diff gcc/fixed-value.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/fixed-value.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,1150 @@
+/* Fixed-point arithmetic support.
+   Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "toplev.h"
+#include "fixed-value.h"
+
+/* Compare two fixed objects for bitwise identity.  */
+
+bool
+fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b)
+{
+  return (a->mode == b->mode
+	  && a->data.high == b->data.high
+	  && a->data.low == b->data.low);
+}
+
+/* Calculate a hash value.  */
+
+unsigned int
+fixed_hash (const FIXED_VALUE_TYPE *f)
+{
+  return (unsigned int) (f->data.low ^ f->data.high);
+}
+
+/* Define the enum code for the range of the fixed-point value.  */
+enum fixed_value_range_code {
+  FIXED_OK,		/* The value is within the range.  */
+  FIXED_UNDERFLOW,	/* The value is less than the minimum.  */
+  FIXED_GT_MAX_EPS,	/* The value is greater than the maximum, but not equal
+			   to the maximum plus the epsilon.  */
+  FIXED_MAX_EPS		/* The value equals the maximum plus the epsilon.  */
+};
+
+/* Check REAL_VALUE against the range of the fixed-point mode.
+   Return FIXED_OK, if it is within the range.
+          FIXED_UNDERFLOW, if it is less than the minimum.
+          FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to
+	    the maximum plus the epsilon.
+          FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon.  */
+
+static enum fixed_value_range_code
+check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, enum machine_mode mode)
+{
+  REAL_VALUE_TYPE max_value, min_value, epsilon_value;
+
+  real_2expN (&max_value, GET_MODE_IBIT (mode), mode);
+  real_2expN (&epsilon_value, -GET_MODE_FBIT (mode), mode);
+
+  if (SIGNED_FIXED_POINT_MODE_P (mode))
+    min_value = REAL_VALUE_NEGATE (max_value);
+  else
+    real_from_string (&min_value, "0.0");
+
+  if (real_compare (LT_EXPR, real_value, &min_value))
+    return FIXED_UNDERFLOW;
+  if (real_compare (EQ_EXPR, real_value, &max_value))
+    return FIXED_MAX_EPS;
+  real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value);
+  if (real_compare (GT_EXPR, real_value, &max_value))
+    return FIXED_GT_MAX_EPS;
+  return FIXED_OK;
+}
+
+/* Initialize from a decimal or hexadecimal string.  */
+
+void
+fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, enum machine_mode mode)
+{
+  REAL_VALUE_TYPE real_value, fixed_value, base_value;
+  unsigned int fbit;
+  enum fixed_value_range_code temp;
+
+  f->mode = mode;
+  fbit = GET_MODE_FBIT (mode);
+
+  real_from_string (&real_value, str);
+  temp = check_real_for_fixed_mode (&real_value, f->mode);
+  /* We don't want to warn the case when the _Fract value is 1.0.  */
+  if (temp == FIXED_UNDERFLOW
+      || temp == FIXED_GT_MAX_EPS
+      || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode)))
+    warning (OPT_Woverflow,
+	     "large fixed-point constant implicitly truncated to fixed-point type");
+  real_2expN (&base_value, fbit, mode);
+  real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
+  real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high,
+		    &fixed_value);
+
+  if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode))
+    {
+      /* From the spec, we need to evaluate 1 to the maximal value.  */
+      f->data.low = -1;
+      f->data.high = -1;
+      f->data = double_int_ext (f->data,
+				GET_MODE_FBIT (f->mode)
+				+ GET_MODE_IBIT (f->mode), 1);
+    }
+  else
+    f->data = double_int_ext (f->data,
+			      SIGNED_FIXED_POINT_MODE_P (f->mode)
+			      + GET_MODE_FBIT (f->mode)
+			      + GET_MODE_IBIT (f->mode),
+			      UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+}
+
+/* Render F as a decimal floating point constant.  */
+
+void
+fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig,
+		  size_t buf_size)
+{
+  REAL_VALUE_TYPE real_value, base_value, fixed_value;
+
+  real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode), f_orig->mode);
+  real_from_integer (&real_value, VOIDmode, f_orig->data.low, f_orig->data.high,
+		     UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode));
+  real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value);
+  real_to_decimal (str, &fixed_value, buf_size, 0, 1);
+}
+
+/* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on
+   the machine mode MODE.
+   Do not modify *F otherwise.
+   This function assumes the width of double_int is greater than the width
+   of the fixed-point value (the sum of a possible sign bit, possible ibits,
+   and fbits).
