diff gcc/tree-tailcall.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 58ad6c70ea60
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/tree-tailcall.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,1032 @@
+/* Tail call optimization on trees.
+   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
+   Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "function.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "diagnostic.h"
+#include "except.h"
+#include "tree-pass.h"
+#include "flags.h"
+#include "langhooks.h"
+#include "dbgcnt.h"
+
+/* The file implements the tail recursion elimination.  It is also used to
+   analyze the tail calls in general, passing the results to the rtl level
+   where they are used for sibcall optimization.
+
+   In addition to the standard tail recursion elimination, we handle the most
+   trivial cases of making the call tail recursive by creating accumulators.
+   For example the following function
+
+   int sum (int n)
+   {
+     if (n > 0)
+       return n + sum (n - 1);
+     else
+       return 0;
+   }
+
+   is transformed into
+
+   int sum (int n)
+   {
+     int acc = 0;
+
+     while (n > 0)
+       acc += n--;
+
+     return acc;
+   }
+
+   To do this, we maintain two accumulators (a_acc and m_acc) that indicate 
+   when we reach the return x statement, we should return a_acc + x * m_acc
+   instead.  They are initially initialized to 0 and 1, respectively,
+   so the semantics of the function is obviously preserved.  If we are
+   guaranteed that the value of the accumulator never change, we
+   omit the accumulator.
+
+   There are three cases how the function may exit.  The first one is
+   handled in adjust_return_value, the other two in adjust_accumulator_values
+   (the second case is actually a special case of the third one and we
+   present it separately just for clarity):
+
+   1) Just return x, where x is not in any of the remaining special shapes.
+      We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
+      
+   2) return f (...), where f is the current function, is rewritten in a
+      classical tail-recursion elimination way, into assignment of arguments
+      and jump to the start of the function.  Values of the accumulators
+      are unchanged.
+	       
+   3) return a + m * f(...), where a and m do not depend on call to f.
+      To preserve the semantics described before we want this to be rewritten
+      in such a way that we finally return
+
+      a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
+
+      I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
+      eliminate the tail call to f.  Special cases when the value is just
+      added or just multiplied are obtained by setting a = 0 or m = 1.
+
+   TODO -- it is possible to do similar tricks for other operations.  */
+
+/* A structure that describes the tailcall.  */
+
+struct tailcall
+{
+  /* The iterator pointing to the call statement.  */
+  gimple_stmt_iterator call_gsi;
+
+  /* True if it is a call to the current function.  */
+  bool tail_recursion;
+
+  /* The return value of the caller is mult * f + add, where f is the return
+     value of the call.  */
+  tree mult, add;
+
+  /* Next tailcall in the chain.  */
+  struct tailcall *next;
+};
+
+/* The variables holding the value of multiplicative and additive
+   accumulator.  */
+static tree m_acc, a_acc;
+
+static bool suitable_for_tail_opt_p (void);
+static bool optimize_tail_call (struct tailcall *, bool);
+static void eliminate_tail_call (struct tailcall *);
+static void find_tail_calls (basic_block, struct tailcall **);
+
+/* Returns false when the function is not suitable for tail call optimization
+   from some reason (e.g. if it takes variable number of arguments).  */
+
+static bool
+suitable_for_tail_opt_p (void)
+{
+  referenced_var_iterator rvi;
+  tree var;
+
+  if (cfun->stdarg)
+    return false;
+
+  /* No local variable nor structure field should be call-used.  We
+     ignore any kind of memory tag, as these are not real variables.  */
+
+  FOR_EACH_REFERENCED_VAR (var, rvi)
+    {
+      if (!is_global_var (var)
+	  && !MTAG_P (var)
+	  && (gimple_aliases_computed_p (cfun)? is_call_used (var)
+	      : TREE_ADDRESSABLE (var)))
+	return false;
+    }
+
+  return true;
+}
+/* Returns false when the function is not suitable for tail call optimization
+   from some reason (e.g. if it takes variable number of arguments).
