diff libiberty/hashtab.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libiberty/hashtab.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,955 @@
+/* An expandable hash tables datatype.  
+   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
+   Free Software Foundation, Inc.
+   Contributed by Vladimir Makarov (vmakarov@cygnus.com).
+
+This file is part of the libiberty library.
+Libiberty is free software; you can redistribute it and/or
+modify it under the terms of the GNU Library General Public
+License as published by the Free Software Foundation; either
+version 2 of the License, or (at your option) any later version.
+
+Libiberty is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+Library General Public License for more details.
+
+You should have received a copy of the GNU Library General Public
+License along with libiberty; see the file COPYING.LIB.  If
+not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
+Boston, MA 02110-1301, USA.  */
+
+/* This package implements basic hash table functionality.  It is possible
+   to search for an entry, create an entry and destroy an entry.
+
+   Elements in the table are generic pointers.
+
+   The size of the table is not fixed; if the occupancy of the table
+   grows too high the hash table will be expanded.
+
+   The abstract data implementation is based on generalized Algorithm D
+   from Knuth's book "The art of computer programming".  Hash table is
+   expanded by creation of new hash table and transferring elements from
+   the old table to the new table. */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <sys/types.h>
+
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+#ifdef HAVE_STRING_H
+#include <string.h>
+#endif
+#ifdef HAVE_MALLOC_H
+#include <malloc.h>
+#endif
+#ifdef HAVE_LIMITS_H
+#include <limits.h>
+#endif
+#ifdef HAVE_STDINT_H
+#include <stdint.h>
+#endif
+
+#include <stdio.h>
+
+#include "libiberty.h"
+#include "ansidecl.h"
+#include "hashtab.h"
+
+#ifndef CHAR_BIT
+#define CHAR_BIT 8
+#endif
+
+static unsigned int higher_prime_index (unsigned long);
+static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
+static hashval_t htab_mod (hashval_t, htab_t);
+static hashval_t htab_mod_m2 (hashval_t, htab_t);
+static hashval_t hash_pointer (const void *);
+static int eq_pointer (const void *, const void *);
+static int htab_expand (htab_t);
+static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
+
+/* At some point, we could make these be NULL, and modify the
+   hash-table routines to handle NULL specially; that would avoid
+   function-call overhead for the common case of hashing pointers.  */
+htab_hash htab_hash_pointer = hash_pointer;
+htab_eq htab_eq_pointer = eq_pointer;
+
+/* Table of primes and multiplicative inverses.
+
+   Note that these are not minimally reduced inverses.  Unlike when generating
+   code to divide by a constant, we want to be able to use the same algorithm
+   all the time.  All of these inverses (are implied to) have bit 32 set.
+
+   For the record, here's the function that computed the table; it's a 
+   vastly simplified version of the function of the same name from gcc.  */
+
+#if 0
+unsigned int
+ceil_log2 (unsigned int x)
+{
+  int i;
+  for (i = 31; i >= 0 ; --i)
+    if (x > (1u << i))
+      return i+1;
+  abort ();
+}
+
+unsigned int
+choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
+{
+  unsigned long long mhigh;
+  double nx;
+  int lgup, post_shift;
+  int pow, pow2;
+  int n = 32, precision = 32;
+
+  lgup = ceil_log2 (d);
+  pow = n + lgup;
+  pow2 = n + lgup - precision;
+
+  nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
+  mhigh = nx / d;
+
+  *shiftp = lgup - 1;
+  *mlp = mhigh;
