diff gcc/ggc-page.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/ggc-page.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,2360 @@
+/* "Bag-of-pages" garbage collector for the GNU compiler.
+   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
+   Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "toplev.h"
+#include "flags.h"
+#include "ggc.h"
+#include "timevar.h"
+#include "params.h"
+#include "tree-flow.h"
+
+/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
+   file open.  Prefer either to valloc.  */
+#ifdef HAVE_MMAP_ANON
+# undef HAVE_MMAP_DEV_ZERO
+
+# include <sys/mman.h>
+# ifndef MAP_FAILED
+#  define MAP_FAILED -1
+# endif
+# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
+#  define MAP_ANONYMOUS MAP_ANON
+# endif
+# define USING_MMAP
+
+#endif
+
+#ifdef HAVE_MMAP_DEV_ZERO
+
+# include <sys/mman.h>
+# ifndef MAP_FAILED
+#  define MAP_FAILED -1
+# endif
+# define USING_MMAP
+
+#endif
+
+#ifndef USING_MMAP
+#define USING_MALLOC_PAGE_GROUPS
+#endif
+
+/* Strategy:
+
+   This garbage-collecting allocator allocates objects on one of a set
+   of pages.  Each page can allocate objects of a single size only;
+   available sizes are powers of two starting at four bytes.  The size
+   of an allocation request is rounded up to the next power of two
+   (`order'), and satisfied from the appropriate page.
+
+   Each page is recorded in a page-entry, which also maintains an
+   in-use bitmap of object positions on the page.  This allows the
+   allocation state of a particular object to be flipped without
+   touching the page itself.
+
+   Each page-entry also has a context depth, which is used to track
+   pushing and popping of allocation contexts.  Only objects allocated
+   in the current (highest-numbered) context may be collected.
+
+   Page entries are arranged in an array of singly-linked lists.  The
+   array is indexed by the allocation size, in bits, of the pages on
+   it; i.e. all pages on a list allocate objects of the same size.
+   Pages are ordered on the list such that all non-full pages precede
+   all full pages, with non-full pages arranged in order of decreasing
+   context depth.
+
+   Empty pages (of all orders) are kept on a single page cache list,
+   and are considered first when new pages are required; they are
+   deallocated at the start of the next collection if they haven't
+   been recycled by then.  */
+
+/* Define GGC_DEBUG_LEVEL to print debugging information.
+     0: No debugging output.
+     1: GC statistics only.
+     2: Page-entry allocations/deallocations as well.
+     3: Object allocations as well.
+     4: Object marks as well.  */
+#define GGC_DEBUG_LEVEL (0)
+
+#ifndef HOST_BITS_PER_PTR
+#define HOST_BITS_PER_PTR  HOST_BITS_PER_LONG
+#endif
+
+
+/* A two-level tree is used to look up the page-entry for a given
+   pointer.  Two chunks of the pointer's bits are extracted to index
+   the first and second levels of the tree, as follows:
+
+				   HOST_PAGE_SIZE_BITS
+			   32		|      |
+       msb +----------------+----+------+------+ lsb
+			    |    |      |
+			 PAGE_L1_BITS   |
+				 |      |
+			       PAGE_L2_BITS
+
+   The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
+   pages are aligned on system page boundaries.  The next most
+   significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
+   index values in the lookup table, respectively.
+
+   For 32-bit architectures and the settings below, there are no
+   leftover bits.  For architectures with wider pointers, the lookup
+   tree points to a list of pages, which must be scanned to find the
+   correct one.  */
+
+#define PAGE_L1_BITS	(8)
+#define PAGE_L2_BITS	(32 - PAGE_L1_BITS - G.lg_pagesize)
+#define PAGE_L1_SIZE	((size_t) 1 << PAGE_L1_BITS)
+#define PAGE_L2_SIZE	((size_t) 1 << PAGE_L2_BITS)
+
+#define LOOKUP_L1(p) \
+  (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
+
+#define LOOKUP_L2(p) \
+  (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
+
+/* The number of objects per allocation page, for objects on a page of
+   the indicated ORDER.  */
+#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
+
+/* The number of objects in P.  */
+#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
+
+/* The size of an object on a page of the indicated ORDER.  */
+#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
+
+/* For speed, we avoid doing a general integer divide to locate the
+   offset in the allocation bitmap, by precalculating numbers M, S
+   such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
+   within the page which is evenly divisible by the object size Z.  */
+#define DIV_MULT(ORDER) inverse_table[ORDER].mult
+#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
+#define OFFSET_TO_BIT(OFFSET, ORDER) \
+  (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
+
+/* The number of extra orders, not corresponding to power-of-two sized
+   objects.  */
+
+#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
+
+#define RTL_SIZE(NSLOTS) \
+  (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
+
+#define TREE_EXP_SIZE(OPS) \
+  (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
+
+/* The Ith entry is the maximum size of an object to be stored in the
+   Ith extra order.  Adding a new entry to this array is the *only*
+   thing you need to do to add a new special allocation size.  */
+
+static const size_t extra_order_size_table[] = {
+  sizeof (struct var_ann_d),
+  sizeof (struct tree_decl_non_common),
+  sizeof (struct tree_field_decl),
+  sizeof (struct tree_parm_decl),
+  sizeof (struct tree_var_decl),
+  sizeof (struct tree_list),
+  sizeof (struct tree_ssa_name),
+  sizeof (struct function),
+  sizeof (struct basic_block_def),
+  sizeof (bitmap_element),
+  sizeof (bitmap_head),
+  TREE_EXP_SIZE (2),
+  RTL_SIZE (2),			/* MEM, PLUS, etc.  */
+  RTL_SIZE (9),			/* INSN */
+};
+
+/* The total number of orders.  */
+
+#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
+
+/* We use this structure to determine the alignment required for
+   allocations.  For power-of-two sized allocations, that's not a
+   problem, but it does matter for odd-sized allocations.  */
+
+struct max_alignment {
+  char c;
+  union {
+    HOST_WIDEST_INT i;
+    long double d;
+  } u;
+};
+
+/* The biggest alignment required.  */
+
+#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
+
+/* Compute the smallest nonnegative number which when added to X gives
+   a multiple of F.  */
+
+#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
+
+/* Compute the smallest multiple of F that is >= X.  */
+
+#define ROUND_UP(x, f) (CEIL (x, f) * (f))
+
+/* The Ith entry is the number of objects on a page or order I.  */
+
+static unsigned objects_per_page_table[NUM_ORDERS];
+
+/* The Ith entry is the size of an object on a page of order I.  */
+
+static size_t object_size_table[NUM_ORDERS];
+
+/* The Ith entry is a pair of numbers (mult, shift) such that
+   ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
+   for all k evenly divisible by OBJECT_SIZE(I).  */
+
+static struct
+{
+  size_t mult;
+  unsigned int shift;
+}
+inverse_table[NUM_ORDERS];
+
+/* A page_entry records the status of an allocation page.  This
+   structure is dynamically sized to fit the bitmap in_use_p.  */
+typedef struct page_entry
+{
+  /* The next page-entry with objects of the same size, or NULL if
+     this is the last page-entry.  */
+  struct page_entry *next;
+
+  /* The previous page-entry with objects of the same size, or NULL if
+     this is the first page-entry.   The PREV pointer exists solely to
+     keep the cost of ggc_free manageable.  */
+  struct page_entry *prev;
+
+  /* The number of bytes allocated.  (This will always be a multiple
+     of the host system page size.)  */
+  size_t bytes;
+
+  /* The address at which the memory is allocated.  */
+  char *page;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+  /* Back pointer to the page group this page came from.  */
+  struct page_group *group;
+#endif
+
+  /* This is the index in the by_depth varray where this page table
+     can be found.  */
+  unsigned long index_by_depth;
+
+  /* Context depth of this page.  */
+  unsigned short context_depth;
+
+  /* The number of free objects remaining on this page.  */
+  unsigned short num_free_objects;
+
+  /* A likely candidate for the bit position of a free object for the
+     next allocation from this page.  */
+  unsigned short next_bit_hint;
+
+  /* The lg of size of objects allocated from this page.  */
+  unsigned char order;
+
+  /* A bit vector indicating whether or not objects are in use.  The
+     Nth bit is one if the Nth object on this page is allocated.  This
+     array is dynamically sized.  */
+  unsigned long in_use_p[1];
+} page_entry;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+/* A page_group describes a large allocation from malloc, from which
+   we parcel out aligned pages.  */
+typedef struct page_group
+{
+  /* A linked list of all extant page groups.  */
+  struct page_group *next;
+
+  /* The address we received from malloc.  */
+  char *allocation;
+
+  /* The size of the block.  */
+  size_t alloc_size;
+
+  /* A bitmask of pages in use.  */
+  unsigned int in_use;
+} page_group;
+#endif
+
+#if HOST_BITS_PER_PTR <= 32
+
+/* On 32-bit hosts, we use a two level page table, as pictured above.  */
+typedef page_entry **page_table[PAGE_L1_SIZE];
+
+#else
+
+/* On 64-bit hosts, we use the same two level page tables plus a linked
+   list that disambiguates the top 32-bits.  There will almost always be
+   exactly one entry in the list.  */
+typedef struct page_table_chain
+{
+  struct page_table_chain *next;
+  size_t high_bits;
+  page_entry **table[PAGE_L1_SIZE];
+} *page_table;
+
+#endif
+
+/* The rest of the global variables.  */
+static struct globals
+{
+  /* The Nth element in this array is a page with objects of size 2^N.
