diff libgcc/config/libbid/bid_round.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 04ced10e8804
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libgcc/config/libbid/bid_round.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,1049 @@
+/* Copyright (C) 2007, 2009  Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
+<http://www.gnu.org/licenses/>.  */
+
+/*****************************************************************************
+ *
+ *  BID64 encoding:
+ * ****************************************
+ *  63  62              53 52           0
+ * |---|------------------|--------------|
+ * | S |  Biased Exp (E)  |  Coeff (c)   |
+ * |---|------------------|--------------|
+ *
+ * bias = 398
+ * number = (-1)^s * 10^(E-398) * c
+ * coefficient range - 0 to (2^53)-1
+ * COEFF_MAX = 2^53-1 = 9007199254740991
+ *
+ *****************************************************************************
+ *
+ * BID128 encoding:
+ *   1-bit sign
+ *   14-bit biased exponent in [0x21, 0x3020] = [33, 12320]
+ *         unbiased exponent in [-6176, 6111]; exponent bias = 6176
+ *   113-bit unsigned binary integer coefficient (49-bit high + 64-bit low)
+ *   Note: 10^34-1 ~ 2^112.945555... < 2^113 => coefficient fits in 113 bits
+ *
+ *   Note: assume invalid encodings are not passed to this function
+ *
+ * Round a number C with q decimal digits, represented as a binary integer
+ * to q - x digits. Six different routines are provided for different values 
+ * of q. The maximum value of q used in the library is q = 3 * P - 1 where 
+ * P = 16 or P = 34 (so q <= 111 decimal digits). 
+ * The partitioning is based on the following, where Kx is the scaled
+ * integer representing the value of 10^(-x) rounded up to a number of bits
+ * sufficient to ensure correct rounding:
+ *
+ * --------------------------------------------------------------------------
+ * q    x           max. value of  a            max number      min. number 
+ *                                              of bits in C    of bits in Kx
+ * --------------------------------------------------------------------------
+ *
+ *                          GROUP 1: 64 bits
+ *                          round64_2_18 ()
+ *
+ * 2    [1,1]       10^1 - 1 < 2^3.33            4              4
+ * ...  ...         ...                         ...             ...
+ * 18   [1,17]      10^18 - 1 < 2^59.80         60              61
+ *
+ *                        GROUP 2: 128 bits
+ *                        round128_19_38 ()
+ *
+ * 19   [1,18]      10^19 - 1 < 2^63.11         64              65
+ * 20   [1,19]      10^20 - 1 < 2^66.44         67              68
+ * ...  ...         ...                         ...             ...
+ * 38   [1,37]      10^38 - 1 < 2^126.24        127             128
+ *
+ *                        GROUP 3: 192 bits
+ *                        round192_39_57 ()
+ *
+ * 39   [1,38]      10^39 - 1 < 2^129.56        130             131
+ * ...  ...         ...                         ...             ...
+ * 57   [1,56]      10^57 - 1 < 2^189.35        190             191
+ *
+ *                        GROUP 4: 256 bits
+ *                        round256_58_76 ()
+ *
+ * 58   [1,57]      10^58 - 1 < 2^192.68        193             194
+ * ...  ...         ...                         ...             ...
+ * 76   [1,75]      10^76 - 1 < 2^252.47        253             254
+ *
+ *                        GROUP 5: 320 bits
+ *                        round320_77_96 ()
+ *
+ * 77   [1,76]      10^77 - 1 < 2^255.79        256             257
+ * 78   [1,77]      10^78 - 1 < 2^259.12        260             261
+ * ...  ...         ...                         ...             ...
+ * 96   [1,95]      10^96 - 1 < 2^318.91        319             320
+ *
+ *                        GROUP 6: 384 bits
+ *                        round384_97_115 ()
+ *
+ * 97   [1,96]      10^97 - 1 < 2^322.23        323             324 
+ * ...  ...         ...                         ...             ...
+ * 115  [1,114]     10^115 - 1 < 2^382.03       383             384
+ *
+ ****************************************************************************/
+
+#include "bid_internal.h"
+
+void
+round64_2_18 (int q,
+	      int x,
+	      UINT64 C,
+	      UINT64 * ptr_Cstar,
+	      int *incr_exp,
+	      int *ptr_is_midpoint_lt_even,
+	      int *ptr_is_midpoint_gt_even,
+	      int *ptr_is_inexact_lt_midpoint,
+	      int *ptr_is_inexact_gt_midpoint) {
+
+  UINT128 P128;
+  UINT128 fstar;
+  UINT64 Cstar;
+  UINT64 tmp64;
+  int shift;
+  int ind;
+
+  // Note:
+  //    In round128_2_18() positive numbers with 2 <= q <= 18 will be 
+  //    rounded to nearest only for 1 <= x <= 3:
+  //     x = 1 or x = 2 when q = 17
+  //     x = 2 or x = 3 when q = 18
+  // However, for generality and possible uses outside the frame of IEEE 754R
+  // this implementation works for 1 <= x <= q - 1
+
+  // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
+  // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
+  // initialized to 0 by the caller
+
+  // round a number C with q decimal digits, 2 <= q <= 18
+  // to q - x digits, 1 <= x <= 17
+  // C = C + 1/2 * 10^x where the result C fits in 64 bits
+  // (because the largest value is 999999999999999999 + 50000000000000000 =
+  // 0x0e92596fd628ffff, which fits in 60 bits)
+  ind = x - 1;	// 0 <= ind <= 16
+  C = C + midpoint64[ind];
+  // kx ~= 10^(-x), kx = Kx64[ind] * 2^(-Ex), 0 <= ind <= 16
+  // P128 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
+  // the approximation kx of 10^(-x) was rounded up to 64 bits
+  __mul_64x64_to_128MACH (P128, C, Kx64[ind]);
+  // calculate C* = floor (P128) and f*
+  // Cstar = P128 >> Ex
+  // fstar = low Ex bits of P128
+  shift = Ex64m64[ind];	// in [3, 56]
+  Cstar = P128.w[1] >> shift;
+  fstar.w[1] = P128.w[1] & mask64[ind];
+  fstar.w[0] = P128.w[0];
+  // the top Ex bits of 10^(-x) are T* = ten2mxtrunc64[ind], e.g.
