diff gcc/tree-ssa-live.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 58ad6c70ea60
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/tree-ssa-live.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,1293 @@
+/* Liveness for SSA trees.
+   Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation,
+   Inc.
+   Contributed by Andrew MacLeod <amacleod@redhat.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "diagnostic.h"
+#include "bitmap.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "tree-ssa-live.h"
+#include "toplev.h"
+#include "debug.h"
+#include "flags.h"
+
+#ifdef ENABLE_CHECKING
+static void  verify_live_on_entry (tree_live_info_p);
+#endif
+
+
+/* VARMAP maintains a mapping from SSA version number to real variables.
+
+   All SSA_NAMES are divided into partitions.  Initially each ssa_name is the
+   only member of it's own partition.  Coalescing will attempt to group any
+   ssa_names which occur in a copy or in a PHI node into the same partition.
+
+   At the end of out-of-ssa, each partition becomes a "real" variable and is
+   rewritten as a compiler variable.
+
+   The var_map data structure is used to manage these partitions.  It allows
+   partitions to be combined, and determines which partition belongs to what
+   ssa_name or variable, and vice versa.  */
+
+
+/* This routine will initialize the basevar fields of MAP.  */
+
+static void
+var_map_base_init (var_map map)
+{
+  int x, num_part, num;
+  tree var;
+  var_ann_t ann;
+  
+  num = 0;
+  num_part = num_var_partitions (map);
+
+  /* If a base table already exists, clear it, otherwise create it.  */
+  if (map->partition_to_base_index != NULL)
+    {
+      free (map->partition_to_base_index);
+      VEC_truncate (tree, map->basevars, 0);
+    }
+  else
+    map->basevars = VEC_alloc (tree, heap, MAX (40, (num_part / 10)));
+
+  map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
+
+  /* Build the base variable list, and point partitions at their bases.  */
+  for (x = 0; x < num_part; x++)
+    {
+      var = partition_to_var (map, x);
+      if (TREE_CODE (var) == SSA_NAME)
+	 var = SSA_NAME_VAR (var);
+      ann = var_ann (var);
+      /* If base variable hasn't been seen, set it up.  */
+      if (!ann->base_var_processed)
+        {
+	  ann->base_var_processed = 1;
+	  VAR_ANN_BASE_INDEX (ann) = num++;
+	  VEC_safe_push (tree, heap, map->basevars, var);
+	}
+      map->partition_to_base_index[x] = VAR_ANN_BASE_INDEX (ann);
+    }
+
+  map->num_basevars = num;
+
+  /* Now clear the processed bit.  */
+  for (x = 0; x < num; x++)
+    {
+       var = VEC_index (tree, map->basevars, x);
+       var_ann (var)->base_var_processed = 0;
+    }
+
+#ifdef ENABLE_CHECKING
+  for (x = 0; x < num_part; x++)
+    {
+      tree var2;
+      var = SSA_NAME_VAR (partition_to_var (map, x));
+      var2 = VEC_index (tree, map->basevars, basevar_index (map, x));
+      gcc_assert (var == var2);
+    }
+#endif
+}
+
+
+/* Remove the base table in MAP.  */
+
+static void
+var_map_base_fini (var_map map)
+{
+  /* Free the basevar info if it is present.  */
+  if (map->partition_to_base_index != NULL)
+    {
+      VEC_free (tree, heap, map->basevars);
+      free (map->partition_to_base_index);
+      map->partition_to_base_index = NULL;
+      map->num_basevars = 0;
+    }
+}
+/* Create a variable partition map of SIZE, initialize and return it.  */
+
+var_map
+init_var_map (int size)
+{
+  var_map map;
+
+  map = (var_map) xmalloc (sizeof (struct _var_map));
+  map->var_partition = partition_new (size);
+  map->partition_to_var 
+	      = (tree *)xmalloc (size * sizeof (tree));
+  memset (map->partition_to_var, 0, size * sizeof (tree));
+
+  map->partition_to_view = NULL;
+  map->view_to_partition = NULL;
+  map->num_partitions = size;
+  map->partition_size = size;
+  map->num_basevars = 0;
+  map->partition_to_base_index = NULL;
+  map->basevars = NULL;
+  return map;
+}
+
+
+/* Free memory associated with MAP.  */
+
+void
+delete_var_map (var_map map)
+{
+  var_map_base_fini (map);
+  free (map->partition_to_var);
+  partition_delete (map->var_partition);
+  if (map->partition_to_view)
+    free (map->partition_to_view);
+  if (map->view_to_partition)
+    free (map->view_to_partition);
+  free (map);
+}
+
+
+/* This function will combine the partitions in MAP for VAR1 and VAR2.  It 
+   Returns the partition which represents the new partition.  If the two 
+   partitions cannot be combined, NO_PARTITION is returned.  */
+
+int
+var_union (var_map map, tree var1, tree var2)
+{
+  int p1, p2, p3;
+  tree root_var = NULL_TREE;
+  tree other_var = NULL_TREE;
+
+  /* This is independent of partition_to_view. If partition_to_view is 