+     If there are any pages with free objects, they will be at the
+     head of the list.  NULL if there are no page-entries for this
+     object size.  */
+  page_entry *pages[NUM_ORDERS];
+
+  /* The Nth element in this array is the last page with objects of
+     size 2^N.  NULL if there are no page-entries for this object
+     size.  */
+  page_entry *page_tails[NUM_ORDERS];
+
+  /* Lookup table for associating allocation pages with object addresses.  */
+  page_table lookup;
+
+  /* The system's page size.  */
+  size_t pagesize;
+  size_t lg_pagesize;
+
+  /* Bytes currently allocated.  */
+  size_t allocated;
+
+  /* Bytes currently allocated at the end of the last collection.  */
+  size_t allocated_last_gc;
+
+  /* Total amount of memory mapped.  */
+  size_t bytes_mapped;
+
+  /* Bit N set if any allocations have been done at context depth N.  */
+  unsigned long context_depth_allocations;
+
+  /* Bit N set if any collections have been done at context depth N.  */
+  unsigned long context_depth_collections;
+
+  /* The current depth in the context stack.  */
+  unsigned short context_depth;
+
+  /* A file descriptor open to /dev/zero for reading.  */
+#if defined (HAVE_MMAP_DEV_ZERO)
+  int dev_zero_fd;
+#endif
+
+  /* A cache of free system pages.  */
+  page_entry *free_pages;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+  page_group *page_groups;
+#endif
+
+  /* The file descriptor for debugging output.  */
+  FILE *debug_file;
+
+  /* Current number of elements in use in depth below.  */
+  unsigned int depth_in_use;
+
+  /* Maximum number of elements that can be used before resizing.  */
+  unsigned int depth_max;
+
+  /* Each element of this array is an index in by_depth where the given
+     depth starts.  This structure is indexed by that given depth we
+     are interested in.  */
+  unsigned int *depth;
+
+  /* Current number of elements in use in by_depth below.  */
+  unsigned int by_depth_in_use;
+
+  /* Maximum number of elements that can be used before resizing.  */
+  unsigned int by_depth_max;
+
+  /* Each element of this array is a pointer to a page_entry, all
+     page_entries can be found in here by increasing depth.
+     index_by_depth in the page_entry is the index into this data
+     structure where that page_entry can be found.  This is used to
+     speed up finding all page_entries at a particular depth.  */
+  page_entry **by_depth;
+
+  /* Each element is a pointer to the saved in_use_p bits, if any,
+     zero otherwise.  We allocate them all together, to enable a
+     better runtime data access pattern.  */
+  unsigned long **save_in_use;
+
+#ifdef ENABLE_GC_ALWAYS_COLLECT
+  /* List of free objects to be verified as actually free on the
+     next collection.  */
+  struct free_object
+  {
+    void *object;
+    struct free_object *next;
+  } *free_object_list;
+#endif
+
+#ifdef GATHER_STATISTICS
+  struct
+  {
+    /* Total memory allocated with ggc_alloc.  */
+    unsigned long long total_allocated;
+    /* Total overhead for memory to be allocated with ggc_alloc.  */
+    unsigned long long total_overhead;
+
+    /* Total allocations and overhead for sizes less than 32, 64 and 128.
+       These sizes are interesting because they are typical cache line
+       sizes.  */
+   
+    unsigned long long total_allocated_under32;
+    unsigned long long total_overhead_under32;
+  
+    unsigned long long total_allocated_under64;
+    unsigned long long total_overhead_under64;
+  
+    unsigned long long total_allocated_under128;
+    unsigned long long total_overhead_under128;
+  
+    /* The allocations for each of the allocation orders.  */
+    unsigned long long total_allocated_per_order[NUM_ORDERS];
+
+    /* The overhead for each of the allocation orders.  */
+    unsigned long long total_overhead_per_order[NUM_ORDERS];
+  } stats;
+#endif
+} G;
+
+/* The size in bytes required to maintain a bitmap for the objects
+   on a page-entry.  */
+#define BITMAP_SIZE(Num_objects) \
+  (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
+
+/* Allocate pages in chunks of this size, to throttle calls to memory
+   allocation routines.  The first page is used, the rest go onto the
+   free list.  This cannot be larger than HOST_BITS_PER_INT for the
+   in_use bitmask for page_group.  Hosts that need a different value
+   can override this by defining GGC_QUIRE_SIZE explicitly.  */
+#ifndef GGC_QUIRE_SIZE
+# ifdef USING_MMAP
+#  define GGC_QUIRE_SIZE 256
+# else
+#  define GGC_QUIRE_SIZE 16
+# endif
+#endif
+
+/* Initial guess as to how many page table entries we might need.  */
+#define INITIAL_PTE_COUNT 128
+
+static int ggc_allocated_p (const void *);
+static page_entry *lookup_page_table_entry (const void *);
+static void set_page_table_entry (void *, page_entry *);
+#ifdef USING_MMAP
+static char *alloc_anon (char *, size_t);
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+static size_t page_group_index (char *, char *);
+static void set_page_group_in_use (page_group *, char *);
+static void clear_page_group_in_use (page_group *, char *);
+#endif
+static struct page_entry * alloc_page (unsigned);
+static void free_page (struct page_entry *);
+static void release_pages (void);
+static void clear_marks (void);
+static void sweep_pages (void);
+static void ggc_recalculate_in_use_p (page_entry *);
+static void compute_inverse (unsigned);
+static inline void adjust_depth (void);
+static void move_ptes_to_front (int, int);
+
+void debug_print_page_list (int);
+static void push_depth (unsigned int);
+static void push_by_depth (page_entry *, unsigned long *);
+
+/* Push an entry onto G.depth.  */
+
+inline static void
+push_depth (unsigned int i)
+{
+  if (G.depth_in_use >= G.depth_max)
+    {
+      G.depth_max *= 2;
+      G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
+    }
+  G.depth[G.depth_in_use++] = i;
+}
+
+/* Push an entry onto G.by_depth and G.save_in_use.  */
+
+inline static void
+push_by_depth (page_entry *p, unsigned long *s)
+{
+  if (G.by_depth_in_use >= G.by_depth_max)
+    {
+      G.by_depth_max *= 2;
+      G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
+      G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
+				  G.by_depth_max);
+    }
+  G.by_depth[G.by_depth_in_use] = p;
+  G.save_in_use[G.by_depth_in_use++] = s;
+}
+
+#if (GCC_VERSION < 3001)
+#define prefetch(X) ((void) X)
+#else
+#define prefetch(X) __builtin_prefetch (X)
+#endif
+
+#define save_in_use_p_i(__i) \
+  (G.save_in_use[__i])
+#define save_in_use_p(__p) \
+  (save_in_use_p_i (__p->index_by_depth))
+
+/* Returns nonzero if P was allocated in GC'able memory.  */
+
+static inline int
+ggc_allocated_p (const void *p)
+{
+  page_entry ***base;
+  size_t L1, L2;
+
+#if HOST_BITS_PER_PTR <= 32
+  base = &G.lookup[0];
+#else
+  page_table table = G.lookup;
+  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
+  while (1)
+    {
+      if (table == NULL)
+	return 0;
+      if (table->high_bits == high_bits)
+	break;
+      table = table->next;
+    }
+  base = &table->table[0];
+#endif
+
+  /* Extract the level 1 and 2 indices.  */
+  L1 = LOOKUP_L1 (p);
+  L2 = LOOKUP_L2 (p);
+
+  return base[L1] && base[L1][L2];
+}
+
+/* Traverse the page table and find the entry for a page.