+  // if x=1, T*=ten2mxtrunc64[0]=0xcccccccccccccccc
+  // if (0 < f* < 10^(-x)) then the result is a midpoint
+  //   if floor(C*) is even then C* = floor(C*) - logical right
+  //       shift; C* has q - x decimal digits, correct by Prop. 1)
+  //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
+  //       shift; C* has q - x decimal digits, correct by Pr. 1)
+  // else
+  //   C* = floor(C*) (logical right shift; C has q - x decimal digits,
+  //       correct by Property 1)
+  // in the caling function n = C* * 10^(e+x)
+
+  // determine inexactness of the rounding of C*
+  // if (0 < f* - 1/2 < 10^(-x)) then
+  //   the result is exact
+  // else // if (f* - 1/2 > T*) then
+  //   the result is inexact
+  if (fstar.w[1] > half64[ind] ||
+      (fstar.w[1] == half64[ind] && fstar.w[0])) {
+    // f* > 1/2 and the result may be exact
+    // Calculate f* - 1/2
+    tmp64 = fstar.w[1] - half64[ind];
+    if (tmp64 || fstar.w[0] > ten2mxtrunc64[ind]) {	// f* - 1/2 > 10^(-x)
+      *ptr_is_inexact_lt_midpoint = 1;
+    }	// else the result is exact
+  } else {	// the result is inexact; f2* <= 1/2
+    *ptr_is_inexact_gt_midpoint = 1;
+  }
+  // check for midpoints (could do this before determining inexactness)
+  if (fstar.w[1] == 0 && fstar.w[0] <= ten2mxtrunc64[ind]) {
+    // the result is a midpoint
+    if (Cstar & 0x01) {	// Cstar is odd; MP in [EVEN, ODD]
+      // if floor(C*) is odd C = floor(C*) - 1; the result may be 0
+      Cstar--;	// Cstar is now even
+      *ptr_is_midpoint_gt_even = 1;
+      *ptr_is_inexact_lt_midpoint = 0;
+      *ptr_is_inexact_gt_midpoint = 0;
+    } else {	// else MP in [ODD, EVEN]
+      *ptr_is_midpoint_lt_even = 1;
+      *ptr_is_inexact_lt_midpoint = 0;
+      *ptr_is_inexact_gt_midpoint = 0;
+    }
+  }
+  // check for rounding overflow, which occurs if Cstar = 10^(q-x)
+  ind = q - x;	// 1 <= ind <= q - 1
+  if (Cstar == ten2k64[ind]) {	// if  Cstar = 10^(q-x)
+    Cstar = ten2k64[ind - 1];	// Cstar = 10^(q-x-1)
+    *incr_exp = 1;
+  } else {	// 10^33 <= Cstar <= 10^34 - 1
+    *incr_exp = 0;
+  }
+  *ptr_Cstar = Cstar;
+}
+
+
+void
+round128_19_38 (int q,
+		int x,
+		UINT128 C,
+		UINT128 * ptr_Cstar,
+		int *incr_exp,
+		int *ptr_is_midpoint_lt_even,
+		int *ptr_is_midpoint_gt_even,
+		int *ptr_is_inexact_lt_midpoint,
+		int *ptr_is_inexact_gt_midpoint) {
+
+  UINT256 P256;
+  UINT256 fstar;
+  UINT128 Cstar;
+  UINT64 tmp64;
+  int shift;
+  int ind;
+
+  // Note:
+  //    In round128_19_38() positive numbers with 19 <= q <= 38 will be 
+  //    rounded to nearest only for 1 <= x <= 23:
+  //     x = 3 or x = 4 when q = 19
+  //     x = 4 or x = 5 when q = 20
+  //     ...
+  //     x = 18 or x = 19 when q = 34
+  //     x = 1 or x = 2 or x = 19 or x = 20 when q = 35
+  //     x = 2 or x = 3 or x = 20 or x = 21 when q = 36
+  //     x = 3 or x = 4 or x = 21 or x = 22 when q = 37
+  //     x = 4 or x = 5 or x = 22 or x = 23 when q = 38
+  // However, for generality and possible uses outside the frame of IEEE 754R
+  // this implementation works for 1 <= x <= q - 1
+
+  // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
+  // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
+  // initialized to 0 by the caller
+
+  // round a number C with q decimal digits, 19 <= q <= 38
+  // to q - x digits, 1 <= x <= 37
+  // C = C + 1/2 * 10^x where the result C fits in 128 bits
+  // (because the largest value is 99999999999999999999999999999999999999 + 
+  // 5000000000000000000000000000000000000 =
+  // 0x4efe43b0c573e7e68a043d8fffffffff, which fits is 127 bits)
+
+  ind = x - 1;	// 0 <= ind <= 36 
+  if (ind <= 18) {	// if 0 <= ind <= 18
+    tmp64 = C.w[0];
+    C.w[0] = C.w[0] + midpoint64[ind];
+    if (C.w[0] < tmp64)
+      C.w[1]++;
+  } else {	// if 19 <= ind <= 37
+    tmp64 = C.w[0];
+    C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
+    if (C.w[0] < tmp64) {
+      C.w[1]++;
+    }
+    C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
+  }
+  // kx ~= 10^(-x), kx = Kx128[ind] * 2^(-Ex), 0 <= ind <= 36
+  // P256 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
+  // the approximation kx of 10^(-x) was rounded up to 128 bits
+  __mul_128x128_to_256 (P256, C, Kx128[ind]);
+  // calculate C* = floor (P256) and f*
+  // Cstar = P256 >> Ex
+  // fstar = low Ex bits of P256
+  shift = Ex128m128[ind];	// in [2, 63] but have to consider two cases
+  if (ind <= 18) {	// if 0 <= ind <= 18 
+    Cstar.w[0] = (P256.w[2] >> shift) | (P256.w[3] << (64 - shift));
+    Cstar.w[1] = (P256.w[3] >> shift);
+    fstar.w[0] = P256.w[0];
+    fstar.w[1] = P256.w[1];
+    fstar.w[2] = P256.w[2] & mask128[ind];
+    fstar.w[3] = 0x0ULL;
+  } else {	// if 19 <= ind <= 37
+    Cstar.w[0] = P256.w[3] >> shift;
+    Cstar.w[1] = 0x0ULL;
+    fstar.w[0] = P256.w[0];
+    fstar.w[1] = P256.w[1];
+    fstar.w[2] = P256.w[2];
+    fstar.w[3] = P256.w[3] & mask128[ind];
+  }
+  // the top Ex bits of 10^(-x) are T* = ten2mxtrunc64[ind], e.g.