+   Return true, if !SAT_P and overflow.  */
+
+static bool
+fixed_saturate1 (enum machine_mode mode, double_int a, double_int *f,
+		 bool sat_p)
+{
+  bool overflow_p = false;
+  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
+  int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
+
+  if (unsigned_p) /* Unsigned type.  */
+    {
+      double_int max;
+      max.low = -1;
+      max.high = -1;
+      max = double_int_ext (max, i_f_bits, 1);
+      if (double_int_cmp (a, max, 1) == 1)
+	{
+	  if (sat_p)
+	    *f = max;
+	  else
+	    overflow_p = true;
+	}
+    }
+  else /* Signed type.  */
+    {
+      double_int max, min;
+      max.high = -1;
+      max.low = -1;
+      max = double_int_ext (max, i_f_bits, 1);
+      min.high = 0;
+      min.low = 1;
+      lshift_double (min.low, min.high, i_f_bits,
+		     2 * HOST_BITS_PER_WIDE_INT,
+		     &min.low, &min.high, 1);
+      min = double_int_ext (min, 1 + i_f_bits, 0);
+      if (double_int_cmp (a, max, 0) == 1)
+	{
+	  if (sat_p)
+	    *f = max;
+	  else
+	    overflow_p = true;
+	}
+      else if (double_int_cmp (a, min, 0) == -1)
+	{
+	  if (sat_p)
+	    *f = min;
+	  else
+	    overflow_p = true;
+	}
+    }
+  return overflow_p;
+}
+
+/* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and
+   save to *F based on the machine mode MODE.
+   Do not modify *F otherwise.
+   This function assumes the width of two double_int is greater than the width
+   of the fixed-point value (the sum of a possible sign bit, possible ibits,
+   and fbits).
+   Return true, if !SAT_P and overflow.  */
+
+static bool
+fixed_saturate2 (enum machine_mode mode, double_int a_high, double_int a_low,
+		 double_int *f, bool sat_p)
+{
+  bool overflow_p = false;
+  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
+  int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
+
+  if (unsigned_p) /* Unsigned type.  */
+    {
+      double_int max_r, max_s;
+      max_r.high = 0;
+      max_r.low = 0;
+      max_s.high = -1;
+      max_s.low = -1;
+      max_s = double_int_ext (max_s, i_f_bits, 1);
+      if (double_int_cmp (a_high, max_r, 1) == 1
+	  || (double_int_equal_p (a_high, max_r) &&
+	      double_int_cmp (a_low, max_s, 1) == 1))
+	{
+	  if (sat_p)
+	    *f = max_s;
+	  else
+	    overflow_p = true;
+	}
+    }
+  else /* Signed type.  */
+    {
+      double_int max_r, max_s, min_r, min_s;
+      max_r.high = 0;
+      max_r.low = 0;
+      max_s.high = -1;
+      max_s.low = -1;
+      max_s = double_int_ext (max_s, i_f_bits, 1);
+      min_r.high = -1;
+      min_r.low = -1;
+      min_s.high = 0;
+      min_s.low = 1;
+      lshift_double (min_s.low, min_s.high, i_f_bits,
+		     2 * HOST_BITS_PER_WIDE_INT,
+		     &min_s.low, &min_s.high, 1);
+      min_s = double_int_ext (min_s, 1 + i_f_bits, 0);
+      if (double_int_cmp (a_high, max_r, 0) == 1
+	  || (double_int_equal_p (a_high, max_r) &&
+	      double_int_cmp (a_low, max_s, 1) == 1))
+	{
+	  if (sat_p)
+	    *f = max_s;
+	  else
+	    overflow_p = true;
+	}
+      else if (double_int_cmp (a_high, min_r, 0) == -1
+	       || (double_int_equal_p (a_high, min_r) &&
+		   double_int_cmp (a_low, min_s, 1) == -1))
+	{
+	  if (sat_p)
+	    *f = min_s;
+	  else
+	    overflow_p = true;
+	}
+    }
+  return overflow_p;
+}
+
+/* Return the sign bit based on I_F_BITS.  */
+
+static inline int
+get_fixed_sign_bit (double_int a, int i_f_bits)
+{
+  if (i_f_bits < HOST_BITS_PER_WIDE_INT)
+    return (a.low >> i_f_bits) & 1;
+  else
+    return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1;
+}
+
+/* Calculate F = A + (SUBTRACT_P ? -B : B).
+   If SAT_P, saturate the result to the max or the min.
