_temp_slots ();
+      return;
+    }
+
+  /* In case we are returning the contents of an object which overlaps
+     the place the value is being stored, use a safe function when copying
+     a value through a pointer into a structure value return block.  */
+  if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
+      && cfun->returns_struct
+      && !cfun->returns_pcc_struct)
+    {
+      rtx from_rtx, size;
+
+      push_temp_slots ();
+      size = expr_size (from);
+      from_rtx = expand_normal (from);
+
+      emit_library_call (memmove_libfunc, LCT_NORMAL,
+			 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
+			 XEXP (from_rtx, 0), Pmode,
+			 convert_to_mode (TYPE_MODE (sizetype),
+					  size, TYPE_UNSIGNED (sizetype)),
+			 TYPE_MODE (sizetype));
+
+      preserve_temp_slots (to_rtx);
+      free_temp_slots ();
+      pop_temp_slots ();
+      return;
+    }
+
+  /* Compute FROM and store the value in the rtx we got.  */
+
+  push_temp_slots ();
+  result = store_expr (from, to_rtx, 0, nontemporal);
+  preserve_temp_slots (result);
+  free_temp_slots ();
+  pop_temp_slots ();
+  return;
+}
+
+/* Emits nontemporal store insn that moves FROM to TO.  Returns true if this
+   succeeded, false otherwise.  */
+
+static bool
+emit_storent_insn (rtx to, rtx from)
+{
+  enum machine_mode mode = GET_MODE (to), imode;
+  enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
+  rtx pattern;
+
+  if (code == CODE_FOR_nothing)
+    return false;
+
+  imode = insn_data[code].operand[0].mode;
+  if (!insn_data[code].operand[0].predicate (to, imode))
+    return false;
+
+  imode = insn_data[code].operand[1].mode;
+  if (!insn_data[code].operand[1].predicate (from, imode))
+    {
+      from = copy_to_mode_reg (imode, from);
+      if (!insn_data[code].operand[1].predicate (from, imode))
+	return false;
+    }
+
+  pattern = GEN_FCN (code) (to, from);
+  if (pattern == NULL_RTX)
+    return false;
+
+  emit_insn (pattern);
+  return true;
+}
+
+/* Generate code for computing expression EXP,
+   and storing the value into TARGET.
+
+   If the mode is BLKmode then we may return TARGET itself.
+   It turns out that in BLKmode it doesn't cause a problem.
+   because C has no operators that could combine two different
+   assignments into the same BLKmode object with different values
+   with no sequence point.  Will other languages need this to
+   be more thorough?
+
+   If CALL_PARAM_P is nonzero, this is a store into a call param on the
+   stack, and block moves may need to be treated specially.
+ 
+   If NONTEMPORAL is true, try using a nontemporal store instruction.  */
+
+rtx
+store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
+{
+  rtx temp;
+  rtx alt_rtl = NULL_RTX;
+  int dont_return_target = 0;
+
+  if (VOID_TYPE_P (TREE_TYPE (exp)))
+    {
+      /* C++ can generate ?: expressions with a throw expression in one
+	 branch and an rvalue in the other. Here, we resolve attempts to
+	 store the throw expression's nonexistent result.  */
+      gcc_assert (!call_param_p);
+      expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
+      return NULL_RTX;
+    }
+  if (TREE_CODE (exp) == COMPOUND_EXPR)
+    {
+      /* Perform first part of compound expression, then assign from second
+	 part.  */
+      expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
+		   call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
+      return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
+			 nontemporal);
+    }
+  else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
+    {
+      /* For conditional expression, get safe form of the target.  Then
+	 test the condition, doing the appropriate assignment on either
+	 side.  This avoids the creation of unnecessary temporaries.
+	 For non-BLKmode, it is more efficient not to do this.  */
+
+      rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
+
+      do_pending_stack_adjust ();
+      NO_DEFER_POP;
+      jumpifnot (TREE_OPERAND (exp, 0), lab1);
+      store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
+		  nontemporal);
+      emit_jump_insn (gen_jump (lab2));
+      emit_barrier ();
+      emit_label (lab1);
+      store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
+		  nontemporal);
+      emit_label (lab2);
+      OK_DEFER_POP;
+
+      return NULL_RTX;
+    }
+  else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
+    /* If this is a scalar in a register that is stored in a wider mode
+       than the declared mode, compute the result into its declared mode
+       and then convert to the wider mode.  Our value is the computed
+       expression.  */
+    {
+      rtx inner_target = 0;
+
+      /* We can do the conversion inside EXP, which will often result
+	 in some optimizations.  Do the conversion in two steps: first
+	 change the signedness, if needed, then the extend.  But don't
+	 do this if the type of EXP is a subtype of something else
+	 since then the conversion might involve more than just
+	 converting modes.  */
+      if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
+	  && TREE_TYPE (TREE_TYPE (exp)) == 0
+	  && GET_MODE_PRECISION (GET_MODE (target))
+	     == TYPE_PRECISION (TREE_TYPE (exp)))
+	{
+	  if (TYPE_UNSIGNED (TREE_TYPE (exp))
+	      != SUBREG_PROMOTED_UNSIGNED_P (target))
+	    {
+	      /* Some types, e.g. Fortran's logical*4, won't have a signed
+		 version, so use the mode instead.  */
+	      tree ntype
+		= (signed_or_unsigned_type_for
+		   (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
+	      if (ntype == NULL)
+		ntype = lang_hooks.types.type_for_mode
+		  (TYPE_MODE (TREE_TYPE (exp)),
+		   SUBREG_PROMOTED_UNSIGNED_P (target));
+
+	      exp = fold_convert (ntype, exp);
+	    }
+
+	  exp = fold_convert (lang_hooks.types.type_for_mode
+				(GET_MODE (SUBREG_REG (target)),
+				 SUBREG_PROMOTED_UNSIGNED_P (target)),
+			      exp);
+
+	  inner_target = SUBREG_REG (target);
+	}
+
+      temp = expand_expr (exp, inner_target, VOIDmode,
+			  call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
+
+      /* If TEMP is a VOIDmode constant, use convert_modes to make
+	 sure that we properly convert it.  */
+      if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
+	{
+	  temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
+				temp, SUBREG_PROMOTED_UNSIGNED_P (target));
+	  temp = convert_modes (GET_MODE (SUBREG_REG (target)),
+			        GET_MODE (target), temp,
+			        SUBREG_PROMOTED_UNSIGNED_P (target));
+	}
+
+      convert_move (SUBREG_REG (target), temp,
+		    SUBREG_PROMOTED_UNSIGNED_P (target));
+
+      return NULL_RTX;
+    }
+  else if (TREE_CODE (exp) == STRING_CST
+	   && !nontemporal && !call_param_p
+	   && TREE_STRING_LENGTH (exp) > 0
+	   && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
+    {
+      /* Optimize initialization of an array with a STRING_CST.  */
+      HOST_WIDE_INT exp_len, str_copy_len;
+      rtx dest_mem;
+
+      exp_len = int_expr_size (exp);
+      if (exp_len <= 0)
+	goto normal_expr;
+
+      str_copy_len = strlen (TREE_STRING_POINTER (exp));
+      if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
+	goto normal_expr;
+
+      str_copy_len = TREE_STRING_LENGTH (exp);
+      if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
+	{
+	  str_copy_len += STORE_MAX_PIECES - 1;
+	  str_copy_len &= ~(STORE_MAX_PIECES - 1);
+	}
+      str_copy_len = MIN (str_copy_len, exp_len);
+      if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
+				CONST_CAST(char *, TREE_STRING_POINTER (exp)),
+				MEM_ALIGN (target), false))
+	goto normal_expr;
+
+      dest_mem = target;
+
+      dest_mem = store_by_pieces (dest_mem,
+				  str_copy_len, builtin_strncpy_read_str,
+				  CONST_CAST(char *, TREE_STRING_POINTER (exp)),
+				  MEM_ALIGN (target), false,
+				  exp_len > str_copy_len ? 1 : 0);
+      if (exp_len > str_copy_len)
+	clear_storage (adjust_address (dest_mem, BLKmode, 0),
+		       GEN_INT (exp_len - str_copy_len),
+		       BLOCK_OP_NORMAL);
+      return NULL_RTX;
+    }
+  else
+    {
+      rtx tmp_target;
+
+  normal_expr:
+      /* If we want to use a nontemporal store, force the value to
+	 register first.  */
+      tmp_target = nontemporal ? NULL_RTX : target;
+      temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
+			       (call_param_p
+				? EXPAND_STACK_PARM : EXPAND_NORMAL),
+			       &alt_rtl);
+      /* Return TARGET if it's a specified hardware register.
+	 If TARGET is a volatile mem ref, either return TARGET
+	 or return a reg copied *from* TARGET; ANSI requires this.
+
+	 Otherwise, if TEMP is not TARGET, return TEMP
+	 if it is constant (for efficiency),
+	 or if we really want the correct value.  */
+      if (!(target && REG_P (target)
+	    && REGNO (target) < FIRST_PSEUDO_REGISTER)
+	  && !(MEM_P (target) && MEM_VOLATILE_P (target))
+	  && ! rtx_equal_p (temp, target)
+	  && CONSTANT_P (temp))
+	dont_return_target = 1;
+    }
+
+  /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
+     the same as that of TARGET, adjust the constant.  This is needed, for
+     example, in case it is a CONST_DOUBLE and we want only a word-sized
+     value.  */
+  if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
+      && TREE_CODE (exp) != ERROR_MARK
+      && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
+    temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
+			  temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
+
+  /* If value was not generated in the target, store it there.
+     Convert the value to TARGET's type first if necessary and emit the
+     pending incrementations that have been queued when expanding EXP.
+     Note that we cannot emit the whole queue blindly because this will
+     effectively disable the POST_INC optimization later.
+
+     If TEMP and TARGET compare equal according to rtx_equal_p, but
+     one or both of them are volatile memory refs, we have to distinguish
+     two cases:
+     - expand_expr has used TARGET.  In this case, we must not generate
+       another copy.  This can be detected by TARGET being equal according
+       to == .
+     - expand_expr has not used TARGET - that means that the source just
+       happens to have the same RTX form.  Since temp will have been created
+       by expand_expr, it will compare unequal according to == .
+       We must generate a copy in this case, to reach the correct number
+       of volatile memory references.  */
+
+  if ((! rtx_equal_p (temp, target)
+       || (temp != target && (side_effects_p (temp)
+			      || side_effects_p (target))))
+      && TREE_CODE (exp) != ERROR_MARK
+      /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
+	 but TARGET is not valid memory reference, TEMP will differ
+	 from TARGET although it is really the same location.  */
+      && !(alt_rtl && rtx_equal_p (alt_rtl, target))
+      /* If there's nothing to copy, don't bother.  Don't call
+	 expr_size unless necessary, because some front-ends (C++)
+	 expr_size-hook must not be given objects that are not
+	 supposed to be bit-copied or bit-initialized.  */
+      && expr_size (exp) != const0_rtx)
+    {
+      if (GET_MODE (temp) != GET_MODE (target)
+	  && GET_MODE (temp) != VOIDmode)
+	{
+	  int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
+	  if (dont_return_target)
+	    {
+	      /* In this case, we will return TEMP,
+		 so make sure it has the proper mode.
+		 But don't forget to store the value into TARGET.  */
+	      temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
+	      emit_move_insn (target, temp);
+	    }
+	  else if (GET_MODE (target) == BLKmode
+		   || GET_MODE (temp) == BLKmode)
+	    emit_block_move (target, temp, expr_size (exp),
+			     (call_param_p
+			      ? BLOCK_OP_CALL_PARM
+			      : BLOCK_OP_NORMAL));
+	  else
+	    convert_move (target, temp, unsignedp);
+	}
+
+      else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
+	{
+	  /* Handle copying a string constant into an array.  The string
+	     constant may be shorter than the array.  So copy just the string's
+	     actual length, and clear the rest.  First get the size of the data
+	     type of the string, which is actually the size of the target.  */
+	  rtx size = expr_size (exp);
+
+	  if (GET_CODE (size) == CONST_INT
+	      && INTVAL (size) < TREE_STRING_LENGTH (exp))
+	    emit_block_move (target, temp, size,
+			     (call_param_p
+			      ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
+	  else
+	    {
+	      /* Compute the size of the data to copy from the string.  */
+	      tree copy_size
+		= size_binop (MIN_EXPR,
+			      make_tree (sizetype, size),
+			      size_int (TREE_STRING_LENGTH (exp)));
+	      rtx copy_size_rtx
+		= expand_expr (copy_size, NULL_RTX, VOIDmode,
+			       (call_param_p
+				? EXPAND_STACK_PARM : EXPAND_NORMAL));
+	      rtx label = 0;
+
+	      /* Copy that much.  */
+	      copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
+					       TYPE_UNSIGNED (sizetype));
+	      emit_block_move (target, temp, copy_size_rtx,
+			       (call_param_p
+				? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
+
+	      /* Figure out how much is left in TARGET that we have to clear.
+		 Do all calculations in ptr_mode.  */
+	      if (GET_CODE (copy_size_rtx) == CONST_INT)
+		{
+		  size = plus_constant (size, -INTVAL (copy_size_rtx));
+		  target = adjust_address (target, BLKmode,
+					   INTVAL (copy_size_rtx));
+		}
+	      else
+		{
+		  size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
+				       copy_size_rtx, NULL_RTX, 0,
+				       OPTAB_LIB_WIDEN);
+
+#ifdef POINTERS_EXTEND_UNSIGNED
+		  if (GET_MODE (copy_size_rtx) != Pmode)
+		    copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
+						     TYPE_UNSIGNED (sizetype));
+#endif
+
+		  target = offset_address (target, copy_size_rtx,
+					   highest_pow2_factor (copy_size));
+		  label = gen_label_rtx ();
+		  emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
+					   GET_MODE (size), 0, label);
+		}
+
+	      if (size != const0_rtx)
+		clear_storage (target, size, BLOCK_OP_NORMAL);
+
+	      if (label)
+		emit_label (label);
+	    }
+	}
+      /* Handle calls that return values in multiple non-contiguous locations.
+	 The Irix 6 ABI has examples of this.  */
+      else if (GET_CODE (target) == PARALLEL)
+	emit_group_load (target, temp, TREE_TYPE (exp),
+			 int_size_in_bytes (TREE_TYPE (exp)));
+      else if (GET_MODE (temp) == BLKmode)
+	emit_block_move (target, temp, expr_size (exp),
+			 (call_param_p
+			  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
+      else if (nontemporal
+	       && emit_storent_insn (target, temp))
+	/* If we managed to emit a nontemporal store, there is nothing else to
+	   do.  */
+	;
+      else
+	{
+	  temp = force_operand (temp, target);
+	  if (temp != target)
+	    emit_move_insn (target, temp);
+	}
+    }
+
+  return NULL_RTX;
+}
+
+/* Helper for categorize_ctor_elements.  Identical interface.  */
+
+static bool
+categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
+			    HOST_WIDE_INT *p_elt_count,
+			    bool *p_must_clear)
+{
+  unsigned HOST_WIDE_INT idx;
+  HOST_WIDE_INT nz_elts, elt_count;
+  tree value, purpose;
+
+  /* Whether CTOR is a valid constant initializer, in accordance with what
+     initializer_constant_valid_p does.  If inferred from the constructor
+     elements, true until proven otherwise.  */
+  bool const_from_elts_p = constructor_static_from_elts_p (ctor);
+  bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
+
+  nz_elts = 0;
+  elt_count = 0;
+
+  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
+    {
+      HOST_WIDE_INT mult;
+
+      mult = 1;
+      if (TREE_CODE (purpose) == RANGE_EXPR)
+	{
+	  tree lo_index = TREE_OPERAND (purpose, 0);
+	  tree hi_index = TREE_OPERAND (purpose, 1);
+
+	  if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
+	    mult = (tree_low_cst (hi_index, 1)
+		    - tree_low_cst (lo_index, 1) + 1);
+	}
+
+      switch (TREE_CODE (value))
+	{
+	case CONSTRUCTOR:
+	  {
+	    HOST_WIDE_INT nz = 0, ic = 0;
+
+	    bool const_elt_p
+	      = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
+
+	    nz_elts += mult * nz;
+ 	    elt_count += mult * ic;
+
+	    if (const_from_elts_p && const_p)
+	      const_p = const_elt_p;
+	  }
+	  break;
+
+	case INTEGER_CST:
+	case REAL_CST:
+	case FIXED_CST:
+	  if (!initializer_zerop (value))
+	    nz_elts += mult;
+	  elt_count += mult;
+	  break;
+
+	case STRING_CST:
+	  nz_elts += mult * TREE_STRING_LENGTH (value);
+	  elt_count += mult * TREE_STRING_LENGTH (value);
+	  break;
+
+	case COMPLEX_CST:
+	  if (!initializer_zerop (TREE_REALPART (value)))
+	    nz_elts += mult;
+	  if (!initializer_zerop (TREE_IMAGPART (value)))
+	    nz_elts += mult;
+	  elt_count += mult;
+	  break;
+
+	case VECTOR_CST:
+	  {
+	    tree v;
+	    for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
+	      {
+		if (!initializer_zerop (TREE_VALUE (v)))
+		  nz_elts += mult;
+		elt_count += mult;
+	      }
+	  }
+	  break;
+
+	default:
+	  nz_elts += mult;
+	  elt_count += mult;
+
+	  if (const_from_elts_p && const_p)
+	    const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
+		      != NULL_TREE;
+	  break;
+	}
+    }
+
+  if (!*p_must_clear
+      && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
+	  || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
+    {
+      tree init_sub_type;
+      bool clear_this = true;
+
+      if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
+	{
+	  /* We don't expect more than one element of the union to be
+	     initialized.  Not sure what we should do otherwise... */
+          gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
+		      == 1);
+
+          init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
+						CONSTRUCTOR_ELTS (ctor),
+						0)->value);
+
+	  /* ??? We could look at each element of the union, and find the
+	     largest element.  Which would avoid comparing the size of the
+	     initialized element against any tail padding in the union.
+	     Doesn't seem worth the effort...  */
+	  if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
+				TYPE_SIZE (init_sub_type)) == 1)
+	    {
+	      /* And now we have to find out if the element itself is fully
+		 constructed.  E.g. for union { struct { int a, b; } s; } u
+		 = { .s = { .a = 1 } }.  */
+	      if (elt_count == count_type_elements (init_sub_type, false))
+		clear_this = false;
+	    }
+	}
+
+      *p_must_clear = clear_this;
+    }
+
+  *p_nz_elts += nz_elts;
+  *p_elt_count += elt_count;
+
+  return const_p;
+}
+
+/* Examine CTOR to discover:
+   * how many scalar fields are set to nonzero values,
+     and place it in *P_NZ_ELTS;
+   * how many scalar fields in total are in CTOR,
+     and place it in *P_ELT_COUNT.
+   * if a type is a union, and the initializer from the constructor
+     is not the largest element in the union, then set *p_must_clear.
+
+   Return whether or not CTOR is a valid static constant initializer, the same
+   as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0".  */
+
+bool
+categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
+			  HOST_WIDE_INT *p_elt_count,
+			  bool *p_must_clear)
+{
+  *p_nz_elts = 0;
+  *p_elt_count = 0;
+  *p_must_clear = false;
+
+  return
+    categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
+}
+
+/* Count the number of scalars in TYPE.  Return -1 on overflow or
+   variable-sized.  If ALLOW_FLEXARR is true, don't count flexible
+   array member at the end of the structure.  */
+
+HOST_WIDE_INT
+count_type_elements (const_tree type, bool allow_flexarr)
+{
+  const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
+  switch (TREE_CODE (type))
+    {
+    case ARRAY_TYPE:
+      {
+	tree telts = array_type_nelts (type);
+	if (telts && host_integerp (telts, 1))
+	  {
+	    HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
+	    HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
+	    if (n == 0)
+	      return 0;
+	    else if (max / n > m)
+	      return n * m;
+	  }
+	return -1;
+      }
+
+    case RECORD_TYPE:
+      {
+	HOST_WIDE_INT n = 0, t;
+	tree f;
+
+	for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
+	  if (TREE_CODE (f) == FIELD_DECL)
+	    {
+	      t = count_type_elements (TREE_TYPE (f), false);
+	      if (t < 0)
+		{
+		  /* Check for structures with flexible array member.  */
+		  tree tf = TREE_TYPE (f);
+		  if (allow_flexarr
+		      && TREE_CHAIN (f) == NULL
+		      && TREE_CODE (tf) == ARRAY_TYPE
+		      && TYPE_DOMAIN (tf)
+		      && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
+		      && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
+		      && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
+		      && int_size_in_bytes (type) >= 0)
+		    break;
+
+		  return -1;
+		}
+	      n += t;
+	    }
+
+	return n;
+      }
+
+    case UNION_TYPE:
+    case QUAL_UNION_TYPE:
+      return -1;
+
+    case COMPLEX_TYPE:
+      return 2;
+
+    case VECTOR_TYPE:
+      return TYPE_VECTOR_SUBPARTS (type);
+
+    case INTEGER_TYPE:
+    case REAL_TYPE:
+    case FIXED_POINT_TYPE:
+    case ENUMERAL_TYPE:
+    case BOOLEAN_TYPE:
+    case POINTER_TYPE:
+    case OFFSET_TYPE:
+    case REFERENCE_TYPE:
+      return 1;
+
+    case ERROR_MARK:
+      return 0;
+
+    case VOID_TYPE:
+    case METHOD_TYPE:
+    case FUNCTION_TYPE:
+    case LANG_TYPE:
+    default:
+      gcc_unreachable ();
+    }
+}
+
+/* Return 1 if EXP contains mostly (3/4)  zeros.  */
+
+static int
+mostly_zeros_p (const_tree exp)
+{
+  if (TREE_CODE (exp) == CONSTRUCTOR)
+
+    {
+      HOST_WIDE_INT nz_elts, count, elts;
+      bool must_clear;
+
+      categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
+      if (must_clear)
+	return 1;
+
+      elts = count_type_elements (TREE_TYPE (exp), false);
+
+      return nz_elts < elts / 4;
+    }
+
+  return initializer_zerop (exp);
+}
+
+/* Return 1 if EXP contains all zeros.  */
+
+static int
+all_zeros_p (const_tree exp)
+{
+  if (TREE_CODE (exp) == CONSTRUCTOR)
+
+    {
+      HOST_WIDE_INT nz_elts, count;
+      bool must_clear;
+
+      categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
+      return nz_elts == 0;
+    }
+
+  return initializer_zerop (exp);
+}
+
+/* Helper function for store_constructor.
+   TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
+   TYPE is the type of the CONSTRUCTOR, not the element type.
+   CLEARED is as for store_constructor.
+   ALIAS_SET is the alias set to use for any stores.
+
+   This provides a recursive shortcut back to store_constructor when it isn't
+   necessary to go through store_field.  This is so that we can pass through
+   the cleared field to let store_constructor know that we may not have to
+   clear a substructure if the outer structure has already been cleared.  */
+
+static void
+store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
+			 HOST_WIDE_INT bitpos, enum machine_mode mode,
+			 tree exp, tree type, int cleared,
+			 alias_set_type alias_set)
+{
+  if (TREE_CODE (exp) == CONSTRUCTOR
+      /* We can only call store_constructor recursively if the size and
+	 bit position are on a byte boundary.  */
+      && bitpos % BITS_PER_UNIT == 0
+      && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
+      /* If we have a nonzero bitpos for a register target, then we just
+	 let store_field do the bitfield handling.  This is unlikely to
+	 generate unnecessary clear instructions anyways.  */
+      && (bitpos == 0 || MEM_P (target)))
+    {
+      if (MEM_P (target))
+	target
+	  = adjust_address (target,
+			    GET_MODE (target) == BLKmode
+			    || 0 != (bitpos
+				     % GET_MODE_ALIGNMENT (GET_MODE (target)))
+			    ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
+
+
+      /* Update the alias set, if required.  */
+      if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
+	  && MEM_ALIAS_SET (target) != 0)
+	{
+	  target = copy_rtx (target);
+	  set_mem_alias_set (target, alias_set);
+	}
+
+      store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
+    }
+  else
+    store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
+}
+
+/* Store the value of constructor EXP into the rtx TARGET.
