view gcc/config/aarch64/aarch64.c @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
line wrap: on
line source

/* Machine description for AArch64 architecture.
   Copyright (C) 2009-2017 Free Software Foundation, Inc.
   Contributed by ARM Ltd.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#define INCLUDE_STRING
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "gimple.h"
#include "cfghooks.h"
#include "cfgloop.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic.h"
#include "insn-attr.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "varasm.h"
#include "output.h"
#include "flags.h"
#include "explow.h"
#include "expr.h"
#include "reload.h"
#include "langhooks.h"
#include "opts.h"
#include "params.h"
#include "gimplify.h"
#include "dwarf2.h"
#include "gimple-iterator.h"
#include "tree-vectorizer.h"
#include "aarch64-cost-tables.h"
#include "dumpfile.h"
#include "builtins.h"
#include "rtl-iter.h"
#include "tm-constrs.h"
#include "sched-int.h"
#include "target-globals.h"
#include "common/common-target.h"
#include "selftest.h"
#include "selftest-rtl.h"

/* This file should be included last.  */
#include "target-def.h"

/* Defined for convenience.  */
#define POINTER_BYTES (POINTER_SIZE / BITS_PER_UNIT)

/* Classifies an address.

   ADDRESS_REG_IMM
       A simple base register plus immediate offset.

   ADDRESS_REG_WB
       A base register indexed by immediate offset with writeback.

   ADDRESS_REG_REG
       A base register indexed by (optionally scaled) register.

   ADDRESS_REG_UXTW
       A base register indexed by (optionally scaled) zero-extended register.

   ADDRESS_REG_SXTW
       A base register indexed by (optionally scaled) sign-extended register.

   ADDRESS_LO_SUM
       A LO_SUM rtx with a base register and "LO12" symbol relocation.

   ADDRESS_SYMBOLIC:
       A constant symbolic address, in pc-relative literal pool.  */

enum aarch64_address_type {
  ADDRESS_REG_IMM,
  ADDRESS_REG_WB,
  ADDRESS_REG_REG,
  ADDRESS_REG_UXTW,
  ADDRESS_REG_SXTW,
  ADDRESS_LO_SUM,
  ADDRESS_SYMBOLIC
};

struct aarch64_address_info {
  enum aarch64_address_type type;
  rtx base;
  rtx offset;
  int shift;
  enum aarch64_symbol_type symbol_type;
};

struct simd_immediate_info
{
  rtx value;
  int shift;
  int element_width;
  bool mvn;
  bool msl;
};

/* The current code model.  */
enum aarch64_code_model aarch64_cmodel;

#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS 1
#endif

static bool aarch64_composite_type_p (const_tree, machine_mode);
static bool aarch64_vfp_is_call_or_return_candidate (machine_mode,
						     const_tree,
						     machine_mode *, int *,
						     bool *);
static void aarch64_elf_asm_constructor (rtx, int) ATTRIBUTE_UNUSED;
static void aarch64_elf_asm_destructor (rtx, int) ATTRIBUTE_UNUSED;
static void aarch64_override_options_after_change (void);
static bool aarch64_vector_mode_supported_p (machine_mode);
static bool aarch64_vectorize_vec_perm_const_ok (machine_mode,
						 vec_perm_indices);
static int aarch64_address_cost (rtx, machine_mode, addr_space_t, bool);
static bool aarch64_builtin_support_vector_misalignment (machine_mode mode,
							 const_tree type,
							 int misalignment,
							 bool is_packed);
static machine_mode
aarch64_simd_container_mode (scalar_mode mode, unsigned width);

/* Major revision number of the ARM Architecture implemented by the target.  */
unsigned aarch64_architecture_version;

/* The processor for which instructions should be scheduled.  */
enum aarch64_processor aarch64_tune = cortexa53;

/* Mask to specify which instruction scheduling options should be used.  */
unsigned long aarch64_tune_flags = 0;

/* Global flag for PC relative loads.  */
bool aarch64_pcrelative_literal_loads;

/* Support for command line parsing of boolean flags in the tuning
   structures.  */
struct aarch64_flag_desc
{
  const char* name;
  unsigned int flag;
};

#define AARCH64_FUSION_PAIR(name, internal_name) \
  { name, AARCH64_FUSE_##internal_name },
static const struct aarch64_flag_desc aarch64_fusible_pairs[] =
{
  { "none", AARCH64_FUSE_NOTHING },
#include "aarch64-fusion-pairs.def"
  { "all", AARCH64_FUSE_ALL },
  { NULL, AARCH64_FUSE_NOTHING }
};

#define AARCH64_EXTRA_TUNING_OPTION(name, internal_name) \
  { name, AARCH64_EXTRA_TUNE_##internal_name },
static const struct aarch64_flag_desc aarch64_tuning_flags[] =
{
  { "none", AARCH64_EXTRA_TUNE_NONE },
#include "aarch64-tuning-flags.def"
  { "all", AARCH64_EXTRA_TUNE_ALL },
  { NULL, AARCH64_EXTRA_TUNE_NONE }
};

/* Tuning parameters.  */

static const struct cpu_addrcost_table generic_addrcost_table =
{
    {
      1, /* hi  */
      0, /* si  */
      0, /* di  */
      1, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  0, /* register_offset  */
  0, /* register_sextend  */
  0, /* register_zextend  */
  0 /* imm_offset  */
};

static const struct cpu_addrcost_table exynosm1_addrcost_table =
{
    {
      0, /* hi  */
      0, /* si  */
      0, /* di  */
      2, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  1, /* register_offset  */
  1, /* register_sextend  */
  2, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_addrcost_table xgene1_addrcost_table =
{
    {
      1, /* hi  */
      0, /* si  */
      0, /* di  */
      1, /* ti  */
    },
  1, /* pre_modify  */
  0, /* post_modify  */
  0, /* register_offset  */
  1, /* register_sextend  */
  1, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_addrcost_table thunderx2t99_addrcost_table =
{
    {
      1, /* hi  */
      1, /* si  */
      1, /* di  */
      2, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  2, /* register_offset  */
  3, /* register_sextend  */
  3, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_regmove_cost generic_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  5, /* GP2FP  */
  5, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost cortexa57_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  5, /* GP2FP  */
  5, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost cortexa53_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  5, /* GP2FP  */
  5, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost exynosm1_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost (actual, 4 and 9).  */
  9, /* GP2FP  */
  9, /* FP2GP  */
  1 /* FP2FP  */
};

static const struct cpu_regmove_cost thunderx_regmove_cost =
{
  2, /* GP2GP  */
  2, /* GP2FP  */
  6, /* FP2GP  */
  4 /* FP2FP  */
};

static const struct cpu_regmove_cost xgene1_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  8, /* GP2FP  */
  8, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost qdf24xx_regmove_cost =
{
  2, /* GP2GP  */
  /* Avoid the use of int<->fp moves for spilling.  */
  6, /* GP2FP  */
  6, /* FP2GP  */
  4 /* FP2FP  */
};

static const struct cpu_regmove_cost thunderx2t99_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of int<->fp moves for spilling.  */
  8, /* GP2FP  */
  8, /* FP2GP  */
  4  /* FP2FP  */
};

/* Generic costs for vector insn classes.  */
static const struct cpu_vector_cost generic_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  1, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  1, /* vec_int_stmt_cost  */
  1, /* vec_fp_stmt_cost  */
  2, /* vec_permute_cost  */
  1, /* vec_to_scalar_cost  */
  1, /* scalar_to_vec_cost  */
  1, /* vec_align_load_cost  */
  1, /* vec_unalign_load_cost  */
  1, /* vec_unalign_store_cost  */
  1, /* vec_store_cost  */
  3, /* cond_taken_branch_cost  */
  1 /* cond_not_taken_branch_cost  */
};

/* ThunderX costs for vector insn classes.  */
static const struct cpu_vector_cost thunderx_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  3, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  4, /* vec_int_stmt_cost  */
  1, /* vec_fp_stmt_cost  */
  4, /* vec_permute_cost  */
  2, /* vec_to_scalar_cost  */
  2, /* scalar_to_vec_cost  */
  3, /* vec_align_load_cost  */
  5, /* vec_unalign_load_cost  */
  5, /* vec_unalign_store_cost  */
  1, /* vec_store_cost  */
  3, /* cond_taken_branch_cost  */
  3 /* cond_not_taken_branch_cost  */
};

/* Generic costs for vector insn classes.  */
static const struct cpu_vector_cost cortexa57_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  2, /* vec_int_stmt_cost  */
  2, /* vec_fp_stmt_cost  */
  3, /* vec_permute_cost  */
  8, /* vec_to_scalar_cost  */
  8, /* scalar_to_vec_cost  */
  4, /* vec_align_load_cost  */
  4, /* vec_unalign_load_cost  */
  1, /* vec_unalign_store_cost  */
  1, /* vec_store_cost  */
  1, /* cond_taken_branch_cost  */
  1 /* cond_not_taken_branch_cost  */
};

static const struct cpu_vector_cost exynosm1_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  5, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  3, /* vec_int_stmt_cost  */
  3, /* vec_fp_stmt_cost  */
  3, /* vec_permute_cost  */
  3, /* vec_to_scalar_cost  */
  3, /* scalar_to_vec_cost  */
  5, /* vec_align_load_cost  */
  5, /* vec_unalign_load_cost  */
  1, /* vec_unalign_store_cost  */
  1, /* vec_store_cost  */
  1, /* cond_taken_branch_cost  */
  1 /* cond_not_taken_branch_cost  */
};

/* Generic costs for vector insn classes.  */
static const struct cpu_vector_cost xgene1_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  5, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  2, /* vec_int_stmt_cost  */
  2, /* vec_fp_stmt_cost  */
  2, /* vec_permute_cost  */
  4, /* vec_to_scalar_cost  */
  4, /* scalar_to_vec_cost  */
  10, /* vec_align_load_cost  */
  10, /* vec_unalign_load_cost  */
  2, /* vec_unalign_store_cost  */
  2, /* vec_store_cost  */
  2, /* cond_taken_branch_cost  */
  1 /* cond_not_taken_branch_cost  */
};

/* Costs for vector insn classes for Vulcan.  */
static const struct cpu_vector_cost thunderx2t99_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  6, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  5, /* vec_int_stmt_cost  */
  6, /* vec_fp_stmt_cost  */
  3, /* vec_permute_cost  */
  6, /* vec_to_scalar_cost  */
  5, /* scalar_to_vec_cost  */
  8, /* vec_align_load_cost  */
  8, /* vec_unalign_load_cost  */
  4, /* vec_unalign_store_cost  */
  4, /* vec_store_cost  */
  2, /* cond_taken_branch_cost  */
  1  /* cond_not_taken_branch_cost  */
};

/* Generic costs for branch instructions.  */
static const struct cpu_branch_cost generic_branch_cost =
{
  1,  /* Predictable.  */
  3   /* Unpredictable.  */
};

/* Generic approximation modes.  */
static const cpu_approx_modes generic_approx_modes =
{
  AARCH64_APPROX_NONE,	/* division  */
  AARCH64_APPROX_NONE,	/* sqrt  */
  AARCH64_APPROX_NONE	/* recip_sqrt  */
};

/* Approximation modes for Exynos M1.  */
static const cpu_approx_modes exynosm1_approx_modes =
{
  AARCH64_APPROX_NONE,	/* division  */
  AARCH64_APPROX_ALL,	/* sqrt  */
  AARCH64_APPROX_ALL	/* recip_sqrt  */
};

/* Approximation modes for X-Gene 1.  */
static const cpu_approx_modes xgene1_approx_modes =
{
  AARCH64_APPROX_NONE,	/* division  */
  AARCH64_APPROX_NONE,	/* sqrt  */
  AARCH64_APPROX_ALL	/* recip_sqrt  */
};

/* Generic prefetch settings (which disable prefetch).  */
static const cpu_prefetch_tune generic_prefetch_tune =
{
  0,			/* num_slots  */
  -1,			/* l1_cache_size  */
  -1,			/* l1_cache_line_size  */
  -1,			/* l2_cache_size  */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune exynosm1_prefetch_tune =
{
  0,			/* num_slots  */
  -1,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  -1,			/* l2_cache_size  */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune qdf24xx_prefetch_tune =
{
  4,			/* num_slots  */
  32,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  1024,			/* l2_cache_size  */
  3			/* default_opt_level  */
};

static const cpu_prefetch_tune thunderxt88_prefetch_tune =
{
  8,			/* num_slots  */
  32,			/* l1_cache_size  */
  128,			/* l1_cache_line_size  */
  16*1024,		/* l2_cache_size  */
  3			/* default_opt_level  */
};

static const cpu_prefetch_tune thunderx_prefetch_tune =
{
  8,			/* num_slots  */
  32,			/* l1_cache_size  */
  128,			/* l1_cache_line_size  */
  -1,			/* l2_cache_size  */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune thunderx2t99_prefetch_tune =
{
  8,			/* num_slots  */
  32,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  256,			/* l2_cache_size  */
  -1			/* default_opt_level  */
};

static const struct tune_params generic_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &generic_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  2, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC), /* fusible_ops  */
  8,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa35_tunings =
{
  &cortexa53_extra_costs,
  &generic_addrcost_table,
  &cortexa53_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  1, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops  */
  16,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa53_tunings =
{
  &cortexa53_extra_costs,
  &generic_addrcost_table,
  &cortexa53_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  2, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops  */
  16,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa57_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &cortexa57_regmove_cost,
  &cortexa57_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  3, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK), /* fusible_ops  */
  16,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_RENAME_FMA_REGS),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa72_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &cortexa57_regmove_cost,
  &cortexa57_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  3, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK), /* fusible_ops  */
  16,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa73_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &cortexa57_regmove_cost,
  &cortexa57_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost.  */
  2, /* issue_rate.  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops  */
  16,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};



static const struct tune_params exynosm1_tunings =
{
  &exynosm1_extra_costs,
  &exynosm1_addrcost_table,
  &exynosm1_regmove_cost,
  &exynosm1_vector_cost,
  &generic_branch_cost,
  &exynosm1_approx_modes,
  4,	/* memmov_cost  */
  3,	/* issue_rate  */
  (AARCH64_FUSE_AES_AESMC), /* fusible_ops  */
  4,	/* function_align.  */
  4,	/* jump_align.  */
  4,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  48,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE), /* tune_flags.  */
  &exynosm1_prefetch_tune
};

static const struct tune_params thunderxt88_tunings =
{
  &thunderx_extra_costs,
  &generic_addrcost_table,
  &thunderx_regmove_cost,
  &thunderx_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  6, /* memmov_cost  */
  2, /* issue_rate  */
  AARCH64_FUSE_CMP_BRANCH, /* fusible_ops  */
  8,	/* function_align.  */
  8,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_OFF,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW),	/* tune_flags.  */
  &thunderxt88_prefetch_tune
};

static const struct tune_params thunderx_tunings =
{
  &thunderx_extra_costs,
  &generic_addrcost_table,
  &thunderx_regmove_cost,
  &thunderx_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  6, /* memmov_cost  */
  2, /* issue_rate  */
  AARCH64_FUSE_CMP_BRANCH, /* fusible_ops  */
  8,	/* function_align.  */
  8,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_OFF,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW
   | AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND),	/* tune_flags.  */
  &thunderx_prefetch_tune
};

static const struct tune_params xgene1_tunings =
{
  &xgene1_extra_costs,
  &xgene1_addrcost_table,
  &xgene1_regmove_cost,
  &xgene1_vector_cost,
  &generic_branch_cost,
  &xgene1_approx_modes,
  6, /* memmov_cost  */
  4, /* issue_rate  */
  AARCH64_FUSE_NOTHING, /* fusible_ops  */
  16,	/* function_align.  */
  8,	/* jump_align.  */
  16,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_OFF,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params qdf24xx_tunings =
{
  &qdf24xx_extra_costs,
  &generic_addrcost_table,
  &qdf24xx_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  4, /* issue_rate  */
  (AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK), /* fuseable_ops  */
  16,	/* function_align.  */
  8,	/* jump_align.  */
  16,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_STRONG,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),		/* tune_flags.  */
  &qdf24xx_prefetch_tune
};

static const struct tune_params thunderx2t99_tunings =
{
  &thunderx2t99_extra_costs,
  &thunderx2t99_addrcost_table,
  &thunderx2t99_regmove_cost,
  &thunderx2t99_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost.  */
  4, /* issue_rate.  */
  (AARCH64_FUSE_CMP_BRANCH | AARCH64_FUSE_AES_AESMC
   | AARCH64_FUSE_ALU_BRANCH), /* fusible_ops  */
  16,	/* function_align.  */
  8,	/* jump_align.  */
  16,	/* loop_align.  */
  3,	/* int_reassoc_width.  */
  2,	/* fp_reassoc_width.  */
  2,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &thunderx2t99_prefetch_tune
};

