diff libgcc/config/libbid/bid64_to_int64.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 04ced10e8804
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libgcc/config/libbid/bid64_to_int64.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,2329 @@
+/* Copyright (C) 2007, 2009  Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
+<http://www.gnu.org/licenses/>.  */
+
+#include "bid_internal.h"
+
+/*****************************************************************************
+ *  BID64_to_int64_rnint
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_to_int64_rnint (SINT64 * pres, UINT64 * px
+		      _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		      _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+#else
+SINT64
+bid64_to_int64_rnint (UINT64 x
+		      _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		      _EXC_INFO_PARAM) {
+#endif
+  SINT64 res;
+  UINT64 x_sign;
+  UINT64 x_exp;
+  int exp;			// unbiased exponent
+  // Note: C1 represents x_significand (UINT64)
+  BID_UI64DOUBLE tmp1;
+  unsigned int x_nr_bits;
+  int q, ind, shift;
+  UINT64 C1;
+  UINT128 C;
+  UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
+  UINT128 fstar;
+  UINT128 P128;
+
+  // check for NaN or Infinity
+  if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  }
+  // unpack x
+  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
+    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (C1 > 9999999999999999ull) {	// non-canonical
+      x_exp = 0;
+      C1 = 0;
+    }
+  } else {
+    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
+    C1 = x & MASK_BINARY_SIG1;
+  }
+
+  // check for zeros (possibly from non-canonical values)
+  if (C1 == 0x0ull) {
+    // x is 0
+    res = 0x00000000;
+    BID_RETURN (res);
+  }
+  // x is not special and is not zero
+
+  // q = nr. of decimal digits in x (1 <= q <= 54)
+  //  determine first the nr. of bits in x
+  if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
+    // split the 64-bit value in two 32-bit halves to avoid rounding errors
+    if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
+      tmp1.d = (double) (C1 >> 32);	// exact conversion
+      x_nr_bits =
+	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    } else {	// x < 2^32
+      tmp1.d = (double) C1;	// exact conversion
+      x_nr_bits =
+	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+  } else {	// if x < 2^53
+    tmp1.d = (double) C1;	// exact conversion
+    x_nr_bits =
+      1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+  }
+  q = nr_digits[x_nr_bits - 1].digits;
+  if (q == 0) {
+    q = nr_digits[x_nr_bits - 1].digits1;
+    if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
+      q++;
+  }
+  exp = x_exp - 398;	// unbiased exponent
+
+  if ((q + exp) > 19) {	// x >= 10^19 ~= 2^63.11... (cannot fit in SINT64)
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 19) {	// x = c(0)c(1)...c(18).c(19)...c(q-1)
+    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+    // so x rounded to an integer may or may not fit in a signed 64-bit int
+    // the cases that do not fit are identified here; the ones that fit
+    // fall through and will be handled with other cases further,
+    // under '1 <= q + exp <= 19'
+    if (x_sign) {	// if n < 0 and q + exp = 19
+      // if n < -2^63 - 1/2 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) > 2^63+1/2
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 > 5*(2^64+1), 1<=q<=16
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 > 0x50000000000000005, 1<=q<=16
+      // <=> C * 10^(20-q) > 0x50000000000000005, 1<=q<=16
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      // Note: C1 * 10^(11-q) has 19 or 20 digits; 0x50000000000000005, has 20
+      if (C.w[1] > 0x05ull || (C.w[1] == 0x05ull && C.w[0] > 0x05ull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    } else {	// if n > 0 and q + exp = 19
+      // if n >= 2^63 - 1/2 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63-1/2
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 5*(2^64-1), 1<=q<=16
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 0x4fffffffffffffffb, 1<=q<=16
+      // <=> if C * 10^(20-q) >= 0x4fffffffffffffffb, 1<=q<=16
+      C.w[1] = 0x0000000000000004ull;
+      C.w[0] = 0xfffffffffffffffbull;
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      if (C.w[1] > 0x04ull ||
+	  (C.w[1] == 0x04ull && C.w[0] >= 0xfffffffffffffffbull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    }	// end else if n > 0 and q + exp = 19
+  }	// end else if ((q + exp) == 19)
+
+  // n is not too large to be converted to int64: -2^63-1/2 <= n < 2^63-1/2
+  // Note: some of the cases tested for above fall through to this point
+  if ((q + exp) < 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
+    // return 0
+    res = 0x0000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 0) {	// n = +/-0.c(0)c(1)...c(q-1)
+    // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
+    //   res = 0
+    // else
+    //   res = +/-1
+    ind = q - 1;	// 0 <= ind <= 15
+    if (C1 <= midpoint64[ind]) {
+      res = 0x0000000000000000ull;	// return 0
+    } else if (x_sign) {	// n < 0
+      res = 0xffffffffffffffffull;	// return -1
+    } else {	// n > 0
+      res = 0x0000000000000001ull;	// return +1
+    }
+  } else {	// if (1 <= q + exp <= 19, 1 <= q <= 16, -15 <= exp <= 18)
+    // -2^63-1/2 <= x <= -1 or 1 <= x < 2^63-1/2 so x can be rounded
+    // to nearest to a 64-bit signed integer
+    if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 19
+      ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
+      // chop off ind digits from the lower part of C1
+      // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
+      C1 = C1 + midpoint64[ind - 1];
+      // calculate C* and f*
+      // C* is actually floor(C*) in this case
+      // C* and f* need shifting and masking, as shown by
+      // shiftright128[] and maskhigh128[]
+      // 1 <= x <= 15 
+      // kx = 10^(-x) = ten2mk64[ind - 1]
+      // C* = (C1 + 1/2 * 10^x) * 10^(-x)
+      // the approximation of 10^(-x) was rounded up to 54 bits
+      __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
+      Cstar = P128.w[1];
+      fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
+      fstar.w[0] = P128.w[0];
+      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
+      // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
+      // if (0 < f* < 10^(-x)) then the result is a midpoint
+      //   if floor(C*) is even then C* = floor(C*) - logical right
+      //       shift; C* has p decimal digits, correct by Prop. 1)
+      //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
+      //       shift; C* has p decimal digits, correct by Pr. 1)
+      // else
+      //   C* = floor(C*) (logical right shift; C has p decimal digits,
+      //       correct by Property 1)
+      // n = C* * 10^(e+x)
+
+      // shift right C* by Ex-64 = shiftright128[ind]
+      shift = shiftright128[ind - 1];	// 0 <= shift <= 39
+      Cstar = Cstar >> shift;
+
+      // if the result was a midpoint it was rounded away from zero, so
+      // it will need a correction
+      // check for midpoints
+      if ((fstar.w[1] == 0) && fstar.w[0] &&
+	  (fstar.w[0] <= ten2mk128trunc[ind - 1].w[1])) {
+	// ten2mk128trunc[ind -1].w[1] is identical to 
+	// ten2mk128[ind -1].w[1]
+	// the result is a midpoint; round to nearest
+	if (Cstar & 0x01) {	// Cstar is odd; MP in [EVEN, ODD]
+	  // if floor(C*) is odd C = floor(C*) - 1; the result >= 1
+	  Cstar--;	// Cstar is now even
+	}	// else MP in [ODD, EVEN]
+      }
+      if (x_sign)
+	res = -Cstar;
+      else
+	res = Cstar;
+    } else if (exp == 0) {
+      // 1 <= q <= 16
+      // res = +/-C (exact)
+      if (x_sign)
+	res = -C1;
+      else
+	res = C1;
+    } else {	// if (exp > 0) => 1 <= exp <= 18, 1 <= q <= 16, 2 <= q + exp <= 20
+      // (the upper limit of 20 on q + exp is due to the fact that 
+      // +/-C * 10^exp is guaranteed to fit in 64 bits) 
+      // res = +/-C * 10^exp (exact)
+      if (x_sign)
+	res = -C1 * ten2k64[exp];
+      else
+	res = C1 * ten2k64[exp];
+    }
+  }
+  BID_RETURN (res);
+}
+
+/*****************************************************************************
+ *  BID64_to_int64_xrnint
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_to_int64_xrnint (SINT64 * pres, UINT64 * px
+		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		       _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+#else
+SINT64
+bid64_to_int64_xrnint (UINT64 x
+		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		       _EXC_INFO_PARAM) {
+#endif
+  SINT64 res;
+  UINT64 x_sign;
+  UINT64 x_exp;
+  int exp;			// unbiased exponent
+  // Note: C1 represents x_significand (UINT64)
+  UINT64 tmp64;
+  BID_UI64DOUBLE tmp1;
+  unsigned int x_nr_bits;
+  int q, ind, shift;
+  UINT64 C1;
+  UINT128 C;
+  UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
+  UINT128 fstar;
+  UINT128 P128;
+
+  // check for NaN or Infinity
+  if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  }
+  // unpack x
+  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
+    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (C1 > 9999999999999999ull) {	// non-canonical
+      x_exp = 0;
+      C1 = 0;
+    }
+  } else {
+    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
+    C1 = x & MASK_BINARY_SIG1;
+  }
+
+  // check for zeros (possibly from non-canonical values)