+     on, then whichever one of these partitions is absorbed will never have a
+     dereference into the partition_to_view array any more.  */
+
+  if (TREE_CODE (var1) == SSA_NAME)
+    p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
+  else
+    {
+      p1 = var_to_partition (map, var1);
+      if (map->view_to_partition)
+        p1 = map->view_to_partition[p1];
+      root_var = var1;
+    }
+  
+  if (TREE_CODE (var2) == SSA_NAME)
+    p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
+  else
+    {
+      p2 = var_to_partition (map, var2);
+      if (map->view_to_partition)
+        p2 = map->view_to_partition[p2];
+
+      /* If there is no root_var set, or it's not a user variable, set the
+	 root_var to this one.  */
+      if (!root_var || (DECL_P (root_var) && DECL_IGNORED_P (root_var)))
+        {
+	  other_var = root_var;
+	  root_var = var2;
+	}
+      else 
+	other_var = var2;
+    }
+
+  gcc_assert (p1 != NO_PARTITION);
+  gcc_assert (p2 != NO_PARTITION);
+
+  if (p1 == p2)
+    p3 = p1;
+  else
+    p3 = partition_union (map->var_partition, p1, p2);
+
+  if (map->partition_to_view)
+    p3 = map->partition_to_view[p3];
+
+  if (root_var)
+    change_partition_var (map, root_var, p3);
+  if (other_var)
+    change_partition_var (map, other_var, p3);
+
+  return p3;
+}
+
+ 
+/* Compress the partition numbers in MAP such that they fall in the range 
+   0..(num_partitions-1) instead of wherever they turned out during
+   the partitioning exercise.  This removes any references to unused
+   partitions, thereby allowing bitmaps and other vectors to be much
+   denser.  
+
+   This is implemented such that compaction doesn't affect partitioning.
+   Ie., once partitions are created and possibly merged, running one
+   or more different kind of compaction will not affect the partitions
+   themselves.  Their index might change, but all the same variables will
+   still be members of the same partition group.  This allows work on reduced
+   sets, and no loss of information when a larger set is later desired.
+
+   In particular, coalescing can work on partitions which have 2 or more
+   definitions, and then 'recompact' later to include all the single
+   definitions for assignment to program variables.  */
+
+
+/* Set MAP back to the initial state of having no partition view.  Return a 
+   bitmap which has a bit set for each partition number which is in use in the 
+   varmap.  */
+
+static bitmap
+partition_view_init (var_map map)
+{
+  bitmap used;
+  int tmp;
+  unsigned int x;
+
+  used = BITMAP_ALLOC (NULL);
+
+  /* Already in a view? Abandon the old one.  */
+  if (map->partition_to_view)
+    {
+      free (map->partition_to_view);
+      map->partition_to_view = NULL;
+    }
+  if (map->view_to_partition)
+    {
+      free (map->view_to_partition);
+      map->view_to_partition = NULL;
+    }
+
+  /* Find out which partitions are actually referenced.  */
+  for (x = 0; x < map->partition_size; x++)
+    {
+      tmp = partition_find (map->var_partition, x);
+      if (map->partition_to_var[tmp] != NULL_TREE && !bitmap_bit_p (used, tmp))
+	bitmap_set_bit (used, tmp);
+    }
+
+  map->num_partitions = map->partition_size;
+  return used;
+}
+
+
+/* This routine will finalize the view data for MAP based on the partitions
+   set in SELECTED.  This is either the same bitmap returned from 
+   partition_view_init, or a trimmed down version if some of those partitions
+   were not desired in this view.  SELECTED is freed before returning.  */
+
+static void 
+partition_view_fini (var_map map, bitmap selected)
+{
+  bitmap_iterator bi;
+  unsigned count, i, x, limit;
+  tree var;
+
+  gcc_assert (selected);
+
+  count = bitmap_count_bits (selected);
+  limit = map->partition_size;
+
+  /* If its a one-to-one ratio, we don't need any view compaction.  */
+  if (count < limit)
+    {
+      map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
+      memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
+      map->view_to_partition = (int *)xmalloc (count * sizeof (int));
+
+      i = 0;
+      /* Give each selected partition an index.  */
+      EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
+	{
+	  map->partition_to_view[x] = i;
+	  map->view_to_partition[i] = x;
+	  var = map->partition_to_var[x];
+	  /* If any one of the members of a partition is not an SSA_NAME, make
+	     sure it is the representative.  */
+	  if (TREE_CODE (var) != SSA_NAME)
+	    change_partition_var (map, var, i);
+	  i++;
+	}
+      gcc_assert (i == count);
+      map->num_partitions = i;
+    }
+
+  BITMAP_FREE (selected);
+}
+
+
+/* Create a partition view which includes all the used partitions in MAP.  If 