+  // if x=1, T*=ten2mxtrunc128[0]=0xcccccccccccccccccccccccccccccccc
+  // if (0 < f* < 10^(-x)) then the result is a midpoint
+  //   if floor(C*) is even then C* = floor(C*) - logical right
+  //       shift; C* has q - x decimal digits, correct by Prop. 1)
+  //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
+  //       shift; C* has q - x decimal digits, correct by Pr. 1)
+  // else
+  //   C* = floor(C*) (logical right shift; C has q - x decimal digits,
+  //       correct by Property 1)
+  // in the caling function n = C* * 10^(e+x)
+
+  // determine inexactness of the rounding of C*
+  // if (0 < f* - 1/2 < 10^(-x)) then
+  //   the result is exact
+  // else // if (f* - 1/2 > T*) then
+  //   the result is inexact
+  if (ind <= 18) {	// if 0 <= ind <= 18
+    if (fstar.w[2] > half128[ind] ||
+	(fstar.w[2] == half128[ind] && (fstar.w[1] || fstar.w[0]))) {
+      // f* > 1/2 and the result may be exact
+      // Calculate f* - 1/2
+      tmp64 = fstar.w[2] - half128[ind];
+      if (tmp64 || fstar.w[1] > ten2mxtrunc128[ind].w[1] || (fstar.w[1] == ten2mxtrunc128[ind].w[1] && fstar.w[0] > ten2mxtrunc128[ind].w[0])) {	// f* - 1/2 > 10^(-x)
+	*ptr_is_inexact_lt_midpoint = 1;
+      }	// else the result is exact
+    } else {	// the result is inexact; f2* <= 1/2
+      *ptr_is_inexact_gt_midpoint = 1;
+    }
+  } else {	// if 19 <= ind <= 37
+    if (fstar.w[3] > half128[ind] || (fstar.w[3] == half128[ind] &&
+				      (fstar.w[2] || fstar.w[1]
+				       || fstar.w[0]))) {
+      // f* > 1/2 and the result may be exact
+      // Calculate f* - 1/2
+      tmp64 = fstar.w[3] - half128[ind];
+      if (tmp64 || fstar.w[2] || fstar.w[1] > ten2mxtrunc128[ind].w[1] || (fstar.w[1] == ten2mxtrunc128[ind].w[1] && fstar.w[0] > ten2mxtrunc128[ind].w[0])) {	// f* - 1/2 > 10^(-x)
+	*ptr_is_inexact_lt_midpoint = 1;
+      }	// else the result is exact
+    } else {	// the result is inexact; f2* <= 1/2
+      *ptr_is_inexact_gt_midpoint = 1;
+    }
+  }
+  // check for midpoints (could do this before determining inexactness)
+  if (fstar.w[3] == 0 && fstar.w[2] == 0 &&
+      (fstar.w[1] < ten2mxtrunc128[ind].w[1] ||
+       (fstar.w[1] == ten2mxtrunc128[ind].w[1] &&
+	fstar.w[0] <= ten2mxtrunc128[ind].w[0]))) {
+    // the result is a midpoint
+    if (Cstar.w[0] & 0x01) {	// Cstar is odd; MP in [EVEN, ODD]
+      // if floor(C*) is odd C = floor(C*) - 1; the result may be 0
+      Cstar.w[0]--;	// Cstar is now even
+      if (Cstar.w[0] == 0xffffffffffffffffULL) {
+	Cstar.w[1]--;
+      }
+      *ptr_is_midpoint_gt_even = 1;
+      *ptr_is_inexact_lt_midpoint = 0;
+      *ptr_is_inexact_gt_midpoint = 0;
+    } else {	// else MP in [ODD, EVEN]
+      *ptr_is_midpoint_lt_even = 1;
+      *ptr_is_inexact_lt_midpoint = 0;
+      *ptr_is_inexact_gt_midpoint = 0;
+    }
+  }
+  // check for rounding overflow, which occurs if Cstar = 10^(q-x)
+  ind = q - x;	// 1 <= ind <= q - 1
+  if (ind <= 19) {
+    if (Cstar.w[1] == 0x0ULL && Cstar.w[0] == ten2k64[ind]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k64[ind - 1];	// Cstar = 10^(q-x-1)
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  } else if (ind == 20) {
+    // if ind = 20
+    if (Cstar.w[1] == ten2k128[0].w[1]
+	&& Cstar.w[0] == ten2k128[0].w[0]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k64[19];	// Cstar = 10^(q-x-1)
+      Cstar.w[1] = 0x0ULL;
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  } else {	// if 21 <= ind <= 37
+    if (Cstar.w[1] == ten2k128[ind - 20].w[1] &&
+	Cstar.w[0] == ten2k128[ind - 20].w[0]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k128[ind - 21].w[0];	// Cstar = 10^(q-x-1)
+      Cstar.w[1] = ten2k128[ind - 21].w[1];
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  }
+  ptr_Cstar->w[1] = Cstar.w[1];
+  ptr_Cstar->w[0] = Cstar.w[0];
+}
+
+
+void
+round192_39_57 (int q,
+		int x,
+		UINT192 C,
+		UINT192 * ptr_Cstar,
+		int *incr_exp,
+		int *ptr_is_midpoint_lt_even,
+		int *ptr_is_midpoint_gt_even,
+		int *ptr_is_inexact_lt_midpoint,
+		int *ptr_is_inexact_gt_midpoint) {
+
+  UINT384 P384;
+  UINT384 fstar;
+  UINT192 Cstar;
+  UINT64 tmp64;
+  int shift;
+  int ind;
+
+  // Note:
+  //    In round192_39_57() positive numbers with 39 <= q <= 57 will be 
+  //    rounded to nearest only for 5 <= x <= 42:
+  //     x = 23 or x = 24 or x = 5 or x = 6 when q = 39
+  //     x = 24 or x = 25 or x = 6 or x = 7 when q = 40
+  //     ...