+  if (C1 == 0x0ull) {
+    // x is 0
+    res = 0x00000000;
+    BID_RETURN (res);
+  }
+  // x is not special and is not zero
+
+  // q = nr. of decimal digits in x (1 <= q <= 54)
+  //  determine first the nr. of bits in x
+  if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
+    // split the 64-bit value in two 32-bit halves to avoid rounding errors
+    if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
+      tmp1.d = (double) (C1 >> 32);	// exact conversion
+      x_nr_bits =
+	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    } else {	// x < 2^32
+      tmp1.d = (double) C1;	// exact conversion
+      x_nr_bits =
+	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+  } else {	// if x < 2^53
+    tmp1.d = (double) C1;	// exact conversion
+    x_nr_bits =
+      1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+  }
+  q = nr_digits[x_nr_bits - 1].digits;
+  if (q == 0) {
+    q = nr_digits[x_nr_bits - 1].digits1;
+    if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
+      q++;
+  }
+  exp = x_exp - 398;	// unbiased exponent
+
+  if ((q + exp) > 19) {	// x >= 10^19 ~= 2^63.11... (cannot fit in SINT64)
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 19) {	// x = c(0)c(1)...c(18).c(19)...c(q-1)
+    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+    // so x rounded to an integer may or may not fit in a signed 64-bit int
+    // the cases that do not fit are identified here; the ones that fit
+    // fall through and will be handled with other cases further,
+    // under '1 <= q + exp <= 19'
+    if (x_sign) {	// if n < 0 and q + exp = 19
+      // if n < -2^63 - 1/2 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) > 2^63+1/2
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 > 5*(2^64+1), 1<=q<=16
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 > 0x50000000000000005, 1<=q<=16
+      // <=> C * 10^(20-q) > 0x50000000000000005, 1<=q<=16
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      // Note: C1 * 10^(11-q) has 19 or 20 digits; 0x50000000000000005, has 20
+      if (C.w[1] > 0x05ull || (C.w[1] == 0x05ull && C.w[0] > 0x05ull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    } else {	// if n > 0 and q + exp = 19
+      // if n >= 2^63 - 1/2 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63-1/2
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 5*(2^64-1), 1<=q<=16
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 0x4fffffffffffffffb, 1<=q<=16
+      // <=> if C * 10^(20-q) >= 0x4fffffffffffffffb, 1<=q<=16
+      C.w[1] = 0x0000000000000004ull;
+      C.w[0] = 0xfffffffffffffffbull;
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      if (C.w[1] > 0x04ull ||
+	  (C.w[1] == 0x04ull && C.w[0] >= 0xfffffffffffffffbull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    }	// end else if n > 0 and q + exp = 19
+  }	// end else if ((q + exp) == 19)
+
+  // n is not too large to be converted to int64: -2^63-1/2 <= n < 2^63-1/2
+  // Note: some of the cases tested for above fall through to this point
+  if ((q + exp) < 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
+    // set inexact flag
+    *pfpsf |= INEXACT_EXCEPTION;
+    // return 0
+    res = 0x0000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 0) {	// n = +/-0.c(0)c(1)...c(q-1)
+    // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
+    //   res = 0
+    // else
+    //   res = +/-1
+    ind = q - 1;	// 0 <= ind <= 15
+    if (C1 <= midpoint64[ind]) {
+      res = 0x0000000000000000ull;	// return 0
+    } else if (x_sign) {	// n < 0
+      res = 0xffffffffffffffffull;	// return -1
+    } else {	// n > 0
+      res = 0x0000000000000001ull;	// return +1
+    }
+    // set inexact flag
+    *pfpsf |= INEXACT_EXCEPTION;
+  } else {	// if (1 <= q + exp <= 19, 1 <= q <= 16, -15 <= exp <= 18)
+    // -2^63-1/2 <= x <= -1 or 1 <= x < 2^63-1/2 so x can be rounded
+    // to nearest to a 64-bit signed integer
+    if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 19
+      ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
+      // chop off ind digits from the lower part of C1
+      // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
+      C1 = C1 + midpoint64[ind - 1];
+      // calculate C* and f*
+      // C* is actually floor(C*) in this case
+      // C* and f* need shifting and masking, as shown by
+      // shiftright128[] and maskhigh128[]
+      // 1 <= x <= 15 
+      // kx = 10^(-x) = ten2mk64[ind - 1]
+      // C* = (C1 + 1/2 * 10^x) * 10^(-x)
+      // the approximation of 10^(-x) was rounded up to 54 bits
+      __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
+      Cstar = P128.w[1];
+      fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
+      fstar.w[0] = P128.w[0];
+      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
+      // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
+      // if (0 < f* < 10^(-x)) then the result is a midpoint
+      //   if floor(C*) is even then C* = floor(C*) - logical right
+      //       shift; C* has p decimal digits, correct by Prop. 1)
+      //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
+      //       shift; C* has p decimal digits, correct by Pr. 1)
+      // else
+      //   C* = floor(C*) (logical right shift; C has p decimal digits,
+      //       correct by Property 1)
+      // n = C* * 10^(e+x)
+
+      // shift right C* by Ex-64 = shiftright128[ind]
+      shift = shiftright128[ind - 1];	// 0 <= shift <= 39
+      Cstar = Cstar >> shift;
+      // determine inexactness of the rounding of C*
+      // if (0 < f* - 1/2 < 10^(-x)) then
+      //   the result is exact
+      // else // if (f* - 1/2 > T*) then
+      //   the result is inexact
+      if (ind - 1 <= 2) {
+	if (fstar.w[0] > 0x8000000000000000ull) {
+	  // f* > 1/2 and the result may be exact
+	  tmp64 = fstar.w[0] - 0x8000000000000000ull;	// f* - 1/2
+	  if ((tmp64 > ten2mk128trunc[ind - 1].w[1])) {
+	    // ten2mk128trunc[ind -1].w[1] is identical to 
+	    // ten2mk128[ind -1].w[1]
+	    // set the inexact flag
+	    *pfpsf |= INEXACT_EXCEPTION;
+	  }	// else the result is exact
+	} else {	// the result is inexact; f2* <= 1/2
+	  // set the inexact flag
+	  *pfpsf |= INEXACT_EXCEPTION;
+	}
+      } else {	// if 3 <= ind - 1 <= 14
+	if (fstar.w[1] > onehalf128[ind - 1] ||
+	    (fstar.w[1] == onehalf128[ind - 1] && fstar.w[0])) {
+	  // f2* > 1/2 and the result may be exact
+	  // Calculate f2* - 1/2
+	  tmp64 = fstar.w[1] - onehalf128[ind - 1];
+	  if (tmp64 || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	    // ten2mk128trunc[ind -1].w[1] is identical to 
+	    // ten2mk128[ind -1].w[1]
+	    // set the inexact flag
+	    *pfpsf |= INEXACT_EXCEPTION;
+	  }	// else the result is exact
+	} else {	// the result is inexact; f2* <= 1/2
+	  // set the inexact flag
+	  *pfpsf |= INEXACT_EXCEPTION;
+	}
+      }
+
+      // if the result was a midpoint it was rounded away from zero, so
+      // it will need a correction
+      // check for midpoints
+      if ((fstar.w[1] == 0) && fstar.w[0] &&
+	  (fstar.w[0] <= ten2mk128trunc[ind - 1].w[1])) {
+	// ten2mk128trunc[ind -1].w[1] is identical to 
+	// ten2mk128[ind -1].w[1]
+	// the result is a midpoint; round to nearest
+	if (Cstar & 0x01) {	// Cstar is odd; MP in [EVEN, ODD]
+	  // if floor(C*) is odd C = floor(C*) - 1; the result >= 1
+	  Cstar--;	// Cstar is now even
+	}	// else MP in [ODD, EVEN]
+      }
+      if (x_sign)
+	res = -Cstar;
+      else
+	res = Cstar;
+    } else if (exp == 0) {
+      // 1 <= q <= 16
+      // res = +/-C (exact)
+      if (x_sign)
+	res = -C1;
+      else
+	res = C1;
+    } else {	// if (exp > 0) => 1 <= exp <= 18, 1 <= q <= 16, 2 <= q + exp <= 20
+      // (the upper limit of 20 on q + exp is due to the fact that 
+      // +/-C * 10^exp is guaranteed to fit in 64 bits) 
+      // res = +/-C * 10^exp (exact)
+      if (x_sign)
+	res = -C1 * ten2k64[exp];
+      else
+	res = C1 * ten2k64[exp];
+    }
+  }
+  BID_RETURN (res);
+}
+
+/*****************************************************************************
+ *  BID64_to_int64_floor
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_to_int64_floor (SINT64 * pres, UINT64 * px
+		      _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		      _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+#else
+SINT64
+bid64_to_int64_floor (UINT64 x
+		      _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		      _EXC_INFO_PARAM) {
+#endif
+  SINT64 res;
+  UINT64 x_sign;
+  UINT64 x_exp;
+  int exp;			// unbiased exponent
+  // Note: C1 represents x_significand (UINT64)
+  BID_UI64DOUBLE tmp1;
+  unsigned int x_nr_bits;
+  int q, ind, shift;
+  UINT64 C1;
+  UINT128 C;
+  UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
+  UINT128 fstar;
+  UINT128 P128;
+
+  // check for NaN or Infinity
+  if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  }
+  // unpack x
+  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
+    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (C1 > 9999999999999999ull) {	// non-canonical
+      x_exp = 0;
+      C1 = 0;
+    }
+  } else {
+    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
+    C1 = x & MASK_BINARY_SIG1;
+  }
+
+  // check for zeros (possibly from non-canonical values)
+  if (C1 == 0x0ull) {
+    // x is 0
+    res = 0x0000000000000000ull;
+    BID_RETURN (res);
+  }
+  // x is not special and is not zero
+
+  // q = nr. of decimal digits in x (1 <= q <= 54)