+  return mhigh >> 32;
+}
+#endif
+
+struct prime_ent
+{
+  hashval_t prime;
+  hashval_t inv;
+  hashval_t inv_m2;	/* inverse of prime-2 */
+  hashval_t shift;
+};
+
+static struct prime_ent const prime_tab[] = {
+  {          7, 0x24924925, 0x9999999b, 2 },
+  {         13, 0x3b13b13c, 0x745d1747, 3 },
+  {         31, 0x08421085, 0x1a7b9612, 4 },
+  {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
+  {        127, 0x02040811, 0x0624dd30, 6 },
+  {        251, 0x05197f7e, 0x073260a5, 7 },
+  {        509, 0x01824366, 0x02864fc8, 8 },
+  {       1021, 0x00c0906d, 0x014191f7, 9 },
+  {       2039, 0x0121456f, 0x0161e69e, 10 },
+  {       4093, 0x00300902, 0x00501908, 11 },
+  {       8191, 0x00080041, 0x00180241, 12 },
+  {      16381, 0x000c0091, 0x00140191, 13 },
+  {      32749, 0x002605a5, 0x002a06e6, 14 },
+  {      65521, 0x000f00e2, 0x00110122, 15 },
+  {     131071, 0x00008001, 0x00018003, 16 },
+  {     262139, 0x00014002, 0x0001c004, 17 },
+  {     524287, 0x00002001, 0x00006001, 18 },
+  {    1048573, 0x00003001, 0x00005001, 19 },
+  {    2097143, 0x00004801, 0x00005801, 20 },
+  {    4194301, 0x00000c01, 0x00001401, 21 },
+  {    8388593, 0x00001e01, 0x00002201, 22 },
+  {   16777213, 0x00000301, 0x00000501, 23 },
+  {   33554393, 0x00001381, 0x00001481, 24 },
+  {   67108859, 0x00000141, 0x000001c1, 25 },
+  {  134217689, 0x000004e1, 0x00000521, 26 },
+  {  268435399, 0x00000391, 0x000003b1, 27 },
+  {  536870909, 0x00000019, 0x00000029, 28 },
+  { 1073741789, 0x0000008d, 0x00000095, 29 },
+  { 2147483647, 0x00000003, 0x00000007, 30 },
+  /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
+  { 0xfffffffb, 0x00000006, 0x00000008, 31 }
+};
+
+/* The following function returns an index into the above table of the
+   nearest prime number which is greater than N, and near a power of two. */
+
+static unsigned int
+higher_prime_index (unsigned long n)
+{
+  unsigned int low = 0;
+  unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
+
+  while (low != high)
+    {
+      unsigned int mid = low + (high - low) / 2;
+      if (n > prime_tab[mid].prime)
+	low = mid + 1;
+      else
+	high = mid;
+    }
+
+  /* If we've run out of primes, abort.  */
+  if (n > prime_tab[low].prime)
+    {
+      fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
+      abort ();
+    }
+
+  return low;
+}
+
+/* Returns a hash code for P.  */
+
+static hashval_t
+hash_pointer (const PTR p)
+{
+  return (hashval_t) ((long)p >> 3);
+}
+
+/* Returns non-zero if P1 and P2 are equal.  */
+
+static int
+eq_pointer (const PTR p1, const PTR p2)
+{
+  return p1 == p2;
+}
+
+
+/* The parens around the function names in the next two definitions
+   are essential in order to prevent macro expansions of the name.
+   The bodies, however, are expanded as expected, so they are not
+   recursive definitions.  */
+
+/* Return the current size of given hash table.  */
+
+#define htab_size(htab)  ((htab)->size)
+
+size_t
+(htab_size) (htab_t htab)
+{
+  return htab_size (htab);
+}
+
+/* Return the current number of elements in given hash table. */
+
+#define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
+
+size_t
+(htab_elements) (htab_t htab)
+{
+  return htab_elements (htab);
+}
+
+/* Return X % Y.  */
+
+static inline hashval_t
+htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
+{
+  /* The multiplicative inverses computed above are for 32-bit types, and
+     requires that we be able to compute a highpart multiply.  */
+#ifdef UNSIGNED_64BIT_TYPE
+  __extension__ typedef UNSIGNED_64BIT_TYPE ull;
+  if (sizeof (hashval_t) * CHAR_BIT <= 32)
+    {
+      hashval_t t1, t2, t3, t4, q, r;
+
+      t1 = ((ull)x * inv) >> 32;
+      t2 = x - t1;
+      t3 = t2 >> 1;