+  //     x = 41 or x = 42 or x = 23 or x = 24 when q = 57
+  // However, for generality and possible uses outside the frame of IEEE 754R
+  // this implementation works for 1 <= x <= q - 1
+
+  // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
+  // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
+  // initialized to 0 by the caller
+
+  // round a number C with q decimal digits, 39 <= q <= 57
+  // to q - x digits, 1 <= x <= 56
+  // C = C + 1/2 * 10^x where the result C fits in 192 bits
+  // (because the largest value is
+  // 999999999999999999999999999999999999999999999999999999999 +
+  //  50000000000000000000000000000000000000000000000000000000 =
+  // 0x2ad282f212a1da846afdaf18c034ff09da7fffffffffffff, which fits in 190 bits)
+  ind = x - 1;	// 0 <= ind <= 55
+  if (ind <= 18) {	// if 0 <= ind <= 18
+    tmp64 = C.w[0];
+    C.w[0] = C.w[0] + midpoint64[ind];
+    if (C.w[0] < tmp64) {
+      C.w[1]++;
+      if (C.w[1] == 0x0) {
+	C.w[2]++;
+      }
+    }
+  } else if (ind <= 37) {	// if 19 <= ind <= 37
+    tmp64 = C.w[0];
+    C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
+    if (C.w[0] < tmp64) {
+      C.w[1]++;
+      if (C.w[1] == 0x0) {
+	C.w[2]++;
+      }
+    }
+    tmp64 = C.w[1];
+    C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
+    if (C.w[1] < tmp64) {
+      C.w[2]++;
+    }
+  } else {	// if 38 <= ind <= 57 (actually ind <= 55)
+    tmp64 = C.w[0];
+    C.w[0] = C.w[0] + midpoint192[ind - 38].w[0];
+    if (C.w[0] < tmp64) {
+      C.w[1]++;
+      if (C.w[1] == 0x0ull) {
+	C.w[2]++;
+      }
+    }
+    tmp64 = C.w[1];
+    C.w[1] = C.w[1] + midpoint192[ind - 38].w[1];
+    if (C.w[1] < tmp64) {
+      C.w[2]++;
+    }
+    C.w[2] = C.w[2] + midpoint192[ind - 38].w[2];
+  }
+  // kx ~= 10^(-x), kx = Kx192[ind] * 2^(-Ex), 0 <= ind <= 55
+  // P384 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
+  // the approximation kx of 10^(-x) was rounded up to 192 bits
+  __mul_192x192_to_384 (P384, C, Kx192[ind]);
+  // calculate C* = floor (P384) and f*
+  // Cstar = P384 >> Ex
+  // fstar = low Ex bits of P384
+  shift = Ex192m192[ind];	// in [1, 63] but have to consider three cases
+  if (ind <= 18) {	// if 0 <= ind <= 18 
+    Cstar.w[2] = (P384.w[5] >> shift);
+    Cstar.w[1] = (P384.w[5] << (64 - shift)) | (P384.w[4] >> shift);
+    Cstar.w[0] = (P384.w[4] << (64 - shift)) | (P384.w[3] >> shift);
+    fstar.w[5] = 0x0ULL;
+    fstar.w[4] = 0x0ULL;
+    fstar.w[3] = P384.w[3] & mask192[ind];
+    fstar.w[2] = P384.w[2];
+    fstar.w[1] = P384.w[1];
+    fstar.w[0] = P384.w[0];
+  } else if (ind <= 37) {	// if 19 <= ind <= 37
+    Cstar.w[2] = 0x0ULL;
+    Cstar.w[1] = P384.w[5] >> shift;
+    Cstar.w[0] = (P384.w[5] << (64 - shift)) | (P384.w[4] >> shift);
+    fstar.w[5] = 0x0ULL;
+    fstar.w[4] = P384.w[4] & mask192[ind];
+    fstar.w[3] = P384.w[3];
+    fstar.w[2] = P384.w[2];
+    fstar.w[1] = P384.w[1];
+    fstar.w[0] = P384.w[0];
+  } else {	// if 38 <= ind <= 57
+    Cstar.w[2] = 0x0ULL;
+    Cstar.w[1] = 0x0ULL;
+    Cstar.w[0] = P384.w[5] >> shift;
+    fstar.w[5] = P384.w[5] & mask192[ind];
+    fstar.w[4] = P384.w[4];
+    fstar.w[3] = P384.w[3];
+    fstar.w[2] = P384.w[2];
+    fstar.w[1] = P384.w[1];
+    fstar.w[0] = P384.w[0];
+  }
+
+  // the top Ex bits of 10^(-x) are T* = ten2mxtrunc192[ind], e.g. if x=1,
+  // T*=ten2mxtrunc192[0]=0xcccccccccccccccccccccccccccccccccccccccccccccccc
+  // if (0 < f* < 10^(-x)) then the result is a midpoint
+  //   if floor(C*) is even then C* = floor(C*) - logical right
+  //       shift; C* has q - x decimal digits, correct by Prop. 1)
+  //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
+  //       shift; C* has q - x decimal digits, correct by Pr. 1)
+  // else
+  //   C* = floor(C*) (logical right shift; C has q - x decimal digits,
+  //       correct by Property 1)
+  // in the caling function n = C* * 10^(e+x)
+
+  // determine inexactness of the rounding of C*
+  // if (0 < f* - 1/2 < 10^(-x)) then
+  //   the result is exact
+  // else // if (f* - 1/2 > T*) then
+  //   the result is inexact
+  if (ind <= 18) {	// if 0 <= ind <= 18
+    if (fstar.w[3] > half192[ind] || (fstar.w[3] == half192[ind] &&
+				      (fstar.w[2] || fstar.w[1]
+				       || fstar.w[0]))) {
+      // f* > 1/2 and the result may be exact
+      // Calculate f* - 1/2
+      tmp64 = fstar.w[3] - half192[ind];
+      if (tmp64 || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) {	// f* - 1/2 > 10^(-x)
+	*ptr_is_inexact_lt_midpoint = 1;
+      }	// else the result is exact
+    } else {	// the result is inexact; f2* <= 1/2
+      *ptr_is_inexact_gt_midpoint = 1;
+    }
+  } else if (ind <= 37) {	// if 19 <= ind <= 37
