diff gcc/tree-flow-inline.h @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/tree-flow-inline.h	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,1486 @@
+/* Inline functions for tree-flow.h
+   Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008 Free Software
+   Foundation, Inc.
+   Contributed by Diego Novillo <dnovillo@redhat.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#ifndef _TREE_FLOW_INLINE_H
+#define _TREE_FLOW_INLINE_H 1
+
+/* Inline functions for manipulating various data structures defined in
+   tree-flow.h.  See tree-flow.h for documentation.  */
+
+/* Return true when gimple SSA form was built.
+   gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
+   infrastructure is initialized.  Check for presence of the datastructures
+   at first place.  */
+static inline bool
+gimple_in_ssa_p (const struct function *fun)
+{
+  return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
+}
+
+/* 'true' after aliases have been computed (see compute_may_aliases).  */
+static inline bool
+gimple_aliases_computed_p (const struct function *fun)
+{
+  gcc_assert (fun && fun->gimple_df);
+  return fun->gimple_df->aliases_computed_p;
+}
+
+/* Addressable variables in the function.  If bit I is set, then
+   REFERENCED_VARS (I) has had its address taken.  Note that
+   CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related.  An
+   addressable variable is not necessarily call-clobbered (e.g., a
+   local addressable whose address does not escape) and not all
+   call-clobbered variables are addressable (e.g., a local static
+   variable).  */
+static inline bitmap
+gimple_addressable_vars (const struct function *fun)
+{
+  gcc_assert (fun && fun->gimple_df);
+  return fun->gimple_df->addressable_vars;
+}
+
+/* Call clobbered variables in the function.  If bit I is set, then
+   REFERENCED_VARS (I) is call-clobbered.  */
+static inline bitmap
+gimple_call_clobbered_vars (const struct function *fun)
+{
+  gcc_assert (fun && fun->gimple_df);
+  return fun->gimple_df->call_clobbered_vars;
+}
+
+/* Call-used variables in the function.  If bit I is set, then
+   REFERENCED_VARS (I) is call-used at pure function call-sites.  */
+static inline bitmap
+gimple_call_used_vars (const struct function *fun)
+{
+  gcc_assert (fun && fun->gimple_df);
+  return fun->gimple_df->call_used_vars;
+}
+
+/* Array of all variables referenced in the function.  */
+static inline htab_t
+gimple_referenced_vars (const struct function *fun)
+{
+  if (!fun->gimple_df)
+    return NULL;
+  return fun->gimple_df->referenced_vars;
+}
+
+/* Artificial variable used to model the effects of function calls.  */
+static inline tree
+gimple_global_var (const struct function *fun)
+{
+  gcc_assert (fun && fun->gimple_df);
+  return fun->gimple_df->global_var;
+}
+
+/* Artificial variable used to model the effects of nonlocal
+   variables.  */
+static inline tree
+gimple_nonlocal_all (const struct function *fun)
+{
+  gcc_assert (fun && fun->gimple_df);
+  return fun->gimple_df->nonlocal_all;
+}
+
+/* Initialize the hashtable iterator HTI to point to hashtable TABLE */
+
+static inline void *
+first_htab_element (htab_iterator *hti, htab_t table)
+{
+  hti->htab = table;
+  hti->slot = table->entries;
+  hti->limit = hti->slot + htab_size (table);
+  do
+    {
+      PTR x = *(hti->slot);
+      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
+	break;
+    } while (++(hti->slot) < hti->limit);
+  
+  if (hti->slot < hti->limit)
+    return *(hti->slot);
+  return NULL;
+}
+
+/* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
+   or NULL if we have  reached the end.  */
+
+static inline bool
+end_htab_p (const htab_iterator *hti)
+{
+  if (hti->slot >= hti->limit)
+    return true;
+  return false;
+}
+
+/* Advance the hashtable iterator pointed to by HTI to the next element of the
+   hashtable.  */
+
+static inline void *
+next_htab_element (htab_iterator *hti)
+{
+  while (++(hti->slot) < hti->limit)
+    {
+      PTR x = *(hti->slot);
+      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
+	return x;
+    };
+  return NULL;
+}
+
+/* Initialize ITER to point to the first referenced variable in the
+   referenced_vars hashtable, and return that variable.  */
+
+static inline tree
+first_referenced_var (referenced_var_iterator *iter)
+{
+  return (tree) first_htab_element (&iter->hti,
+				    gimple_referenced_vars (cfun));
+}
+
+/* Return true if we have hit the end of the referenced variables ITER is
+   iterating through.  */
+
+static inline bool
+end_referenced_vars_p (const referenced_var_iterator *iter)
+{
+  return end_htab_p (&iter->hti);
+}
+
+/* Make ITER point to the next referenced_var in the referenced_var hashtable,
+   and return that variable.  */
+
+static inline tree
+next_referenced_var (referenced_var_iterator *iter)
+{
+  return (tree) next_htab_element (&iter->hti);
+} 
+
+/* Fill up VEC with the variables in the referenced vars hashtable.  */
+
+static inline void
+fill_referenced_var_vec (VEC (tree, heap) **vec)
+{
+  referenced_var_iterator rvi;
+  tree var;
+  *vec = NULL;
+  FOR_EACH_REFERENCED_VAR (var, rvi)
+    VEC_safe_push (tree, heap, *vec, var);
+}
+
+/* Return the variable annotation for T, which must be a _DECL node.