+   WANT_BASES is true, create the base variable map as well.  */
+
+extern void
+partition_view_normal (var_map map, bool want_bases)
+{
+  bitmap used;
+
+  used = partition_view_init (map);
+  partition_view_fini (map, used);
+
+  if (want_bases)
+    var_map_base_init (map);
+  else
+    var_map_base_fini (map);
+}
+
+
+/* Create a partition view in MAP which includes just partitions which occur in 
+   the bitmap ONLY. If WANT_BASES is true, create the base variable map 
+   as well.  */
+
+extern void
+partition_view_bitmap (var_map map, bitmap only, bool want_bases)
+{
+  bitmap used;
+  bitmap new_partitions = BITMAP_ALLOC (NULL);
+  unsigned x, p;
+  bitmap_iterator bi;
+
+  used = partition_view_init (map);
+  EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
+    {
+      p = partition_find (map->var_partition, x);
+      gcc_assert (bitmap_bit_p (used, p));
+      bitmap_set_bit (new_partitions, p);
+    }
+  partition_view_fini (map, new_partitions);
+
+  BITMAP_FREE (used);
+  if (want_bases)
+    var_map_base_init (map);
+  else
+    var_map_base_fini (map);
+}
+
+
+/* This function is used to change the representative variable in MAP for VAR's 
+   partition to a regular non-ssa variable.  This allows partitions to be 
+   mapped back to real variables.  */
+  
+void 
+change_partition_var (var_map map, tree var, int part)
+{
+  var_ann_t ann;
+
+  gcc_assert (TREE_CODE (var) != SSA_NAME);
+
+  ann = var_ann (var);
+  ann->out_of_ssa_tag = 1;
+  VAR_ANN_PARTITION (ann) = part;
+  if (map->view_to_partition)
+    map->partition_to_var[map->view_to_partition[part]] = var;
+}
+
+
+static inline void mark_all_vars_used (tree *, void *data);
+
+/* Helper function for mark_all_vars_used, called via walk_tree.  */
+
+static tree
+mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data)
+{
+  tree t = *tp;
+  enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
+  tree b;
+
+  if (TREE_CODE (t) == SSA_NAME)
+    t = SSA_NAME_VAR (t);
+
+  if (IS_EXPR_CODE_CLASS (c)
+      && (b = TREE_BLOCK (t)) != NULL)
+    TREE_USED (b) = true;
+
+  /* Ignore TREE_ORIGINAL for TARGET_MEM_REFS, as well as other
+     fields that do not contain vars.  */
+  if (TREE_CODE (t) == TARGET_MEM_REF)
+    {
+      mark_all_vars_used (&TMR_SYMBOL (t), data);
+      mark_all_vars_used (&TMR_BASE (t), data);
+      mark_all_vars_used (&TMR_INDEX (t), data);
+      *walk_subtrees = 0;
+      return NULL;
+    }
+
+  /* Only need to mark VAR_DECLS; parameters and return results are not
+     eliminated as unused.  */
+  if (TREE_CODE (t) == VAR_DECL)
+    {
+      if (data != NULL && bitmap_bit_p ((bitmap) data, DECL_UID (t)))
+	{
+	  bitmap_clear_bit ((bitmap) data, DECL_UID (t));
+	  mark_all_vars_used (&DECL_INITIAL (t), data);
+	}
+      set_is_used (t);
+    }
+
+  if (IS_TYPE_OR_DECL_P (t))
+    *walk_subtrees = 0;
+
+  return NULL;
+}
+
+/* Mark the scope block SCOPE and its subblocks unused when they can be
+   possibly eliminated if dead.  */
+
+static void
+mark_scope_block_unused (tree scope)
+{
+  tree t;
+  TREE_USED (scope) = false;
+  if (!(*debug_hooks->ignore_block) (scope))
+    TREE_USED (scope) = true;
+  for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
+    mark_scope_block_unused (t);
+}
+
+/* Look if the block is dead (by possibly eliminating its dead subblocks)
+   and return true if so.  
+   Block is declared dead if:
+     1) No statements are associated with it.
+     2) Declares no live variables
+     3) All subblocks are dead
+	or there is precisely one subblocks and the block
+	has same abstract origin as outer block and declares
+	no variables, so it is pure wrapper.
+   When we are not outputting full debug info, we also eliminate dead variables
+   out of scope blocks to let them to be recycled by GGC and to save copying work
+   done by the inliner.  */
+
+static bool
+remove_unused_scope_block_p (tree scope)
+{
+  tree *t, *next;
+  bool unused = !TREE_USED (scope);
+  var_ann_t ann;
+  int nsubblocks = 0;
+
+  for (t = &BLOCK_VARS (scope); *t; t = next)
+    {
+      next = &TREE_CHAIN (*t);
+
+      /* Debug info of nested function refers to the block of the
+	 function.  We might stil call it even if all statements
+	 of function it was nested into was elliminated.
+	 
+	 TODO: We can actually look into cgraph to see if function
+	 will be output to file.  */
+      if (TREE_CODE (*t) == FUNCTION_DECL)
+	unused = false;
+      /* Remove everything we don't generate debug info for.  */
+      else if (DECL_IGNORED_P (*t))
+	{
+	  *t = TREE_CHAIN (*t);
+	  next = t;
+	}
+
+      /* When we are outputting debug info, we usually want to output
+	 info about optimized-out variables in the scope blocks.