+      t4 = t1 + t3;
+      q  = t4 >> shift;
+      r  = x - (q * y);
+
+      return r;
+    }
+#endif
+
+  /* Otherwise just use the native division routines.  */
+  return x % y;
+}
+
+/* Compute the primary hash for HASH given HTAB's current size.  */
+
+static inline hashval_t
+htab_mod (hashval_t hash, htab_t htab)
+{
+  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
+  return htab_mod_1 (hash, p->prime, p->inv, p->shift);
+}
+
+/* Compute the secondary hash for HASH given HTAB's current size.  */
+
+static inline hashval_t
+htab_mod_m2 (hashval_t hash, htab_t htab)
+{
+  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
+  return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
+}
+
+/* This function creates table with length slightly longer than given
+   source length.  Created hash table is initiated as empty (all the
+   hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
+   created hash table, or NULL if memory allocation fails.  */
+
+htab_t
+htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
+                   htab_del del_f, htab_alloc alloc_f, htab_free free_f)
+{
+  htab_t result;
+  unsigned int size_prime_index;
+
+  size_prime_index = higher_prime_index (size);
+  size = prime_tab[size_prime_index].prime;
+
+  result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
+  if (result == NULL)
+    return NULL;
+  result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
+  if (result->entries == NULL)
+    {
+      if (free_f != NULL)
+	(*free_f) (result);
+      return NULL;
+    }
+  result->size = size;
+  result->size_prime_index = size_prime_index;
+  result->hash_f = hash_f;
+  result->eq_f = eq_f;
+  result->del_f = del_f;
+  result->alloc_f = alloc_f;
+  result->free_f = free_f;
+  return result;
+}
+
+/* As above, but use the variants of alloc_f and free_f which accept
+   an extra argument.  */
+
+htab_t
+htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
+                      htab_del del_f, void *alloc_arg,
+                      htab_alloc_with_arg alloc_f,
+		      htab_free_with_arg free_f)
+{
+  htab_t result;
+  unsigned int size_prime_index;
+
+  size_prime_index = higher_prime_index (size);
+  size = prime_tab[size_prime_index].prime;
+
+  result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
+  if (result == NULL)
+    return NULL;
+  result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
+  if (result->entries == NULL)
+    {
+      if (free_f != NULL)
+	(*free_f) (alloc_arg, result);
+      return NULL;
+    }
+  result->size = size;
+  result->size_prime_index = size_prime_index;
+  result->hash_f = hash_f;
+  result->eq_f = eq_f;
+  result->del_f = del_f;
+  result->alloc_arg = alloc_arg;
+  result->alloc_with_arg_f = alloc_f;
+  result->free_with_arg_f = free_f;
+  return result;
+}
+
+/* Update the function pointers and allocation parameter in the htab_t.  */
+
+void
+htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
+                       htab_del del_f, PTR alloc_arg,
+                       htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
+{
+  htab->hash_f = hash_f;
+  htab->eq_f = eq_f;
+  htab->del_f = del_f;
+  htab->alloc_arg = alloc_arg;
+  htab->alloc_with_arg_f = alloc_f;
+  htab->free_with_arg_f = free_f;
+}
+
+/* These functions exist solely for backward compatibility.  */
+
+#undef htab_create
+htab_t
+htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
+{
+  return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
+}
+
+htab_t
+htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
+{
+  return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
+}
+
+/* This function frees all memory allocated for given hash table.
