diff gcc/lambda.h @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/lambda.h	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,525 @@
+/* Lambda matrix and vector interface.
+   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
+   Free Software Foundation, Inc.
+   Contributed by Daniel Berlin <dberlin@dberlin.org>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#ifndef LAMBDA_H
+#define LAMBDA_H
+
+#include "vec.h"
+
+/* An integer vector.  A vector formally consists of an element of a vector
+   space. A vector space is a set that is closed under vector addition
+   and scalar multiplication.  In this vector space, an element is a list of
+   integers.  */
+typedef int *lambda_vector;
+DEF_VEC_P(lambda_vector);
+DEF_VEC_ALLOC_P(lambda_vector,heap);
+DEF_VEC_ALLOC_P(lambda_vector,gc);
+
+typedef VEC(lambda_vector, heap) *lambda_vector_vec_p;
+DEF_VEC_P (lambda_vector_vec_p);
+DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap);
+
+/* An integer matrix.  A matrix consists of m vectors of length n (IE
+   all vectors are the same length).  */
+typedef lambda_vector *lambda_matrix;
+
+DEF_VEC_P (lambda_matrix);
+DEF_VEC_ALLOC_P (lambda_matrix, heap);
+
+/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
+   matrix.  Rather than use floats, we simply keep a single DENOMINATOR that
+   represents the denominator for every element in the matrix.  */
+typedef struct lambda_trans_matrix_s
+{
+  lambda_matrix matrix;
+  int rowsize;
+  int colsize;
+  int denominator;
+} *lambda_trans_matrix;
+#define LTM_MATRIX(T) ((T)->matrix)
+#define LTM_ROWSIZE(T) ((T)->rowsize)
+#define LTM_COLSIZE(T) ((T)->colsize)
+#define LTM_DENOMINATOR(T) ((T)->denominator)
+
+/* A vector representing a statement in the body of a loop.
+   The COEFFICIENTS vector contains a coefficient for each induction variable
+   in the loop nest containing the statement.
+   The DENOMINATOR represents the denominator for each coefficient in the
+   COEFFICIENT vector.
+
+   This structure is used during code generation in order to rewrite the old
+   induction variable uses in a statement in terms of the newly created
+   induction variables.  */
+typedef struct lambda_body_vector_s
+{
+  lambda_vector coefficients;
+  int size;
+  int denominator;
+} *lambda_body_vector;
+#define LBV_COEFFICIENTS(T) ((T)->coefficients)
+#define LBV_SIZE(T) ((T)->size)
+#define LBV_DENOMINATOR(T) ((T)->denominator)
+
+/* Piecewise linear expression.  
+   This structure represents a linear expression with terms for the invariants
+   and induction variables of a loop. 
+   COEFFICIENTS is a vector of coefficients for the induction variables, one
+   per loop in the loop nest.
+   CONSTANT is the constant portion of the linear expression
+   INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
+   one per invariant.
+   DENOMINATOR is the denominator for all of the coefficients and constants in
+   the expression.  
+   The linear expressions can be linked together using the NEXT field, in
+   order to represent MAX or MIN of a group of linear expressions.  */
+typedef struct lambda_linear_expression_s
+{
+  lambda_vector coefficients;
+  int constant;
+  lambda_vector invariant_coefficients;
+  int denominator;
+  struct lambda_linear_expression_s *next;
+} *lambda_linear_expression;
+
+#define LLE_COEFFICIENTS(T) ((T)->coefficients)
+#define LLE_CONSTANT(T) ((T)->constant)
+#define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
+#define LLE_DENOMINATOR(T) ((T)->denominator)
+#define LLE_NEXT(T) ((T)->next)
+
+struct obstack;
+
+lambda_linear_expression lambda_linear_expression_new (int, int,
+                                                       struct obstack *);
+void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
+				     int, char);
+
+/* Loop structure.  Our loop structure consists of a constant representing the
+   STEP of the loop, a set of linear expressions representing the LOWER_BOUND
+   of the loop, a set of linear expressions representing the UPPER_BOUND of
+   the loop, and a set of linear expressions representing the LINEAR_OFFSET of
+   the loop.  The linear offset is a set of linear expressions that are
+   applied to *both* the lower bound, and the upper bound.  */
+typedef struct lambda_loop_s
+{
+  lambda_linear_expression lower_bound;
+  lambda_linear_expression upper_bound;
+  lambda_linear_expression linear_offset;
+  int step;
+} *lambda_loop;
+
+#define LL_LOWER_BOUND(T) ((T)->lower_bound)
+#define LL_UPPER_BOUND(T) ((T)->upper_bound)
+#define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
+#define LL_STEP(T)   ((T)->step)
+
+/* Loop nest structure.  