+  //  determine first the nr. of bits in x
+  if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
+    // split the 64-bit value in two 32-bit halves to avoid rounding errors
+    if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
+      tmp1.d = (double) (C1 >> 32);	// exact conversion
+      x_nr_bits =
+	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    } else {	// x < 2^32
+      tmp1.d = (double) C1;	// exact conversion
+      x_nr_bits =
+	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+  } else {	// if x < 2^53
+    tmp1.d = (double) C1;	// exact conversion
+    x_nr_bits =
+      1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+  }
+  q = nr_digits[x_nr_bits - 1].digits;
+  if (q == 0) {
+    q = nr_digits[x_nr_bits - 1].digits1;
+    if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
+      q++;
+  }
+  exp = x_exp - 398;	// unbiased exponent
+
+  if ((q + exp) > 19) {	// x >= 10^19 ~= 2^63.11... (cannot fit in SINT64)
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 19) {	// x = c(0)c(1)...c(18).c(19)...c(q-1)
+    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+    // so x rounded to an integer may or may not fit in a signed 64-bit int
+    // the cases that do not fit are identified here; the ones that fit
+    // fall through and will be handled with other cases further,
+    // under '1 <= q + exp <= 19'
+    if (x_sign) {	// if n < 0 and q + exp = 19
+      // if n < -2^63 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) > 2^63
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 5*2^64, 1<=q<=16
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 > 0x50000000000000000, 1<=q<=16
+      // <=> C * 10^(20-q) > 0x50000000000000000, 1<=q<=16
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      // Note: C1 * 10^(11-q) has 19 or 20 digits; 0x5000000000000000a, has 20
+      if (C.w[1] > 0x05ull || (C.w[1] == 0x05ull && C.w[0] != 0)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    } else {	// if n > 0 and q + exp = 19
+      // if n >= 2^63 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 5*2^64, 1<=q<=16
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 0x50000000000000000, 1<=q<=16
+      // <=> if C * 10^(20-q) >= 0x50000000000000000, 1<=q<=16
+      C.w[1] = 0x0000000000000005ull;
+      C.w[0] = 0x0000000000000000ull;
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      if (C.w[1] >= 0x05ull) {
+	// actually C.w[1] == 0x05ull && C.w[0] >= 0x0000000000000000ull) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    }	// end else if n > 0 and q + exp = 19
+  }	// end else if ((q + exp) == 19)
+
+  // n is not too large to be converted to int64: -2^63 <= n < 2^63
+  // Note: some of the cases tested for above fall through to this point
+  if ((q + exp) <= 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
+    // return -1 or 0
+    if (x_sign)
+      res = 0xffffffffffffffffull;
+    else
+      res = 0x0000000000000000ull;
+    BID_RETURN (res);
+  } else {	// if (1 <= q + exp <= 19, 1 <= q <= 16, -15 <= exp <= 18)
+    // -2^63 <= x <= -1 or 1 <= x < 2^63 so x can be rounded
+    // to nearest to a 64-bit signed integer
+    if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 19
+      ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
+      // chop off ind digits from the lower part of C1
+      // C1 fits in 64 bits
+      // calculate C* and f*
+      // C* is actually floor(C*) in this case
+      // C* and f* need shifting and masking, as shown by
+      // shiftright128[] and maskhigh128[]
+      // 1 <= x <= 15 
+      // kx = 10^(-x) = ten2mk64[ind - 1]
+      // C* = C1 * 10^(-x)
+      // the approximation of 10^(-x) was rounded up to 54 bits
+      __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
+      Cstar = P128.w[1];
+      fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
+      fstar.w[0] = P128.w[0];
+      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
+      // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
+      // C* = floor(C*) (logical right shift; C has p decimal digits,
+      //     correct by Property 1)
+      // n = C* * 10^(e+x)
+
+      // shift right C* by Ex-64 = shiftright128[ind]
+      shift = shiftright128[ind - 1];	// 0 <= shift <= 39
+      Cstar = Cstar >> shift;
+      // determine inexactness of the rounding of C*
+      // if (0 < f* < 10^(-x)) then
+      //   the result is exact
+      // else // if (f* > T*) then
+      //   the result is inexact
+      if (ind - 1 <= 2) {	// fstar.w[1] is 0
+	if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	  // ten2mk128trunc[ind -1].w[1] is identical to
+	  // ten2mk128[ind -1].w[1]
+	  if (x_sign) {	// negative and inexact
+	    Cstar++;
+	  }
+	}	// else the result is exact
+      } else {	// if 3 <= ind - 1 <= 14
+	if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	  // ten2mk128trunc[ind -1].w[1] is identical to
+	  // ten2mk128[ind -1].w[1]
+	  if (x_sign) {	// negative and inexact
+	    Cstar++;
+	  }
+	}	// else the result is exact
+      }
+
+      if (x_sign)
+	res = -Cstar;
+      else
+	res = Cstar;
+    } else if (exp == 0) {
+      // 1 <= q <= 16
+      // res = +/-C (exact)
+      if (x_sign)
+	res = -C1;
+      else
+	res = C1;
+    } else {	// if (exp > 0) => 1 <= exp <= 18, 1 <= q <= 16, 2 <= q + exp <= 20
+      // (the upper limit of 20 on q + exp is due to the fact that 
+      // +/-C * 10^exp is guaranteed to fit in 64 bits) 
+      // res = +/-C * 10^exp (exact)
+      if (x_sign)
+	res = -C1 * ten2k64[exp];
+      else
+	res = C1 * ten2k64[exp];
+    }
+  }
+  BID_RETURN (res);
+}
+
+/*****************************************************************************
+ *  BID64_to_int64_xfloor
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_to_int64_xfloor (SINT64 * pres, UINT64 * px
+		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		       _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+#else
+SINT64
+bid64_to_int64_xfloor (UINT64 x
+		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		       _EXC_INFO_PARAM) {
+#endif
+  SINT64 res;
+  UINT64 x_sign;
+  UINT64 x_exp;
+  int exp;			// unbiased exponent
+  // Note: C1 represents x_significand (UINT64)
+  BID_UI64DOUBLE tmp1;
+  unsigned int x_nr_bits;
+  int q, ind, shift;
+  UINT64 C1;
+  UINT128 C;
+  UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
+  UINT128 fstar;
+  UINT128 P128;
+
+  // check for NaN or Infinity
+  if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  }
+  // unpack x
+  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
+    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (C1 > 9999999999999999ull) {	// non-canonical
+      x_exp = 0;
+      C1 = 0;
+    }
+  } else {
+    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
+    C1 = x & MASK_BINARY_SIG1;
+  }
+
+  // check for zeros (possibly from non-canonical values)
+  if (C1 == 0x0ull) {
+    // x is 0
+    res = 0x0000000000000000ull;
+    BID_RETURN (res);
+  }
+  // x is not special and is not zero
+
+  // q = nr. of decimal digits in x (1 <= q <= 54)
+  //  determine first the nr. of bits in x
+  if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
+    // split the 64-bit value in two 32-bit halves to avoid rounding errors
+    if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
+      tmp1.d = (double) (C1 >> 32);	// exact conversion
+      x_nr_bits =
+	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    } else {	// x < 2^32
+      tmp1.d = (double) C1;	// exact conversion
+      x_nr_bits =
+	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+  } else {	// if x < 2^53
+    tmp1.d = (double) C1;	// exact conversion
+    x_nr_bits =
+      1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+  }
+  q = nr_digits[x_nr_bits - 1].digits;
+  if (q == 0) {
+    q = nr_digits[x_nr_bits - 1].digits1;
+    if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
+      q++;
+  }
+  exp = x_exp - 398;	// unbiased exponent
+
+  if ((q + exp) > 19) {	// x >= 10^19 ~= 2^63.11... (cannot fit in SINT64)
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 19) {	// x = c(0)c(1)...c(18).c(19)...c(q-1)
+    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+    // so x rounded to an integer may or may not fit in a signed 64-bit int
+    // the cases that do not fit are identified here; the ones that fit
+    // fall through and will be handled with other cases further,
+    // under '1 <= q + exp <= 19'
+    if (x_sign) {	// if n < 0 and q + exp = 19
+      // if n < -2^63 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) > 2^63
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 5*2^64, 1<=q<=16
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 > 0x50000000000000000, 1<=q<=16
+      // <=> C * 10^(20-q) > 0x50000000000000000, 1<=q<=16
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      // Note: C1 * 10^(11-q) has 19 or 20 digits; 0x5000000000000000a, has 20
+      if (C.w[1] > 0x05ull || (C.w[1] == 0x05ull && C.w[0] != 0)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    } else {	// if n > 0 and q + exp = 19
+      // if n >= 2^63 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 5*2^64, 1<=q<=16
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 0x50000000000000000, 1<=q<=16
+      // <=> if C * 10^(20-q) >= 0x50000000000000000, 1<=q<=16
+      C.w[1] = 0x0000000000000005ull;
+      C.w[0] = 0x0000000000000000ull;