+   Return true, if !SAT_P and overflow.  */
+
+static bool
+do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+	      const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p)
+{
+  bool overflow_p = false;
+  bool unsigned_p;
+  double_int temp;
+  int i_f_bits;
+
+  /* This was a conditional expression but it triggered a bug in
+     Sun C 5.5.  */
+  if (subtract_p)
+    temp = double_int_neg (b->data);
+  else
+    temp = b->data;
+
+  unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+  i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+  f->mode = a->mode;
+  f->data = double_int_add (a->data, temp);
+  if (unsigned_p) /* Unsigned type.  */
+    {
+      if (subtract_p) /* Unsigned subtraction.  */
+	{
+	  if (double_int_cmp (a->data, b->data, 1) == -1)
+	    {
+	      if (sat_p)
+		{
+		  f->data.high = 0;
+		  f->data.low = 0;
+		 }
+	      else
+		overflow_p = true;
+	    }
+	}
+      else /* Unsigned addition.  */
+	{
+	  f->data = double_int_ext (f->data, i_f_bits, 1);
+	  if (double_int_cmp (f->data, a->data, 1) == -1
+	      || double_int_cmp (f->data, b->data, 1) == -1)
+	    {
+	      if (sat_p)
+		{
+		  f->data.high = -1;
+		  f->data.low = -1;
+		}
+	      else
+		overflow_p = true;
+	    }
+	}
+    }
+  else /* Signed type.  */
+    {
+      if ((!subtract_p
+	   && (get_fixed_sign_bit (a->data, i_f_bits)
+	       == get_fixed_sign_bit (b->data, i_f_bits))
+	   && (get_fixed_sign_bit (a->data, i_f_bits)
+	       != get_fixed_sign_bit (f->data, i_f_bits)))
+	  || (subtract_p
+	      && (get_fixed_sign_bit (a->data, i_f_bits)
+		  != get_fixed_sign_bit (b->data, i_f_bits))
+	      && (get_fixed_sign_bit (a->data, i_f_bits)
+		  != get_fixed_sign_bit (f->data, i_f_bits))))
+	{
+	  if (sat_p)
+	    {
+	      f->data.low = 1;
+	      f->data.high = 0;
+	      lshift_double (f->data.low, f->data.high, i_f_bits,
+			     2 * HOST_BITS_PER_WIDE_INT,
+			     &f->data.low, &f->data.high, 1);
+	      if (get_fixed_sign_bit (a->data, i_f_bits) == 0)
+		{
+		  double_int one;
+		  one.low = 1;
+		  one.high = 0;
+		  f->data = double_int_add (f->data, double_int_neg (one));
+		}
+	    }
+	  else
+	    overflow_p = true;
+	}
+    }
+  f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+  return overflow_p;
+}
+
+/* Calculate F = A * B.
+   If SAT_P, saturate the result to the max or the min.
+   Return true, if !SAT_P and overflow.  */
+
+static bool
+do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+		   const FIXED_VALUE_TYPE *b, bool sat_p)
+{
+  bool overflow_p = false;
+  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+  int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+  f->mode = a->mode;
+  if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
+    {
+      f->data = double_int_mul (a->data, b->data);
+      lshift_double (f->data.low, f->data.high,
+		     (-GET_MODE_FBIT (f->mode)),
+		     2 * HOST_BITS_PER_WIDE_INT,
+		     &f->data.low, &f->data.high, !unsigned_p);
+      overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+    }
+  else
+    {
+      /* The result of multiplication expands to two double_int.  */
+      double_int a_high, a_low, b_high, b_low;
+      double_int high_high, high_low, low_high, low_low;
+      double_int r, s, temp1, temp2;
+      int carry = 0;
+
+      /* Decompose a and b to four double_int.  */
+      a_high.low = a->data.high;
+      a_high.high = 0;
+      a_low.low = a->data.low;
+      a_low.high = 0;
+      b_high.low = b->data.high;
+      b_high.high = 0;
+      b_low.low = b->data.low;
+      b_low.high = 0;
+
+      /* Perform four multiplications.  */
+      low_low = double_int_mul (a_low, b_low);
+      low_high = double_int_mul (a_low, b_high);
+      high_low = double_int_mul (a_high, b_low);