/* Support for fine-grained override of the tuning structures.  */
struct aarch64_tuning_override_function
{
  const char* name;
  void (*parse_override)(const char*, struct tune_params*);
};

static void aarch64_parse_fuse_string (const char*, struct tune_params*);
static void aarch64_parse_tune_string (const char*, struct tune_params*);

static const struct aarch64_tuning_override_function
aarch64_tuning_override_functions[] =
{
  { "fuse", aarch64_parse_fuse_string },
  { "tune", aarch64_parse_tune_string },
  { NULL, NULL }
};

/* A processor implementing AArch64.  */
struct processor
{
  const char *const name;
  enum aarch64_processor ident;
  enum aarch64_processor sched_core;
  enum aarch64_arch arch;
  unsigned architecture_version;
  const unsigned long flags;
  const struct tune_params *const tune;
};

/* Architectures implementing AArch64.  */
static const struct processor all_architectures[] =
{
#define AARCH64_ARCH(NAME, CORE, ARCH_IDENT, ARCH_REV, FLAGS) \
  {NAME, CORE, CORE, AARCH64_ARCH_##ARCH_IDENT, ARCH_REV, FLAGS, NULL},
#include "aarch64-arches.def"
  {NULL, aarch64_none, aarch64_none, aarch64_no_arch, 0, 0, NULL}
};

/* Processor cores implementing AArch64.  */
static const struct processor all_cores[] =
{
#define AARCH64_CORE(NAME, IDENT, SCHED, ARCH, FLAGS, COSTS, IMP, PART, VARIANT) \
  {NAME, IDENT, SCHED, AARCH64_ARCH_##ARCH,				\
  all_architectures[AARCH64_ARCH_##ARCH].architecture_version,	\
  FLAGS, &COSTS##_tunings},
#include "aarch64-cores.def"
  {"generic", generic, cortexa53, AARCH64_ARCH_8A, 8,
    AARCH64_FL_FOR_ARCH8, &generic_tunings},
  {NULL, aarch64_none, aarch64_none, aarch64_no_arch, 0, 0, NULL}
};


/* Target specification.  These are populated by the -march, -mtune, -mcpu
   handling code or by target attributes.  */
static const struct processor *selected_arch;
static const struct processor *selected_cpu;
static const struct processor *selected_tune;

/* The current tuning set.  */
struct tune_params aarch64_tune_params = generic_tunings;

#define AARCH64_CPU_DEFAULT_FLAGS ((selected_cpu) ? selected_cpu->flags : 0)

/* An ISA extension in the co-processor and main instruction set space.  */
struct aarch64_option_extension
{
  const char *const name;
  const unsigned long flags_on;
  const unsigned long flags_off;
};

typedef enum aarch64_cond_code
{
  AARCH64_EQ = 0, AARCH64_NE, AARCH64_CS, AARCH64_CC, AARCH64_MI, AARCH64_PL,
  AARCH64_VS, AARCH64_VC, AARCH64_HI, AARCH64_LS, AARCH64_GE, AARCH64_LT,
  AARCH64_GT, AARCH64_LE, AARCH64_AL, AARCH64_NV
}
aarch64_cc;

#define AARCH64_INVERSE_CONDITION_CODE(X) ((aarch64_cc) (((int) X) ^ 1))

/* The condition codes of the processor, and the inverse function.  */
static const char * const aarch64_condition_codes[] =
{
  "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
  "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"
};

/* Generate code to enable conditional branches in functions over 1 MiB.  */
const char *
aarch64_gen_far_branch (rtx * operands, int pos_label, const char * dest,
			const char * branch_format)
{
    rtx_code_label * tmp_label = gen_label_rtx ();
    char label_buf[256];
    char buffer[128];
    ASM_GENERATE_INTERNAL_LABEL (label_buf, dest,
				 CODE_LABEL_NUMBER (tmp_label));
    const char *label_ptr = targetm.strip_name_encoding (label_buf);
    rtx dest_label = operands[pos_label];
    operands[pos_label] = tmp_label;

    snprintf (buffer, sizeof (buffer), "%s%s", branch_format, label_ptr);
    output_asm_insn (buffer, operands);

    snprintf (buffer, sizeof (buffer), "b\t%%l%d\n%s:", pos_label, label_ptr);
    operands[pos_label] = dest_label;
    output_asm_insn (buffer, operands);
    return "";
}

void
aarch64_err_no_fpadvsimd (machine_mode mode, const char *msg)
{
  const char *mc = FLOAT_MODE_P (mode) ? "floating-point" : "vector";
  if (TARGET_GENERAL_REGS_ONLY)
    error ("%qs is incompatible with %s %s", "-mgeneral-regs-only", mc, msg);
  else
    error ("%qs feature modifier is incompatible with %s %s", "+nofp", mc, msg);
}

/* Implement TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS.
   The register allocator chooses ALL_REGS if FP_REGS and GENERAL_REGS have
   the same cost even if ALL_REGS has a much larger cost.  ALL_REGS is also
   used if the cost of both FP_REGS and GENERAL_REGS is lower than the memory
   cost (in this case the best class is the lowest cost one).  Using ALL_REGS
   irrespectively of its cost results in bad allocations with many redundant
   int<->FP moves which are expensive on various cores.
   To avoid this we don't allow ALL_REGS as the allocno class, but force a
   decision between FP_REGS and GENERAL_REGS.  We use the allocno class if it
   isn't ALL_REGS.  Similarly, use the best class if it isn't ALL_REGS.
   Otherwise set the allocno class depending on the mode.
   The result of this is that it is no longer inefficient to have a higher
   memory move cost than the register move cost.
*/

static reg_class_t
aarch64_ira_change_pseudo_allocno_class (int regno, reg_class_t allocno_class,
					 reg_class_t best_class)
{
  machine_mode mode;

  if (allocno_class != ALL_REGS)
    return allocno_class;

  if (best_class != ALL_REGS)
    return best_class;

  mode = PSEUDO_REGNO_MODE (regno);
  return FLOAT_MODE_P (mode) || VECTOR_MODE_P (mode) ? FP_REGS : GENERAL_REGS;
}

static unsigned int
aarch64_min_divisions_for_recip_mul (machine_mode mode)
{
  if (GET_MODE_UNIT_SIZE (mode) == 4)
    return aarch64_tune_params.min_div_recip_mul_sf;
  return aarch64_tune_params.min_div_recip_mul_df;
}

static int
aarch64_reassociation_width (unsigned opc ATTRIBUTE_UNUSED,
			     machine_mode mode)
{
  if (VECTOR_MODE_P (mode))
    return aarch64_tune_params.vec_reassoc_width;
  if (INTEGRAL_MODE_P (mode))
    return aarch64_tune_params.int_reassoc_width;
  if (FLOAT_MODE_P (mode))
    return aarch64_tune_params.fp_reassoc_width;
  return 1;
}

/* Provide a mapping from gcc register numbers to dwarf register numbers.  */
unsigned
aarch64_dbx_register_number (unsigned regno)
{
   if (GP_REGNUM_P (regno))
     return AARCH64_DWARF_R0 + regno - R0_REGNUM;
   else if (regno == SP_REGNUM)
     return AARCH64_DWARF_SP;
   else if (FP_REGNUM_P (regno))
     return AARCH64_DWARF_V0 + regno - V0_REGNUM;

   /* Return values >= DWARF_FRAME_REGISTERS indicate that there is no
      equivalent DWARF register.  */
   return DWARF_FRAME_REGISTERS;
}

/* Return TRUE if MODE is any of the large INT modes.  */
static bool
aarch64_vect_struct_mode_p (machine_mode mode)
{
  return mode == OImode || mode == CImode || mode == XImode;
}

/* Return TRUE if MODE is any of the vector modes.  */
static bool
aarch64_vector_mode_p (machine_mode mode)
{
  return aarch64_vector_mode_supported_p (mode)
	 || aarch64_vect_struct_mode_p (mode);
}

/* Implement target hook TARGET_ARRAY_MODE_SUPPORTED_P.  */
static bool
aarch64_array_mode_supported_p (machine_mode mode,
				unsigned HOST_WIDE_INT nelems)
{
  if (TARGET_SIMD
      && (AARCH64_VALID_SIMD_QREG_MODE (mode)
	  || AARCH64_VALID_SIMD_DREG_MODE (mode))
      && (nelems >= 2 && nelems <= 4))
    return true;

  return false;
}

/* Implement TARGET_HARD_REGNO_NREGS.  */

static unsigned int
aarch64_hard_regno_nregs (unsigned regno, machine_mode mode)
{
  switch (aarch64_regno_regclass (regno))
    {
    case FP_REGS:
    case FP_LO_REGS:
      return (GET_MODE_SIZE (mode) + UNITS_PER_VREG - 1) / UNITS_PER_VREG;
    default:
      return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
    }
  gcc_unreachable ();
}

/* Implement TARGET_HARD_REGNO_MODE_OK.  */

static bool
aarch64_hard_regno_mode_ok (unsigned regno, machine_mode mode)
{
  if (GET_MODE_CLASS (mode) == MODE_CC)
    return regno == CC_REGNUM;

  if (regno == SP_REGNUM)
    /* The purpose of comparing with ptr_mode is to support the
       global register variable associated with the stack pointer
       register via the syntax of asm ("wsp") in ILP32.  */
    return mode == Pmode || mode == ptr_mode;

  if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM)
    return mode == Pmode;

  if (GP_REGNUM_P (regno) && ! aarch64_vect_struct_mode_p (mode))
    return true;

  if (FP_REGNUM_P (regno))
    {
      if (aarch64_vect_struct_mode_p (mode))
	return end_hard_regno (mode, regno) - 1 <= V31_REGNUM;
      else
	return true;
    }

  return false;
}

/* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED.  The callee only saves
   the lower 64 bits of a 128-bit register.  Tell the compiler the callee
   clobbers the top 64 bits when restoring the bottom 64 bits.  */

static bool
aarch64_hard_regno_call_part_clobbered (unsigned int regno, machine_mode mode)
{
  return FP_REGNUM_P (regno) && GET_MODE_SIZE (mode) > 8;
}

/* Implement HARD_REGNO_CALLER_SAVE_MODE.  */
machine_mode
aarch64_hard_regno_caller_save_mode (unsigned regno, unsigned nregs,
				     machine_mode mode)
{
  /* Handle modes that fit within single registers.  */
  if (nregs == 1 && GET_MODE_SIZE (mode) <= 16)
    {
      if (GET_MODE_SIZE (mode) >= 4)
        return mode;
      else
        return SImode;
    }
  /* Fall back to generic for multi-reg and very large modes.  */
  else
    return choose_hard_reg_mode (regno, nregs, false);
}

/* Implement TARGET_CONSTANT_ALIGNMENT.  Make strings word-aligned so
   that strcpy from constants will be faster.  */

static HOST_WIDE_INT
aarch64_constant_alignment (const_tree exp, HOST_WIDE_INT align)
{
  if (TREE_CODE (exp) == STRING_CST && !optimize_size)
    return MAX (align, BITS_PER_WORD);
  return align;
}

/* Return true if calls to DECL should be treated as
   long-calls (ie called via a register).  */
static bool
aarch64_decl_is_long_call_p (const_tree decl ATTRIBUTE_UNUSED)
{
  return false;
}

/* Return true if calls to symbol-ref SYM should be treated as
   long-calls (ie called via a register).  */
bool
aarch64_is_long_call_p (rtx sym)
{
  return aarch64_decl_is_long_call_p (SYMBOL_REF_DECL (sym));
}

/* Return true if calls to symbol-ref SYM should not go through
   plt stubs.  */

bool
aarch64_is_noplt_call_p (rtx sym)
{
  const_tree decl = SYMBOL_REF_DECL (sym);

  if (flag_pic
      && decl
      && (!flag_plt
	  || lookup_attribute ("noplt", DECL_ATTRIBUTES (decl)))
      && !targetm.binds_local_p (decl))
    return true;

  return false;
}

/* Return true if the offsets to a zero/sign-extract operation
   represent an expression that matches an extend operation.  The
   operands represent the paramters from

   (extract:MODE (mult (reg) (MULT_IMM)) (EXTRACT_IMM) (const_int 0)).  */
bool
aarch64_is_extend_from_extract (scalar_int_mode mode, rtx mult_imm,
				rtx extract_imm)
{
  HOST_WIDE_INT mult_val, extract_val;

  if (! CONST_INT_P (mult_imm) || ! CONST_INT_P (extract_imm))
    return false;

  mult_val = INTVAL (mult_imm);
  extract_val = INTVAL (extract_imm);

  if (extract_val > 8
      && extract_val < GET_MODE_BITSIZE (mode)
      && exact_log2 (extract_val & ~7) > 0
      && (extract_val & 7) <= 4
      && mult_val == (1 << (extract_val & 7)))
    return true;

  return false;
}

/* Emit an insn that's a simple single-set.  Both the operands must be
   known to be valid.  */
inline static rtx_insn *
emit_set_insn (rtx x, rtx y)
{
  return emit_insn (gen_rtx_SET (x, y));
}

/* X and Y are two things to compare using CODE.  Emit the compare insn and
   return the rtx for register 0 in the proper mode.  */
rtx
aarch64_gen_compare_reg (RTX_CODE code, rtx x, rtx y)
{
  machine_mode mode = SELECT_CC_MODE (code, x, y);
  rtx cc_reg = gen_rtx_REG (mode, CC_REGNUM);

  emit_set_insn (cc_reg, gen_rtx_COMPARE (mode, x, y));
  return cc_reg;
}

/* Build the SYMBOL_REF for __tls_get_addr.  */

static GTY(()) rtx tls_get_addr_libfunc;

rtx
aarch64_tls_get_addr (void)
{
  if (!tls_get_addr_libfunc)
    tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr");
  return tls_get_addr_libfunc;
}

/* Return the TLS model to use for ADDR.  */

static enum tls_model
tls_symbolic_operand_type (rtx addr)
{
  enum tls_model tls_kind = TLS_MODEL_NONE;
  rtx sym, addend;

  if (GET_CODE (addr) == CONST)
    {
      split_const (addr, &sym, &addend);
      if (GET_CODE (sym) == SYMBOL_REF)
	tls_kind = SYMBOL_REF_TLS_MODEL (sym);
    }
  else if (GET_CODE (addr) == SYMBOL_REF)
    tls_kind = SYMBOL_REF_TLS_MODEL (addr);

  return tls_kind;
}

/* We'll allow lo_sum's in addresses in our legitimate addresses
   so that combine would take care of combining addresses where
   necessary, but for generation purposes, we'll generate the address
   as :
   RTL                               Absolute
   tmp = hi (symbol_ref);            adrp  x1, foo
   dest = lo_sum (tmp, symbol_ref);  add dest, x1, :lo_12:foo
                                     nop

   PIC                               TLS
   adrp x1, :got:foo                 adrp tmp, :tlsgd:foo
   ldr  x1, [:got_lo12:foo]          add  dest, tmp, :tlsgd_lo12:foo
                                     bl   __tls_get_addr
                                     nop

   Load TLS symbol, depending on TLS mechanism and TLS access model.