+   This test must pass in addition to suitable_for_tail_opt_p in order to make
+   tail call discovery happen.  */
+
+static bool
+suitable_for_tail_call_opt_p (void)
+{
+  tree param;
+
+  /* alloca (until we have stack slot life analysis) inhibits
+     sibling call optimizations, but not tail recursion.  */
+  if (cfun->calls_alloca)
+    return false;
+
+  /* If we are using sjlj exceptions, we may need to add a call to
+     _Unwind_SjLj_Unregister at exit of the function.  Which means
+     that we cannot do any sibcall transformations.  */
+  if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ())
+    return false;
+
+  /* Any function that calls setjmp might have longjmp called from
+     any called function.  ??? We really should represent this
+     properly in the CFG so that this needn't be special cased.  */
+  if (cfun->calls_setjmp)
+    return false;
+
+  /* ??? It is OK if the argument of a function is taken in some cases,
+     but not in all cases.  See PR15387 and PR19616.  Revisit for 4.1.  */
+  for (param = DECL_ARGUMENTS (current_function_decl);
+       param;
+       param = TREE_CHAIN (param))
+    if (TREE_ADDRESSABLE (param))
+      return false;
+
+  return true;
+}
+
+/* Checks whether the expression EXPR in stmt AT is independent of the
+   statement pointed to by GSI (in a sense that we already know EXPR's value
+   at GSI).  We use the fact that we are only called from the chain of
+   basic blocks that have only single successor.  Returns the expression
+   containing the value of EXPR at GSI.  */
+
+static tree
+independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
+{
+  basic_block bb, call_bb, at_bb;
+  edge e;
+  edge_iterator ei;
+
+  if (is_gimple_min_invariant (expr))
+    return expr;
+
+  if (TREE_CODE (expr) != SSA_NAME)
+    return NULL_TREE;
+
+  /* Mark the blocks in the chain leading to the end.  */
+  at_bb = gimple_bb (at);
+  call_bb = gimple_bb (gsi_stmt (gsi));
+  for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
+    bb->aux = &bb->aux;
+  bb->aux = &bb->aux;
+
+  while (1)
+    { 
+      at = SSA_NAME_DEF_STMT (expr);
+      bb = gimple_bb (at);
+
+      /* The default definition or defined before the chain.  */
+      if (!bb || !bb->aux)
+	break;
+
+      if (bb == call_bb)
+	{
+	  for (; !gsi_end_p (gsi); gsi_next (&gsi))
+	    if (gsi_stmt (gsi) == at)
+	      break;
+
+	  if (!gsi_end_p (gsi))
+	    expr = NULL_TREE;
+	  break;
+	}
+
+      if (gimple_code (at) != GIMPLE_PHI)
+	{
+	  expr = NULL_TREE;
+	  break;
+	}
+
+      FOR_EACH_EDGE (e, ei, bb->preds)
+	if (e->src->aux)
+	  break;
+      gcc_assert (e);
+
+      expr = PHI_ARG_DEF_FROM_EDGE (at, e);
+      if (TREE_CODE (expr) != SSA_NAME)
+	{
+	  /* The value is a constant.  */
+	  break;
+	}
+    }
+
+  /* Unmark the blocks.  */
+  for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
+    bb->aux = NULL;
+  bb->aux = NULL;
+
+  return expr;
+}
+
+/* Simulates the effect of an assignment STMT on the return value of the tail
+   recursive CALL passed in ASS_VAR.  M and A are the multiplicative and the
+   additive factor for the real return value.  */
+
+static bool
+process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
+		    tree *a, tree *ass_var)
+{
+  tree op0, op1, non_ass_var;
+  tree dest = gimple_assign_lhs (stmt);
+  enum tree_code code = gimple_assign_rhs_code (stmt);
+  enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
+  tree src_var = gimple_assign_rhs1 (stmt);
+  
+  /* See if this is a simple copy operation of an SSA name to the function
+     result.  In that case we may have a simple tail call.  Ignore type
+     conversions that can never produce extra code between the function
+     call and the function return.  */
+  if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
+      && (TREE_CODE (src_var) == SSA_NAME))
+    {
+      /* Reject a tailcall if the type conversion might need
+	 additional code.  */
+      if (gimple_assign_cast_p (stmt)
+	  && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
+	return false;
+
+      if (src_var != *ass_var)
+	return false;
+
+      *ass_var = dest;
+      return true;
+    }
+
+  if (rhs_class != GIMPLE_BINARY_RHS)
+    return false;
+
+  /* Accumulator optimizations will reverse the order of operations.