+   Naturally the hash table must already exist. */
+
+void
+htab_delete (htab_t htab)
+{
+  size_t size = htab_size (htab);
+  PTR *entries = htab->entries;
+  int i;
+
+  if (htab->del_f)
+    for (i = size - 1; i >= 0; i--)
+      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
+	(*htab->del_f) (entries[i]);
+
+  if (htab->free_f != NULL)
+    {
+      (*htab->free_f) (entries);
+      (*htab->free_f) (htab);
+    }
+  else if (htab->free_with_arg_f != NULL)
+    {
+      (*htab->free_with_arg_f) (htab->alloc_arg, entries);
+      (*htab->free_with_arg_f) (htab->alloc_arg, htab);
+    }
+}
+
+/* This function clears all entries in the given hash table.  */
+
+void
+htab_empty (htab_t htab)
+{
+  size_t size = htab_size (htab);
+  PTR *entries = htab->entries;
+  int i;
+
+  if (htab->del_f)
+    for (i = size - 1; i >= 0; i--)
+      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
+	(*htab->del_f) (entries[i]);
+
+  /* Instead of clearing megabyte, downsize the table.  */
+  if (size > 1024*1024 / sizeof (PTR))
+    {
+      int nindex = higher_prime_index (1024 / sizeof (PTR));
+      int nsize = prime_tab[nindex].prime;
+
+      if (htab->free_f != NULL)
+	(*htab->free_f) (htab->entries);
+      else if (htab->free_with_arg_f != NULL)
+	(*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
+      if (htab->alloc_with_arg_f != NULL)
+	htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
+						           sizeof (PTR *));
+      else
+	htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
+     htab->size = nsize;
+     htab->size_prime_index = nindex;
+    }
+  else
+    memset (entries, 0, size * sizeof (PTR));
+  htab->n_deleted = 0;
+  htab->n_elements = 0;
+}
+
+/* Similar to htab_find_slot, but without several unwanted side effects:
+    - Does not call htab->eq_f when it finds an existing entry.
+    - Does not change the count of elements/searches/collisions in the
+      hash table.
+   This function also assumes there are no deleted entries in the table.
+   HASH is the hash value for the element to be inserted.  */
+
+static PTR *
+find_empty_slot_for_expand (htab_t htab, hashval_t hash)
+{
+  hashval_t index = htab_mod (hash, htab);
+  size_t size = htab_size (htab);
+  PTR *slot = htab->entries + index;
+  hashval_t hash2;
+
+  if (*slot == HTAB_EMPTY_ENTRY)
+    return slot;
+  else if (*slot == HTAB_DELETED_ENTRY)
+    abort ();
+
+  hash2 = htab_mod_m2 (hash, htab);
+  for (;;)
+    {
+      index += hash2;
+      if (index >= size)
+	index -= size;
+
+      slot = htab->entries + index;
+      if (*slot == HTAB_EMPTY_ENTRY)
+	return slot;
+      else if (*slot == HTAB_DELETED_ENTRY)
+	abort ();
+    }
+}
+
+/* The following function changes size of memory allocated for the
+   entries and repeatedly inserts the table elements.  The occupancy
+   of the table after the call will be about 50%.  Naturally the hash
+   table must already exist.  Remember also that the place of the
+   table entries is changed.  If memory allocation failures are allowed,
+   this function will return zero, indicating that the table could not be
+   expanded.  If all goes well, it will return a non-zero value.  */
+
+static int
+htab_expand (htab_t htab)
+{
+  PTR *oentries;
+  PTR *olimit;
+  PTR *p;
+  PTR *nentries;
+  size_t nsize, osize, elts;
+  unsigned int oindex, nindex;
+
+  oentries = htab->entries;
+  oindex = htab->size_prime_index;
+  osize = htab->size;
+  olimit = oentries + osize;
+  elts = htab_elements (htab);
+
+  /* Resize only when table after removal of unused elements is either
+     too full or too empty.  */
+  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
+    {
+      nindex = higher_prime_index (elts * 2);
+      nsize = prime_tab[nindex].prime;
+    }
+  else
+    {
+      nindex = oindex;
+      nsize = osize;
+    }
+
+  if (htab->alloc_with_arg_f != NULL)
+    nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
+						  sizeof (PTR *));
+  else
+    nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
+  if (nentries == NULL)
+    return 0;
+  htab->entries = nentries;
+  htab->size = nsize;
+  htab->size_prime_index = nindex;
+  htab->n_elements -= htab->n_deleted;
+  htab->n_deleted = 0;
+
+  p = oentries;
+  do
+    {
+      PTR x = *p;
+