+      high_high = double_int_mul (a_high, b_high);
+
+      /* Accumulate four results to {r, s}.  */
+      temp1.high = high_low.low;
+      temp1.low = 0;
+      s = double_int_add (low_low, temp1);
+      if (double_int_cmp (s, low_low, 1) == -1
+	  || double_int_cmp (s, temp1, 1) == -1)
+	carry ++; /* Carry */
+      temp1.high = s.high;
+      temp1.low = s.low;
+      temp2.high = low_high.low;
+      temp2.low = 0;
+      s = double_int_add (temp1, temp2);
+      if (double_int_cmp (s, temp1, 1) == -1
+	  || double_int_cmp (s, temp2, 1) == -1)
+	carry ++; /* Carry */
+
+      temp1.low = high_low.high;
+      temp1.high = 0;
+      r = double_int_add (high_high, temp1);
+      temp1.low = low_high.high;
+      temp1.high = 0;
+      r = double_int_add (r, temp1);
+      temp1.low = carry;
+      temp1.high = 0;
+      r = double_int_add (r, temp1);
+
+      /* We need to add neg(b) to r, if a < 0.  */
+      if (!unsigned_p && a->data.high < 0)
+	r = double_int_add (r, double_int_neg (b->data));
+      /* We need to add neg(a) to r, if b < 0.  */
+      if (!unsigned_p && b->data.high < 0)
+	r = double_int_add (r, double_int_neg (a->data));
+
+      /* Shift right the result by FBIT.  */
+      if (GET_MODE_FBIT (f->mode) == 2 * HOST_BITS_PER_WIDE_INT)
+	{
+	  s.low = r.low;
+	  s.high = r.high;
+	  if (unsigned_p)
+	    {
+	      r.low = 0;
+	      r.high = 0;
+	    }
+	  else
+	    {
+	      r.low = -1;
+	      r.high = -1;
+	    }
+	  f->data.low = s.low;
+	  f->data.high = s.high;
+	}
+      else
+	{
+	  lshift_double (s.low, s.high,
+			 (-GET_MODE_FBIT (f->mode)),
+			 2 * HOST_BITS_PER_WIDE_INT,
+			 &s.low, &s.high, 0);
+	  lshift_double (r.low, r.high,
+			 (2 * HOST_BITS_PER_WIDE_INT
+			  - GET_MODE_FBIT (f->mode)),
+			 2 * HOST_BITS_PER_WIDE_INT,
+			 &f->data.low, &f->data.high, 0);
+	  f->data.low = f->data.low | s.low;
+	  f->data.high = f->data.high | s.high;
+	  s.low = f->data.low;
+	  s.high = f->data.high;
+	  lshift_double (r.low, r.high,
+			 (-GET_MODE_FBIT (f->mode)),
+			 2 * HOST_BITS_PER_WIDE_INT,
+			 &r.low, &r.high, !unsigned_p);
+	}
+
+      overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p);
+    }
+
+  f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+  return overflow_p;
+}
+
+/* Calculate F = A / B.
+   If SAT_P, saturate the result to the max or the min.
+   Return true, if !SAT_P and overflow.  */
+
+static bool
+do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+		 const FIXED_VALUE_TYPE *b, bool sat_p)
+{
+  bool overflow_p = false;
+  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+  int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+  f->mode = a->mode;
+  if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
+    {
+      lshift_double (a->data.low, a->data.high,
+		     GET_MODE_FBIT (f->mode),
+		     2 * HOST_BITS_PER_WIDE_INT,
+		     &f->data.low, &f->data.high, !unsigned_p);
+      f->data = double_int_div (f->data, b->data, unsigned_p, TRUNC_DIV_EXPR);
+      overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+    }
+  else
+    {
+      double_int pos_a, pos_b, r, s;
+      double_int quo_r, quo_s, mod, temp;
+      int num_of_neg = 0;
+      int i;
+
+      /* If a < 0, negate a.  */
+      if (!unsigned_p && a->data.high < 0)
+	{
+	  pos_a = double_int_neg (a->data);
+	  num_of_neg ++;
+	}
+      else
+	pos_a = a->data;
+
+      /* If b < 0, negate b.  */
+      if (!unsigned_p && b->data.high < 0)
+	{
+	  pos_b = double_int_neg (b->data);
+	  num_of_neg ++;
+	}
+      else
+	pos_b = b->data;
+
+      /* Left shift pos_a to {r, s} by FBIT.  */
+      if (GET_MODE_FBIT (f->mode) == 2 * HOST_BITS_PER_WIDE_INT)
+	{
+	  r = pos_a;
+	  s.high = 0;
+	  s.low = 0;
+	}
+      else
+ 	{
+	  lshift_double (pos_a.low, pos_a.high,
+			 GET_MODE_FBIT (f->mode),