   Global Dynamic - Traditional TLS:
   adrp tmp, :tlsgd:imm
   add  dest, tmp, #:tlsgd_lo12:imm
   bl   __tls_get_addr

   Global Dynamic - TLS Descriptors:
   adrp dest, :tlsdesc:imm
   ldr  tmp, [dest, #:tlsdesc_lo12:imm]
   add  dest, dest, #:tlsdesc_lo12:imm
   blr  tmp
   mrs  tp, tpidr_el0
   add  dest, dest, tp

   Initial Exec:
   mrs  tp, tpidr_el0
   adrp tmp, :gottprel:imm
   ldr  dest, [tmp, #:gottprel_lo12:imm]
   add  dest, dest, tp

   Local Exec:
   mrs  tp, tpidr_el0
   add  t0, tp, #:tprel_hi12:imm, lsl #12
   add  t0, t0, #:tprel_lo12_nc:imm
*/

static void
aarch64_load_symref_appropriately (rtx dest, rtx imm,
				   enum aarch64_symbol_type type)
{
  switch (type)
    {
    case SYMBOL_SMALL_ABSOLUTE:
      {
	/* In ILP32, the mode of dest can be either SImode or DImode.  */
	rtx tmp_reg = dest;
	machine_mode mode = GET_MODE (dest);

	gcc_assert (mode == Pmode || mode == ptr_mode);

	if (can_create_pseudo_p ())
	  tmp_reg = gen_reg_rtx (mode);

	emit_move_insn (tmp_reg, gen_rtx_HIGH (mode, imm));
	emit_insn (gen_add_losym (dest, tmp_reg, imm));
	return;
      }

    case SYMBOL_TINY_ABSOLUTE:
      emit_insn (gen_rtx_SET (dest, imm));
      return;

    case SYMBOL_SMALL_GOT_28K:
      {
	machine_mode mode = GET_MODE (dest);
	rtx gp_rtx = pic_offset_table_rtx;
	rtx insn;
	rtx mem;

	/* NOTE: pic_offset_table_rtx can be NULL_RTX, because we can reach
	   here before rtl expand.  Tree IVOPT will generate rtl pattern to
	   decide rtx costs, in which case pic_offset_table_rtx is not
	   initialized.  For that case no need to generate the first adrp
	   instruction as the final cost for global variable access is
	   one instruction.  */
	if (gp_rtx != NULL)
	  {
	    /* -fpic for -mcmodel=small allow 32K GOT table size (but we are
	       using the page base as GOT base, the first page may be wasted,
	       in the worst scenario, there is only 28K space for GOT).

	       The generate instruction sequence for accessing global variable
	       is:

		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym]

	       Only one instruction needed. But we must initialize
	       pic_offset_table_rtx properly.  We generate initialize insn for
	       every global access, and allow CSE to remove all redundant.

	       The final instruction sequences will look like the following
	       for multiply global variables access.

		 adrp pic_offset_table_rtx, _GLOBAL_OFFSET_TABLE_

		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym1]
		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym2]
		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym3]
		 ...  */

	    rtx s = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
	    crtl->uses_pic_offset_table = 1;
	    emit_move_insn (gp_rtx, gen_rtx_HIGH (Pmode, s));

	    if (mode != GET_MODE (gp_rtx))
             gp_rtx = gen_lowpart (mode, gp_rtx);

	  }

	if (mode == ptr_mode)
	  {
	    if (mode == DImode)
	      insn = gen_ldr_got_small_28k_di (dest, gp_rtx, imm);
	    else
	      insn = gen_ldr_got_small_28k_si (dest, gp_rtx, imm);

	    mem = XVECEXP (SET_SRC (insn), 0, 0);
	  }
	else
	  {
	    gcc_assert (mode == Pmode);

	    insn = gen_ldr_got_small_28k_sidi (dest, gp_rtx, imm);
	    mem = XVECEXP (XEXP (SET_SRC (insn), 0), 0, 0);
	  }

	/* The operand is expected to be MEM.  Whenever the related insn
	   pattern changed, above code which calculate mem should be
	   updated.  */
	gcc_assert (GET_CODE (mem) == MEM);
	MEM_READONLY_P (mem) = 1;
	MEM_NOTRAP_P (mem) = 1;
	emit_insn (insn);
	return;
      }

    case SYMBOL_SMALL_GOT_4G:
      {
	/* In ILP32, the mode of dest can be either SImode or DImode,
	   while the got entry is always of SImode size.  The mode of
	   dest depends on how dest is used: if dest is assigned to a
	   pointer (e.g. in the memory), it has SImode; it may have
	   DImode if dest is dereferenced to access the memeory.
	   This is why we have to handle three different ldr_got_small
	   patterns here (two patterns for ILP32).  */

	rtx insn;
	rtx mem;
	rtx tmp_reg = dest;
	machine_mode mode = GET_MODE (dest);

	if (can_create_pseudo_p ())
	  tmp_reg = gen_reg_rtx (mode);

	emit_move_insn (tmp_reg, gen_rtx_HIGH (mode, imm));
	if (mode == ptr_mode)
	  {
	    if (mode == DImode)
	      insn = gen_ldr_got_small_di (dest, tmp_reg, imm);
	    else
	      insn = gen_ldr_got_small_si (dest, tmp_reg, imm);

	    mem = XVECEXP (SET_SRC (insn), 0, 0);
	  }
	else
	  {
	    gcc_assert (mode == Pmode);

	    insn = gen_ldr_got_small_sidi (dest, tmp_reg, imm);
	    mem = XVECEXP (XEXP (SET_SRC (insn), 0), 0, 0);
	  }

	gcc_assert (GET_CODE (mem) == MEM);
	MEM_READONLY_P (mem) = 1;
	MEM_NOTRAP_P (mem) = 1;
	emit_insn (insn);
	return;
      }

    case SYMBOL_SMALL_TLSGD:
      {
	rtx_insn *insns;
	machine_mode mode = GET_MODE (dest);
	rtx result = gen_rtx_REG (mode, R0_REGNUM);

	start_sequence ();
	if (TARGET_ILP32)
	  aarch64_emit_call_insn (gen_tlsgd_small_si (result, imm));
	else
	  aarch64_emit_call_insn (gen_tlsgd_small_di (result, imm));
	insns = get_insns ();
	end_sequence ();

	RTL_CONST_CALL_P (insns) = 1;
	emit_libcall_block (insns, dest, result, imm);
	return;
      }

    case SYMBOL_SMALL_TLSDESC:
      {
	machine_mode mode = GET_MODE (dest);
	rtx x0 = gen_rtx_REG (mode, R0_REGNUM);
	rtx tp;

	gcc_assert (mode == Pmode || mode == ptr_mode);

	/* In ILP32, the got entry is always of SImode size.  Unlike
	   small GOT, the dest is fixed at reg 0.  */
	if (TARGET_ILP32)
	  emit_insn (gen_tlsdesc_small_si (imm));
	else
	  emit_insn (gen_tlsdesc_small_di (imm));
	tp = aarch64_load_tp (NULL);

	if (mode != Pmode)
	  tp = gen_lowpart (mode, tp);

	emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, tp, x0)));
	if (REG_P (dest))
	  set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    case SYMBOL_SMALL_TLSIE:
      {
	/* In ILP32, the mode of dest can be either SImode or DImode,
	   while the got entry is always of SImode size.  The mode of
	   dest depends on how dest is used: if dest is assigned to a
	   pointer (e.g. in the memory), it has SImode; it may have
	   DImode if dest is dereferenced to access the memeory.
	   This is why we have to handle three different tlsie_small
	   patterns here (two patterns for ILP32).  */
	machine_mode mode = GET_MODE (dest);
	rtx tmp_reg = gen_reg_rtx (mode);
	rtx tp = aarch64_load_tp (NULL);

	if (mode == ptr_mode)
	  {
	    if (mode == DImode)
	      emit_insn (gen_tlsie_small_di (tmp_reg, imm));
	    else
	      {
		emit_insn (gen_tlsie_small_si (tmp_reg, imm));
		tp = gen_lowpart (mode, tp);
	      }
	  }
	else
	  {
	    gcc_assert (mode == Pmode);
	    emit_insn (gen_tlsie_small_sidi (tmp_reg, imm));
	  }

	emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, tp, tmp_reg)));
	if (REG_P (dest))
	  set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    case SYMBOL_TLSLE12:
    case SYMBOL_TLSLE24:
    case SYMBOL_TLSLE32:
    case SYMBOL_TLSLE48:
      {
	machine_mode mode = GET_MODE (dest);
	rtx tp = aarch64_load_tp (NULL);

	if (mode != Pmode)
	  tp = gen_lowpart (mode, tp);

	switch (type)
	  {
	  case SYMBOL_TLSLE12:
	    emit_insn ((mode == DImode ? gen_tlsle12_di : gen_tlsle12_si)
			(dest, tp, imm));
	    break;
	  case SYMBOL_TLSLE24:
	    emit_insn ((mode == DImode ? gen_tlsle24_di : gen_tlsle24_si)
			(dest, tp, imm));
	  break;
	  case SYMBOL_TLSLE32:
	    emit_insn ((mode == DImode ? gen_tlsle32_di : gen_tlsle32_si)
			(dest, imm));
	    emit_insn ((mode == DImode ? gen_adddi3 : gen_addsi3)
			(dest, dest, tp));
	  break;
	  case SYMBOL_TLSLE48:
	    emit_insn ((mode == DImode ? gen_tlsle48_di : gen_tlsle48_si)
			(dest, imm));
	    emit_insn ((mode == DImode ? gen_adddi3 : gen_addsi3)
			(dest, dest, tp));
	    break;
	  default:
	    gcc_unreachable ();
	  }

	if (REG_P (dest))
	  set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    case SYMBOL_TINY_GOT:
      emit_insn (gen_ldr_got_tiny (dest, imm));
      return;

    case SYMBOL_TINY_TLSIE:
      {
	machine_mode mode = GET_MODE (dest);
	rtx tp = aarch64_load_tp (NULL);

	if (mode == ptr_mode)
	  {
	    if (mode == DImode)
	      emit_insn (gen_tlsie_tiny_di (dest, imm, tp));
	    else
	      {
		tp = gen_lowpart (mode, tp);
		emit_insn (gen_tlsie_tiny_si (dest, imm, tp));
	      }
	  }
	else
	  {
	    gcc_assert (mode == Pmode);
	    emit_insn (gen_tlsie_tiny_sidi (dest, imm, tp));
	  }

	if (REG_P (dest))
	  set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    default:
      gcc_unreachable ();
    }
}

/* Emit a move from SRC to DEST.  Assume that the move expanders can
   handle all moves if !can_create_pseudo_p ().  The distinction is
   important because, unlike emit_move_insn, the move expanders know
   how to force Pmode objects into the constant pool even when the
   constant pool address is not itself legitimate.  */
static rtx
aarch64_emit_move (rtx dest, rtx src)
{
  return (can_create_pseudo_p ()
	  ? emit_move_insn (dest, src)
	  : emit_move_insn_1 (dest, src));
}

/* Split a 128-bit move operation into two 64-bit move operations,
   taking care to handle partial overlap of register to register
   copies.  Special cases are needed when moving between GP regs and
   FP regs.  SRC can be a register, constant or memory; DST a register
   or memory.  If either operand is memory it must not have any side
   effects.  */
void
aarch64_split_128bit_move (rtx dst, rtx src)
{
  rtx dst_lo, dst_hi;
  rtx src_lo, src_hi;

  machine_mode mode = GET_MODE (dst);

  gcc_assert (mode == TImode || mode == TFmode);
  gcc_assert (!(side_effects_p (src) || side_effects_p (dst)));
  gcc_assert (mode == GET_MODE (src) || GET_MODE (src) == VOIDmode);

  if (REG_P (dst) && REG_P (src))
    {
      int src_regno = REGNO (src);
      int dst_regno = REGNO (dst);

      /* Handle FP <-> GP regs.  */
      if (FP_REGNUM_P (dst_regno) && GP_REGNUM_P (src_regno))
	{
	  src_lo = gen_lowpart (word_mode, src);
	  src_hi = gen_highpart (word_mode, src);

	  if (mode == TImode)
	    {
	      emit_insn (gen_aarch64_movtilow_di (dst, src_lo));
	      emit_insn (gen_aarch64_movtihigh_di (dst, src_hi));
	    }
	  else
	    {
	      emit_insn (gen_aarch64_movtflow_di (dst, src_lo));
	      emit_insn (gen_aarch64_movtfhigh_di (dst, src_hi));
	    }
	  return;
	}
      else if (GP_REGNUM_P (dst_regno) && FP_REGNUM_P (src_regno))
	{
	  dst_lo = gen_lowpart (word_mode, dst);
	  dst_hi = gen_highpart (word_mode, dst);

	  if (mode == TImode)
	    {
	      emit_insn (gen_aarch64_movdi_tilow (dst_lo, src));
	      emit_insn (gen_aarch64_movdi_tihigh (dst_hi, src));
	    }
	  else
	    {
	      emit_insn (gen_aarch64_movdi_tflow (dst_lo, src));
	      emit_insn (gen_aarch64_movdi_tfhigh (dst_hi, src));
	    }
	  return;
	}
    }

  dst_lo = gen_lowpart (word_mode, dst);
  dst_hi = gen_highpart (word_mode, dst);
  src_lo = gen_lowpart (word_mode, src);
  src_hi = gen_highpart_mode (word_mode, mode, src);