+   Die (probably) if the object wasn't allocated via GC.  */
+
+static inline page_entry *
+lookup_page_table_entry (const void *p)
+{
+  page_entry ***base;
+  size_t L1, L2;
+
+#if HOST_BITS_PER_PTR <= 32
+  base = &G.lookup[0];
+#else
+  page_table table = G.lookup;
+  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
+  while (table->high_bits != high_bits)
+    table = table->next;
+  base = &table->table[0];
+#endif
+
+  /* Extract the level 1 and 2 indices.  */
+  L1 = LOOKUP_L1 (p);
+  L2 = LOOKUP_L2 (p);
+
+  return base[L1][L2];
+}
+
+/* Set the page table entry for a page.  */
+
+static void
+set_page_table_entry (void *p, page_entry *entry)
+{
+  page_entry ***base;
+  size_t L1, L2;
+
+#if HOST_BITS_PER_PTR <= 32
+  base = &G.lookup[0];
+#else
+  page_table table;
+  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
+  for (table = G.lookup; table; table = table->next)
+    if (table->high_bits == high_bits)
+      goto found;
+
+  /* Not found -- allocate a new table.  */
+  table = XCNEW (struct page_table_chain);
+  table->next = G.lookup;
+  table->high_bits = high_bits;
+  G.lookup = table;
+found:
+  base = &table->table[0];
+#endif
+
+  /* Extract the level 1 and 2 indices.  */
+  L1 = LOOKUP_L1 (p);
+  L2 = LOOKUP_L2 (p);
+
+  if (base[L1] == NULL)
+    base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
+
+  base[L1][L2] = entry;
+}
+
+/* Prints the page-entry for object size ORDER, for debugging.  */
+
+void
+debug_print_page_list (int order)
+{
+  page_entry *p;
+  printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
+	  (void *) G.page_tails[order]);
+  p = G.pages[order];
+  while (p != NULL)
+    {
+      printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
+	      p->num_free_objects);
+      p = p->next;
+    }
+  printf ("NULL\n");
+  fflush (stdout);
+}
+
+#ifdef USING_MMAP
+/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
+   (if non-null).  The ifdef structure here is intended to cause a
+   compile error unless exactly one of the HAVE_* is defined.  */
+
+static inline char *
+alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
+{
+#ifdef HAVE_MMAP_ANON
+  char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
+			      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+#endif
+#ifdef HAVE_MMAP_DEV_ZERO
+  char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
+			      MAP_PRIVATE, G.dev_zero_fd, 0);
+#endif
+
+  if (page == (char *) MAP_FAILED)
+    {
+      perror ("virtual memory exhausted");
+      exit (FATAL_EXIT_CODE);
+    }
+
+  /* Remember that we allocated this memory.  */
+  G.bytes_mapped += size;
+
+  /* Pretend we don't have access to the allocated pages.  We'll enable
+     access to smaller pieces of the area in ggc_alloc.  Discard the
+     handle to avoid handle leak.  */
+  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
+
+  return page;
+}
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+/* Compute the index for this page into the page group.  */
+
+static inline size_t
+page_group_index (char *allocation, char *page)
+{
+  return (size_t) (page - allocation) >> G.lg_pagesize;
+}
+
+/* Set and clear the in_use bit for this page in the page group.  */
+
+static inline void
+set_page_group_in_use (page_group *group, char *page)
+{
+  group->in_use |= 1 << page_group_index (group->allocation, page);
+}
+
+static inline void
+clear_page_group_in_use (page_group *group, char *page)
+{
+  group->in_use &= ~(1 << page_group_index (group->allocation, page));
+}
+#endif
+
+/* Allocate a new page for allocating objects of size 2^ORDER,
+   and return an entry for it.  The entry is not added to the
+   appropriate page_table list.  */
+
+static inline struct page_entry *
+alloc_page (unsigned order)
+{
+  struct page_entry *entry, *p, **pp;
+  char *page;
+  size_t num_objects;
+  size_t bitmap_size;
+  size_t page_entry_size;
+  size_t entry_size;
+#ifdef USING_MALLOC_PAGE_GROUPS
+  page_group *group;
+#endif
+
+  num_objects = OBJECTS_PER_PAGE (order);
+  bitmap_size = BITMAP_SIZE (num_objects + 1);
+  page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
+  entry_size = num_objects * OBJECT_SIZE (order);
+  if (entry_size < G.pagesize)
+    entry_size = G.pagesize;
+
+  entry = NULL;
+  page = NULL;
+
+  /* Check the list of free pages for one we can use.  */
+  for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
+    if (p->bytes == entry_size)
+      break;
+
+  if (p != NULL)
+    {
+      /* Recycle the allocated memory from this page ...  */
+      *pp = p->next;
+      page = p->page;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+      group = p->group;
+#endif
+
+      /* ... and, if possible, the page entry itself.  */
+      if (p->order == order)
+	{
+	  entry = p;
+	  memset (entry, 0, page_entry_size);
+	}
+      else
+	free (p);
+    }
+#ifdef USING_MMAP
+  else if (entry_size == G.pagesize)
+    {
+      /* We want just one page.  Allocate a bunch of them and put the
+	 extras on the freelist.  (Can only do this optimization with
+	 mmap for backing store.)  */
+      struct page_entry *e, *f = G.free_pages;
+      int i;
+
+      page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
+
+      /* This loop counts down so that the chain will be in ascending
+	 memory order.  */
+      for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
+	{
+	  e = XCNEWVAR (struct page_entry, page_entry_size);
+	  e->order = order;
+	  e->bytes = G.pagesize;
+	  e->page = page + (i << G.lg_pagesize);
+	  e->next = f;
+	  f = e;
+	}
+
+      G.free_pages = f;
+    }
+  else
+    page = alloc_anon (NULL, entry_size);
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+  else
+    {
+      /* Allocate a large block of memory and serve out the aligned
+	 pages therein.  This results in much less memory wastage
+	 than the traditional implementation of valloc.  */
+
+      char *allocation, *a, *enda;
+      size_t alloc_size, head_slop, tail_slop;
+      int multiple_pages = (entry_size == G.pagesize);
+
+      if (multiple_pages)
+	alloc_size = GGC_QUIRE_SIZE * G.pagesize;
+      else
+	alloc_size = entry_size + G.pagesize - 1;
+      allocation = XNEWVEC (char, alloc_size);
+
+      page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
+      head_slop = page - allocation;
+      if (multiple_pages)
+	tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
+      else
+	tail_slop = alloc_size - entry_size - head_slop;
+      enda = allocation + alloc_size - tail_slop;
+
+      /* We allocated N pages, which are likely not aligned, leaving
+	 us with N-1 usable pages.  We plan to place the page_group
+	 structure somewhere in the slop.  */
+      if (head_slop >= sizeof (page_group))
+	group = (page_group *)page - 1;
+      else
+	{
+	  /* We magically got an aligned allocation.  Too bad, we have
+	     to waste a page anyway.  */
+	  if (tail_slop == 0)
+	    {
+	      enda -= G.pagesize;
+	      tail_slop += G.pagesize;
+	    }
+	  gcc_assert (tail_slop >= sizeof (page_group));
+	  group = (page_group *)enda;
+	  tail_slop -= sizeof (page_group);
+	}
+
+      /* Remember that we allocated this memory.  */
+      group->next = G.page_groups;
+      group->allocation = allocation;
+      group->alloc_size = alloc_size;
+      group->in_use = 0;
+      G.page_groups = group;
+      G.bytes_mapped += alloc_size;
+
+      /* If we allocated multiple pages, put the rest on the free list.  */
+      if (multiple_pages)
+	{
+	  struct page_entry *e, *f = G.free_pages;
+	  for (a = enda - G.pagesize; a != page; a -= G.pagesize)
+	    {
+	      e = XCNEWVAR (struct page_entry, page_entry_size);
+	      e->order = order;
+	      e->bytes = G.pagesize;
+	      e->page = a;
+	      e->group = group;
+	      e->next = f;
+	      f = e;
+	    }
+	  G.free_pages = f;
+	}
+    }
+#endif
+
+  if (entry == NULL)
+    entry = XCNEWVAR (struct page_entry, page_entry_size);
+
+  entry->bytes = entry_size;
+  entry->page = page;
+  entry->context_depth = G.context_depth;
+  entry->order = order;