+   The loop nest structure consists of a set of loop structures (defined
+   above) in LOOPS, along with an integer representing the DEPTH of the loop,
+   and an integer representing the number of INVARIANTS in the loop.  Both of
+   these integers are used to size the associated coefficient vectors in the
+   linear expression structures.  */
+typedef struct lambda_loopnest_s
+{
+  lambda_loop *loops;
+  int depth;
+  int invariants;
+} *lambda_loopnest;
+
+#define LN_LOOPS(T) ((T)->loops)
+#define LN_DEPTH(T) ((T)->depth)
+#define LN_INVARIANTS(T) ((T)->invariants)
+
+lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
+lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
+                                           lambda_trans_matrix,
+                                           struct obstack *);
+struct loop;
+bool perfect_nest_p (struct loop *);
+void print_lambda_loopnest (FILE *, lambda_loopnest, char);
+
+#define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
+
+void print_lambda_loop (FILE *, lambda_loop, int, int, char);
+
+lambda_matrix lambda_matrix_new (int, int);
+
+void lambda_matrix_id (lambda_matrix, int);
+bool lambda_matrix_id_p (lambda_matrix, int);
+void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
+void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
+void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
+void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
+			int);
+void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
+			   lambda_matrix, int, int);
+void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
+			 int, int, int);
+void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
+void lambda_matrix_row_exchange (lambda_matrix, int, int);
+void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
+void lambda_matrix_row_negate (lambda_matrix mat, int, int);
+void lambda_matrix_row_mc (lambda_matrix, int, int, int);
+void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
+void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
+void lambda_matrix_col_negate (lambda_matrix, int, int);
+void lambda_matrix_col_mc (lambda_matrix, int, int, int);
+int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
+void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
+void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
+void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
+int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
+void lambda_matrix_project_to_null (lambda_matrix, int, int, int, 
+				    lambda_vector);
+void print_lambda_matrix (FILE *, lambda_matrix, int, int);
+
+lambda_trans_matrix lambda_trans_matrix_new (int, int);
+bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
+bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
+int lambda_trans_matrix_rank (lambda_trans_matrix);
+lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
+lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
+lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
+void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
+void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector, 
+				lambda_vector);
+bool lambda_trans_matrix_id_p (lambda_trans_matrix);
+
+lambda_body_vector lambda_body_vector_new (int, struct obstack *);
+lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
+                                                   lambda_body_vector,
+                                                   struct obstack *);
+void print_lambda_body_vector (FILE *, lambda_body_vector);
+lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
+						 VEC(tree,heap) **,
+                                                 VEC(tree,heap) **,
+                                                 struct obstack *);
+void lambda_loopnest_to_gcc_loopnest (struct loop *,
+				      VEC(tree,heap) *, VEC(tree,heap) *,
+				      VEC(gimple,heap) **,
+                                      lambda_loopnest, lambda_trans_matrix,
+                                      struct obstack *);
+void remove_iv (gimple);
+tree find_induction_var_from_exit_cond (struct loop *);
+
+static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
+static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
+static inline void lambda_vector_add (lambda_vector, lambda_vector,
+				      lambda_vector, int);
+static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
+					 lambda_vector, int);
+static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
+static inline bool lambda_vector_zerop (lambda_vector, int);
+static inline void lambda_vector_clear (lambda_vector, int);
+static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
+static inline int lambda_vector_min_nz (lambda_vector, int, int);
+static inline int lambda_vector_first_nz (lambda_vector, int, int);
+static inline void print_lambda_vector (FILE *, lambda_vector, int);
+
+/* Allocate a new vector of given SIZE.  */
+
+static inline lambda_vector
+lambda_vector_new (int size)
+{
+  return GGC_CNEWVEC (int, size);
+}
+
+
+
+/* Multiply vector VEC1 of length SIZE by a constant CONST1,
+   and store the result in VEC2.  */
+
+static inline void
+lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
+			  int size, int const1)
+{
+  int i;
+
+  if (const1 == 0)
+    lambda_vector_clear (vec2, size);
+  else
+    for (i = 0; i < size; i++)
+      vec2[i] = const1 * vec1[i];
+}
+
+/* Negate vector VEC1 with length SIZE and store it in VEC2.  */
+
+static inline void 
+lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
+		      int size)
+{
+  lambda_vector_mult_const (vec1, vec2, size, -1);
+}
+
+/* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE.  */
+
+static inline void
+lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
+		   lambda_vector vec3, int size)
+{
+  int i;
+  for (i = 0; i < size; i++)
+    vec3[i] = vec1[i] + vec2[i];
+}
+
+/* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2.  All vectors have length SIZE.  */
+
+static inline void
+lambda_vector_add_mc (lambda_vector vec1, int const1,
+		      lambda_vector vec2, int const2,
+		      lambda_vector vec3, int size)
+{
+  int i;
+  for (i = 0; i < size; i++)
+    vec3[i] = const1 * vec1[i] + const2 * vec2[i];
+}
+
+/* Copy the elements of vector VEC1 with length SIZE to VEC2.  */
+
+static inline void
+lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
+		    int size)
+{
+  memcpy (vec2, vec1, size * sizeof (*vec1));
+}
+
+/* Return true if vector VEC1 of length SIZE is the zero vector.  */
+
+static inline bool 
+lambda_vector_zerop (lambda_vector vec1, int size)
+{
+  int i;
+  for (i = 0; i < size; i++)
+    if (vec1[i] != 0)
+      return false;
+  return true;
+}
+
+/* Clear out vector VEC1 of length SIZE.  */
+
+static inline void
+lambda_vector_clear (lambda_vector vec1, int size)
+{
+  memset (vec1, 0, size * sizeof (*vec1));
+}
+
+/* Return true if two vectors are equal.  */
+ 
+static inline bool
+lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
+{
+  int i;
+  for (i = 0; i < size; i++)
+    if (vec1[i] != vec2[i])
+      return false;
+  return true;
+}
+
+/* Return the minimum nonzero element in vector VEC1 between START and N.