+   TARGET is either a REG or a MEM; we know it cannot conflict, since
+   safe_from_p has been called.
+   CLEARED is true if TARGET is known to have been zero'd.
+   SIZE is the number of bytes of TARGET we are allowed to modify: this
+   may not be the same as the size of EXP if we are assigning to a field
+   which has been packed to exclude padding bits.  */
+
+static void
+store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
+{
+  tree type = TREE_TYPE (exp);
+#ifdef WORD_REGISTER_OPERATIONS
+  HOST_WIDE_INT exp_size = int_size_in_bytes (type);
+#endif
+
+  switch (TREE_CODE (type))
+    {
+    case RECORD_TYPE:
+    case UNION_TYPE:
+    case QUAL_UNION_TYPE:
+      {
+	unsigned HOST_WIDE_INT idx;
+	tree field, value;
+
+	/* If size is zero or the target is already cleared, do nothing.  */
+	if (size == 0 || cleared)
+	  cleared = 1;
+	/* We either clear the aggregate or indicate the value is dead.  */
+	else if ((TREE_CODE (type) == UNION_TYPE
+		  || TREE_CODE (type) == QUAL_UNION_TYPE)
+		 && ! CONSTRUCTOR_ELTS (exp))
+	  /* If the constructor is empty, clear the union.  */
+	  {
+	    clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
+	    cleared = 1;
+	  }
+
+	/* If we are building a static constructor into a register,
+	   set the initial value as zero so we can fold the value into
+	   a constant.  But if more than one register is involved,
+	   this probably loses.  */
+	else if (REG_P (target) && TREE_STATIC (exp)
+		 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
+	  {
+	    emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
+	    cleared = 1;
+	  }
+
+        /* If the constructor has fewer fields than the structure or
+	   if we are initializing the structure to mostly zeros, clear
+	   the whole structure first.  Don't do this if TARGET is a
+	   register whose mode size isn't equal to SIZE since
+	   clear_storage can't handle this case.  */
+	else if (size > 0
+		 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
+		      != fields_length (type))
+		     || mostly_zeros_p (exp))
+		 && (!REG_P (target)
+		     || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
+			 == size)))
+	  {
+	    clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
+	    cleared = 1;
+	  }
+
+	if (REG_P (target) && !cleared)
+	  emit_clobber (target);
+
+	/* Store each element of the constructor into the
+	   corresponding field of TARGET.  */
+	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
+	  {
+	    enum machine_mode mode;
+	    HOST_WIDE_INT bitsize;
+	    HOST_WIDE_INT bitpos = 0;
+	    tree offset;
+	    rtx to_rtx = target;
+
+	    /* Just ignore missing fields.  We cleared the whole
+	       structure, above, if any fields are missing.  */
+	    if (field == 0)
+	      continue;
+
+	    if (cleared && initializer_zerop (value))
+	      continue;
+
+	    if (host_integerp (DECL_SIZE (field), 1))
+	      bitsize = tree_low_cst (DECL_SIZE (field), 1);
+	    else
+	      bitsize = -1;
+
+	    mode = DECL_MODE (field);
+	    if (DECL_BIT_FIELD (field))
+	      mode = VOIDmode;
+
+	    offset = DECL_FIELD_OFFSET (field);
+	    if (host_integerp (offset, 0)
+		&& host_integerp (bit_position (field), 0))
+	      {
+		bitpos = int_bit_position (field);
+		offset = 0;
+	      }
+	    else
+	      bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
+
+	    if (offset)
+	      {
+		rtx offset_rtx;
+
+		offset
+		  = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
+						    make_tree (TREE_TYPE (exp),
+							       target));
+
+		offset_rtx = expand_normal (offset);
+		gcc_assert (MEM_P (to_rtx));
+
+#ifdef POINTERS_EXTEND_UNSIGNED
+		if (GET_MODE (offset_rtx) != Pmode)
+		  offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
+#else
+		if (GET_MODE (offset_rtx) != ptr_mode)
+		  offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
+#endif
+
+		to_rtx = offset_address (to_rtx, offset_rtx,
+					 highest_pow2_factor (offset));
+	      }
+
+#ifdef WORD_REGISTER_OPERATIONS
+	    /* If this initializes a field that is smaller than a
+	       word, at the start of a word, try to widen it to a full
+	       word.  This special case allows us to output C++ member
+	       function initializations in a form that the optimizers
+	       can understand.  */
+	    if (REG_P (target)
+		&& bitsize < BITS_PER_WORD
+		&& bitpos % BITS_PER_WORD == 0
+		&& GET_MODE_CLASS (mode) == MODE_INT
+		&& TREE_CODE (value) == INTEGER_CST
+		&& exp_size >= 0
+		&& bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
+	      {
+		tree type = TREE_TYPE (value);
+
+		if (TYPE_PRECISION (type) < BITS_PER_WORD)
+		  {
+		    type = lang_hooks.types.type_for_size
+		      (BITS_PER_WORD, TYPE_UNSIGNED (type));
+		    value = fold_convert (type, value);
+		  }
+
+		if (BYTES_BIG_ENDIAN)
+		  value
+		   = fold_build2 (LSHIFT_EXPR, type, value,
+				   build_int_cst (type,
+						  BITS_PER_WORD - bitsize));
+		bitsize = BITS_PER_WORD;
+		mode = word_mode;
+	      }
+#endif
+
+	    if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
+		&& DECL_NONADDRESSABLE_P (field))
+	      {
+		to_rtx = copy_rtx (to_rtx);
+		MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
+	      }
+
+	    store_constructor_field (to_rtx, bitsize, bitpos, mode,
+				     value, type, cleared,
+				     get_alias_set (TREE_TYPE (field)));
+	  }
+	break;
+      }
+    case ARRAY_TYPE:
+      {
+	tree value, index;
+	unsigned HOST_WIDE_INT i;
+	int need_to_clear;
+	tree domain;
+	tree elttype = TREE_TYPE (type);
+	int const_bounds_p;
+	HOST_WIDE_INT minelt = 0;
+	HOST_WIDE_INT maxelt = 0;
+
+	domain = TYPE_DOMAIN (type);
+	const_bounds_p = (TYPE_MIN_VALUE (domain)
+			  && TYPE_MAX_VALUE (domain)
+			  && host_integerp (TYPE_MIN_VALUE (domain), 0)
+			  && host_integerp (TYPE_MAX_VALUE (domain), 0));
+
+	/* If we have constant bounds for the range of the type, get them.  */
+	if (const_bounds_p)
+	  {
+	    minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
+	    maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
+	  }
+
+	/* If the constructor has fewer elements than the array, clear
+           the whole array first.  Similarly if this is static
+           constructor of a non-BLKmode object.  */
+	if (cleared)
+	  need_to_clear = 0;
+	else if (REG_P (target) && TREE_STATIC (exp))
+	  need_to_clear = 1;
+	else
+	  {
+	    unsigned HOST_WIDE_INT idx;
+	    tree index, value;
+	    HOST_WIDE_INT count = 0, zero_count = 0;
+	    need_to_clear = ! const_bounds_p;
+
+	    /* This loop is a more accurate version of the loop in
+	       mostly_zeros_p (it handles RANGE_EXPR in an index).  It
+	       is also needed to check for missing elements.  */
+	    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
+	      {
+		HOST_WIDE_INT this_node_count;
+
+		if (need_to_clear)
+		  break;
+
+		if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
+		  {
+		    tree lo_index = TREE_OPERAND (index, 0);
+		    tree hi_index = TREE_OPERAND (index, 1);
+
+		    if (! host_integerp (lo_index, 1)
+			|| ! host_integerp (hi_index, 1))
+		      {
+			need_to_clear = 1;
+			break;
+		      }
+
+		    this_node_count = (tree_low_cst (hi_index, 1)
+				       - tree_low_cst (lo_index, 1) + 1);
+		  }
+		else
+		  this_node_count = 1;
+
+		count += this_node_count;
+		if (mostly_zeros_p (value))
+		  zero_count += this_node_count;
+	      }
+
+	    /* Clear the entire array first if there are any missing
+	       elements, or if the incidence of zero elements is >=
+	       75%.  */
+	    if (! need_to_clear
+		&& (count < maxelt - minelt + 1
+		    || 4 * zero_count >= 3 * count))
+	      need_to_clear = 1;
+	  }
+
+	if (need_to_clear && size > 0)
+	  {
+	    if (REG_P (target))
+	      emit_move_insn (target,  CONST0_RTX (GET_MODE (target)));
+	    else
+	      clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
+	    cleared = 1;
+	  }
+
+	if (!cleared && REG_P (target))
+	  /* Inform later passes that the old value is dead.  */
+	  emit_clobber (target);
+
+	/* Store each element of the constructor into the
+	   corresponding element of TARGET, determined by counting the
+	   elements.  */
+	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
+	  {
+	    enum machine_mode mode;
+	    HOST_WIDE_INT bitsize;
+	    HOST_WIDE_INT bitpos;
+	    int unsignedp;
+	    rtx xtarget = target;
+
+	    if (cleared && initializer_zerop (value))
+	      continue;
+
+	    unsignedp = TYPE_UNSIGNED (elttype);
+	    mode = TYPE_MODE (elttype);
+	    if (mode == BLKmode)
+	      bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
+			 ? tree_low_cst (TYPE_SIZE (elttype), 1)
+			 : -1);
+	    else
+	      bitsize = GET_MODE_BITSIZE (mode);
+
+	    if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
+	      {
+		tree lo_index = TREE_OPERAND (index, 0);
+		tree hi_index = TREE_OPERAND (index, 1);
+		rtx index_r, pos_rtx;
+		HOST_WIDE_INT lo, hi, count;
+		tree position;
+
+		/* If the range is constant and "small", unroll the loop.  */
+		if (const_bounds_p
+		    && host_integerp (lo_index, 0)
+		    && host_integerp (hi_index, 0)
+		    && (lo = tree_low_cst (lo_index, 0),
+			hi = tree_low_cst (hi_index, 0),
+			count = hi - lo + 1,
+			(!MEM_P (target)
+			 || count <= 2
+			 || (host_integerp (TYPE_SIZE (elttype), 1)
+			     && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
+				 <= 40 * 8)))))
+		  {
+		    lo -= minelt;  hi -= minelt;
+		    for (; lo <= hi; lo++)
+		      {
+			bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
+
+			if (MEM_P (target)
+			    && !MEM_KEEP_ALIAS_SET_P (target)
+			    && TREE_CODE (type) == ARRAY_TYPE
+			    && TYPE_NONALIASED_COMPONENT (type))
+			  {
+			    target = copy_rtx (target);
+			    MEM_KEEP_ALIAS_SET_P (target) = 1;
+			  }
+
+			store_constructor_field
+			  (target, bitsize, bitpos, mode, value, type, cleared,
+			   get_alias_set (elttype));
+		      }
+		  }
+		else
+		  {
+		    rtx loop_start = gen_label_rtx ();
+		    rtx loop_end = gen_label_rtx ();
+		    tree exit_cond;
+
+		    expand_normal (hi_index);
+		    unsignedp = TYPE_UNSIGNED (domain);
+
+		    index = build_decl (VAR_DECL, NULL_TREE, domain);
+
+		    index_r
+		      = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
+						   &unsignedp, 0));
+		    SET_DECL_RTL (index, index_r);
+		    store_expr (lo_index, index_r, 0, false);
+
+		    /* Build the head of the loop.  */
+		    do_pending_stack_adjust ();
+		    emit_label (loop_start);
+
+		    /* Assign value to element index.  */
+		    position =
+		      fold_convert (ssizetype,
+				    fold_build2 (MINUS_EXPR,
+						 TREE_TYPE (index),
+						 index,
+						 TYPE_MIN_VALUE (domain)));
+
+		    position =
+			size_binop (MULT_EXPR, position,
+				    fold_convert (ssizetype,
+						  TYPE_SIZE_UNIT (elttype)));
+
+		    pos_rtx = expand_normal (position);
+		    xtarget = offset_address (target, pos_rtx,
+					      highest_pow2_factor (position));
+		    xtarget = adjust_address (xtarget, mode, 0);
+		    if (TREE_CODE (value) == CONSTRUCTOR)
+		      store_constructor (value, xtarget, cleared,
+					 bitsize / BITS_PER_UNIT);
+		    else
+		      store_expr (value, xtarget, 0, false);
+
+		    /* Generate a conditional jump to exit the loop.  */
+		    exit_cond = build2 (LT_EXPR, integer_type_node,
+					index, hi_index);
+		    jumpif (exit_cond, loop_end);
+
+		    /* Update the loop counter, and jump to the head of
+		       the loop.  */
+		    expand_assignment (index,
+				       build2 (PLUS_EXPR, TREE_TYPE (index),
+					       index, integer_one_node),
+				       false);
+
+		    emit_jump (loop_start);
+
+		    /* Build the end of the loop.  */
+		    emit_label (loop_end);
+		  }
+	      }
+	    else if ((index != 0 && ! host_integerp (index, 0))
+		     || ! host_integerp (TYPE_SIZE (elttype), 1))
+	      {
+		tree position;
+
+		if (index == 0)
+		  index = ssize_int (1);
+
+		if (minelt)
+		  index = fold_convert (ssizetype,
+					fold_build2 (MINUS_EXPR,
+						     TREE_TYPE (index),
+						     index,
+						     TYPE_MIN_VALUE (domain)));
+
+		position =
+		  size_binop (MULT_EXPR, index,
+			      fold_convert (ssizetype,
+					    TYPE_SIZE_UNIT (elttype)));
+		xtarget = offset_address (target,
+					  expand_normal (position),
+					  highest_pow2_factor (position));
+		xtarget = adjust_address (xtarget, mode, 0);
+		store_expr (value, xtarget, 0, false);
+	      }
+	    else
+	      {
+		if (index != 0)
+		  bitpos = ((tree_low_cst (index, 0) - minelt)
+			    * tree_low_cst (TYPE_SIZE (elttype), 1));
+		else
+		  bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
+
+		if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
+		    && TREE_CODE (type) == ARRAY_TYPE
+		    && TYPE_NONALIASED_COMPONENT (type))
+		  {
+		    target = copy_rtx (target);
+		    MEM_KEEP_ALIAS_SET_P (target) = 1;
+		  }
+		store_constructor_field (target, bitsize, bitpos, mode, value,
+					 type, cleared, get_alias_set (elttype));
+	      }
+	  }
+	break;
+      }
+
+    case VECTOR_TYPE:
+      {
+	unsigned HOST_WIDE_INT idx;
+	constructor_elt *ce;
+	int i;
+	int need_to_clear;
+	int icode = 0;
+	tree elttype = TREE_TYPE (type);
+	int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
+	enum machine_mode eltmode = TYPE_MODE (elttype);
+	HOST_WIDE_INT bitsize;
+	HOST_WIDE_INT bitpos;
+	rtvec vector = NULL;
+	unsigned n_elts;
+	alias_set_type alias;
+
+	gcc_assert (eltmode != BLKmode);
+
+	n_elts = TYPE_VECTOR_SUBPARTS (type);
+	if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
+	  {
+	    enum machine_mode mode = GET_MODE (target);
+
+	    icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
+	    if (icode != CODE_FOR_nothing)
+	      {
+		unsigned int i;
+
+		vector = rtvec_alloc (n_elts);
+		for (i = 0; i < n_elts; i++)
+		  RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
+	      }
+	  }
+
+	/* If the constructor has fewer elements than the vector,
+	   clear the whole array first.  Similarly if this is static
+	   constructor of a non-BLKmode object.  */
+	if (cleared)
+	  need_to_clear = 0;
+	else if (REG_P (target) && TREE_STATIC (exp))
+	  need_to_clear = 1;
+	else
+	  {
+	    unsigned HOST_WIDE_INT count = 0, zero_count = 0;
+	    tree value;
+
+	    FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
+	      {
+		int n_elts_here = tree_low_cst
+		  (int_const_binop (TRUNC_DIV_EXPR,
+				    TYPE_SIZE (TREE_TYPE (value)),
+				    TYPE_SIZE (elttype), 0), 1);
+
+		count += n_elts_here;
+		if (mostly_zeros_p (value))
+		  zero_count += n_elts_here;
+	      }
+
+	    /* Clear the entire vector first if there are any missing elements,
+	       or if the incidence of zero elements is >= 75%.  */
+	    need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
+	  }
+
+	if (need_to_clear && size > 0 && !vector)
+	  {
+	    if (REG_P (target))
+	      emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
+	    else
+	      clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
+	    cleared = 1;
+	  }
+
+	/* Inform later passes that the old value is dead.  */
+	if (!cleared && !vector && REG_P (target))
+	  emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
+
+        if (MEM_P (target))
+	  alias = MEM_ALIAS_SET (target);
+	else
+	  alias = get_alias_set (elttype);
+
+        /* Store each element of the constructor into the corresponding
+	   element of TARGET, determined by counting the elements.  */
+	for (idx = 0, i = 0;
+	     VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
+	     idx++, i += bitsize / elt_size)
+	  {
+	    HOST_WIDE_INT eltpos;
+	    tree value = ce->value;
+
+	    bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
+	    if (cleared && initializer_zerop (value))
+	      continue;
+
+	    if (ce->index)
+	      eltpos = tree_low_cst (ce->index, 1);
+	    else
+	      eltpos = i;
+
+	    if (vector)
+	      {
+	        /* Vector CONSTRUCTORs should only be built from smaller
+		   vectors in the case of BLKmode vectors.  */
+		gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
+		RTVEC_ELT (vector, eltpos)
+		  = expand_normal (value);
+	      }
+	    else
+	      {
+		enum machine_mode value_mode =
+		  TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
+		  ? TYPE_MODE (TREE_TYPE (value))
+		  : eltmode;
+		bitpos = eltpos * elt_size;
+		store_constructor_field (target, bitsize, bitpos,
+					 value_mode, value, type,
+					 cleared, alias);
+	      }
+	  }
+
+	if (vector)
+	  emit_insn (GEN_FCN (icode)
+		     (target,
+		      gen_rtx_PARALLEL (GET_MODE (target), vector)));
+	break;
+      }
+
+    default:
+      gcc_unreachable ();
+    }
+}
+
+/* Store the value of EXP (an expression tree)
+   into a subfield of TARGET which has mode MODE and occupies
+   BITSIZE bits, starting BITPOS bits from the start of TARGET.
+   If MODE is VOIDmode, it means that we are storing into a bit-field.
+
+   Always return const0_rtx unless we have something particular to
+   return.
+
+   TYPE is the type of the underlying object,
+
+   ALIAS_SET is the alias set for the destination.  This value will
+   (in general) be different from that for TARGET, since TARGET is a
+   reference to the containing structure.
+   
+   If NONTEMPORAL is true, try generating a nontemporal store.  */
+
+static rtx
+store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
+	     enum machine_mode mode, tree exp, tree type,
+	     alias_set_type alias_set, bool nontemporal)
+{
+  HOST_WIDE_INT width_mask = 0;
+
+  if (TREE_CODE (exp) == ERROR_MARK)
+    return const0_rtx;
+
+  /* If we have nothing to store, do nothing unless the expression has
+     side-effects.  */
+  if (bitsize == 0)
+    return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
+  else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
+    width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
+
+  /* If we are storing into an unaligned field of an aligned union that is
+     in a register, we may have the mode of TARGET being an integer mode but
+     MODE == BLKmode.  In that case, get an aligned object whose size and
+     alignment are the same as TARGET and store TARGET into it (we can avoid
+     the store if the field being stored is the entire width of TARGET).  Then
+     call ourselves recursively to store the field into a BLKmode version of
+     that object.  Finally, load from the object into TARGET.  This is not
+     very efficient in general, but should only be slightly more expensive
+     than the otherwise-required unaligned accesses.  Perhaps this can be
+     cleaned up later.  It's tempting to make OBJECT readonly, but it's set
+     twice, once with emit_move_insn and once via store_field.  */
+
+  if (mode == BLKmode
+      && (REG_P (target) || GET_CODE (target) == SUBREG))
+    {
+      rtx object = assign_temp (type, 0, 1, 1);
+      rtx blk_object = adjust_address (object, BLKmode, 0);
+
+      if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
+	emit_move_insn (object, target);
+
+      store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
+		   nontemporal);
+
+      emit_move_insn (target, object);
+
+      /* We want to return the BLKmode version of the data.  */
+      return blk_object;
+    }
+
+  if (GET_CODE (target) == CONCAT)
+    {
+      /* We're storing into a struct containing a single __complex.  */
+
+      gcc_assert (!bitpos);
+      return store_expr (exp, target, 0, nontemporal);
+    }
+
+  /* If the structure is in a register or if the component
+     is a bit field, we cannot use addressing to access it.
+     Use bit-field techniques or SUBREG to store in it.  */
+
+  if (mode == VOIDmode
+      || (mode != BLKmode && ! direct_store[(int) mode]
+	  && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
+	  && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
+      || REG_P (target)
+      || GET_CODE (target) == SUBREG
+      /* If the field isn't aligned enough to store as an ordinary memref,
+	 store it as a bit field.  */
+      || (mode != BLKmode
+	  && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
+		|| bitpos % GET_MODE_ALIGNMENT (mode))
+	       && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
+	      || (bitpos % BITS_PER_UNIT != 0)))
+      /* If the RHS and field are a constant size and the size of the
+	 RHS isn't the same size as the bitfield, we must use bitfield
+	 operations.  */
+      || (bitsize >= 0
+	  && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
+	  && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
+    {
+      rtx temp;
+
+      /* If EXP is a NOP_EXPR of precision less than its mode, then that
+	 implies a mask operation.  If the precision is the same size as
+	 the field we're storing into, that mask is redundant.  This is
+	 particularly common with bit field assignments generated by the
+	 C front end.  */
+      if (TREE_CODE (exp) == NOP_EXPR)
+	{
+	  tree type = TREE_TYPE (exp);
+	  if (INTEGRAL_TYPE_P (type)
+	      && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
+	      && bitsize == TYPE_PRECISION (type))
+	    {
+	      type = TREE_TYPE (TREE_OPERAND (exp, 0));
+	      if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
+		exp = TREE_OPERAND (exp, 0);
+	    }
+	}
+
+      temp = expand_normal (exp);
+
+      /* If BITSIZE is narrower than the size of the type of EXP
+	 we will be narrowing TEMP.  Normally, what's wanted are the
+	 low-order bits.  However, if EXP's type is a record and this is
+	 big-endian machine, we want the upper BITSIZE bits.  */
+      if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
+	  && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
+	  && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
+	temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
+			     size_int (GET_MODE_BITSIZE (GET_MODE (temp))
+				       - bitsize),
+			     NULL_RTX, 1);
+
+      /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
+	 MODE.  */
+      if (mode != VOIDmode && mode != BLKmode
+	  && mode != TYPE_MODE (TREE_TYPE (exp)))
+	temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
+
+      /* If the modes of TEMP and TARGET are both BLKmode, both
+	 must be in memory and BITPOS must be aligned on a byte
+	 boundary.  If so, we simply do a block copy.  Likewise
+	 for a BLKmode-like TARGET.  */
+      if (GET_MODE (temp) == BLKmode
+	  && (GET_MODE (target) == BLKmode
+	      || (MEM_P (target)
+		  && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
+		  && (bitpos % BITS_PER_UNIT) == 0
+		  && (bitsize % BITS_PER_UNIT) == 0)))
+	{
+	  gcc_assert (MEM_P (target) && MEM_P (temp)
+		      && (bitpos % BITS_PER_UNIT) == 0);
+
+	  target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
+	  emit_block_move (target, temp,
+			   GEN_INT ((bitsize + BITS_PER_UNIT - 1)
+				    / BITS_PER_UNIT),
+			   BLOCK_OP_NORMAL);
+
+	  return const0_rtx;
+	}
+
+      /* Store the value in the bitfield.  */
+      store_bit_field (target, bitsize, bitpos, mode, temp);
+
+      return const0_rtx;
+    }
+  else
+    {
+      /* Now build a reference to just the desired component.  */
+      rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
+
+      if (to_rtx == target)
+	to_rtx = copy_rtx (to_rtx);
+
+      MEM_SET_IN_STRUCT_P (to_rtx, 1);
+      if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
+	set_mem_alias_set (to_rtx, alias_set);
+
+      return store_expr (exp, to_rtx, 0, nontemporal);
+    }
+}
+
+/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
+   an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
+   codes and find the ultimate containing object, which we return.