+   Return NULL if the variable annotation doesn't already exist.  */
+static inline var_ann_t
+var_ann (const_tree t)
+{
+  var_ann_t ann;
+
+  if (!t->base.ann)
+    return NULL;
+  ann = (var_ann_t) t->base.ann;
+
+  gcc_assert (ann->common.type == VAR_ANN);
+
+  return ann;
+}
+
+/* Return the variable annotation for T, which must be a _DECL node.
+   Create the variable annotation if it doesn't exist.  */
+static inline var_ann_t
+get_var_ann (tree var)
+{
+  var_ann_t ann = var_ann (var);
+  return (ann) ? ann : create_var_ann (var);
+}
+
+/* Return the function annotation for T, which must be a FUNCTION_DECL node.
+   Return NULL if the function annotation doesn't already exist.  */
+static inline function_ann_t
+function_ann (const_tree t)
+{
+  gcc_assert (t);
+  gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
+  gcc_assert (!t->base.ann
+	      || t->base.ann->common.type == FUNCTION_ANN);
+
+  return (function_ann_t) t->base.ann;
+}
+
+/* Return the function annotation for T, which must be a FUNCTION_DECL node.
+   Create the function annotation if it doesn't exist.  */
+static inline function_ann_t
+get_function_ann (tree var)
+{
+  function_ann_t ann = function_ann (var);
+  gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN);
+  return (ann) ? ann : create_function_ann (var);
+}
+
+/* Get the number of the next statement uid to be allocated.  */
+static inline unsigned int
+gimple_stmt_max_uid (struct function *fn)
+{
+  return fn->last_stmt_uid;
+}
+
+/* Set the number of the next statement uid to be allocated.  */
+static inline void
+set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid)
+{
+  fn->last_stmt_uid = maxid;
+}
+
+/* Set the number of the next statement uid to be allocated.  */
+static inline unsigned int
+inc_gimple_stmt_max_uid (struct function *fn)
+{
+  return fn->last_stmt_uid++;
+}
+
+/* Return the annotation type for annotation ANN.  */
+static inline enum tree_ann_type
+ann_type (tree_ann_t ann)
+{
+  return ann->common.type;
+}
+
+/* Return the may_aliases bitmap for variable VAR, or NULL if it has
+   no may aliases.  */
+static inline bitmap
+may_aliases (const_tree var)
+{
+  return MTAG_ALIASES (var);
+}
+
+/* Return the line number for EXPR, or return -1 if we have no line
+   number information for it.  */
+static inline int
+get_lineno (const_gimple stmt)
+{
+  location_t loc;
+
+  if (!stmt)
+    return -1;
+
+  loc = gimple_location (stmt);
+  if (loc != UNKNOWN_LOCATION)
+    return -1;
+
+  return LOCATION_LINE (loc);
+}
+
+/* Delink an immediate_uses node from its chain.  */
+static inline void
+delink_imm_use (ssa_use_operand_t *linknode)
+{
+  /* Return if this node is not in a list.  */
+  if (linknode->prev == NULL)
+    return;
+
+  linknode->prev->next = linknode->next;
+  linknode->next->prev = linknode->prev;
+  linknode->prev = NULL;
+  linknode->next = NULL;
+}
+
+/* Link ssa_imm_use node LINKNODE into the chain for LIST.  */
+static inline void
+link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
+{
+  /* Link the new node at the head of the list.  If we are in the process of 
+     traversing the list, we won't visit any new nodes added to it.  */
+  linknode->prev = list;
+  linknode->next = list->next;
+  list->next->prev = linknode;
+  list->next = linknode;
+}
+
+/* Link ssa_imm_use node LINKNODE into the chain for DEF.  */
+static inline void
+link_imm_use (ssa_use_operand_t *linknode, tree def)
+{
+  ssa_use_operand_t *root;
+
+  if (!def || TREE_CODE (def) != SSA_NAME)
+    linknode->prev = NULL;
+  else
+    {
+      root = &(SSA_NAME_IMM_USE_NODE (def));
+#ifdef ENABLE_CHECKING
+      if (linknode->use)
+        gcc_assert (*(linknode->use) == def);
+#endif
+      link_imm_use_to_list (linknode, root);
+    }
+}
+
+/* Set the value of a use pointed to by USE to VAL.  */
+static inline void
+set_ssa_use_from_ptr (use_operand_p use, tree val)
+{
+  delink_imm_use (use);
+  *(use->use) = val;
+  link_imm_use (use, val);
+}
+
+/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring 
+   in STMT.  */
+static inline void
+link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt)
+{
+  if (stmt)
+    link_imm_use (linknode, def);
+  else
+    link_imm_use (linknode, NULL);
+  linknode->loc.stmt = stmt;
+}
+
+/* Relink a new node in place of an old node in the list.  */
+static inline void
+relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
+{
+  /* The node one had better be in the same list.  */
+  gcc_assert (*(old->use) == *(node->use));
+  node->prev = old->prev;
+  node->next = old->next;
+  if (old->prev)
+    {
+      old->prev->next = node;
+      old->next->prev = node;
+      /* Remove the old node from the list.  */
+      old->prev = NULL;
+    }
+}
+