+     We can only do that for floating-point types if we're assuming
+     that addition and multiplication are associative.  */
+  if (!flag_associative_math)
+    if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
+      return false;
+
+  /* We only handle the code like
+
+     x = call ();
+     y = m * x;
+     z = y + a;
+     return z;
+
+     TODO -- Extend it for cases where the linear transformation of the output
+     is expressed in a more complicated way.  */
+
+  op0 = gimple_assign_rhs1 (stmt);
+  op1 = gimple_assign_rhs2 (stmt);
+
+  if (op0 == *ass_var
+      && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
+    ;
+  else if (op1 == *ass_var
+	   && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
+    ;
+  else
+    return false;
+
+  switch (code)
+    {
+    case PLUS_EXPR:
+      /* There should be no previous addition.  TODO -- it should be fairly
+	 straightforward to lift this restriction -- just allow storing
+	 more complicated expressions in *A, and gimplify it in
+	 adjust_accumulator_values.  */
+      if (*a)
+	return false;
+      *a = non_ass_var;
+      *ass_var = dest;
+      return true;
+
+    case MULT_EXPR:
+      /* Similar remark applies here.  Handling multiplication after addition
+	 is just slightly more complicated -- we need to multiply both *A and
+	 *M.  */
+      if (*a || *m)
+	return false;
+      *m = non_ass_var;
+      *ass_var = dest;
+      return true;
+
+      /* TODO -- Handle other codes (NEGATE_EXPR, MINUS_EXPR,
+	 POINTER_PLUS_EXPR).  */
+
+    default:
+      return false;
+    }
+}
+
+/* Propagate VAR through phis on edge E.  */
+
+static tree
+propagate_through_phis (tree var, edge e)
+{
+  basic_block dest = e->dest;
+  gimple_stmt_iterator gsi;
+ 
+  for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
+    {
+      gimple phi = gsi_stmt (gsi);
+      if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
+        return PHI_RESULT (phi);
+    }
+  return var;
+}
+
+/* Finds tailcalls falling into basic block BB. The list of found tailcalls is
+   added to the start of RET.  */
+
+static void
+find_tail_calls (basic_block bb, struct tailcall **ret)
+{
+  tree ass_var = NULL_TREE, ret_var, func, param;
+  gimple stmt, call = NULL;
+  gimple_stmt_iterator gsi, agsi;
+  bool tail_recursion;
+  struct tailcall *nw;
+  edge e;
+  tree m, a;
+  basic_block abb;
+  size_t idx;
+
+  if (!single_succ_p (bb))
+    return;
+
+  for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
+    {
+      stmt = gsi_stmt (gsi);
+
+      /* Ignore labels.  */
+      if (gimple_code (stmt) == GIMPLE_LABEL)
+	continue;
+
+      /* Check for a call.  */
+      if (is_gimple_call (stmt))
+	{
+	  call = stmt;
+	  ass_var = gimple_call_lhs (stmt);
+	  break;
+	}
+
+      /* If the statement has virtual or volatile operands, fail.  */
+      if (!ZERO_SSA_OPERANDS (stmt, (SSA_OP_VUSE | SSA_OP_VIRTUAL_DEFS))
+	  || gimple_has_volatile_ops (stmt)
+	  || (!gimple_aliases_computed_p (cfun)
+	      && gimple_references_memory_p (stmt)))
+	return;
+    }
+
+  if (gsi_end_p (gsi))
+    {
+      edge_iterator ei;
+      /* Recurse to the predecessors.  */
+      FOR_EACH_EDGE (e, ei, bb->preds)
+	find_tail_calls (e->src, ret);
+
+      return;
+    }
+
+  /* If the LHS of our call is not just a simple register, we can't 
+     transform this into a tail or sibling call.  This situation happens,
+     in (e.g.) "*p = foo()" where foo returns a struct.  In this case
+     we won't have a temporary here, but we need to carry out the side
+     effect anyway, so tailcall is impossible.