+
+   We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
+   bit position, and *PUNSIGNEDP to the signedness of the field.
+   If the position of the field is variable, we store a tree
+   giving the variable offset (in units) in *POFFSET.
+   This offset is in addition to the bit position.
+   If the position is not variable, we store 0 in *POFFSET.
+
+   If any of the extraction expressions is volatile,
+   we store 1 in *PVOLATILEP.  Otherwise we don't change that.
+
+   If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
+   Otherwise, it is a mode that can be used to access the field.
+
+   If the field describes a variable-sized object, *PMODE is set to
+   BLKmode and *PBITSIZE is set to -1.  An access cannot be made in
+   this case, but the address of the object can be found.
+
+   If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
+   look through nodes that serve as markers of a greater alignment than
+   the one that can be deduced from the expression.  These nodes make it
+   possible for front-ends to prevent temporaries from being created by
+   the middle-end on alignment considerations.  For that purpose, the
+   normal operating mode at high-level is to always pass FALSE so that
+   the ultimate containing object is really returned; moreover, the
+   associated predicate handled_component_p will always return TRUE
+   on these nodes, thus indicating that they are essentially handled
+   by get_inner_reference.  TRUE should only be passed when the caller
+   is scanning the expression in order to build another representation
+   and specifically knows how to handle these nodes; as such, this is
+   the normal operating mode in the RTL expanders.  */
+
+tree
+get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
+		     HOST_WIDE_INT *pbitpos, tree *poffset,
+		     enum machine_mode *pmode, int *punsignedp,
+		     int *pvolatilep, bool keep_aligning)
+{
+  tree size_tree = 0;
+  enum machine_mode mode = VOIDmode;
+  bool blkmode_bitfield = false;
+  tree offset = size_zero_node;
+  tree bit_offset = bitsize_zero_node;
+
+  /* First get the mode, signedness, and size.  We do this from just the
+     outermost expression.  */
+  if (TREE_CODE (exp) == COMPONENT_REF)
+    {
+      tree field = TREE_OPERAND (exp, 1);
+      size_tree = DECL_SIZE (field);
+      if (!DECL_BIT_FIELD (field))
+	mode = DECL_MODE (field);
+      else if (DECL_MODE (field) == BLKmode)
+	blkmode_bitfield = true;
+
+      *punsignedp = DECL_UNSIGNED (field);
+    }
+  else if (TREE_CODE (exp) == BIT_FIELD_REF)
+    {
+      size_tree = TREE_OPERAND (exp, 1);
+      *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
+		     || TYPE_UNSIGNED (TREE_TYPE (exp)));
+
+      /* For vector types, with the correct size of access, use the mode of
+	 inner type.  */
+      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
+	  && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
+	  && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
+        mode = TYPE_MODE (TREE_TYPE (exp));
+    }
+  else
+    {
+      mode = TYPE_MODE (TREE_TYPE (exp));
+      *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
+
+      if (mode == BLKmode)
+	size_tree = TYPE_SIZE (TREE_TYPE (exp));
+      else
+	*pbitsize = GET_MODE_BITSIZE (mode);
+    }
+
+  if (size_tree != 0)
+    {
+      if (! host_integerp (size_tree, 1))
+	mode = BLKmode, *pbitsize = -1;
+      else
+	*pbitsize = tree_low_cst (size_tree, 1);
+    }
+
+  /* Compute cumulative bit-offset for nested component-refs and array-refs,
+     and find the ultimate containing object.  */
+  while (1)
+    {
+      switch (TREE_CODE (exp))
+	{
+	case BIT_FIELD_REF:
+	  bit_offset = size_binop (PLUS_EXPR, bit_offset,
+				   TREE_OPERAND (exp, 2));
+	  break;
+
+	case COMPONENT_REF:
+	  {
+	    tree field = TREE_OPERAND (exp, 1);
+	    tree this_offset = component_ref_field_offset (exp);
+
+	    /* If this field hasn't been filled in yet, don't go past it.
+	       This should only happen when folding expressions made during
+	       type construction.  */
+	    if (this_offset == 0)
+	      break;
+
+	    offset = size_binop (PLUS_EXPR, offset, this_offset);
+	    bit_offset = size_binop (PLUS_EXPR, bit_offset,
+				     DECL_FIELD_BIT_OFFSET (field));
+
+	    /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN.  */
+	  }
+	  break;
+
+	case ARRAY_REF:
+	case ARRAY_RANGE_REF:
+	  {
+	    tree index = TREE_OPERAND (exp, 1);
+	    tree low_bound = array_ref_low_bound (exp);
+	    tree unit_size = array_ref_element_size (exp);
+
+	    /* We assume all arrays have sizes that are a multiple of a byte.
+	       First subtract the lower bound, if any, in the type of the
+	       index, then convert to sizetype and multiply by the size of
+	       the array element.  */
+	    if (! integer_zerop (low_bound))
+	      index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
+				   index, low_bound);
+
+	    offset = size_binop (PLUS_EXPR, offset,
+			         size_binop (MULT_EXPR,
+					     fold_convert (sizetype, index),
+					     unit_size));
+	  }
+	  break;
+
+	case REALPART_EXPR:
+	  break;
+
+	case IMAGPART_EXPR:
+	  bit_offset = size_binop (PLUS_EXPR, bit_offset,
+				   bitsize_int (*pbitsize));
+	  break;
+
+	case VIEW_CONVERT_EXPR:
+	  if (keep_aligning && STRICT_ALIGNMENT
+	      && (TYPE_ALIGN (TREE_TYPE (exp))
+	       > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
+	      && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
+		  < BIGGEST_ALIGNMENT)
+	      && (TYPE_ALIGN_OK (TREE_TYPE (exp))
+		  || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
+	    goto done;
+	  break;
+
+	default:
+	  goto done;
+	}
+
+      /* If any reference in the chain is volatile, the effect is volatile.  */
+      if (TREE_THIS_VOLATILE (exp))
+	*pvolatilep = 1;
+
+      exp = TREE_OPERAND (exp, 0);
+    }
+ done:
+
+  /* If OFFSET is constant, see if we can return the whole thing as a
+     constant bit position.  Make sure to handle overflow during
+     this conversion.  */
+  if (host_integerp (offset, 0))
+    {
+      double_int tem = double_int_mul (tree_to_double_int (offset),
+				       uhwi_to_double_int (BITS_PER_UNIT));
+      tem = double_int_add (tem, tree_to_double_int (bit_offset));
+      if (double_int_fits_in_shwi_p (tem))
+	{
+	  *pbitpos = double_int_to_shwi (tem);
+	  *poffset = offset = NULL_TREE;
+	}
+    }
+
+  /* Otherwise, split it up.  */
+  if (offset)
+    {
+      *pbitpos = tree_low_cst (bit_offset, 0);
+      *poffset = offset;
+    }
+
+  /* We can use BLKmode for a byte-aligned BLKmode bitfield.  */
+  if (mode == VOIDmode
+      && blkmode_bitfield
+      && (*pbitpos % BITS_PER_UNIT) == 0
+      && (*pbitsize % BITS_PER_UNIT) == 0)
+    *pmode = BLKmode;
+  else
+    *pmode = mode;
+
+  return exp;
+}
+
+/* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
+   ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
+   EXP is marked as PACKED.  */
+
+bool
+contains_packed_reference (const_tree exp)
+{
+  bool packed_p = false;
+
+  while (1)
+    {
+      switch (TREE_CODE (exp))
+	{
+	case COMPONENT_REF:
+	  {
+	    tree field = TREE_OPERAND (exp, 1);
+	    packed_p = DECL_PACKED (field) 
+		       || TYPE_PACKED (TREE_TYPE (field))
+		       || TYPE_PACKED (TREE_TYPE (exp));
+	    if (packed_p)
+	      goto done;
+	  }
+	  break;
+
+	case BIT_FIELD_REF:
+	case ARRAY_REF:
+	case ARRAY_RANGE_REF:
+	case REALPART_EXPR:
+	case IMAGPART_EXPR:
+	case VIEW_CONVERT_EXPR:
+	  break;
+
+	default:
+	  goto done;
+	}
+      exp = TREE_OPERAND (exp, 0);
+    }
+ done:
+  return packed_p;
+}
+
+/* Return a tree of sizetype representing the size, in bytes, of the element
+   of EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
+
+tree
+array_ref_element_size (tree exp)
+{
+  tree aligned_size = TREE_OPERAND (exp, 3);
+  tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
+
+  /* If a size was specified in the ARRAY_REF, it's the size measured
+     in alignment units of the element type.  So multiply by that value.  */
+  if (aligned_size)
+    {
+      /* ??? tree_ssa_useless_type_conversion will eliminate casts to
+	 sizetype from another type of the same width and signedness.  */
+      if (TREE_TYPE (aligned_size) != sizetype)
+	aligned_size = fold_convert (sizetype, aligned_size);
+      return size_binop (MULT_EXPR, aligned_size,
+		         size_int (TYPE_ALIGN_UNIT (elmt_type)));
+    }
+
+  /* Otherwise, take the size from that of the element type.  Substitute
+     any PLACEHOLDER_EXPR that we have.  */
+  else
+    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
+}
+
+/* Return a tree representing the lower bound of the array mentioned in
+   EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
+
+tree
+array_ref_low_bound (tree exp)
+{
+  tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
+
+  /* If a lower bound is specified in EXP, use it.  */
+  if (TREE_OPERAND (exp, 2))
+    return TREE_OPERAND (exp, 2);
+
+  /* Otherwise, if there is a domain type and it has a lower bound, use it,
+     substituting for a PLACEHOLDER_EXPR as needed.  */
+  if (domain_type && TYPE_MIN_VALUE (domain_type))
+    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
+
+  /* Otherwise, return a zero of the appropriate type.  */
+  return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
+}
+
+/* Return a tree representing the upper bound of the array mentioned in
+   EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
+
+tree
+array_ref_up_bound (tree exp)
+{
+  tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
+
+  /* If there is a domain type and it has an upper bound, use it, substituting
+     for a PLACEHOLDER_EXPR as needed.  */
+  if (domain_type && TYPE_MAX_VALUE (domain_type))
+    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
+
+  /* Otherwise fail.  */
+  return NULL_TREE;
+}
+
+/* Return a tree representing the offset, in bytes, of the field referenced
+   by EXP.  This does not include any offset in DECL_FIELD_BIT_OFFSET.  */
+
+tree
+component_ref_field_offset (tree exp)
+{
+  tree aligned_offset = TREE_OPERAND (exp, 2);
+  tree field = TREE_OPERAND (exp, 1);
+
+  /* If an offset was specified in the COMPONENT_REF, it's the offset measured
+     in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT.  So multiply by that
+     value.  */
+  if (aligned_offset)
+    {
+      /* ??? tree_ssa_useless_type_conversion will eliminate casts to
+	 sizetype from another type of the same width and signedness.  */
+      if (TREE_TYPE (aligned_offset) != sizetype)
+	aligned_offset = fold_convert (sizetype, aligned_offset);
+      return size_binop (MULT_EXPR, aligned_offset,
+		         size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
+    }
+
+  /* Otherwise, take the offset from that of the field.  Substitute
+     any PLACEHOLDER_EXPR that we have.  */
+  else
+    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
+}
+
+/* Return 1 if T is an expression that get_inner_reference handles.  */
+
+int
+handled_component_p (const_tree t)
+{
+  switch (TREE_CODE (t))
+    {
+    case BIT_FIELD_REF:
+    case COMPONENT_REF:
+    case ARRAY_REF:
+    case ARRAY_RANGE_REF:
+    case VIEW_CONVERT_EXPR:
+    case REALPART_EXPR:
+    case IMAGPART_EXPR:
+      return 1;
+
+    default:
+      return 0;
+    }
+}
+
+/* Given an rtx VALUE that may contain additions and multiplications, return
+   an equivalent value that just refers to a register, memory, or constant.
+   This is done by generating instructions to perform the arithmetic and
+   returning a pseudo-register containing the value.
+
+   The returned value may be a REG, SUBREG, MEM or constant.  */
+
+rtx
+force_operand (rtx value, rtx target)
+{
+  rtx op1, op2;
+  /* Use subtarget as the target for operand 0 of a binary operation.  */
+  rtx subtarget = get_subtarget (target);
+  enum rtx_code code = GET_CODE (value);
+
+  /* Check for subreg applied to an expression produced by loop optimizer.  */
+  if (code == SUBREG
+      && !REG_P (SUBREG_REG (value))
+      && !MEM_P (SUBREG_REG (value)))
+    {
+      value
+	= simplify_gen_subreg (GET_MODE (value),
+			       force_reg (GET_MODE (SUBREG_REG (value)),
+					  force_operand (SUBREG_REG (value),
+							 NULL_RTX)),
+			       GET_MODE (SUBREG_REG (value)),
+			       SUBREG_BYTE (value));
+      code = GET_CODE (value);
+    }
+
+  /* Check for a PIC address load.  */
+  if ((code == PLUS || code == MINUS)
+      && XEXP (value, 0) == pic_offset_table_rtx
+      && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
+	  || GET_CODE (XEXP (value, 1)) == LABEL_REF
+	  || GET_CODE (XEXP (value, 1)) == CONST))
+    {
+      if (!subtarget)
+	subtarget = gen_reg_rtx (GET_MODE (value));
+      emit_move_insn (subtarget, value);
+      return subtarget;
+    }
+
+  if (ARITHMETIC_P (value))
+    {
+      op2 = XEXP (value, 1);
+      if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
+	subtarget = 0;
+      if (code == MINUS && GET_CODE (op2) == CONST_INT)
+	{
+	  code = PLUS;
+	  op2 = negate_rtx (GET_MODE (value), op2);
+	}
+
+      /* Check for an addition with OP2 a constant integer and our first
+         operand a PLUS of a virtual register and something else.  In that
+         case, we want to emit the sum of the virtual register and the
+         constant first and then add the other value.  This allows virtual
+         register instantiation to simply modify the constant rather than
+         creating another one around this addition.  */
+      if (code == PLUS && GET_CODE (op2) == CONST_INT
+	  && GET_CODE (XEXP (value, 0)) == PLUS
+	  && REG_P (XEXP (XEXP (value, 0), 0))
+	  && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
+	  && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
+	{
+	  rtx temp = expand_simple_binop (GET_MODE (value), code,
+					  XEXP (XEXP (value, 0), 0), op2,
+					  subtarget, 0, OPTAB_LIB_WIDEN);
+	  return expand_simple_binop (GET_MODE (value), code, temp,
+				      force_operand (XEXP (XEXP (value,
+								 0), 1), 0),
+				      target, 0, OPTAB_LIB_WIDEN);
+	}
+
+      op1 = force_operand (XEXP (value, 0), subtarget);
+      op2 = force_operand (op2, NULL_RTX);
+      switch (code)
+	{
+	case MULT:
+	  return expand_mult (GET_MODE (value), op1, op2, target, 1);
+	case DIV:
+	  if (!INTEGRAL_MODE_P (GET_MODE (value)))
+	    return expand_simple_binop (GET_MODE (value), code, op1, op2,
+					target, 1, OPTAB_LIB_WIDEN);
+	  else
+	    return expand_divmod (0,
+				  FLOAT_MODE_P (GET_MODE (value))
+				  ? RDIV_EXPR : TRUNC_DIV_EXPR,
+				  GET_MODE (value), op1, op2, target, 0);
+	case MOD:
+	  return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
+				target, 0);
+	case UDIV:
+	  return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
+				target, 1);
+	case UMOD:
+	  return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
+				target, 1);
+	case ASHIFTRT:
+	  return expand_simple_binop (GET_MODE (value), code, op1, op2,
+				      target, 0, OPTAB_LIB_WIDEN);
+	default:
+	  return expand_simple_binop (GET_MODE (value), code, op1, op2,
+				      target, 1, OPTAB_LIB_WIDEN);
+	}
+    }
+  if (UNARY_P (value))
+    {
+      if (!target)
+	target = gen_reg_rtx (GET_MODE (value));
+      op1 = force_operand (XEXP (value, 0), NULL_RTX);
+      switch (code)
+	{
+	case ZERO_EXTEND:
+	case SIGN_EXTEND:
+	case TRUNCATE:
+	case FLOAT_EXTEND:
+	case FLOAT_TRUNCATE:
+	  convert_move (target, op1, code == ZERO_EXTEND);
+	  return target;
+
+	case FIX:
+	case UNSIGNED_FIX:
+	  expand_fix (target, op1, code == UNSIGNED_FIX);
+	  return target;
+
+	case FLOAT:
+	case UNSIGNED_FLOAT:
+	  expand_float (target, op1, code == UNSIGNED_FLOAT);
+	  return target;
+
+	default:
+	  return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
+	}
+    }
+
+#ifdef INSN_SCHEDULING
+  /* On machines that have insn scheduling, we want all memory reference to be
+     explicit, so we need to deal with such paradoxical SUBREGs.  */
+  if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
+      && (GET_MODE_SIZE (GET_MODE (value))
+	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
+    value
+      = simplify_gen_subreg (GET_MODE (value),
+			     force_reg (GET_MODE (SUBREG_REG (value)),
+					force_operand (SUBREG_REG (value),
+						       NULL_RTX)),
+			     GET_MODE (SUBREG_REG (value)),
+			     SUBREG_BYTE (value));
+#endif
+
+  return value;
+}
+
+/* Subroutine of expand_expr: return nonzero iff there is no way that
+   EXP can reference X, which is being modified.  TOP_P is nonzero if this
+   call is going to be used to determine whether we need a temporary
+   for EXP, as opposed to a recursive call to this function.
+
+   It is always safe for this routine to return zero since it merely
+   searches for optimization opportunities.  */
+
+int
+safe_from_p (const_rtx x, tree exp, int top_p)
+{
+  rtx exp_rtl = 0;
+  int i, nops;
+
+  if (x == 0
+      /* If EXP has varying size, we MUST use a target since we currently
+	 have no way of allocating temporaries of variable size
+	 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
+	 So we assume here that something at a higher level has prevented a
+	 clash.  This is somewhat bogus, but the best we can do.  Only
+	 do this when X is BLKmode and when we are at the top level.  */
+      || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
+	  && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
+	  && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
+	      || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
+	      || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
+	      != INTEGER_CST)
+	  && GET_MODE (x) == BLKmode)
+      /* If X is in the outgoing argument area, it is always safe.  */
+      || (MEM_P (x)
+	  && (XEXP (x, 0) == virtual_outgoing_args_rtx
+	      || (GET_CODE (XEXP (x, 0)) == PLUS
+		  && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
+    return 1;
+
+  /* If this is a subreg of a hard register, declare it unsafe, otherwise,
+     find the underlying pseudo.  */
+  if (GET_CODE (x) == SUBREG)
+    {
+      x = SUBREG_REG (x);
+      if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
+	return 0;
+    }
+
+  /* Now look at our tree code and possibly recurse.  */
+  switch (TREE_CODE_CLASS (TREE_CODE (exp)))
+    {
+    case tcc_declaration:
+      exp_rtl = DECL_RTL_IF_SET (exp);
+      break;
+
+    case tcc_constant:
+      return 1;
+
+    case tcc_exceptional:
+      if (TREE_CODE (exp) == TREE_LIST)
+	{
+	  while (1)
+	    {
+	      if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
+		return 0;
+	      exp = TREE_CHAIN (exp);
+	      if (!exp)
+		return 1;
+	      if (TREE_CODE (exp) != TREE_LIST)
+		return safe_from_p (x, exp, 0);
+	    }
+	}
+      else if (TREE_CODE (exp) == CONSTRUCTOR)
+	{
+	  constructor_elt *ce;
+	  unsigned HOST_WIDE_INT idx;
+
+	  for (idx = 0;
+	       VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
+	       idx++)
+	    if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
+		|| !safe_from_p (x, ce->value, 0))
+	      return 0;
+	  return 1;
+	}
+      else if (TREE_CODE (exp) == ERROR_MARK)
+	return 1;	/* An already-visited SAVE_EXPR? */
+      else
+	return 0;
+
+    case tcc_statement:
+      /* The only case we look at here is the DECL_INITIAL inside a
+	 DECL_EXPR.  */
+      return (TREE_CODE (exp) != DECL_EXPR
+	      || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
+	      || !DECL_INITIAL (DECL_EXPR_DECL (exp))
+	      || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
+
+    case tcc_binary:
+    case tcc_comparison:
+      if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
+	return 0;
+      /* Fall through.  */
+
+    case tcc_unary:
+      return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
+
+    case tcc_expression:
+    case tcc_reference:
+    case tcc_vl_exp:
+      /* Now do code-specific tests.  EXP_RTL is set to any rtx we find in
+	 the expression.  If it is set, we conflict iff we are that rtx or
+	 both are in memory.  Otherwise, we check all operands of the
+	 expression recursively.  */
+
+      switch (TREE_CODE (exp))
+	{
+	case ADDR_EXPR:
+	  /* If the operand is static or we are static, we can't conflict.
+	     Likewise if we don't conflict with the operand at all.  */
+	  if (staticp (TREE_OPERAND (exp, 0))
+	      || TREE_STATIC (exp)
+	      || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
+	    return 1;
+
+	  /* Otherwise, the only way this can conflict is if we are taking
+	     the address of a DECL a that address if part of X, which is
+	     very rare.  */
+	  exp = TREE_OPERAND (exp, 0);
+	  if (DECL_P (exp))
+	    {
+	      if (!DECL_RTL_SET_P (exp)
+		  || !MEM_P (DECL_RTL (exp)))
+		return 0;
+	      else
+		exp_rtl = XEXP (DECL_RTL (exp), 0);
+	    }
+	  break;
+
+	case MISALIGNED_INDIRECT_REF:
+	case ALIGN_INDIRECT_REF:
+	case INDIRECT_REF:
+	  if (MEM_P (x)
+	      && alias_sets_conflict_p (MEM_ALIAS_SET (x),
+					get_alias_set (exp)))
+	    return 0;
+	  break;
+
+	case CALL_EXPR:
+	  /* Assume that the call will clobber all hard registers and
+	     all of memory.  */
+	  if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
+	      || MEM_P (x))
+	    return 0;
+	  break;
+
+	case WITH_CLEANUP_EXPR:
+	case CLEANUP_POINT_EXPR:
+	  /* Lowered by gimplify.c.  */
+	  gcc_unreachable ();
+
+	case SAVE_EXPR:
+	  return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
+
+	default:
+	  break;
+	}
+
+      /* If we have an rtx, we do not need to scan our operands.  */
+      if (exp_rtl)
+	break;
+
+      nops = TREE_OPERAND_LENGTH (exp);
+      for (i = 0; i < nops; i++)
+	if (TREE_OPERAND (exp, i) != 0
+	    && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
+	  return 0;
+
+      break;
+
+    case tcc_type:
+      /* Should never get a type here.  */
+      gcc_unreachable ();
+    }
+
+  /* If we have an rtl, find any enclosed object.  Then see if we conflict
+     with it.  */
+  if (exp_rtl)
+    {
+      if (GET_CODE (exp_rtl) == SUBREG)
+	{
+	  exp_rtl = SUBREG_REG (exp_rtl);
+	  if (REG_P (exp_rtl)
+	      && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
+	    return 0;
+	}
+
+      /* If the rtl is X, then it is not safe.  Otherwise, it is unless both
+	 are memory and they conflict.  */
+      return ! (rtx_equal_p (x, exp_rtl)
+		|| (MEM_P (x) && MEM_P (exp_rtl)
+		    && true_dependence (exp_rtl, VOIDmode, x,
+					rtx_addr_varies_p)));
+    }
+
+  /* If we reach here, it is safe.  */
+  return 1;
+}
+
+
+/* Return the highest power of two that EXP is known to be a multiple of.