+/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring 
+   in STMT.  */
+static inline void
+relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old,
+		     gimple stmt)
+{
+  if (stmt)
+    relink_imm_use (linknode, old);
+  else
+    link_imm_use (linknode, NULL);
+  linknode->loc.stmt = stmt;
+}
+
+
+/* Return true is IMM has reached the end of the immediate use list.  */
+static inline bool
+end_readonly_imm_use_p (const imm_use_iterator *imm)
+{
+  return (imm->imm_use == imm->end_p);
+}
+
+/* Initialize iterator IMM to process the list for VAR.  */
+static inline use_operand_p
+first_readonly_imm_use (imm_use_iterator *imm, tree var)
+{
+  gcc_assert (TREE_CODE (var) == SSA_NAME);
+
+  imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
+  imm->imm_use = imm->end_p->next;
+#ifdef ENABLE_CHECKING
+  imm->iter_node.next = imm->imm_use->next;
+#endif
+  if (end_readonly_imm_use_p (imm))
+    return NULL_USE_OPERAND_P;
+  return imm->imm_use;
+}
+
+/* Bump IMM to the next use in the list.  */
+static inline use_operand_p
+next_readonly_imm_use (imm_use_iterator *imm)
+{
+  use_operand_p old = imm->imm_use;
+
+#ifdef ENABLE_CHECKING
+  /* If this assertion fails, it indicates the 'next' pointer has changed
+     since the last bump.  This indicates that the list is being modified
+     via stmt changes, or SET_USE, or somesuch thing, and you need to be
+     using the SAFE version of the iterator.  */
+  gcc_assert (imm->iter_node.next == old->next);
+  imm->iter_node.next = old->next->next;
+#endif
+
+  imm->imm_use = old->next;
+  if (end_readonly_imm_use_p (imm))
+    return NULL_USE_OPERAND_P;
+  return imm->imm_use;
+}
+
+/* Return true if VAR has no uses.  */
+static inline bool
+has_zero_uses (const_tree var)
+{
+  const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
+  /* A single use means there is no items in the list.  */
+  return (ptr == ptr->next);
+}
+
+/* Return true if VAR has a single use.  */
+static inline bool
+has_single_use (const_tree var)
+{
+  const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
+  /* A single use means there is one item in the list.  */
+  return (ptr != ptr->next && ptr == ptr->next->next);
+}
+
+
+/* If VAR has only a single immediate use, return true, and set USE_P and STMT
+   to the use pointer and stmt of occurrence.  */
+static inline bool
+single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt)
+{
+  const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
+  if (ptr != ptr->next && ptr == ptr->next->next)
+    {
+      *use_p = ptr->next;
+      *stmt = ptr->next->loc.stmt;
+      return true;
+    }
+  *use_p = NULL_USE_OPERAND_P;
+  *stmt = NULL;
+  return false;
+}
+
+/* Return the number of immediate uses of VAR.  */
+static inline unsigned int
+num_imm_uses (const_tree var)
+{
+  const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
+  const ssa_use_operand_t *ptr;
+  unsigned int num = 0;
+
+  for (ptr = start->next; ptr != start; ptr = ptr->next)
+     num++;
+
+  return num;
+}
+
+/* Return the tree pointed-to by USE.  */ 
+static inline tree
+get_use_from_ptr (use_operand_p use)
+{ 
+  return *(use->use);
+} 
+
+/* Return the tree pointed-to by DEF.  */
+static inline tree
+get_def_from_ptr (def_operand_p def)
+{
+  return *def;
+}
+
+/* Return a use_operand_p pointer for argument I of PHI node GS.  */
+
+static inline use_operand_p
+gimple_phi_arg_imm_use_ptr (gimple gs, int i)
+{
+  return &gimple_phi_arg (gs, i)->imm_use;
+}
+
+/* Return the tree operand for argument I of PHI node GS.  */
+
+static inline tree
+gimple_phi_arg_def (gimple gs, size_t index)
+{
+  struct phi_arg_d *pd = gimple_phi_arg (gs, index);
+  return get_use_from_ptr (&pd->imm_use);
+}
+
+/* Return a pointer to the tree operand for argument I of PHI node GS.  */
+
+static inline tree *
+gimple_phi_arg_def_ptr (gimple gs, size_t index)
+{
+  return &gimple_phi_arg (gs, index)->def;
+}
+
+/* Return the edge associated with argument I of phi node GS.  */
+
+static inline edge
+gimple_phi_arg_edge (gimple gs, size_t i)
+{
+  return EDGE_PRED (gimple_bb (gs), i);
+}
+
+/* Return the PHI nodes for basic block BB, or NULL if there are no
+   PHI nodes.  */
+static inline gimple_seq
+phi_nodes (const_basic_block bb)
+{
+  gcc_assert (!(bb->flags & BB_RTL));
+  if (!bb->il.gimple)
+    return NULL;
+  return bb->il.gimple->phi_nodes;
+}
+
+/* Set PHI nodes of a basic block BB to SEQ.  */
+
+static inline void
+set_phi_nodes (basic_block bb, gimple_seq seq)
+{
+  gimple_stmt_iterator i;
+
+  gcc_assert (!(bb->flags & BB_RTL));
+  bb->il.gimple->phi_nodes = seq;
+  if (seq)
+    for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
+      gimple_set_bb (gsi_stmt (i), bb);
+}
+
+/* Return the phi argument which contains the specified use.  */
+
