diff libgcc/config/libbid/bid64_sqrt.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 04ced10e8804
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libgcc/config/libbid/bid64_sqrt.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,552 @@
+/* Copyright (C) 2007, 2009  Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
+<http://www.gnu.org/licenses/>.  */
+
+/*****************************************************************************
+ *    BID64 square root
+ *****************************************************************************
+ *
+ *  Algorithm description:
+ *
+ *  if(exponent_x is odd)
+ *     scale coefficient_x by 10, adjust exponent
+ *  - get lower estimate for number of digits in coefficient_x
+ *  - scale coefficient x to between 31 and 33 decimal digits
+ *  - in parallel, check for exact case and return if true
+ *  - get high part of result coefficient using double precision sqrt
+ *  - compute remainder and refine coefficient in one iteration (which 
+ *                                 modifies it by at most 1)
+ *  - result exponent is easy to compute from the adjusted arg. exponent 
+ *
+ ****************************************************************************/
+
+#include "bid_internal.h"
+#include "bid_sqrt_macros.h"
+#ifdef UNCHANGED_BINARY_STATUS_FLAGS
+#include <fenv.h>
+
+#define FE_ALL_FLAGS FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT
+#endif
+
+extern double sqrt (double);
+
+#if DECIMAL_CALL_BY_REFERENCE
+
+void
+bid64_sqrt (UINT64 * pres,
+	    UINT64 *
+	    px _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+	    _EXC_INFO_PARAM) {
+  UINT64 x;
+#else
+
+UINT64
+bid64_sqrt (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM
+	    _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
+#endif
+  UINT128 CA, CT;
+  UINT64 sign_x, coefficient_x;
+  UINT64 Q, Q2, A10, C4, R, R2, QE, res;
+  SINT64 D;
+  int_double t_scale;
+  int_float tempx;
+  double da, dq, da_h, da_l, dqe;
+  int exponent_x, exponent_q, bin_expon_cx;
+  int digits_x;
+  int scale;
+#ifdef UNCHANGED_BINARY_STATUS_FLAGS
+  fexcept_t binaryflags = 0;
+#endif
+
+#if DECIMAL_CALL_BY_REFERENCE
+#if !DECIMAL_GLOBAL_ROUNDING
+  _IDEC_round rnd_mode = *prnd_mode;
+#endif
+  x = *px;
+#endif
+
+  // unpack arguments, check for NaN or Infinity
+  if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
+    // x is Inf. or NaN or 0
+    if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
+      res = coefficient_x;
+      if ((coefficient_x & SSNAN_MASK64) == SINFINITY_MASK64)	// -Infinity
+      {
+	res = NAN_MASK64;
+#ifdef SET_STATUS_FLAGS
+	__set_status_flags (pfpsf, INVALID_EXCEPTION);
+#endif
+      }
+#ifdef SET_STATUS_FLAGS
+      if ((x & SNAN_MASK64) == SNAN_MASK64)	// sNaN
+	__set_status_flags (pfpsf, INVALID_EXCEPTION);
+#endif
+      BID_RETURN (res & QUIET_MASK64);
+    }
+    // x is 0
+    exponent_x = (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1;
+    res = sign_x | (((UINT64) exponent_x) << 53);
+    BID_RETURN (res);
+  }
+  // x<0?