+
+     ??? In some situations (when the struct is returned in memory via
+     invisible argument) we could deal with this, e.g. by passing 'p'
+     itself as that argument to foo, but it's too early to do this here,
+     and expand_call() will not handle it anyway.  If it ever can, then
+     we need to revisit this here, to allow that situation.  */
+  if (ass_var && !is_gimple_reg (ass_var))
+    return;
+
+  /* We found the call, check whether it is suitable.  */
+  tail_recursion = false;
+  func = gimple_call_fndecl (call);
+  if (func == current_function_decl)
+    {
+      tree arg;
+      for (param = DECL_ARGUMENTS (func), idx = 0;
+	   param && idx < gimple_call_num_args (call);
+	   param = TREE_CHAIN (param), idx ++)
+	{
+	  arg = gimple_call_arg (call, idx);
+	  if (param != arg)
+	    {
+	      /* Make sure there are no problems with copying.  The parameter
+	         have a copyable type and the two arguments must have reasonably
+	         equivalent types.  The latter requirement could be relaxed if
+	         we emitted a suitable type conversion statement.  */
+	      if (!is_gimple_reg_type (TREE_TYPE (param))
+		  || !useless_type_conversion_p (TREE_TYPE (param),
+					         TREE_TYPE (arg)))
+		break;
+
+	      /* The parameter should be a real operand, so that phi node
+		 created for it at the start of the function has the meaning
+		 of copying the value.  This test implies is_gimple_reg_type
+		 from the previous condition, however this one could be
+		 relaxed by being more careful with copying the new value
+		 of the parameter (emitting appropriate GIMPLE_ASSIGN and
+		 updating the virtual operands).  */
+	      if (!is_gimple_reg (param))
+		break;
+	    }
+	}
+      if (idx == gimple_call_num_args (call) && !param)
+	tail_recursion = true;
+    }
+
+  /* Now check the statements after the call.  None of them has virtual
+     operands, so they may only depend on the call through its return
+     value.  The return value should also be dependent on each of them,
+     since we are running after dce.  */
+  m = NULL_TREE;
+  a = NULL_TREE;
+
+  abb = bb;
+  agsi = gsi;
+  while (1)
+    {
+      gsi_next (&agsi);
+
+      while (gsi_end_p (agsi))
+	{
+	  ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
+	  abb = single_succ (abb);
+	  agsi = gsi_start_bb (abb);
+	}
+
+      stmt = gsi_stmt (agsi);
+
+      if (gimple_code (stmt) == GIMPLE_LABEL)
+	continue;
+
+      if (gimple_code (stmt) == GIMPLE_RETURN)
+	break;
+
+      if (gimple_code (stmt) != GIMPLE_ASSIGN)
+	return;
+
+      /* This is a gimple assign. */
+      if (! process_assignment (stmt, gsi, &m, &a, &ass_var))
+	return;
+    }
+
+  /* See if this is a tail call we can handle.  */
+  ret_var = gimple_return_retval (stmt);
+
+  /* We may proceed if there either is no return value, or the return value
+     is identical to the call's return.  */
+  if (ret_var
+      && (ret_var != ass_var))
+    return;
+
+  /* If this is not a tail recursive call, we cannot handle addends or
+     multiplicands.  */
+  if (!tail_recursion && (m || a))
+    return;
+
+  nw = XNEW (struct tailcall);
+
+  nw->call_gsi = gsi;
+
+  nw->tail_recursion = tail_recursion;
+
+  nw->mult = m;
+  nw->add = a;
+
+  nw->next = *ret;
+  *ret = nw;
+}
+
+/* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E.  */
+
+static void
+add_successor_phi_arg (edge e, tree var, tree phi_arg)
+{
+  gimple_stmt_iterator gsi;
+
+  for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
+    if (PHI_RESULT (gsi_stmt (gsi)) == var)
+      break;
+
+  gcc_assert (!gsi_end_p (gsi));
+  add_phi_arg (gsi_stmt (gsi), phi_arg, e);
+}
+
+/* Creates a GIMPLE statement which computes the operation specified by
+   CODE, OP0 and OP1 to a new variable with name LABEL and inserts the
+   statement in the position specified by GSI and UPDATE.  Returns the
+   tree node of the statement's result.  */
+
+static tree
+adjust_return_value_with_ops (enum tree_code code, const char *label, 
+			      tree op0, tree op1, gimple_stmt_iterator gsi,
+			      enum gsi_iterator_update update)
+{
+
+  tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
+  tree tmp = create_tmp_var (ret_type, label);
+  gimple stmt = gimple_build_assign_with_ops (code, tmp, op0, op1);