  /* At most one pairing may overlap.  */
  if (reg_overlap_mentioned_p (dst_lo, src_hi))
    {
      aarch64_emit_move (dst_hi, src_hi);
      aarch64_emit_move (dst_lo, src_lo);
    }
  else
    {
      aarch64_emit_move (dst_lo, src_lo);
      aarch64_emit_move (dst_hi, src_hi);
    }
}

bool
aarch64_split_128bit_move_p (rtx dst, rtx src)
{
  return (! REG_P (src)
	  || ! (FP_REGNUM_P (REGNO (dst)) && FP_REGNUM_P (REGNO (src))));
}

/* Split a complex SIMD combine.  */

void
aarch64_split_simd_combine (rtx dst, rtx src1, rtx src2)
{
  machine_mode src_mode = GET_MODE (src1);
  machine_mode dst_mode = GET_MODE (dst);

  gcc_assert (VECTOR_MODE_P (dst_mode));
  gcc_assert (register_operand (dst, dst_mode)
	      && register_operand (src1, src_mode)
	      && register_operand (src2, src_mode));

  rtx (*gen) (rtx, rtx, rtx);

  switch (src_mode)
    {
    case E_V8QImode:
      gen = gen_aarch64_simd_combinev8qi;
      break;
    case E_V4HImode:
      gen = gen_aarch64_simd_combinev4hi;
      break;
    case E_V2SImode:
      gen = gen_aarch64_simd_combinev2si;
      break;
    case E_V4HFmode:
      gen = gen_aarch64_simd_combinev4hf;
      break;
    case E_V2SFmode:
      gen = gen_aarch64_simd_combinev2sf;
      break;
    case E_DImode:
      gen = gen_aarch64_simd_combinedi;
      break;
    case E_DFmode:
      gen = gen_aarch64_simd_combinedf;
      break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (dst, src1, src2));
  return;
}

/* Split a complex SIMD move.  */

void
aarch64_split_simd_move (rtx dst, rtx src)
{
  machine_mode src_mode = GET_MODE (src);
  machine_mode dst_mode = GET_MODE (dst);

  gcc_assert (VECTOR_MODE_P (dst_mode));

  if (REG_P (dst) && REG_P (src))
    {
      rtx (*gen) (rtx, rtx);

      gcc_assert (VECTOR_MODE_P (src_mode));

      switch (src_mode)
	{
	case E_V16QImode:
	  gen = gen_aarch64_split_simd_movv16qi;
	  break;
	case E_V8HImode:
	  gen = gen_aarch64_split_simd_movv8hi;
	  break;
	case E_V4SImode:
	  gen = gen_aarch64_split_simd_movv4si;
	  break;
	case E_V2DImode:
	  gen = gen_aarch64_split_simd_movv2di;
	  break;
	case E_V8HFmode:
	  gen = gen_aarch64_split_simd_movv8hf;
	  break;
	case E_V4SFmode:
	  gen = gen_aarch64_split_simd_movv4sf;
	  break;
	case E_V2DFmode:
	  gen = gen_aarch64_split_simd_movv2df;
	  break;
	default:
	  gcc_unreachable ();
	}

      emit_insn (gen (dst, src));
      return;
    }
}

bool
aarch64_zero_extend_const_eq (machine_mode xmode, rtx x,
			      machine_mode ymode, rtx y)
{
  rtx r = simplify_const_unary_operation (ZERO_EXTEND, xmode, y, ymode);
  gcc_assert (r != NULL);
  return rtx_equal_p (x, r);
}
			      

static rtx
aarch64_force_temporary (machine_mode mode, rtx x, rtx value)
{
  if (can_create_pseudo_p ())
    return force_reg (mode, value);
  else
    {
      x = aarch64_emit_move (x, value);
      return x;
    }
}


static rtx
aarch64_add_offset (scalar_int_mode mode, rtx temp, rtx reg,
		    HOST_WIDE_INT offset)
{
  if (!aarch64_plus_immediate (GEN_INT (offset), mode))
    {
      rtx high;
      /* Load the full offset into a register.  This
         might be improvable in the future.  */
      high = GEN_INT (offset);
      offset = 0;
      high = aarch64_force_temporary (mode, temp, high);
      reg = aarch64_force_temporary (mode, temp,
				     gen_rtx_PLUS (mode, high, reg));
    }
  return plus_constant (mode, reg, offset);
}

static int
aarch64_internal_mov_immediate (rtx dest, rtx imm, bool generate,
				scalar_int_mode mode)
{
  int i;
  unsigned HOST_WIDE_INT val, val2, mask;
  int one_match, zero_match;
  int num_insns;

  val = INTVAL (imm);

  if (aarch64_move_imm (val, mode))
    {
      if (generate)
	emit_insn (gen_rtx_SET (dest, imm));
      return 1;
    }

  /* Check to see if the low 32 bits are either 0xffffXXXX or 0xXXXXffff
     (with XXXX non-zero). In that case check to see if the move can be done in
     a smaller mode.  */
  val2 = val & 0xffffffff;
  if (mode == DImode
      && aarch64_move_imm (val2, SImode)
      && (((val >> 32) & 0xffff) == 0 || (val >> 48) == 0))
    {
      if (generate)
	emit_insn (gen_rtx_SET (dest, GEN_INT (val2)));

      /* Check if we have to emit a second instruction by checking to see
         if any of the upper 32 bits of the original DI mode value is set.  */
      if (val == val2)
	return 1;

      i = (val >> 48) ? 48 : 32;

      if (generate)
	 emit_insn (gen_insv_immdi (dest, GEN_INT (i),
				    GEN_INT ((val >> i) & 0xffff)));

      return 2;
    }

  if ((val >> 32) == 0 || mode == SImode)
    {
      if (generate)
	{
	  emit_insn (gen_rtx_SET (dest, GEN_INT (val & 0xffff)));
	  if (mode == SImode)
	    emit_insn (gen_insv_immsi (dest, GEN_INT (16),
				       GEN_INT ((val >> 16) & 0xffff)));
	  else
	    emit_insn (gen_insv_immdi (dest, GEN_INT (16),
				       GEN_INT ((val >> 16) & 0xffff)));
	}
      return 2;
    }

  /* Remaining cases are all for DImode.  */

  mask = 0xffff;
  zero_match = ((val & mask) == 0) + ((val & (mask << 16)) == 0) +
    ((val & (mask << 32)) == 0) + ((val & (mask << 48)) == 0);
  one_match = ((~val & mask) == 0) + ((~val & (mask << 16)) == 0) +
    ((~val & (mask << 32)) == 0) + ((~val & (mask << 48)) == 0);

  if (zero_match != 2 && one_match != 2)
    {
      /* Try emitting a bitmask immediate with a movk replacing 16 bits.
	 For a 64-bit bitmask try whether changing 16 bits to all ones or
	 zeroes creates a valid bitmask.  To check any repeated bitmask,
	 try using 16 bits from the other 32-bit half of val.  */

      for (i = 0; i < 64; i += 16, mask <<= 16)
	{
	  val2 = val & ~mask;
	  if (val2 != val && aarch64_bitmask_imm (val2, mode))
	    break;
	  val2 = val | mask;
	  if (val2 != val && aarch64_bitmask_imm (val2, mode))
	    break;
	  val2 = val2 & ~mask;
	  val2 = val2 | (((val2 >> 32) | (val2 << 32)) & mask);
	  if (val2 != val && aarch64_bitmask_imm (val2, mode))
	    break;
	}
      if (i != 64)
	{
	  if (generate)
	    {
	      emit_insn (gen_rtx_SET (dest, GEN_INT (val2)));
	      emit_insn (gen_insv_immdi (dest, GEN_INT (i),
					 GEN_INT ((val >> i) & 0xffff)));
	    }
	  return 2;
	}
    }

  /* Generate 2-4 instructions, skipping 16 bits of all zeroes or ones which
     are emitted by the initial mov.  If one_match > zero_match, skip set bits,
     otherwise skip zero bits.  */

  num_insns = 1;
  mask = 0xffff;
  val2 = one_match > zero_match ? ~val : val;
  i = (val2 & mask) != 0 ? 0 : (val2 & (mask << 16)) != 0 ? 16 : 32;

  if (generate)
    emit_insn (gen_rtx_SET (dest, GEN_INT (one_match > zero_match
					   ? (val | ~(mask << i))
					   : (val & (mask << i)))));
  for (i += 16; i < 64; i += 16)
    {
      if ((val2 & (mask << i)) == 0)
	continue;
      if (generate)
	emit_insn (gen_insv_immdi (dest, GEN_INT (i),
				   GEN_INT ((val >> i) & 0xffff)));
      num_insns ++;
    }

  return num_insns;
}


void
aarch64_expand_mov_immediate (rtx dest, rtx imm)
{
  machine_mode mode = GET_MODE (dest);

  gcc_assert (mode == SImode || mode == DImode);

  /* Check on what type of symbol it is.  */
  scalar_int_mode int_mode;
  if ((GET_CODE (imm) == SYMBOL_REF
       || GET_CODE (imm) == LABEL_REF
       || GET_CODE (imm) == CONST)
      && is_a <scalar_int_mode> (mode, &int_mode))
    {
      rtx mem, base, offset;
      enum aarch64_symbol_type sty;

      /* If we have (const (plus symbol offset)), separate out the offset
	 before we start classifying the symbol.  */
      split_const (imm, &base, &offset);

      sty = aarch64_classify_symbol (base, offset);
      switch (sty)
	{
	case SYMBOL_FORCE_TO_MEM:
	  if (offset != const0_rtx
	      && targetm.cannot_force_const_mem (int_mode, imm))
	    {
	      gcc_assert (can_create_pseudo_p ());
	      base = aarch64_force_temporary (int_mode, dest, base);
	      base = aarch64_add_offset (int_mode, NULL, base,
					 INTVAL (offset));
	      aarch64_emit_move (dest, base);
	      return;
	    }

	  mem = force_const_mem (ptr_mode, imm);
	  gcc_assert (mem);

	  /* If we aren't generating PC relative literals, then
	     we need to expand the literal pool access carefully.
	     This is something that needs to be done in a number
	     of places, so could well live as a separate function.  */
	  if (!aarch64_pcrelative_literal_loads)
	    {
	      gcc_assert (can_create_pseudo_p ());
	      base = gen_reg_rtx (ptr_mode);
	      aarch64_expand_mov_immediate (base, XEXP (mem, 0));
	      if (ptr_mode != Pmode)
		base = convert_memory_address (Pmode, base);
	      mem = gen_rtx_MEM (ptr_mode, base);
	    }

	  if (int_mode != ptr_mode)
	    mem = gen_rtx_ZERO_EXTEND (int_mode, mem);

	  emit_insn (gen_rtx_SET (dest, mem));

	  return;

        case SYMBOL_SMALL_TLSGD:
        case SYMBOL_SMALL_TLSDESC:
	case SYMBOL_SMALL_TLSIE:
	case SYMBOL_SMALL_GOT_28K:
	case SYMBOL_SMALL_GOT_4G:
	case SYMBOL_TINY_GOT:
	case SYMBOL_TINY_TLSIE:
	  if (offset != const0_rtx)
	    {
	      gcc_assert(can_create_pseudo_p ());
	      base = aarch64_force_temporary (int_mode, dest, base);
	      base = aarch64_add_offset (int_mode, NULL, base,
					 INTVAL (offset));
	      aarch64_emit_move (dest, base);
	      return;
	    }
	  /* FALLTHRU */

	case SYMBOL_SMALL_ABSOLUTE:
	case SYMBOL_TINY_ABSOLUTE:
	case SYMBOL_TLSLE12:
	case SYMBOL_TLSLE24:
	case SYMBOL_TLSLE32:
	case SYMBOL_TLSLE48:
	  aarch64_load_symref_appropriately (dest, imm, sty);
	  return;

	default:
	  gcc_unreachable ();
	}
    }

  if (!CONST_INT_P (imm))
    {
      if (GET_CODE (imm) == HIGH)
	emit_insn (gen_rtx_SET (dest, imm));
      else
        {
	  rtx mem = force_const_mem (mode, imm);
	  gcc_assert (mem);
	  emit_insn (gen_rtx_SET (dest, mem));
	}

      return;
    }

  aarch64_internal_mov_immediate (dest, imm, true,
				  as_a <scalar_int_mode> (mode));
}

/* Add DELTA to REGNUM in mode MODE.  SCRATCHREG can be used to hold a
   temporary value if necessary.  FRAME_RELATED_P should be true if
   the RTX_FRAME_RELATED flag should be set and CFA adjustments added
   to the generated instructions.  If SCRATCHREG is known to hold
   abs (delta), EMIT_MOVE_IMM can be set to false to avoid emitting the
   immediate again.