+static inline int
+phi_arg_index_from_use (use_operand_p use)
+{
+  struct phi_arg_d *element, *root;
+  size_t index;
+  gimple phi;
+
+  /* Since the use is the first thing in a PHI argument element, we can
+     calculate its index based on casting it to an argument, and performing
+     pointer arithmetic.  */
+
+  phi = USE_STMT (use);
+  gcc_assert (gimple_code (phi) == GIMPLE_PHI);
+
+  element = (struct phi_arg_d *)use;
+  root = gimple_phi_arg (phi, 0);
+  index = element - root;
+
+#ifdef ENABLE_CHECKING
+  /* Make sure the calculation doesn't have any leftover bytes.  If it does, 
+     then imm_use is likely not the first element in phi_arg_d.  */
+  gcc_assert (
+	  (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
+  gcc_assert (index < gimple_phi_capacity (phi));
+#endif
+ 
+ return index;
+}
+
+/* Mark VAR as used, so that it'll be preserved during rtl expansion.  */
+
+static inline void
+set_is_used (tree var)
+{
+  var_ann_t ann = get_var_ann (var);
+  ann->used = 1;
+}
+
+
+/* Return true if T (assumed to be a DECL) is a global variable.  */
+
+static inline bool
+is_global_var (const_tree t)
+{
+  if (MTAG_P (t))
+    return MTAG_GLOBAL (t);
+  else
+    return (TREE_STATIC (t) || DECL_EXTERNAL (t));
+}
+
+/* PHI nodes should contain only ssa_names and invariants.  A test
+   for ssa_name is definitely simpler; don't let invalid contents
+   slip in in the meantime.  */
+
+static inline bool
+phi_ssa_name_p (const_tree t)
+{
+  if (TREE_CODE (t) == SSA_NAME)
+    return true;
+#ifdef ENABLE_CHECKING
+  gcc_assert (is_gimple_min_invariant (t));
+#endif
+  return false;
+}
+
+
+/* Returns the loop of the statement STMT.  */
+
+static inline struct loop *
+loop_containing_stmt (gimple stmt)
+{
+  basic_block bb = gimple_bb (stmt);
+  if (!bb)
+    return NULL;
+
+  return bb->loop_father;
+}
+
+
+/* Return the memory partition tag associated with symbol SYM.  */
+
+static inline tree
+memory_partition (tree sym)
+{
+  tree tag;
+
+  /* MPTs belong to their own partition.  */
+  if (TREE_CODE (sym) == MEMORY_PARTITION_TAG)
+    return sym;
+
+  gcc_assert (!is_gimple_reg (sym));
+  /* Autoparallelization moves statements from the original function (which has
+     aliases computed) to the new one (which does not).  When rebuilding
+     operands for the statement in the new function, we do not want to
+     record the memory partition tags of the original function.  */
+  if (!gimple_aliases_computed_p (cfun))
+    return NULL_TREE;
+  tag = get_var_ann (sym)->mpt;
+
+#if defined ENABLE_CHECKING
+  if (tag)
+    gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG);
+#endif
+
+  return tag;
+}
+
+/* Return true if NAME is a memory factoring SSA name (i.e., an SSA
+   name for a memory partition.  */
+
+static inline bool
+factoring_name_p (const_tree name)
+{
+  return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG;
+}
+
+/* Return true if VAR is used by function calls.  */
+static inline bool
+is_call_used (const_tree var)
+{
+  return (var_ann (var)->call_clobbered
+	  || bitmap_bit_p (gimple_call_used_vars (cfun), DECL_UID (var)));
+}
+
+/* Return true if VAR is clobbered by function calls.  */
+static inline bool
+is_call_clobbered (const_tree var)
+{
+  return var_ann (var)->call_clobbered;
+}
+
+/* Mark variable VAR as being clobbered by function calls.  */
+static inline void
+mark_call_clobbered (tree var, unsigned int escape_type)
+{
+  var_ann (var)->escape_mask |= escape_type;
+  var_ann (var)->call_clobbered = true;
+  bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
+}
+
+/* Clear the call-clobbered attribute from variable VAR.  */
+static inline void
+clear_call_clobbered (tree var)
+{
+  var_ann_t ann = var_ann (var);
+  ann->escape_mask = 0;
+  if (MTAG_P (var))
+    MTAG_GLOBAL (var) = 0;
+  var_ann (var)->call_clobbered = false;
+  bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
+}
+
+/* Return the common annotation for T.  Return NULL if the annotation
+   doesn't already exist.  */
+static inline tree_ann_common_t
+tree_common_ann (const_tree t)
+{
+  /* Watch out static variables with unshared annotations.  */
+  if (DECL_P (t) && TREE_CODE (t) == VAR_DECL)
+    return &var_ann (t)->common;
+  return &t->base.ann->common;
+}
+
+/* Return a common annotation for T.  Create the constant annotation if it
+   doesn't exist.  */
+static inline tree_ann_common_t
+get_tree_common_ann (tree t)
+{
+  tree_ann_common_t ann = tree_common_ann (t);
+  return (ann) ? ann : create_tree_common_ann (t);
+}
+
+/*  -----------------------------------------------------------------------  */
+
+/* The following set of routines are used to iterator over various type of
+   SSA operands.  */
+
+/* Return true if PTR is finished iterating.  */