+      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
+	{
+	  PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
+
+	  *q = x;
+	}
+
+      p++;
+    }
+  while (p < olimit);
+
+  if (htab->free_f != NULL)
+    (*htab->free_f) (oentries);
+  else if (htab->free_with_arg_f != NULL)
+    (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
+  return 1;
+}
+
+/* This function searches for a hash table entry equal to the given
+   element.  It cannot be used to insert or delete an element.  */
+
+PTR
+htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
+{
+  hashval_t index, hash2;
+  size_t size;
+  PTR entry;
+
+  htab->searches++;
+  size = htab_size (htab);
+  index = htab_mod (hash, htab);
+
+  entry = htab->entries[index];
+  if (entry == HTAB_EMPTY_ENTRY
+      || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
+    return entry;
+
+  hash2 = htab_mod_m2 (hash, htab);
+  for (;;)
+    {
+      htab->collisions++;
+      index += hash2;
+      if (index >= size)
+	index -= size;
+
+      entry = htab->entries[index];
+      if (entry == HTAB_EMPTY_ENTRY
+	  || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
+	return entry;
+    }
+}
+
+/* Like htab_find_slot_with_hash, but compute the hash value from the
+   element.  */
+
+PTR
+htab_find (htab_t htab, const PTR element)
+{
+  return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
+}
+
+/* This function searches for a hash table slot containing an entry
+   equal to the given element.  To delete an entry, call this with
+   insert=NO_INSERT, then call htab_clear_slot on the slot returned
+   (possibly after doing some checks).  To insert an entry, call this
+   with insert=INSERT, then write the value you want into the returned
+   slot.  When inserting an entry, NULL may be returned if memory
+   allocation fails.  */
+
+PTR *
+htab_find_slot_with_hash (htab_t htab, const PTR element,
+                          hashval_t hash, enum insert_option insert)
+{
+  PTR *first_deleted_slot;
+  hashval_t index, hash2;
+  size_t size;
+  PTR entry;
+
+  size = htab_size (htab);
+  if (insert == INSERT && size * 3 <= htab->n_elements * 4)
+    {
+      if (htab_expand (htab) == 0)
+	return NULL;
+      size = htab_size (htab);
+    }
+
+  index = htab_mod (hash, htab);
+
+  htab->searches++;
+  first_deleted_slot = NULL;
+
+  entry = htab->entries[index];
+  if (entry == HTAB_EMPTY_ENTRY)
+    goto empty_entry;
+  else if (entry == HTAB_DELETED_ENTRY)
+    first_deleted_slot = &htab->entries[index];
+  else if ((*htab->eq_f) (entry, element))
+    return &htab->entries[index];
+      
+  hash2 = htab_mod_m2 (hash, htab);
+  for (;;)
+    {
+      htab->collisions++;
+      index += hash2;
+      if (index >= size)
+	index -= size;
+      
+      entry = htab->entries[index];
+      if (entry == HTAB_EMPTY_ENTRY)
+	goto empty_entry;
+      else if (entry == HTAB_DELETED_ENTRY)
+	{
+	  if (!first_deleted_slot)
+	    first_deleted_slot = &htab->entries[index];
+	}
+      else if ((*htab->eq_f) (entry, element))
+	return &htab->entries[index];
+    }
+
+ empty_entry:
+  if (insert == NO_INSERT)
+    return NULL;
+
+  if (first_deleted_slot)
+    {
+      htab->n_deleted--;
+      *first_deleted_slot = HTAB_EMPTY_ENTRY;
+      return first_deleted_slot;
+    }
+
+  htab->n_elements++;
+  return &htab->entries[index];
+}
+
+/* Like htab_find_slot_with_hash, but compute the hash value from the
+   element.  */
+
+PTR *
+htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
+{
+  return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
+				   insert);
+}
+
+/* This function deletes an element with the given value from hash
+   table (the hash is computed from the element).  If there is no matching
+   element in the hash table, this function does nothing.  */
+
+void
+htab_remove_elt (htab_t htab, PTR element)
+{
+  htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
+}
+
+
+/* This function deletes an element with the given value from hash
+   table.  If there is no matching element in the hash table, this
+   function does nothing.  */
+
+void
+htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
+{
+  PTR *slot;
+
+  slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
+  if (*slot == HTAB_EMPTY_ENTRY)
+    return;
+
+  if (htab->del_f)
+    (*htab->del_f) (*slot);