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      if (C.w[1] >= 0x05ull) {
+	// actually C.w[1] == 0x05ull && C.w[0] >= 0x0000000000000000ull) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    }	// end else if n > 0 and q + exp = 19
+  }	// end else if ((q + exp) == 19)
+
+  // n is not too large to be converted to int64: -2^63 <= n < 2^63
+  // Note: some of the cases tested for above fall through to this point
+  if ((q + exp) <= 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
+    // set inexact flag
+    *pfpsf |= INEXACT_EXCEPTION;
+    // return -1 or 0
+    if (x_sign)
+      res = 0xffffffffffffffffull;
+    else
+      res = 0x0000000000000000ull;
+    BID_RETURN (res);
+  } else {	// if (1 <= q + exp <= 19, 1 <= q <= 16, -15 <= exp <= 18)
+    // -2^63 <= x <= -1 or 1 <= x < 2^63 so x can be rounded
+    // to nearest to a 64-bit signed integer
+    if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 19
+      ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
+      // chop off ind digits from the lower part of C1
+      // C1 fits in 64 bits
+      // calculate C* and f*
+      // C* is actually floor(C*) in this case
+      // C* and f* need shifting and masking, as shown by
+      // shiftright128[] and maskhigh128[]
+      // 1 <= x <= 15 
+      // kx = 10^(-x) = ten2mk64[ind - 1]
+      // C* = C1 * 10^(-x)
+      // the approximation of 10^(-x) was rounded up to 54 bits
+      __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
+      Cstar = P128.w[1];
+      fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
+      fstar.w[0] = P128.w[0];
+      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
+      // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
+      // C* = floor(C*) (logical right shift; C has p decimal digits,
+      //     correct by Property 1)
+      // n = C* * 10^(e+x)
+
+      // shift right C* by Ex-64 = shiftright128[ind]
+      shift = shiftright128[ind - 1];	// 0 <= shift <= 39
+      Cstar = Cstar >> shift;
+      // determine inexactness of the rounding of C*
+      // if (0 < f* < 10^(-x)) then
+      //   the result is exact
+      // else // if (f* > T*) then
+      //   the result is inexact
+      if (ind - 1 <= 2) {	// fstar.w[1] is 0
+	if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	  // ten2mk128trunc[ind -1].w[1] is identical to
+	  // ten2mk128[ind -1].w[1]
+	  if (x_sign) {	// negative and inexact
+	    Cstar++;
+	  }
+	  // set the inexact flag
+	  *pfpsf |= INEXACT_EXCEPTION;
+	}	// else the result is exact
+      } else {	// if 3 <= ind - 1 <= 14
+	if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	  // ten2mk128trunc[ind -1].w[1] is identical to
+	  // ten2mk128[ind -1].w[1]
+	  if (x_sign) {	// negative and inexact
+	    Cstar++;
+	  }
+	  // set the inexact flag
+	  *pfpsf |= INEXACT_EXCEPTION;
+	}	// else the result is exact
+      }
+
+      if (x_sign)
+	res = -Cstar;
+      else
+	res = Cstar;
+    } else if (exp == 0) {
+      // 1 <= q <= 16
+      // res = +/-C (exact)
+      if (x_sign)
+	res = -C1;
+      else
+	res = C1;
+    } else {	// if (exp > 0) => 1 <= exp <= 18, 1 <= q <= 16, 2 <= q + exp <= 20
+      // (the upper limit of 20 on q + exp is due to the fact that 
+      // +/-C * 10^exp is guaranteed to fit in 64 bits) 
+      // res = +/-C * 10^exp (exact)
+      if (x_sign)
+	res = -C1 * ten2k64[exp];
+      else
+	res = C1 * ten2k64[exp];
+    }
+  }
+  BID_RETURN (res);
+}
+
+/*****************************************************************************
+ *  BID64_to_int64_ceil
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_to_int64_ceil (SINT64 * pres, UINT64 * px
+		     _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) 
+{
+  UINT64 x = *px;
+#else
+SINT64
+bid64_to_int64_ceil (UINT64 x
+		     _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) 
+{
+#endif
+  SINT64 res;
+  UINT64 x_sign;
+  UINT64 x_exp;
+  int exp;			// unbiased exponent
+  // Note: C1 represents x_significand (UINT64)
+  BID_UI64DOUBLE tmp1;
+  unsigned int x_nr_bits;
+  int q, ind, shift;
+  UINT64 C1;
+  UINT128 C;
+  UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
+  UINT128 fstar;
+  UINT128 P128;
+
+  // check for NaN or Infinity
+  if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  }
+  // unpack x
+  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
+    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (C1 > 9999999999999999ull) {	// non-canonical
+      x_exp = 0;
+      C1 = 0;
+    }
+  } else {
+    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
+    C1 = x & MASK_BINARY_SIG1;
+  }
+
+  // check for zeros (possibly from non-canonical values)
+  if (C1 == 0x0ull) {
+    // x is 0
+    res = 0x00000000;
+    BID_RETURN (res);
+  }
+  // x is not special and is not zero
+
+  // q = nr. of decimal digits in x (1 <= q <= 54)
+  //  determine first the nr. of bits in x
+  if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
+    // split the 64-bit value in two 32-bit halves to avoid rounding errors
+    if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
+      tmp1.d = (double) (C1 >> 32);	// exact conversion
+      x_nr_bits =
+	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    } else {	// x < 2^32
+      tmp1.d = (double) C1;	// exact conversion
+      x_nr_bits =
+	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+  } else {	// if x < 2^53
+    tmp1.d = (double) C1;	// exact conversion
+    x_nr_bits =
+      1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+  }
+  q = nr_digits[x_nr_bits - 1].digits;
+  if (q == 0) {
+    q = nr_digits[x_nr_bits - 1].digits1;
+    if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
+      q++;
+  }
+  exp = x_exp - 398;	// unbiased exponent
+
+  if ((q + exp) > 19) {	// x >= 10^19 ~= 2^63.11... (cannot fit in SINT64)
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 19) {	// x = c(0)c(1)...c(18).c(19)...c(q-1)
+    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+    // so x rounded to an integer may or may not fit in a signed 64-bit int
+    // the cases that do not fit are identified here; the ones that fit
+    // fall through and will be handled with other cases further,
+    // under '1 <= q + exp <= 19'
+    if (x_sign) {	// if n < 0 and q + exp = 19
+      // if n <= -2^63 - 1 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63+1
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 5*(2^64+2), 1<=q<=16
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 0x5000000000000000a, 1<=q<=16
+      // <=> C * 10^(20-q) >= 0x5000000000000000a, 1<=q<=16
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      // Note: C1 * 10^(11-q) has 19 or 20 digits; 0x5000000000000000a, has 20
+      if (C.w[1] > 0x05ull || (C.w[1] == 0x05ull && C.w[0] >= 0x0aull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    } else {	// if n > 0 and q + exp = 19
+      // if n > 2^63 - 1 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) > 2^63 - 1
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 > 5*(2^64-2), 1<=q<=16
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 > 0x4fffffffffffffff6, 1<=q<=16
+      // <=> if C * 10^(20-q) > 0x4fffffffffffffff6, 1<=q<=16
+      C.w[1] = 0x0000000000000004ull;
+      C.w[0] = 0xfffffffffffffff6ull;
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      if (C.w[1] > 0x04ull ||
+	  (C.w[1] == 0x04ull && C.w[0] > 0xfffffffffffffff6ull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    }	// end else if n > 0 and q + exp = 19
+  }	// end else if ((q + exp) == 19)
+
+  // n is not too large to be converted to int64: -2^63-1 < n < 2^63
+  // Note: some of the cases tested for above fall through to this point
+  if ((q + exp) <= 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
+    // return 0 or 1
+    if (x_sign)
+      res = 0x00000000;
+    else
+      res = 0x00000001;
+    BID_RETURN (res);
+  } else {	// if (1 <= q + exp <= 19, 1 <= q <= 16, -15 <= exp <= 18)
+    // -2^63-1 < x <= -1 or 1 <= x <= 2^63 - 1 so x can be rounded
+    // to nearest to a 64-bit signed integer
+    if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 19
+      ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
+      // chop off ind digits from the lower part of C1
+      // C1 fits in 64 bits
+      // calculate C* and f*
+      // C* is actually floor(C*) in this case
+      // C* and f* need shifting and masking, as shown by
+      // shiftright128[] and maskhigh128[]
+      // 1 <= x <= 15 
+      // kx = 10^(-x) = ten2mk64[ind - 1]
+      // C* = C1 * 10^(-x)
+      // the approximation of 10^(-x) was rounded up to 54 bits
+      __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
+      Cstar = P128.w[1];
+      fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
+      fstar.w[0] = P128.w[0];
+      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
+      // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
+      // C* = floor(C*) (logical right shift; C has p decimal digits,
+      //     correct by Property 1)
+      // n = C* * 10^(e+x)
+
+      // shift right C* by Ex-64 = shiftright128[ind]
+      shift = shiftright128[ind - 1];	// 0 <= shift <= 39
+      Cstar = Cstar >> shift;
+      // determine inexactness of the rounding of C*
+      // if (0 < f* < 10^(-x)) then
+      //   the result is exact
+      // else // if (f* > T*) then
+      //   the result is inexact
+      if (ind - 1 <= 2) {	// fstar.w[1] is 0