+			 2 * HOST_BITS_PER_WIDE_INT,
+			 &s.low, &s.high, 0);
+	  lshift_double (pos_a.low, pos_a.high,
+			 - (2 * HOST_BITS_PER_WIDE_INT
+			    - GET_MODE_FBIT (f->mode)),
+			 2 * HOST_BITS_PER_WIDE_INT,
+			 &r.low, &r.high, 0);
+ 	}
+
+      /* Divide r by pos_b to quo_r.  The remainder is in mod.  */
+      div_and_round_double (TRUNC_DIV_EXPR, 1, r.low, r.high, pos_b.low,
+			    pos_b.high, &quo_r.low, &quo_r.high, &mod.low,
+			    &mod.high);
+
+      quo_s.high = 0;
+      quo_s.low = 0;
+
+      for (i = 0; i < 2 * HOST_BITS_PER_WIDE_INT; i++)
+	{
+	  /* Record the leftmost bit of mod.  */
+	  int leftmost_mod = (mod.high < 0);
+
+	  /* Shift left mod by 1 bit.  */
+	  lshift_double (mod.low, mod.high, 1, 2 * HOST_BITS_PER_WIDE_INT,
+			 &mod.low, &mod.high, 0);
+
+	  /* Test the leftmost bit of s to add to mod.  */
+	  if (s.high < 0)
+	    mod.low += 1;
+
+	  /* Shift left quo_s by 1 bit.  */
+	  lshift_double (quo_s.low, quo_s.high, 1, 2 * HOST_BITS_PER_WIDE_INT,
+			 &quo_s.low, &quo_s.high, 0);
+
+	  /* Try to calculate (mod - pos_b).  */
+	  temp = double_int_add (mod, double_int_neg (pos_b));
+
+	  if (leftmost_mod == 1 || double_int_cmp (mod, pos_b, 1) != -1)
+	    {
+	      quo_s.low += 1;
+	      mod = temp;
+	    }
+
+	  /* Shift left s by 1 bit.  */
+	  lshift_double (s.low, s.high, 1, 2 * HOST_BITS_PER_WIDE_INT,
+			 &s.low, &s.high, 0);
+
+	}
+
+      if (num_of_neg == 1)
+	{
+	  quo_s = double_int_neg (quo_s);
+	  if (quo_s.high == 0 && quo_s.low == 0)
+	    quo_r = double_int_neg (quo_r);
+	  else
+	    {
+	      quo_r.low = ~quo_r.low;
+	      quo_r.high = ~quo_r.high;
+	    }
+	}
+
+      f->data = quo_s;
+      overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p);
+    }
+
+  f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+  return overflow_p;
+}
+
+/* Calculate F = A << B if LEFT_P.  Otherwise, F = A >> B.
+   If SAT_P, saturate the result to the max or the min.
+   Return true, if !SAT_P and overflow.  */
+
+static bool
+do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+	      const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p)
+{
+  bool overflow_p = false;
+  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+  int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+  f->mode = a->mode;
+
+  if (b->data.low == 0)
+    {
+      f->data = a->data;
+      return overflow_p;
+    }
+
+  if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p))
+    {
+      lshift_double (a->data.low, a->data.high,
+		     left_p ? b->data.low : (-b->data.low),
+		     2 * HOST_BITS_PER_WIDE_INT,
+		     &f->data.low, &f->data.high, !unsigned_p);
+      if (left_p) /* Only left shift saturates.  */
+	overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+    }
+  else /* We need two double_int to store the left-shift result.  */
+    {
+      double_int temp_high, temp_low;
+      if (b->data.low == 2 * HOST_BITS_PER_WIDE_INT)
+	{
+	  temp_high = a->data;
+	  temp_low.high = 0;
+	  temp_low.low = 0;
+	}
+      else
+	{
+	  lshift_double (a->data.low, a->data.high,
+			 b->data.low,
+			 2 * HOST_BITS_PER_WIDE_INT,
+			 &temp_low.low, &temp_low.high, !unsigned_p);
+	  /* Logical shift right to temp_high.  */
+	  lshift_double (a->data.low, a->data.high,
+			 b->data.low - 2 * HOST_BITS_PER_WIDE_INT,
+			 2 * HOST_BITS_PER_WIDE_INT,
+			 &temp_high.low, &temp_high.high, 0);
+	}
+      if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high.  */
+	temp_high = double_int_ext (temp_high, b->data.low, unsigned_p);
+      f->data = temp_low;
+      overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
+				    sat_p);
+    }
+  f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+  return overflow_p;
+}
+
+/* Calculate F = -A.
+   If SAT_P, saturate the result to the max or the min.