+    if (fstar.w[4] > half192[ind] || (fstar.w[4] == half192[ind] &&
+				      (fstar.w[3] || fstar.w[2]
+				       || fstar.w[1] || fstar.w[0]))) {
+      // f* > 1/2 and the result may be exact
+      // Calculate f* - 1/2
+      tmp64 = fstar.w[4] - half192[ind];
+      if (tmp64 || fstar.w[3] || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) {	// f* - 1/2 > 10^(-x)
+	*ptr_is_inexact_lt_midpoint = 1;
+      }	// else the result is exact
+    } else {	// the result is inexact; f2* <= 1/2
+      *ptr_is_inexact_gt_midpoint = 1;
+    }
+  } else {	// if 38 <= ind <= 55
+    if (fstar.w[5] > half192[ind] || (fstar.w[5] == half192[ind] &&
+				      (fstar.w[4] || fstar.w[3]
+				       || fstar.w[2] || fstar.w[1]
+				       || fstar.w[0]))) {
+      // f* > 1/2 and the result may be exact
+      // Calculate f* - 1/2
+      tmp64 = fstar.w[5] - half192[ind];
+      if (tmp64 || fstar.w[4] || fstar.w[3] || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) {	// f* - 1/2 > 10^(-x)
+	*ptr_is_inexact_lt_midpoint = 1;
+      }	// else the result is exact
+    } else {	// the result is inexact; f2* <= 1/2
+      *ptr_is_inexact_gt_midpoint = 1;
+    }
+  }
+  // check for midpoints (could do this before determining inexactness)
+  if (fstar.w[5] == 0 && fstar.w[4] == 0 && fstar.w[3] == 0 &&
+      (fstar.w[2] < ten2mxtrunc192[ind].w[2] ||
+       (fstar.w[2] == ten2mxtrunc192[ind].w[2] &&
+	fstar.w[1] < ten2mxtrunc192[ind].w[1]) ||
+       (fstar.w[2] == ten2mxtrunc192[ind].w[2] &&
+	fstar.w[1] == ten2mxtrunc192[ind].w[1] &&
+	fstar.w[0] <= ten2mxtrunc192[ind].w[0]))) {
+    // the result is a midpoint
+    if (Cstar.w[0] & 0x01) {	// Cstar is odd; MP in [EVEN, ODD]
+      // if floor(C*) is odd C = floor(C*) - 1; the result may be 0
+      Cstar.w[0]--;	// Cstar is now even
+      if (Cstar.w[0] == 0xffffffffffffffffULL) {
+	Cstar.w[1]--;
+	if (Cstar.w[1] == 0xffffffffffffffffULL) {
+	  Cstar.w[2]--;
+	}
+      }
+      *ptr_is_midpoint_gt_even = 1;
+      *ptr_is_inexact_lt_midpoint = 0;
+      *ptr_is_inexact_gt_midpoint = 0;
+    } else {	// else MP in [ODD, EVEN]
+      *ptr_is_midpoint_lt_even = 1;
+      *ptr_is_inexact_lt_midpoint = 0;
+      *ptr_is_inexact_gt_midpoint = 0;
+    }
+  }
+  // check for rounding overflow, which occurs if Cstar = 10^(q-x)
+  ind = q - x;	// 1 <= ind <= q - 1
+  if (ind <= 19) {
+    if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == 0x0ULL &&
+	Cstar.w[0] == ten2k64[ind]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k64[ind - 1];	// Cstar = 10^(q-x-1)
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  } else if (ind == 20) {
+    // if ind = 20
+    if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == ten2k128[0].w[1] &&
+	Cstar.w[0] == ten2k128[0].w[0]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k64[19];	// Cstar = 10^(q-x-1)
+      Cstar.w[1] = 0x0ULL;
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  } else if (ind <= 38) {	// if 21 <= ind <= 38
+    if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == ten2k128[ind - 20].w[1] &&
+	Cstar.w[0] == ten2k128[ind - 20].w[0]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k128[ind - 21].w[0];	// Cstar = 10^(q-x-1)
+      Cstar.w[1] = ten2k128[ind - 21].w[1];
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  } else if (ind == 39) {
+    if (Cstar.w[2] == ten2k256[0].w[2] && Cstar.w[1] == ten2k256[0].w[1]
+	&& Cstar.w[0] == ten2k256[0].w[0]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k128[18].w[0];	// Cstar = 10^(q-x-1)
+      Cstar.w[1] = ten2k128[18].w[1];
+      Cstar.w[2] = 0x0ULL;
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  } else {	// if 40 <= ind <= 56
+    if (Cstar.w[2] == ten2k256[ind - 39].w[2] &&
+	Cstar.w[1] == ten2k256[ind - 39].w[1] &&
+	Cstar.w[0] == ten2k256[ind - 39].w[0]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k256[ind - 40].w[0];	// Cstar = 10^(q-x-1)
+      Cstar.w[1] = ten2k256[ind - 40].w[1];
+      Cstar.w[2] = ten2k256[ind - 40].w[2];
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  }
+  ptr_Cstar->w[2] = Cstar.w[2];
+  ptr_Cstar->w[1] = Cstar.w[1];
+  ptr_Cstar->w[0] = Cstar.w[0];
+}
+
+
+void
+round256_58_76 (int q,
+		int x,
+		UINT256 C,
+		UINT256 * ptr_Cstar,
+		int *incr_exp,
+		int *ptr_is_midpoint_lt_even,
+		int *ptr_is_midpoint_gt_even,
+		int *ptr_is_inexact_lt_midpoint,
+		int *ptr_is_inexact_gt_midpoint) {
+
+  UINT512 P512;
+  UINT512 fstar;
+  UINT256 Cstar;
+  UINT64 tmp64;
+  int shift;
+  int ind;
+
+  // Note:
+  //    In round256_58_76() positive numbers with 58 <= q <= 76 will be 
+  //    rounded to nearest only for 24 <= x <= 61:
+  //     x = 42 or x = 43 or x = 24 or x = 25 when q = 58
+  //     x = 43 or x = 44 or x = 25 or x = 26 when q = 59
+  //     ...