+  entry->num_free_objects = num_objects;
+  entry->next_bit_hint = 1;
+
+  G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+  entry->group = group;
+  set_page_group_in_use (group, page);
+#endif
+
+  /* Set the one-past-the-end in-use bit.  This acts as a sentry as we
+     increment the hint.  */
+  entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
+    = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
+
+  set_page_table_entry (page, entry);
+
+  if (GGC_DEBUG_LEVEL >= 2)
+    fprintf (G.debug_file,
+	     "Allocating page at %p, object size=%lu, data %p-%p\n",
+	     (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
+	     page + entry_size - 1);
+
+  return entry;
+}
+
+/* Adjust the size of G.depth so that no index greater than the one
+   used by the top of the G.by_depth is used.  */
+
+static inline void
+adjust_depth (void)
+{
+  page_entry *top;
+
+  if (G.by_depth_in_use)
+    {
+      top = G.by_depth[G.by_depth_in_use-1];
+
+      /* Peel back indices in depth that index into by_depth, so that
+	 as new elements are added to by_depth, we note the indices
+	 of those elements, if they are for new context depths.  */
+      while (G.depth_in_use > (size_t)top->context_depth+1)
+	--G.depth_in_use;
+    }
+}
+
+/* For a page that is no longer needed, put it on the free page list.  */
+
+static void
+free_page (page_entry *entry)
+{
+  if (GGC_DEBUG_LEVEL >= 2)
+    fprintf (G.debug_file,
+	     "Deallocating page at %p, data %p-%p\n", (void *) entry,
+	     entry->page, entry->page + entry->bytes - 1);
+
+  /* Mark the page as inaccessible.  Discard the handle to avoid handle
+     leak.  */
+  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
+
+  set_page_table_entry (entry->page, NULL);
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+  clear_page_group_in_use (entry->group, entry->page);
+#endif
+
+  if (G.by_depth_in_use > 1)
+    {
+      page_entry *top = G.by_depth[G.by_depth_in_use-1];
+      int i = entry->index_by_depth;
+
+      /* We cannot free a page from a context deeper than the current
+	 one.  */
+      gcc_assert (entry->context_depth == top->context_depth);
+      
+      /* Put top element into freed slot.  */
+      G.by_depth[i] = top;
+      G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
+      top->index_by_depth = i;
+    }
+  --G.by_depth_in_use;
+
+  adjust_depth ();
+
+  entry->next = G.free_pages;
+  G.free_pages = entry;
+}
+
+/* Release the free page cache to the system.  */
+
+static void
+release_pages (void)
+{
+#ifdef USING_MMAP
+  page_entry *p, *next;
+  char *start;
+  size_t len;
+
+  /* Gather up adjacent pages so they are unmapped together.  */
+  p = G.free_pages;
+
+  while (p)
+    {
+      start = p->page;
+      next = p->next;
+      len = p->bytes;
+      free (p);
+      p = next;
+
+      while (p && p->page == start + len)
+	{
+	  next = p->next;
+	  len += p->bytes;
+	  free (p);
+	  p = next;
+	}
+
+      munmap (start, len);
+      G.bytes_mapped -= len;
+    }
+
+  G.free_pages = NULL;
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+  page_entry **pp, *p;
+  page_group **gp, *g;
+
+  /* Remove all pages from free page groups from the list.  */
+  pp = &G.free_pages;
+  while ((p = *pp) != NULL)
+    if (p->group->in_use == 0)
+      {
+	*pp = p->next;
+	free (p);
+      }
+    else
+      pp = &p->next;
+
+  /* Remove all free page groups, and release the storage.  */
+  gp = &G.page_groups;
+  while ((g = *gp) != NULL)
+    if (g->in_use == 0)
+      {
+	*gp = g->next;
+	G.bytes_mapped -= g->alloc_size;
+	free (g->allocation);
+      }
+    else
+      gp = &g->next;
+#endif
+}
+
+/* This table provides a fast way to determine ceil(log_2(size)) for
+   allocation requests.  The minimum allocation size is eight bytes.  */
+#define NUM_SIZE_LOOKUP 512
+static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
+{
+  3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
+  4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+  5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+  6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+  6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+  7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+  8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
+};
+
+/* Typed allocation function.  Does nothing special in this collector.  */
+
+void *
+ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
+		      MEM_STAT_DECL)
+{
+  return ggc_alloc_stat (size PASS_MEM_STAT);
+}
+
+/* Allocate a chunk of memory of SIZE bytes.  Its contents are undefined.  */
+
+void *
+ggc_alloc_stat (size_t size MEM_STAT_DECL)
+{
+  size_t order, word, bit, object_offset, object_size;
+  struct page_entry *entry;
+  void *result;
+
+  if (size < NUM_SIZE_LOOKUP)
+    {
+      order = size_lookup[size];
+      object_size = OBJECT_SIZE (order);
+    }
+  else
+    {
+      order = 10;
+      while (size > (object_size = OBJECT_SIZE (order)))
+	order++;
+    }
+
+  /* If there are non-full pages for this size allocation, they are at
+     the head of the list.  */
+  entry = G.pages[order];
+
+  /* If there is no page for this object size, or all pages in this
+     context are full, allocate a new page.  */
+  if (entry == NULL || entry->num_free_objects == 0)
+    {
+      struct page_entry *new_entry;
+      new_entry = alloc_page (order);
+
+      new_entry->index_by_depth = G.by_depth_in_use;
+      push_by_depth (new_entry, 0);
+
+      /* We can skip context depths, if we do, make sure we go all the
+	 way to the new depth.  */
+      while (new_entry->context_depth >= G.depth_in_use)
+	push_depth (G.by_depth_in_use-1);
+
+      /* If this is the only entry, it's also the tail.  If it is not
+	 the only entry, then we must update the PREV pointer of the
+	 ENTRY (G.pages[order]) to point to our new page entry.  */
+      if (entry == NULL)
+	G.page_tails[order] = new_entry;
+      else
+	entry->prev = new_entry;
+
+      /* Put new pages at the head of the page list.  By definition the
+	 entry at the head of the list always has a NULL pointer.  */
+      new_entry->next = entry;
+      new_entry->prev = NULL;
+      entry = new_entry;
+      G.pages[order] = new_entry;
+
+      /* For a new page, we know the word and bit positions (in the
+	 in_use bitmap) of the first available object -- they're zero.  */
+      new_entry->next_bit_hint = 1;
+      word = 0;
+      bit = 0;
+      object_offset = 0;
+    }
+  else
+    {
+      /* First try to use the hint left from the previous allocation
+	 to locate a clear bit in the in-use bitmap.  We've made sure
+	 that the one-past-the-end bit is always set, so if the hint
+	 has run over, this test will fail.  */
+      unsigned hint = entry->next_bit_hint;
+      word = hint / HOST_BITS_PER_LONG;
+      bit = hint % HOST_BITS_PER_LONG;
+
+      /* If the hint didn't work, scan the bitmap from the beginning.  */
+      if ((entry->in_use_p[word] >> bit) & 1)
+	{
+	  word = bit = 0;
+	  while (~entry->in_use_p[word] == 0)
+	    ++word;
+
+#if GCC_VERSION >= 3004
+	  bit = __builtin_ctzl (~entry->in_use_p[word]);
+#else
+	  while ((entry->in_use_p[word] >> bit) & 1)
+	    ++bit;
+#endif
+
+	  hint = word * HOST_BITS_PER_LONG + bit;
+	}
+
+      /* Next time, try the next bit.  */
+      entry->next_bit_hint = hint + 1;
+
+      object_offset = hint * object_size;
+    }
+
+  /* Set the in-use bit.  */
+  entry->in_use_p[word] |= ((unsigned long) 1 << bit);
+
+  /* Keep a running total of the number of free objects.  If this page
+     fills up, we may have to move it to the end of the list if the
+     next page isn't full.  If the next page is full, all subsequent
+     pages are full, so there's no need to move it.  */
+  if (--entry->num_free_objects == 0
+      && entry->next != NULL
+      && entry->next->num_free_objects > 0)
+    {
+      /* We have a new head for the list.  */
+      G.pages[order] = entry->next;
+
+      /* We are moving ENTRY to the end of the page table list.