+  if (sign_x && coefficient_x) {
+    res = NAN_MASK64;
+#ifdef SET_STATUS_FLAGS
+    __set_status_flags (pfpsf, INVALID_EXCEPTION);
+#endif
+    BID_RETURN (res);
+  }
+#ifdef UNCHANGED_BINARY_STATUS_FLAGS
+  (void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
+#endif
+  //--- get number of bits in the coefficient of x ---
+  tempx.d = (float) coefficient_x;
+  bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
+  digits_x = estimate_decimal_digits[bin_expon_cx];
+  // add test for range
+  if (coefficient_x >= power10_index_binexp[bin_expon_cx])
+    digits_x++;
+
+  A10 = coefficient_x;
+  if (exponent_x & 1) {
+    A10 = (A10 << 2) + A10;
+    A10 += A10;
+  }
+
+  dqe = sqrt ((double) A10);
+  QE = (UINT32) dqe;
+  if (QE * QE == A10) {
+    res =
+      very_fast_get_BID64 (0, (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1,
+			   QE);
+#ifdef UNCHANGED_BINARY_STATUS_FLAGS
+    (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
+#endif
+    BID_RETURN (res);
+  }
+  // if exponent is odd, scale coefficient by 10
+  scale = 31 - digits_x;
+  exponent_q = exponent_x - scale;
+  scale += (exponent_q & 1);	// exp. bias is even
+
+  CT = power10_table_128[scale];
+  __mul_64x128_short (CA, coefficient_x, CT);
+
+  // 2^64
+  t_scale.i = 0x43f0000000000000ull;
+  // convert CA to DP
+  da_h = CA.w[1];
+  da_l = CA.w[0];
+  da = da_h * t_scale.d + da_l;
+
+  dq = sqrt (da);
+
+  Q = (UINT64) dq;
+
+  // get sign(sqrt(CA)-Q)
+  R = CA.w[0] - Q * Q;
+  R = ((SINT64) R) >> 63;
+  D = R + R + 1;
+
+  exponent_q = (exponent_q + DECIMAL_EXPONENT_BIAS) >> 1;
+
+#ifdef SET_STATUS_FLAGS
+  __set_status_flags (pfpsf, INEXACT_EXCEPTION);
+#endif
+
+#ifndef IEEE_ROUND_NEAREST
+#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
+  if (!((rnd_mode) & 3)) {
+#endif
+#endif
+
+    // midpoint to check
+    Q2 = Q + Q + D;
+    C4 = CA.w[0] << 2;
+
+    // get sign(-sqrt(CA)+Midpoint)
+    R2 = Q2 * Q2 - C4;
+    R2 = ((SINT64) R2) >> 63;
+
+    // adjust Q if R!=R2
+    Q += (D & (R ^ R2));
+#ifndef IEEE_ROUND_NEAREST
+#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
+  } else {
+    C4 = CA.w[0];
+    Q += D;
+    if ((SINT64) (Q * Q - C4) > 0)
+      Q--;
+    if (rnd_mode == ROUNDING_UP)
+      Q++;
+  }
+#endif
+#endif
+
+  res = fast_get_BID64 (0, exponent_q, Q);
+#ifdef UNCHANGED_BINARY_STATUS_FLAGS
+  (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
+#endif
+  BID_RETURN (res);
+}
+
+
+TYPE0_FUNCTION_ARG1 (UINT64, bid64q_sqrt, x)
+
+     UINT256 M256, C4, C8;
+     UINT128 CX, CX2, A10, S2, T128, CS, CSM, CS2, C256, CS1,
+       mul_factor2_long = { {0x0ull, 0x0ull} }, QH, Tmp, TP128, Qh, Ql;
+UINT64 sign_x, Carry, B10, res, mul_factor, mul_factor2 = 0x0ull, CS0;
+SINT64 D;
+int_float fx, f64;
+int exponent_x, bin_expon_cx, done = 0;
+int digits, scale, exponent_q = 0, exact = 1, amount, extra_digits;
+#ifdef UNCHANGED_BINARY_STATUS_FLAGS
+fexcept_t binaryflags = 0;
+#endif
+
+	// unpack arguments, check for NaN or Infinity
+if (!unpack_BID128_value (&sign_x, &exponent_x, &CX, x)) {
+  res = CX.w[1];
+  // NaN ?