   Since this function may be used to adjust the stack pointer, we must
   ensure that it cannot cause transient stack deallocation (for example
   by first incrementing SP and then decrementing when adjusting by a
   large immediate).  */

static void
aarch64_add_constant_internal (scalar_int_mode mode, int regnum,
			       int scratchreg, HOST_WIDE_INT delta,
			       bool frame_related_p, bool emit_move_imm)
{
  HOST_WIDE_INT mdelta = abs_hwi (delta);
  rtx this_rtx = gen_rtx_REG (mode, regnum);
  rtx_insn *insn;

  if (!mdelta)
    return;

  /* Single instruction adjustment.  */
  if (aarch64_uimm12_shift (mdelta))
    {
      insn = emit_insn (gen_add2_insn (this_rtx, GEN_INT (delta)));
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      return;
    }

  /* Emit 2 additions/subtractions if the adjustment is less than 24 bits.
     Only do this if mdelta is not a 16-bit move as adjusting using a move
     is better.  */
  if (mdelta < 0x1000000 && !aarch64_move_imm (mdelta, mode))
    {
      HOST_WIDE_INT low_off = mdelta & 0xfff;

      low_off = delta < 0 ? -low_off : low_off;
      insn = emit_insn (gen_add2_insn (this_rtx, GEN_INT (low_off)));
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      insn = emit_insn (gen_add2_insn (this_rtx, GEN_INT (delta - low_off)));
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      return;
    }

  /* Emit a move immediate if required and an addition/subtraction.  */
  rtx scratch_rtx = gen_rtx_REG (mode, scratchreg);
  if (emit_move_imm)
    aarch64_internal_mov_immediate (scratch_rtx, GEN_INT (mdelta), true, mode);
  insn = emit_insn (delta < 0 ? gen_sub2_insn (this_rtx, scratch_rtx)
			      : gen_add2_insn (this_rtx, scratch_rtx));
  if (frame_related_p)
    {
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      rtx adj = plus_constant (mode, this_rtx, delta);
      add_reg_note (insn , REG_CFA_ADJUST_CFA, gen_rtx_SET (this_rtx, adj));
    }
}

static inline void
aarch64_add_constant (scalar_int_mode mode, int regnum, int scratchreg,
		      HOST_WIDE_INT delta)
{
  aarch64_add_constant_internal (mode, regnum, scratchreg, delta, false, true);
}

static inline void
aarch64_add_sp (int scratchreg, HOST_WIDE_INT delta, bool emit_move_imm)
{
  aarch64_add_constant_internal (Pmode, SP_REGNUM, scratchreg, delta,
				 true, emit_move_imm);
}

static inline void
aarch64_sub_sp (int scratchreg, HOST_WIDE_INT delta, bool frame_related_p)
{
  aarch64_add_constant_internal (Pmode, SP_REGNUM, scratchreg, -delta,
				 frame_related_p, true);
}

static bool
aarch64_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
				 tree exp ATTRIBUTE_UNUSED)
{
  /* Currently, always true.  */
  return true;
}

/* Implement TARGET_PASS_BY_REFERENCE.  */

static bool
aarch64_pass_by_reference (cumulative_args_t pcum ATTRIBUTE_UNUSED,
			   machine_mode mode,
			   const_tree type,
			   bool named ATTRIBUTE_UNUSED)
{
  HOST_WIDE_INT size;
  machine_mode dummymode;
  int nregs;

  /* GET_MODE_SIZE (BLKmode) is useless since it is 0.  */
  size = (mode == BLKmode && type)
    ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode);

  /* Aggregates are passed by reference based on their size.  */
  if (type && AGGREGATE_TYPE_P (type))
    {
      size = int_size_in_bytes (type);
    }

  /* Variable sized arguments are always returned by reference.  */
  if (size < 0)
    return true;

  /* Can this be a candidate to be passed in fp/simd register(s)?  */
  if (aarch64_vfp_is_call_or_return_candidate (mode, type,
					       &dummymode, &nregs,
					       NULL))
    return false;

  /* Arguments which are variable sized or larger than 2 registers are
     passed by reference unless they are a homogenous floating point
     aggregate.  */
  return size > 2 * UNITS_PER_WORD;
}

/* Return TRUE if VALTYPE is padded to its least significant bits.  */
static bool
aarch64_return_in_msb (const_tree valtype)
{
  machine_mode dummy_mode;
  int dummy_int;

  /* Never happens in little-endian mode.  */
  if (!BYTES_BIG_ENDIAN)
    return false;

  /* Only composite types smaller than or equal to 16 bytes can
     be potentially returned in registers.  */
  if (!aarch64_composite_type_p (valtype, TYPE_MODE (valtype))
      || int_size_in_bytes (valtype) <= 0
      || int_size_in_bytes (valtype) > 16)
    return false;

  /* But not a composite that is an HFA (Homogeneous Floating-point Aggregate)
     or an HVA (Homogeneous Short-Vector Aggregate); such a special composite
     is always passed/returned in the least significant bits of fp/simd
     register(s).  */
  if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (valtype), valtype,
					       &dummy_mode, &dummy_int, NULL))
    return false;

  return true;
}

/* Implement TARGET_FUNCTION_VALUE.
   Define how to find the value returned by a function.  */

static rtx
aarch64_function_value (const_tree type, const_tree func,
			bool outgoing ATTRIBUTE_UNUSED)
{
  machine_mode mode;
  int unsignedp;
  int count;
  machine_mode ag_mode;

  mode = TYPE_MODE (type);
  if (INTEGRAL_TYPE_P (type))
    mode = promote_function_mode (type, mode, &unsignedp, func, 1);

  if (aarch64_return_in_msb (type))
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);

      if (size % UNITS_PER_WORD != 0)
	{
	  size += UNITS_PER_WORD - size % UNITS_PER_WORD;
	  mode = int_mode_for_size (size * BITS_PER_UNIT, 0).require ();
	}
    }

  if (aarch64_vfp_is_call_or_return_candidate (mode, type,
					       &ag_mode, &count, NULL))
    {
      if (!aarch64_composite_type_p (type, mode))
	{
	  gcc_assert (count == 1 && mode == ag_mode);
	  return gen_rtx_REG (mode, V0_REGNUM);
	}
      else
	{
	  int i;
	  rtx par;

	  par = gen_rtx_PARALLEL (mode, rtvec_alloc (count));
	  for (i = 0; i < count; i++)
	    {
	      rtx tmp = gen_rtx_REG (ag_mode, V0_REGNUM + i);
	      tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp,
				       GEN_INT (i * GET_MODE_SIZE (ag_mode)));
	      XVECEXP (par, 0, i) = tmp;
	    }
	  return par;
	}
    }
  else
    return gen_rtx_REG (mode, R0_REGNUM);
}

/* Implements TARGET_FUNCTION_VALUE_REGNO_P.
   Return true if REGNO is the number of a hard register in which the values
   of called function may come back.  */

static bool
aarch64_function_value_regno_p (const unsigned int regno)
{
  /* Maximum of 16 bytes can be returned in the general registers.  Examples
     of 16-byte return values are: 128-bit integers and 16-byte small
     structures (excluding homogeneous floating-point aggregates).  */
  if (regno == R0_REGNUM || regno == R1_REGNUM)
    return true;

  /* Up to four fp/simd registers can return a function value, e.g. a
     homogeneous floating-point aggregate having four members.  */
  if (regno >= V0_REGNUM && regno < V0_REGNUM + HA_MAX_NUM_FLDS)
    return TARGET_FLOAT;

  return false;
}

/* Implement TARGET_RETURN_IN_MEMORY.

   If the type T of the result of a function is such that
     void func (T arg)
   would require that arg be passed as a value in a register (or set of
   registers) according to the parameter passing rules, then the result
   is returned in the same registers as would be used for such an
   argument.  */

static bool
aarch64_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
{
  HOST_WIDE_INT size;
  machine_mode ag_mode;
  int count;

  if (!AGGREGATE_TYPE_P (type)
      && TREE_CODE (type) != COMPLEX_TYPE
      && TREE_CODE (type) != VECTOR_TYPE)
    /* Simple scalar types always returned in registers.  */
    return false;

  if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (type),
					       type,
					       &ag_mode,
					       &count,
					       NULL))
    return false;

  /* Types larger than 2 registers returned in memory.  */
  size = int_size_in_bytes (type);
  return (size < 0 || size > 2 * UNITS_PER_WORD);
}

static bool
aarch64_vfp_is_call_candidate (cumulative_args_t pcum_v, machine_mode mode,
			       const_tree type, int *nregs)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  return aarch64_vfp_is_call_or_return_candidate (mode,
						  type,
						  &pcum->aapcs_vfp_rmode,
						  nregs,
						  NULL);
}

/* Given MODE and TYPE of a function argument, return the alignment in
   bits.  The idea is to suppress any stronger alignment requested by
   the user and opt for the natural alignment (specified in AAPCS64 \S 4.1).
   This is a helper function for local use only.  */

static unsigned int
aarch64_function_arg_alignment (machine_mode mode, const_tree type)
{
  if (!type)
    return GET_MODE_ALIGNMENT (mode);

  if (integer_zerop (TYPE_SIZE (type)))
    return 0;

  gcc_assert (TYPE_MODE (type) == mode);

  if (!AGGREGATE_TYPE_P (type))
    return TYPE_ALIGN (TYPE_MAIN_VARIANT (type));

  if (TREE_CODE (type) == ARRAY_TYPE)
    return TYPE_ALIGN (TREE_TYPE (type));

  unsigned int alignment = 0;
  for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
    if (TREE_CODE (field) == FIELD_DECL)
      alignment = std::max (alignment, DECL_ALIGN (field));

  return alignment;
}

/* Layout a function argument according to the AAPCS64 rules.  The rule
   numbers refer to the rule numbers in the AAPCS64.  */

static void
aarch64_layout_arg (cumulative_args_t pcum_v, machine_mode mode,
		    const_tree type,
		    bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  int ncrn, nvrn, nregs;
  bool allocate_ncrn, allocate_nvrn;
  HOST_WIDE_INT size;

  /* We need to do this once per argument.  */
  if (pcum->aapcs_arg_processed)
    return;

  pcum->aapcs_arg_processed = true;

  /* Size in bytes, rounded to the nearest multiple of 8 bytes.  */
  size
    = ROUND_UP (type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode),
		UNITS_PER_WORD);

  allocate_ncrn = (type) ? !(FLOAT_TYPE_P (type)) : !FLOAT_MODE_P (mode);
  allocate_nvrn = aarch64_vfp_is_call_candidate (pcum_v,
						 mode,
						 type,
						 &nregs);

  /* allocate_ncrn may be false-positive, but allocate_nvrn is quite reliable.
     The following code thus handles passing by SIMD/FP registers first.  */

  nvrn = pcum->aapcs_nvrn;

  /* C1 - C5 for floating point, homogenous floating point aggregates (HFA)
     and homogenous short-vector aggregates (HVA).  */
  if (allocate_nvrn)
    {
      if (!TARGET_FLOAT)
	aarch64_err_no_fpadvsimd (mode, "argument");

      if (nvrn + nregs <= NUM_FP_ARG_REGS)
	{
	  pcum->aapcs_nextnvrn = nvrn + nregs;
	  if (!aarch64_composite_type_p (type, mode))
	    {
	      gcc_assert (nregs == 1);
	      pcum->aapcs_reg = gen_rtx_REG (mode, V0_REGNUM + nvrn);
	    }
	  else
	    {
	      rtx par;
	      int i;
	      par = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs));
	      for (i = 0; i < nregs; i++)
		{
		  rtx tmp = gen_rtx_REG (pcum->aapcs_vfp_rmode,
					 V0_REGNUM + nvrn + i);
		  tmp = gen_rtx_EXPR_LIST
		    (VOIDmode, tmp,
		     GEN_INT (i * GET_MODE_SIZE (pcum->aapcs_vfp_rmode)));
		  XVECEXP (par, 0, i) = tmp;
		}
	      pcum->aapcs_reg = par;
	    }
	  return;
	}
      else
	{
	  /* C.3 NSRN is set to 8.  */
	  pcum->aapcs_nextnvrn = NUM_FP_ARG_REGS;
	  goto on_stack;
	}
    }

  ncrn = pcum->aapcs_ncrn;
  nregs = size / UNITS_PER_WORD;

  /* C6 - C9.  though the sign and zero extension semantics are
     handled elsewhere.  This is the case where the argument fits
     entirely general registers.  */
  if (allocate_ncrn && (ncrn + nregs <= NUM_ARG_REGS))
    {

      gcc_assert (nregs == 0 || nregs == 1 || nregs == 2);

      /* C.8 if the argument has an alignment of 16 then the NGRN is
         rounded up to the next even number.  */
      if (nregs == 2
	  && ncrn % 2
	  /* The == 16 * BITS_PER_UNIT instead of >= 16 * BITS_PER_UNIT
	     comparison is there because for > 16 * BITS_PER_UNIT
	     alignment nregs should be > 2 and therefore it should be
	     passed by reference rather than value.  */
	  && aarch64_function_arg_alignment (mode, type) == 16 * BITS_PER_UNIT)
	{
	  ++ncrn;
	  gcc_assert (ncrn + nregs <= NUM_ARG_REGS);
	}

      /* NREGS can be 0 when e.g. an empty structure is to be passed.
         A reg is still generated for it, but the caller should be smart
	 enough not to use it.  */
      if (nregs == 0 || nregs == 1 || GET_MODE_CLASS (mode) == MODE_INT)
	pcum->aapcs_reg = gen_rtx_REG (mode, R0_REGNUM + ncrn);
      else
	{
	  rtx par;
	  int i;

	  par = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs));
	  for (i = 0; i < nregs; i++)
	    {
	      rtx tmp = gen_rtx_REG (word_mode, R0_REGNUM + ncrn + i);
	      tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp,
				       GEN_INT (i * UNITS_PER_WORD));
	      XVECEXP (par, 0, i) = tmp;
	    }
	  pcum->aapcs_reg = par;
	}

      pcum->aapcs_nextncrn = ncrn + nregs;
      return;
    }

  /* C.11  */
  pcum->aapcs_nextncrn = NUM_ARG_REGS;

  /* The argument is passed on stack; record the needed number of words for
     this argument and align the total size if necessary.  */
on_stack:
  pcum->aapcs_stack_words = size / UNITS_PER_WORD;

  if (aarch64_function_arg_alignment (mode, type) == 16 * BITS_PER_UNIT)
    pcum->aapcs_stack_size = ROUND_UP (pcum->aapcs_stack_size,
				       16 / UNITS_PER_WORD);
  return;
}

/* Implement TARGET_FUNCTION_ARG.  */

static rtx
aarch64_function_arg (cumulative_args_t pcum_v, machine_mode mode,
		      const_tree type, bool named)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  gcc_assert (pcum->pcs_variant == ARM_PCS_AAPCS64);

  if (mode == VOIDmode)
    return NULL_RTX;

  aarch64_layout_arg (pcum_v, mode, type, named);
  return pcum->aapcs_reg;
}

void
aarch64_init_cumulative_args (CUMULATIVE_ARGS *pcum,
			   const_tree fntype ATTRIBUTE_UNUSED,
			   rtx libname ATTRIBUTE_UNUSED,
			   const_tree fndecl ATTRIBUTE_UNUSED,
			   unsigned n_named ATTRIBUTE_UNUSED)
{
  pcum->aapcs_ncrn = 0;
  pcum->aapcs_nvrn = 0;
  pcum->aapcs_nextncrn = 0;
  pcum->aapcs_nextnvrn = 0;
  pcum->pcs_variant = ARM_PCS_AAPCS64;
  pcum->aapcs_reg = NULL_RTX;
  pcum->aapcs_arg_processed = false;
  pcum->aapcs_stack_words = 0;
  pcum->aapcs_stack_size = 0;

  if (!TARGET_FLOAT
      && fndecl && TREE_PUBLIC (fndecl)
      && fntype && fntype != error_mark_node)
    {
      const_tree type = TREE_TYPE (fntype);
      machine_mode mode ATTRIBUTE_UNUSED; /* To pass pointer as argument.  */
      int nregs ATTRIBUTE_UNUSED; /* Likewise.  */
      if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (type), type,
						   &mode, &nregs, NULL))
	aarch64_err_no_fpadvsimd (TYPE_MODE (type), "return type");
    }
  return;
}

static void
aarch64_function_arg_advance (cumulative_args_t pcum_v,
			      machine_mode mode,
			      const_tree type,
			      bool named)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  if (pcum->pcs_variant == ARM_PCS_AAPCS64)
    {
      aarch64_layout_arg (pcum_v, mode, type, named);
      gcc_assert ((pcum->aapcs_reg != NULL_RTX)
		  != (pcum->aapcs_stack_words != 0));
      pcum->aapcs_arg_processed = false;
      pcum->aapcs_ncrn = pcum->aapcs_nextncrn;
      pcum->aapcs_nvrn = pcum->aapcs_nextnvrn;
      pcum->aapcs_stack_size += pcum->aapcs_stack_words;
      pcum->aapcs_stack_words = 0;
      pcum->aapcs_reg = NULL_RTX;
    }
}

bool
aarch64_function_arg_regno_p (unsigned regno)
{
  return ((GP_REGNUM_P (regno) && regno < R0_REGNUM + NUM_ARG_REGS)
	  || (FP_REGNUM_P (regno) && regno < V0_REGNUM + NUM_FP_ARG_REGS));
}

/* Implement FUNCTION_ARG_BOUNDARY.  Every parameter gets at least
   PARM_BOUNDARY bits of alignment, but will be given anything up
   to STACK_BOUNDARY bits if the type requires it.  This makes sure
   that both before and after the layout of each argument, the Next
   Stacked Argument Address (NSAA) will have a minimum alignment of
   8 bytes.  */

static unsigned int
aarch64_function_arg_boundary (machine_mode mode, const_tree type)
{
  unsigned int alignment = aarch64_function_arg_alignment (mode, type);
  return MIN (MAX (alignment, PARM_BOUNDARY), STACK_BOUNDARY);
}

/* Implement TARGET_FUNCTION_ARG_PADDING.