+static inline bool
+op_iter_done (const ssa_op_iter *ptr)
+{
+  return ptr->done;
+}
+
+/* Get the next iterator use value for PTR.  */
+static inline use_operand_p
+op_iter_next_use (ssa_op_iter *ptr)
+{
+  use_operand_p use_p;
+#ifdef ENABLE_CHECKING
+  gcc_assert (ptr->iter_type == ssa_op_iter_use);
+#endif
+  if (ptr->uses)
+    {
+      use_p = USE_OP_PTR (ptr->uses);
+      ptr->uses = ptr->uses->next;
+      return use_p;
+    }
+  if (ptr->vuses)
+    {
+      use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index);
+      if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
+        {
+	  ptr->vuse_index = 0;
+	  ptr->vuses = ptr->vuses->next;
+	}
+      return use_p;
+    }
+  if (ptr->mayuses)
+    {
+      use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index);
+      if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
+        {
+	  ptr->mayuse_index = 0;
+	  ptr->mayuses = ptr->mayuses->next;
+	}
+      return use_p;
+    }
+  if (ptr->phi_i < ptr->num_phi)
+    {
+      return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
+    }
+  ptr->done = true;
+  return NULL_USE_OPERAND_P;
+}
+
+/* Get the next iterator def value for PTR.  */
+static inline def_operand_p
+op_iter_next_def (ssa_op_iter *ptr)
+{
+  def_operand_p def_p;
+#ifdef ENABLE_CHECKING
+  gcc_assert (ptr->iter_type == ssa_op_iter_def);
+#endif
+  if (ptr->defs)
+    {
+      def_p = DEF_OP_PTR (ptr->defs);
+      ptr->defs = ptr->defs->next;
+      return def_p;
+    }
+  if (ptr->vdefs)
+    {
+      def_p = VDEF_RESULT_PTR (ptr->vdefs);
+      ptr->vdefs = ptr->vdefs->next;
+      return def_p;
+    }
+  ptr->done = true;
+  return NULL_DEF_OPERAND_P;
+}
+
+/* Get the next iterator tree value for PTR.  */
+static inline tree
+op_iter_next_tree (ssa_op_iter *ptr)
+{
+  tree val;
+#ifdef ENABLE_CHECKING
+  gcc_assert (ptr->iter_type == ssa_op_iter_tree);
+#endif
+  if (ptr->uses)
+    {
+      val = USE_OP (ptr->uses);
+      ptr->uses = ptr->uses->next;
+      return val;
+    }
+  if (ptr->vuses)
+    {
+      val = VUSE_OP (ptr->vuses, ptr->vuse_index);
+      if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
+        {
+	  ptr->vuse_index = 0;
+	  ptr->vuses = ptr->vuses->next;
+	}
+      return val;
+    }
+  if (ptr->mayuses)
+    {
+      val = VDEF_OP (ptr->mayuses, ptr->mayuse_index);
+      if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
+        {
+	  ptr->mayuse_index = 0;
+	  ptr->mayuses = ptr->mayuses->next;
+	}
+      return val;
+    }
+  if (ptr->defs)
+    {
+      val = DEF_OP (ptr->defs);
+      ptr->defs = ptr->defs->next;
+      return val;
+    }
+  if (ptr->vdefs)
+    {
+      val = VDEF_RESULT (ptr->vdefs);
+      ptr->vdefs = ptr->vdefs->next;
+      return val;
+    }
+
+  ptr->done = true;
+  return NULL_TREE;
+
+}
+
+
+/* This functions clears the iterator PTR, and marks it done.  This is normally
+   used to prevent warnings in the compile about might be uninitialized
+   components.  */
+
+static inline void
+clear_and_done_ssa_iter (ssa_op_iter *ptr)
+{
+  ptr->defs = NULL;
+  ptr->uses = NULL;
+  ptr->vuses = NULL;
+  ptr->vdefs = NULL;
+  ptr->mayuses = NULL;
+  ptr->iter_type = ssa_op_iter_none;
+  ptr->phi_i = 0;
+  ptr->num_phi = 0;
+  ptr->phi_stmt = NULL;
+  ptr->done = true;
+  ptr->vuse_index = 0;
+  ptr->mayuse_index = 0;
+}
+
+/* Initialize the iterator PTR to the virtual defs in STMT.  */
+static inline void
+op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags)
+{
+  ptr->defs = (flags & SSA_OP_DEF) ? gimple_def_ops (stmt) : NULL;
+  ptr->uses = (flags & SSA_OP_USE) ? gimple_use_ops (stmt) : NULL;
+  ptr->vuses = (flags & SSA_OP_VUSE) ? gimple_vuse_ops (stmt) : NULL;
+  ptr->vdefs = (flags & SSA_OP_VDEF) ? gimple_vdef_ops (stmt) : NULL;
+  ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? gimple_vdef_ops (stmt) : NULL;
+  ptr->done = false;
+
+  ptr->phi_i = 0;
+  ptr->num_phi = 0;
+  ptr->phi_stmt = NULL;
+  ptr->vuse_index = 0;
+  ptr->mayuse_index = 0;
+}
+
+/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
+   the first use.  */
+static inline use_operand_p
+op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags)
+{
+  gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
+  op_iter_init (ptr, stmt, flags);
+  ptr->iter_type = ssa_op_iter_use;
+  return op_iter_next_use (ptr);
+}
+
+/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
+   the first def.  */
+static inline def_operand_p
+op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags)
+{
+  gcc_assert ((flags & SSA_OP_ALL_USES) == 0);
+  op_iter_init (ptr, stmt, flags);
+  ptr->iter_type = ssa_op_iter_def;
+  return op_iter_next_def (ptr);
+}
+
+/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
+   the first operand as a tree.  */