+  tree result;
+
+  add_referenced_var (tmp);
+  result = make_ssa_name (tmp, stmt);
+  gimple_assign_set_lhs (stmt, result);
+  update_stmt (stmt);
+  gsi_insert_before (&gsi, stmt, update);
+  return result;
+}
+
+/* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by 
+   the computation specified by CODE and OP1 and insert the statement
+   at the position specified by GSI as a new statement.  Returns new SSA name
+   of updated accumulator.  */
+
+static tree
+update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
+			     gimple_stmt_iterator gsi)
+{
+  gimple stmt = gimple_build_assign_with_ops (code, SSA_NAME_VAR (acc), acc,
+					      op1);
+  tree var = make_ssa_name (SSA_NAME_VAR (acc), stmt);
+  gimple_assign_set_lhs (stmt, var);
+  update_stmt (stmt);
+  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+  return var;
+}
+
+/* Adjust the accumulator values according to A and M after GSI, and update
+   the phi nodes on edge BACK.  */
+
+static void
+adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
+{
+  tree var, a_acc_arg = a_acc, m_acc_arg = m_acc;
+
+  if (a)
+    {
+      if (m_acc)
+	{
+	  if (integer_onep (a))
+	    var = m_acc;
+	  else
+	    var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
+						a, gsi, GSI_NEW_STMT);
+	}
+      else
+	var = a;
+
+      a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
+    }
+
+  if (m)
+    m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
+
+  if (a_acc)
+    add_successor_phi_arg (back, a_acc, a_acc_arg);
+
+  if (m_acc)
+    add_successor_phi_arg (back, m_acc, m_acc_arg);
+}
+
+/* Adjust value of the return at the end of BB according to M and A
+   accumulators.  */
+
+static void
+adjust_return_value (basic_block bb, tree m, tree a)
+{
+  tree retval;
+  gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
+  gimple_stmt_iterator gsi = gsi_last_bb (bb);
+
+  gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
+
+  retval = gimple_return_retval (ret_stmt);
+  if (!retval || retval == error_mark_node)
+    return;
+
+  if (m)
+    retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
+					   gsi, GSI_SAME_STMT);
+  if (a)
+    retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
+					   gsi, GSI_SAME_STMT);
+  gimple_return_set_retval (ret_stmt, retval);
+  update_stmt (ret_stmt);
+}
+
+/* Subtract COUNT and FREQUENCY from the basic block and it's
+   outgoing edge.  */
+static void
+decrease_profile (basic_block bb, gcov_type count, int frequency)
+{
+  edge e;
+  bb->count -= count;
+  if (bb->count < 0)
+    bb->count = 0;
+  bb->frequency -= frequency;
+  if (bb->frequency < 0)
+    bb->frequency = 0;
+  if (!single_succ_p (bb))
+    {
+      gcc_assert (!EDGE_COUNT (bb->succs));
+      return;
+    }
+  e = single_succ_edge (bb);
+  e->count -= count;
+  if (e->count < 0)
+    e->count = 0;
+}
+
+/* Returns true if argument PARAM of the tail recursive call needs to be copied
+   when the call is eliminated.  */
+
+static bool
+arg_needs_copy_p (tree param)
+{
+  tree def;
+
+  if (!is_gimple_reg (param) || !var_ann (param))
+    return false;
+		
+  /* Parameters that are only defined but never used need not be copied.  */
+  def = gimple_default_def (cfun, param);
+  if (!def)
+    return false;
+
+  return true;
+}
+
+/* Eliminates tail call described by T.  TMP_VARS is a list of
+   temporary variables used to copy the function arguments.  */
+
+static void
+eliminate_tail_call (struct tailcall *t)
+{
+  tree param, rslt;
+  gimple stmt, call;
+  tree arg;
+  size_t idx;
+  basic_block bb, first;
+  edge e;
+  gimple phi;
+  gimple_stmt_iterator gsi;
+  gimple orig_stmt;
+
+  stmt = orig_stmt = gsi_stmt (t->call_gsi);
+  bb = gsi_bb (t->call_gsi);
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
+	       bb->index);
+      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+      fprintf (dump_file, "\n");
+    }
+
+  gcc_assert (is_gimple_call (stmt));
+
+  first = single_succ (ENTRY_BLOCK_PTR);
+
+  /* Remove the code after call_gsi that will become unreachable.  The
+     possibly unreachable code in other blocks is removed later in
+     cfg cleanup.  */
+  gsi = t->call_gsi;
+  gsi_next (&gsi);
+  while (!gsi_end_p (gsi))
