diff gcc/hard-reg-set.h @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/hard-reg-set.h	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,682 @@
+/* Sets (bit vectors) of hard registers, and operations on them.
+   Copyright (C) 1987, 1992, 1994, 2000, 2003, 2004, 2005, 2007, 2008, 2009
+   Free Software Foundation, Inc.
+
+This file is part of GCC
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#ifndef GCC_HARD_REG_SET_H
+#define GCC_HARD_REG_SET_H 
+
+/* Define the type of a set of hard registers.  */
+
+/* HARD_REG_ELT_TYPE is a typedef of the unsigned integral type which
+   will be used for hard reg sets, either alone or in an array.
+
+   If HARD_REG_SET is a macro, its definition is HARD_REG_ELT_TYPE,
+   and it has enough bits to represent all the target machine's hard
+   registers.  Otherwise, it is a typedef for a suitably sized array
+   of HARD_REG_ELT_TYPEs.  HARD_REG_SET_LONGS is defined as how many.
+
+   Note that lots of code assumes that the first part of a regset is
+   the same format as a HARD_REG_SET.  To help make sure this is true,
+   we only try the widest fast integer mode (HOST_WIDEST_FAST_INT)
+   instead of all the smaller types.  This approach loses only if
+   there are very few registers and then only in the few cases where
+   we have an array of HARD_REG_SETs, so it needn't be as complex as
+   it used to be.  */
+
+typedef unsigned HOST_WIDEST_FAST_INT HARD_REG_ELT_TYPE;
+
+#if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDEST_FAST_INT
+
+#define HARD_REG_SET HARD_REG_ELT_TYPE
+
+#else
+
+#define HARD_REG_SET_LONGS \
+ ((FIRST_PSEUDO_REGISTER + HOST_BITS_PER_WIDEST_FAST_INT - 1)	\
+  / HOST_BITS_PER_WIDEST_FAST_INT)
+typedef HARD_REG_ELT_TYPE HARD_REG_SET[HARD_REG_SET_LONGS];
+
+#endif
+
+/* HARD_CONST is used to cast a constant to the appropriate type
+   for use with a HARD_REG_SET.  */
+
+#define HARD_CONST(X) ((HARD_REG_ELT_TYPE) (X))
+
+/* Define macros SET_HARD_REG_BIT, CLEAR_HARD_REG_BIT and TEST_HARD_REG_BIT
+   to set, clear or test one bit in a hard reg set of type HARD_REG_SET.
+   All three take two arguments: the set and the register number.
+
+   In the case where sets are arrays of longs, the first argument
+   is actually a pointer to a long.
+
+   Define two macros for initializing a set:
+   CLEAR_HARD_REG_SET and SET_HARD_REG_SET.
+   These take just one argument.
+
+   Also define macros for copying hard reg sets:
+   COPY_HARD_REG_SET and COMPL_HARD_REG_SET.
+   These take two arguments TO and FROM; they read from FROM
+   and store into TO.  COMPL_HARD_REG_SET complements each bit.
+
+   Also define macros for combining hard reg sets:
+   IOR_HARD_REG_SET and AND_HARD_REG_SET.
+   These take two arguments TO and FROM; they read from FROM
+   and combine bitwise into TO.  Define also two variants
+   IOR_COMPL_HARD_REG_SET and AND_COMPL_HARD_REG_SET
+   which use the complement of the set FROM.
+
+   Also define:
+
+   hard_reg_set_subset_p (X, Y), which returns true if X is a subset of Y.
+   hard_reg_set_equal_p (X, Y), which returns true if X and Y are equal.
+   hard_reg_set_intersect_p (X, Y), which returns true if X and Y intersect.