+  //     x = 60 or x = 61 or x = 42 or x = 43 when q = 76
+  // However, for generality and possible uses outside the frame of IEEE 754R
+  // this implementation works for 1 <= x <= q - 1
+
+  // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
+  // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
+  // initialized to 0 by the caller
+
+  // round a number C with q decimal digits, 58 <= q <= 76
+  // to q - x digits, 1 <= x <= 75
+  // C = C + 1/2 * 10^x where the result C fits in 256 bits
+  // (because the largest value is 9999999999999999999999999999999999999999
+  //     999999999999999999999999999999999999 + 500000000000000000000000000
+  //     000000000000000000000000000000000000000000000000 =
+  //     0x1736ca15d27a56cae15cf0e7b403d1f2bd6ebb0a50dc83ffffffffffffffffff, 
+  // which fits in 253 bits)
+  ind = x - 1;	// 0 <= ind <= 74
+  if (ind <= 18) {	// if 0 <= ind <= 18
+    tmp64 = C.w[0];
+    C.w[0] = C.w[0] + midpoint64[ind];
+    if (C.w[0] < tmp64) {
+      C.w[1]++;
+      if (C.w[1] == 0x0) {
+	C.w[2]++;
+	if (C.w[2] == 0x0) {
+	  C.w[3]++;
+	}
+      }
+    }
+  } else if (ind <= 37) {	// if 19 <= ind <= 37
+    tmp64 = C.w[0];
+    C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
+    if (C.w[0] < tmp64) {
+      C.w[1]++;
+      if (C.w[1] == 0x0) {
+	C.w[2]++;
+	if (C.w[2] == 0x0) {
+	  C.w[3]++;
+	}
+      }
+    }
+    tmp64 = C.w[1];
+    C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
+    if (C.w[1] < tmp64) {
+      C.w[2]++;
+      if (C.w[2] == 0x0) {
+	C.w[3]++;
+      }
+    }
+  } else if (ind <= 57) {	// if 38 <= ind <= 57
+    tmp64 = C.w[0];
+    C.w[0] = C.w[0] + midpoint192[ind - 38].w[0];
+    if (C.w[0] < tmp64) {
+      C.w[1]++;
+      if (C.w[1] == 0x0ull) {
+	C.w[2]++;
+	if (C.w[2] == 0x0) {
+	  C.w[3]++;
+	}
+      }
+    }
+    tmp64 = C.w[1];
+    C.w[1] = C.w[1] + midpoint192[ind - 38].w[1];
+    if (C.w[1] < tmp64) {
+      C.w[2]++;
+      if (C.w[2] == 0x0) {
+	C.w[3]++;
+      }
+    }
+    tmp64 = C.w[2];
+    C.w[2] = C.w[2] + midpoint192[ind - 38].w[2];
+    if (C.w[2] < tmp64) {
+      C.w[3]++;
+    }
+  } else {	// if 58 <= ind <= 76 (actually 58 <= ind <= 74)
+    tmp64 = C.w[0];
+    C.w[0] = C.w[0] + midpoint256[ind - 58].w[0];
+    if (C.w[0] < tmp64) {
+      C.w[1]++;
+      if (C.w[1] == 0x0ull) {
+	C.w[2]++;
+	if (C.w[2] == 0x0) {
+	  C.w[3]++;
+	}
+      }
+    }
+    tmp64 = C.w[1];
+    C.w[1] = C.w[1] + midpoint256[ind - 58].w[1];
+    if (C.w[1] < tmp64) {
+      C.w[2]++;
+      if (C.w[2] == 0x0) {
+	C.w[3]++;
+      }
+    }
+    tmp64 = C.w[2];
+    C.w[2] = C.w[2] + midpoint256[ind - 58].w[2];
+    if (C.w[2] < tmp64) {
+      C.w[3]++;
+    }
+    C.w[3] = C.w[3] + midpoint256[ind - 58].w[3];
+  }
+  // kx ~= 10^(-x), kx = Kx256[ind] * 2^(-Ex), 0 <= ind <= 74
+  // P512 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
+  // the approximation kx of 10^(-x) was rounded up to 192 bits
+  __mul_256x256_to_512 (P512, C, Kx256[ind]);
+  // calculate C* = floor (P512) and f*
+  // Cstar = P512 >> Ex
+  // fstar = low Ex bits of P512
+  shift = Ex256m256[ind];	// in [0, 63] but have to consider four cases
+  if (ind <= 18) {	// if 0 <= ind <= 18 
+    Cstar.w[3] = (P512.w[7] >> shift);
+    Cstar.w[2] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
+    Cstar.w[1] = (P512.w[6] << (64 - shift)) | (P512.w[5] >> shift);
+    Cstar.w[0] = (P512.w[5] << (64 - shift)) | (P512.w[4] >> shift);
+    fstar.w[7] = 0x0ULL;
+    fstar.w[6] = 0x0ULL;
+    fstar.w[5] = 0x0ULL;
+    fstar.w[4] = P512.w[4] & mask256[ind];
+    fstar.w[3] = P512.w[3];
+    fstar.w[2] = P512.w[2];
+    fstar.w[1] = P512.w[1];
+    fstar.w[0] = P512.w[0];
+  } else if (ind <= 37) {	// if 19 <= ind <= 37
+    Cstar.w[3] = 0x0ULL;
+    Cstar.w[2] = P512.w[7] >> shift;
+    Cstar.w[1] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
+    Cstar.w[0] = (P512.w[6] << (64 - shift)) | (P512.w[5] >> shift);
+    fstar.w[7] = 0x0ULL;
+    fstar.w[6] = 0x0ULL;
+    fstar.w[5] = P512.w[5] & mask256[ind];
+    fstar.w[4] = P512.w[4];
+    fstar.w[3] = P512.w[3];
+    fstar.w[2] = P512.w[2];
+    fstar.w[1] = P512.w[1];
+    fstar.w[0] = P512.w[0];
+  } else if (ind <= 56) {	// if 38 <= ind <= 56
+    Cstar.w[3] = 0x0ULL;
+    Cstar.w[2] = 0x0ULL;