+   This is used in updating alignment of MEMs in array references.  */
+
+unsigned HOST_WIDE_INT
+highest_pow2_factor (const_tree exp)
+{
+  unsigned HOST_WIDE_INT c0, c1;
+
+  switch (TREE_CODE (exp))
+    {
+    case INTEGER_CST:
+      /* We can find the lowest bit that's a one.  If the low
+	 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
+	 We need to handle this case since we can find it in a COND_EXPR,
+	 a MIN_EXPR, or a MAX_EXPR.  If the constant overflows, we have an
+	 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
+	 later ICE.  */
+      if (TREE_OVERFLOW (exp))
+	return BIGGEST_ALIGNMENT;
+      else
+	{
+	  /* Note: tree_low_cst is intentionally not used here,
+	     we don't care about the upper bits.  */
+	  c0 = TREE_INT_CST_LOW (exp);
+	  c0 &= -c0;
+	  return c0 ? c0 : BIGGEST_ALIGNMENT;
+	}
+      break;
+
+    case PLUS_EXPR:  case MINUS_EXPR:  case MIN_EXPR:  case MAX_EXPR:
+      c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
+      c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
+      return MIN (c0, c1);
+
+    case MULT_EXPR:
+      c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
+      c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
+      return c0 * c1;
+
+    case ROUND_DIV_EXPR:  case TRUNC_DIV_EXPR:  case FLOOR_DIV_EXPR:
+    case CEIL_DIV_EXPR:
+      if (integer_pow2p (TREE_OPERAND (exp, 1))
+	  && host_integerp (TREE_OPERAND (exp, 1), 1))
+	{
+	  c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
+	  c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
+	  return MAX (1, c0 / c1);
+	}
+      break;
+
+    case BIT_AND_EXPR:
+      /* The highest power of two of a bit-and expression is the maximum of
+	 that of its operands.  We typically get here for a complex LHS and
+	 a constant negative power of two on the RHS to force an explicit
+	 alignment, so don't bother looking at the LHS.  */
+      return highest_pow2_factor (TREE_OPERAND (exp, 1));
+
+    CASE_CONVERT:
+    case SAVE_EXPR:
+      return highest_pow2_factor (TREE_OPERAND (exp, 0));
+
+    case COMPOUND_EXPR:
+      return highest_pow2_factor (TREE_OPERAND (exp, 1));
+
+    case COND_EXPR:
+      c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
+      c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
+      return MIN (c0, c1);
+
+    default:
+      break;
+    }
+
+  return 1;
+}
+
+/* Similar, except that the alignment requirements of TARGET are
+   taken into account.  Assume it is at least as aligned as its
+   type, unless it is a COMPONENT_REF in which case the layout of
+   the structure gives the alignment.  */
+
+static unsigned HOST_WIDE_INT
+highest_pow2_factor_for_target (const_tree target, const_tree exp)
+{
+  unsigned HOST_WIDE_INT target_align, factor;
+
+  factor = highest_pow2_factor (exp);
+  if (TREE_CODE (target) == COMPONENT_REF)
+    target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
+  else
+    target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
+  return MAX (factor, target_align);
+}
+
+/* Return &VAR expression for emulated thread local VAR.  */
+
+static tree
+emutls_var_address (tree var)
+{
+  tree emuvar = emutls_decl (var);
+  tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
+  tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
+  tree arglist = build_tree_list (NULL_TREE, arg);
+  tree call = build_function_call_expr (fn, arglist);
+  return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
+}
+
+
+/* Subroutine of expand_expr.  Expand the two operands of a binary
+   expression EXP0 and EXP1 placing the results in OP0 and OP1.
+   The value may be stored in TARGET if TARGET is nonzero.  The
+   MODIFIER argument is as documented by expand_expr.  */
+
+static void
+expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
+		 enum expand_modifier modifier)
+{
+  if (! safe_from_p (target, exp1, 1))
+    target = 0;
+  if (operand_equal_p (exp0, exp1, 0))
+    {
+      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
+      *op1 = copy_rtx (*op0);
+    }
+  else
+    {
+      /* If we need to preserve evaluation order, copy exp0 into its own
+	 temporary variable so that it can't be clobbered by exp1.  */
+      if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
+	exp0 = save_expr (exp0);
+      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
+      *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
+    }
+}
+
+
+/* Return a MEM that contains constant EXP.  DEFER is as for
+   output_constant_def and MODIFIER is as for expand_expr.  */
+
+static rtx
+expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
+{
+  rtx mem;
+
+  mem = output_constant_def (exp, defer);
+  if (modifier != EXPAND_INITIALIZER)
+    mem = use_anchored_address (mem);
+  return mem;
+}
+
+/* A subroutine of expand_expr_addr_expr.  Evaluate the address of EXP.
+   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */
+
+static rtx
+expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
+		         enum expand_modifier modifier)
+{
+  rtx result, subtarget;
+  tree inner, offset;
+  HOST_WIDE_INT bitsize, bitpos;
+  int volatilep, unsignedp;
+  enum machine_mode mode1;
+
+  /* If we are taking the address of a constant and are at the top level,
+     we have to use output_constant_def since we can't call force_const_mem
+     at top level.  */
+  /* ??? This should be considered a front-end bug.  We should not be
+     generating ADDR_EXPR of something that isn't an LVALUE.  The only
+     exception here is STRING_CST.  */
+  if (CONSTANT_CLASS_P (exp))
+    return XEXP (expand_expr_constant (exp, 0, modifier), 0);
+
+  /* Everything must be something allowed by is_gimple_addressable.  */
+  switch (TREE_CODE (exp))
+    {
+    case INDIRECT_REF:
+      /* This case will happen via recursion for &a->b.  */
+      return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
+
+    case CONST_DECL:
+      /* Recurse and make the output_constant_def clause above handle this.  */
+      return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
+				      tmode, modifier);
+
+    case REALPART_EXPR:
+      /* The real part of the complex number is always first, therefore
+	 the address is the same as the address of the parent object.  */
+      offset = 0;
+      bitpos = 0;
+      inner = TREE_OPERAND (exp, 0);
+      break;
+
+    case IMAGPART_EXPR:
+      /* The imaginary part of the complex number is always second.
+	 The expression is therefore always offset by the size of the
+	 scalar type.  */
+      offset = 0;
+      bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
+      inner = TREE_OPERAND (exp, 0);
+      break;
+
+    case VAR_DECL:
+      /* TLS emulation hook - replace __thread VAR's &VAR with
+	 __emutls_get_address (&_emutls.VAR).  */
+      if (! targetm.have_tls
+	  && TREE_CODE (exp) == VAR_DECL
+	  && DECL_THREAD_LOCAL_P (exp))
+	{
+	  exp = emutls_var_address (exp);
+	  return expand_expr (exp, target, tmode, modifier);
+	}
+      /* Fall through.  */
+
+    default:
+      /* If the object is a DECL, then expand it for its rtl.  Don't bypass
+	 expand_expr, as that can have various side effects; LABEL_DECLs for
+	 example, may not have their DECL_RTL set yet.  Expand the rtl of
+	 CONSTRUCTORs too, which should yield a memory reference for the
+	 constructor's contents.  Assume language specific tree nodes can
+	 be expanded in some interesting way.  */
+      if (DECL_P (exp)
+	  || TREE_CODE (exp) == CONSTRUCTOR
+	  || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
+	{
+	  result = expand_expr (exp, target, tmode,
+				modifier == EXPAND_INITIALIZER
+				? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
+
+	  /* If the DECL isn't in memory, then the DECL wasn't properly
+	     marked TREE_ADDRESSABLE, which will be either a front-end
+	     or a tree optimizer bug.  */
+	  gcc_assert (MEM_P (result));
+	  result = XEXP (result, 0);
+
+	  /* ??? Is this needed anymore?  */
+	  if (DECL_P (exp) && !TREE_USED (exp) == 0)
+	    {
+	      assemble_external (exp);
+	      TREE_USED (exp) = 1;
+	    }
+
+	  if (modifier != EXPAND_INITIALIZER
+	      && modifier != EXPAND_CONST_ADDRESS)
+	    result = force_operand (result, target);
+	  return result;
+	}
+
+      /* Pass FALSE as the last argument to get_inner_reference although
+	 we are expanding to RTL.  The rationale is that we know how to
+	 handle "aligning nodes" here: we can just bypass them because
+	 they won't change the final object whose address will be returned
+	 (they actually exist only for that purpose).  */
+      inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
+				   &mode1, &unsignedp, &volatilep, false);
+      break;
+    }
+
+  /* We must have made progress.  */
+  gcc_assert (inner != exp);
+
+  subtarget = offset || bitpos ? NULL_RTX : target;
+  /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
+     inner alignment, force the inner to be sufficiently aligned.  */
+  if (CONSTANT_CLASS_P (inner)
+      && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
+    {
+      inner = copy_node (inner);
+      TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
+      TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
+      TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
+    }
+  result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
+
+  if (offset)
+    {
+      rtx tmp;
+
+      if (modifier != EXPAND_NORMAL)
+	result = force_operand (result, NULL);
+      tmp = expand_expr (offset, NULL_RTX, tmode, 
+			 modifier == EXPAND_INITIALIZER
+			  ? EXPAND_INITIALIZER : EXPAND_NORMAL);
+
+      result = convert_memory_address (tmode, result);
+      tmp = convert_memory_address (tmode, tmp);
+
+      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
+	result = gen_rtx_PLUS (tmode, result, tmp);
+      else
+	{
+	  subtarget = bitpos ? NULL_RTX : target;
+	  result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
+					1, OPTAB_LIB_WIDEN);
+	}
+    }
+
+  if (bitpos)
+    {
+      /* Someone beforehand should have rejected taking the address
+	 of such an object.  */
+      gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
+
+      result = plus_constant (result, bitpos / BITS_PER_UNIT);
+      if (modifier < EXPAND_SUM)
+	result = force_operand (result, target);
+    }
+
+  return result;
+}
+
+/* A subroutine of expand_expr.  Evaluate EXP, which is an ADDR_EXPR.
+   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */
+
+static rtx
+expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
+		       enum expand_modifier modifier)
+{
+  enum machine_mode rmode;
+  rtx result;
+
+  /* Target mode of VOIDmode says "whatever's natural".  */
+  if (tmode == VOIDmode)
+    tmode = TYPE_MODE (TREE_TYPE (exp));
+
+  /* We can get called with some Weird Things if the user does silliness
+     like "(short) &a".  In that case, convert_memory_address won't do
+     the right thing, so ignore the given target mode.  */
+  if (tmode != Pmode && tmode != ptr_mode)
+    tmode = Pmode;
+
+  result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
+				    tmode, modifier);
+
+  /* Despite expand_expr claims concerning ignoring TMODE when not
+     strictly convenient, stuff breaks if we don't honor it.  Note
+     that combined with the above, we only do this for pointer modes.  */
+  rmode = GET_MODE (result);
+  if (rmode == VOIDmode)
+    rmode = tmode;
+  if (rmode != tmode)
+    result = convert_memory_address (tmode, result);
+
+  return result;
+}
+
+/* Generate code for computing CONSTRUCTOR EXP.
+   An rtx for the computed value is returned.  If AVOID_TEMP_MEM
+   is TRUE, instead of creating a temporary variable in memory
+   NULL is returned and the caller needs to handle it differently.  */
+
+static rtx
+expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
+		    bool avoid_temp_mem)
+{
+  tree type = TREE_TYPE (exp);
+  enum machine_mode mode = TYPE_MODE (type);
+
+  /* Try to avoid creating a temporary at all.  This is possible
+     if all of the initializer is zero.
+     FIXME: try to handle all [0..255] initializers we can handle
+     with memset.  */
+  if (TREE_STATIC (exp)
+      && !TREE_ADDRESSABLE (exp)
+      && target != 0 && mode == BLKmode
+      && all_zeros_p (exp))
+    {
+      clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
+      return target;
+    }
+
+  /* All elts simple constants => refer to a constant in memory.  But
+     if this is a non-BLKmode mode, let it store a field at a time
+     since that should make a CONST_INT or CONST_DOUBLE when we
+     fold.  Likewise, if we have a target we can use, it is best to
+     store directly into the target unless the type is large enough
+     that memcpy will be used.  If we are making an initializer and
+     all operands are constant, put it in memory as well.
+
+     FIXME: Avoid trying to fill vector constructors piece-meal.
+     Output them with output_constant_def below unless we're sure
+     they're zeros.  This should go away when vector initializers
+     are treated like VECTOR_CST instead of arrays.  */
+  if ((TREE_STATIC (exp)
+       && ((mode == BLKmode
+	    && ! (target != 0 && safe_from_p (target, exp, 1)))
+		  || TREE_ADDRESSABLE (exp)
+		  || (host_integerp (TYPE_SIZE_UNIT (type), 1)
+		      && (! MOVE_BY_PIECES_P
+				     (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
+				      TYPE_ALIGN (type)))
+		      && ! mostly_zeros_p (exp))))
+      || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
+	  && TREE_CONSTANT (exp)))
+    {
+      rtx constructor;
+
+      if (avoid_temp_mem)
+	return NULL_RTX;
+
+      constructor = expand_expr_constant (exp, 1, modifier);
+
+      if (modifier != EXPAND_CONST_ADDRESS
+	  && modifier != EXPAND_INITIALIZER
+	  && modifier != EXPAND_SUM)
+	constructor = validize_mem (constructor);
+
+      return constructor;
+    }
+
+  /* Handle calls that pass values in multiple non-contiguous
+     locations.  The Irix 6 ABI has examples of this.  */
+  if (target == 0 || ! safe_from_p (target, exp, 1)
+      || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
+    {
+      if (avoid_temp_mem)
+	return NULL_RTX;
+
+      target
+	= assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
+						    | (TREE_READONLY (exp)
+						       * TYPE_QUAL_CONST))),
+		       0, TREE_ADDRESSABLE (exp), 1);
+    }
+
+  store_constructor (exp, target, 0, int_expr_size (exp));
+  return target;
+}
+
+
+/* expand_expr: generate code for computing expression EXP.
+   An rtx for the computed value is returned.  The value is never null.
+   In the case of a void EXP, const0_rtx is returned.
+
+   The value may be stored in TARGET if TARGET is nonzero.
+   TARGET is just a suggestion; callers must assume that
+   the rtx returned may not be the same as TARGET.
+
+   If TARGET is CONST0_RTX, it means that the value will be ignored.
+
+   If TMODE is not VOIDmode, it suggests generating the
+   result in mode TMODE.  But this is done only when convenient.
+   Otherwise, TMODE is ignored and the value generated in its natural mode.
+   TMODE is just a suggestion; callers must assume that
+   the rtx returned may not have mode TMODE.
+
+   Note that TARGET may have neither TMODE nor MODE.  In that case, it
+   probably will not be used.
+
+   If MODIFIER is EXPAND_SUM then when EXP is an addition
+   we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
+   or a nest of (PLUS ...) and (MINUS ...) where the terms are
+   products as above, or REG or MEM, or constant.
+   Ordinarily in such cases we would output mul or add instructions
+   and then return a pseudo reg containing the sum.
+
+   EXPAND_INITIALIZER is much like EXPAND_SUM except that
+   it also marks a label as absolutely required (it can't be dead).
+   It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
+   This is used for outputting expressions used in initializers.
+
+   EXPAND_CONST_ADDRESS says that it is okay to return a MEM
+   with a constant address even if that address is not normally legitimate.
+   EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
+
+   EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
+   a call parameter.  Such targets require special care as we haven't yet
+   marked TARGET so that it's safe from being trashed by libcalls.  We
+   don't want to use TARGET for anything but the final result;
+   Intermediate values must go elsewhere.   Additionally, calls to
+   emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
+
+   If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
+   address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
+   DECL_RTL of the VAR_DECL.  *ALT_RTL is also set if EXP is a
+   COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
+   recursively.  */
+
+static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
+			       enum expand_modifier, rtx *);
+
+rtx
+expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
+		  enum expand_modifier modifier, rtx *alt_rtl)
+{
+  int rn = -1;
+  rtx ret, last = NULL;
+
+  /* Handle ERROR_MARK before anybody tries to access its type.  */
+  if (TREE_CODE (exp) == ERROR_MARK
+      || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
+    {
+      ret = CONST0_RTX (tmode);
+      return ret ? ret : const0_rtx;
+    }
+
+  if (flag_non_call_exceptions)
+    {
+      rn = lookup_expr_eh_region (exp);
+
+      /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw.  */
+      if (rn >= 0)
+	last = get_last_insn ();
+    }
+
+  /* If this is an expression of some kind and it has an associated line
+     number, then emit the line number before expanding the expression.
+
+     We need to save and restore the file and line information so that
+     errors discovered during expansion are emitted with the right
+     information.  It would be better of the diagnostic routines
+     used the file/line information embedded in the tree nodes rather
+     than globals.  */
+  if (cfun && EXPR_HAS_LOCATION (exp))
+    {
+      location_t saved_location = input_location;
+      input_location = EXPR_LOCATION (exp);
+      set_curr_insn_source_location (input_location);
+
+      /* Record where the insns produced belong.  */
+      set_curr_insn_block (TREE_BLOCK (exp));
+
+      ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
+
+      input_location = saved_location;
+    }
+  else
+    {
+      ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
+    }
+
+  /* If using non-call exceptions, mark all insns that may trap.
+     expand_call() will mark CALL_INSNs before we get to this code,
+     but it doesn't handle libcalls, and these may trap.  */
+  if (rn >= 0)
+    {
+      rtx insn;
+      for (insn = next_real_insn (last); insn;
+	   insn = next_real_insn (insn))
+	{
+	  if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
+	      /* If we want exceptions for non-call insns, any
+		 may_trap_p instruction may throw.  */
+	      && GET_CODE (PATTERN (insn)) != CLOBBER
+	      && GET_CODE (PATTERN (insn)) != USE
+	      && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
+	    add_reg_note (insn, REG_EH_REGION, GEN_INT (rn));
+	}
+    }
+
+  return ret;
+}
+
+static rtx
+expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
+		    enum expand_modifier modifier, rtx *alt_rtl)
+{
+  rtx op0, op1, op2, temp, decl_rtl;
+  tree type;
+  int unsignedp;
+  enum machine_mode mode;
+  enum tree_code code = TREE_CODE (exp);
+  optab this_optab;
+  rtx subtarget, original_target;
+  int ignore;
+  tree context, subexp0, subexp1;
+  bool reduce_bit_field;
+#define REDUCE_BIT_FIELD(expr)	(reduce_bit_field			  \
+				 ? reduce_to_bit_field_precision ((expr), \
+								  target, \
+								  type)	  \
+				 : (expr))
+
+  type = TREE_TYPE (exp);
+  mode = TYPE_MODE (type);
+  unsignedp = TYPE_UNSIGNED (type);
+
+  ignore = (target == const0_rtx
+	    || ((CONVERT_EXPR_CODE_P (code)
+		 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
+		&& TREE_CODE (type) == VOID_TYPE));
+
+  /* An operation in what may be a bit-field type needs the
+     result to be reduced to the precision of the bit-field type,
+     which is narrower than that of the type's mode.  */
+  reduce_bit_field = (!ignore
+		      && TREE_CODE (type) == INTEGER_TYPE
+		      && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
+
+  /* If we are going to ignore this result, we need only do something
+     if there is a side-effect somewhere in the expression.  If there
+     is, short-circuit the most common cases here.  Note that we must
+     not call expand_expr with anything but const0_rtx in case this
+     is an initial expansion of a size that contains a PLACEHOLDER_EXPR.  */
+
+  if (ignore)
+    {
+      if (! TREE_SIDE_EFFECTS (exp))
+	return const0_rtx;
+
+      /* Ensure we reference a volatile object even if value is ignored, but
+	 don't do this if all we are doing is taking its address.  */
+      if (TREE_THIS_VOLATILE (exp)
+	  && TREE_CODE (exp) != FUNCTION_DECL
+	  && mode != VOIDmode && mode != BLKmode
+	  && modifier != EXPAND_CONST_ADDRESS)
+	{
+	  temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
+	  if (MEM_P (temp))
+	    temp = copy_to_reg (temp);
+	  return const0_rtx;
+	}
+
+      if (TREE_CODE_CLASS (code) == tcc_unary
+	  || code == COMPONENT_REF || code == INDIRECT_REF)
+	return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
+			    modifier);
+
+      else if (TREE_CODE_CLASS (code) == tcc_binary
+	       || TREE_CODE_CLASS (code) == tcc_comparison
+	       || code == ARRAY_REF || code == ARRAY_RANGE_REF)
+	{
+	  expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
+	  expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
+	  return const0_rtx;
+	}
+      else if (code == BIT_FIELD_REF)
+	{
+	  expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
+	  expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
+	  expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
+	  return const0_rtx;
+	}
+
+      target = 0;
+    }
+
+  if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
+    target = 0;
+
+  /* Use subtarget as the target for operand 0 of a binary operation.  */
+  subtarget = get_subtarget (target);
+  original_target = target;
+
+  switch (code)
+    {
+    case LABEL_DECL:
+      {
+	tree function = decl_function_context (exp);
+
+	temp = label_rtx (exp);
+	temp = gen_rtx_LABEL_REF (Pmode, temp);
+
+	if (function != current_function_decl
+	    && function != 0)
+	  LABEL_REF_NONLOCAL_P (temp) = 1;
+
+	temp = gen_rtx_MEM (FUNCTION_MODE, temp);
+	return temp;
+      }
+
+    case SSA_NAME:
+      return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
+				 NULL);
+
+    case PARM_DECL:
+    case VAR_DECL:
+      /* If a static var's type was incomplete when the decl was written,
+	 but the type is complete now, lay out the decl now.  */
+      if (DECL_SIZE (exp) == 0
+	  && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
+	  && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
+	layout_decl (exp, 0);
+
+      /* TLS emulation hook - replace __thread vars with
+	 *__emutls_get_address (&_emutls.var).  */
+      if (! targetm.have_tls
+	  && TREE_CODE (exp) == VAR_DECL
+	  && DECL_THREAD_LOCAL_P (exp))
+	{
+	  exp = build_fold_indirect_ref (emutls_var_address (exp));
+	  return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
+	}
+
+      /* ... fall through ...  */
+
+    case FUNCTION_DECL:
+    case RESULT_DECL:
+      decl_rtl = DECL_RTL (exp);
+      gcc_assert (decl_rtl);
+      decl_rtl = copy_rtx (decl_rtl);
+
+      /* Ensure variable marked as used even if it doesn't go through
+	 a parser.  If it hasn't be used yet, write out an external
+	 definition.  */
+      if (! TREE_USED (exp))
+	{
+	  assemble_external (exp);
+	  TREE_USED (exp) = 1;
+	}
+
+      /* Show we haven't gotten RTL for this yet.  */
+      temp = 0;
+
+      /* Variables inherited from containing functions should have
+	 been lowered by this point.  */
+      context = decl_function_context (exp);
+      gcc_assert (!context
+		  || context == current_function_decl
+		  || TREE_STATIC (exp)
+		  /* ??? C++ creates functions that are not TREE_STATIC.  */
+		  || TREE_CODE (exp) == FUNCTION_DECL);
+
+      /* This is the case of an array whose size is to be determined
+	 from its initializer, while the initializer is still being parsed.