+   hard_reg_set_empty_p (X), which returns true if X is empty.  */
+
+#define UHOST_BITS_PER_WIDE_INT ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)
+
+#ifdef HARD_REG_SET
+
+#define SET_HARD_REG_BIT(SET, BIT)  \
+ ((SET) |= HARD_CONST (1) << (BIT))
+#define CLEAR_HARD_REG_BIT(SET, BIT)  \
+ ((SET) &= ~(HARD_CONST (1) << (BIT)))
+#define TEST_HARD_REG_BIT(SET, BIT)  \
+ (!!((SET) & (HARD_CONST (1) << (BIT))))
+
+#define CLEAR_HARD_REG_SET(TO) ((TO) = HARD_CONST (0))
+#define SET_HARD_REG_SET(TO) ((TO) = ~ HARD_CONST (0))
+
+#define COPY_HARD_REG_SET(TO, FROM) ((TO) = (FROM))
+#define COMPL_HARD_REG_SET(TO, FROM) ((TO) = ~(FROM))
+
+#define IOR_HARD_REG_SET(TO, FROM) ((TO) |= (FROM))
+#define IOR_COMPL_HARD_REG_SET(TO, FROM) ((TO) |= ~ (FROM))
+#define AND_HARD_REG_SET(TO, FROM) ((TO) &= (FROM))
+#define AND_COMPL_HARD_REG_SET(TO, FROM) ((TO) &= ~ (FROM))
+
+static inline bool
+hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return (x & ~y) == HARD_CONST (0);
+}
+
+static inline bool
+hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return x == y;
+}
+
+static inline bool
+hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return (x & y) != HARD_CONST (0);
+}
+
+static inline bool
+hard_reg_set_empty_p (const HARD_REG_SET x)
+{
+  return x == HARD_CONST (0);
+}
+
+#else
+
+#define SET_HARD_REG_BIT(SET, BIT)		\
+  ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT]	\
+   |= HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))
+
+#define CLEAR_HARD_REG_BIT(SET, BIT)		\
+  ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT]	\
+   &= ~(HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT)))
+
+#define TEST_HARD_REG_BIT(SET, BIT)		\
+  (!!((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT]	\
+      & (HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))))
+
+#if FIRST_PSEUDO_REGISTER <= 2*HOST_BITS_PER_WIDEST_FAST_INT
+#define CLEAR_HARD_REG_SET(TO)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
+     scan_tp_[0] = 0;						\
+     scan_tp_[1] = 0; } while (0)
+
+#define SET_HARD_REG_SET(TO)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
+     scan_tp_[0] = -1;						\
+     scan_tp_[1] = -1; } while (0)
+
+#define COPY_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM);	\
+     scan_tp_[0] = scan_fp_[0];					\
+     scan_tp_[1] = scan_fp_[1]; } while (0)
+
+#define COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] = ~ scan_fp_[0];				\
+     scan_tp_[1] = ~ scan_fp_[1]; } while (0)
+
+#define AND_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] &= scan_fp_[0];				\
+     scan_tp_[1] &= scan_fp_[1]; } while (0)
+
+#define AND_COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] &= ~ scan_fp_[0];				\
+     scan_tp_[1] &= ~ scan_fp_[1]; } while (0)
+
+#define IOR_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] |= scan_fp_[0];				\
+     scan_tp_[1] |= scan_fp_[1]; } while (0)
+
+#define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] |= ~ scan_fp_[0];				\
+     scan_tp_[1] |= ~ scan_fp_[1]; } while (0)
+
+static inline bool
+hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return (x[0] & ~y[0]) == 0 && (x[1] & ~y[1]) == 0;
+}
+
+static inline bool
+hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return x[0] == y[0] && x[1] == y[1];
+}
+
+static inline bool
+hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return (x[0] & y[0]) != 0 || (x[1] & y[1]) != 0;
+}
+
+static inline bool
+hard_reg_set_empty_p (const HARD_REG_SET x)
+{
+  return x[0] == 0 && x[1] == 0;
+}
+
+#else
+#if FIRST_PSEUDO_REGISTER <= 3*HOST_BITS_PER_WIDEST_FAST_INT
+#define CLEAR_HARD_REG_SET(TO)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
+     scan_tp_[0] = 0;						\
+     scan_tp_[1] = 0;						\
+     scan_tp_[2] = 0; } while (0)
+
+#define SET_HARD_REG_SET(TO)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
+     scan_tp_[0] = -1;						\
+     scan_tp_[1] = -1;						\
+     scan_tp_[2] = -1; } while (0)
+
+#define COPY_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM);	\
+     scan_tp_[0] = scan_fp_[0];					\
+     scan_tp_[1] = scan_fp_[1];					\
+     scan_tp_[2] = scan_fp_[2]; } while (0)
+
+#define COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] = ~ scan_fp_[0];				\
+     scan_tp_[1] = ~ scan_fp_[1];				\
+     scan_tp_[2] = ~ scan_fp_[2]; } while (0)
+
+#define AND_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] &= scan_fp_[0];				\
+     scan_tp_[1] &= scan_fp_[1];				\