+	 The new page at the head of the list will have NULL in
+	 its PREV field and ENTRY will have NULL in its NEXT field.  */
+      entry->next->prev = NULL;
+      entry->next = NULL;
+
+      /* Append ENTRY to the tail of the list.  */
+      entry->prev = G.page_tails[order];
+      G.page_tails[order]->next = entry;
+      G.page_tails[order] = entry;
+    }
+
+  /* Calculate the object's address.  */
+  result = entry->page + object_offset;
+#ifdef GATHER_STATISTICS
+  ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
+		       result PASS_MEM_STAT);
+#endif
+
+#ifdef ENABLE_GC_CHECKING
+  /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
+     exact same semantics in presence of memory bugs, regardless of
+     ENABLE_VALGRIND_CHECKING.  We override this request below.  Drop the
+     handle to avoid handle leak.  */
+  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
+
+  /* `Poison' the entire allocated object, including any padding at
+     the end.  */
+  memset (result, 0xaf, object_size);
+
+  /* Make the bytes after the end of the object unaccessible.  Discard the
+     handle to avoid handle leak.  */
+  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
+						object_size - size));
+#endif
+
+  /* Tell Valgrind that the memory is there, but its content isn't
+     defined.  The bytes at the end of the object are still marked
+     unaccessible.  */
+  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
+
+  /* Keep track of how many bytes are being allocated.  This
+     information is used in deciding when to collect.  */
+  G.allocated += object_size;
+
+  /* For timevar statistics.  */
+  timevar_ggc_mem_total += object_size;
+
+#ifdef GATHER_STATISTICS
+  {
+    size_t overhead = object_size - size;
+
+    G.stats.total_overhead += overhead;
+    G.stats.total_allocated += object_size;
+    G.stats.total_overhead_per_order[order] += overhead;
+    G.stats.total_allocated_per_order[order] += object_size;
+
+    if (size <= 32)
+      {
+	G.stats.total_overhead_under32 += overhead;
+	G.stats.total_allocated_under32 += object_size;
+      }
+    if (size <= 64)
+      {
+	G.stats.total_overhead_under64 += overhead;
+	G.stats.total_allocated_under64 += object_size;
+      }
+    if (size <= 128)
+      {
+	G.stats.total_overhead_under128 += overhead;
+	G.stats.total_allocated_under128 += object_size;
+      }
+  }
+#endif
+
+  if (GGC_DEBUG_LEVEL >= 3)
+    fprintf (G.debug_file,
+	     "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
+	     (unsigned long) size, (unsigned long) object_size, result,
+	     (void *) entry);
+
+  return result;
+}
+
+/* Mark function for strings.  */
+
+void
+gt_ggc_m_S (const void *p)
+{
+  page_entry *entry;
+  unsigned bit, word;
+  unsigned long mask;
+  unsigned long offset;
+
+  if (!p || !ggc_allocated_p (p))
+    return;
+
+  /* Look up the page on which the object is alloced.  .  */
+  entry = lookup_page_table_entry (p);
+  gcc_assert (entry);
+
+  /* Calculate the index of the object on the page; this is its bit
+     position in the in_use_p bitmap.  Note that because a char* might
+     point to the middle of an object, we need special code here to
+     make sure P points to the start of an object.  */
+  offset = ((const char *) p - entry->page) % object_size_table[entry->order];
+  if (offset)
+    {
+      /* Here we've seen a char* which does not point to the beginning
+	 of an allocated object.  We assume it points to the middle of
+	 a STRING_CST.  */
+      gcc_assert (offset == offsetof (struct tree_string, str));
+      p = ((const char *) p) - offset;
+      gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
+      return;
+    }
+
+  bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
+  word = bit / HOST_BITS_PER_LONG;
+  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
+
+  /* If the bit was previously set, skip it.  */
+  if (entry->in_use_p[word] & mask)
+    return;
+
+  /* Otherwise set it, and decrement the free object count.  */
+  entry->in_use_p[word] |= mask;
+  entry->num_free_objects -= 1;
+
+  if (GGC_DEBUG_LEVEL >= 4)
+    fprintf (G.debug_file, "Marking %p\n", p);
+
+  return;
+}
+
+/* If P is not marked, marks it and return false.  Otherwise return true.
+   P must have been allocated by the GC allocator; it mustn't point to
+   static objects, stack variables, or memory allocated with malloc.  */
+
+int
+ggc_set_mark (const void *p)
+{
+  page_entry *entry;
+  unsigned bit, word;
+  unsigned long mask;
+
+  /* Look up the page on which the object is alloced.  If the object
+     wasn't allocated by the collector, we'll probably die.  */
+  entry = lookup_page_table_entry (p);
+  gcc_assert (entry);
+
+  /* Calculate the index of the object on the page; this is its bit
+     position in the in_use_p bitmap.  */
+  bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
+  word = bit / HOST_BITS_PER_LONG;
+  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
+
+  /* If the bit was previously set, skip it.  */
+  if (entry->in_use_p[word] & mask)
+    return 1;
+
+  /* Otherwise set it, and decrement the free object count.  */
+  entry->in_use_p[word] |= mask;
+  entry->num_free_objects -= 1;
+
+  if (GGC_DEBUG_LEVEL >= 4)
+    fprintf (G.debug_file, "Marking %p\n", p);
+
+  return 0;
+}
+
+/* Return 1 if P has been marked, zero otherwise.
+   P must have been allocated by the GC allocator; it mustn't point to
+   static objects, stack variables, or memory allocated with malloc.  */
+
+int
+ggc_marked_p (const void *p)
+{
+  page_entry *entry;
+  unsigned bit, word;
+  unsigned long mask;
+
+  /* Look up the page on which the object is alloced.  If the object
+     wasn't allocated by the collector, we'll probably die.  */
+  entry = lookup_page_table_entry (p);
+  gcc_assert (entry);
+
+  /* Calculate the index of the object on the page; this is its bit
+     position in the in_use_p bitmap.  */
+  bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
+  word = bit / HOST_BITS_PER_LONG;
+  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
+
+  return (entry->in_use_p[word] & mask) != 0;
+}
+
+/* Return the size of the gc-able object P.  */
+
+size_t
+ggc_get_size (const void *p)
+{
+  page_entry *pe = lookup_page_table_entry (p);
+  return OBJECT_SIZE (pe->order);
+}
+
+/* Release the memory for object P.  */
+
+void
+ggc_free (void *p)
+{
+  page_entry *pe = lookup_page_table_entry (p);
+  size_t order = pe->order;
+  size_t size = OBJECT_SIZE (order);
+
+#ifdef GATHER_STATISTICS
+  ggc_free_overhead (p);
+#endif
+
+  if (GGC_DEBUG_LEVEL >= 3)
+    fprintf (G.debug_file,
+	     "Freeing object, actual size=%lu, at %p on %p\n",
+	     (unsigned long) size, p, (void *) pe);
+
+#ifdef ENABLE_GC_CHECKING
+  /* Poison the data, to indicate the data is garbage.  */
+  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
+  memset (p, 0xa5, size);
+#endif
+  /* Let valgrind know the object is free.  */
+  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
+
+#ifdef ENABLE_GC_ALWAYS_COLLECT
+  /* In the completely-anal-checking mode, we do *not* immediately free
+     the data, but instead verify that the data is *actually* not 
+     reachable the next time we collect.  */
+  {
+    struct free_object *fo = XNEW (struct free_object);
+    fo->object = p;
+    fo->next = G.free_object_list;
+    G.free_object_list = fo;
+  }
+#else
+  {
+    unsigned int bit_offset, word, bit;
+
+    G.allocated -= size;
+
+    /* Mark the object not-in-use.  */
+    bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
+    word = bit_offset / HOST_BITS_PER_LONG;
+    bit = bit_offset % HOST_BITS_PER_LONG;
+    pe->in_use_p[word] &= ~(1UL << bit);
+
+    if (pe->num_free_objects++ == 0)
+      {
+	page_entry *p, *q;
+
+	/* If the page is completely full, then it's supposed to
+	   be after all pages that aren't.  Since we've freed one
+	   object from a page that was full, we need to move the
+	   page to the head of the list. 
+
+	   PE is the node we want to move.  Q is the previous node
+	   and P is the next node in the list.  */
+	q = pe->prev;
+	if (q && q->num_free_objects == 0)
+	  {
+	    p = pe->next;
+
+	    q->next = p;
+
+	    /* If PE was at the end of the list, then Q becomes the
+	       new end of the list.  If PE was not the end of the
+	       list, then we need to update the PREV field for P.  */
+	    if (!p)
+	      G.page_tails[order] = q;
+	    else
+	      p->prev = q;
+
+	    /* Move PE to the head of the list.  */
+	    pe->next = G.pages[order];
+	    pe->prev = NULL;
+	    G.pages[order]->prev = pe;
+	    G.pages[order] = pe;
+	  }
+
+	/* Reset the hint bit to point to the only free object.  */
+	pe->next_bit_hint = bit_offset;
+      }
+  }
+#endif
+}
+
+/* Subroutine of init_ggc which computes the pair of numbers used to
+   perform division by OBJECT_SIZE (order) and fills in inverse_table[].