+   Return true, if !SAT_P and overflow.  */
+
+static bool
+do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p)
+{
+  bool overflow_p = false;
+  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+  int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+  f->mode = a->mode;
+  f->data = double_int_neg (a->data);
+  f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+
+  if (unsigned_p) /* Unsigned type.  */
+    {
+      if (f->data.low != 0 || f->data.high != 0)
+	{
+	  if (sat_p)
+	    {
+	      f->data.low = 0;
+	      f->data.high = 0;
+	    }
+	  else
+	    overflow_p = true;
+	}
+    }
+  else /* Signed type.  */
+    {
+      if (!(f->data.high == 0 && f->data.low == 0)
+	  && f->data.high == a->data.high && f->data.low == a->data.low )
+	{
+	  if (sat_p)
+	    {
+	      /* Saturate to the maximum by subtracting f->data by one.  */
+	      f->data.low = -1;
+	      f->data.high = -1;
+	      f->data = double_int_ext (f->data, i_f_bits, 1);
+	    }
+	  else
+	    overflow_p = true;
+	}
+    }
+  return overflow_p;
+}
+
+/* Perform the binary or unary operation described by CODE.
+   Note that OP0 and OP1 must have the same mode for binary operators.
+   For a unary operation, leave OP1 NULL.
+   Return true, if !SAT_P and overflow.  */
+
+bool
+fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0,
+		  const FIXED_VALUE_TYPE *op1, bool sat_p)
+{
+  switch (icode)
+    {
+    case NEGATE_EXPR:
+      return do_fixed_neg (f, op0, sat_p);
+      break;
+
+    case PLUS_EXPR:
+      gcc_assert (op0->mode == op1->mode);
+      return do_fixed_add (f, op0, op1, false, sat_p);
+      break;
+
+    case MINUS_EXPR:
+      gcc_assert (op0->mode == op1->mode);
+      return do_fixed_add (f, op0, op1, true, sat_p);
+      break;
+
+    case MULT_EXPR:
+      gcc_assert (op0->mode == op1->mode);
+      return do_fixed_multiply (f, op0, op1, sat_p);
+      break;
+
+    case TRUNC_DIV_EXPR:
+      gcc_assert (op0->mode == op1->mode);
+      return do_fixed_divide (f, op0, op1, sat_p);
+      break;
+
+    case LSHIFT_EXPR:
+      return do_fixed_shift (f, op0, op1, true, sat_p);
+      break;
+
+    case RSHIFT_EXPR:
+      return do_fixed_shift (f, op0, op1, false, sat_p);
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+  return false;
+}
+
+/* Compare fixed-point values by tree_code.
+   Note that OP0 and OP1 must have the same mode.  */
+
+bool
+fixed_compare (int icode, const FIXED_VALUE_TYPE *op0,
+	       const FIXED_VALUE_TYPE *op1)
+{
+  enum tree_code code = icode;
+  gcc_assert (op0->mode == op1->mode);
+
+  switch (code)
+    {
+    case NE_EXPR:
+      return !double_int_equal_p (op0->data, op1->data);
+
+    case EQ_EXPR:
+      return double_int_equal_p (op0->data, op1->data);
+
+    case LT_EXPR:
+      return double_int_cmp (op0->data, op1->data,
+			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1;
+
+    case LE_EXPR:
+      return double_int_cmp (op0->data, op1->data,
+			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1;
+
+    case GT_EXPR:
+      return double_int_cmp (op0->data, op1->data,
+			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1;
+
+    case GE_EXPR:
+      return double_int_cmp (op0->data, op1->data,
+			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1;
+
+    default:
+      gcc_unreachable ();
+    }
+}
+
+/* Extend or truncate to a new mode.
+   If SAT_P, saturate the result to the max or the min.