+  if ((x.w[1] & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
+#ifdef SET_STATUS_FLAGS
+    if ((x.w[1] & 0x7e00000000000000ull) == 0x7e00000000000000ull)	// sNaN
+      __set_status_flags (pfpsf, INVALID_EXCEPTION);
+#endif
+    Tmp.w[1] = (CX.w[1] & 0x00003fffffffffffull);
+    Tmp.w[0] = CX.w[0];
+    TP128 = reciprocals10_128[18];
+    __mul_128x128_full (Qh, Ql, Tmp, TP128);
+    amount = recip_scale[18];
+    __shr_128 (Tmp, Qh, amount);
+    res = (CX.w[1] & 0xfc00000000000000ull) | Tmp.w[0];
+    BID_RETURN (res);
+  }
+  // x is Infinity?
+  if ((x.w[1] & 0x7800000000000000ull) == 0x7800000000000000ull) {
+    if (sign_x) {
+      // -Inf, return NaN
+      res = 0x7c00000000000000ull;
+#ifdef SET_STATUS_FLAGS
+      __set_status_flags (pfpsf, INVALID_EXCEPTION);
+#endif
+    }
+    BID_RETURN (res);
+  }
+  // x is 0 otherwise
+
+  exponent_x =
+    ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
+    DECIMAL_EXPONENT_BIAS;
+  if (exponent_x < 0)
+    exponent_x = 0;
+  if (exponent_x > DECIMAL_MAX_EXPON_64)
+    exponent_x = DECIMAL_MAX_EXPON_64;
+  //res= sign_x | (((UINT64)exponent_x)<<53);
+  res = get_BID64 (sign_x, exponent_x, 0, rnd_mode, pfpsf);
+  BID_RETURN (res);
+}
+if (sign_x) {
+  res = 0x7c00000000000000ull;
+#ifdef SET_STATUS_FLAGS
+  __set_status_flags (pfpsf, INVALID_EXCEPTION);
+#endif
+  BID_RETURN (res);
+}
+#ifdef UNCHANGED_BINARY_STATUS_FLAGS
+(void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
+#endif
+
+	   // 2^64
+f64.i = 0x5f800000;
+
+	   // fx ~ CX
+fx.d = (float) CX.w[1] * f64.d + (float) CX.w[0];
+bin_expon_cx = ((fx.i >> 23) & 0xff) - 0x7f;
+digits = estimate_decimal_digits[bin_expon_cx];
+
+A10 = CX;
+if (exponent_x & 1) {
+  A10.w[1] = (CX.w[1] << 3) | (CX.w[0] >> 61);
+  A10.w[0] = CX.w[0] << 3;
+  CX2.w[1] = (CX.w[1] << 1) | (CX.w[0] >> 63);
+  CX2.w[0] = CX.w[0] << 1;
+  __add_128_128 (A10, A10, CX2);
+}
+
+C256.w[1] = A10.w[1];
+C256.w[0] = A10.w[0];
+CS.w[0] = short_sqrt128 (A10);
+CS.w[1] = 0;
+mul_factor = 0;
+	   // check for exact result  
+if (CS.w[0] < 10000000000000000ull) {
+  if (CS.w[0] * CS.w[0] == A10.w[0]) {
+    __sqr64_fast (S2, CS.w[0]);
+    if (S2.w[1] == A10.w[1])	// && S2.w[0]==A10.w[0])
+    {
+      res =
+	get_BID64 (0,
+		   ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
+		   DECIMAL_EXPONENT_BIAS, CS.w[0], rnd_mode, pfpsf);
+#ifdef UNCHANGED_BINARY_STATUS_FLAGS
+      (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
+#endif
+      BID_RETURN (res);
+    }
+  }
+  if (CS.w[0] >= 1000000000000000ull) {
+    done = 1;
+    exponent_q = exponent_x;
+    C256.w[1] = A10.w[1];
+    C256.w[0] = A10.w[0];
+  }
+#ifdef SET_STATUS_FLAGS
+  __set_status_flags (pfpsf, INEXACT_EXCEPTION);
+#endif
+  exact = 0;
+} else {
+  B10 = 0x3333333333333334ull;
+  __mul_64x64_to_128_full (CS2, CS.w[0], B10);
+  CS0 = CS2.w[1] >> 1;