+	 Exception are the scope blocks not containing any instructions
+	 at all so user can't get into the scopes at first place.  */
+      else if ((ann = var_ann (*t)) != NULL
+		&& ann->used)
+	unused = false;
+
+      /* When we are not doing full debug info, we however can keep around
+	 only the used variables for cfgexpand's memory packing saving quite
+	 a lot of memory.  
+
+	 For sake of -g3, we keep around those vars but we don't count this as
+	 use of block, so innermost block with no used vars and no instructions
+	 can be considered dead.  We only want to keep around blocks user can
+	 breakpoint into and ask about value of optimized out variables. 
+
+	 Similarly we need to keep around types at least until all variables of
+	 all nested blocks are gone.  We track no information on whether given
+	 type is used or not.  */
+
+      else if (debug_info_level == DINFO_LEVEL_NORMAL
+	       || debug_info_level == DINFO_LEVEL_VERBOSE
+	       /* Removing declarations before inlining is going to affect
+		  DECL_UID that in turn is going to affect hashtables and
+		  code generation.  */
+	       || !cfun->after_inlining)
+	;
+      else
+	{
+	  *t = TREE_CHAIN (*t);
+	  next = t;
+	}
+    }
+
+  for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
+    if (remove_unused_scope_block_p (*t))
+      {
+	if (BLOCK_SUBBLOCKS (*t))
+	  {
+	    tree next = BLOCK_CHAIN (*t);
+	    tree supercontext = BLOCK_SUPERCONTEXT (*t);
+
+	    *t = BLOCK_SUBBLOCKS (*t);
+	    while (BLOCK_CHAIN (*t))
+	      {
+	        BLOCK_SUPERCONTEXT (*t) = supercontext;
+	        t = &BLOCK_CHAIN (*t);
+	      }
+	    BLOCK_CHAIN (*t) = next;
+	    BLOCK_SUPERCONTEXT (*t) = supercontext;
+	    t = &BLOCK_CHAIN (*t);
+	    nsubblocks ++;
+	  }
+	else
+	  *t = BLOCK_CHAIN (*t);
+      }
+    else
+      {
+        t = &BLOCK_CHAIN (*t);
+	nsubblocks ++;
+      }
+
+
+   if (!unused)
+     ;
+   /* Outer scope is always used.  */
+   else if (!BLOCK_SUPERCONTEXT (scope)
+            || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
+     unused = false;
+   /* Innermost blocks with no live variables nor statements can be always
+      eliminated.  */
+   else if (!nsubblocks)
+     ;
+   /* If there are live subblocks and we still have some unused variables
+      or types declared, we must keep them.
+      Before inliing we must not depend on debug info verbosity to keep
+      DECL_UIDs stable.  */
+   else if (!cfun->after_inlining && BLOCK_VARS (scope))
+     unused = false;
+   /* For terse debug info we can eliminate info on unused variables.  */
+   else if (debug_info_level == DINFO_LEVEL_NONE
+	    || debug_info_level == DINFO_LEVEL_TERSE)
+     ;
+   else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
+     unused = false;
+   /* See if this block is important for representation of inlined function.
+      Inlined functions are always represented by block with
+      block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
+      set...  */
+   else if (inlined_function_outer_scope_p (scope))
+     unused = false;
+   else
+   /* Verfify that only blocks with source location set
+      are entry points to the inlined functions.  */
+     gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION);
+   return unused;
+}
+
+/* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be 
+   eliminated during the tree->rtl conversion process.  */
+
+static inline void
+mark_all_vars_used (tree *expr_p, void *data)
+{
+  walk_tree (expr_p, mark_all_vars_used_1, data, NULL);
+}
+
+/* Dump scope blocks.  */
+
+static void
+dump_scope_block (FILE *file, int indent, tree scope, int flags)
+{
+  tree var, t;
+  unsigned int i;
+
+  fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
+  	   TREE_USED (scope) ? "" : " (unused)",
+	   BLOCK_ABSTRACT (scope) ? " (abstract)": "");
+  if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION)
+    {
+      expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
+      fprintf (file, " %s:%i", s.file, s.line);
+    }
+  if (BLOCK_ABSTRACT_ORIGIN (scope))
+    {
+      tree origin = block_ultimate_origin (scope);
+      if (origin)
+	{
+	  fprintf (file, " Originating from :");
+	  if (DECL_P (origin))
+	    print_generic_decl (file, origin, flags);