+   Return true, if !SAT_P and overflow.  */
+
+bool
+fixed_convert (FIXED_VALUE_TYPE *f, enum machine_mode mode,
+               const FIXED_VALUE_TYPE *a, bool sat_p)
+{
+  bool overflow_p = false;
+  if (mode == a->mode)
+    {
+      *f = *a;
+      return overflow_p;
+    }
+
+  if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode))
+    {
+      /* Left shift a to temp_high, temp_low based on a->mode.  */
+      double_int temp_high, temp_low;
+      int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode);
+      lshift_double (a->data.low, a->data.high,
+		     amount,
+		     2 * HOST_BITS_PER_WIDE_INT,
+		     &temp_low.low, &temp_low.high,
+		     SIGNED_FIXED_POINT_MODE_P (a->mode));
+      /* Logical shift right to temp_high.  */
+      lshift_double (a->data.low, a->data.high,
+		     amount - 2 * HOST_BITS_PER_WIDE_INT,
+		     2 * HOST_BITS_PER_WIDE_INT,
+		     &temp_high.low, &temp_high.high, 0);
+      if (SIGNED_FIXED_POINT_MODE_P (a->mode)
+	  && a->data.high < 0) /* Signed-extend temp_high.  */
+	temp_high = double_int_ext (temp_high, amount, 0);
+      f->mode = mode;
+      f->data = temp_low;
+      if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
+	  SIGNED_FIXED_POINT_MODE_P (f->mode))
+	overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
+				      sat_p);
+      else
+	{
+	  /* Take care of the cases when converting between signed and
+	     unsigned.  */
+	  if (SIGNED_FIXED_POINT_MODE_P (a->mode))
+	    {
+	      /* Signed -> Unsigned.  */
+	      if (a->data.high < 0)
+		{
+		  if (sat_p)
+		    {
+		      f->data.low = 0;  /* Set to zero.  */
+		      f->data.high = 0;  /* Set to zero.  */
+		    }
+		  else
+		    overflow_p = true;
+		}
+	      else
+		overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+					      &f->data, sat_p);
+	    }
+	  else
+	    {
+	      /* Unsigned -> Signed.  */
+	      if (temp_high.high < 0)
+		{
+		  if (sat_p)
+		    {
+		      /* Set to maximum.  */
+		      f->data.low = -1;  /* Set to all ones.  */
+		      f->data.high = -1;  /* Set to all ones.  */
+		      f->data = double_int_ext (f->data,
+						GET_MODE_FBIT (f->mode)
+						+ GET_MODE_IBIT (f->mode),
+						1); /* Clear the sign.  */
+		    }
+		  else
+		    overflow_p = true;
+		}
+	      else
+		overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+					      &f->data, sat_p);
+	    }
+	}
+    }
+  else
+    {
+      /* Right shift a to temp based on a->mode.  */
+      double_int temp;
+      lshift_double (a->data.low, a->data.high,
+		     GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode),
+		     2 * HOST_BITS_PER_WIDE_INT,
+		     &temp.low, &temp.high,
+		     SIGNED_FIXED_POINT_MODE_P (a->mode));
+      f->mode = mode;
+      f->data = temp;
+      if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
+	  SIGNED_FIXED_POINT_MODE_P (f->mode))
+	overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+      else
+	{
+	  /* Take care of the cases when converting between signed and
+	     unsigned.  */
+	  if (SIGNED_FIXED_POINT_MODE_P (a->mode))
+	    {
+	      /* Signed -> Unsigned.  */
+	      if (a->data.high < 0)
+		{
+		  if (sat_p)
+		    {
+		      f->data.low = 0;  /* Set to zero.  */
+		      f->data.high = 0;  /* Set to zero.  */
+		    }
+		  else
+		    overflow_p = true;
+		}
+	      else
+		overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
+					      sat_p);
+	    }
+	  else
+	    {
+	      /* Unsigned -> Signed.  */
+	      if (temp.high < 0)
+		{
+		  if (sat_p)
+		    {
+		      /* Set to maximum.  */
+		      f->data.low = -1;  /* Set to all ones.  */
+		      f->data.high = -1;  /* Set to all ones.  */
+		      f->data = double_int_ext (f->data,
+						GET_MODE_FBIT (f->mode)
+						+ GET_MODE_IBIT (f->mode),
+						1); /* Clear the sign.  */
+		    }
+		  else
+		    overflow_p = true;
+		}
+	      else
+		overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
+					      sat_p);
+	    }
+	}
+    }
+
+  f->data = double_int_ext (f->data,
+			    SIGNED_FIXED_POINT_MODE_P (f->mode)
+			    + GET_MODE_FBIT (f->mode)
+			    + GET_MODE_IBIT (f->mode),
+			    UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+  return overflow_p;
+}
+
+/* Convert to a new fixed-point mode from an integer.
+   If UNSIGNED_P, this integer is unsigned.
+   If SAT_P, saturate the result to the max or the min.