+
+  *slot = HTAB_DELETED_ENTRY;
+  htab->n_deleted++;
+}
+
+/* This function clears a specified slot in a hash table.  It is
+   useful when you've already done the lookup and don't want to do it
+   again.  */
+
+void
+htab_clear_slot (htab_t htab, PTR *slot)
+{
+  if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
+      || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
+    abort ();
+
+  if (htab->del_f)
+    (*htab->del_f) (*slot);
+
+  *slot = HTAB_DELETED_ENTRY;
+  htab->n_deleted++;
+}
+
+/* This function scans over the entire hash table calling
+   CALLBACK for each live entry.  If CALLBACK returns false,
+   the iteration stops.  INFO is passed as CALLBACK's second
+   argument.  */
+
+void
+htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
+{
+  PTR *slot;
+  PTR *limit;
+  
+  slot = htab->entries;
+  limit = slot + htab_size (htab);
+
+  do
+    {
+      PTR x = *slot;
+
+      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
+	if (!(*callback) (slot, info))
+	  break;
+    }
+  while (++slot < limit);
+}
+
+/* Like htab_traverse_noresize, but does resize the table when it is
+   too empty to improve effectivity of subsequent calls.  */
+
+void
+htab_traverse (htab_t htab, htab_trav callback, PTR info)
+{
+  if (htab_elements (htab) * 8 < htab_size (htab))
+    htab_expand (htab);
+
+  htab_traverse_noresize (htab, callback, info);
+}
+
+/* Return the fraction of fixed collisions during all work with given
+   hash table. */
+
+double
+htab_collisions (htab_t htab)
+{
+  if (htab->searches == 0)
+    return 0.0;
+
+  return (double) htab->collisions / (double) htab->searches;
+}
+
+/* Hash P as a null-terminated string.
+
+   Copied from gcc/hashtable.c.  Zack had the following to say with respect
+   to applicability, though note that unlike hashtable.c, this hash table
+   implementation re-hashes rather than chain buckets.
+
+   http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
+   From: Zack Weinberg <zackw@panix.com>
+   Date: Fri, 17 Aug 2001 02:15:56 -0400
+
+   I got it by extracting all the identifiers from all the source code
+   I had lying around in mid-1999, and testing many recurrences of
+   the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
+   prime numbers or the appropriate identity.  This was the best one.
+   I don't remember exactly what constituted "best", except I was
+   looking at bucket-length distributions mostly.
+   
+   So it should be very good at hashing identifiers, but might not be
+   as good at arbitrary strings.
+   
+   I'll add that it thoroughly trounces the hash functions recommended
+   for this use at http://burtleburtle.net/bob/hash/index.html, both
+   on speed and bucket distribution.  I haven't tried it against the
+   function they just started using for Perl's hashes.  */
+
+hashval_t
+htab_hash_string (const PTR p)
+{
+  const unsigned char *str = (const unsigned char *) p;
+  hashval_t r = 0;
+  unsigned char c;
+
+  while ((c = *str++) != 0)
+    r = r * 67 + c - 113;
+
+  return r;
+}
+
+/* DERIVED FROM:
+--------------------------------------------------------------------
+lookup2.c, by Bob Jenkins, December 1996, Public Domain.
+hash(), hash2(), hash3, and mix() are externally useful functions.
+Routines to test the hash are included if SELF_TEST is defined.
+You can use this free for any purpose.  It has no warranty.
+--------------------------------------------------------------------
+*/
+
+/*
+--------------------------------------------------------------------
+mix -- mix 3 32-bit values reversibly.
+For every delta with one or two bit set, and the deltas of all three
+  high bits or all three low bits, whether the original value of a,b,c
+  is almost all zero or is uniformly distributed,
+* If mix() is run forward or backward, at least 32 bits in a,b,c
+  have at least 1/4 probability of changing.
+* If mix() is run forward, every bit of c will change between 1/3 and
+  2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
+mix() was built out of 36 single-cycle latency instructions in a 
+  structure that could supported 2x parallelism, like so:
+      a -= b; 
+      a -= c; x = (c>>13);
+      b -= c; a ^= x;
+      b -= a; x = (a<<8);
+      c -= a; b ^= x;
+      c -= b; x = (b>>13);
+      ...