+    {
+      gimple t = gsi_stmt (gsi);
+      /* Do not remove the return statement, so that redirect_edge_and_branch
+	 sees how the block ends.  */
+      if (gimple_code (t) == GIMPLE_RETURN)
+	break;
+
+      gsi_remove (&gsi, true);
+      release_defs (t);
+    }
+
+  /* Number of executions of function has reduced by the tailcall.  */
+  e = single_succ_edge (gsi_bb (t->call_gsi));
+  decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
+  decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
+  if (e->dest != EXIT_BLOCK_PTR)
+    decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
+
+  /* Replace the call by a jump to the start of function.  */
+  e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
+				first);
+  gcc_assert (e);
+  PENDING_STMT (e) = NULL;
+
+  /* Add phi node entries for arguments.  The ordering of the phi nodes should
+     be the same as the ordering of the arguments.  */
+  for (param = DECL_ARGUMENTS (current_function_decl),
+	 idx = 0, gsi = gsi_start_phis (first);
+       param;
+       param = TREE_CHAIN (param), idx++)
+    {
+      if (!arg_needs_copy_p (param))
+	continue;
+
+      arg = gimple_call_arg (stmt, idx);
+      phi = gsi_stmt (gsi);
+      gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
+
+      add_phi_arg (phi, arg, e);
+      gsi_next (&gsi);
+    }
+
+  /* Update the values of accumulators.  */
+  adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
+
+  call = gsi_stmt (t->call_gsi);
+  rslt = gimple_call_lhs (call);
+  if (rslt != NULL_TREE)
+    {
+      /* Result of the call will no longer be defined.  So adjust the
+	 SSA_NAME_DEF_STMT accordingly.  */
+      SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
+    }
+
+  gsi_remove (&t->call_gsi, true);
+  release_defs (call);
+}
+
+/* Add phi nodes for the virtual operands defined in the function to the
+   header of the loop created by tail recursion elimination.
+
+   Originally, we used to add phi nodes only for call clobbered variables,
+   as the value of the non-call clobbered ones obviously cannot be used
+   or changed within the recursive call.  However, the local variables
+   from multiple calls now share the same location, so the virtual ssa form
+   requires us to say that the location dies on further iterations of the loop,
+   which requires adding phi nodes.
+*/
+static void
+add_virtual_phis (void)
+{
+  referenced_var_iterator rvi;
+  tree var;
+
+  /* The problematic part is that there is no way how to know what
+     to put into phi nodes (there in fact does not have to be such
+     ssa name available).  A solution would be to have an artificial
+     use/kill for all virtual operands in EXIT node.  Unless we have
+     this, we cannot do much better than to rebuild the ssa form for
+     possibly affected virtual ssa names from scratch.  */
+
+  FOR_EACH_REFERENCED_VAR (var, rvi)
+    {
+      if (!is_gimple_reg (var) && gimple_default_def (cfun, var) != NULL_TREE)
+	mark_sym_for_renaming (var);
+    }
+}
+
+/* Optimizes the tailcall described by T.  If OPT_TAILCALLS is true, also
+   mark the tailcalls for the sibcall optimization.  */
+
+static bool
+optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
+{
+  if (t->tail_recursion)
+    {
+      eliminate_tail_call (t);
+      return true;
+    }
+
+  if (opt_tailcalls)
+    {
+      gimple stmt = gsi_stmt (t->call_gsi);
+
+      gimple_call_set_tail (stmt, true);
+      if (dump_file && (dump_flags & TDF_DETAILS))
+        {
+	  fprintf (dump_file, "Found tail call ");
+	  print_gimple_stmt (dump_file, stmt, 0, dump_flags);
+	  fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
+	}
+    }
+
+  return false;
+}
+
+/* Creates a tail-call accumulator of the same type as the return type of the
+   current function.  LABEL is the name used to creating the temporary
+   variable for the accumulator.  The accumulator will be inserted in the
+   phis of a basic block BB with single predecessor with an initial value
+   INIT converted to the current function return type.  */
+
+static tree
+create_tailcall_accumulator (const char *label, basic_block bb, tree init)
+{
+  tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
+  tree tmp = create_tmp_var (ret_type, label);