+	  else
+	    fprintf (file, "#%i", BLOCK_NUMBER (origin));
+	}
+    }
+  fprintf (file, " \n");
+  for (var = BLOCK_VARS (scope); var; var = TREE_CHAIN (var))
+    {
+      bool used = false;
+      var_ann_t ann;
+
+      if ((ann = var_ann (var))
+	  && ann->used)
+	used = true;
+
+      fprintf (file, "%*s",indent, "");
+      print_generic_decl (file, var, flags);
+      fprintf (file, "%s\n", used ? "" : " (unused)");
+    }
+  for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
+    {
+      fprintf (file, "%*s",indent, "");
+      print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
+      			  flags);
+      fprintf (file, " (nonlocalized)\n");
+    }
+  for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
+    dump_scope_block (file, indent + 2, t, flags);
+  fprintf (file, "\n%*s}\n",indent, "");
+}
+
+void
+dump_scope_blocks (FILE *file, int flags)
+{
+  dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
+}
+
+/* Remove local variables that are not referenced in the IL.  */
+
+void
+remove_unused_locals (void)
+{
+  basic_block bb;
+  tree t, *cell;
+  referenced_var_iterator rvi;
+  var_ann_t ann;
+  bitmap global_unused_vars = NULL;
+
+  mark_scope_block_unused (DECL_INITIAL (current_function_decl));
+
+  /* Assume all locals are unused.  */
+  FOR_EACH_REFERENCED_VAR (t, rvi)
+    var_ann (t)->used = false;
+
+  /* Walk the CFG marking all referenced symbols.  */
+  FOR_EACH_BB (bb)
+    {
+      gimple_stmt_iterator gsi;
+      size_t i;
+      edge_iterator ei;
+      edge e;
+
+      /* Walk the statements.  */
+      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+	{
+	  gimple stmt = gsi_stmt (gsi);
+	  tree b = gimple_block (stmt);
+
+	  if (b)
+	    TREE_USED (b) = true;
+
+	  for (i = 0; i < gimple_num_ops (stmt); i++)
+	    mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i), NULL);
+	}
+
+      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+        {
+          use_operand_p arg_p;
+          ssa_op_iter i;
+	  tree def;
+	  gimple phi = gsi_stmt (gsi);
+
+	  /* No point processing globals.  */
+	  if (is_global_var (SSA_NAME_VAR (gimple_phi_result (phi))))
+	    continue;
+
+	  def = gimple_phi_result (phi);
+	  mark_all_vars_used (&def, NULL);
+
+          FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
+            {
+	      tree arg = USE_FROM_PTR (arg_p);
+	      mark_all_vars_used (&arg, NULL);
+            }
+        }
+
+      FOR_EACH_EDGE (e, ei, bb->succs)
+	if (e->goto_locus)
+	  TREE_USED (e->goto_block) = true;
+    }
+
+  cfun->has_local_explicit_reg_vars = false;
+
+  /* Remove unmarked local vars from local_decls.  */
+  for (cell = &cfun->local_decls; *cell; )
+    {
+      tree var = TREE_VALUE (*cell);
+
+      if (TREE_CODE (var) != FUNCTION_DECL
+	  && (!(ann = var_ann (var))
+	      || !ann->used)
+	  && (optimize || DECL_ARTIFICIAL (var)))
+	{
+	  if (is_global_var (var))
+	    {
+	      if (global_unused_vars == NULL)
+		global_unused_vars = BITMAP_ALLOC (NULL);
+	      bitmap_set_bit (global_unused_vars, DECL_UID (var));
+	    }
+	  else
+	    {
+	      *cell = TREE_CHAIN (*cell);
+	      continue;
+	    }
+	}
+      else if (TREE_CODE (var) == VAR_DECL
+	       && DECL_HARD_REGISTER (var)
+	       && !is_global_var (var))
+	cfun->has_local_explicit_reg_vars = true;
+      cell = &TREE_CHAIN (*cell);
+    }
+
+  /* Remove unmarked global vars from local_decls.  */
+  if (global_unused_vars != NULL)
+    {
+      for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
+	{
+	  tree var = TREE_VALUE (t);
+
+	  if (TREE_CODE (var) == VAR_DECL
+	      && is_global_var (var)
+	      && (ann = var_ann (var)) != NULL
+	      && ann->used)
+	    mark_all_vars_used (&DECL_INITIAL (var), global_unused_vars);
+	}
+
+      for (cell = &cfun->local_decls; *cell; )
+	{
+	  tree var = TREE_VALUE (*cell);
+
+	  if (TREE_CODE (var) == VAR_DECL
+	      && is_global_var (var)
+	      && bitmap_bit_p (global_unused_vars, DECL_UID (var)))
+	    *cell = TREE_CHAIN (*cell);
+	  else
+	    cell = &TREE_CHAIN (*cell);
+	}
+      BITMAP_FREE (global_unused_vars);
+    }
+
+  /* Remove unused variables from REFERENCED_VARs.  As a special
+     exception keep the variables that are believed to be aliased.