+     scan_tp_[2] &= scan_fp_[2]; } while (0)
+
+#define AND_COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] &= ~ scan_fp_[0];				\
+     scan_tp_[1] &= ~ scan_fp_[1];				\
+     scan_tp_[2] &= ~ scan_fp_[2]; } while (0)
+
+#define IOR_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] |= scan_fp_[0];				\
+     scan_tp_[1] |= scan_fp_[1];				\
+     scan_tp_[2] |= scan_fp_[2]; } while (0)
+
+#define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] |= ~ scan_fp_[0];				\
+     scan_tp_[1] |= ~ scan_fp_[1];				\
+     scan_tp_[2] |= ~ scan_fp_[2]; } while (0)
+
+static inline bool
+hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return ((x[0] & ~y[0]) == 0
+	  && (x[1] & ~y[1]) == 0
+	  && (x[2] & ~y[2]) == 0);
+}
+
+static inline bool
+hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return x[0] == y[0] && x[1] == y[1] && x[2] == y[2];
+}
+
+static inline bool
+hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return ((x[0] & y[0]) != 0
+	  || (x[1] & y[1]) != 0
+	  || (x[2] & y[2]) != 0);
+}
+
+static inline bool
+hard_reg_set_empty_p (const HARD_REG_SET x)
+{
+  return x[0] == 0 && x[1] == 0 && x[2] == 0;
+}
+
+#else
+#if FIRST_PSEUDO_REGISTER <= 4*HOST_BITS_PER_WIDEST_FAST_INT
+#define CLEAR_HARD_REG_SET(TO)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
+     scan_tp_[0] = 0;						\
+     scan_tp_[1] = 0;						\
+     scan_tp_[2] = 0;						\
+     scan_tp_[3] = 0; } while (0)
+
+#define SET_HARD_REG_SET(TO)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
+     scan_tp_[0] = -1;						\
+     scan_tp_[1] = -1;						\
+     scan_tp_[2] = -1;						\
+     scan_tp_[3] = -1; } while (0)
+
+#define COPY_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM);	\
+     scan_tp_[0] = scan_fp_[0];					\
+     scan_tp_[1] = scan_fp_[1];					\
+     scan_tp_[2] = scan_fp_[2];					\
+     scan_tp_[3] = scan_fp_[3]; } while (0)
+
+#define COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] = ~ scan_fp_[0];				\
+     scan_tp_[1] = ~ scan_fp_[1];				\
+     scan_tp_[2] = ~ scan_fp_[2];				\
+     scan_tp_[3] = ~ scan_fp_[3]; } while (0)
+
+#define AND_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] &= scan_fp_[0];				\
+     scan_tp_[1] &= scan_fp_[1];				\
+     scan_tp_[2] &= scan_fp_[2];				\
+     scan_tp_[3] &= scan_fp_[3]; } while (0)
+
+#define AND_COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] &= ~ scan_fp_[0];				\
+     scan_tp_[1] &= ~ scan_fp_[1];				\
+     scan_tp_[2] &= ~ scan_fp_[2];				\
+     scan_tp_[3] &= ~ scan_fp_[3]; } while (0)
+
+#define IOR_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] |= scan_fp_[0];				\
+     scan_tp_[1] |= scan_fp_[1];				\
+     scan_tp_[2] |= scan_fp_[2];				\
+     scan_tp_[3] |= scan_fp_[3]; } while (0)
+
+#define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     scan_tp_[0] |= ~ scan_fp_[0];				\
+     scan_tp_[1] |= ~ scan_fp_[1];				\
+     scan_tp_[2] |= ~ scan_fp_[2];				\
+     scan_tp_[3] |= ~ scan_fp_[3]; } while (0)
+
+static inline bool
+hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return ((x[0] & ~y[0]) == 0
+	  && (x[1] & ~y[1]) == 0
+	  && (x[2] & ~y[2]) == 0
+	  && (x[3] & ~y[3]) == 0);
+}
+
+static inline bool
+hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return x[0] == y[0] && x[1] == y[1] && x[2] == y[2] && x[3] == y[3];
+}
+
+static inline bool
+hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  return ((x[0] & y[0]) != 0
+	  || (x[1] & y[1]) != 0
+	  || (x[2] & y[2]) != 0
+	  || (x[3] & y[3]) != 0);
+}
+
+static inline bool
+hard_reg_set_empty_p (const HARD_REG_SET x)
+{
+  return x[0] == 0 && x[1] == 0 && x[2] == 0 && x[3] == 0;
+}
+
+#else /* FIRST_PSEUDO_REGISTER > 4*HOST_BITS_PER_WIDEST_FAST_INT */
+
+#define CLEAR_HARD_REG_SET(TO)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
+     int i;							\
+     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
+       *scan_tp_++ = 0; } while (0)
+
+#define SET_HARD_REG_SET(TO)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
+     int i;							\
+     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
+       *scan_tp_++ = -1; } while (0)
+
+#define COPY_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     int i;							\
+     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
+       *scan_tp_++ = *scan_fp_++; } while (0)
+
+#define COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     int i;							\
+     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
+       *scan_tp_++ = ~ *scan_fp_++; } while (0)