+	if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	  // ten2mk128trunc[ind -1].w[1] is identical to
+	  // ten2mk128[ind -1].w[1]
+	  if (!x_sign) {	// positive and inexact
+	    Cstar++;
+	  }
+	}	// else the result is exact
+      } else {	// if 3 <= ind - 1 <= 14
+	if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	  // ten2mk128trunc[ind -1].w[1] is identical to
+	  // ten2mk128[ind -1].w[1]
+	  if (!x_sign) {	// positive and inexact
+	    Cstar++;
+	  }
+	}	// else the result is exact
+      }
+
+      if (x_sign)
+	res = -Cstar;
+      else
+	res = Cstar;
+    } else if (exp == 0) {
+      // 1 <= q <= 16
+      // res = +/-C (exact)
+      if (x_sign)
+	res = -C1;
+      else
+	res = C1;
+    } else {	// if (exp > 0) => 1 <= exp <= 18, 1 <= q <= 16, 2 <= q + exp <= 20
+      // (the upper limit of 20 on q + exp is due to the fact that 
+      // +/-C * 10^exp is guaranteed to fit in 64 bits) 
+      // res = +/-C * 10^exp (exact)
+      if (x_sign)
+	res = -C1 * ten2k64[exp];
+      else
+	res = C1 * ten2k64[exp];
+    }
+  }
+  BID_RETURN (res);
+}
+
+/*****************************************************************************
+ *  BID64_to_int64_xceil
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_to_int64_xceil (SINT64 * pres, UINT64 * px
+		      _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		      _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+#else
+SINT64
+bid64_to_int64_xceil (UINT64 x
+		      _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		      _EXC_INFO_PARAM) {
+#endif
+  SINT64 res;
+  UINT64 x_sign;
+  UINT64 x_exp;
+  int exp;			// unbiased exponent
+  // Note: C1 represents x_significand (UINT64)
+  BID_UI64DOUBLE tmp1;
+  unsigned int x_nr_bits;
+  int q, ind, shift;
+  UINT64 C1;
+  UINT128 C;
+  UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
+  UINT128 fstar;
+  UINT128 P128;
+
+  // check for NaN or Infinity
+  if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  }
+  // unpack x
+  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
+    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (C1 > 9999999999999999ull) {	// non-canonical
+      x_exp = 0;
+      C1 = 0;
+    }
+  } else {
+    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
+    C1 = x & MASK_BINARY_SIG1;
+  }
+
+  // check for zeros (possibly from non-canonical values)
+  if (C1 == 0x0ull) {
+    // x is 0
+    res = 0x00000000;
+    BID_RETURN (res);
+  }
+  // x is not special and is not zero
+
+  // q = nr. of decimal digits in x (1 <= q <= 54)
+  //  determine first the nr. of bits in x
+  if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
+    // split the 64-bit value in two 32-bit halves to avoid rounding errors
+    if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
+      tmp1.d = (double) (C1 >> 32);	// exact conversion
+      x_nr_bits =
+	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    } else {	// x < 2^32
+      tmp1.d = (double) C1;	// exact conversion
+      x_nr_bits =
+	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+  } else {	// if x < 2^53
+    tmp1.d = (double) C1;	// exact conversion
+    x_nr_bits =
+      1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+  }
+  q = nr_digits[x_nr_bits - 1].digits;
+  if (q == 0) {
+    q = nr_digits[x_nr_bits - 1].digits1;
+    if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
+      q++;
+  }
+  exp = x_exp - 398;	// unbiased exponent
+
+  if ((q + exp) > 19) {	// x >= 10^19 ~= 2^63.11... (cannot fit in SINT64)
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 19) {	// x = c(0)c(1)...c(18).c(19)...c(q-1)
+    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+    // so x rounded to an integer may or may not fit in a signed 64-bit int
+    // the cases that do not fit are identified here; the ones that fit
+    // fall through and will be handled with other cases further,
+    // under '1 <= q + exp <= 19'
+    if (x_sign) {	// if n < 0 and q + exp = 19
+      // if n <= -2^63 - 1 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63+1
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 5*(2^64+2), 1<=q<=16
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 0x5000000000000000a, 1<=q<=16
+      // <=> C * 10^(20-q) >= 0x5000000000000000a, 1<=q<=16
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      // Note: C1 * 10^(11-q) has 19 or 20 digits; 0x5000000000000000a, has 20
+      if (C.w[1] > 0x05ull || (C.w[1] == 0x05ull && C.w[0] >= 0x0aull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    } else {	// if n > 0 and q + exp = 19
+      // if n > 2^63 - 1 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) > 2^63 - 1
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 > 5*(2^64-2), 1<=q<=16
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 > 0x4fffffffffffffff6, 1<=q<=16
+      // <=> if C * 10^(20-q) > 0x4fffffffffffffff6, 1<=q<=16
+      C.w[1] = 0x0000000000000004ull;
+      C.w[0] = 0xfffffffffffffff6ull;
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      if (C.w[1] > 0x04ull ||
+	  (C.w[1] == 0x04ull && C.w[0] > 0xfffffffffffffff6ull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    }	// end else if n > 0 and q + exp = 19
+  }	// end else if ((q + exp) == 19)
+
+  // n is not too large to be converted to int64: -2^63-1 < n < 2^63
+  // Note: some of the cases tested for above fall through to this point
+  if ((q + exp) <= 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
+    // set inexact flag
+    *pfpsf |= INEXACT_EXCEPTION;
+    // return 0 or 1
+    if (x_sign)
+      res = 0x00000000;
+    else
+      res = 0x00000001;
+    BID_RETURN (res);
+  } else {	// if (1 <= q + exp <= 19, 1 <= q <= 16, -15 <= exp <= 18)
+    // -2^63-1 < x <= -1 or 1 <= x <= 2^63 - 1 so x can be rounded
+    // to nearest to a 64-bit signed integer
+    if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 19
+      ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
+      // chop off ind digits from the lower part of C1
+      // C1 fits in 64 bits
+      // calculate C* and f*
+      // C* is actually floor(C*) in this case
+      // C* and f* need shifting and masking, as shown by
+      // shiftright128[] and maskhigh128[]
+      // 1 <= x <= 15 
+      // kx = 10^(-x) = ten2mk64[ind - 1]
+      // C* = C1 * 10^(-x)
+      // the approximation of 10^(-x) was rounded up to 54 bits
+      __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
+      Cstar = P128.w[1];
+      fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
+      fstar.w[0] = P128.w[0];
+      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
+      // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
+      // C* = floor(C*) (logical right shift; C has p decimal digits,
+      //     correct by Property 1)
+      // n = C* * 10^(e+x)
+
+      // shift right C* by Ex-64 = shiftright128[ind]
+      shift = shiftright128[ind - 1];	// 0 <= shift <= 39
+      Cstar = Cstar >> shift;
+      // determine inexactness of the rounding of C*
+      // if (0 < f* < 10^(-x)) then
+      //   the result is exact
+      // else // if (f* > T*) then
+      //   the result is inexact
+      if (ind - 1 <= 2) {	// fstar.w[1] is 0
+	if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	  // ten2mk128trunc[ind -1].w[1] is identical to
+	  // ten2mk128[ind -1].w[1]
+	  if (!x_sign) {	// positive and inexact
+	    Cstar++;
+	  }
+	  // set the inexact flag
+	  *pfpsf |= INEXACT_EXCEPTION;
+	}	// else the result is exact
+      } else {	// if 3 <= ind - 1 <= 14
+	if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	  // ten2mk128trunc[ind -1].w[1] is identical to
+	  // ten2mk128[ind -1].w[1]
+	  if (!x_sign) {	// positive and inexact
+	    Cstar++;
+	  }
+	  // set the inexact flag
+	  *pfpsf |= INEXACT_EXCEPTION;
+	}	// else the result is exact
+      }
+
+      if (x_sign)
+	res = -Cstar;
+      else
+	res = Cstar;
+    } else if (exp == 0) {
+      // 1 <= q <= 16
+      // res = +/-C (exact)
+      if (x_sign)
+	res = -C1;
+      else
+	res = C1;
+    } else {	// if (exp > 0) => 1 <= exp <= 18, 1 <= q <= 16, 2 <= q + exp <= 20
+      // (the upper limit of 20 on q + exp is due to the fact that 
+      // +/-C * 10^exp is guaranteed to fit in 64 bits) 
+      // res = +/-C * 10^exp (exact)
+      if (x_sign)
+	res = -C1 * ten2k64[exp];
+      else
+	res = C1 * ten2k64[exp];
+    }
+  }
+  BID_RETURN (res);
+}
+
+/*****************************************************************************
+ *  BID64_to_int64_int
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_to_int64_int (SINT64 * pres, UINT64 * px
+		    _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+#else
+SINT64
+bid64_to_int64_int (UINT64 x
+		    _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
+#endif
+  SINT64 res;
+  UINT64 x_sign;
+  UINT64 x_exp;
+  int exp;			// unbiased exponent
+  // Note: C1 represents x_significand (UINT64)
+  BID_UI64DOUBLE tmp1;
+  unsigned int x_nr_bits;
+  int q, ind, shift;
+  UINT64 C1;
+  UINT128 C;
+  UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
+  UINT128 P128;
+
+  // check for NaN or Infinity
+  if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  }
+  // unpack x
+  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
+    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (C1 > 9999999999999999ull) {	// non-canonical
+      x_exp = 0;
+      C1 = 0;
+    }
+  } else {
+    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
+    C1 = x & MASK_BINARY_SIG1;