+     Those can't be easily removed from the alias sets and operand
+     caches.  They will be removed shortly after the next may_alias
+     pass is performed.  */
+  FOR_EACH_REFERENCED_VAR (t, rvi)
+    if (!is_global_var (t)
+	&& !MTAG_P (t)
+	&& TREE_CODE (t) != PARM_DECL
+	&& TREE_CODE (t) != RESULT_DECL
+	&& !(ann = var_ann (t))->used
+	&& !ann->symbol_mem_tag
+	&& !TREE_ADDRESSABLE (t)
+	&& (optimize || DECL_ARTIFICIAL (t)))
+      remove_referenced_var (t);
+  remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "Scope blocks after cleanups:\n");
+      dump_scope_blocks (dump_file, dump_flags);
+    }
+}
+
+
+/* Allocate and return a new live range information object base on MAP.  */
+
+static tree_live_info_p
+new_tree_live_info (var_map map)
+{
+  tree_live_info_p live;
+  unsigned x;
+
+  live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
+  live->map = map;
+  live->num_blocks = last_basic_block;
+
+  live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
+  for (x = 0; x < (unsigned)last_basic_block; x++)
+    live->livein[x] = BITMAP_ALLOC (NULL);
+
+  live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
+  for (x = 0; x < (unsigned)last_basic_block; x++)
+    live->liveout[x] = BITMAP_ALLOC (NULL);
+
+  live->work_stack = XNEWVEC (int, last_basic_block);
+  live->stack_top = live->work_stack;
+
+  live->global = BITMAP_ALLOC (NULL);
+  return live;
+}
+
+
+/* Free storage for live range info object LIVE.  */
+
+void 
+delete_tree_live_info (tree_live_info_p live)
+{
+  int x;
+
+  BITMAP_FREE (live->global);
+  free (live->work_stack);
+
+  for (x = live->num_blocks - 1; x >= 0; x--)
+    BITMAP_FREE (live->liveout[x]);
+  free (live->liveout);
+
+  for (x = live->num_blocks - 1; x >= 0; x--)
+    BITMAP_FREE (live->livein[x]);
+  free (live->livein);
+
+  free (live);
+}
+
+
+/* Visit basic block BB and propagate any required live on entry bits from 
+   LIVE into the predecessors.  VISITED is the bitmap of visited blocks.  
+   TMP is a temporary work bitmap which is passed in to avoid reallocating
+   it each time.  */
+
+static void 
+loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
+		 bitmap tmp)
+{
+  edge e;
+  bool change;
+  edge_iterator ei;
+  basic_block pred_bb;
+  bitmap loe;
+  gcc_assert (!TEST_BIT (visited, bb->index));
+
+  SET_BIT (visited, bb->index);
+  loe = live_on_entry (live, bb);
+
+  FOR_EACH_EDGE (e, ei, bb->preds)
+    {
+      pred_bb = e->src;
+      if (pred_bb == ENTRY_BLOCK_PTR)
+	continue;
+      /* TMP is variables live-on-entry from BB that aren't defined in the
+	 predecessor block.  This should be the live on entry vars to pred.  
+	 Note that liveout is the DEFs in a block while live on entry is
+	 being calculated.  */
+      bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);
+
+      /* Add these bits to live-on-entry for the pred. if there are any 
+	 changes, and pred_bb has been visited already, add it to the
+	 revisit stack.  */
+      change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
+      if (TEST_BIT (visited, pred_bb->index) && change)
+	{
+	  RESET_BIT (visited, pred_bb->index);
+	  *(live->stack_top)++ = pred_bb->index;
+	}
+    }
+}
+
+
+/* Using LIVE, fill in all the live-on-entry blocks between the defs and uses 
+   of all the variables.  */
+
+static void
+live_worklist (tree_live_info_p live)
+{
+  unsigned b;
+  basic_block bb;
+  sbitmap visited = sbitmap_alloc (last_basic_block + 1);
+  bitmap tmp = BITMAP_ALLOC (NULL);
+
+  sbitmap_zero (visited);
+
+  /* Visit all the blocks in reverse order and propagate live on entry values
+     into the predecessors blocks.  */
+  FOR_EACH_BB_REVERSE (bb)
+    loe_visit_block (live, bb, visited, tmp);
+
+  /* Process any blocks which require further iteration.  */
+  while (live->stack_top != live->work_stack)
+    {
+      b = *--(live->stack_top);
+      loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
+    }
+
+  BITMAP_FREE (tmp);
+  sbitmap_free (visited);
+}
+
+
+/* Calculate the initial live on entry vector for SSA_NAME using immediate_use
+   links.  Set the live on entry fields in LIVE.  Def's are marked temporarily
+   in the liveout vector.  */
+
+static void
+set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
+{
+  int p;
+  gimple stmt;
+  use_operand_p use;
+  basic_block def_bb = NULL;