+    Cstar.w[1] = P512.w[7] >> shift;
+    Cstar.w[0] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
+    fstar.w[7] = 0x0ULL;
+    fstar.w[6] = P512.w[6] & mask256[ind];
+    fstar.w[5] = P512.w[5];
+    fstar.w[4] = P512.w[4];
+    fstar.w[3] = P512.w[3];
+    fstar.w[2] = P512.w[2];
+    fstar.w[1] = P512.w[1];
+    fstar.w[0] = P512.w[0];
+  } else if (ind == 57) {
+    Cstar.w[3] = 0x0ULL;
+    Cstar.w[2] = 0x0ULL;
+    Cstar.w[1] = 0x0ULL;
+    Cstar.w[0] = P512.w[7];
+    fstar.w[7] = 0x0ULL;
+    fstar.w[6] = P512.w[6];
+    fstar.w[5] = P512.w[5];
+    fstar.w[4] = P512.w[4];
+    fstar.w[3] = P512.w[3];
+    fstar.w[2] = P512.w[2];
+    fstar.w[1] = P512.w[1];
+    fstar.w[0] = P512.w[0];
+  } else {	// if 58 <= ind <= 74
+    Cstar.w[3] = 0x0ULL;
+    Cstar.w[2] = 0x0ULL;
+    Cstar.w[1] = 0x0ULL;
+    Cstar.w[0] = P512.w[7] >> shift;
+    fstar.w[7] = P512.w[7] & mask256[ind];
+    fstar.w[6] = P512.w[6];
+    fstar.w[5] = P512.w[5];
+    fstar.w[4] = P512.w[4];
+    fstar.w[3] = P512.w[3];
+    fstar.w[2] = P512.w[2];
+    fstar.w[1] = P512.w[1];
+    fstar.w[0] = P512.w[0];
+  }
+
+  // the top Ex bits of 10^(-x) are T* = ten2mxtrunc256[ind], e.g. if x=1,
+  // T*=ten2mxtrunc256[0]=
+  //     0xcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
+  // if (0 < f* < 10^(-x)) then the result is a midpoint
+  //   if floor(C*) is even then C* = floor(C*) - logical right
+  //       shift; C* has q - x decimal digits, correct by Prop. 1)
+  //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
+  //       shift; C* has q - x decimal digits, correct by Pr. 1)
+  // else
+  //   C* = floor(C*) (logical right shift; C has q - x decimal digits,
+  //       correct by Property 1)
+  // in the caling function n = C* * 10^(e+x)
+
+  // determine inexactness of the rounding of C*
+  // if (0 < f* - 1/2 < 10^(-x)) then
+  //   the result is exact
+  // else // if (f* - 1/2 > T*) then
+  //   the result is inexact
+  if (ind <= 18) {	// if 0 <= ind <= 18
+    if (fstar.w[4] > half256[ind] || (fstar.w[4] == half256[ind] &&
+				      (fstar.w[3] || fstar.w[2]
+				       || fstar.w[1] || fstar.w[0]))) {
+      // f* > 1/2 and the result may be exact
+      // Calculate f* - 1/2
+      tmp64 = fstar.w[4] - half256[ind];
+      if (tmp64 || fstar.w[3] > ten2mxtrunc256[ind].w[2] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) {	// f* - 1/2 > 10^(-x)
+	*ptr_is_inexact_lt_midpoint = 1;
+      }	// else the result is exact
+    } else {	// the result is inexact; f2* <= 1/2
+      *ptr_is_inexact_gt_midpoint = 1;
+    }
+  } else if (ind <= 37) {	// if 19 <= ind <= 37
+    if (fstar.w[5] > half256[ind] || (fstar.w[5] == half256[ind] &&
+				      (fstar.w[4] || fstar.w[3]
+				       || fstar.w[2] || fstar.w[1]
+				       || fstar.w[0]))) {
+      // f* > 1/2 and the result may be exact
+      // Calculate f* - 1/2
+      tmp64 = fstar.w[5] - half256[ind];
+      if (tmp64 || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) {	// f* - 1/2 > 10^(-x)
+	*ptr_is_inexact_lt_midpoint = 1;
+      }	// else the result is exact
+    } else {	// the result is inexact; f2* <= 1/2
+      *ptr_is_inexact_gt_midpoint = 1;
+    }
+  } else if (ind <= 57) {	// if 38 <= ind <= 57
+    if (fstar.w[6] > half256[ind] || (fstar.w[6] == half256[ind] &&
+				      (fstar.w[5] || fstar.w[4]
+				       || fstar.w[3] || fstar.w[2]
+				       || fstar.w[1] || fstar.w[0]))) {
+      // f* > 1/2 and the result may be exact
+      // Calculate f* - 1/2
+      tmp64 = fstar.w[6] - half256[ind];
+      if (tmp64 || fstar.w[5] || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) {	// f* - 1/2 > 10^(-x)
+	*ptr_is_inexact_lt_midpoint = 1;
+      }	// else the result is exact
+    } else {	// the result is inexact; f2* <= 1/2
+      *ptr_is_inexact_gt_midpoint = 1;
+    }
+  } else {	// if 58 <= ind <= 74
+    if (fstar.w[7] > half256[ind] || (fstar.w[7] == half256[ind] &&
+				      (fstar.w[6] || fstar.w[5]
+				       || fstar.w[4] || fstar.w[3]
+				       || fstar.w[2] || fstar.w[1]
+				       || fstar.w[0]))) {
+      // f* > 1/2 and the result may be exact
+      // Calculate f* - 1/2
+      tmp64 = fstar.w[7] - half256[ind];
+      if (tmp64 || fstar.w[6] || fstar.w[5] || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) {	// f* - 1/2 > 10^(-x)