+	 See expand_decl.  */
+
+      if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
+	temp = validize_mem (decl_rtl);
+
+      /* If DECL_RTL is memory, we are in the normal case and the
+	 address is not valid, get the address into a register.  */
+
+      else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
+	{
+	  if (alt_rtl)
+	    *alt_rtl = decl_rtl;
+	  decl_rtl = use_anchored_address (decl_rtl);
+	  if (modifier != EXPAND_CONST_ADDRESS
+	      && modifier != EXPAND_SUM
+	      && !memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0)))
+	    temp = replace_equiv_address (decl_rtl,
+					  copy_rtx (XEXP (decl_rtl, 0)));
+	}
+
+      /* If we got something, return it.  But first, set the alignment
+	 if the address is a register.  */
+      if (temp != 0)
+	{
+	  if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
+	    mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
+
+	  return temp;
+	}
+
+      /* If the mode of DECL_RTL does not match that of the decl, it
+	 must be a promoted value.  We return a SUBREG of the wanted mode,
+	 but mark it so that we know that it was already extended.  */
+
+      if (REG_P (decl_rtl)
+	  && GET_MODE (decl_rtl) != DECL_MODE (exp))
+	{
+	  enum machine_mode pmode;
+
+	  /* Get the signedness used for this variable.  Ensure we get the
+	     same mode we got when the variable was declared.  */
+	  pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
+				(TREE_CODE (exp) == RESULT_DECL
+				 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
+	  gcc_assert (GET_MODE (decl_rtl) == pmode);
+
+	  temp = gen_lowpart_SUBREG (mode, decl_rtl);
+	  SUBREG_PROMOTED_VAR_P (temp) = 1;
+	  SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
+	  return temp;
+	}
+
+      return decl_rtl;
+
+    case INTEGER_CST:
+      temp = immed_double_const (TREE_INT_CST_LOW (exp),
+				 TREE_INT_CST_HIGH (exp), mode);
+
+      return temp;
+
+    case VECTOR_CST:
+      {
+	tree tmp = NULL_TREE;
+	if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
+	    || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
+	    || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
+	    || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
+	    || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
+	    || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
+	  return const_vector_from_tree (exp);
+	if (GET_MODE_CLASS (mode) == MODE_INT)
+	  {
+	    tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
+	    if (type_for_mode)
+	      tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
+	  }
+	if (!tmp)
+	  tmp = build_constructor_from_list (type,
+					     TREE_VECTOR_CST_ELTS (exp));
+	return expand_expr (tmp, ignore ? const0_rtx : target,
+			    tmode, modifier);
+      }
+
+    case CONST_DECL:
+      return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
+
+    case REAL_CST:
+      /* If optimized, generate immediate CONST_DOUBLE
+	 which will be turned into memory by reload if necessary.
+
+	 We used to force a register so that loop.c could see it.  But
+	 this does not allow gen_* patterns to perform optimizations with
+	 the constants.  It also produces two insns in cases like "x = 1.0;".
+	 On most machines, floating-point constants are not permitted in
+	 many insns, so we'd end up copying it to a register in any case.
+
+	 Now, we do the copying in expand_binop, if appropriate.  */
+      return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
+					   TYPE_MODE (TREE_TYPE (exp)));
+
+    case FIXED_CST:
+      return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
+					   TYPE_MODE (TREE_TYPE (exp)));
+
+    case COMPLEX_CST:
+      /* Handle evaluating a complex constant in a CONCAT target.  */
+      if (original_target && GET_CODE (original_target) == CONCAT)
+	{
+	  enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
+	  rtx rtarg, itarg;
+
+	  rtarg = XEXP (original_target, 0);
+	  itarg = XEXP (original_target, 1);
+
+	  /* Move the real and imaginary parts separately.  */
+	  op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
+	  op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
+
+	  if (op0 != rtarg)
+	    emit_move_insn (rtarg, op0);
+	  if (op1 != itarg)
+	    emit_move_insn (itarg, op1);
+
+	  return original_target;
+	}
+
+      /* ... fall through ...  */
+
+    case STRING_CST:
+      temp = expand_expr_constant (exp, 1, modifier);
+
+      /* temp contains a constant address.
+	 On RISC machines where a constant address isn't valid,
+	 make some insns to get that address into a register.  */
+      if (modifier != EXPAND_CONST_ADDRESS
+	  && modifier != EXPAND_INITIALIZER
+	  && modifier != EXPAND_SUM
+	  && ! memory_address_p (mode, XEXP (temp, 0)))
+	return replace_equiv_address (temp,
+				      copy_rtx (XEXP (temp, 0)));
+      return temp;
+
+    case SAVE_EXPR:
+      {
+	tree val = TREE_OPERAND (exp, 0);
+	rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
+
+	if (!SAVE_EXPR_RESOLVED_P (exp))
+	  {
+	    /* We can indeed still hit this case, typically via builtin
+	       expanders calling save_expr immediately before expanding
+	       something.  Assume this means that we only have to deal
+	       with non-BLKmode values.  */
+	    gcc_assert (GET_MODE (ret) != BLKmode);
+
+	    val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
+	    DECL_ARTIFICIAL (val) = 1;
+	    DECL_IGNORED_P (val) = 1;
+	    TREE_OPERAND (exp, 0) = val;
+	    SAVE_EXPR_RESOLVED_P (exp) = 1;
+
+	    if (!CONSTANT_P (ret))
+	      ret = copy_to_reg (ret);
+	    SET_DECL_RTL (val, ret);
+	  }
+
+        return ret;
+      }
+
+    case GOTO_EXPR:
+      if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
+	expand_goto (TREE_OPERAND (exp, 0));
+      else
+	expand_computed_goto (TREE_OPERAND (exp, 0));
+      return const0_rtx;
+
+    case CONSTRUCTOR:
+      /* If we don't need the result, just ensure we evaluate any
+	 subexpressions.  */
+      if (ignore)
+	{
+	  unsigned HOST_WIDE_INT idx;
+	  tree value;
+
+	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
+	    expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+	  return const0_rtx;
+	}
+
+      return expand_constructor (exp, target, modifier, false);
+
+    case MISALIGNED_INDIRECT_REF:
+    case ALIGN_INDIRECT_REF:
+    case INDIRECT_REF:
+      {
+	tree exp1 = TREE_OPERAND (exp, 0);
+
+	if (modifier != EXPAND_WRITE)
+	  {
+	    tree t;
+
+	    t = fold_read_from_constant_string (exp);
+	    if (t)
+	      return expand_expr (t, target, tmode, modifier);
+	  }
+
+	op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
+	op0 = memory_address (mode, op0);
+
+	if (code == ALIGN_INDIRECT_REF)
+	  {
+	    int align = TYPE_ALIGN_UNIT (type);
+	    op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
+	    op0 = memory_address (mode, op0);
+	  }
+
+	temp = gen_rtx_MEM (mode, op0);
+
+	set_mem_attributes (temp, exp, 0);
+
+	/* Resolve the misalignment now, so that we don't have to remember
+	   to resolve it later.  Of course, this only works for reads.  */
+	/* ??? When we get around to supporting writes, we'll have to handle
+	   this in store_expr directly.  The vectorizer isn't generating
+	   those yet, however.  */
+	if (code == MISALIGNED_INDIRECT_REF)
+	  {
+	    int icode;
+	    rtx reg, insn;
+
+	    gcc_assert (modifier == EXPAND_NORMAL
+			|| modifier == EXPAND_STACK_PARM);
+
+	    /* The vectorizer should have already checked the mode.  */
+	    icode = optab_handler (movmisalign_optab, mode)->insn_code;
+	    gcc_assert (icode != CODE_FOR_nothing);
+
+	    /* We've already validated the memory, and we're creating a
+	       new pseudo destination.  The predicates really can't fail.  */
+	    reg = gen_reg_rtx (mode);
+
+	    /* Nor can the insn generator.  */
+	    insn = GEN_FCN (icode) (reg, temp);
+	    emit_insn (insn);
+
+	    return reg;
+	  }
+
+	return temp;
+      }
+
+    case TARGET_MEM_REF:
+      {
+	struct mem_address addr;
+
+	get_address_description (exp, &addr);
+	op0 = addr_for_mem_ref (&addr, true);
+	op0 = memory_address (mode, op0);
+	temp = gen_rtx_MEM (mode, op0);
+	set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
+      }
+      return temp;
+
+    case ARRAY_REF:
+
+      {
+	tree array = TREE_OPERAND (exp, 0);
+	tree index = TREE_OPERAND (exp, 1);
+
+	/* Fold an expression like: "foo"[2].
+	   This is not done in fold so it won't happen inside &.
+	   Don't fold if this is for wide characters since it's too
+	   difficult to do correctly and this is a very rare case.  */
+
+	if (modifier != EXPAND_CONST_ADDRESS
+	    && modifier != EXPAND_INITIALIZER
+	    && modifier != EXPAND_MEMORY)
+	  {
+	    tree t = fold_read_from_constant_string (exp);
+
+	    if (t)
+	      return expand_expr (t, target, tmode, modifier);
+	  }
+
+	/* If this is a constant index into a constant array,
+	   just get the value from the array.  Handle both the cases when
+	   we have an explicit constructor and when our operand is a variable
+	   that was declared const.  */
+
+	if (modifier != EXPAND_CONST_ADDRESS
+	    && modifier != EXPAND_INITIALIZER
+	    && modifier != EXPAND_MEMORY
+	    && TREE_CODE (array) == CONSTRUCTOR
+	    && ! TREE_SIDE_EFFECTS (array)
+	    && TREE_CODE (index) == INTEGER_CST)
+	  {
+	    unsigned HOST_WIDE_INT ix;
+	    tree field, value;
+
+	    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
+				      field, value)
+	      if (tree_int_cst_equal (field, index))
+		{
+		  if (!TREE_SIDE_EFFECTS (value))
+		    return expand_expr (fold (value), target, tmode, modifier);
+		  break;
+		}
+	  }
+
+	else if (optimize >= 1
+		 && modifier != EXPAND_CONST_ADDRESS
+		 && modifier != EXPAND_INITIALIZER
+		 && modifier != EXPAND_MEMORY
+		 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
+		 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
+		 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
+		 && targetm.binds_local_p (array))
+	  {
+	    if (TREE_CODE (index) == INTEGER_CST)
+	      {
+		tree init = DECL_INITIAL (array);
+
+		if (TREE_CODE (init) == CONSTRUCTOR)
+		  {
+		    unsigned HOST_WIDE_INT ix;
+		    tree field, value;
+
+		    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
+					      field, value)
+		      if (tree_int_cst_equal (field, index))
+			{
+			  if (TREE_SIDE_EFFECTS (value))
+			    break;
+
+			  if (TREE_CODE (value) == CONSTRUCTOR)
+			    {
+			      /* If VALUE is a CONSTRUCTOR, this
+				 optimization is only useful if
+				 this doesn't store the CONSTRUCTOR
+				 into memory.  If it does, it is more
+				 efficient to just load the data from
+				 the array directly.  */
+			      rtx ret = expand_constructor (value, target,
+							    modifier, true);
+			      if (ret == NULL_RTX)
+				break;
+			    }
+
+			  return expand_expr (fold (value), target, tmode,
+					      modifier);
+			}
+		  }
+		else if(TREE_CODE (init) == STRING_CST)
+		  {
+		    tree index1 = index;
+		    tree low_bound = array_ref_low_bound (exp);
+		    index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
+
+		    /* Optimize the special-case of a zero lower bound.
+
+		       We convert the low_bound to sizetype to avoid some problems
+		       with constant folding.  (E.g. suppose the lower bound is 1,
+		       and its mode is QI.  Without the conversion,l (ARRAY
+		       +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
+		       +INDEX), which becomes (ARRAY+255+INDEX).  Opps!)  */
+
+		    if (! integer_zerop (low_bound))
+		      index1 = size_diffop (index1, fold_convert (sizetype,
+								  low_bound));
+
+		    if (0 > compare_tree_int (index1,
+					      TREE_STRING_LENGTH (init)))
+		      {
+			tree type = TREE_TYPE (TREE_TYPE (init));
+			enum machine_mode mode = TYPE_MODE (type);
+
+			if (GET_MODE_CLASS (mode) == MODE_INT
+			    && GET_MODE_SIZE (mode) == 1)
+			  return gen_int_mode (TREE_STRING_POINTER (init)
+					       [TREE_INT_CST_LOW (index1)],
+					       mode);
+		      }
+		  }
+	      }
+	  }
+      }
+      goto normal_inner_ref;
+
+    case COMPONENT_REF:
+      /* If the operand is a CONSTRUCTOR, we can just extract the
+	 appropriate field if it is present.  */
+      if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
+	{
+	  unsigned HOST_WIDE_INT idx;
+	  tree field, value;
+
+	  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
+				    idx, field, value)
+	    if (field == TREE_OPERAND (exp, 1)
+		/* We can normally use the value of the field in the
+		   CONSTRUCTOR.  However, if this is a bitfield in
+		   an integral mode that we can fit in a HOST_WIDE_INT,
+		   we must mask only the number of bits in the bitfield,
+		   since this is done implicitly by the constructor.  If
+		   the bitfield does not meet either of those conditions,
+		   we can't do this optimization.  */
+		&& (! DECL_BIT_FIELD (field)
+		    || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
+			&& (GET_MODE_BITSIZE (DECL_MODE (field))
+			    <= HOST_BITS_PER_WIDE_INT))))
+	      {
+		if (DECL_BIT_FIELD (field)
+		    && modifier == EXPAND_STACK_PARM)
+		  target = 0;
+		op0 = expand_expr (value, target, tmode, modifier);
+		if (DECL_BIT_FIELD (field))
+		  {
+		    HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
+		    enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
+
+		    if (TYPE_UNSIGNED (TREE_TYPE (field)))
+		      {
+			op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
+			op0 = expand_and (imode, op0, op1, target);
+		      }
+		    else
+		      {
+			tree count
+			  = build_int_cst (NULL_TREE,
+					   GET_MODE_BITSIZE (imode) - bitsize);
+
+			op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
+					    target, 0);
+			op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
+					    target, 0);
+		      }
+		  }
+
+		return op0;
+	      }
+	}
+      goto normal_inner_ref;
+
+    case BIT_FIELD_REF:
+    case ARRAY_RANGE_REF:
+    normal_inner_ref:
+      {
+	enum machine_mode mode1, mode2;
+	HOST_WIDE_INT bitsize, bitpos;
+	tree offset;
+	int volatilep = 0, must_force_mem;
+	tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
+					&mode1, &unsignedp, &volatilep, true);
+	rtx orig_op0, memloc;
+
+	/* If we got back the original object, something is wrong.  Perhaps
+	   we are evaluating an expression too early.  In any event, don't
+	   infinitely recurse.  */
+	gcc_assert (tem != exp);
+
+	/* If TEM's type is a union of variable size, pass TARGET to the inner
+	   computation, since it will need a temporary and TARGET is known
+	   to have to do.  This occurs in unchecked conversion in Ada.  */
+	orig_op0 = op0
+	  = expand_expr (tem,
+			 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
+			  && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
+			      != INTEGER_CST)
+			  && modifier != EXPAND_STACK_PARM
+			  ? target : NULL_RTX),
+			 VOIDmode,
+			 (modifier == EXPAND_INITIALIZER
+			  || modifier == EXPAND_CONST_ADDRESS
+			  || modifier == EXPAND_STACK_PARM)
+			 ? modifier : EXPAND_NORMAL);
+
+	mode2
+	  = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
+
+	/* If we have either an offset, a BLKmode result, or a reference
+	   outside the underlying object, we must force it to memory.
+	   Such a case can occur in Ada if we have unchecked conversion
+	   of an expression from a scalar type to an aggregate type or
+	   for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
+	   passed a partially uninitialized object or a view-conversion
+	   to a larger size.  */
+	must_force_mem = (offset
+			  || mode1 == BLKmode
+			  || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
+
+	/* If this is a constant, put it in a register if it is a legitimate
+	   constant and we don't need a memory reference.  */
+	if (CONSTANT_P (op0)
+	    && mode2 != BLKmode
+	    && LEGITIMATE_CONSTANT_P (op0)
+	    && !must_force_mem)
+	  op0 = force_reg (mode2, op0);
+
+	/* Otherwise, if this is a constant, try to force it to the constant
+	   pool.  Note that back-ends, e.g. MIPS, may refuse to do so if it
+	   is a legitimate constant.  */
+	else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
+	  op0 = validize_mem (memloc);
+
+	/* Otherwise, if this is a constant or the object is not in memory
+	   and need be, put it there.  */
+	else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
+	  {
+	    tree nt = build_qualified_type (TREE_TYPE (tem),
+					    (TYPE_QUALS (TREE_TYPE (tem))
+					     | TYPE_QUAL_CONST));
+	    memloc = assign_temp (nt, 1, 1, 1);
+	    emit_move_insn (memloc, op0);
+	    op0 = memloc;
+	  }
+
+	if (offset)
+	  {
+	    rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
+					  EXPAND_SUM);
+
+	    gcc_assert (MEM_P (op0));
+
+#ifdef POINTERS_EXTEND_UNSIGNED
+	    if (GET_MODE (offset_rtx) != Pmode)
+	      offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
+#else
+	    if (GET_MODE (offset_rtx) != ptr_mode)
+	      offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
+#endif
+
+	    if (GET_MODE (op0) == BLKmode
+		/* A constant address in OP0 can have VOIDmode, we must
+		   not try to call force_reg in that case.  */
+		&& GET_MODE (XEXP (op0, 0)) != VOIDmode
+		&& bitsize != 0
+		&& (bitpos % bitsize) == 0
+		&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
+		&& MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
+	      {
+		op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
+		bitpos = 0;
+	      }
+
+	    op0 = offset_address (op0, offset_rtx,
+				  highest_pow2_factor (offset));
+	  }
+
+	/* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
+	   record its alignment as BIGGEST_ALIGNMENT.  */
+	if (MEM_P (op0) && bitpos == 0 && offset != 0
+	    && is_aligning_offset (offset, tem))
+	  set_mem_align (op0, BIGGEST_ALIGNMENT);
+
+	/* Don't forget about volatility even if this is a bitfield.  */
+	if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
+	  {
+	    if (op0 == orig_op0)
+	      op0 = copy_rtx (op0);
+
+	    MEM_VOLATILE_P (op0) = 1;
+	  }
+
+	/* The following code doesn't handle CONCAT.