+  Unfortunately, superscalar Pentiums and Sparcs can't take advantage 
+  of that parallelism.  They've also turned some of those single-cycle
+  latency instructions into multi-cycle latency instructions.  Still,
+  this is the fastest good hash I could find.  There were about 2^^68
+  to choose from.  I only looked at a billion or so.
+--------------------------------------------------------------------
+*/
+/* same, but slower, works on systems that might have 8 byte hashval_t's */
+#define mix(a,b,c) \
+{ \
+  a -= b; a -= c; a ^= (c>>13); \
+  b -= c; b -= a; b ^= (a<< 8); \
+  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
+  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
+  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
+  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
+  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
+  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
+  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
+}
+
+/*
+--------------------------------------------------------------------
+hash() -- hash a variable-length key into a 32-bit value
+  k     : the key (the unaligned variable-length array of bytes)
+  len   : the length of the key, counting by bytes
+  level : can be any 4-byte value
+Returns a 32-bit value.  Every bit of the key affects every bit of
+the return value.  Every 1-bit and 2-bit delta achieves avalanche.
+About 36+6len instructions.
+
+The best hash table sizes are powers of 2.  There is no need to do
+mod a prime (mod is sooo slow!).  If you need less than 32 bits,
+use a bitmask.  For example, if you need only 10 bits, do
+  h = (h & hashmask(10));
+In which case, the hash table should have hashsize(10) elements.
+
+If you are hashing n strings (ub1 **)k, do it like this:
+  for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
+
+By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
+code any way you wish, private, educational, or commercial.  It's free.
+
+See http://burtleburtle.net/bob/hash/evahash.html
+Use for hash table lookup, or anything where one collision in 2^32 is
+acceptable.  Do NOT use for cryptographic purposes.
+--------------------------------------------------------------------
+*/
+
+hashval_t
+iterative_hash (const PTR k_in /* the key */,
+                register size_t  length /* the length of the key */,
+                register hashval_t initval /* the previous hash, or
+                                              an arbitrary value */)
+{
+  register const unsigned char *k = (const unsigned char *)k_in;
+  register hashval_t a,b,c,len;
+
+  /* Set up the internal state */
+  len = length;
+  a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
+  c = initval;           /* the previous hash value */
+
+  /*---------------------------------------- handle most of the key */
+#ifndef WORDS_BIGENDIAN
+  /* On a little-endian machine, if the data is 4-byte aligned we can hash
+     by word for better speed.  This gives nondeterministic results on
+     big-endian machines.  */
+  if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
+    while (len >= 12)    /* aligned */
+      {
+	a += *(hashval_t *)(k+0);
+	b += *(hashval_t *)(k+4);
+	c += *(hashval_t *)(k+8);
+	mix(a,b,c);
+	k += 12; len -= 12;
+      }
+  else /* unaligned */
+#endif
+    while (len >= 12)
+      {
+	a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
+	b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
+	c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
+	mix(a,b,c);
+	k += 12; len -= 12;
+      }
+
+  /*------------------------------------- handle the last 11 bytes */
+  c += length;
+  switch(len)              /* all the case statements fall through */
+    {
+    case 11: c+=((hashval_t)k[10]<<24);
+    case 10: c+=((hashval_t)k[9]<<16);
+    case 9 : c+=((hashval_t)k[8]<<8);
+      /* the first byte of c is reserved for the length */
+    case 8 : b+=((hashval_t)k[7]<<24);
+    case 7 : b+=((hashval_t)k[6]<<16);
+    case 6 : b+=((hashval_t)k[5]<<8);
+    case 5 : b+=k[4];
+    case 4 : a+=((hashval_t)k[3]<<24);
+    case 3 : a+=((hashval_t)k[2]<<16);
+    case 2 : a+=((hashval_t)k[1]<<8);
+    case 1 : a+=k[0];
+      /* case 0: nothing left to add */
+    }
+  mix(a,b,c);
+  /*-------------------------------------------- report the result */
+  return c;
+}