+
+#define AND_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     int i;							\
+     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
+       *scan_tp_++ &= *scan_fp_++; } while (0)
+
+#define AND_COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     int i;							\
+     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
+       *scan_tp_++ &= ~ *scan_fp_++; } while (0)
+
+#define IOR_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     int i;							\
+     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
+       *scan_tp_++ |= *scan_fp_++; } while (0)
+
+#define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
+do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
+     int i;							\
+     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
+       *scan_tp_++ |= ~ *scan_fp_++; } while (0)
+
+static inline bool
+hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  int i;
+
+  for (i = 0; i < HARD_REG_SET_LONGS; i++)
+    if ((x[i] & ~y[i]) != 0)
+      return false;
+  return true;
+}
+
+static inline bool
+hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  int i;
+
+  for (i = 0; i < HARD_REG_SET_LONGS; i++)
+    if (x[i] != y[i])
+      return false;
+  return true;
+}
+
+static inline bool
+hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
+{
+  int i;
+
+  for (i = 0; i < HARD_REG_SET_LONGS; i++)
+    if ((x[i] & y[i]) != 0)
+      return true;
+  return false;
+}
+
+static inline bool
+hard_reg_set_empty_p (const HARD_REG_SET x)
+{
+  int i;
+
+  for (i = 0; i < HARD_REG_SET_LONGS; i++)
+    if (x[i] != 0)
+      return false;
+  return true;
+}
+
+#endif
+#endif
+#endif
+#endif
+
+/* Iterator for hard register sets.  */
+
+typedef struct
+{
+  /* Pointer to the current element.  */
+  HARD_REG_ELT_TYPE *pelt;
+
+  /* The length of the set.  */
+  unsigned short length;
+
+  /* Word within the current element.  */
+  unsigned short word_no;
+
+  /* Contents of the actually processed word.  When finding next bit
+     it is shifted right, so that the actual bit is always the least
+     significant bit of ACTUAL.  */
+  HARD_REG_ELT_TYPE bits;
+} hard_reg_set_iterator;
+
+#define HARD_REG_ELT_BITS UHOST_BITS_PER_WIDE_INT
+
+/* The implementation of the iterator functions is fully analogous to 
+   the bitmap iterators.  */
+static inline void
+hard_reg_set_iter_init (hard_reg_set_iterator *iter, HARD_REG_SET set, 
+                        unsigned min, unsigned *regno)
+{
+#ifdef HARD_REG_SET_LONGS
+  iter->pelt = set;
+  iter->length = HARD_REG_SET_LONGS;
+#else
+  iter->pelt = &set;
+  iter->length = 1;
+#endif
+  iter->word_no = min / HARD_REG_ELT_BITS;
+  if (iter->word_no < iter->length)
+    {
+      iter->bits = iter->pelt[iter->word_no];
+      iter->bits >>= min % HARD_REG_ELT_BITS;
+
+      /* This is required for correct search of the next bit.  */
+      min += !iter->bits;
+    }
+  *regno = min;
+}
+
+static inline bool 
+hard_reg_set_iter_set (hard_reg_set_iterator *iter, unsigned *regno)
+{
+  while (1)
+    {
+      /* Return false when we're advanced past the end of the set.  */
+      if (iter->word_no >= iter->length)
+        return false;
+
+      if (iter->bits)
+        {
+          /* Find the correct bit and return it.  */
+          while (!(iter->bits & 1))
+            {
+              iter->bits >>= 1;
+              *regno += 1;
+            }
+          return (*regno < FIRST_PSEUDO_REGISTER);
+        }
+  
+      /* Round to the beginning of the next word.  */
+      *regno = (*regno + HARD_REG_ELT_BITS - 1);
+      *regno -= *regno % HARD_REG_ELT_BITS;
+
+      /* Find the next non-zero word.  */
+      while (++iter->word_no < iter->length)
+        {
+          iter->bits = iter->pelt[iter->word_no];
+          if (iter->bits)
+            break;
+          *regno += HARD_REG_ELT_BITS;
+        }
+    }
+}
+
+static inline void
+hard_reg_set_iter_next (hard_reg_set_iterator *iter, unsigned *regno)
+{
+  iter->bits >>= 1;
+  *regno += 1;
+}
+
+#define EXECUTE_IF_SET_IN_HARD_REG_SET(SET, MIN, REGNUM, ITER)          \
+  for (hard_reg_set_iter_init (&(ITER), (SET), (MIN), &(REGNUM));       \
+       hard_reg_set_iter_set (&(ITER), &(REGNUM));                      \
+       hard_reg_set_iter_next (&(ITER), &(REGNUM)))
+
+
+/* Define some standard sets of registers.  */
+
+/* Indexed by hard register number, contains 1 for registers
+   that are fixed use (stack pointer, pc, frame pointer, etc.).