+  }
+
+  // check for zeros (possibly from non-canonical values)
+  if (C1 == 0x0ull) {
+    // x is 0
+    res = 0x00000000;
+    BID_RETURN (res);
+  }
+  // x is not special and is not zero
+
+  // q = nr. of decimal digits in x (1 <= q <= 54)
+  //  determine first the nr. of bits in x
+  if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
+    // split the 64-bit value in two 32-bit halves to avoid rounding errors
+    if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
+      tmp1.d = (double) (C1 >> 32);	// exact conversion
+      x_nr_bits =
+	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    } else {	// x < 2^32
+      tmp1.d = (double) C1;	// exact conversion
+      x_nr_bits =
+	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+  } else {	// if x < 2^53
+    tmp1.d = (double) C1;	// exact conversion
+    x_nr_bits =
+      1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+  }
+  q = nr_digits[x_nr_bits - 1].digits;
+  if (q == 0) {
+    q = nr_digits[x_nr_bits - 1].digits1;
+    if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
+      q++;
+  }
+  exp = x_exp - 398;	// unbiased exponent
+
+  if ((q + exp) > 19) {	// x >= 10^19 ~= 2^63.11... (cannot fit in SINT64)
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 19) {	// x = c(0)c(1)...c(18).c(19)...c(q-1)
+    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+    // so x rounded to an integer may or may not fit in a signed 64-bit int
+    // the cases that do not fit are identified here; the ones that fit
+    // fall through and will be handled with other cases further,
+    // under '1 <= q + exp <= 19'
+    if (x_sign) {	// if n < 0 and q + exp = 19
+      // if n <= -2^63 - 1 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63+1
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 5*(2^64+2), 1<=q<=16
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 0x5000000000000000a, 1<=q<=16
+      // <=> C * 10^(20-q) >= 0x5000000000000000a, 1<=q<=16
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      // Note: C1 * 10^(11-q) has 19 or 20 digits; 0x5000000000000000a, has 20
+      if (C.w[1] > 0x05ull || (C.w[1] == 0x05ull && C.w[0] >= 0x0aull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    } else {	// if n > 0 and q + exp = 19
+      // if n >= 2^63 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 5*2^64, 1<=q<=16
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 0x50000000000000000, 1<=q<=16
+      // <=> if C * 10^(20-q) >= 0x50000000000000000, 1<=q<=16
+      C.w[1] = 0x0000000000000005ull;
+      C.w[0] = 0x0000000000000000ull;
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      if (C.w[1] >= 0x05ull) {
+	// actually C.w[1] == 0x05ull && C.w[0] >= 0x0000000000000000ull) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    }	// end else if n > 0 and q + exp = 19
+  }	// end else if ((q + exp) == 19)
+
+  // n is not too large to be converted to int64: -2^63-1 < n < 2^63
+  // Note: some of the cases tested for above fall through to this point
+  if ((q + exp) <= 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
+    // return 0
+    res = 0x0000000000000000ull;
+    BID_RETURN (res);
+  } else {	// if (1 <= q + exp <= 19, 1 <= q <= 16, -15 <= exp <= 18)
+    // -2^63-1 < x <= -1 or 1 <= x < 2^63 so x can be rounded
+    // to nearest to a 64-bit signed integer
+    if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 19
+      ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
+      // chop off ind digits from the lower part of C1
+      // C1 fits in 64 bits
+      // calculate C* and f*
+      // C* is actually floor(C*) in this case
+      // C* and f* need shifting and masking, as shown by
+      // shiftright128[] and maskhigh128[]
+      // 1 <= x <= 15 
+      // kx = 10^(-x) = ten2mk64[ind - 1]
+      // C* = C1 * 10^(-x)
+      // the approximation of 10^(-x) was rounded up to 54 bits
+      __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
+      Cstar = P128.w[1];
+      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
+      // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
+      // C* = floor(C*) (logical right shift; C has p decimal digits,
+      //     correct by Property 1)
+      // n = C* * 10^(e+x)
+
+      // shift right C* by Ex-64 = shiftright128[ind]
+      shift = shiftright128[ind - 1];	// 0 <= shift <= 39
+      Cstar = Cstar >> shift;
+
+      if (x_sign)
+	res = -Cstar;
+      else
+	res = Cstar;
+    } else if (exp == 0) {
+      // 1 <= q <= 16
+      // res = +/-C (exact)
+      if (x_sign)
+	res = -C1;
+      else
+	res = C1;
+    } else {	// if (exp > 0) => 1 <= exp <= 18, 1 <= q <= 16, 2 <= q + exp <= 20
+      // (the upper limit of 20 on q + exp is due to the fact that 
+      // +/-C * 10^exp is guaranteed to fit in 64 bits) 
+      // res = +/-C * 10^exp (exact)
+      if (x_sign)
+	res = -C1 * ten2k64[exp];
+      else
+	res = C1 * ten2k64[exp];
+    }
+  }
+  BID_RETURN (res);
+}
+
+/*****************************************************************************
+ *  BID64_to_int64_xint
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_to_int64_xint (SINT64 * pres, UINT64 * px
+		     _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) 
+{
+  UINT64 x = *px;
+#else
+SINT64
+bid64_to_int64_xint (UINT64 x
+		     _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) 
+{
+#endif
+  SINT64 res;
+  UINT64 x_sign;
+  UINT64 x_exp;
+  int exp;			// unbiased exponent
+  // Note: C1 represents x_significand (UINT64)
+  BID_UI64DOUBLE tmp1;
+  unsigned int x_nr_bits;
+  int q, ind, shift;
+  UINT64 C1;
+  UINT128 C;
+  UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
+  UINT128 fstar;
+  UINT128 P128;
+
+  // check for NaN or Infinity
+  if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  }
+  // unpack x
+  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
+    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (C1 > 9999999999999999ull) {	// non-canonical
+      x_exp = 0;
+      C1 = 0;
+    }
+  } else {
+    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
+    C1 = x & MASK_BINARY_SIG1;
+  }
+
+  // check for zeros (possibly from non-canonical values)
+  if (C1 == 0x0ull) {
+    // x is 0
+    res = 0x00000000;
+    BID_RETURN (res);
+  }
+  // x is not special and is not zero
+
+  // q = nr. of decimal digits in x (1 <= q <= 54)
+  //  determine first the nr. of bits in x
+  if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
+    // split the 64-bit value in two 32-bit halves to avoid rounding errors
+    if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
+      tmp1.d = (double) (C1 >> 32);	// exact conversion
+      x_nr_bits =
+	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    } else {	// x < 2^32
+      tmp1.d = (double) C1;	// exact conversion
+      x_nr_bits =
+	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+  } else {	// if x < 2^53
+    tmp1.d = (double) C1;	// exact conversion
+    x_nr_bits =
+      1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+  }
+  q = nr_digits[x_nr_bits - 1].digits;
+  if (q == 0) {
+    q = nr_digits[x_nr_bits - 1].digits1;
+    if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
+      q++;
+  }
+  exp = x_exp - 398;	// unbiased exponent
+
+  if ((q + exp) > 19) {	// x >= 10^19 ~= 2^63.11... (cannot fit in SINT64)
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 19) {	// x = c(0)c(1)...c(18).c(19)...c(q-1)
+    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+    // so x rounded to an integer may or may not fit in a signed 64-bit int
+    // the cases that do not fit are identified here; the ones that fit
+    // fall through and will be handled with other cases further,
+    // under '1 <= q + exp <= 19'
+    if (x_sign) {	// if n < 0 and q + exp = 19
+      // if n <= -2^63 - 1 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63+1
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 5*(2^64+2), 1<=q<=16
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 0x5000000000000000a, 1<=q<=16
+      // <=> C * 10^(20-q) >= 0x5000000000000000a, 1<=q<=16
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      // Note: C1 * 10^(11-q) has 19 or 20 digits; 0x5000000000000000a, has 20
+      if (C.w[1] > 0x05ull || (C.w[1] == 0x05ull && C.w[0] >= 0x0aull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    } else {	// if n > 0 and q + exp = 19
+      // if n >= 2^63 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 5*2^64, 1<=q<=16
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 0x50000000000000000, 1<=q<=16
+      // <=> if C * 10^(20-q) >= 0x50000000000000000, 1<=q<=16
+      C.w[1] = 0x0000000000000005ull;
+      C.w[0] = 0x0000000000000000ull;
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      if (C.w[1] >= 0x05ull) {
+	// actually C.w[1] == 0x05ull && C.w[0] >= 0x0000000000000000ull) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    }	// end else if n > 0 and q + exp = 19
+  }	// end else if ((q + exp) == 19)
+
+  // n is not too large to be converted to int64: -2^63-1 < n < 2^63
+  // Note: some of the cases tested for above fall through to this point
+  if ((q + exp) <= 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
+    // set inexact flag
+    *pfpsf |= INEXACT_EXCEPTION;
+    // return 0
+    res = 0x0000000000000000ull;
+    BID_RETURN (res);
+  } else {	// if (1 <= q + exp <= 19, 1 <= q <= 16, -15 <= exp <= 18)
+    // -2^63-1 < x <= -1 or 1 <= x < 2^63 so x can be rounded