+	   Assume only bitpos == 0 can be used for CONCAT, due to
+	   one element arrays having the same mode as its element.  */
+	if (GET_CODE (op0) == CONCAT)
+	  {
+	    gcc_assert (bitpos == 0
+			&& bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
+	    return op0;
+	  }
+
+	/* In cases where an aligned union has an unaligned object
+	   as a field, we might be extracting a BLKmode value from
+	   an integer-mode (e.g., SImode) object.  Handle this case
+	   by doing the extract into an object as wide as the field
+	   (which we know to be the width of a basic mode), then
+	   storing into memory, and changing the mode to BLKmode.  */
+	if (mode1 == VOIDmode
+	    || REG_P (op0) || GET_CODE (op0) == SUBREG
+	    || (mode1 != BLKmode && ! direct_load[(int) mode1]
+		&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
+		&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
+		&& modifier != EXPAND_CONST_ADDRESS
+		&& modifier != EXPAND_INITIALIZER)
+	    /* If the field isn't aligned enough to fetch as a memref,
+	       fetch it as a bit field.  */
+	    || (mode1 != BLKmode
+		&& (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
+		      || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
+		      || (MEM_P (op0)
+			  && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
+			      || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
+		     && ((modifier == EXPAND_CONST_ADDRESS
+			  || modifier == EXPAND_INITIALIZER)
+			 ? STRICT_ALIGNMENT
+			 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
+		    || (bitpos % BITS_PER_UNIT != 0)))
+	    /* If the type and the field are a constant size and the
+	       size of the type isn't the same size as the bitfield,
+	       we must use bitfield operations.  */
+	    || (bitsize >= 0
+		&& TYPE_SIZE (TREE_TYPE (exp))
+		&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
+		&& 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
+					  bitsize)))
+	  {
+	    enum machine_mode ext_mode = mode;
+
+	    if (ext_mode == BLKmode
+		&& ! (target != 0 && MEM_P (op0)
+		      && MEM_P (target)
+		      && bitpos % BITS_PER_UNIT == 0))
+	      ext_mode = mode_for_size (bitsize, MODE_INT, 1);
+
+	    if (ext_mode == BLKmode)
+	      {
+		if (target == 0)
+		  target = assign_temp (type, 0, 1, 1);
+
+		if (bitsize == 0)
+		  return target;
+
+		/* In this case, BITPOS must start at a byte boundary and
+		   TARGET, if specified, must be a MEM.  */
+		gcc_assert (MEM_P (op0)
+			    && (!target || MEM_P (target))
+			    && !(bitpos % BITS_PER_UNIT));
+
+		emit_block_move (target,
+				 adjust_address (op0, VOIDmode,
+						 bitpos / BITS_PER_UNIT),
+				 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
+					  / BITS_PER_UNIT),
+				 (modifier == EXPAND_STACK_PARM
+				  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
+
+		return target;
+	      }
+
+	    op0 = validize_mem (op0);
+
+	    if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
+	      mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
+
+	    op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
+				     (modifier == EXPAND_STACK_PARM
+				      ? NULL_RTX : target),
+				     ext_mode, ext_mode);
+
+	    /* If the result is a record type and BITSIZE is narrower than
+	       the mode of OP0, an integral mode, and this is a big endian
+	       machine, we must put the field into the high-order bits.  */
+	    if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
+		&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
+		&& bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
+	      op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
+				  size_int (GET_MODE_BITSIZE (GET_MODE (op0))
+					    - bitsize),
+				  op0, 1);
+
+	    /* If the result type is BLKmode, store the data into a temporary
+	       of the appropriate type, but with the mode corresponding to the
+	       mode for the data we have (op0's mode).  It's tempting to make
+	       this a constant type, since we know it's only being stored once,
+	       but that can cause problems if we are taking the address of this
+	       COMPONENT_REF because the MEM of any reference via that address
+	       will have flags corresponding to the type, which will not
+	       necessarily be constant.  */
+	    if (mode == BLKmode)
+	      {
+		HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
+		rtx new_rtx;
+
+		/* If the reference doesn't use the alias set of its type,
+		   we cannot create the temporary using that type.  */
+		if (component_uses_parent_alias_set (exp))
+		  {
+		    new_rtx = assign_stack_local (ext_mode, size, 0);
+		    set_mem_alias_set (new_rtx, get_alias_set (exp));
+		  }
+		else
+		  new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
+
+		emit_move_insn (new_rtx, op0);
+		op0 = copy_rtx (new_rtx);
+		PUT_MODE (op0, BLKmode);
+		set_mem_attributes (op0, exp, 1);
+	      }
+
+	    return op0;
+	  }
+
+	/* If the result is BLKmode, use that to access the object
+	   now as well.  */
+	if (mode == BLKmode)
+	  mode1 = BLKmode;
+
+	/* Get a reference to just this component.  */
+	if (modifier == EXPAND_CONST_ADDRESS
+	    || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
+	  op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
+	else
+	  op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
+
+	if (op0 == orig_op0)
+	  op0 = copy_rtx (op0);
+
+	set_mem_attributes (op0, exp, 0);
+	if (REG_P (XEXP (op0, 0)))
+	  mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
+
+	MEM_VOLATILE_P (op0) |= volatilep;
+	if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
+	    || modifier == EXPAND_CONST_ADDRESS
+	    || modifier == EXPAND_INITIALIZER)
+	  return op0;
+	else if (target == 0)
+	  target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
+
+	convert_move (target, op0, unsignedp);
+	return target;
+      }
+
+    case OBJ_TYPE_REF:
+      return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
+
+    case CALL_EXPR:
+      /* All valid uses of __builtin_va_arg_pack () are removed during
+	 inlining.  */
+      if (CALL_EXPR_VA_ARG_PACK (exp))
+	error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
+      {
+	tree fndecl = get_callee_fndecl (exp), attr;
+
+	if (fndecl
+	    && (attr = lookup_attribute ("error",
+					 DECL_ATTRIBUTES (fndecl))) != NULL)
+	  error ("%Kcall to %qs declared with attribute error: %s",
+		 exp, lang_hooks.decl_printable_name (fndecl, 1),
+		 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
+	if (fndecl
+	    && (attr = lookup_attribute ("warning",
+					 DECL_ATTRIBUTES (fndecl))) != NULL)
+	  warning_at (tree_nonartificial_location (exp),
+		      0, "%Kcall to %qs declared with attribute warning: %s",
+		      exp, lang_hooks.decl_printable_name (fndecl, 1),
+		      TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
+
+	/* Check for a built-in function.  */
+	if (fndecl && DECL_BUILT_IN (fndecl))
+	  {
+	    if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_FRONTEND)
+	      return lang_hooks.expand_expr (exp, original_target,
+					     tmode, modifier, alt_rtl);
+	    else
+	      return expand_builtin (exp, target, subtarget, tmode, ignore);
+	  }
+      }
+      return expand_call (exp, target, ignore);
+
+    case PAREN_EXPR:
+    CASE_CONVERT:
+      if (TREE_OPERAND (exp, 0) == error_mark_node)
+	return const0_rtx;
+
+      if (TREE_CODE (type) == UNION_TYPE)
+	{
+	  tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
+
+	  /* If both input and output are BLKmode, this conversion isn't doing
+	     anything except possibly changing memory attribute.  */
+	  if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
+	    {
+	      rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
+					modifier);
+
+	      result = copy_rtx (result);
+	      set_mem_attributes (result, exp, 0);
+	      return result;
+	    }
+
+	  if (target == 0)
+	    {
+	      if (TYPE_MODE (type) != BLKmode)
+		target = gen_reg_rtx (TYPE_MODE (type));
+	      else
+		target = assign_temp (type, 0, 1, 1);
+	    }
+
+	  if (MEM_P (target))
+	    /* Store data into beginning of memory target.  */
+	    store_expr (TREE_OPERAND (exp, 0),
+			adjust_address (target, TYPE_MODE (valtype), 0),
+			modifier == EXPAND_STACK_PARM,
+			false);
+
+	  else
+	    {
+	      gcc_assert (REG_P (target));
+
+	      /* Store this field into a union of the proper type.  */
+	      store_field (target,
+			   MIN ((int_size_in_bytes (TREE_TYPE
+						    (TREE_OPERAND (exp, 0)))
+				 * BITS_PER_UNIT),
+				(HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
+			   0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
+			   type, 0, false);
+	    }
+
+	  /* Return the entire union.  */
+	  return target;
+	}
+
+      if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
+	{
+	  op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
+			     modifier);
+
+	  /* If the signedness of the conversion differs and OP0 is
+	     a promoted SUBREG, clear that indication since we now
+	     have to do the proper extension.  */
+	  if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
+	      && GET_CODE (op0) == SUBREG)
+	    SUBREG_PROMOTED_VAR_P (op0) = 0;
+
+	  return REDUCE_BIT_FIELD (op0);
+	}
+
+      op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
+			 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
+      if (GET_MODE (op0) == mode)
+	;
+
+      /* If OP0 is a constant, just convert it into the proper mode.  */
+      else if (CONSTANT_P (op0))
+	{
+	  tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
+	  enum machine_mode inner_mode = TYPE_MODE (inner_type);
+
+	  if (modifier == EXPAND_INITIALIZER)
+	    op0 = simplify_gen_subreg (mode, op0, inner_mode,
+				       subreg_lowpart_offset (mode,
+							      inner_mode));
+	  else
+	    op0=  convert_modes (mode, inner_mode, op0,
+				 TYPE_UNSIGNED (inner_type));
+	}
+
+      else if (modifier == EXPAND_INITIALIZER)
+	op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
+
+      else if (target == 0)
+	op0 = convert_to_mode (mode, op0,
+			       TYPE_UNSIGNED (TREE_TYPE
+					      (TREE_OPERAND (exp, 0))));
+      else
+	{
+	  convert_move (target, op0,
+			TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
+	  op0 = target;
+	}
+
+      return REDUCE_BIT_FIELD (op0);
+
+    case VIEW_CONVERT_EXPR:
+      op0 = NULL_RTX;
+
+      /* If we are converting to BLKmode, try to avoid an intermediate
+	 temporary by fetching an inner memory reference.  */
+      if (mode == BLKmode
+	  && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
+	  && TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != BLKmode
+	  && handled_component_p (TREE_OPERAND (exp, 0)))
+      {
+	enum machine_mode mode1;
+	HOST_WIDE_INT bitsize, bitpos;
+	tree offset;
+	int unsignedp;
+	int volatilep = 0;
+	tree tem
+	  = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, &bitpos,
+				 &offset, &mode1, &unsignedp, &volatilep,
+				 true);
+	rtx orig_op0;
+
+	/* ??? We should work harder and deal with non-zero offsets.  */
+	if (!offset
+	    && (bitpos % BITS_PER_UNIT) == 0
+	    && bitsize >= 0
+	    && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
+	  {
+	    /* See the normal_inner_ref case for the rationale.  */
+	    orig_op0
+	      = expand_expr (tem,
+			     (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
+			      && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
+				  != INTEGER_CST)
+			      && modifier != EXPAND_STACK_PARM
+			      ? target : NULL_RTX),
+			     VOIDmode,
+			     (modifier == EXPAND_INITIALIZER
+			      || modifier == EXPAND_CONST_ADDRESS
+			      || modifier == EXPAND_STACK_PARM)
+			     ? modifier : EXPAND_NORMAL);
+
+	    if (MEM_P (orig_op0))
+	      {
+		op0 = orig_op0;
+
+		/* Get a reference to just this component.  */
+		if (modifier == EXPAND_CONST_ADDRESS
+		    || modifier == EXPAND_SUM
+		    || modifier == EXPAND_INITIALIZER)
+		  op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
+		else
+		  op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
+
+		if (op0 == orig_op0)
+		  op0 = copy_rtx (op0);
+
+		set_mem_attributes (op0, TREE_OPERAND (exp, 0), 0);
+		if (REG_P (XEXP (op0, 0)))
+		  mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
+
+		MEM_VOLATILE_P (op0) |= volatilep;
+	      }
+	  }
+      }
+
+      if (!op0)
+	op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
+
+      /* If the input and output modes are both the same, we are done.  */
+      if (mode == GET_MODE (op0))
+	;
+      /* If neither mode is BLKmode, and both modes are the same size
+	 then we can use gen_lowpart.  */
+      else if (mode != BLKmode && GET_MODE (op0) != BLKmode
+	       && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0)))
+	{
+	  if (GET_CODE (op0) == SUBREG)
+	    op0 = force_reg (GET_MODE (op0), op0);
+	  op0 = gen_lowpart (mode, op0);
+	}
+      /* If both modes are integral, then we can convert from one to the
+	 other.  */
+      else if (SCALAR_INT_MODE_P (GET_MODE (op0)) && SCALAR_INT_MODE_P (mode))
+	op0 = convert_modes (mode, GET_MODE (op0), op0, 
+			     TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
+      /* As a last resort, spill op0 to memory, and reload it in a
+	 different mode.  */
+      else if (!MEM_P (op0))
+	{
+	  /* If the operand is not a MEM, force it into memory.  Since we
+	     are going to be changing the mode of the MEM, don't call
+	     force_const_mem for constants because we don't allow pool
+	     constants to change mode.  */
+	  tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
+
+	  gcc_assert (!TREE_ADDRESSABLE (exp));
+
+	  if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
+	    target
+	      = assign_stack_temp_for_type
+		(TYPE_MODE (inner_type),
+		 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
+
+	  emit_move_insn (target, op0);
+	  op0 = target;
+	}
+
+      /* At this point, OP0 is in the correct mode.  If the output type is
+	 such that the operand is known to be aligned, indicate that it is.
+	 Otherwise, we need only be concerned about alignment for non-BLKmode
+	 results.  */
+      if (MEM_P (op0))
+	{
+	  op0 = copy_rtx (op0);
+
+	  if (TYPE_ALIGN_OK (type))
+	    set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
+	  else if (STRICT_ALIGNMENT
+		   && mode != BLKmode
+		   && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
+	    {
+	      tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
+	      HOST_WIDE_INT temp_size
+		= MAX (int_size_in_bytes (inner_type),
+		       (HOST_WIDE_INT) GET_MODE_SIZE (mode));
+	      rtx new_rtx
+		= assign_stack_temp_for_type (mode, temp_size, 0, type);
+	      rtx new_with_op0_mode
+		= adjust_address (new_rtx, GET_MODE (op0), 0);
+
+	      gcc_assert (!TREE_ADDRESSABLE (exp));
+
+	      if (GET_MODE (op0) == BLKmode)
+		emit_block_move (new_with_op0_mode, op0,
+				 GEN_INT (GET_MODE_SIZE (mode)),
+				 (modifier == EXPAND_STACK_PARM
+				  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
+	      else
+		emit_move_insn (new_with_op0_mode, op0);
+
+	      op0 = new_rtx;
+	    }
+
+	  op0 = adjust_address (op0, mode, 0);
+	}
+
+      return op0;
+
+    case POINTER_PLUS_EXPR: 
+      /* Even though the sizetype mode and the pointer's mode can be different
+         expand is able to handle this correctly and get the correct result out 
+         of the PLUS_EXPR code.  */
+      /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
+         if sizetype precision is smaller than pointer precision.  */
+      if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
+	exp = build2 (PLUS_EXPR, type,
+		      TREE_OPERAND (exp, 0),
+		      fold_convert (type,
+				    fold_convert (ssizetype,
+						  TREE_OPERAND (exp, 1))));
+    case PLUS_EXPR:
+
+      /* Check if this is a case for multiplication and addition.  */
+      if ((TREE_CODE (type) == INTEGER_TYPE
+	   || TREE_CODE (type) == FIXED_POINT_TYPE)
+	  && TREE_CODE (TREE_OPERAND (exp, 0)) == MULT_EXPR)
+	{
+	  tree subsubexp0, subsubexp1;
+	  enum tree_code code0, code1, this_code;
+
+	  subexp0 = TREE_OPERAND (exp, 0);
+	  subsubexp0 = TREE_OPERAND (subexp0, 0);
+	  subsubexp1 = TREE_OPERAND (subexp0, 1);
+	  code0 = TREE_CODE (subsubexp0);
+	  code1 = TREE_CODE (subsubexp1);
+	  this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
+						       : FIXED_CONVERT_EXPR;
+	  if (code0 == this_code && code1 == this_code
+	      && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
+		  < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
+	      && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
+		  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
+	      && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
+		  == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
+	    {
+	      tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
+	      enum machine_mode innermode = TYPE_MODE (op0type);
+	      bool zextend_p = TYPE_UNSIGNED (op0type);
+	      bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
+	      if (sat_p == 0)
+		this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
+	      else
+		this_optab = zextend_p ? usmadd_widen_optab
+				       : ssmadd_widen_optab;
+	      if (mode == GET_MODE_2XWIDER_MODE (innermode)
+		  && (optab_handler (this_optab, mode)->insn_code
+		      != CODE_FOR_nothing))
+		{
+		  expand_operands (TREE_OPERAND (subsubexp0, 0),
+				   TREE_OPERAND (subsubexp1, 0),
+				   NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+		  op2 = expand_expr (TREE_OPERAND (exp, 1), subtarget,
+				     VOIDmode, EXPAND_NORMAL);
+		  temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
+					    target, unsignedp);
+		  gcc_assert (temp);
+		  return REDUCE_BIT_FIELD (temp);
+		}
+	    }
+	}
+
+      /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
+	 something else, make sure we add the register to the constant and
+	 then to the other thing.  This case can occur during strength
+	 reduction and doing it this way will produce better code if the
+	 frame pointer or argument pointer is eliminated.
+
+	 fold-const.c will ensure that the constant is always in the inner
+	 PLUS_EXPR, so the only case we need to do anything about is if
+	 sp, ap, or fp is our second argument, in which case we must swap
+	 the innermost first argument and our second argument.  */
+
+      if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
+	  && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
+	  && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
+	  && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
+	      || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
+	      || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
+	{
+	  tree t = TREE_OPERAND (exp, 1);
+
+	  TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
+	  TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
+	}
+
+      /* If the result is to be ptr_mode and we are adding an integer to
+	 something, we might be forming a constant.  So try to use
+	 plus_constant.  If it produces a sum and we can't accept it,
+	 use force_operand.  This allows P = &ARR[const] to generate
+	 efficient code on machines where a SYMBOL_REF is not a valid
+	 address.
+
+	 If this is an EXPAND_SUM call, always return the sum.  */
+      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
+	  || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
+	{
+	  if (modifier == EXPAND_STACK_PARM)
+	    target = 0;
+	  if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
+	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+	      && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
+	    {
+	      rtx constant_part;
+
+	      op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
+				 EXPAND_SUM);
+	      /* Use immed_double_const to ensure that the constant is
+		 truncated according to the mode of OP1, then sign extended
+		 to a HOST_WIDE_INT.  Using the constant directly can result
+		 in non-canonical RTL in a 64x32 cross compile.  */
+	      constant_part
+		= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
+				      (HOST_WIDE_INT) 0,
+				      TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
+	      op1 = plus_constant (op1, INTVAL (constant_part));
+	      if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
+		op1 = force_operand (op1, target);
+	      return REDUCE_BIT_FIELD (op1);
+	    }
+
+	  else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
+		   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+		   && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
+	    {
+	      rtx constant_part;
+
+	      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
+				 (modifier == EXPAND_INITIALIZER
+				 ? EXPAND_INITIALIZER : EXPAND_SUM));
+	      if (! CONSTANT_P (op0))
+		{
+		  op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
+				     VOIDmode, modifier);
+		  /* Return a PLUS if modifier says it's OK.  */
+		  if (modifier == EXPAND_SUM
+		      || modifier == EXPAND_INITIALIZER)
+		    return simplify_gen_binary (PLUS, mode, op0, op1);
+		  goto binop2;
+		}
+	      /* Use immed_double_const to ensure that the constant is
+		 truncated according to the mode of OP1, then sign extended
+		 to a HOST_WIDE_INT.  Using the constant directly can result
+		 in non-canonical RTL in a 64x32 cross compile.  */
+	      constant_part
+		= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
+				      (HOST_WIDE_INT) 0,
+				      TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
+	      op0 = plus_constant (op0, INTVAL (constant_part));
+	      if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
+		op0 = force_operand (op0, target);
+	      return REDUCE_BIT_FIELD (op0);
+	    }
+	}
+
+      /* No sense saving up arithmetic to be done
+	 if it's all in the wrong mode to form part of an address.
+	 And force_operand won't know whether to sign-extend or
+	 zero-extend.  */
+      if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
+	  || mode != ptr_mode)
+	{
+	  expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
+			   subtarget, &op0, &op1, 0);
+	  if (op0 == const0_rtx)
+	    return op1;
+	  if (op1 == const0_rtx)
+	    return op0;
+	  goto binop2;
+	}
+
+      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
+		       subtarget, &op0, &op1, modifier);
+      return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
+
+    case MINUS_EXPR:
+      /* Check if this is a case for multiplication and subtraction.  */
+      if ((TREE_CODE (type) == INTEGER_TYPE
+	   || TREE_CODE (type) == FIXED_POINT_TYPE)
+	  && TREE_CODE (TREE_OPERAND (exp, 1)) == MULT_EXPR)
+	{
+	  tree subsubexp0, subsubexp1;
+	  enum tree_code code0, code1, this_code;
+
+	  subexp1 = TREE_OPERAND (exp, 1);
+	  subsubexp0 = TREE_OPERAND (subexp1, 0);
+	  subsubexp1 = TREE_OPERAND (subexp1, 1);
+	  code0 = TREE_CODE (subsubexp0);
+	  code1 = TREE_CODE (subsubexp1);
+	  this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
+						       : FIXED_CONVERT_EXPR;
+	  if (code0 == this_code && code1 == this_code
+	      && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
+		  < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
+	      && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
+		  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
+	      && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
+		  == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
+	    {
+	      tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
+	      enum machine_mode innermode = TYPE_MODE (op0type);
+	      bool zextend_p = TYPE_UNSIGNED (op0type);
+	      bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
+	      if (sat_p == 0)
+		this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
+	      else
+		this_optab = zextend_p ? usmsub_widen_optab
+				       : ssmsub_widen_optab;
+	      if (mode == GET_MODE_2XWIDER_MODE (innermode)
+		  && (optab_handler (this_optab, mode)->insn_code
+		      != CODE_FOR_nothing))
+		{
+		  expand_operands (TREE_OPERAND (subsubexp0, 0),
+				   TREE_OPERAND (subsubexp1, 0),
+				   NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+		  op2 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
+				     VOIDmode, EXPAND_NORMAL);
+		  temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
+					    target, unsignedp);
+		  gcc_assert (temp);
+		  return REDUCE_BIT_FIELD (temp);
+		}
+	    }
+	}
+
+      /* For initializers, we are allowed to return a MINUS of two
+	 symbolic constants.  Here we handle all cases when both operands
+	 are constant.  */
+      /* Handle difference of two symbolic constants,
+	 for the sake of an initializer.  */
+      if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
+	  && really_constant_p (TREE_OPERAND (exp, 0))
+	  && really_constant_p (TREE_OPERAND (exp, 1)))
+	{
+	  expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
+			   NULL_RTX, &op0, &op1, modifier);
+
+	  /* If the last operand is a CONST_INT, use plus_constant of
+	     the negated constant.  Else make the MINUS.  */
+	  if (GET_CODE (op1) == CONST_INT)
+	    return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
+	  else
+	    return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
+	}
+
+      /* No sense saving up arithmetic to be done
+	 if it's all in the wrong mode to form part of an address.
+	 And force_operand won't know whether to sign-extend or
+	 zero-extend.  */
+      if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
+	  || mode != ptr_mode)
+	goto binop;
+
+      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
+		       subtarget, &op0, &op1, modifier);
+
+      /* Convert A - const to A + (-const).  */
+      if (GET_CODE (op1) == CONST_INT)
+	{
+	  op1 = negate_rtx (mode, op1);
+	  return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
+	}
+
+      goto binop2;
+
+    case MULT_EXPR:
+      /* If this is a fixed-point operation, then we cannot use the code
+	 below because "expand_mult" doesn't support sat/no-sat fixed-point
+         multiplications.   */
+      if (ALL_FIXED_POINT_MODE_P (mode))
+	goto binop;
+
+      /* If first operand is constant, swap them.
+	 Thus the following special case checks need only
+	 check the second operand.  */
+      if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
+	{
+	  tree t1 = TREE_OPERAND (exp, 0);
+	  TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
+	  TREE_OPERAND (exp, 1) = t1;
+	}
+
+      /* Attempt to return something suitable for generating an
+	 indexed address, for machines that support that.  */
+
+      if (modifier == EXPAND_SUM && mode == ptr_mode
+	  && host_integerp (TREE_OPERAND (exp, 1), 0))
+	{
+	  tree exp1 = TREE_OPERAND (exp, 1);
+
+	  op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
+			     EXPAND_SUM);
+
+	  if (!REG_P (op0))
+	    op0 = force_operand (op0, NULL_RTX);
+	  if (!REG_P (op0))
+	    op0 = copy_to_mode_reg (mode, op0);
+
+	  return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
+			       gen_int_mode (tree_low_cst (exp1, 0),
+					     TYPE_MODE (TREE_TYPE (exp1)))));
+	}
+
+      if (modifier == EXPAND_STACK_PARM)
+	target = 0;
+
+      /* Check for multiplying things that have been extended
+	 from a narrower type.  If this machine supports multiplying
+	 in that narrower type with a result in the desired type,
+	 do it that way, and avoid the explicit type-conversion.  */
+
+      subexp0 = TREE_OPERAND (exp, 0);
+      subexp1 = TREE_OPERAND (exp, 1);
+      /* First, check if we have a multiplication of one signed and one
+	 unsigned operand.  */
+      if (TREE_CODE (subexp0) == NOP_EXPR
+	  && TREE_CODE (subexp1) == NOP_EXPR
+	  && TREE_CODE (type) == INTEGER_TYPE
+	  && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
+	      < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
+	  && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
+	      == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
+	  && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
+	      != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
+	{
+	  enum machine_mode innermode
+	    = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
+	  this_optab = usmul_widen_optab;
+	  if (mode == GET_MODE_WIDER_MODE (innermode))
+	    {
+	      if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
+		{
+		  if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
+		    expand_operands (TREE_OPERAND (subexp0, 0),
+				     TREE_OPERAND (subexp1, 0),
+				     NULL_RTX, &op0, &op1, 0);
+		  else
+		    expand_operands (TREE_OPERAND (subexp0, 0),
+				     TREE_OPERAND (subexp1, 0),
+				     NULL_RTX, &op1, &op0, 0);
+
+		  goto binop3;
+		}
+	    }
+	}
+      /* Check for a multiplication with matching signedness.  */
+      else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
+	  && TREE_CODE (type) == INTEGER_TYPE
+	  && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
+	      < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
+	  && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
+	       && int_fits_type_p (TREE_OPERAND (exp, 1),
+				   TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
+	       /* Don't use a widening multiply if a shift will do.  */
+	       && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
+		    > HOST_BITS_PER_WIDE_INT)
+		   || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
+	      ||
+	      (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
+	       && (TYPE_PRECISION (TREE_TYPE
+				   (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
+		   == TYPE_PRECISION (TREE_TYPE
+				      (TREE_OPERAND
+				       (TREE_OPERAND (exp, 0), 0))))
+	       /* If both operands are extended, they must either both
+		  be zero-extended or both be sign-extended.  */
+	       && (TYPE_UNSIGNED (TREE_TYPE
+				  (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
+		   == TYPE_UNSIGNED (TREE_TYPE
+				     (TREE_OPERAND
+				      (TREE_OPERAND (exp, 0), 0)))))))
+	{
+	  tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
+	  enum machine_mode innermode = TYPE_MODE (op0type);
+	  bool zextend_p = TYPE_UNSIGNED (op0type);
+	  optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
+	  this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
+
+	  if (mode == GET_MODE_2XWIDER_MODE (innermode))
+	    {
+	      if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
+		{
+		  if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
+		    expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
+				     TREE_OPERAND (exp, 1),
+				     NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+		  else
+		    expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
+				     TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
+				     NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+		  goto binop3;
+		}
+	      else if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
+		       && innermode == word_mode)
+		{
+		  rtx htem, hipart;
+		  op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
+		  if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
+		    op1 = convert_modes (innermode, mode,
+					 expand_normal (TREE_OPERAND (exp, 1)),
+					 unsignedp);
+		  else
+		    op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
+		  temp = expand_binop (mode, other_optab, op0, op1, target,
+				       unsignedp, OPTAB_LIB_WIDEN);
+		  hipart = gen_highpart (innermode, temp);
+		  htem = expand_mult_highpart_adjust (innermode, hipart,
+						      op0, op1, hipart,
+						      zextend_p);
+		  if (htem != hipart)
+		    emit_move_insn (hipart, htem);
+		  return REDUCE_BIT_FIELD (temp);
+		}
+	    }
+	}
+      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
+		       subtarget, &op0, &op1, 0);
+      return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
+
+    case TRUNC_DIV_EXPR:
+    case FLOOR_DIV_EXPR:
+    case CEIL_DIV_EXPR:
+    case ROUND_DIV_EXPR:
+    case EXACT_DIV_EXPR:
+      /* If this is a fixed-point operation, then we cannot use the code
+	 below because "expand_divmod" doesn't support sat/no-sat fixed-point
+         divisions.   */
+      if (ALL_FIXED_POINT_MODE_P (mode))
+	goto binop;
+
+      if (modifier == EXPAND_STACK_PARM)
+	target = 0;
+      /* Possible optimization: compute the dividend with EXPAND_SUM
+	 then if the divisor is constant can optimize the case
+	 where some terms of the dividend have coeffs divisible by it.  */
+      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
+		       subtarget, &op0, &op1, 0);
+      return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
+
+    case RDIV_EXPR:
+      goto binop;
+
+    case TRUNC_MOD_EXPR:
+    case FLOOR_MOD_EXPR:
+    case CEIL_MOD_EXPR:
+    case ROUND_MOD_EXPR:
+      if (modifier == EXPAND_STACK_PARM)
+	target = 0;
+      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
+		       subtarget, &op0, &op1, 0);
+      return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
+
+    case FIXED_CONVERT_EXPR:
+      op0 = expand_normal (TREE_OPERAND (exp, 0));
+      if (target == 0 || modifier == EXPAND_STACK_PARM)
+	target = gen_reg_rtx (mode);
+
+      if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == INTEGER_TYPE
+	   && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
+          || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
+	expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
+      else
+	expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
+      return target;
+
+    case FIX_TRUNC_EXPR:
+      op0 = expand_normal (TREE_OPERAND (exp, 0));
+      if (target == 0 || modifier == EXPAND_STACK_PARM)
+	target = gen_reg_rtx (mode);
+      expand_fix (target, op0, unsignedp);
+      return target;
+
+    case FLOAT_EXPR:
+      op0 = expand_normal (TREE_OPERAND (exp, 0));
+      if (target == 0 || modifier == EXPAND_STACK_PARM)
+	target = gen_reg_rtx (mode);
+      /* expand_float can't figure out what to do if FROM has VOIDmode.