+static inline tree
+op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags)
+{
+  op_iter_init (ptr, stmt, flags);
+  ptr->iter_type = ssa_op_iter_tree;
+  return op_iter_next_tree (ptr);
+}
+
+/* Get the next iterator mustdef value for PTR, returning the mustdef values in
+   KILL and DEF.  */
+static inline void
+op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def, 
+			 ssa_op_iter *ptr)
+{
+#ifdef ENABLE_CHECKING
+  gcc_assert (ptr->iter_type == ssa_op_iter_vdef);
+#endif
+  if (ptr->mayuses)
+    {
+      *def = VDEF_RESULT_PTR (ptr->mayuses);
+      *use = VDEF_VECT (ptr->mayuses);
+      ptr->mayuses = ptr->mayuses->next;
+      return;
+    }
+
+  *def = NULL_DEF_OPERAND_P;
+  *use = NULL;
+  ptr->done = true;
+  return;
+}
+
+
+static inline void
+op_iter_next_mustdef (use_operand_p *use, def_operand_p *def, 
+			 ssa_op_iter *ptr)
+{
+  vuse_vec_p vp;
+  op_iter_next_vdef (&vp, def, ptr);
+  if (vp != NULL)
+    {
+      gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1);
+      *use = VUSE_ELEMENT_PTR (*vp, 0);
+    }
+  else
+    *use = NULL_USE_OPERAND_P;
+}
+
+/* Initialize iterator PTR to the operands in STMT.  Return the first operands
+   in USE and DEF.  */
+static inline void
+op_iter_init_vdef (ssa_op_iter *ptr, gimple stmt, vuse_vec_p *use, 
+		     def_operand_p *def)
+{
+  gcc_assert (gimple_code (stmt) != GIMPLE_PHI);
+
+  op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
+  ptr->iter_type = ssa_op_iter_vdef;
+  op_iter_next_vdef (use, def, ptr);
+}
+
+
+/* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
+   return NULL.  */
+static inline tree
+single_ssa_tree_operand (gimple stmt, int flags)
+{
+  tree var;
+  ssa_op_iter iter;
+
+  var = op_iter_init_tree (&iter, stmt, flags);
+  if (op_iter_done (&iter))
+    return NULL_TREE;
+  op_iter_next_tree (&iter);
+  if (op_iter_done (&iter))
+    return var;
+  return NULL_TREE;
+}
+
+
+/* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
+   return NULL.  */
+static inline use_operand_p
+single_ssa_use_operand (gimple stmt, int flags)
+{
+  use_operand_p var;
+  ssa_op_iter iter;
+
+  var = op_iter_init_use (&iter, stmt, flags);
+  if (op_iter_done (&iter))
+    return NULL_USE_OPERAND_P;
+  op_iter_next_use (&iter);
+  if (op_iter_done (&iter))
+    return var;
+  return NULL_USE_OPERAND_P;
+}
+
+
+
+/* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
+   return NULL.  */
+static inline def_operand_p
+single_ssa_def_operand (gimple stmt, int flags)
+{
+  def_operand_p var;
+  ssa_op_iter iter;
+
+  var = op_iter_init_def (&iter, stmt, flags);
+  if (op_iter_done (&iter))
+    return NULL_DEF_OPERAND_P;
+  op_iter_next_def (&iter);
+  if (op_iter_done (&iter))
+    return var;
+  return NULL_DEF_OPERAND_P;
+}
+
+
+/* Return true if there are zero operands in STMT matching the type 
+   given in FLAGS.  */
+static inline bool
+zero_ssa_operands (gimple stmt, int flags)
+{
+  ssa_op_iter iter;
+
+  op_iter_init_tree (&iter, stmt, flags);
+  return op_iter_done (&iter);
+}
+
+
+/* Return the number of operands matching FLAGS in STMT.  */
+static inline int
+num_ssa_operands (gimple stmt, int flags)
+{
+  ssa_op_iter iter;
+  tree t;
+  int num = 0;
+
+  FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
+    num++;
+  return num;
+}
+
+
+/* Delink all immediate_use information for STMT.  */
+static inline void
+delink_stmt_imm_use (gimple stmt)
+{
+   ssa_op_iter iter;
+   use_operand_p use_p;
+
+   if (ssa_operands_active ())
+     FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
+       delink_imm_use (use_p);
+}
+
+
+/* This routine will compare all the operands matching FLAGS in STMT1 to those
+   in STMT2.  TRUE is returned if they are the same.  STMTs can be NULL.  */
+static inline bool
+compare_ssa_operands_equal (gimple stmt1, gimple stmt2, int flags)
+{
+  ssa_op_iter iter1, iter2;
+  tree op1 = NULL_TREE;
+  tree op2 = NULL_TREE;
+  bool look1, look2;
+
+  if (stmt1 == stmt2)
+    return true;
+
+  look1 = stmt1 != NULL;
+  look2 = stmt2 != NULL;
+
+  if (look1)
+    {
+      op1 = op_iter_init_tree (&iter1, stmt1, flags);
+      if (!look2)
+        return op_iter_done (&iter1);
+    }
+  else
+    clear_and_done_ssa_iter (&iter1);
+
+  if (look2)
+    {
+      op2 = op_iter_init_tree (&iter2, stmt2, flags);
+      if (!look1)
+        return op_iter_done (&iter2);
+    }
+  else
+    clear_and_done_ssa_iter (&iter2);
+
+  while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
+    {
+      if (op1 != op2)
+	return false;
+      op1 = op_iter_next_tree (&iter1);
+      op2 = op_iter_next_tree (&iter2);
+    }
+
+  return (op_iter_done (&iter1) && op_iter_done (&iter2));
+}
+
+
+/* If there is a single DEF in the PHI node which matches FLAG, return it.