   Small aggregate types are placed in the lowest memory address.

   The related parameter passing rules are B.4, C.3, C.5 and C.14.  */

static pad_direction
aarch64_function_arg_padding (machine_mode mode, const_tree type)
{
  /* On little-endian targets, the least significant byte of every stack
     argument is passed at the lowest byte address of the stack slot.  */
  if (!BYTES_BIG_ENDIAN)
    return PAD_UPWARD;

  /* Otherwise, integral, floating-point and pointer types are padded downward:
     the least significant byte of a stack argument is passed at the highest
     byte address of the stack slot.  */
  if (type
      ? (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type)
	 || POINTER_TYPE_P (type))
      : (SCALAR_INT_MODE_P (mode) || SCALAR_FLOAT_MODE_P (mode)))
    return PAD_DOWNWARD;

  /* Everything else padded upward, i.e. data in first byte of stack slot.  */
  return PAD_UPWARD;
}

/* Similarly, for use by BLOCK_REG_PADDING (MODE, TYPE, FIRST).

   It specifies padding for the last (may also be the only)
   element of a block move between registers and memory.  If
   assuming the block is in the memory, padding upward means that
   the last element is padded after its highest significant byte,
   while in downward padding, the last element is padded at the
   its least significant byte side.

   Small aggregates and small complex types are always padded
   upwards.

   We don't need to worry about homogeneous floating-point or
   short-vector aggregates; their move is not affected by the
   padding direction determined here.  Regardless of endianness,
   each element of such an aggregate is put in the least
   significant bits of a fp/simd register.

   Return !BYTES_BIG_ENDIAN if the least significant byte of the
   register has useful data, and return the opposite if the most
   significant byte does.  */

bool
aarch64_pad_reg_upward (machine_mode mode, const_tree type,
		     bool first ATTRIBUTE_UNUSED)
{

  /* Small composite types are always padded upward.  */
  if (BYTES_BIG_ENDIAN && aarch64_composite_type_p (type, mode))
    {
      HOST_WIDE_INT size = (type ? int_size_in_bytes (type)
			    : GET_MODE_SIZE (mode));
      if (size < 2 * UNITS_PER_WORD)
	return true;
    }

  /* Otherwise, use the default padding.  */
  return !BYTES_BIG_ENDIAN;
}

static scalar_int_mode
aarch64_libgcc_cmp_return_mode (void)
{
  return SImode;
}

#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)

/* We use the 12-bit shifted immediate arithmetic instructions so values
   must be multiple of (1 << 12), i.e. 4096.  */
#define ARITH_FACTOR 4096

#if (PROBE_INTERVAL % ARITH_FACTOR) != 0
#error Cannot use simple address calculation for stack probing
#endif

/* The pair of scratch registers used for stack probing.  */
#define PROBE_STACK_FIRST_REG  9
#define PROBE_STACK_SECOND_REG 10

/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
   inclusive.  These are offsets from the current stack pointer.  */

static void
aarch64_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
{
  rtx reg1 = gen_rtx_REG (Pmode, PROBE_STACK_FIRST_REG);

  /* See the same assertion on PROBE_INTERVAL above.  */
  gcc_assert ((first % ARITH_FACTOR) == 0);

  /* See if we have a constant small number of probes to generate.  If so,
     that's the easy case.  */
  if (size <= PROBE_INTERVAL)
    {
      const HOST_WIDE_INT base = ROUND_UP (size, ARITH_FACTOR);

      emit_set_insn (reg1,
		     plus_constant (Pmode,
				    stack_pointer_rtx, -(first + base)));
      emit_stack_probe (plus_constant (Pmode, reg1, base - size));
    }

  /* The run-time loop is made up of 8 insns in the generic case while the
     compile-time loop is made up of 4+2*(n-2) insns for n # of intervals.  */
  else if (size <= 4 * PROBE_INTERVAL)
    {
      HOST_WIDE_INT i, rem;

      emit_set_insn (reg1,
		     plus_constant (Pmode,
				    stack_pointer_rtx,
				    -(first + PROBE_INTERVAL)));
      emit_stack_probe (reg1);

      /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 2 until
	 it exceeds SIZE.  If only two probes are needed, this will not
	 generate any code.  Then probe at FIRST + SIZE.  */
      for (i = 2 * PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
	{
	  emit_set_insn (reg1,
			 plus_constant (Pmode, reg1, -PROBE_INTERVAL));
	  emit_stack_probe (reg1);
	}

      rem = size - (i - PROBE_INTERVAL);
      if (rem > 256)
	{
	  const HOST_WIDE_INT base = ROUND_UP (rem, ARITH_FACTOR);

	  emit_set_insn (reg1, plus_constant (Pmode, reg1, -base));
	  emit_stack_probe (plus_constant (Pmode, reg1, base - rem));
	}
      else
	emit_stack_probe (plus_constant (Pmode, reg1, -rem));
    }

  /* Otherwise, do the same as above, but in a loop.  Note that we must be
     extra careful with variables wrapping around because we might be at
     the very top (or the very bottom) of the address space and we have
     to be able to handle this case properly; in particular, we use an
     equality test for the loop condition.  */
  else
    {
      rtx reg2 = gen_rtx_REG (Pmode, PROBE_STACK_SECOND_REG);

      /* Step 1: round SIZE to the previous multiple of the interval.  */

      HOST_WIDE_INT rounded_size = size & -PROBE_INTERVAL;


      /* Step 2: compute initial and final value of the loop counter.  */

      /* TEST_ADDR = SP + FIRST.  */
      emit_set_insn (reg1,
		     plus_constant (Pmode, stack_pointer_rtx, -first));

      /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
      HOST_WIDE_INT adjustment = - (first + rounded_size);
      if (! aarch64_uimm12_shift (adjustment))
	{
	  aarch64_internal_mov_immediate (reg2, GEN_INT (adjustment),
					  true, Pmode);
	  emit_set_insn (reg2, gen_rtx_PLUS (Pmode, stack_pointer_rtx, reg2));
	}
      else
	{
	  emit_set_insn (reg2,
			 plus_constant (Pmode, stack_pointer_rtx, adjustment));
	}
	  	
      /* Step 3: the loop

	 do
	   {
	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
	     probe at TEST_ADDR
	   }
	 while (TEST_ADDR != LAST_ADDR)

	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
	 until it is equal to ROUNDED_SIZE.  */

      emit_insn (gen_probe_stack_range (reg1, reg1, reg2));


      /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
	 that SIZE is equal to ROUNDED_SIZE.  */

      if (size != rounded_size)
	{
	  HOST_WIDE_INT rem = size - rounded_size;

	  if (rem > 256)
	    {
	      const HOST_WIDE_INT base = ROUND_UP (rem, ARITH_FACTOR);

	      emit_set_insn (reg2, plus_constant (Pmode, reg2, -base));
	      emit_stack_probe (plus_constant (Pmode, reg2, base - rem));
	    }
	  else
	    emit_stack_probe (plus_constant (Pmode, reg2, -rem));
	}
    }

  /* Make sure nothing is scheduled before we are done.  */
  emit_insn (gen_blockage ());
}

/* Probe a range of stack addresses from REG1 to REG2 inclusive.  These are
   absolute addresses.  */

const char *
aarch64_output_probe_stack_range (rtx reg1, rtx reg2)
{
  static int labelno = 0;
  char loop_lab[32];
  rtx xops[2];

  ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);

  /* Loop.  */
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);

  /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
  xops[0] = reg1;
  xops[1] = GEN_INT (PROBE_INTERVAL);
  output_asm_insn ("sub\t%0, %0, %1", xops);

  /* Probe at TEST_ADDR.  */
  output_asm_insn ("str\txzr, [%0]", xops);

  /* Test if TEST_ADDR == LAST_ADDR.  */
  xops[1] = reg2;
  output_asm_insn ("cmp\t%0, %1", xops);

  /* Branch.  */
  fputs ("\tb.ne\t", asm_out_file);
  assemble_name_raw (asm_out_file, loop_lab);
  fputc ('\n', asm_out_file);

  return "";
}

static bool
aarch64_frame_pointer_required (void)
{
  /* Use the frame pointer if enabled and it is not a leaf function, unless
     leaf frame pointer omission is disabled.  If the frame pointer is enabled,
     force the frame pointer in leaf functions which use LR.  */
  if (flag_omit_frame_pointer == 2
      && !(flag_omit_leaf_frame_pointer
	   && crtl->is_leaf
	   && !df_regs_ever_live_p (LR_REGNUM)))
    return true;

  return false;
}

/* Mark the registers that need to be saved by the callee and calculate
   the size of the callee-saved registers area and frame record (both FP
   and LR may be omitted).  If the function is not a leaf, ensure LR is
   saved at the bottom of the callee-save area.  */
static void
aarch64_layout_frame (void)
{
  HOST_WIDE_INT offset = 0;
  int regno, last_fp_reg = INVALID_REGNUM;

  if (reload_completed && cfun->machine->frame.laid_out)
    return;

  /* Force a frame chain for EH returns so the return address is at FP+8.  */
  cfun->machine->frame.emit_frame_chain
    = frame_pointer_needed || crtl->calls_eh_return;

#define SLOT_NOT_REQUIRED (-2)
#define SLOT_REQUIRED     (-1)

  cfun->machine->frame.wb_candidate1 = INVALID_REGNUM;
  cfun->machine->frame.wb_candidate2 = INVALID_REGNUM;

  /* First mark all the registers that really need to be saved...  */
  for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++)
    cfun->machine->frame.reg_offset[regno] = SLOT_NOT_REQUIRED;

  for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++)
    cfun->machine->frame.reg_offset[regno] = SLOT_NOT_REQUIRED;

  /* ... that includes the eh data registers (if needed)...  */
  if (crtl->calls_eh_return)
    for (regno = 0; EH_RETURN_DATA_REGNO (regno) != INVALID_REGNUM; regno++)
      cfun->machine->frame.reg_offset[EH_RETURN_DATA_REGNO (regno)]
	= SLOT_REQUIRED;

  /* ... and any callee saved register that dataflow says is live.  */
  for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++)
    if (df_regs_ever_live_p (regno)
	&& (regno == R30_REGNUM
	    || !call_used_regs[regno]))
      cfun->machine->frame.reg_offset[regno] = SLOT_REQUIRED;

  for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++)
    if (df_regs_ever_live_p (regno)
	&& !call_used_regs[regno])
      {
	cfun->machine->frame.reg_offset[regno] = SLOT_REQUIRED;
	last_fp_reg = regno;
      }

  if (cfun->machine->frame.emit_frame_chain)
    {
      /* FP and LR are placed in the linkage record.  */
      cfun->machine->frame.reg_offset[R29_REGNUM] = 0;
      cfun->machine->frame.wb_candidate1 = R29_REGNUM;
      cfun->machine->frame.reg_offset[R30_REGNUM] = UNITS_PER_WORD;
      cfun->machine->frame.wb_candidate2 = R30_REGNUM;
      offset = 2 * UNITS_PER_WORD;
    }
  else if (!crtl->is_leaf)
    {
      /* Ensure LR is saved at the bottom of the callee-saves.  */
      cfun->machine->frame.reg_offset[R30_REGNUM] = 0;
      cfun->machine->frame.wb_candidate1 = R30_REGNUM;
      offset = UNITS_PER_WORD;
    }

  /* Now assign stack slots for them.  */
  for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++)
    if (cfun->machine->frame.reg_offset[regno] == SLOT_REQUIRED)
      {
	cfun->machine->frame.reg_offset[regno] = offset;
	if (cfun->machine->frame.wb_candidate1 == INVALID_REGNUM)
	  cfun->machine->frame.wb_candidate1 = regno;
	else if (cfun->machine->frame.wb_candidate2 == INVALID_REGNUM)
	  cfun->machine->frame.wb_candidate2 = regno;
	offset += UNITS_PER_WORD;
      }

  HOST_WIDE_INT max_int_offset = offset;
  offset = ROUND_UP (offset, STACK_BOUNDARY / BITS_PER_UNIT);
  bool has_align_gap = offset != max_int_offset;

  for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++)
    if (cfun->machine->frame.reg_offset[regno] == SLOT_REQUIRED)
      {
	/* If there is an alignment gap between integer and fp callee-saves,
	   allocate the last fp register to it if possible.  */
	if (regno == last_fp_reg && has_align_gap && (offset & 8) == 0)
	  {
	    cfun->machine->frame.reg_offset[regno] = max_int_offset;
	    break;
	  }

	cfun->machine->frame.reg_offset[regno] = offset;
	if (cfun->machine->frame.wb_candidate1 == INVALID_REGNUM)
	  cfun->machine->frame.wb_candidate1 = regno;
	else if (cfun->machine->frame.wb_candidate2 == INVALID_REGNUM
		 && cfun->machine->frame.wb_candidate1 >= V0_REGNUM)
	  cfun->machine->frame.wb_candidate2 = regno;
	offset += UNITS_PER_WORD;
      }

  offset = ROUND_UP (offset, STACK_BOUNDARY / BITS_PER_UNIT);

  cfun->machine->frame.saved_regs_size = offset;

  HOST_WIDE_INT varargs_and_saved_regs_size
    = offset + cfun->machine->frame.saved_varargs_size;

  cfun->machine->frame.hard_fp_offset
    = ROUND_UP (varargs_and_saved_regs_size + get_frame_size (),
		STACK_BOUNDARY / BITS_PER_UNIT);

  cfun->machine->frame.frame_size
    = ROUND_UP (cfun->machine->frame.hard_fp_offset
		+ crtl->outgoing_args_size,
		STACK_BOUNDARY / BITS_PER_UNIT);

  cfun->machine->frame.locals_offset = cfun->machine->frame.saved_varargs_size;

  cfun->machine->frame.initial_adjust = 0;
  cfun->machine->frame.final_adjust = 0;
  cfun->machine->frame.callee_adjust = 0;
  cfun->machine->frame.callee_offset = 0;