+  if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
+#ifdef SET_STATUS_FLAGS
+    __set_status_flags (pfpsf, INEXACT_EXCEPTION);
+#endif
+    exact = 0;
+  }
+  done = 1;
+  CS.w[0] = CS0;
+  exponent_q = exponent_x + 2;
+  mul_factor = 10;
+  mul_factor2 = 100;
+  if (CS.w[0] >= 10000000000000000ull) {
+    __mul_64x64_to_128_full (CS2, CS.w[0], B10);
+    CS0 = CS2.w[1] >> 1;
+    if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
+#ifdef SET_STATUS_FLAGS
+      __set_status_flags (pfpsf, INEXACT_EXCEPTION);
+#endif
+      exact = 0;
+    }
+    exponent_q += 2;
+    CS.w[0] = CS0;
+    mul_factor = 100;
+    mul_factor2 = 10000;
+  }
+  if (exact) {
+    CS0 = CS.w[0] * mul_factor;
+    __sqr64_fast (CS1, CS0)
+      if ((CS1.w[0] != A10.w[0]) || (CS1.w[1] != A10.w[1])) {
+#ifdef SET_STATUS_FLAGS
+      __set_status_flags (pfpsf, INEXACT_EXCEPTION);
+#endif
+      exact = 0;
+    }
+  }
+}
+
+if (!done) {
+  // get number of digits in CX
+  D = CX.w[1] - power10_index_binexp_128[bin_expon_cx].w[1];
+  if (D > 0
+      || (!D && CX.w[0] >= power10_index_binexp_128[bin_expon_cx].w[0]))
+    digits++;
+
+  // if exponent is odd, scale coefficient by 10
+  scale = 31 - digits;
+  exponent_q = exponent_x - scale;
+  scale += (exponent_q & 1);	// exp. bias is even
+
+  T128 = power10_table_128[scale];
+  __mul_128x128_low (C256, CX, T128);
+
+
+  CS.w[0] = short_sqrt128 (C256);
+}
+   //printf("CS=%016I64x\n",CS.w[0]);
+
+exponent_q =
+  ((exponent_q - DECIMAL_EXPONENT_BIAS_128) >> 1) +
+  DECIMAL_EXPONENT_BIAS;
+if ((exponent_q < 0) && (exponent_q + MAX_FORMAT_DIGITS >= 0)) {
+  extra_digits = -exponent_q;
+  exponent_q = 0;
+
+  // get coeff*(2^M[extra_digits])/10^extra_digits
+  __mul_64x64_to_128 (QH, CS.w[0], reciprocals10_64[extra_digits]);
+
+  // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
+  amount = short_recip_scale[extra_digits];
+
+  CS0 = QH.w[1] >> amount;
+
+#ifdef SET_STATUS_FLAGS
+  if (exact) {
+    if (CS.w[0] != CS0 * power10_table_128[extra_digits].w[0])
+      exact = 0;
+  }
+  if (!exact)
+    __set_status_flags (pfpsf, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
+#endif
+
+  CS.w[0] = CS0;
+  if (!mul_factor)
+    mul_factor = 1;
+  mul_factor *= power10_table_128[extra_digits].w[0];
+  __mul_64x64_to_128 (mul_factor2_long, mul_factor, mul_factor);
+  if (mul_factor2_long.w[1])
+    mul_factor2 = 0;
+  else
+    mul_factor2 = mul_factor2_long.w[1];
+}
+	   // 4*C256
+C4.w[1] = (C256.w[1] << 2) | (C256.w[0] >> 62);
+C4.w[0] = C256.w[0] << 2;
+
+#ifndef IEEE_ROUND_NEAREST
+#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
+if (!((rnd_mode) & 3)) {
+#endif
+#endif
+  // compare to midpoints
+  CSM.w[0] = (CS.w[0] + CS.w[0]) | 1;
+  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C4.w[1],C4.w[0],CSM.w[1],CSM.w[0], CS.w[0]);
+  if (mul_factor)
+    CSM.w[0] *= mul_factor;