+	*ptr_is_inexact_lt_midpoint = 1;
+      }	// else the result is exact
+    } else {	// the result is inexact; f2* <= 1/2
+      *ptr_is_inexact_gt_midpoint = 1;
+    }
+  }
+  // check for midpoints (could do this before determining inexactness)
+  if (fstar.w[7] == 0 && fstar.w[6] == 0 &&
+      fstar.w[5] == 0 && fstar.w[4] == 0 &&
+      (fstar.w[3] < ten2mxtrunc256[ind].w[3] ||
+       (fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
+	fstar.w[2] < ten2mxtrunc256[ind].w[2]) ||
+       (fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
+	fstar.w[2] == ten2mxtrunc256[ind].w[2] &&
+	fstar.w[1] < ten2mxtrunc256[ind].w[1]) ||
+       (fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
+	fstar.w[2] == ten2mxtrunc256[ind].w[2] &&
+	fstar.w[1] == ten2mxtrunc256[ind].w[1] &&
+	fstar.w[0] <= ten2mxtrunc256[ind].w[0]))) {
+    // the result is a midpoint
+    if (Cstar.w[0] & 0x01) {	// Cstar is odd; MP in [EVEN, ODD]
+      // if floor(C*) is odd C = floor(C*) - 1; the result may be 0
+      Cstar.w[0]--;	// Cstar is now even
+      if (Cstar.w[0] == 0xffffffffffffffffULL) {
+	Cstar.w[1]--;
+	if (Cstar.w[1] == 0xffffffffffffffffULL) {
+	  Cstar.w[2]--;
+	  if (Cstar.w[2] == 0xffffffffffffffffULL) {
+	    Cstar.w[3]--;
+	  }
+	}
+      }
+      *ptr_is_midpoint_gt_even = 1;
+      *ptr_is_inexact_lt_midpoint = 0;
+      *ptr_is_inexact_gt_midpoint = 0;
+    } else {	// else MP in [ODD, EVEN]
+      *ptr_is_midpoint_lt_even = 1;
+      *ptr_is_inexact_lt_midpoint = 0;
+      *ptr_is_inexact_gt_midpoint = 0;
+    }
+  }
+  // check for rounding overflow, which occurs if Cstar = 10^(q-x)
+  ind = q - x;	// 1 <= ind <= q - 1
+  if (ind <= 19) {
+    if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
+	Cstar.w[1] == 0x0ULL && Cstar.w[0] == ten2k64[ind]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k64[ind - 1];	// Cstar = 10^(q-x-1)
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  } else if (ind == 20) {
+    // if ind = 20
+    if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
+	Cstar.w[1] == ten2k128[0].w[1]
+	&& Cstar.w[0] == ten2k128[0].w[0]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k64[19];	// Cstar = 10^(q-x-1)
+      Cstar.w[1] = 0x0ULL;
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  } else if (ind <= 38) {	// if 21 <= ind <= 38
+    if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
+	Cstar.w[1] == ten2k128[ind - 20].w[1] &&
+	Cstar.w[0] == ten2k128[ind - 20].w[0]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k128[ind - 21].w[0];	// Cstar = 10^(q-x-1)
+      Cstar.w[1] = ten2k128[ind - 21].w[1];
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  } else if (ind == 39) {
+    if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == ten2k256[0].w[2] &&
+	Cstar.w[1] == ten2k256[0].w[1]
+	&& Cstar.w[0] == ten2k256[0].w[0]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k128[18].w[0];	// Cstar = 10^(q-x-1)
+      Cstar.w[1] = ten2k128[18].w[1];
+      Cstar.w[2] = 0x0ULL;
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  } else if (ind <= 57) {	// if 40 <= ind <= 57
+    if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == ten2k256[ind - 39].w[2] &&
+	Cstar.w[1] == ten2k256[ind - 39].w[1] &&
+	Cstar.w[0] == ten2k256[ind - 39].w[0]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k256[ind - 40].w[0];	// Cstar = 10^(q-x-1)
+      Cstar.w[1] = ten2k256[ind - 40].w[1];
+      Cstar.w[2] = ten2k256[ind - 40].w[2];
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+    // else if (ind == 58) is not needed becauae we do not have ten2k192[] yet
+  } else {	// if 58 <= ind <= 77 (actually 58 <= ind <= 74)
+    if (Cstar.w[3] == ten2k256[ind - 39].w[3] &&
+	Cstar.w[2] == ten2k256[ind - 39].w[2] &&
+	Cstar.w[1] == ten2k256[ind - 39].w[1] &&
+	Cstar.w[0] == ten2k256[ind - 39].w[0]) {
+      // if  Cstar = 10^(q-x)
+      Cstar.w[0] = ten2k256[ind - 40].w[0];	// Cstar = 10^(q-x-1)
+      Cstar.w[1] = ten2k256[ind - 40].w[1];
+      Cstar.w[2] = ten2k256[ind - 40].w[2];
+      Cstar.w[3] = ten2k256[ind - 40].w[3];
+      *incr_exp = 1;
+    } else {
+      *incr_exp = 0;
+    }
+  }
+  ptr_Cstar->w[3] = Cstar.w[3];
+  ptr_Cstar->w[2] = Cstar.w[2];
+  ptr_Cstar->w[1] = Cstar.w[1];
+  ptr_Cstar->w[0] = Cstar.w[0];
+
+}