+  imm_use_iterator imm_iter;
+  bool global = false;
+
+  p = var_to_partition (live->map, ssa_name);
+  if (p == NO_PARTITION)
+    return;
+
+  stmt = SSA_NAME_DEF_STMT (ssa_name);
+  if (stmt)
+    {
+      def_bb = gimple_bb (stmt);
+      /* Mark defs in liveout bitmap temporarily.  */
+      if (def_bb)
+	bitmap_set_bit (live->liveout[def_bb->index], p);
+    }
+  else
+    def_bb = ENTRY_BLOCK_PTR;
+
+  /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
+     add it to the list of live on entry blocks.  */
+  FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
+    {
+      gimple use_stmt = USE_STMT (use);
+      basic_block add_block = NULL;
+
+      if (gimple_code (use_stmt) == GIMPLE_PHI)
+        {
+	  /* Uses in PHI's are considered to be live at exit of the SRC block
+	     as this is where a copy would be inserted.  Check to see if it is
+	     defined in that block, or whether its live on entry.  */
+	  int index = PHI_ARG_INDEX_FROM_USE (use);
+	  edge e = gimple_phi_arg_edge (use_stmt, index);
+	  if (e->src != ENTRY_BLOCK_PTR)
+	    {
+	      if (e->src != def_bb)
+		add_block = e->src;
+	    }
+	}
+      else
+        {
+	  /* If its not defined in this block, its live on entry.  */
+	  basic_block use_bb = gimple_bb (use_stmt);
+	  if (use_bb != def_bb)
+	    add_block = use_bb;
+	}  
+
+      /* If there was a live on entry use, set the bit.  */
+      if (add_block)
+        {
+	  global = true;
+	  bitmap_set_bit (live->livein[add_block->index], p);
+	}
+    }
+
+  /* If SSA_NAME is live on entry to at least one block, fill in all the live
+     on entry blocks between the def and all the uses.  */
+  if (global)
+    bitmap_set_bit (live->global, p);
+}
+
+
+/* Calculate the live on exit vectors based on the entry info in LIVEINFO.  */
+
+void
+calculate_live_on_exit (tree_live_info_p liveinfo)
+{
+  basic_block bb;
+  edge e;
+  edge_iterator ei;
+
+  /* live on entry calculations used liveout vectors for defs, clear them.  */
+  FOR_EACH_BB (bb)
+    bitmap_clear (liveinfo->liveout[bb->index]);
+
+  /* Set all the live-on-exit bits for uses in PHIs.  */
+  FOR_EACH_BB (bb)
+    {
+      gimple_stmt_iterator gsi;
+      size_t i;
+
+      /* Mark the PHI arguments which are live on exit to the pred block.  */
+      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+	{
+	  gimple phi = gsi_stmt (gsi);
+	  for (i = 0; i < gimple_phi_num_args (phi); i++)
+	    { 
+	      tree t = PHI_ARG_DEF (phi, i);
+	      int p;
+
+	      if (TREE_CODE (t) != SSA_NAME)
+		continue;
+
+	      p = var_to_partition (liveinfo->map, t);
+	      if (p == NO_PARTITION)
+		continue;
+	      e = gimple_phi_arg_edge (phi, i);
+	      if (e->src != ENTRY_BLOCK_PTR)
+		bitmap_set_bit (liveinfo->liveout[e->src->index], p);
+	    }
+	}
+
+      /* Add each successors live on entry to this bock live on exit.  */
+      FOR_EACH_EDGE (e, ei, bb->succs)
+        if (e->dest != EXIT_BLOCK_PTR)
+	  bitmap_ior_into (liveinfo->liveout[bb->index],
+			   live_on_entry (liveinfo, e->dest));
+    }
+}
+
+
+/* Given partition map MAP, calculate all the live on entry bitmaps for 
+   each partition.  Return a new live info object.  */
+
+tree_live_info_p 
+calculate_live_ranges (var_map map)
+{
+  tree var;
+  unsigned i;
+  tree_live_info_p live;
+
+  live = new_tree_live_info (map);
+  for (i = 0; i < num_var_partitions (map); i++)
+    {
+      var = partition_to_var (map, i);
+      if (var != NULL_TREE)
+	set_var_live_on_entry (var, live);
+    }
+
+  live_worklist (live);
+
+#ifdef ENABLE_CHECKING
+  verify_live_on_entry (live);
+#endif
+
+  calculate_live_on_exit (live);
+  return live;
+}
+
+
+/* Output partition map MAP to file F.  */
+
+void
+dump_var_map (FILE *f, var_map map)
+{
+  int t;
+  unsigned x, y;
+  int p;
+
+  fprintf (f, "\nPartition map \n\n");
+
+  for (x = 0; x < map->num_partitions; x++)
+    {
+      if (map->view_to_partition != NULL)
+	p = map->view_to_partition[x];
+      else
+	p = x;
+
+      if (map->partition_to_var[p] == NULL_TREE)
+        continue;
+
+      t = 0;
+      for (y = 1; y < num_ssa_names; y++)
+        {
+	  p = partition_find (map->var_partition, y);
+	  if (map->partition_to_view)
+	    p = map->partition_to_view[p];
+	  if (p == (int)x)
+	    {
+	      if (t++ == 0)
+	        {
+		  fprintf(f, "Partition %d (", x);