+    // to nearest to a 64-bit signed integer
+    if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 19
+      ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
+      // chop off ind digits from the lower part of C1
+      // C1 fits in 64 bits
+      // calculate C* and f*
+      // C* is actually floor(C*) in this case
+      // C* and f* need shifting and masking, as shown by
+      // shiftright128[] and maskhigh128[]
+      // 1 <= x <= 15 
+      // kx = 10^(-x) = ten2mk64[ind - 1]
+      // C* = C1 * 10^(-x)
+      // the approximation of 10^(-x) was rounded up to 54 bits
+      __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
+      Cstar = P128.w[1];
+      fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
+      fstar.w[0] = P128.w[0];
+      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
+      // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
+      // C* = floor(C*) (logical right shift; C has p decimal digits,
+      //     correct by Property 1)
+      // n = C* * 10^(e+x)
+
+      // shift right C* by Ex-64 = shiftright128[ind]
+      shift = shiftright128[ind - 1];	// 0 <= shift <= 39
+      Cstar = Cstar >> shift;
+      // determine inexactness of the rounding of C*
+      // if (0 < f* < 10^(-x)) then
+      //   the result is exact
+      // else // if (f* > T*) then
+      //   the result is inexact
+      if (ind - 1 <= 2) {	// fstar.w[1] is 0
+	if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	  // ten2mk128trunc[ind -1].w[1] is identical to
+	  // ten2mk128[ind -1].w[1]
+	  // set the inexact flag
+	  *pfpsf |= INEXACT_EXCEPTION;
+	}	// else the result is exact
+      } else {	// if 3 <= ind - 1 <= 14
+	if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	  // ten2mk128trunc[ind -1].w[1] is identical to
+	  // ten2mk128[ind -1].w[1]
+	  // set the inexact flag
+	  *pfpsf |= INEXACT_EXCEPTION;
+	}	// else the result is exact
+      }
+      if (x_sign)
+	res = -Cstar;
+      else
+	res = Cstar;
+    } else if (exp == 0) {
+      // 1 <= q <= 16
+      // res = +/-C (exact)
+      if (x_sign)
+	res = -C1;
+      else
+	res = C1;
+    } else {	// if (exp > 0) => 1 <= exp <= 18, 1 <= q <= 16, 2 <= q + exp <= 20
+      // (the upper limit of 20 on q + exp is due to the fact that 
+      // +/-C * 10^exp is guaranteed to fit in 64 bits) 
+      // res = +/-C * 10^exp (exact)
+      if (x_sign)
+	res = -C1 * ten2k64[exp];
+      else
+	res = C1 * ten2k64[exp];
+    }
+  }
+  BID_RETURN (res);
+}
+
+/*****************************************************************************
+ *  BID64_to_int64_rninta
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_to_int64_rninta (SINT64 * pres, UINT64 * px
+		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		       _EXC_INFO_PARAM) {
+  UINT64 x = *px;
+#else
+SINT64
+bid64_to_int64_rninta (UINT64 x
+		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+		       _EXC_INFO_PARAM) {
+#endif
+  SINT64 res;
+  UINT64 x_sign;
+  UINT64 x_exp;
+  int exp;			// unbiased exponent
+  // Note: C1 represents x_significand (UINT64)
+  BID_UI64DOUBLE tmp1;
+  unsigned int x_nr_bits;
+  int q, ind, shift;
+  UINT64 C1;
+  UINT128 C;
+  UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
+  UINT128 P128;
+
+  // check for NaN or Infinity
+  if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  }
+  // unpack x
+  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
+    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (C1 > 9999999999999999ull) {	// non-canonical
+      x_exp = 0;
+      C1 = 0;
+    }
+  } else {
+    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
+    C1 = x & MASK_BINARY_SIG1;
+  }
+
+  // check for zeros (possibly from non-canonical values)
+  if (C1 == 0x0ull) {
+    // x is 0
+    res = 0x00000000;
+    BID_RETURN (res);
+  }
+  // x is not special and is not zero
+
+  // q = nr. of decimal digits in x (1 <= q <= 54)
+  //  determine first the nr. of bits in x
+  if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
+    // split the 64-bit value in two 32-bit halves to avoid rounding errors
+    if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
+      tmp1.d = (double) (C1 >> 32);	// exact conversion
+      x_nr_bits =
+	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    } else {	// x < 2^32
+      tmp1.d = (double) C1;	// exact conversion
+      x_nr_bits =
+	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+  } else {	// if x < 2^53
+    tmp1.d = (double) C1;	// exact conversion
+    x_nr_bits =
+      1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+  }
+  q = nr_digits[x_nr_bits - 1].digits;
+  if (q == 0) {
+    q = nr_digits[x_nr_bits - 1].digits1;
+    if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
+      q++;
+  }
+  exp = x_exp - 398;	// unbiased exponent
+
+  if ((q + exp) > 19) {	// x >= 10^19 ~= 2^63.11... (cannot fit in SINT64)
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 19) {	// x = c(0)c(1)...c(18).c(19)...c(q-1)
+    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+    // so x rounded to an integer may or may not fit in a signed 64-bit int
+    // the cases that do not fit are identified here; the ones that fit
+    // fall through and will be handled with other cases further,
+    // under '1 <= q + exp <= 19'
+    if (x_sign) {	// if n < 0 and q + exp = 19
+      // if n <= -2^63 - 1/2 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63+1/2
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 5*(2^64+1), 1<=q<=16
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 0x50000000000000005, 1<=q<=16
+      // <=> C * 10^(20-q) >= 0x50000000000000005, 1<=q<=16
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      // Note: C1 * 10^(11-q) has 19 or 20 digits; 0x50000000000000005, has 20
+      if (C.w[1] > 0x05ull || (C.w[1] == 0x05ull && C.w[0] >= 0x05ull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    } else {	// if n > 0 and q + exp = 19
+      // if n >= 2^63 - 1/2 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63-1/2
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 5*(2^64-1), 1<=q<=16
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 0x4fffffffffffffffb, 1<=q<=16
+      // <=> if C * 10^(20-q) >= 0x4fffffffffffffffb, 1<=q<=16
+      C.w[1] = 0x0000000000000004ull;
+      C.w[0] = 0xfffffffffffffffbull;
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      if (C.w[1] > 0x04ull ||
+	  (C.w[1] == 0x04ull && C.w[0] >= 0xfffffffffffffffbull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    }	// end else if n > 0 and q + exp = 19
+  }	// end else if ((q + exp) == 19)
+
+  // n is not too large to be converted to int64: -2^63-1/2 < n < 2^63-1/2
+  // Note: some of the cases tested for above fall through to this point
+  if ((q + exp) < 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
+    // return 0
+    res = 0x0000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 0) {	// n = +/-0.c(0)c(1)...c(q-1)
+    // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
+    //   res = 0
+    // else
+    //   res = +/-1
+    ind = q - 1;	// 0 <= ind <= 15
+    if (C1 < midpoint64[ind]) {
+      res = 0x0000000000000000ull;	// return 0
+    } else if (x_sign) {	// n < 0
+      res = 0xffffffffffffffffull;	// return -1
+    } else {	// n > 0
+      res = 0x0000000000000001ull;	// return +1
+    }
+  } else {	// if (1 <= q + exp <= 19, 1 <= q <= 16, -15 <= exp <= 18)
+    // -2^63-1/2 < x <= -1 or 1 <= x < 2^63-1/2 so x can be rounded
+    // to nearest to a 64-bit signed integer
+    if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 19
+      ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
+      // chop off ind digits from the lower part of C1
+      // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
+      C1 = C1 + midpoint64[ind - 1];
+      // calculate C* and f*
+      // C* is actually floor(C*) in this case
+      // C* and f* need shifting and masking, as shown by
+      // shiftright128[] and maskhigh128[]
+      // 1 <= x <= 15 
+      // kx = 10^(-x) = ten2mk64[ind - 1]
+      // C* = (C1 + 1/2 * 10^x) * 10^(-x)
+      // the approximation of 10^(-x) was rounded up to 54 bits
+      __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
+      Cstar = P128.w[1];
+      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
+      // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
+      // if (0 < f* < 10^(-x)) then the result is a midpoint
+      //   if floor(C*) is even then C* = floor(C*) - logical right
+      //       shift; C* has p decimal digits, correct by Prop. 1)
+      //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
+      //       shift; C* has p decimal digits, correct by Pr. 1)
+      // else
+      //   C* = floor(C*) (logical right shift; C has p decimal digits,
+      //       correct by Property 1)
+      // n = C* * 10^(e+x)
+
+      // shift right C* by Ex-64 = shiftright128[ind]
+      shift = shiftright128[ind - 1];	// 0 <= shift <= 39
+      Cstar = Cstar >> shift;
+
+      // if the result was a midpoint it was rounded away from zero
+      if (x_sign)
+	res = -Cstar;
+      else
+	res = Cstar;
+    } else if (exp == 0) {
+      // 1 <= q <= 16
+      // res = +/-C (exact)
+      if (x_sign)
+	res = -C1;
+      else
+	res = C1;
+    } else {	// if (exp > 0) => 1 <= exp <= 18, 1 <= q <= 16, 2 <= q + exp <= 20
+      // (the upper limit of 20 on q + exp is due to the fact that 