  HOST_WIDE_INT max_push_offset = 0;
  if (cfun->machine->frame.wb_candidate2 != INVALID_REGNUM)
    max_push_offset = 512;
  else if (cfun->machine->frame.wb_candidate1 != INVALID_REGNUM)
    max_push_offset = 256;

  if (cfun->machine->frame.frame_size < max_push_offset
      && crtl->outgoing_args_size == 0)
    {
      /* Simple, small frame with no outgoing arguments:
	 stp reg1, reg2, [sp, -frame_size]!
	 stp reg3, reg4, [sp, 16]  */
      cfun->machine->frame.callee_adjust = cfun->machine->frame.frame_size;
    }
  else if ((crtl->outgoing_args_size
	    + cfun->machine->frame.saved_regs_size < 512)
	   && !(cfun->calls_alloca
		&& cfun->machine->frame.hard_fp_offset < max_push_offset))
    {
      /* Frame with small outgoing arguments:
	 sub sp, sp, frame_size
	 stp reg1, reg2, [sp, outgoing_args_size]
	 stp reg3, reg4, [sp, outgoing_args_size + 16]  */
      cfun->machine->frame.initial_adjust = cfun->machine->frame.frame_size;
      cfun->machine->frame.callee_offset
	= cfun->machine->frame.frame_size - cfun->machine->frame.hard_fp_offset;
    }
  else if (cfun->machine->frame.hard_fp_offset < max_push_offset)
    {
      /* Frame with large outgoing arguments but a small local area:
	 stp reg1, reg2, [sp, -hard_fp_offset]!
	 stp reg3, reg4, [sp, 16]
	 sub sp, sp, outgoing_args_size  */
      cfun->machine->frame.callee_adjust = cfun->machine->frame.hard_fp_offset;
      cfun->machine->frame.final_adjust
	= cfun->machine->frame.frame_size - cfun->machine->frame.callee_adjust;
    }
  else
    {
      /* Frame with large local area and outgoing arguments using frame pointer:
	 sub sp, sp, hard_fp_offset
	 stp x29, x30, [sp, 0]
	 add x29, sp, 0
	 stp reg3, reg4, [sp, 16]
	 sub sp, sp, outgoing_args_size  */
      cfun->machine->frame.initial_adjust = cfun->machine->frame.hard_fp_offset;
      cfun->machine->frame.final_adjust
	= cfun->machine->frame.frame_size - cfun->machine->frame.initial_adjust;
    }

  cfun->machine->frame.laid_out = true;
}

/* Return true if the register REGNO is saved on entry to
   the current function.  */

static bool
aarch64_register_saved_on_entry (int regno)
{
  return cfun->machine->frame.reg_offset[regno] >= 0;
}

/* Return the next register up from REGNO up to LIMIT for the callee
   to save.  */

static unsigned
aarch64_next_callee_save (unsigned regno, unsigned limit)
{
  while (regno <= limit && !aarch64_register_saved_on_entry (regno))
    regno ++;
  return regno;
}

/* Push the register number REGNO of mode MODE to the stack with write-back
   adjusting the stack by ADJUSTMENT.  */

static void
aarch64_pushwb_single_reg (machine_mode mode, unsigned regno,
			   HOST_WIDE_INT adjustment)
 {
  rtx base_rtx = stack_pointer_rtx;
  rtx insn, reg, mem;

  reg = gen_rtx_REG (mode, regno);
  mem = gen_rtx_PRE_MODIFY (Pmode, base_rtx,
			    plus_constant (Pmode, base_rtx, -adjustment));
  mem = gen_frame_mem (mode, mem);

  insn = emit_move_insn (mem, reg);
  RTX_FRAME_RELATED_P (insn) = 1;
}

/* Generate and return an instruction to store the pair of registers
   REG and REG2 of mode MODE to location BASE with write-back adjusting
   the stack location BASE by ADJUSTMENT.  */

static rtx
aarch64_gen_storewb_pair (machine_mode mode, rtx base, rtx reg, rtx reg2,
			  HOST_WIDE_INT adjustment)
{
  switch (mode)
    {
    case E_DImode:
      return gen_storewb_pairdi_di (base, base, reg, reg2,
				    GEN_INT (-adjustment),
				    GEN_INT (UNITS_PER_WORD - adjustment));
    case E_DFmode:
      return gen_storewb_pairdf_di (base, base, reg, reg2,
				    GEN_INT (-adjustment),
				    GEN_INT (UNITS_PER_WORD - adjustment));
    default:
      gcc_unreachable ();
    }
}

/* Push registers numbered REGNO1 and REGNO2 to the stack, adjusting the
   stack pointer by ADJUSTMENT.  */

static void
aarch64_push_regs (unsigned regno1, unsigned regno2, HOST_WIDE_INT adjustment)
{
  rtx_insn *insn;
  machine_mode mode = (regno1 <= R30_REGNUM) ? E_DImode : E_DFmode;

  if (regno2 == INVALID_REGNUM)
    return aarch64_pushwb_single_reg (mode, regno1, adjustment);

  rtx reg1 = gen_rtx_REG (mode, regno1);
  rtx reg2 = gen_rtx_REG (mode, regno2);

  insn = emit_insn (aarch64_gen_storewb_pair (mode, stack_pointer_rtx, reg1,
					      reg2, adjustment));
  RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 2)) = 1;
  RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1;
  RTX_FRAME_RELATED_P (insn) = 1;
}

/* Load the pair of register REG, REG2 of mode MODE from stack location BASE,
   adjusting it by ADJUSTMENT afterwards.  */

static rtx
aarch64_gen_loadwb_pair (machine_mode mode, rtx base, rtx reg, rtx reg2,
			 HOST_WIDE_INT adjustment)
{
  switch (mode)
    {
    case E_DImode:
      return gen_loadwb_pairdi_di (base, base, reg, reg2, GEN_INT (adjustment),
				   GEN_INT (UNITS_PER_WORD));
    case E_DFmode:
      return gen_loadwb_pairdf_di (base, base, reg, reg2, GEN_INT (adjustment),
				   GEN_INT (UNITS_PER_WORD));
    default:
      gcc_unreachable ();
    }
}

/* Pop the two registers numbered REGNO1, REGNO2 from the stack, adjusting it
   afterwards by ADJUSTMENT and writing the appropriate REG_CFA_RESTORE notes
   into CFI_OPS.  */

static void
aarch64_pop_regs (unsigned regno1, unsigned regno2, HOST_WIDE_INT adjustment,
		  rtx *cfi_ops)
{
  machine_mode mode = (regno1 <= R30_REGNUM) ? E_DImode : E_DFmode;
  rtx reg1 = gen_rtx_REG (mode, regno1);

  *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg1, *cfi_ops);

  if (regno2 == INVALID_REGNUM)
    {
      rtx mem = plus_constant (Pmode, stack_pointer_rtx, adjustment);
      mem = gen_rtx_POST_MODIFY (Pmode, stack_pointer_rtx, mem);
      emit_move_insn (reg1, gen_frame_mem (mode, mem));
    }
  else
    {
      rtx reg2 = gen_rtx_REG (mode, regno2);
      *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg2, *cfi_ops);
      emit_insn (aarch64_gen_loadwb_pair (mode, stack_pointer_rtx, reg1,
					  reg2, adjustment));
    }
}

/* Generate and return a store pair instruction of mode MODE to store
   register REG1 to MEM1 and register REG2 to MEM2.  */

static rtx
aarch64_gen_store_pair (machine_mode mode, rtx mem1, rtx reg1, rtx mem2,
			rtx reg2)
{
  switch (mode)
    {
    case E_DImode:
      return gen_store_pairdi (mem1, reg1, mem2, reg2);

    case E_DFmode:
      return gen_store_pairdf (mem1, reg1, mem2, reg2);

    default:
      gcc_unreachable ();
    }
}

/* Generate and regurn a load pair isntruction of mode MODE to load register
   REG1 from MEM1 and register REG2 from MEM2.  */

static rtx
aarch64_gen_load_pair (machine_mode mode, rtx reg1, rtx mem1, rtx reg2,
		       rtx mem2)
{
  switch (mode)
    {
    case E_DImode:
      return gen_load_pairdi (reg1, mem1, reg2, mem2);

    case E_DFmode:
      return gen_load_pairdf (reg1, mem1, reg2, mem2);

    default:
      gcc_unreachable ();
    }
}

/* Return TRUE if return address signing should be enabled for the current
   function, otherwise return FALSE.  */

bool
aarch64_return_address_signing_enabled (void)
{
  /* This function should only be called after frame laid out.   */
  gcc_assert (cfun->machine->frame.laid_out);

  /* If signing scope is AARCH64_FUNCTION_NON_LEAF, we only sign a leaf function
     if it's LR is pushed onto stack.  */
  return (aarch64_ra_sign_scope == AARCH64_FUNCTION_ALL
	  || (aarch64_ra_sign_scope == AARCH64_FUNCTION_NON_LEAF
	      && cfun->machine->frame.reg_offset[LR_REGNUM] >= 0));
}

/* Emit code to save the callee-saved registers from register number START
   to LIMIT to the stack at the location starting at offset START_OFFSET,
   skipping any write-back candidates if SKIP_WB is true.  */

static void
aarch64_save_callee_saves (machine_mode mode, HOST_WIDE_INT start_offset,
			   unsigned start, unsigned limit, bool skip_wb)
{
  rtx_insn *insn;
  unsigned regno;
  unsigned regno2;

  for (regno = aarch64_next_callee_save (start, limit);
       regno <= limit;
       regno = aarch64_next_callee_save (regno + 1, limit))
    {
      rtx reg, mem;
      HOST_WIDE_INT offset;

      if (skip_wb
	  && (regno == cfun->machine->frame.wb_candidate1
	      || regno == cfun->machine->frame.wb_candidate2))
	continue;

      if (cfun->machine->reg_is_wrapped_separately[regno])
       continue;

      reg = gen_rtx_REG (mode, regno);
      offset = start_offset + cfun->machine->frame.reg_offset[regno];
      mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx,
						offset));

      regno2 = aarch64_next_callee_save (regno + 1, limit);

      if (regno2 <= limit
	  && !cfun->machine->reg_is_wrapped_separately[regno2]
	  && ((cfun->machine->frame.reg_offset[regno] + UNITS_PER_WORD)
	      == cfun->machine->frame.reg_offset[regno2]))

	{
	  rtx reg2 = gen_rtx_REG (mode, regno2);
	  rtx mem2;

	  offset = start_offset + cfun->machine->frame.reg_offset[regno2];
	  mem2 = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx,
						     offset));
	  insn = emit_insn (aarch64_gen_store_pair (mode, mem, reg, mem2,
						    reg2));

	  /* The first part of a frame-related parallel insn is
	     always assumed to be relevant to the frame
	     calculations; subsequent parts, are only
	     frame-related if explicitly marked.  */
	  RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1;
	  regno = regno2;
	}
      else
	insn = emit_move_insn (mem, reg);

      RTX_FRAME_RELATED_P (insn) = 1;
    }
}

/* Emit code to restore the callee registers of mode MODE from register
   number START up to and including LIMIT.  Restore from the stack offset
   START_OFFSET, skipping any write-back candidates if SKIP_WB is true.
   Write the appropriate REG_CFA_RESTORE notes into CFI_OPS.  */

static void
aarch64_restore_callee_saves (machine_mode mode,
			      HOST_WIDE_INT start_offset, unsigned start,
			      unsigned limit, bool skip_wb, rtx *cfi_ops)
{
  rtx base_rtx = stack_pointer_rtx;
  unsigned regno;
  unsigned regno2;
  HOST_WIDE_INT offset;

  for (regno = aarch64_next_callee_save (start, limit);
       regno <= limit;
       regno = aarch64_next_callee_save (regno + 1, limit))
    {
      if (cfun->machine->reg_is_wrapped_separately[regno])
       continue;

      rtx reg, mem;

      if (skip_wb
	  && (regno == cfun->machine->frame.wb_candidate1
	      || regno == cfun->machine->frame.wb_candidate2))
	continue;

      reg = gen_rtx_REG (mode, regno);
      offset = start_offset + cfun->machine->frame.reg_offset[regno];
      mem = gen_frame_mem (mode, plus_constant (Pmode, base_rtx, offset));

      regno2 = aarch64_next_callee_save (regno + 1, limit);

      if (regno2 <= limit
	  && !cfun->machine->reg_is_wrapped_separately[regno2]
	  && ((cfun->machine->frame.reg_offset[regno] + UNITS_PER_WORD)
	      == cfun->machine->frame.reg_offset[regno2]))
	{
	  rtx reg2 = gen_rtx_REG (mode, regno2);
	  rtx mem2;

	  offset = start_offset + cfun->machine->frame.reg_offset[regno2];
	  mem2 = gen_frame_mem (mode, plus_constant (Pmode, base_rtx, offset));
	  emit_insn (aarch64_gen_load_pair (mode, reg, mem, reg2, mem2));

	  *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg2, *cfi_ops);
	  regno = regno2;
	}
      else
	emit_move_insn (reg, mem);
      *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg, *cfi_ops);
    }
}

static inline bool
offset_9bit_signed_unscaled_p (machine_mode mode ATTRIBUTE_UNUSED,
			       HOST_WIDE_INT offset)
{
  return offset >= -256 && offset < 256;
}

static inline bool
offset_12bit_unsigned_scaled_p (machine_mode mode, HOST_WIDE_INT offset)
{
  return (offset >= 0
	  && offset < 4096 * GET_MODE_SIZE (mode)
	  && offset % GET_MODE_SIZE (mode) == 0);
}

bool
aarch64_offset_7bit_signed_scaled_p (machine_mode mode, HOST_WIDE_INT offset)
{
  return (offset >= -64 * GET_MODE_SIZE (mode)
	  && offset < 64 * GET_MODE_SIZE (mode)
	  && offset % GET_MODE_SIZE (mode) == 0);
}

/* Implement TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS.  */

static sbitmap
aarch64_get_separate_components (void)
{
  aarch64_layout_frame ();

  sbitmap components = sbitmap_alloc (LAST_SAVED_REGNUM + 1);
  bitmap_clear (components);

  /* The registers we need saved to the frame.  */
  for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++)
    if (aarch64_register_saved_on_entry (regno))
      {
	HOST_WIDE_INT offset = cfun->machine->frame.reg_offset[regno];
	if (!frame_pointer_needed)
	  offset += cfun->machine->frame.frame_size
		    - cfun->machine->frame.hard_fp_offset;
	/* Check that we can access the stack slot of the register with one
	   direct load with no adjustments needed.  */
	if (offset_12bit_unsigned_scaled_p (DImode, offset))
	  bitmap_set_bit (components, regno);
      }