+	 So give it the correct mode.  With -O, cse will optimize this.  */
+      if (GET_MODE (op0) == VOIDmode)
+	op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
+				op0);
+      expand_float (target, op0,
+		    TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
+      return target;
+
+    case NEGATE_EXPR:
+      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
+			 VOIDmode, EXPAND_NORMAL);
+      if (modifier == EXPAND_STACK_PARM)
+	target = 0;
+      temp = expand_unop (mode,
+      			  optab_for_tree_code (NEGATE_EXPR, type,
+					       optab_default),
+			  op0, target, 0);
+      gcc_assert (temp);
+      return REDUCE_BIT_FIELD (temp);
+
+    case ABS_EXPR:
+      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
+			 VOIDmode, EXPAND_NORMAL);
+      if (modifier == EXPAND_STACK_PARM)
+	target = 0;
+
+      /* ABS_EXPR is not valid for complex arguments.  */
+      gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
+		  && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
+
+      /* Unsigned abs is simply the operand.  Testing here means we don't
+	 risk generating incorrect code below.  */
+      if (TYPE_UNSIGNED (type))
+	return op0;
+
+      return expand_abs (mode, op0, target, unsignedp,
+			 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
+
+    case MAX_EXPR:
+    case MIN_EXPR:
+      target = original_target;
+      if (target == 0
+	  || modifier == EXPAND_STACK_PARM
+	  || (MEM_P (target) && MEM_VOLATILE_P (target))
+	  || GET_MODE (target) != mode
+	  || (REG_P (target)
+	      && REGNO (target) < FIRST_PSEUDO_REGISTER))
+	target = gen_reg_rtx (mode);
+      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
+		       target, &op0, &op1, 0);
+
+      /* First try to do it with a special MIN or MAX instruction.
+	 If that does not win, use a conditional jump to select the proper
+	 value.  */
+      this_optab = optab_for_tree_code (code, type, optab_default);
+      temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
+			   OPTAB_WIDEN);
+      if (temp != 0)
+	return temp;
+
+      /* At this point, a MEM target is no longer useful; we will get better
+	 code without it.  */
+
+      if (! REG_P (target))
+	target = gen_reg_rtx (mode);
+
+      /* If op1 was placed in target, swap op0 and op1.  */
+      if (target != op0 && target == op1)
+	{
+	  temp = op0;
+	  op0 = op1;
+	  op1 = temp;
+	}
+
+      /* We generate better code and avoid problems with op1 mentioning
+	 target by forcing op1 into a pseudo if it isn't a constant.  */
+      if (! CONSTANT_P (op1))
+	op1 = force_reg (mode, op1);
+
+      {
+	enum rtx_code comparison_code;
+	rtx cmpop1 = op1;
+
+	if (code == MAX_EXPR)
+	  comparison_code = unsignedp ? GEU : GE;
+	else
+	  comparison_code = unsignedp ? LEU : LE;
+
+	/* Canonicalize to comparisons against 0.  */
+	if (op1 == const1_rtx)
+	  {
+	    /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
+	       or (a != 0 ? a : 1) for unsigned.
+	       For MIN we are safe converting (a <= 1 ? a : 1)
+	       into (a <= 0 ? a : 1)  */
+	    cmpop1 = const0_rtx;
+	    if (code == MAX_EXPR)
+	      comparison_code = unsignedp ? NE : GT;
+	  }
+	if (op1 == constm1_rtx && !unsignedp)
+	  {
+	    /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
+	       and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
+	    cmpop1 = const0_rtx;
+	    if (code == MIN_EXPR)
+	      comparison_code = LT;
+	  }
+#ifdef HAVE_conditional_move
+	/* Use a conditional move if possible.  */
+	if (can_conditionally_move_p (mode))
+	  {
+	    rtx insn;
+
+	    /* ??? Same problem as in expmed.c: emit_conditional_move
+	       forces a stack adjustment via compare_from_rtx, and we
+	       lose the stack adjustment if the sequence we are about
+	       to create is discarded.  */
+	    do_pending_stack_adjust ();
+
+	    start_sequence ();
+
+	    /* Try to emit the conditional move.  */
+	    insn = emit_conditional_move (target, comparison_code,
+					  op0, cmpop1, mode,
+					  op0, op1, mode,
+					  unsignedp);
+
+	    /* If we could do the conditional move, emit the sequence,
+	       and return.  */
+	    if (insn)
+	      {
+		rtx seq = get_insns ();
+		end_sequence ();
+		emit_insn (seq);
+		return target;
+	      }
+
+	    /* Otherwise discard the sequence and fall back to code with
+	       branches.  */
+	    end_sequence ();
+	  }
+#endif
+	if (target != op0)
+	  emit_move_insn (target, op0);
+
+	temp = gen_label_rtx ();
+	do_compare_rtx_and_jump (target, cmpop1, comparison_code,
+				 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
+      }
+      emit_move_insn (target, op1);
+      emit_label (temp);
+      return target;
+
+    case BIT_NOT_EXPR:
+      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
+			 VOIDmode, EXPAND_NORMAL);
+      if (modifier == EXPAND_STACK_PARM)
+	target = 0;
+      temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
+      gcc_assert (temp);
+      return temp;
+
+      /* ??? Can optimize bitwise operations with one arg constant.
+	 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
+	 and (a bitwise1 b) bitwise2 b (etc)
+	 but that is probably not worth while.  */
+
+      /* BIT_AND_EXPR is for bitwise anding.  TRUTH_AND_EXPR is for anding two
+	 boolean values when we want in all cases to compute both of them.  In
+	 general it is fastest to do TRUTH_AND_EXPR by computing both operands
+	 as actual zero-or-1 values and then bitwise anding.  In cases where
+	 there cannot be any side effects, better code would be made by
+	 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
+	 how to recognize those cases.  */
+
+    case TRUTH_AND_EXPR:
+      code = BIT_AND_EXPR;
+    case BIT_AND_EXPR:
+      goto binop;
+
+    case TRUTH_OR_EXPR:
+      code = BIT_IOR_EXPR;
+    case BIT_IOR_EXPR:
+      goto binop;
+
+    case TRUTH_XOR_EXPR:
+      code = BIT_XOR_EXPR;
+    case BIT_XOR_EXPR:
+      goto binop;
+
+    case LROTATE_EXPR:
+    case RROTATE_EXPR:
+      gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
+		  || (GET_MODE_PRECISION (TYPE_MODE (type))
+		      == TYPE_PRECISION (type)));
+      /* fall through */
+
+    case LSHIFT_EXPR:
+    case RSHIFT_EXPR:
+      /* If this is a fixed-point operation, then we cannot use the code
+	 below because "expand_shift" doesn't support sat/no-sat fixed-point
+         shifts.   */
+      if (ALL_FIXED_POINT_MODE_P (mode))
+	goto binop;
+
+      if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
+	subtarget = 0;
+      if (modifier == EXPAND_STACK_PARM)
+	target = 0;
+      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
+			 VOIDmode, EXPAND_NORMAL);
+      temp = expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
+			   unsignedp);
+      if (code == LSHIFT_EXPR)
+	temp = REDUCE_BIT_FIELD (temp);
+      return temp;
+
+      /* Could determine the answer when only additive constants differ.  Also,
+	 the addition of one can be handled by changing the condition.  */
+    case LT_EXPR:
+    case LE_EXPR:
+    case GT_EXPR:
+    case GE_EXPR:
+    case EQ_EXPR:
+    case NE_EXPR:
+    case UNORDERED_EXPR:
+    case ORDERED_EXPR:
+    case UNLT_EXPR:
+    case UNLE_EXPR:
+    case UNGT_EXPR:
+    case UNGE_EXPR:
+    case UNEQ_EXPR:
+    case LTGT_EXPR:
+      temp = do_store_flag (exp,
+			    modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
+			    tmode != VOIDmode ? tmode : mode, 0);
+      if (temp != 0)
+	return temp;
+
+      /* For foo != 0, load foo, and if it is nonzero load 1 instead.  */
+      if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
+	  && original_target
+	  && REG_P (original_target)
+	  && (GET_MODE (original_target)
+	      == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
+	{
+	  temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
+			      VOIDmode, EXPAND_NORMAL);
+
+	  /* If temp is constant, we can just compute the result.  */
+	  if (GET_CODE (temp) == CONST_INT)
+	    {
+	      if (INTVAL (temp) != 0)
+	        emit_move_insn (target, const1_rtx);
+	      else
+	        emit_move_insn (target, const0_rtx);
+
+	      return target;
+	    }
+
+	  if (temp != original_target)
+	    {
+	      enum machine_mode mode1 = GET_MODE (temp);
+	      if (mode1 == VOIDmode)
+		mode1 = tmode != VOIDmode ? tmode : mode;
+
+	      temp = copy_to_mode_reg (mode1, temp);
+	    }
+
+	  op1 = gen_label_rtx ();
+	  emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
+				   GET_MODE (temp), unsignedp, op1);
+	  emit_move_insn (temp, const1_rtx);
+	  emit_label (op1);
+	  return temp;
+	}
+
+      /* If no set-flag instruction, must generate a conditional store
+	 into a temporary variable.  Drop through and handle this
+	 like && and ||.  */
+      /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
+	 are occassionally created by folding during expansion.  */
+    case TRUTH_ANDIF_EXPR:
+    case TRUTH_ORIF_EXPR:
+      if (! ignore
+	  && (target == 0
+	      || modifier == EXPAND_STACK_PARM
+	      || ! safe_from_p (target, exp, 1)
+	      /* Make sure we don't have a hard reg (such as function's return
+		 value) live across basic blocks, if not optimizing.  */
+	      || (!optimize && REG_P (target)
+		  && REGNO (target) < FIRST_PSEUDO_REGISTER)))
+	target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
+
+      if (target)
+	emit_move_insn (target, const0_rtx);
+
+      op1 = gen_label_rtx ();
+      jumpifnot (exp, op1);
+
+      if (target)
+	emit_move_insn (target, const1_rtx);
+
+      emit_label (op1);
+      return ignore ? const0_rtx : target;
+
+    case TRUTH_NOT_EXPR:
+      if (modifier == EXPAND_STACK_PARM)
+	target = 0;
+      op0 = expand_expr (TREE_OPERAND (exp, 0), target,
+			 VOIDmode, EXPAND_NORMAL);
+      /* The parser is careful to generate TRUTH_NOT_EXPR
+	 only with operands that are always zero or one.  */
+      temp = expand_binop (mode, xor_optab, op0, const1_rtx,
+			   target, 1, OPTAB_LIB_WIDEN);
+      gcc_assert (temp);
+      return temp;
+
+    case STATEMENT_LIST:
+      {
+	tree_stmt_iterator iter;
+
+	gcc_assert (ignore);
+
+	for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
+	  expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
+      }
+      return const0_rtx;
+
+    case COND_EXPR:
+      /* A COND_EXPR with its type being VOID_TYPE represents a
+	 conditional jump and is handled in
+	 expand_gimple_cond_expr.  */
+      gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
+
+        /* Note that COND_EXPRs whose type is a structure or union
+  	 are required to be constructed to contain assignments of
+  	 a temporary variable, so that we can evaluate them here
+  	 for side effect only.  If type is void, we must do likewise.  */
+
+        gcc_assert (!TREE_ADDRESSABLE (type)
+		    && !ignore
+		    && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
+		    && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
+
+       /* If we are not to produce a result, we have no target.  Otherwise,
+ 	 if a target was specified use it; it will not be used as an
+ 	 intermediate target unless it is safe.  If no target, use a
+ 	 temporary.  */
+
+       if (modifier != EXPAND_STACK_PARM
+ 	  && original_target
+ 	  && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
+ 	  && GET_MODE (original_target) == mode
+#ifdef HAVE_conditional_move
+ 	  && (! can_conditionally_move_p (mode)
+ 	      || REG_P (original_target))
+#endif
+ 	  && !MEM_P (original_target))
+ 	temp = original_target;
+       else
+ 	temp = assign_temp (type, 0, 0, 1);
+
+       do_pending_stack_adjust ();
+       NO_DEFER_POP;
+       op0 = gen_label_rtx ();
+       op1 = gen_label_rtx ();
+       jumpifnot (TREE_OPERAND (exp, 0), op0);
+       store_expr (TREE_OPERAND (exp, 1), temp,
+ 		  modifier == EXPAND_STACK_PARM,
+		  false);
+
+       emit_jump_insn (gen_jump (op1));
+       emit_barrier ();
+       emit_label (op0);
+       store_expr (TREE_OPERAND (exp, 2), temp,
+ 		  modifier == EXPAND_STACK_PARM,
+		  false);
+
+       emit_label (op1);
+       OK_DEFER_POP;
+       return temp;
+
+    case VEC_COND_EXPR:
+	target = expand_vec_cond_expr (exp, target);
+	return target;
+
+    case MODIFY_EXPR:
+      {
+	tree lhs = TREE_OPERAND (exp, 0);
+	tree rhs = TREE_OPERAND (exp, 1);
+	gcc_assert (ignore);
+
+	/* Check for |= or &= of a bitfield of size one into another bitfield
+	   of size 1.  In this case, (unless we need the result of the
+	   assignment) we can do this more efficiently with a
+	   test followed by an assignment, if necessary.
+
+	   ??? At this point, we can't get a BIT_FIELD_REF here.  But if
+	   things change so we do, this code should be enhanced to
+	   support it.  */
+	if (TREE_CODE (lhs) == COMPONENT_REF
+	    && (TREE_CODE (rhs) == BIT_IOR_EXPR
+		|| TREE_CODE (rhs) == BIT_AND_EXPR)
+	    && TREE_OPERAND (rhs, 0) == lhs
+	    && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
+	    && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
+	    && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
+	  {
+	    rtx label = gen_label_rtx ();
+	    int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
+	    do_jump (TREE_OPERAND (rhs, 1),
+		     value ? label : 0,
+		     value ? 0 : label);
+	    expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
+			       MOVE_NONTEMPORAL (exp));
+	    do_pending_stack_adjust ();
+	    emit_label (label);
+	    return const0_rtx;
+	  }
+
+	expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
+	return const0_rtx;
+      }
+
+    case RETURN_EXPR:
+      if (!TREE_OPERAND (exp, 0))
+	expand_null_return ();
+      else
+	expand_return (TREE_OPERAND (exp, 0));
+      return const0_rtx;
+
+    case ADDR_EXPR:
+      return expand_expr_addr_expr (exp, target, tmode, modifier);
+
+    case COMPLEX_EXPR:
+      /* Get the rtx code of the operands.  */
+      op0 = expand_normal (TREE_OPERAND (exp, 0));
+      op1 = expand_normal (TREE_OPERAND (exp, 1));
+
+      if (!target)
+	target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
+
+      /* Move the real (op0) and imaginary (op1) parts to their location.  */
+      write_complex_part (target, op0, false);
+      write_complex_part (target, op1, true);
+
+      return target;
+
+    case REALPART_EXPR:
+      op0 = expand_normal (TREE_OPERAND (exp, 0));
+      return read_complex_part (op0, false);
+
+    case IMAGPART_EXPR:
+      op0 = expand_normal (TREE_OPERAND (exp, 0));
+      return read_complex_part (op0, true);
+
+    case RESX_EXPR:
+      expand_resx_expr (exp);
+      return const0_rtx;
+
+    case TRY_CATCH_EXPR:
+    case CATCH_EXPR:
+    case EH_FILTER_EXPR:
+    case TRY_FINALLY_EXPR:
+      /* Lowered by tree-eh.c.  */
+      gcc_unreachable ();
+
+    case WITH_CLEANUP_EXPR:
+    case CLEANUP_POINT_EXPR:
+    case TARGET_EXPR:
+    case CASE_LABEL_EXPR:
+    case VA_ARG_EXPR:
+    case BIND_EXPR:
+    case INIT_EXPR:
+    case CONJ_EXPR:
+    case COMPOUND_EXPR:
+    case PREINCREMENT_EXPR:
+    case PREDECREMENT_EXPR:
+    case POSTINCREMENT_EXPR:
+    case POSTDECREMENT_EXPR:
+    case LOOP_EXPR:
+    case EXIT_EXPR:
+      /* Lowered by gimplify.c.  */
+      gcc_unreachable ();
+
+    case CHANGE_DYNAMIC_TYPE_EXPR:
+      /* This is ignored at the RTL level.  The tree level set
+	 DECL_POINTER_ALIAS_SET of any variable to be 0, which is
+	 overkill for the RTL layer but is all that we can
+	 represent.  */
+      return const0_rtx;
+
+    case EXC_PTR_EXPR:
+      return get_exception_pointer ();
+
+    case FILTER_EXPR:
+      return get_exception_filter ();
+
+    case FDESC_EXPR:
+      /* Function descriptors are not valid except for as
+	 initialization constants, and should not be expanded.  */
+      gcc_unreachable ();
+
+    case SWITCH_EXPR:
+      expand_case (exp);
+      return const0_rtx;
+
+    case LABEL_EXPR:
+      expand_label (TREE_OPERAND (exp, 0));
+      return const0_rtx;
+
+    case ASM_EXPR:
+      expand_asm_expr (exp);
+      return const0_rtx;
+
+    case WITH_SIZE_EXPR:
+      /* WITH_SIZE_EXPR expands to its first argument.  The caller should
+	 have pulled out the size to use in whatever context it needed.  */
+      return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
+			       modifier, alt_rtl);
+
+    case REALIGN_LOAD_EXPR:
+      {
+        tree oprnd0 = TREE_OPERAND (exp, 0);
+        tree oprnd1 = TREE_OPERAND (exp, 1);
+        tree oprnd2 = TREE_OPERAND (exp, 2);
+        rtx op2;
+
+        this_optab = optab_for_tree_code (code, type, optab_default);
+        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+        op2 = expand_normal (oprnd2);
+        temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
+				  target, unsignedp);
+        gcc_assert (temp);
+        return temp;
+      }
+
+    case DOT_PROD_EXPR:
+      {
+	tree oprnd0 = TREE_OPERAND (exp, 0);
+	tree oprnd1 = TREE_OPERAND (exp, 1);
+	tree oprnd2 = TREE_OPERAND (exp, 2);
+	rtx op2;
+
+	expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+	op2 = expand_normal (oprnd2);
+	target = expand_widen_pattern_expr (exp, op0, op1, op2,
+					    target, unsignedp);
+	return target;
+      }
+
+    case WIDEN_SUM_EXPR:
+      {
+        tree oprnd0 = TREE_OPERAND (exp, 0);
+        tree oprnd1 = TREE_OPERAND (exp, 1);
+
+        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
+        target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
+                                            target, unsignedp);
+        return target;
+      }
+
+    case REDUC_MAX_EXPR:
+    case REDUC_MIN_EXPR:
+    case REDUC_PLUS_EXPR:
+      {
+        op0 = expand_normal (TREE_OPERAND (exp, 0));
+        this_optab = optab_for_tree_code (code, type, optab_default);
+        temp = expand_unop (mode, this_optab, op0, target, unsignedp);
+        gcc_assert (temp);
+        return temp;
+      }
+
+    case VEC_EXTRACT_EVEN_EXPR:
+    case VEC_EXTRACT_ODD_EXPR:
+      {
+        expand_operands (TREE_OPERAND (exp, 0),  TREE_OPERAND (exp, 1),
+                         NULL_RTX, &op0, &op1, 0);
+        this_optab = optab_for_tree_code (code, type, optab_default);
+        temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
+                             OPTAB_WIDEN);
+        gcc_assert (temp);
+        return temp;
+      }
+
+    case VEC_INTERLEAVE_HIGH_EXPR:
+    case VEC_INTERLEAVE_LOW_EXPR:
+      {
+        expand_operands (TREE_OPERAND (exp, 0),  TREE_OPERAND (exp, 1),
+                         NULL_RTX, &op0, &op1, 0);
+        this_optab = optab_for_tree_code (code, type, optab_default);
+        temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
+                             OPTAB_WIDEN);
+        gcc_assert (temp);
+        return temp;
+      }
+
+    case VEC_LSHIFT_EXPR:
+    case VEC_RSHIFT_EXPR:
+      {
+	target = expand_vec_shift_expr (exp, target);
+	return target;
+      }
+
+    case VEC_UNPACK_HI_EXPR:
+    case VEC_UNPACK_LO_EXPR:
+      {
+	op0 = expand_normal (TREE_OPERAND (exp, 0));
+	this_optab = optab_for_tree_code (code, type, optab_default);
+	temp = expand_widen_pattern_expr (exp, op0, NULL_RTX, NULL_RTX,
+					  target, unsignedp);
+	gcc_assert (temp);
+	return temp;
+      }
+
+    case VEC_UNPACK_FLOAT_HI_EXPR:
+    case VEC_UNPACK_FLOAT_LO_EXPR:
+      {
+	op0 = expand_normal (TREE_OPERAND (exp, 0));
+	/* The signedness is determined from input operand.  */
+	this_optab = optab_for_tree_code (code,
+					  TREE_TYPE (TREE_OPERAND (exp, 0)),
+					  optab_default);
+	temp = expand_widen_pattern_expr
+	  (exp, op0, NULL_RTX, NULL_RTX,
+	   target, TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
+
+	gcc_assert (temp);
+	return temp;
+      }
+
+    case VEC_WIDEN_MULT_HI_EXPR:
+    case VEC_WIDEN_MULT_LO_EXPR:
+      {
+	tree oprnd0 = TREE_OPERAND (exp, 0);
+	tree oprnd1 = TREE_OPERAND (exp, 1);
+
+	expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
+	target = expand_widen_pattern_expr (exp, op0, op1, NULL_RTX,
+					    target, unsignedp);
+	gcc_assert (target);
+	return target;
+      }
+
+    case VEC_PACK_TRUNC_EXPR:
+    case VEC_PACK_SAT_EXPR:
+    case VEC_PACK_FIX_TRUNC_EXPR:
+      mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
+      goto binop;
+
+    default:
+      return lang_hooks.expand_expr (exp, original_target, tmode,
+				     modifier, alt_rtl);
+    }
+
+  /* Here to do an ordinary binary operator.  */
+ binop:
+  expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
+		   subtarget, &op0, &op1, 0);
+ binop2:
+  this_optab = optab_for_tree_code (code, type, optab_default);
+ binop3:
+  if (modifier == EXPAND_STACK_PARM)
+    target = 0;
+  temp = expand_binop (mode, this_optab, op0, op1, target,
+		       unsignedp, OPTAB_LIB_WIDEN);
+  gcc_assert (temp);
+  return REDUCE_BIT_FIELD (temp);
+}
+#undef REDUCE_BIT_FIELD
+
+/* Subroutine of above: reduce EXP to the precision of TYPE (in the
+   signedness of TYPE), possibly returning the result in TARGET.  */
+static rtx
+reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
+{
+  HOST_WIDE_INT prec = TYPE_PRECISION (type);
+  if (target && GET_MODE (target) != GET_MODE (exp))
+    target = 0;
+  /* For constant values, reduce using build_int_cst_type. */
+  if (GET_CODE (exp) == CONST_INT)
+    {
+      HOST_WIDE_INT value = INTVAL (exp);
+      tree t = build_int_cst_type (type, value);
+      return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
+    }
+  else if (TYPE_UNSIGNED (type))
+    {
+      rtx mask;
+      if (prec < HOST_BITS_PER_WIDE_INT)
+	mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
+				   GET_MODE (exp));
+      else
+	mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
+				   ((unsigned HOST_WIDE_INT) 1