+      // +/-C * 10^exp is guaranteed to fit in 64 bits) 
+      // res = +/-C * 10^exp (exact)
+      if (x_sign)
+	res = -C1 * ten2k64[exp];
+      else
+	res = C1 * ten2k64[exp];
+    }
+  }
+  BID_RETURN (res);
+}
+
+/*****************************************************************************
+ *  BID64_to_int64_xrninta
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_to_int64_xrninta (SINT64 * pres, UINT64 * px
+			_EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+			_EXC_INFO_PARAM) {
+  UINT64 x = *px;
+#else
+SINT64
+bid64_to_int64_xrninta (UINT64 x
+			_EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+			_EXC_INFO_PARAM) {
+#endif
+  SINT64 res;
+  UINT64 x_sign;
+  UINT64 x_exp;
+  int exp;			// unbiased exponent
+  // Note: C1 represents x_significand (UINT64)
+  UINT64 tmp64;
+  BID_UI64DOUBLE tmp1;
+  unsigned int x_nr_bits;
+  int q, ind, shift;
+  UINT64 C1;
+  UINT128 C;
+  UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
+  UINT128 fstar;
+  UINT128 P128;
+
+  // check for NaN or Infinity
+  if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  }
+  // unpack x
+  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
+  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
+    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+    if (C1 > 9999999999999999ull) {	// non-canonical
+      x_exp = 0;
+      C1 = 0;
+    }
+  } else {
+    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
+    C1 = x & MASK_BINARY_SIG1;
+  }
+
+  // check for zeros (possibly from non-canonical values)
+  if (C1 == 0x0ull) {
+    // x is 0
+    res = 0x00000000;
+    BID_RETURN (res);
+  }
+  // x is not special and is not zero
+
+  // q = nr. of decimal digits in x (1 <= q <= 54)
+  //  determine first the nr. of bits in x
+  if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
+    // split the 64-bit value in two 32-bit halves to avoid rounding errors
+    if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
+      tmp1.d = (double) (C1 >> 32);	// exact conversion
+      x_nr_bits =
+	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    } else {	// x < 2^32
+      tmp1.d = (double) C1;	// exact conversion
+      x_nr_bits =
+	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+    }
+  } else {	// if x < 2^53
+    tmp1.d = (double) C1;	// exact conversion
+    x_nr_bits =
+      1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+  }
+  q = nr_digits[x_nr_bits - 1].digits;
+  if (q == 0) {
+    q = nr_digits[x_nr_bits - 1].digits1;
+    if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
+      q++;
+  }
+  exp = x_exp - 398;	// unbiased exponent
+
+  if ((q + exp) > 19) {	// x >= 10^19 ~= 2^63.11... (cannot fit in SINT64)
+    // set invalid flag
+    *pfpsf |= INVALID_EXCEPTION;
+    // return Integer Indefinite
+    res = 0x8000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 19) {	// x = c(0)c(1)...c(18).c(19)...c(q-1)
+    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+    // so x rounded to an integer may or may not fit in a signed 64-bit int
+    // the cases that do not fit are identified here; the ones that fit
+    // fall through and will be handled with other cases further,
+    // under '1 <= q + exp <= 19'
+    if (x_sign) {	// if n < 0 and q + exp = 19
+      // if n <= -2^63 - 1/2 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63+1/2
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 5*(2^64+1), 1<=q<=16
+      // <=> 0.c(0)c(1)...c(q-1) * 10^20 >= 0x50000000000000005, 1<=q<=16
+      // <=> C * 10^(20-q) >= 0x50000000000000005, 1<=q<=16
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      // Note: C1 * 10^(11-q) has 19 or 20 digits; 0x50000000000000005, has 20
+      if (C.w[1] > 0x05ull || (C.w[1] == 0x05ull && C.w[0] >= 0x05ull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    } else {	// if n > 0 and q + exp = 19
+      // if n >= 2^63 - 1/2 then n is too large
+      // too large if c(0)c(1)...c(18).c(19)...c(q-1) >= 2^63-1/2
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 5*(2^64-1), 1<=q<=16
+      // <=> if 0.c(0)c(1)...c(q-1) * 10^20 >= 0x4fffffffffffffffb, 1<=q<=16
+      // <=> if C * 10^(20-q) >= 0x4fffffffffffffffb, 1<=q<=16
+      C.w[1] = 0x0000000000000004ull;
+      C.w[0] = 0xfffffffffffffffbull;
+      // 1 <= q <= 16 => 4 <= 20-q <= 19 => 10^(20-q) is 64-bit, and so is C1
+      __mul_64x64_to_128MACH (C, C1, ten2k64[20 - q]);
+      if (C.w[1] > 0x04ull ||
+	  (C.w[1] == 0x04ull && C.w[0] >= 0xfffffffffffffffbull)) {
+	// set invalid flag
+	*pfpsf |= INVALID_EXCEPTION;
+	// return Integer Indefinite
+	res = 0x8000000000000000ull;
+	BID_RETURN (res);
+      }
+      // else cases that can be rounded to a 64-bit int fall through
+      // to '1 <= q + exp <= 19'
+    }	// end else if n > 0 and q + exp = 19
+  }	// end else if ((q + exp) == 19)
+
+  // n is not too large to be converted to int64: -2^63-1/2 < n < 2^63-1/2
+  // Note: some of the cases tested for above fall through to this point
+  if ((q + exp) < 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
+    // set inexact flag
+    *pfpsf |= INEXACT_EXCEPTION;
+    // return 0
+    res = 0x0000000000000000ull;
+    BID_RETURN (res);
+  } else if ((q + exp) == 0) {	// n = +/-0.c(0)c(1)...c(q-1)
+    // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
+    //   res = 0
+    // else
+    //   res = +/-1
+    ind = q - 1;	// 0 <= ind <= 15
+    if (C1 < midpoint64[ind]) {
+      res = 0x0000000000000000ull;	// return 0
+    } else if (x_sign) {	// n < 0
+      res = 0xffffffffffffffffull;	// return -1
+    } else {	// n > 0
+      res = 0x0000000000000001ull;	// return +1
+    }
+    // set inexact flag
+    *pfpsf |= INEXACT_EXCEPTION;
+  } else {	// if (1 <= q + exp <= 19, 1 <= q <= 16, -15 <= exp <= 18)
+    // -2^63-1/2 < x <= -1 or 1 <= x < 2^63-1/2 so x can be rounded
+    // to nearest to a 64-bit signed integer
+    if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 19
+      ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
+      // chop off ind digits from the lower part of C1
+      // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
+      C1 = C1 + midpoint64[ind - 1];
+      // calculate C* and f*
+      // C* is actually floor(C*) in this case
+      // C* and f* need shifting and masking, as shown by
+      // shiftright128[] and maskhigh128[]
+      // 1 <= x <= 15 
+      // kx = 10^(-x) = ten2mk64[ind - 1]
+      // C* = (C1 + 1/2 * 10^x) * 10^(-x)
+      // the approximation of 10^(-x) was rounded up to 54 bits
+      __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
+      Cstar = P128.w[1];
+      fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
+      fstar.w[0] = P128.w[0];
+      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
+      // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
+      // if (0 < f* < 10^(-x)) then the result is a midpoint
+      //   if floor(C*) is even then C* = floor(C*) - logical right
+      //       shift; C* has p decimal digits, correct by Prop. 1)
+      //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
+      //       shift; C* has p decimal digits, correct by Pr. 1)
+      // else
+      //   C* = floor(C*) (logical right shift; C has p decimal digits,
+      //       correct by Property 1)
+      // n = C* * 10^(e+x)
+
+      // shift right C* by Ex-64 = shiftright128[ind]
+      shift = shiftright128[ind - 1];	// 0 <= shift <= 39
+      Cstar = Cstar >> shift;
+      // determine inexactness of the rounding of C*
+      // if (0 < f* - 1/2 < 10^(-x)) then
+      //   the result is exact
+      // else // if (f* - 1/2 > T*) then
+      //   the result is inexact
+      if (ind - 1 <= 2) {
+	if (fstar.w[0] > 0x8000000000000000ull) {
+	  // f* > 1/2 and the result may be exact
+	  tmp64 = fstar.w[0] - 0x8000000000000000ull;	// f* - 1/2
+	  if ((tmp64 > ten2mk128trunc[ind - 1].w[1])) {
+	    // ten2mk128trunc[ind -1].w[1] is identical to 
+	    // ten2mk128[ind -1].w[1]
+	    // set the inexact flag
+	    *pfpsf |= INEXACT_EXCEPTION;
+	  }	// else the result is exact
+	} else {	// the result is inexact; f2* <= 1/2
+	  // set the inexact flag
+	  *pfpsf |= INEXACT_EXCEPTION;
+	}
+      } else {	// if 3 <= ind - 1 <= 14
+	if (fstar.w[1] > onehalf128[ind - 1] ||
+	    (fstar.w[1] == onehalf128[ind - 1] && fstar.w[0])) {
+	  // f2* > 1/2 and the result may be exact
+	  // Calculate f2* - 1/2
+	  tmp64 = fstar.w[1] - onehalf128[ind - 1];
+	  if (tmp64 || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
+	    // ten2mk128trunc[ind -1].w[1] is identical to 
+	    // ten2mk128[ind -1].w[1]
+	    // set the inexact flag
+	    *pfpsf |= INEXACT_EXCEPTION;
+	  }	// else the result is exact
+	} else {	// the result is inexact; f2* <= 1/2
+	  // set the inexact flag
+	  *pfpsf |= INEXACT_EXCEPTION;
+	}
+      }
+
+      // if the result was a midpoint it was rounded away from zero
+      if (x_sign)
+	res = -Cstar;
+      else
+	res = Cstar;
+    } else if (exp == 0) {
+      // 1 <= q <= 16
+      // res = +/-C (exact)
+      if (x_sign)
+	res = -C1;
+      else
+	res = C1;
+    } else {	// if (exp > 0) => 1 <= exp <= 18, 1 <= q <= 16, 2 <= q + exp <= 20
+      // (the upper limit of 20 on q + exp is due to the fact that 
+      // +/-C * 10^exp is guaranteed to fit in 64 bits) 
+      // res = +/-C * 10^exp (exact)
+      if (x_sign)
+	res = -C1 * ten2k64[exp];
+      else
+	res = C1 * ten2k64[exp];
+    }
+  }
+  BID_RETURN (res);
+}