+   Return true, if !SAT_P and overflow.  */
+
+bool
+fixed_convert_from_int (FIXED_VALUE_TYPE *f, enum machine_mode mode,
+			double_int a, bool unsigned_p, bool sat_p)
+{
+  bool overflow_p = false;
+  /* Left shift a to temp_high, temp_low.  */
+  double_int temp_high, temp_low;
+  int amount = GET_MODE_FBIT (mode);
+  if (amount == 2 * HOST_BITS_PER_WIDE_INT)
+    {
+       temp_high = a;
+       temp_low.low = 0;
+       temp_low.high = 0;
+    }
+  else
+    {
+      lshift_double (a.low, a.high,
+		     amount,
+		     2 * HOST_BITS_PER_WIDE_INT,
+		     &temp_low.low, &temp_low.high, 0);
+
+      /* Logical shift right to temp_high.  */
+      lshift_double (a.low, a.high,
+		     amount - 2 * HOST_BITS_PER_WIDE_INT,
+		     2 * HOST_BITS_PER_WIDE_INT,
+		     &temp_high.low, &temp_high.high, 0);
+    }
+  if (!unsigned_p && a.high < 0) /* Signed-extend temp_high.  */
+    temp_high = double_int_ext (temp_high, amount, 0);
+
+  f->mode = mode;
+  f->data = temp_low;
+
+  if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode))
+    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
+				  sat_p);
+  else
+    {
+      /* Take care of the cases when converting between signed and unsigned.  */
+      if (!unsigned_p)
+	{
+	  /* Signed -> Unsigned.  */
+	  if (a.high < 0)
+	    {
+	      if (sat_p)
+		{
+		  f->data.low = 0;  /* Set to zero.  */
+		  f->data.high = 0;  /* Set to zero.  */
+		}
+	      else
+		overflow_p = true;
+	    }
+	  else
+	    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+					  &f->data, sat_p);
+	}
+      else
+	{
+	  /* Unsigned -> Signed.  */
+	  if (temp_high.high < 0)
+	    {
+	      if (sat_p)
+		{
+		  /* Set to maximum.  */
+		  f->data.low = -1;  /* Set to all ones.  */
+		  f->data.high = -1;  /* Set to all ones.  */
+		  f->data = double_int_ext (f->data,
+					    GET_MODE_FBIT (f->mode)
+					    + GET_MODE_IBIT (f->mode),
+					    1); /* Clear the sign.  */
+		}
+	      else
+		overflow_p = true;
+	    }
+	  else
+	    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+					  &f->data, sat_p);
+	}
+    }
+  f->data = double_int_ext (f->data,
+			    SIGNED_FIXED_POINT_MODE_P (f->mode)
+			    + GET_MODE_FBIT (f->mode)
+			    + GET_MODE_IBIT (f->mode),
+			    UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+  return overflow_p;
+}
+
+/* Convert to a new fixed-point mode from a real.
+   If SAT_P, saturate the result to the max or the min.
+   Return true, if !SAT_P and overflow.  */
+
+bool
+fixed_convert_from_real (FIXED_VALUE_TYPE *f, enum machine_mode mode,
+			 const REAL_VALUE_TYPE *a, bool sat_p)
+{
+  bool overflow_p = false;
+  REAL_VALUE_TYPE real_value, fixed_value, base_value;
+  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
+  int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
+  unsigned int fbit = GET_MODE_FBIT (mode);
+  enum fixed_value_range_code temp;
+
+  real_value = *a;
+  f->mode = mode;
+  real_2expN (&base_value, fbit, mode);
+  real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
+  real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high, &fixed_value);
+  temp = check_real_for_fixed_mode (&real_value, mode);
+  if (temp == FIXED_UNDERFLOW) /* Minimum.  */
+    {
+      if (sat_p)
+	{
+	  if (unsigned_p)
+	    {
+	      f->data.low = 0;
+	      f->data.high = 0;
+	    }
+	  else
+	    {
+	      f->data.low = 1;
+	      f->data.high = 0;
+	      lshift_double (f->data.low, f->data.high, i_f_bits,
+			     2 * HOST_BITS_PER_WIDE_INT,
+			     &f->data.low, &f->data.high, 1);
+	      f->data = double_int_ext (f->data, 1 + i_f_bits, 0);
+	    }
+	}
+      else
+	overflow_p = true;
+    }
+  else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum.  */
+    {
+      if (sat_p)
+	{
+	  f->data.low = -1;
+	  f->data.high = -1;
+	  f->data = double_int_ext (f->data, i_f_bits, 1);
+	}
+      else
+	overflow_p = true;
+    }
+  f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+  return overflow_p;
+}
+
+/* Convert to a new real mode from a fixed-point.  */
+
+void
+real_convert_from_fixed (REAL_VALUE_TYPE *r, enum machine_mode mode,
+			 const FIXED_VALUE_TYPE *f)
+{
+  REAL_VALUE_TYPE base_value, fixed_value, real_value;
+
+  real_2expN (&base_value, GET_MODE_FBIT (f->mode), f->mode);
+  real_from_integer (&fixed_value, VOIDmode, f->data.low, f->data.high,
+		     UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+  real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value);
+  real_convert (r, mode, &real_value);
+}
+
+/* Determine whether a fixed-point value F is negative.  */
+
+bool
+fixed_isneg (const FIXED_VALUE_TYPE *f)
+{
+  if (SIGNED_FIXED_POINT_MODE_P (f->mode))
+    {
+      int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode);
+      int sign_bit = get_fixed_sign_bit (f->data, i_f_bits);
+      if (sign_bit == 1)
+	return true;
+    }
+
+  return false;
+}