+
+   This algorithm is taken from Granlund and Montgomery's paper
+   "Division by Invariant Integers using Multiplication"
+   (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
+   constants).  */
+
+static void
+compute_inverse (unsigned order)
+{
+  size_t size, inv; 
+  unsigned int e;
+
+  size = OBJECT_SIZE (order);
+  e = 0;
+  while (size % 2 == 0)
+    {
+      e++;
+      size >>= 1;
+    }
+
+  inv = size;
+  while (inv * size != 1)
+    inv = inv * (2 - inv*size);
+
+  DIV_MULT (order) = inv;
+  DIV_SHIFT (order) = e;
+}
+
+/* Initialize the ggc-mmap allocator.  */
+void
+init_ggc (void)
+{
+  unsigned order;
+
+  G.pagesize = getpagesize();
+  G.lg_pagesize = exact_log2 (G.pagesize);
+
+#ifdef HAVE_MMAP_DEV_ZERO
+  G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
+  if (G.dev_zero_fd == -1)
+    internal_error ("open /dev/zero: %m");
+#endif
+
+#if 0
+  G.debug_file = fopen ("ggc-mmap.debug", "w");
+#else
+  G.debug_file = stdout;
+#endif
+
+#ifdef USING_MMAP
+  /* StunOS has an amazing off-by-one error for the first mmap allocation
+     after fiddling with RLIMIT_STACK.  The result, as hard as it is to
+     believe, is an unaligned page allocation, which would cause us to
+     hork badly if we tried to use it.  */
+  {
+    char *p = alloc_anon (NULL, G.pagesize);
+    struct page_entry *e;
+    if ((size_t)p & (G.pagesize - 1))
+      {
+	/* How losing.  Discard this one and try another.  If we still
+	   can't get something useful, give up.  */
+
+	p = alloc_anon (NULL, G.pagesize);
+	gcc_assert (!((size_t)p & (G.pagesize - 1)));
+      }
+
+    /* We have a good page, might as well hold onto it...  */
+    e = XCNEW (struct page_entry);
+    e->bytes = G.pagesize;
+    e->page = p;
+    e->next = G.free_pages;
+    G.free_pages = e;
+  }
+#endif
+
+  /* Initialize the object size table.  */
+  for (order = 0; order < HOST_BITS_PER_PTR; ++order)
+    object_size_table[order] = (size_t) 1 << order;
+  for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
+    {
+      size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
+
+      /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
+	 so that we're sure of getting aligned memory.  */
+      s = ROUND_UP (s, MAX_ALIGNMENT);
+      object_size_table[order] = s;
+    }
+
+  /* Initialize the objects-per-page and inverse tables.  */
+  for (order = 0; order < NUM_ORDERS; ++order)
+    {
+      objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
+      if (objects_per_page_table[order] == 0)
+	objects_per_page_table[order] = 1;
+      compute_inverse (order);
+    }
+
+  /* Reset the size_lookup array to put appropriately sized objects in
+     the special orders.  All objects bigger than the previous power
+     of two, but no greater than the special size, should go in the
+     new order.  */
+  for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
+    {
+      int o;
+      int i;
+
+      i = OBJECT_SIZE (order);
+      if (i >= NUM_SIZE_LOOKUP)
+	continue;
+
+      for (o = size_lookup[i]; o == size_lookup [i]; --i)
+	size_lookup[i] = order;
+    }
+
+  G.depth_in_use = 0;
+  G.depth_max = 10;
+  G.depth = XNEWVEC (unsigned int, G.depth_max);
+
+  G.by_depth_in_use = 0;
+  G.by_depth_max = INITIAL_PTE_COUNT;
+  G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
+  G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
+}
+
+/* Start a new GGC zone.  */
+
+struct alloc_zone *
+new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
+{
+  return NULL;
+}
+
+/* Destroy a GGC zone.  */
+void
+destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
+{
+}
+
+/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
+   reflects reality.  Recalculate NUM_FREE_OBJECTS as well.  */
+
+static void
+ggc_recalculate_in_use_p (page_entry *p)
+{
+  unsigned int i;
+  size_t num_objects;
+
+  /* Because the past-the-end bit in in_use_p is always set, we
+     pretend there is one additional object.  */
+  num_objects = OBJECTS_IN_PAGE (p) + 1;
+
+  /* Reset the free object count.  */
+  p->num_free_objects = num_objects;
+
+  /* Combine the IN_USE_P and SAVE_IN_USE_P arrays.  */
+  for (i = 0;
+       i < CEIL (BITMAP_SIZE (num_objects),
+		 sizeof (*p->in_use_p));
+       ++i)
+    {
+      unsigned long j;
+
+      /* Something is in use if it is marked, or if it was in use in a
+	 context further down the context stack.  */
+      p->in_use_p[i] |= save_in_use_p (p)[i];
+
+      /* Decrement the free object count for every object allocated.  */
+      for (j = p->in_use_p[i]; j; j >>= 1)
+	p->num_free_objects -= (j & 1);
+    }
+
+  gcc_assert (p->num_free_objects < num_objects);
+}
+
+/* Unmark all objects.  */
+
+static void
+clear_marks (void)
+{
+  unsigned order;
+
+  for (order = 2; order < NUM_ORDERS; order++)
+    {
+      page_entry *p;
+
+      for (p = G.pages[order]; p != NULL; p = p->next)
+	{
+	  size_t num_objects = OBJECTS_IN_PAGE (p);
+	  size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
+
+	  /* The data should be page-aligned.  */
+	  gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
+
+	  /* Pages that aren't in the topmost context are not collected;
+	     nevertheless, we need their in-use bit vectors to store GC
+	     marks.  So, back them up first.  */
+	  if (p->context_depth < G.context_depth)
+	    {
+	      if (! save_in_use_p (p))
+		save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
+	      memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
+	    }
+
+	  /* Reset reset the number of free objects and clear the
+             in-use bits.  These will be adjusted by mark_obj.  */
+	  p->num_free_objects = num_objects;
+	  memset (p->in_use_p, 0, bitmap_size);
+
+	  /* Make sure the one-past-the-end bit is always set.  */
+	  p->in_use_p[num_objects / HOST_BITS_PER_LONG]
+	    = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
+	}
+    }
+}
+
+/* Free all empty pages.  Partially empty pages need no attention
+   because the `mark' bit doubles as an `unused' bit.  */
+
+static void
+sweep_pages (void)
+{
+  unsigned order;
+
+  for (order = 2; order < NUM_ORDERS; order++)
+    {
+      /* The last page-entry to consider, regardless of entries
+	 placed at the end of the list.  */
+      page_entry * const last = G.page_tails[order];
+
+      size_t num_objects;
+      size_t live_objects;
+      page_entry *p, *previous;
+      int done;
+
+      p = G.pages[order];
+      if (p == NULL)
+	continue;
+
+      previous = NULL;
+      do
+	{
+	  page_entry *next = p->next;
+
+	  /* Loop until all entries have been examined.  */
+	  done = (p == last);
+
+	  num_objects = OBJECTS_IN_PAGE (p);
+
+	  /* Add all live objects on this page to the count of
+             allocated memory.  */
+	  live_objects = num_objects - p->num_free_objects;
+
+	  G.allocated += OBJECT_SIZE (order) * live_objects;
+
+	  /* Only objects on pages in the topmost context should get
+	     collected.  */
+	  if (p->context_depth < G.context_depth)
+	    ;
+
+	  /* Remove the page if it's empty.  */
+	  else if (live_objects == 0)
+	    {
+	      /* If P was the first page in the list, then NEXT
+		 becomes the new first page in the list, otherwise
+		 splice P out of the forward pointers.  */
+	      if (! previous)
+		G.pages[order] = next;
+	      else
+		previous->next = next;
+	    
+	      /* Splice P out of the back pointers too.  */
+	      if (next)
+		next->prev = previous;
+
+	      /* Are we removing the last element?  */
+	      if (p == G.page_tails[order])
+		G.page_tails[order] = previous;
+	      free_page (p);
+	      p = previous;
+	    }
+
+	  /* If the page is full, move it to the end.  */
+	  else if (p->num_free_objects == 0)
+	    {
+	      /* Don't move it if it's already at the end.  */
+	      if (p != G.page_tails[order])
+		{
+		  /* Move p to the end of the list.  */
+		  p->next = NULL;
+		  p->prev = G.page_tails[order];
+		  G.page_tails[order]->next = p;
+
+		  /* Update the tail pointer...  */
+		  G.page_tails[order] = p;
+
+		  /* ... and the head pointer, if necessary.  */
+		  if (! previous)
+		    G.pages[order] = next;
+		  else
+		    previous->next = next;
+
+		  /* And update the backpointer in NEXT if necessary.  */
+		  if (next)
+		    next->prev = previous;
+
+		  p = previous;
+		}
+	    }
+
+	  /* If we've fallen through to here, it's a page in the
+	     topmost context that is neither full nor empty.  Such a