+				    << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
+				   GET_MODE (exp));
+      return expand_and (GET_MODE (exp), exp, mask, target);
+    }
+  else
+    {
+      tree count = build_int_cst (NULL_TREE,
+				  GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
+      exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
+      return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
+    }
+}
+
+/* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
+   when applied to the address of EXP produces an address known to be
+   aligned more than BIGGEST_ALIGNMENT.  */
+
+static int
+is_aligning_offset (const_tree offset, const_tree exp)
+{
+  /* Strip off any conversions.  */
+  while (CONVERT_EXPR_P (offset))
+    offset = TREE_OPERAND (offset, 0);
+
+  /* We must now have a BIT_AND_EXPR with a constant that is one less than
+     power of 2 and which is larger than BIGGEST_ALIGNMENT.  */
+  if (TREE_CODE (offset) != BIT_AND_EXPR
+      || !host_integerp (TREE_OPERAND (offset, 1), 1)
+      || compare_tree_int (TREE_OPERAND (offset, 1),
+			   BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
+      || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
+    return 0;
+
+  /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
+     It must be NEGATE_EXPR.  Then strip any more conversions.  */
+  offset = TREE_OPERAND (offset, 0);
+  while (CONVERT_EXPR_P (offset))
+    offset = TREE_OPERAND (offset, 0);
+
+  if (TREE_CODE (offset) != NEGATE_EXPR)
+    return 0;
+
+  offset = TREE_OPERAND (offset, 0);
+  while (CONVERT_EXPR_P (offset))
+    offset = TREE_OPERAND (offset, 0);
+
+  /* This must now be the address of EXP.  */
+  return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
+}
+
+/* Return the tree node if an ARG corresponds to a string constant or zero
+   if it doesn't.  If we return nonzero, set *PTR_OFFSET to the offset
+   in bytes within the string that ARG is accessing.  The type of the
+   offset will be `sizetype'.  */
+
+tree
+string_constant (tree arg, tree *ptr_offset)
+{
+  tree array, offset, lower_bound;
+  STRIP_NOPS (arg);
+
+  if (TREE_CODE (arg) == ADDR_EXPR)
+    {
+      if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
+	{
+	  *ptr_offset = size_zero_node;
+	  return TREE_OPERAND (arg, 0);
+	}
+      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
+	{
+	  array = TREE_OPERAND (arg, 0);
+	  offset = size_zero_node;
+	}
+      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
+	{
+	  array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
+	  offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
+	  if (TREE_CODE (array) != STRING_CST
+	      && TREE_CODE (array) != VAR_DECL)
+	    return 0;
+
+	  /* Check if the array has a nonzero lower bound.  */
+	  lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
+	  if (!integer_zerop (lower_bound))
+	    {
+	      /* If the offset and base aren't both constants, return 0.  */
+	      if (TREE_CODE (lower_bound) != INTEGER_CST)
+	        return 0;
+	      if (TREE_CODE (offset) != INTEGER_CST)
+		return 0;
+	      /* Adjust offset by the lower bound.  */
+	      offset = size_diffop (fold_convert (sizetype, offset),
+				    fold_convert (sizetype, lower_bound));
+	    }
+	}
+      else
+	return 0;
+    }
+  else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
+    {
+      tree arg0 = TREE_OPERAND (arg, 0);
+      tree arg1 = TREE_OPERAND (arg, 1);
+
+      STRIP_NOPS (arg0);
+      STRIP_NOPS (arg1);
+
+      if (TREE_CODE (arg0) == ADDR_EXPR
+	  && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
+	      || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
+	{
+	  array = TREE_OPERAND (arg0, 0);
+	  offset = arg1;
+	}
+      else if (TREE_CODE (arg1) == ADDR_EXPR
+	       && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
+		   || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
+	{
+	  array = TREE_OPERAND (arg1, 0);
+	  offset = arg0;
+	}
+      else
+	return 0;
+    }
+  else
+    return 0;
+
+  if (TREE_CODE (array) == STRING_CST)
+    {
+      *ptr_offset = fold_convert (sizetype, offset);
+      return array;
+    }
+  else if (TREE_CODE (array) == VAR_DECL)
+    {
+      int length;
+
+      /* Variables initialized to string literals can be handled too.  */
+      if (DECL_INITIAL (array) == NULL_TREE
+	  || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
+	return 0;
+
+      /* If they are read-only, non-volatile and bind locally.  */
+      if (! TREE_READONLY (array)
+	  || TREE_SIDE_EFFECTS (array)
+	  || ! targetm.binds_local_p (array))
+	return 0;
+
+      /* Avoid const char foo[4] = "abcde";  */
+      if (DECL_SIZE_UNIT (array) == NULL_TREE
+	  || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
+	  || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
+	  || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
+	return 0;
+
+      /* If variable is bigger than the string literal, OFFSET must be constant
+	 and inside of the bounds of the string literal.  */
+      offset = fold_convert (sizetype, offset);
+      if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
+	  && (! host_integerp (offset, 1)
+	      || compare_tree_int (offset, length) >= 0))
+	return 0;
+
+      *ptr_offset = offset;
+      return DECL_INITIAL (array);
+    }
+
+  return 0;
+}
+
+/* Generate code to calculate EXP using a store-flag instruction
+   and return an rtx for the result.  EXP is either a comparison
+   or a TRUTH_NOT_EXPR whose operand is a comparison.
+
+   If TARGET is nonzero, store the result there if convenient.
+
+   If ONLY_CHEAP is nonzero, only do this if it is likely to be very
+   cheap.
+
+   Return zero if there is no suitable set-flag instruction
+   available on this machine.
+
+   Once expand_expr has been called on the arguments of the comparison,
+   we are committed to doing the store flag, since it is not safe to
+   re-evaluate the expression.  We emit the store-flag insn by calling
+   emit_store_flag, but only expand the arguments if we have a reason
+   to believe that emit_store_flag will be successful.  If we think that
+   it will, but it isn't, we have to simulate the store-flag with a
+   set/jump/set sequence.  */
+
+static rtx
+do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
+{
+  enum rtx_code code;
+  tree arg0, arg1, type;
+  tree tem;
+  enum machine_mode operand_mode;
+  int invert = 0;
+  int unsignedp;
+  rtx op0, op1;
+  enum insn_code icode;
+  rtx subtarget = target;
+  rtx result, label;
+
+  /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
+     result at the end.  We can't simply invert the test since it would
+     have already been inverted if it were valid.  This case occurs for
+     some floating-point comparisons.  */
+
+  if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
+    invert = 1, exp = TREE_OPERAND (exp, 0);
+
+  arg0 = TREE_OPERAND (exp, 0);
+  arg1 = TREE_OPERAND (exp, 1);
+
+  /* Don't crash if the comparison was erroneous.  */
+  if (arg0 == error_mark_node || arg1 == error_mark_node)
+    return const0_rtx;
+
+  type = TREE_TYPE (arg0);
+  operand_mode = TYPE_MODE (type);
+  unsignedp = TYPE_UNSIGNED (type);
+
+  /* We won't bother with BLKmode store-flag operations because it would mean
+     passing a lot of information to emit_store_flag.  */
+  if (operand_mode == BLKmode)
+    return 0;
+
+  /* We won't bother with store-flag operations involving function pointers
+     when function pointers must be canonicalized before comparisons.  */
+#ifdef HAVE_canonicalize_funcptr_for_compare
+  if (HAVE_canonicalize_funcptr_for_compare
+      && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
+	   && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
+	       == FUNCTION_TYPE))
+	  || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
+	      && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
+		  == FUNCTION_TYPE))))
+    return 0;
+#endif
+
+  STRIP_NOPS (arg0);
+  STRIP_NOPS (arg1);
+
+  /* Get the rtx comparison code to use.  We know that EXP is a comparison
+     operation of some type.  Some comparisons against 1 and -1 can be
+     converted to comparisons with zero.  Do so here so that the tests
+     below will be aware that we have a comparison with zero.   These
+     tests will not catch constants in the first operand, but constants
+     are rarely passed as the first operand.  */
+
+  switch (TREE_CODE (exp))
+    {
+    case EQ_EXPR:
+      code = EQ;
+      break;
+    case NE_EXPR:
+      code = NE;
+      break;
+    case LT_EXPR:
+      if (integer_onep (arg1))
+	arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
+      else
+	code = unsignedp ? LTU : LT;
+      break;
+    case LE_EXPR:
+      if (! unsignedp && integer_all_onesp (arg1))
+	arg1 = integer_zero_node, code = LT;
+      else
+	code = unsignedp ? LEU : LE;
+      break;
+    case GT_EXPR:
+      if (! unsignedp && integer_all_onesp (arg1))
+	arg1 = integer_zero_node, code = GE;
+      else
+	code = unsignedp ? GTU : GT;
+      break;
+    case GE_EXPR:
+      if (integer_onep (arg1))
+	arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
+      else
+	code = unsignedp ? GEU : GE;
+      break;
+
+    case UNORDERED_EXPR:
+      code = UNORDERED;
+      break;
+    case ORDERED_EXPR:
+      code = ORDERED;
+      break;
+    case UNLT_EXPR:
+      code = UNLT;
+      break;
+    case UNLE_EXPR:
+      code = UNLE;
+      break;
+    case UNGT_EXPR:
+      code = UNGT;
+      break;
+    case UNGE_EXPR:
+      code = UNGE;
+      break;
+    case UNEQ_EXPR:
+      code = UNEQ;
+      break;
+    case LTGT_EXPR:
+      code = LTGT;
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  /* Put a constant second.  */
+  if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
+      || TREE_CODE (arg0) == FIXED_CST)
+    {
+      tem = arg0; arg0 = arg1; arg1 = tem;
+      code = swap_condition (code);
+    }
+
+  /* If this is an equality or inequality test of a single bit, we can
+     do this by shifting the bit being tested to the low-order bit and
+     masking the result with the constant 1.  If the condition was EQ,
+     we xor it with 1.  This does not require an scc insn and is faster
+     than an scc insn even if we have it.
+
+     The code to make this transformation was moved into fold_single_bit_test,
+     so we just call into the folder and expand its result.  */
+
+  if ((code == NE || code == EQ)
+      && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
+      && integer_pow2p (TREE_OPERAND (arg0, 1)))
+    {
+      tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
+      return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
+						arg0, arg1, type),
+			  target, VOIDmode, EXPAND_NORMAL);
+    }
+
+  /* Now see if we are likely to be able to do this.  Return if not.  */
+  if (! can_compare_p (code, operand_mode, ccp_store_flag))
+    return 0;
+
+  icode = setcc_gen_code[(int) code];
+
+  if (icode == CODE_FOR_nothing)
+    {
+      enum machine_mode wmode;
+
+      for (wmode = operand_mode;
+	   icode == CODE_FOR_nothing && wmode != VOIDmode;
+	   wmode = GET_MODE_WIDER_MODE (wmode))
+	icode = optab_handler (cstore_optab, wmode)->insn_code;
+    }
+
+  if (icode == CODE_FOR_nothing
+      || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
+    {
+      /* We can only do this if it is one of the special cases that
+	 can be handled without an scc insn.  */
+      if ((code == LT && integer_zerop (arg1))
+	  || (! only_cheap && code == GE && integer_zerop (arg1)))
+	;
+      else if (! only_cheap && (code == NE || code == EQ)
+	       && TREE_CODE (type) != REAL_TYPE
+	       && ((optab_handler (abs_optab, operand_mode)->insn_code
+		    != CODE_FOR_nothing)
+		   || (optab_handler (ffs_optab, operand_mode)->insn_code
+		       != CODE_FOR_nothing)))
+	;
+      else
+	return 0;
+    }
+
+  if (! get_subtarget (target)
+      || GET_MODE (subtarget) != operand_mode)
+    subtarget = 0;
+
+  expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
+
+  if (target == 0)
+    target = gen_reg_rtx (mode);
+
+  result = emit_store_flag (target, code, op0, op1,
+			    operand_mode, unsignedp, 1);
+
+  if (result)
+    {
+      if (invert)
+	result = expand_binop (mode, xor_optab, result, const1_rtx,
+			       result, 0, OPTAB_LIB_WIDEN);
+      return result;
+    }
+
+  /* If this failed, we have to do this with set/compare/jump/set code.  */
+  if (!REG_P (target)
+      || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
+    target = gen_reg_rtx (GET_MODE (target));
+
+  emit_move_insn (target, invert ? const0_rtx : const1_rtx);
+  label = gen_label_rtx ();
+  do_compare_rtx_and_jump (op0, op1, code, unsignedp, operand_mode, NULL_RTX,
+			   NULL_RTX, label);
+
+  emit_move_insn (target, invert ? const1_rtx : const0_rtx);
+  emit_label (label);
+
+  return target;
+}
+
+
+/* Stubs in case we haven't got a casesi insn.  */
+#ifndef HAVE_casesi
+# define HAVE_casesi 0
+# define gen_casesi(a, b, c, d, e) (0)
+# define CODE_FOR_casesi CODE_FOR_nothing
+#endif
+
+/* If the machine does not have a case insn that compares the bounds,
+   this means extra overhead for dispatch tables, which raises the
+   threshold for using them.  */
+#ifndef CASE_VALUES_THRESHOLD
+#define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
+#endif /* CASE_VALUES_THRESHOLD */
+
+unsigned int
+case_values_threshold (void)
+{
+  return CASE_VALUES_THRESHOLD;
+}
+
+/* Attempt to generate a casesi instruction.  Returns 1 if successful,
+   0 otherwise (i.e. if there is no casesi instruction).  */
+int
+try_casesi (tree index_type, tree index_expr, tree minval, tree range,
+	    rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
+	    rtx fallback_label ATTRIBUTE_UNUSED)
+{
+  enum machine_mode index_mode = SImode;
+  int index_bits = GET_MODE_BITSIZE (index_mode);
+  rtx op1, op2, index;
+  enum machine_mode op_mode;
+
+  if (! HAVE_casesi)
+    return 0;
+
+  /* Convert the index to SImode.  */
+  if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
+    {
+      enum machine_mode omode = TYPE_MODE (index_type);
+      rtx rangertx = expand_normal (range);
+
+      /* We must handle the endpoints in the original mode.  */
+      index_expr = build2 (MINUS_EXPR, index_type,
+			   index_expr, minval);
+      minval = integer_zero_node;
+      index = expand_normal (index_expr);
+      if (default_label)
+        emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
+				 omode, 1, default_label);
+      /* Now we can safely truncate.  */
+      index = convert_to_mode (index_mode, index, 0);
+    }
+  else
+    {
+      if (TYPE_MODE (index_type) != index_mode)
+	{
+	  index_type = lang_hooks.types.type_for_size (index_bits, 0);
+	  index_expr = fold_convert (index_type, index_expr);
+	}
+
+      index = expand_normal (index_expr);
+    }
+
+  do_pending_stack_adjust ();
+
+  op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
+  if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
+      (index, op_mode))
+    index = copy_to_mode_reg (op_mode, index);
+
+  op1 = expand_normal (minval);
+
+  op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
+  op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
+		       op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
+  if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
+      (op1, op_mode))
+    op1 = copy_to_mode_reg (op_mode, op1);
+
+  op2 = expand_normal (range);
+
+  op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
+  op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
+		       op2, TYPE_UNSIGNED (TREE_TYPE (range)));
+  if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
+      (op2, op_mode))
+    op2 = copy_to_mode_reg (op_mode, op2);
+
+  emit_jump_insn (gen_casesi (index, op1, op2,
+			      table_label, !default_label
+					   ? fallback_label : default_label));
+  return 1;
+}
+
+/* Attempt to generate a tablejump instruction; same concept.  */
+#ifndef HAVE_tablejump
+#define HAVE_tablejump 0
+#define gen_tablejump(x, y) (0)
+#endif
+
+/* Subroutine of the next function.
+
+   INDEX is the value being switched on, with the lowest value
+   in the table already subtracted.
+   MODE is its expected mode (needed if INDEX is constant).
+   RANGE is the length of the jump table.
+   TABLE_LABEL is a CODE_LABEL rtx for the table itself.
+
+   DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
+   index value is out of range.  */
+
+static void
+do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
+	      rtx default_label)
+{
+  rtx temp, vector;
+
+  if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
+    cfun->cfg->max_jumptable_ents = INTVAL (range);
+
+  /* Do an unsigned comparison (in the proper mode) between the index
+     expression and the value which represents the length of the range.
+     Since we just finished subtracting the lower bound of the range
+     from the index expression, this comparison allows us to simultaneously
+     check that the original index expression value is both greater than
+     or equal to the minimum value of the range and less than or equal to
+     the maximum value of the range.  */
+
+  if (default_label)
+    emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
+			     default_label);
+
+  /* If index is in range, it must fit in Pmode.
+     Convert to Pmode so we can index with it.  */
+  if (mode != Pmode)
+    index = convert_to_mode (Pmode, index, 1);
+
+  /* Don't let a MEM slip through, because then INDEX that comes
+     out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
+     and break_out_memory_refs will go to work on it and mess it up.  */
+#ifdef PIC_CASE_VECTOR_ADDRESS
+  if (flag_pic && !REG_P (index))
+    index = copy_to_mode_reg (Pmode, index);
+#endif
+
+  /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
+     GET_MODE_SIZE, because this indicates how large insns are.  The other
+     uses should all be Pmode, because they are addresses.  This code
+     could fail if addresses and insns are not the same size.  */
+  index = gen_rtx_PLUS (Pmode,
+			gen_rtx_MULT (Pmode, index,
+				      GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
+			gen_rtx_LABEL_REF (Pmode, table_label));
+#ifdef PIC_CASE_VECTOR_ADDRESS
+  if (flag_pic)
+    index = PIC_CASE_VECTOR_ADDRESS (index);
+  else
+#endif
+    index = memory_address (CASE_VECTOR_MODE, index);
+  temp = gen_reg_rtx (CASE_VECTOR_MODE);
+  vector = gen_const_mem (CASE_VECTOR_MODE, index);
+  convert_move (temp, vector, 0);
+
+  emit_jump_insn (gen_tablejump (temp, table_label));
+
+  /* If we are generating PIC code or if the table is PC-relative, the
+     table and JUMP_INSN must be adjacent, so don't output a BARRIER.  */
+  if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
+    emit_barrier ();
+}
+
+int
+try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
+	       rtx table_label, rtx default_label)
+{
+  rtx index;
+
+  if (! HAVE_tablejump)
+    return 0;
+
+  index_expr = fold_build2 (MINUS_EXPR, index_type,
+			    fold_convert (index_type, index_expr),
+			    fold_convert (index_type, minval));
+  index = expand_normal (index_expr);
+  do_pending_stack_adjust ();
+
+  do_tablejump (index, TYPE_MODE (index_type),
+		convert_modes (TYPE_MODE (index_type),
+			       TYPE_MODE (TREE_TYPE (range)),
+			       expand_normal (range),
+			       TYPE_UNSIGNED (TREE_TYPE (range))),
+		table_label, default_label);
+  return 1;
+}
+
+/* Nonzero if the mode is a valid vector mode for this architecture.
+   This returns nonzero even if there is no hardware support for the
+   vector mode, but we can emulate with narrower modes.  */
+
+int
+vector_mode_valid_p (enum machine_mode mode)
+{
+  enum mode_class mclass = GET_MODE_CLASS (mode);
+  enum machine_mode innermode;
+
+  /* Doh!  What's going on?  */
+  if (mclass != MODE_VECTOR_INT
+      && mclass != MODE_VECTOR_FLOAT
+      && mclass != MODE_VECTOR_FRACT
+      && mclass != MODE_VECTOR_UFRACT
+      && mclass != MODE_VECTOR_ACCUM
+      && mclass != MODE_VECTOR_UACCUM)
+    return 0;
+
+  /* Hardware support.  Woo hoo!  */
+  if (targetm.vector_mode_supported_p (mode))
+    return 1;
+
+  innermode = GET_MODE_INNER (mode);
+
+  /* We should probably return 1 if requesting V4DI and we have no DI,
+     but we have V2DI, but this is probably very unlikely.  */
+
+  /* If we have support for the inner mode, we can safely emulate it.
+     We may not have V2DI, but me can emulate with a pair of DIs.  */
+  return targetm.scalar_mode_supported_p (innermode);
+}
+
+/* Return a CONST_VECTOR rtx for a VECTOR_CST tree.  */
+static rtx
+const_vector_from_tree (tree exp)
+{
+  rtvec v;
+  int units, i;
+  tree link, elt;
+  enum machine_mode inner, mode;
+
+  mode = TYPE_MODE (TREE_TYPE (exp));
+
+  if (initializer_zerop (exp))
+    return CONST0_RTX (mode);
+
+  units = GET_MODE_NUNITS (mode);
+  inner = GET_MODE_INNER (mode);
+
+  v = rtvec_alloc (units);
+
+  link = TREE_VECTOR_CST_ELTS (exp);
+  for (i = 0; link; link = TREE_CHAIN (link), ++i)
+    {
+      elt = TREE_VALUE (link);
+
+      if (TREE_CODE (elt) == REAL_CST)
+	RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
+							 inner);
+      else if (TREE_CODE (elt) == FIXED_CST)
+	RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
+							 inner);
+      else
+	RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
+					       TREE_INT_CST_HIGH (elt),
+					       inner);
+    }
+
+  /* Initialize remaining elements to 0.  */
+  for (; i < units; ++i)
+    RTVEC_ELT (v, i) = CONST0_RTX (inner);
+
+  return gen_rtx_CONST_VECTOR (mode, v);
+}
+#include "gt-expr.h"