+   We must have START <= N.  */
+
+static inline int
+lambda_vector_min_nz (lambda_vector vec1, int n, int start)
+{
+  int j;
+  int min = -1;
+
+  gcc_assert (start <= n);
+  for (j = start; j < n; j++)
+    {
+      if (vec1[j])
+	if (min < 0 || vec1[j] < vec1[min])
+	  min = j;
+    }
+  gcc_assert (min >= 0);
+
+  return min;
+}
+
+/* Return the first nonzero element of vector VEC1 between START and N.
+   We must have START <= N.   Returns N if VEC1 is the zero vector.  */
+
+static inline int
+lambda_vector_first_nz (lambda_vector vec1, int n, int start)
+{
+  int j = start;
+  while (j < n && vec1[j] == 0)
+    j++;
+  return j;
+}
+
+
+/* Multiply a vector by a matrix.  */
+
+static inline void
+lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat, 
+			   int n, lambda_vector dest)
+{
+  int i, j;
+  lambda_vector_clear (dest, n);
+  for (i = 0; i < n; i++)
+    for (j = 0; j < m; j++)
+      dest[i] += mat[j][i] * vect[j];
+}
+
+/* Compare two vectors returning an integer less than, equal to, or
+   greater than zero if the first argument is considered to be respectively
+   less than, equal to, or greater than the second.  
+   We use the lexicographic order.  */
+
+static inline int
+lambda_vector_compare (lambda_vector vec1, int length1, lambda_vector vec2,
+                       int length2)
+{
+  int min_length;
+  int i;
+
+  if (length1 < length2)
+    min_length = length1;
+  else
+    min_length = length2;
+
+  for (i = 0; i < min_length; i++)
+    if (vec1[i] < vec2[i])
+      return -1;
+    else if (vec1[i] > vec2[i])
+      return 1;
+    else
+      continue;
+
+  return length1 - length2;
+}
+
+/* Print out a vector VEC of length N to OUTFILE.  */
+
+static inline void
+print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
+{
+  int i;
+
+  for (i = 0; i < n; i++)
+    fprintf (outfile, "%3d ", vector[i]);
+  fprintf (outfile, "\n");
+}
+
+/* Compute the greatest common divisor of two numbers using
+   Euclid's algorithm.  */
+
+static inline int 
+gcd (int a, int b)
+{
+  int x, y, z;
+
+  x = abs (a);
+  y = abs (b);
+
+  while (x > 0)
+    {
+      z = y % x;
+      y = x;
+      x = z;
+    }
+
+  return y;
+}
+
+/* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */
+
+static inline int
+lambda_vector_gcd (lambda_vector vector, int size)
+{
+  int i;
+  int gcd1 = 0;
+
+  if (size > 0)
+    {
+      gcd1 = vector[0];
+      for (i = 1; i < size; i++)
+	gcd1 = gcd (gcd1, vector[i]);
+    }
+  return gcd1;
+}
+
+/* Returns true when the vector V is lexicographically positive, in
+   other words, when the first nonzero element is positive.  */
+
+static inline bool
+lambda_vector_lexico_pos (lambda_vector v, 
+			  unsigned n)
+{
+  unsigned i;
+  for (i = 0; i < n; i++)
+    {
+      if (v[i] == 0)
+	continue;
+      if (v[i] < 0)
+	return false;
+      if (v[i] > 0)
+	return true;
+    }
+  return true;
+}
+
+/* Given a vector of induction variables IVS, and a vector of
+   coefficients COEFS, build a tree that is a linear combination of
+   the induction variables.  */
+
+static inline tree
+build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
+{
+  unsigned i;
+  tree iv;
+  tree expr = fold_convert (type, integer_zero_node);
+
+  for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
+    {
+      int k = coefs[i];
+
+      if (k == 1)
+	expr = fold_build2 (PLUS_EXPR, type, expr, iv);
+
+      else if (k != 0)
+	expr = fold_build2 (PLUS_EXPR, type, expr,
+			    fold_build2 (MULT_EXPR, type, iv,
+					 build_int_cst (type, k)));
+    }
+
+  return expr;
+}
+
+/* Returns the dependence level for a vector DIST of size LENGTH.
+   LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
+   to the sequence of statements, not carried by any loop.  */
+
+
+static inline unsigned
+dependence_level (lambda_vector dist_vect, int length)
+{
+  int i;
+
+  for (i = 0; i < length; i++)
+    if (dist_vect[i] != 0)
+      return i + 1;
+
+  return 0;
+}
+
+#endif /* LAMBDA_H  */