+  gimple phi;
+
+  add_referenced_var (tmp);
+  phi = create_phi_node (tmp, bb);
+  /* RET_TYPE can be a float when -ffast-maths is enabled.  */
+  add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb));
+  return PHI_RESULT (phi);
+}
+ 
+/* Optimizes tail calls in the function, turning the tail recursion
+   into iteration.  */
+
+static unsigned int
+tree_optimize_tail_calls_1 (bool opt_tailcalls)
+{
+  edge e;
+  bool phis_constructed = false;
+  struct tailcall *tailcalls = NULL, *act, *next;
+  bool changed = false;
+  basic_block first = single_succ (ENTRY_BLOCK_PTR);
+  tree param;
+  gimple stmt;
+  edge_iterator ei;
+
+  if (!suitable_for_tail_opt_p ())
+    return 0;
+  if (opt_tailcalls)
+    opt_tailcalls = suitable_for_tail_call_opt_p ();
+
+  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
+    {
+      /* Only traverse the normal exits, i.e. those that end with return
+	 statement.  */
+      stmt = last_stmt (e->src);
+
+      if (stmt
+	  && gimple_code (stmt) == GIMPLE_RETURN)
+	find_tail_calls (e->src, &tailcalls);
+    }
+
+  /* Construct the phi nodes and accumulators if necessary.  */
+  a_acc = m_acc = NULL_TREE;
+  for (act = tailcalls; act; act = act->next)
+    {
+      if (!act->tail_recursion)
+	continue;
+
+      if (!phis_constructed)
+	{
+	  /* Ensure that there is only one predecessor of the block.  */
+	  if (!single_pred_p (first))
+	    first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
+
+	  /* Copy the args if needed.  */
+	  for (param = DECL_ARGUMENTS (current_function_decl);
+	       param;
+	       param = TREE_CHAIN (param))
+	    if (arg_needs_copy_p (param))
+	      {
+		tree name = gimple_default_def (cfun, param);
+		tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
+		gimple phi;
+
+		set_default_def (param, new_name);
+		phi = create_phi_node (name, first);
+		SSA_NAME_DEF_STMT (name) = phi;
+		add_phi_arg (phi, new_name, single_pred_edge (first));
+	      }
+	  phis_constructed = true;
+	}
+
+      if (act->add && !a_acc)
+	a_acc = create_tailcall_accumulator ("add_acc", first,
+					     integer_zero_node);
+
+      if (act->mult && !m_acc)
+	m_acc = create_tailcall_accumulator ("mult_acc", first,
+					     integer_one_node);
+    }
+
+  for (; tailcalls; tailcalls = next)
+    {
+      next = tailcalls->next;
+      changed |= optimize_tail_call (tailcalls, opt_tailcalls);
+      free (tailcalls);
+    }
+
+  if (a_acc || m_acc)
+    {
+      /* Modify the remaining return statements.  */
+      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
+	{
+	  stmt = last_stmt (e->src);
+
+	  if (stmt
+	      && gimple_code (stmt) == GIMPLE_RETURN)
+	    adjust_return_value (e->src, m_acc, a_acc);
+	}
+    }
+
+  if (changed)
+    free_dominance_info (CDI_DOMINATORS);
+
+  if (phis_constructed)
+    add_virtual_phis ();
+  if (changed)
+    return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
+  return 0;
+}
+
+static unsigned int
+execute_tail_recursion (void)
+{
+  return tree_optimize_tail_calls_1 (false);
+}
+
+static bool
+gate_tail_calls (void)
+{
+  return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
+}
+
+static unsigned int
+execute_tail_calls (void)
+{
+  return tree_optimize_tail_calls_1 (true);
+}
+
+struct gimple_opt_pass pass_tail_recursion = 
+{
+ {
+  GIMPLE_PASS,
+  "tailr",				/* name */
+  gate_tail_calls,			/* gate */
+  execute_tail_recursion,		/* execute */
+  NULL,					/* sub */
+  NULL,					/* next */
+  0,					/* static_pass_number */
+  0,					/* tv_id */
+  PROP_cfg | PROP_ssa,			/* properties_required */
+  0,					/* properties_provided */
+  0,					/* properties_destroyed */
+  0,					/* todo_flags_start */
+  TODO_dump_func | TODO_verify_ssa	/* todo_flags_finish */
+ }
+};
+
+struct gimple_opt_pass pass_tail_calls = 
+{
+ {
+  GIMPLE_PASS,
+  "tailc",				/* name */
+  gate_tail_calls,			/* gate */
+  execute_tail_calls,			/* execute */
+  NULL,					/* sub */
+  NULL,					/* next */
+  0,					/* static_pass_number */
+  0,					/* tv_id */
+  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
+  0,					/* properties_provided */
+  0,					/* properties_destroyed */
+  0,					/* todo_flags_start */
+  TODO_dump_func | TODO_verify_ssa	/* todo_flags_finish */
+ }
+};