+   These are the registers that cannot be used to allocate
+   a pseudo reg whose life does not cross calls.  */
+
+extern char fixed_regs[FIRST_PSEUDO_REGISTER];
+
+/* The same info as a HARD_REG_SET.  */
+
+extern HARD_REG_SET fixed_reg_set;
+
+/* Indexed by hard register number, contains 1 for registers
+   that are fixed use or are clobbered by function calls.
+   These are the registers that cannot be used to allocate
+   a pseudo reg whose life crosses calls.  */
+
+extern char call_used_regs[FIRST_PSEUDO_REGISTER];
+
+#ifdef CALL_REALLY_USED_REGISTERS
+extern char call_really_used_regs[];
+#endif
+
+/* The same info as a HARD_REG_SET.  */
+
+extern HARD_REG_SET call_used_reg_set;
+  
+/* Indexed by hard register number, contains 1 for registers that are
+   fixed use -- i.e. in fixed_regs -- or a function value return register
+   or TARGET_STRUCT_VALUE_RTX or STATIC_CHAIN_REGNUM.  These are the
+   registers that cannot hold quantities across calls even if we are
+   willing to save and restore them.  */
+
+extern char call_fixed_regs[FIRST_PSEUDO_REGISTER];
+
+/* The same info as a HARD_REG_SET.  */
+
+extern HARD_REG_SET call_fixed_reg_set;
+
+/* Indexed by hard register number, contains 1 for registers
+   that are being used for global register decls.
+   These must be exempt from ordinary flow analysis
+   and are also considered fixed.  */
+
+extern char global_regs[FIRST_PSEUDO_REGISTER];
+
+/* Contains 1 for registers that are set or clobbered by calls.  */
+/* ??? Ideally, this would be just call_used_regs plus global_regs, but
+   for someone's bright idea to have call_used_regs strictly include
+   fixed_regs.  Which leaves us guessing as to the set of fixed_regs
+   that are actually preserved.  We know for sure that those associated
+   with the local stack frame are safe, but scant others.  */
+
+extern HARD_REG_SET regs_invalidated_by_call;
+
+/* Call used hard registers which can not be saved because there is no
+   insn for this.  */
+
+extern HARD_REG_SET no_caller_save_reg_set;
+
+#ifdef REG_ALLOC_ORDER
+/* Table of register numbers in the order in which to try to use them.  */
+
+extern int reg_alloc_order[FIRST_PSEUDO_REGISTER];
+
+/* The inverse of reg_alloc_order.  */
+
+extern int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
+#endif
+
+/* For each reg class, a HARD_REG_SET saying which registers are in it.  */
+
+extern HARD_REG_SET reg_class_contents[N_REG_CLASSES];
+
+/* For each reg class, number of regs it contains.  */
+
+extern unsigned int reg_class_size[N_REG_CLASSES];
+
+/* For each reg class, table listing all the classes contained in it.  */
+
+extern enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
+
+/* For each pair of reg classes,
+   a largest reg class contained in their union.  */
+
+extern enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
+
+/* For each pair of reg classes,
+   the smallest reg class that contains their union.  */
+
+extern enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
+
+/* Vector indexed by hardware reg giving its name.  */
+
+extern const char * reg_names[FIRST_PSEUDO_REGISTER];
+
+/* Vector indexed by reg class giving its name.  */
+
+extern const char * reg_class_names[];
+
+/* Given a hard REGN a FROM mode and a TO mode, return nonzero if
+   REGN cannot change modes between the specified modes.  */
+#define REG_CANNOT_CHANGE_MODE_P(REGN, FROM, TO)                          \
+         CANNOT_CHANGE_MODE_CLASS (FROM, TO, REGNO_REG_CLASS (REGN))
+
+#endif /* ! GCC_HARD_REG_SET_H */