+		  print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
+		  fprintf (f, " - ");
+		}
+	      fprintf (f, "%d ", y);
+	    }
+	}
+      if (t != 0)
+	fprintf (f, ")\n");
+    }
+  fprintf (f, "\n");
+}
+
+
+/* Output live range info LIVE to file F, controlled by FLAG.  */
+
+void
+dump_live_info (FILE *f, tree_live_info_p live, int flag)
+{
+  basic_block bb;
+  unsigned i;
+  var_map map = live->map;
+  bitmap_iterator bi;
+
+  if ((flag & LIVEDUMP_ENTRY) && live->livein)
+    {
+      FOR_EACH_BB (bb)
+	{
+	  fprintf (f, "\nLive on entry to BB%d : ", bb->index);
+	  EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
+	    {
+	      print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
+	      fprintf (f, "  ");
+	    }
+	  fprintf (f, "\n");
+	}
+    }
+
+  if ((flag & LIVEDUMP_EXIT) && live->liveout)
+    {
+      FOR_EACH_BB (bb)
+	{
+	  fprintf (f, "\nLive on exit from BB%d : ", bb->index);
+	  EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
+	    {
+	      print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
+	      fprintf (f, "  ");
+	    }
+	  fprintf (f, "\n");
+	}
+    }
+}
+
+
+#ifdef ENABLE_CHECKING
+/* Verify that SSA_VAR is a non-virtual SSA_NAME.  */
+
+void
+register_ssa_partition_check (tree ssa_var)
+{
+  gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
+  if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
+    {
+      fprintf (stderr, "Illegally registering a virtual SSA name :");
+      print_generic_expr (stderr, ssa_var, TDF_SLIM);
+      fprintf (stderr, " in the SSA->Normal phase.\n");
+      internal_error ("SSA corruption");
+    }
+}
+
+
+/* Verify that the info in LIVE matches the current cfg.  */
+
+static void
+verify_live_on_entry (tree_live_info_p live)
+{
+  unsigned i;
+  tree var;
+  gimple stmt;
+  basic_block bb;
+  edge e;
+  int num;
+  edge_iterator ei;
+  var_map map = live->map;
+
+   /* Check for live on entry partitions and report those with a DEF in
+      the program. This will typically mean an optimization has done
+      something wrong.  */
+  bb = ENTRY_BLOCK_PTR;
+  num = 0;
+  FOR_EACH_EDGE (e, ei, bb->succs)
+    {
+      int entry_block = e->dest->index;
+      if (e->dest == EXIT_BLOCK_PTR)
+        continue;
+      for (i = 0; i < (unsigned)num_var_partitions (map); i++)
+	{
+	  basic_block tmp;
+	  tree d;
+	  bitmap loe;
+	  var = partition_to_var (map, i);
+	  stmt = SSA_NAME_DEF_STMT (var);
+	  tmp = gimple_bb (stmt);
+	  d = gimple_default_def (cfun, SSA_NAME_VAR (var));
+
+	  loe = live_on_entry (live, e->dest);
+	  if (loe && bitmap_bit_p (loe, i))
+	    {
+	      if (!gimple_nop_p (stmt))
+		{
+		  num++;
+		  print_generic_expr (stderr, var, TDF_SLIM);
+		  fprintf (stderr, " is defined ");
+		  if (tmp)
+		    fprintf (stderr, " in BB%d, ", tmp->index);
+		  fprintf (stderr, "by:\n");
+		  print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
+		  fprintf (stderr, "\nIt is also live-on-entry to entry BB %d", 
+			   entry_block);
+		  fprintf (stderr, " So it appears to have multiple defs.\n");
+		}
+	      else
+	        {
+		  if (d != var)
+		    {
+		      num++;
+		      print_generic_expr (stderr, var, TDF_SLIM);
+		      fprintf (stderr, " is live-on-entry to BB%d ",
+			       entry_block);
+		      if (d)
+		        {
+			  fprintf (stderr, " but is not the default def of ");
+			  print_generic_expr (stderr, d, TDF_SLIM);
+			  fprintf (stderr, "\n");
+			}
+		      else
+			fprintf (stderr, " and there is no default def.\n");
+		    }
+		}
+	    }
+	  else
+	    if (d == var)
+	      {
+		/* The only way this var shouldn't be marked live on entry is 
+		   if it occurs in a PHI argument of the block.  */
+		size_t z;
+		bool ok = false;
+		gimple_stmt_iterator gsi;
+		for (gsi = gsi_start_phis (e->dest);
+		     !gsi_end_p (gsi) && !ok;
+		     gsi_next (&gsi))
+		  {
+		    gimple phi = gsi_stmt (gsi);
+		    for (z = 0; z < gimple_phi_num_args (phi); z++)
+		      if (var == gimple_phi_arg_def (phi, z))
+			{
+			  ok = true;
+			  break;
+			}
+		  }
+		if (ok)
+		  continue;
+	        num++;
+		print_generic_expr (stderr, var, TDF_SLIM);
+		fprintf (stderr, " is not marked live-on-entry to entry BB%d ", 
+			 entry_block);
+		fprintf (stderr, "but it is a default def so it should be.\n");
+	      }
+	}
+    }
+  gcc_assert (num <= 0);
+}
+#endif