+  // CSM^2
+  __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
+  //__mul_128x128_to_256(M256, CSM, CSM);
+
+  if (C4.w[1] > M256.w[1] ||
+      (C4.w[1] == M256.w[1] && C4.w[0] > M256.w[0])) {
+    // round up
+    CS.w[0]++;
+  } else {
+    C8.w[0] = CS.w[0] << 3;
+    C8.w[1] = 0;
+    if (mul_factor) {
+      if (mul_factor2) {
+	__mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
+      } else {
+	__mul_64x128_low (C8, C8.w[0], mul_factor2_long);
+      }
+    }
+    // M256 - 8*CSM
+    __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
+    M256.w[1] = M256.w[1] - C8.w[1] - Carry;
+
+    // if CSM' > C256, round up
+    if (M256.w[1] > C4.w[1] ||
+	(M256.w[1] == C4.w[1] && M256.w[0] > C4.w[0])) {
+      // round down
+      if (CS.w[0])
+	CS.w[0]--;
+    }
+  }
+#ifndef IEEE_ROUND_NEAREST
+#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
+} else {
+  CS.w[0]++;
+  CSM.w[0] = CS.w[0];
+  C8.w[0] = CSM.w[0] << 1;
+  if (mul_factor)
+    CSM.w[0] *= mul_factor;
+  __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
+  C8.w[1] = 0;
+  if (mul_factor) {
+    if (mul_factor2) {
+      __mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
+    } else {
+      __mul_64x128_low (C8, C8.w[0], mul_factor2_long);
+    }
+  }
+  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C256.w[1],C256.w[0],M256.w[1],M256.w[0], CS.w[0]);
+
+  if (M256.w[1] > C256.w[1] ||
+      (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0])) {
+    __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
+    M256.w[1] = M256.w[1] - Carry - C8.w[1];
+    M256.w[0]++;
+    if (!M256.w[0]) {
+      M256.w[1]++;
+
+    }
+
+    if ((M256.w[1] > C256.w[1] ||
+	 (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
+	&& (CS.w[0] > 1)) {
+
+      CS.w[0]--;
+
+      if (CS.w[0] > 1) {
+	__sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
+	M256.w[1] = M256.w[1] - Carry - C8.w[1];
+	M256.w[0]++;
+	if (!M256.w[0]) {
+	  M256.w[1]++;
+	}
+
+	if (M256.w[1] > C256.w[1] ||
+	    (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
+	  CS.w[0]--;
+      }
+    }
+  }
+
+  else {
+				/*__add_carry_out(M256.w[0], Carry, M256.w[0], C8.w[0]);
+				M256.w[1] = M256.w[1] + Carry + C8.w[1];
+				M256.w[0]++;
+				if(!M256.w[0]) 
+				{
+					M256.w[1]++;
+				}
+				CS.w[0]++;
+			if(M256.w[1]<C256.w[1] ||
+				(M256.w[1]==C256.w[1] && M256.w[0]<=C256.w[0]))
+			{
+				CS.w[0]++;
+			}*/
+    CS.w[0]++;
+  }
+  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
+  // RU?
+  if (((rnd_mode) != ROUNDING_UP) || exact) {
+    if (CS.w[0])
+      CS.w[0]--;
+  }
+
+}
+#endif
+#endif
+ //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
+
+res = get_BID64 (0, exponent_q, CS.w[0], rnd_mode, pfpsf);
+#ifdef UNCHANGED_BINARY_STATUS_FLAGS
+(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
+#endif
+BID_RETURN (res);
+
+
+}