+   Otherwise return NULL_DEF_OPERAND_P.  */
+static inline tree
+single_phi_def (gimple stmt, int flags)
+{
+  tree def = PHI_RESULT (stmt);
+  if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) 
+    return def;
+  if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
+    return def;
+  return NULL_TREE;
+}
+
+/* Initialize the iterator PTR for uses matching FLAGS in PHI.  FLAGS should
+   be either SSA_OP_USES or SSA_OP_VIRTUAL_USES.  */
+static inline use_operand_p
+op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags)
+{
+  tree phi_def = gimple_phi_result (phi);
+  int comp;
+
+  clear_and_done_ssa_iter (ptr);
+  ptr->done = false;
+
+  gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
+
+  comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
+    
+  /* If the PHI node doesn't the operand type we care about, we're done.  */
+  if ((flags & comp) == 0)
+    {
+      ptr->done = true;
+      return NULL_USE_OPERAND_P;
+    }
+
+  ptr->phi_stmt = phi;
+  ptr->num_phi = gimple_phi_num_args (phi);
+  ptr->iter_type = ssa_op_iter_use;
+  return op_iter_next_use (ptr);
+}
+
+
+/* Start an iterator for a PHI definition.  */
+
+static inline def_operand_p
+op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags)
+{
+  tree phi_def = PHI_RESULT (phi);
+  int comp;
+
+  clear_and_done_ssa_iter (ptr);
+  ptr->done = false;
+
+  gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
+
+  comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
+    
+  /* If the PHI node doesn't the operand type we care about, we're done.  */
+  if ((flags & comp) == 0)
+    {
+      ptr->done = true;
+      return NULL_USE_OPERAND_P;
+    }
+
+  ptr->iter_type = ssa_op_iter_def;
+  /* The first call to op_iter_next_def will terminate the iterator since
+     all the fields are NULL.  Simply return the result here as the first and
+     therefore only result.  */
+  return PHI_RESULT_PTR (phi);
+}
+
+/* Return true is IMM has reached the end of the immediate use stmt list.  */
+
+static inline bool
+end_imm_use_stmt_p (const imm_use_iterator *imm)
+{
+  return (imm->imm_use == imm->end_p);
+}
+
+/* Finished the traverse of an immediate use stmt list IMM by removing the
+   placeholder node from the list.  */
+
+static inline void
+end_imm_use_stmt_traverse (imm_use_iterator *imm)
+{
+  delink_imm_use (&(imm->iter_node));
+}
+
+/* Immediate use traversal of uses within a stmt require that all the
+   uses on a stmt be sequentially listed.  This routine is used to build up
+   this sequential list by adding USE_P to the end of the current list 
+   currently delimited by HEAD and LAST_P.  The new LAST_P value is 
+   returned.  */
+
+static inline use_operand_p
+move_use_after_head (use_operand_p use_p, use_operand_p head, 
+		      use_operand_p last_p)
+{
+  gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
+  /* Skip head when we find it.  */
+  if (use_p != head)
+    {
+      /* If use_p is already linked in after last_p, continue.  */
+      if (last_p->next == use_p)
+	last_p = use_p;
+      else
+	{
+	  /* Delink from current location, and link in at last_p.  */
+	  delink_imm_use (use_p);
+	  link_imm_use_to_list (use_p, last_p);
+	  last_p = use_p;
+	}
+    }
+  return last_p;
+}
+
+
+/* This routine will relink all uses with the same stmt as HEAD into the list
+   immediately following HEAD for iterator IMM.  */
+
+static inline void
+link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
+{
+  use_operand_p use_p;
+  use_operand_p last_p = head;
+  gimple head_stmt = USE_STMT (head);
+  tree use = USE_FROM_PTR (head);
+  ssa_op_iter op_iter;
+  int flag;
+
+  /* Only look at virtual or real uses, depending on the type of HEAD.  */
+  flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
+
+  if (gimple_code (head_stmt) == GIMPLE_PHI)
+    {
+      FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
+	if (USE_FROM_PTR (use_p) == use)
+	  last_p = move_use_after_head (use_p, head, last_p);
+    }
+  else
+    {
+      FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
+	if (USE_FROM_PTR (use_p) == use)
+	  last_p = move_use_after_head (use_p, head, last_p);
+    }
+  /* Link iter node in after last_p.  */
+  if (imm->iter_node.prev != NULL)
+    delink_imm_use (&imm->iter_node);
+  link_imm_use_to_list (&(imm->iter_node), last_p);
+}
+
+/* Initialize IMM to traverse over uses of VAR.  Return the first statement.  */
+static inline gimple
+first_imm_use_stmt (imm_use_iterator *imm, tree var)
+{
+  gcc_assert (TREE_CODE (var) == SSA_NAME);
+  
+  imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
+  imm->imm_use = imm->end_p->next;
+  imm->next_imm_name = NULL_USE_OPERAND_P;
+
+  /* iter_node is used as a marker within the immediate use list to indicate