+	     page must precede pages at lesser context depth in the
+	     list, so move it to the head.  */
+	  else if (p != G.pages[order])
+	    {
+	      previous->next = p->next;
+
+	      /* Update the backchain in the next node if it exists.  */
+	      if (p->next)
+		p->next->prev = previous;
+
+	      /* Move P to the head of the list.  */
+	      p->next = G.pages[order];
+	      p->prev = NULL;
+	      G.pages[order]->prev = p;
+
+	      /* Update the head pointer.  */
+	      G.pages[order] = p;
+
+	      /* Are we moving the last element?  */
+	      if (G.page_tails[order] == p)
+	        G.page_tails[order] = previous;
+	      p = previous;
+	    }
+
+	  previous = p;
+	  p = next;
+	}
+      while (! done);
+
+      /* Now, restore the in_use_p vectors for any pages from contexts
+         other than the current one.  */
+      for (p = G.pages[order]; p; p = p->next)
+	if (p->context_depth != G.context_depth)
+	  ggc_recalculate_in_use_p (p);
+    }
+}
+
+#ifdef ENABLE_GC_CHECKING
+/* Clobber all free objects.  */
+
+static void
+poison_pages (void)
+{
+  unsigned order;
+
+  for (order = 2; order < NUM_ORDERS; order++)
+    {
+      size_t size = OBJECT_SIZE (order);
+      page_entry *p;
+
+      for (p = G.pages[order]; p != NULL; p = p->next)
+	{
+	  size_t num_objects;
+	  size_t i;
+
+	  if (p->context_depth != G.context_depth)
+	    /* Since we don't do any collection for pages in pushed
+	       contexts, there's no need to do any poisoning.  And
+	       besides, the IN_USE_P array isn't valid until we pop
+	       contexts.  */
+	    continue;
+
+	  num_objects = OBJECTS_IN_PAGE (p);
+	  for (i = 0; i < num_objects; i++)
+	    {
+	      size_t word, bit;
+	      word = i / HOST_BITS_PER_LONG;
+	      bit = i % HOST_BITS_PER_LONG;
+	      if (((p->in_use_p[word] >> bit) & 1) == 0)
+		{
+		  char *object = p->page + i * size;
+
+		  /* Keep poison-by-write when we expect to use Valgrind,
+		     so the exact same memory semantics is kept, in case
+		     there are memory errors.  We override this request
+		     below.  */
+		  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
+								 size));
+		  memset (object, 0xa5, size);
+
+		  /* Drop the handle to avoid handle leak.  */
+		  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
+		}
+	    }
+	}
+    }
+}
+#else
+#define poison_pages()
+#endif
+
+#ifdef ENABLE_GC_ALWAYS_COLLECT
+/* Validate that the reportedly free objects actually are.  */
+
+static void
+validate_free_objects (void)
+{
+  struct free_object *f, *next, *still_free = NULL;
+
+  for (f = G.free_object_list; f ; f = next)
+    {
+      page_entry *pe = lookup_page_table_entry (f->object);
+      size_t bit, word;
+
+      bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
+      word = bit / HOST_BITS_PER_LONG;
+      bit = bit % HOST_BITS_PER_LONG;
+      next = f->next;
+
+      /* Make certain it isn't visible from any root.  Notice that we
+	 do this check before sweep_pages merges save_in_use_p.  */
+      gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
+
+      /* If the object comes from an outer context, then retain the
+	 free_object entry, so that we can verify that the address
+	 isn't live on the stack in some outer context.  */
+      if (pe->context_depth != G.context_depth)
+	{
+	  f->next = still_free;
+	  still_free = f;
+	}
+      else
+	free (f);
+    }
+
+  G.free_object_list = still_free;
+}
+#else
+#define validate_free_objects()
+#endif
+
+/* Top level mark-and-sweep routine.  */
+
+void
+ggc_collect (void)
+{
+  /* Avoid frequent unnecessary work by skipping collection if the
+     total allocations haven't expanded much since the last
+     collection.  */
+  float allocated_last_gc =
+    MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
+
+  float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
+
+  if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
+    return;
+
+  timevar_push (TV_GC);
+  if (!quiet_flag)
+    fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
+  if (GGC_DEBUG_LEVEL >= 2)
+    fprintf (G.debug_file, "BEGIN COLLECTING\n");
+
+  /* Zero the total allocated bytes.  This will be recalculated in the
+     sweep phase.  */
+  G.allocated = 0;
+
+  /* Release the pages we freed the last time we collected, but didn't
+     reuse in the interim.  */
+  release_pages ();
+
+  /* Indicate that we've seen collections at this context depth.  */
+  G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
+
+  clear_marks ();
+  ggc_mark_roots ();
+#ifdef GATHER_STATISTICS
+  ggc_prune_overhead_list ();
+#endif
+  poison_pages ();
+  validate_free_objects ();
+  sweep_pages ();
+
+  G.allocated_last_gc = G.allocated;
+
+  timevar_pop (TV_GC);
+
+  if (!quiet_flag)
+    fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
+  if (GGC_DEBUG_LEVEL >= 2)
+    fprintf (G.debug_file, "END COLLECTING\n");
+}
+
+/* Print allocation statistics.  */
+#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
+		  ? (x) \
+		  : ((x) < 1024*1024*10 \
+		     ? (x) / 1024 \
+		     : (x) / (1024*1024))))
+#define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
+
+void
+ggc_print_statistics (void)
+{
+  struct ggc_statistics stats;
+  unsigned int i;
+  size_t total_overhead = 0;
+
+  /* Clear the statistics.  */
+  memset (&stats, 0, sizeof (stats));
+
+  /* Make sure collection will really occur.  */
+  G.allocated_last_gc = 0;
+
+  /* Collect and print the statistics common across collectors.  */
+  ggc_print_common_statistics (stderr, &stats);
+
+  /* Release free pages so that we will not count the bytes allocated
+     there as part of the total allocated memory.  */
+  release_pages ();
+
+  /* Collect some information about the various sizes of
+     allocation.  */
+  fprintf (stderr,
+           "Memory still allocated at the end of the compilation process\n");
+  fprintf (stderr, "%-5s %10s  %10s  %10s\n",
+	   "Size", "Allocated", "Used", "Overhead");
+  for (i = 0; i < NUM_ORDERS; ++i)
+    {
+      page_entry *p;
+      size_t allocated;
+      size_t in_use;
+      size_t overhead;
+
+      /* Skip empty entries.  */
+      if (!G.pages[i])
+	continue;
+
+      overhead = allocated = in_use = 0;
+
+      /* Figure out the total number of bytes allocated for objects of
+	 this size, and how many of them are actually in use.  Also figure
+	 out how much memory the page table is using.  */
+      for (p = G.pages[i]; p; p = p->next)
+	{
+	  allocated += p->bytes;
+	  in_use +=
+	    (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
+
+	  overhead += (sizeof (page_entry) - sizeof (long)
+		       + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
+	}
+      fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
+	       (unsigned long) OBJECT_SIZE (i),
+	       SCALE (allocated), STAT_LABEL (allocated),
+	       SCALE (in_use), STAT_LABEL (in_use),
+	       SCALE (overhead), STAT_LABEL (overhead));
+      total_overhead += overhead;
+    }
+  fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
+	   SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
+	   SCALE (G.allocated), STAT_LABEL(G.allocated),
+	   SCALE (total_overhead), STAT_LABEL (total_overhead));
+
+#ifdef GATHER_STATISTICS  
+  {
+    fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
+
+    fprintf (stderr, "Total Overhead:                        %10lld\n",
+             G.stats.total_overhead);
+    fprintf (stderr, "Total Allocated:                       %10lld\n",
+             G.stats.total_allocated);
+
+    fprintf (stderr, "Total Overhead  under  32B:            %10lld\n",
+             G.stats.total_overhead_under32);
+    fprintf (stderr, "Total Allocated under  32B:            %10lld\n",
+             G.stats.total_allocated_under32);
+    fprintf (stderr, "Total Overhead  under  64B:            %10lld\n",
+             G.stats.total_overhead_under64);
+    fprintf (stderr, "Total Allocated under  64B:            %10lld\n",
+             G.stats.total_allocated_under64);
+    fprintf (stderr, "Total Overhead  under 128B:            %10lld\n",
+             G.stats.total_overhead_under128);
+    fprintf (stderr, "Total Allocated under 128B:            %10lld\n",
+             G.stats.total_allocated_under128);
+   
+    for (i = 0; i < NUM_ORDERS; i++)
+      if (G.stats.total_allocated_per_order[i])
+        {