+     where the end of the current stmt's uses are.  Initialize it to NULL
+     stmt and use, which indicates a marker node.  */
+  imm->iter_node.prev = NULL_USE_OPERAND_P;
+  imm->iter_node.next = NULL_USE_OPERAND_P;
+  imm->iter_node.loc.stmt = NULL;
+  imm->iter_node.use = NULL_USE_OPERAND_P;
+
+  if (end_imm_use_stmt_p (imm))
+    return NULL;
+
+  link_use_stmts_after (imm->imm_use, imm);
+
+  return USE_STMT (imm->imm_use);
+}
+
+/* Bump IMM to the next stmt which has a use of var.  */
+
+static inline gimple
+next_imm_use_stmt (imm_use_iterator *imm)
+{
+  imm->imm_use = imm->iter_node.next;
+  if (end_imm_use_stmt_p (imm))
+    {
+      if (imm->iter_node.prev != NULL)
+	delink_imm_use (&imm->iter_node);
+      return NULL;
+    }
+
+  link_use_stmts_after (imm->imm_use, imm);
+  return USE_STMT (imm->imm_use);
+}
+
+/* This routine will return the first use on the stmt IMM currently refers
+   to.  */
+
+static inline use_operand_p
+first_imm_use_on_stmt (imm_use_iterator *imm)
+{
+  imm->next_imm_name = imm->imm_use->next;
+  return imm->imm_use;
+}
+
+/*  Return TRUE if the last use on the stmt IMM refers to has been visited.  */
+
+static inline bool
+end_imm_use_on_stmt_p (const imm_use_iterator *imm)
+{
+  return (imm->imm_use == &(imm->iter_node));
+}
+
+/* Bump to the next use on the stmt IMM refers to, return NULL if done.  */
+
+static inline use_operand_p
+next_imm_use_on_stmt (imm_use_iterator *imm)
+{
+  imm->imm_use = imm->next_imm_name;
+  if (end_imm_use_on_stmt_p (imm))
+    return NULL_USE_OPERAND_P;
+  else
+    {
+      imm->next_imm_name = imm->imm_use->next;
+      return imm->imm_use;
+    }
+}
+
+/* Return true if VAR cannot be modified by the program.  */
+
+static inline bool
+unmodifiable_var_p (const_tree var)
+{
+  if (TREE_CODE (var) == SSA_NAME)
+    var = SSA_NAME_VAR (var);
+
+  if (MTAG_P (var))
+    return false;
+
+  return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
+}
+
+/* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it.  */
+
+static inline bool
+array_ref_contains_indirect_ref (const_tree ref)
+{
+  gcc_assert (TREE_CODE (ref) == ARRAY_REF);
+
+  do {
+    ref = TREE_OPERAND (ref, 0);
+  } while (handled_component_p (ref));
+
+  return TREE_CODE (ref) == INDIRECT_REF;
+}
+
+/* Return true if REF, a handled component reference, has an ARRAY_REF
+   somewhere in it.  */
+
+static inline bool
+ref_contains_array_ref (const_tree ref)
+{
+  gcc_assert (handled_component_p (ref));
+
+  do {
+    if (TREE_CODE (ref) == ARRAY_REF)
+      return true;
+    ref = TREE_OPERAND (ref, 0);
+  } while (handled_component_p (ref));
+
+  return false;
+}
+
+/* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
+   overlap.  SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
+   range is open-ended.  Otherwise return false.  */
+
+static inline bool
+ranges_overlap_p (unsigned HOST_WIDE_INT pos1,
+		  unsigned HOST_WIDE_INT size1,
+		  unsigned HOST_WIDE_INT pos2,
+		  unsigned HOST_WIDE_INT size2)
+{
+  if (pos1 >= pos2
+      && (size2 == (unsigned HOST_WIDE_INT)-1
+	  || pos1 < (pos2 + size2)))
+    return true;
+  if (pos2 >= pos1
+      && (size1 == (unsigned HOST_WIDE_INT)-1
+	  || pos2 < (pos1 + size1)))
+    return true;
+
+  return false;
+}
+
+/* Return the memory tag associated with symbol SYM.  */
+
+static inline tree
+symbol_mem_tag (tree sym)
+{
+  tree tag = get_var_ann (sym)->symbol_mem_tag;
+
+#if defined ENABLE_CHECKING
+  if (tag)
+    gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
+#endif
+
+  return tag;
+}
+
+
+/* Set the memory tag associated with symbol SYM.  */
+
+static inline void
+set_symbol_mem_tag (tree sym, tree tag)
+{
+#if defined ENABLE_CHECKING
+  if (tag)
+    gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
+#endif
+
+  get_var_ann (sym)->symbol_mem_tag = tag;
+}
+
+/* Accessor to tree-ssa-operands.c caches.  */
+static inline struct ssa_operands *
+gimple_ssa_operands (const struct function *fun)
+{
+  return &fun->gimple_df->ssa_operands;
+}
+
+/* Map describing reference statistics for function FN.  */
+static inline struct mem_ref_stats_d *
+gimple_mem_ref_stats (const struct function *fn)
+{
+  return &fn->gimple_df->mem_ref_stats;
+}
+
+/* Given an edge_var_map V, return the PHI arg definition.  */
+
+static inline tree
+redirect_edge_var_map_def (edge_var_map *v)
+{
+  return v->def;
+}
+
+/* Given an edge_var_map V, return the PHI result.  */
+
+static inline tree
+redirect_edge_var_map_result (edge_var_map *v)
+{
+  return v->result;
+}
+
+
+/* Return an SSA_NAME node for variable VAR defined in statement STMT
+   in function cfun.  */
+
+static inline tree
+make_ssa_name (tree var, gimple stmt)
+{
+  return make_ssa_name_fn (cfun, var, stmt);
+}
+
+#endif /* _TREE_FLOW_INLINE_H  */