+          fprintf (stderr, "Total Overhead  page size %7lu:     %10lld\n",
+                   (unsigned long) OBJECT_SIZE (i),
+		   G.stats.total_overhead_per_order[i]);
+          fprintf (stderr, "Total Allocated page size %7lu:     %10lld\n",
+                   (unsigned long) OBJECT_SIZE (i),
+		   G.stats.total_allocated_per_order[i]);
+        }
+  }
+#endif
+}
+
+struct ggc_pch_data
+{
+  struct ggc_pch_ondisk
+  {
+    unsigned totals[NUM_ORDERS];
+  } d;
+  size_t base[NUM_ORDERS];
+  size_t written[NUM_ORDERS];
+};
+
+struct ggc_pch_data *
+init_ggc_pch (void)
+{
+  return XCNEW (struct ggc_pch_data);
+}
+
+void
+ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
+		      size_t size, bool is_string ATTRIBUTE_UNUSED,
+		      enum gt_types_enum type ATTRIBUTE_UNUSED)
+{
+  unsigned order;
+
+  if (size < NUM_SIZE_LOOKUP)
+    order = size_lookup[size];
+  else
+    {
+      order = 10;
+      while (size > OBJECT_SIZE (order))
+	order++;
+    }
+
+  d->d.totals[order]++;
+}
+
+size_t
+ggc_pch_total_size (struct ggc_pch_data *d)
+{
+  size_t a = 0;
+  unsigned i;
+
+  for (i = 0; i < NUM_ORDERS; i++)
+    a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
+  return a;
+}
+
+void
+ggc_pch_this_base (struct ggc_pch_data *d, void *base)
+{
+  size_t a = (size_t) base;
+  unsigned i;
+
+  for (i = 0; i < NUM_ORDERS; i++)
+    {
+      d->base[i] = a;
+      a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
+    }
+}
+
+
+char *
+ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
+		      size_t size, bool is_string ATTRIBUTE_UNUSED,
+		      enum gt_types_enum type ATTRIBUTE_UNUSED)
+{
+  unsigned order;
+  char *result;
+
+  if (size < NUM_SIZE_LOOKUP)
+    order = size_lookup[size];
+  else
+    {
+      order = 10;
+      while (size > OBJECT_SIZE (order))
+	order++;
+    }
+
+  result = (char *) d->base[order];
+  d->base[order] += OBJECT_SIZE (order);
+  return result;
+}
+
+void
+ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
+		       FILE *f ATTRIBUTE_UNUSED)
+{
+  /* Nothing to do.  */
+}
+
+void
+ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
+		      FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
+		      size_t size, bool is_string ATTRIBUTE_UNUSED)
+{
+  unsigned order;
+  static const char emptyBytes[256];
+
+  if (size < NUM_SIZE_LOOKUP)
+    order = size_lookup[size];
+  else
+    {
+      order = 10;
+      while (size > OBJECT_SIZE (order))
+	order++;
+    }
+
+  if (fwrite (x, size, 1, f) != 1)
+    fatal_error ("can't write PCH file: %m");
+
+  /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
+     object out to OBJECT_SIZE(order).  This happens for strings.  */
+
+  if (size != OBJECT_SIZE (order))
+    {
+      unsigned padding = OBJECT_SIZE(order) - size;
+
+      /* To speed small writes, we use a nulled-out array that's larger
+         than most padding requests as the source for our null bytes.  This
+         permits us to do the padding with fwrite() rather than fseek(), and
+         limits the chance the OS may try to flush any outstanding writes.  */
+      if (padding <= sizeof(emptyBytes))
+        {
+          if (fwrite (emptyBytes, 1, padding, f) != padding)
+            fatal_error ("can't write PCH file");
+        }
+      else
+        {
+          /* Larger than our buffer?  Just default to fseek.  */
+          if (fseek (f, padding, SEEK_CUR) != 0)
+            fatal_error ("can't write PCH file");
+        }
+    }
+
+  d->written[order]++;
+  if (d->written[order] == d->d.totals[order]
+      && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
+				   G.pagesize),
+		SEEK_CUR) != 0)
+    fatal_error ("can't write PCH file: %m");
+}
+
+void
+ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
+{
+  if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
+    fatal_error ("can't write PCH file: %m");
+  free (d);
+}
+
+/* Move the PCH PTE entries just added to the end of by_depth, to the
+   front.  */
+
+static void
+move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
+{
+  unsigned i;
+
+  /* First, we swap the new entries to the front of the varrays.  */
+  page_entry **new_by_depth;
+  unsigned long **new_save_in_use;
+
+  new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
+  new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
+
+  memcpy (&new_by_depth[0],
+	  &G.by_depth[count_old_page_tables],
+	  count_new_page_tables * sizeof (void *));
+  memcpy (&new_by_depth[count_new_page_tables],
+	  &G.by_depth[0],
+	  count_old_page_tables * sizeof (void *));
+  memcpy (&new_save_in_use[0],
+	  &G.save_in_use[count_old_page_tables],
+	  count_new_page_tables * sizeof (void *));
+  memcpy (&new_save_in_use[count_new_page_tables],
+	  &G.save_in_use[0],
+	  count_old_page_tables * sizeof (void *));
+
+  free (G.by_depth);
+  free (G.save_in_use);
+
+  G.by_depth = new_by_depth;
+  G.save_in_use = new_save_in_use;
+
+  /* Now update all the index_by_depth fields.  */
+  for (i = G.by_depth_in_use; i > 0; --i)
+    {
+      page_entry *p = G.by_depth[i-1];
+      p->index_by_depth = i-1;
+    }
+
+  /* And last, we update the depth pointers in G.depth.  The first
+     entry is already 0, and context 0 entries always start at index
+     0, so there is nothing to update in the first slot.  We need a
+     second slot, only if we have old ptes, and if we do, they start
+     at index count_new_page_tables.  */
+  if (count_old_page_tables)
+    push_depth (count_new_page_tables);
+}
+
+void
+ggc_pch_read (FILE *f, void *addr)
+{
+  struct ggc_pch_ondisk d;
+  unsigned i;
+  char *offs = (char *) addr;
+  unsigned long count_old_page_tables;
+  unsigned long count_new_page_tables;
+
+  count_old_page_tables = G.by_depth_in_use;
+
+  /* We've just read in a PCH file.  So, every object that used to be
+     allocated is now free.  */
+  clear_marks ();
+#ifdef ENABLE_GC_CHECKING
+  poison_pages ();
+#endif
+  /* Since we free all the allocated objects, the free list becomes
+     useless.  Validate it now, which will also clear it.  */
+  validate_free_objects();
+
+  /* No object read from a PCH file should ever be freed.  So, set the
+     context depth to 1, and set the depth of all the currently-allocated
+     pages to be 1 too.  PCH pages will have depth 0.  */
+  gcc_assert (!G.context_depth);
+  G.context_depth = 1;
+  for (i = 0; i < NUM_ORDERS; i++)
+    {
+      page_entry *p;
+      for (p = G.pages[i]; p != NULL; p = p->next)
+	p->context_depth = G.context_depth;
+    }
+
+  /* Allocate the appropriate page-table entries for the pages read from
+     the PCH file.  */
+  if (fread (&d, sizeof (d), 1, f) != 1)
+    fatal_error ("can't read PCH file: %m");
+
+  for (i = 0; i < NUM_ORDERS; i++)
+    {
+      struct page_entry *entry;
+      char *pte;
+      size_t bytes;
+      size_t num_objs;
+      size_t j;
+
+      if (d.totals[i] == 0)
+	continue;
+
+      bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
+      num_objs = bytes / OBJECT_SIZE (i);
+      entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
+					    - sizeof (long)
+					    + BITMAP_SIZE (num_objs + 1)));
+      entry->bytes = bytes;
+      entry->page = offs;
+      entry->context_depth = 0;
+      offs += bytes;
+      entry->num_free_objects = 0;
+      entry->order = i;
+
+      for (j = 0;
+	   j + HOST_BITS_PER_LONG <= num_objs + 1;
+	   j += HOST_BITS_PER_LONG)
+	entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
+      for (; j < num_objs + 1; j++)
+	entry->in_use_p[j / HOST_BITS_PER_LONG]
+	  |= 1L << (j % HOST_BITS_PER_LONG);
+
+      for (pte = entry->page;
+	   pte < entry->page + entry->bytes;
+	   pte += G.pagesize)
+	set_page_table_entry (pte, entry);
+
+      if (G.page_tails[i] != NULL)
+	G.page_tails[i]->next = entry;
+      else
+	G.pages[i] = entry;
+      G.page_tails[i] = entry;
+
+      /* We start off by just adding all the new information to the
+	 end of the varrays, later, we will move the new information
+	 to the front of the varrays, as the PCH page tables are at
+	 context 0.  */
+      push_by_depth (entry, 0);
+    }
+
+  /* Now, we update the various data structures that speed page table
+     handling.  */
+  count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
+
+  move_ptes_to_front (count_old_page_tables, count_new_page_tables);
+
+  /* Update the statistics.  */
+  G.allocated = G.allocated_last_gc = offs - (char *)addr;
+}