  /* Don't mess with the hard frame pointer.  */
  if (frame_pointer_needed)
    bitmap_clear_bit (components, HARD_FRAME_POINTER_REGNUM);

  unsigned reg1 = cfun->machine->frame.wb_candidate1;
  unsigned reg2 = cfun->machine->frame.wb_candidate2;
  /* If aarch64_layout_frame has chosen registers to store/restore with
     writeback don't interfere with them to avoid having to output explicit
     stack adjustment instructions.  */
  if (reg2 != INVALID_REGNUM)
    bitmap_clear_bit (components, reg2);
  if (reg1 != INVALID_REGNUM)
    bitmap_clear_bit (components, reg1);

  bitmap_clear_bit (components, LR_REGNUM);
  bitmap_clear_bit (components, SP_REGNUM);

  return components;
}

/* Implement TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB.  */

static sbitmap
aarch64_components_for_bb (basic_block bb)
{
  bitmap in = DF_LIVE_IN (bb);
  bitmap gen = &DF_LIVE_BB_INFO (bb)->gen;
  bitmap kill = &DF_LIVE_BB_INFO (bb)->kill;

  sbitmap components = sbitmap_alloc (LAST_SAVED_REGNUM + 1);
  bitmap_clear (components);

  /* GPRs are used in a bb if they are in the IN, GEN, or KILL sets.  */
  for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++)
    if ((!call_used_regs[regno])
       && (bitmap_bit_p (in, regno)
	   || bitmap_bit_p (gen, regno)
	   || bitmap_bit_p (kill, regno)))
	  bitmap_set_bit (components, regno);

  return components;
}

/* Implement TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS.
   Nothing to do for aarch64.  */

static void
aarch64_disqualify_components (sbitmap, edge, sbitmap, bool)
{
}

/* Return the next set bit in BMP from START onwards.  Return the total number
   of bits in BMP if no set bit is found at or after START.  */

static unsigned int
aarch64_get_next_set_bit (sbitmap bmp, unsigned int start)
{
  unsigned int nbits = SBITMAP_SIZE (bmp);
  if (start == nbits)
    return start;

  gcc_assert (start < nbits);
  for (unsigned int i = start; i < nbits; i++)
    if (bitmap_bit_p (bmp, i))
      return i;

  return nbits;
}

/* Do the work for aarch64_emit_prologue_components and
   aarch64_emit_epilogue_components.  COMPONENTS is the bitmap of registers
   to save/restore, PROLOGUE_P indicates whether to emit the prologue sequence
   for these components or the epilogue sequence.  That is, it determines
   whether we should emit stores or loads and what kind of CFA notes to attach
   to the insns.  Otherwise the logic for the two sequences is very
   similar.  */

static void
aarch64_process_components (sbitmap components, bool prologue_p)
{
  rtx ptr_reg = gen_rtx_REG (Pmode, frame_pointer_needed
			     ? HARD_FRAME_POINTER_REGNUM
			     : STACK_POINTER_REGNUM);

  unsigned last_regno = SBITMAP_SIZE (components);
  unsigned regno = aarch64_get_next_set_bit (components, R0_REGNUM);
  rtx_insn *insn = NULL;

  while (regno != last_regno)
    {
      /* AAPCS64 section 5.1.2 requires only the bottom 64 bits to be saved
	 so DFmode for the vector registers is enough.  */
      machine_mode mode = GP_REGNUM_P (regno) ? E_DImode : E_DFmode;
      rtx reg = gen_rtx_REG (mode, regno);
      HOST_WIDE_INT offset = cfun->machine->frame.reg_offset[regno];
      if (!frame_pointer_needed)
	offset += cfun->machine->frame.frame_size
		  - cfun->machine->frame.hard_fp_offset;
      rtx addr = plus_constant (Pmode, ptr_reg, offset);
      rtx mem = gen_frame_mem (mode, addr);

      rtx set = prologue_p ? gen_rtx_SET (mem, reg) : gen_rtx_SET (reg, mem);
      unsigned regno2 = aarch64_get_next_set_bit (components, regno + 1);
      /* No more registers to handle after REGNO.
	 Emit a single save/restore and exit.  */
      if (regno2 == last_regno)
	{
	  insn = emit_insn (set);
	  RTX_FRAME_RELATED_P (insn) = 1;
	  if (prologue_p)
	    add_reg_note (insn, REG_CFA_OFFSET, copy_rtx (set));
	  else
	    add_reg_note (insn, REG_CFA_RESTORE, reg);
	  break;
	}

      HOST_WIDE_INT offset2 = cfun->machine->frame.reg_offset[regno2];
      /* The next register is not of the same class or its offset is not
	 mergeable with the current one into a pair.  */
      if (!satisfies_constraint_Ump (mem)
	  || GP_REGNUM_P (regno) != GP_REGNUM_P (regno2)
	  || (offset2 - cfun->machine->frame.reg_offset[regno])
		!= GET_MODE_SIZE (mode))
	{
	  insn = emit_insn (set);
	  RTX_FRAME_RELATED_P (insn) = 1;
	  if (prologue_p)
	    add_reg_note (insn, REG_CFA_OFFSET, copy_rtx (set));
	  else
	    add_reg_note (insn, REG_CFA_RESTORE, reg);

	  regno = regno2;
	  continue;
	}

      /* REGNO2 can be saved/restored in a pair with REGNO.  */
      rtx reg2 = gen_rtx_REG (mode, regno2);
      if (!frame_pointer_needed)
	offset2 += cfun->machine->frame.frame_size
		  - cfun->machine->frame.hard_fp_offset;
      rtx addr2 = plus_constant (Pmode, ptr_reg, offset2);
      rtx mem2 = gen_frame_mem (mode, addr2);
      rtx set2 = prologue_p ? gen_rtx_SET (mem2, reg2)
			     : gen_rtx_SET (reg2, mem2);

      if (prologue_p)
	insn = emit_insn (aarch64_gen_store_pair (mode, mem, reg, mem2, reg2));
      else
	insn = emit_insn (aarch64_gen_load_pair (mode, reg, mem, reg2, mem2));

      RTX_FRAME_RELATED_P (insn) = 1;
      if (prologue_p)
	{
	  add_reg_note (insn, REG_CFA_OFFSET, set);
	  add_reg_note (insn, REG_CFA_OFFSET, set2);
	}
      else
	{
	  add_reg_note (insn, REG_CFA_RESTORE, reg);
	  add_reg_note (insn, REG_CFA_RESTORE, reg2);
	}

      regno = aarch64_get_next_set_bit (components, regno2 + 1);
    }
}

/* Implement TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS.  */

static void
aarch64_emit_prologue_components (sbitmap components)
{
  aarch64_process_components (components, true);
}

/* Implement TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS.  */

static void
aarch64_emit_epilogue_components (sbitmap components)
{
  aarch64_process_components (components, false);
}

/* Implement TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS.  */

static void
aarch64_set_handled_components (sbitmap components)
{
  for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++)
    if (bitmap_bit_p (components, regno))
      cfun->machine->reg_is_wrapped_separately[regno] = true;
}

/* AArch64 stack frames generated by this compiler look like:

	+-------------------------------+
	|                               |
	|  incoming stack arguments     |
	|                               |
	+-------------------------------+
	|                               | <-- incoming stack pointer (aligned)
	|  callee-allocated save area   |
	|  for register varargs         |
	|                               |
	+-------------------------------+
	|  local variables              | <-- frame_pointer_rtx
	|                               |
	+-------------------------------+
	|  padding0                     | \
	+-------------------------------+  |
	|  callee-saved registers       |  | frame.saved_regs_size
	+-------------------------------+  |
	|  LR'                          |  |
	+-------------------------------+  |
	|  FP'                          | / <- hard_frame_pointer_rtx (aligned)
        +-------------------------------+
	|  dynamic allocation           |
	+-------------------------------+
	|  padding                      |
	+-------------------------------+
	|  outgoing stack arguments     | <-- arg_pointer
        |                               |
	+-------------------------------+
	|                               | <-- stack_pointer_rtx (aligned)

   Dynamic stack allocations via alloca() decrease stack_pointer_rtx
   but leave frame_pointer_rtx and hard_frame_pointer_rtx
   unchanged.  */

/* Generate the prologue instructions for entry into a function.
   Establish the stack frame by decreasing the stack pointer with a
   properly calculated size and, if necessary, create a frame record
   filled with the values of LR and previous frame pointer.  The
   current FP is also set up if it is in use.  */

void
aarch64_expand_prologue (void)
{
  aarch64_layout_frame ();

  HOST_WIDE_INT frame_size = cfun->machine->frame.frame_size;
  HOST_WIDE_INT initial_adjust = cfun->machine->frame.initial_adjust;
  HOST_WIDE_INT callee_adjust = cfun->machine->frame.callee_adjust;
  HOST_WIDE_INT final_adjust = cfun->machine->frame.final_adjust;
  HOST_WIDE_INT callee_offset = cfun->machine->frame.callee_offset;
  unsigned reg1 = cfun->machine->frame.wb_candidate1;
  unsigned reg2 = cfun->machine->frame.wb_candidate2;
  bool emit_frame_chain = cfun->machine->frame.emit_frame_chain;
  rtx_insn *insn;

  /* Sign return address for functions.  */
  if (aarch64_return_address_signing_enabled ())
    {
      insn = emit_insn (gen_pacisp ());
      add_reg_note (insn, REG_CFA_TOGGLE_RA_MANGLE, const0_rtx);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  if (flag_stack_usage_info)
    current_function_static_stack_size = frame_size;

  if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
    {
      if (crtl->is_leaf && !cfun->calls_alloca)
	{
	  if (frame_size > PROBE_INTERVAL
	      && frame_size > get_stack_check_protect ())
	    aarch64_emit_probe_stack_range (get_stack_check_protect (),
					    (frame_size
					     - get_stack_check_protect ()));
	}
      else if (frame_size > 0)
	aarch64_emit_probe_stack_range (get_stack_check_protect (), frame_size);
    }

  aarch64_sub_sp (IP0_REGNUM, initial_adjust, true);

  if (callee_adjust != 0)
    aarch64_push_regs (reg1, reg2, callee_adjust);

  if (emit_frame_chain)
    {
      if (callee_adjust == 0)
	aarch64_save_callee_saves (DImode, callee_offset, R29_REGNUM,
				   R30_REGNUM, false);
      insn = emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
				       stack_pointer_rtx,
				       GEN_INT (callee_offset)));
      RTX_FRAME_RELATED_P (insn) = frame_pointer_needed;
      emit_insn (gen_stack_tie (stack_pointer_rtx, hard_frame_pointer_rtx));
    }

  aarch64_save_callee_saves (DImode, callee_offset, R0_REGNUM, R30_REGNUM,
			     callee_adjust != 0 || emit_frame_chain);
  aarch64_save_callee_saves (DFmode, callee_offset, V0_REGNUM, V31_REGNUM,
			     callee_adjust != 0 || emit_frame_chain);
  aarch64_sub_sp (IP1_REGNUM, final_adjust, !frame_pointer_needed);
}

/* Return TRUE if we can use a simple_return insn.

   This function checks whether the callee saved stack is empty, which
   means no restore actions are need. The pro_and_epilogue will use
   this to check whether shrink-wrapping opt is feasible.  */

bool
aarch64_use_return_insn_p (void)
{
  if (!reload_completed)
    return false;

  if (crtl->profile)
    return false;

  aarch64_layout_frame ();

  return cfun->machine->frame.frame_size == 0;
}

/* Generate the epilogue instructions for returning from a function.
   This is almost exactly the reverse of the prolog sequence, except
   that we need to insert barriers to avoid scheduling loads that read
   from a deallocated stack, and we optimize the unwind records by
   emitting them all together if possible.  */
void
aarch64_expand_epilogue (bool for_sibcall)
{
  aarch64_layout_frame ();

  HOST_WIDE_INT initial_adjust = cfun->machine->frame.initial_adjust;
  HOST_WIDE_INT callee_adjust = cfun->machine->frame.callee_adjust;
  HOST_WIDE_INT final_adjust = cfun->machine->frame.final_adjust;
  HOST_WIDE_INT callee_offset = cfun->machine->frame.callee_offset;
  unsigned reg1 = cfun->machine->frame.wb_candidate1;
  unsigned reg2 = cfun->machine->frame.wb_candidate2;
  rtx cfi_ops = NULL;
  rtx_insn *insn;

  /* We need to add memory barrier to prevent read from deallocated stack.  */
  bool need_barrier_p = (get_frame_size ()
			 + cfun->machine->frame.saved_varargs_size) != 0;

  /* Emit a barrier to prevent loads from a deallocated stack.  */
  if (final_adjust > crtl->outgoing_args_size || cfun->calls_alloca
      || crtl->calls_eh_return)
    {
      emit_insn (gen_stack_tie (stack_pointer_rtx, stack_pointer_rtx));
      need_barrier_p = false;
    }

  /* Restore the stack pointer from the frame pointer if it may not
     be the same as the stack pointer.  */
  if (frame_pointer_needed && (final_adjust || cfun->calls_alloca))
    {
      insn = emit_insn (gen_add3_insn (stack_pointer_rtx,
				       hard_frame_pointer_rtx,
				       GEN_INT (-callee_offset)));
      /* If writeback is used when restoring callee-saves, the CFA
	 is restored on the instruction doing the writeback.  */
      RTX_FRAME_RELATED_P (insn) = callee_adjust == 0;
    }
  else
    aarch64_add_sp (IP1_REGNUM, final_adjust, df_regs_ever_live_p (IP1_REGNUM));

  aarch64_restore_callee_saves (DImode, callee_offset, R0_REGNUM, R30_REGNUM,
				callee_adjust != 0, &cfi_ops);
  aarch64_restore_callee_saves (DFmode, callee_offset, V0_REGNUM, V31_REGNUM,
				callee_adjust != 0, &cfi_ops);

  if (need_barrier_p)
    emit_insn (gen_stack_tie (stack_pointer_rtx, stack_pointer_rtx));

  if (callee_adjust != 0)
    aarch64_pop_regs (reg1, reg2, callee_adjust, &cfi_ops);

  if (callee_adjust != 0 || initial_adjust > 65536)
    {
      /* Emit delayed restores and set the CFA to be SP + initial_adjust.  */
      insn = get_last_insn ();
      rtx new_cfa = plus_constant (Pmode, stack_pointer_rtx, initial_adjust);
      REG_NOTES (insn) = alloc_reg_note (REG_CFA_DEF_CFA, new_cfa, cfi_ops);
      RTX_FRAME_RELATED_P (insn) = 1;
      cfi_ops = NULL;
    }

  aarch64_add_sp (IP0_REGNUM, initial_adjust, df_regs_ever_live_p (IP0_REGNUM));

  if (cfi_ops)
    {
      /* Emit delayed restores and reset the CFA to be SP.  */
      insn = get_last_insn ();
      cfi_ops = alloc_reg_note (REG_CFA_DEF_CFA, stack_pointer_rtx, cfi_ops);
      REG_NOTES (insn) = cfi_ops;
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* We prefer to emit the combined return/authenticate instruction RETAA,
     however there are three cases in which we must instead emit an explicit
     authentication instruction.

	1) Sibcalls don't return in a normal way, so if we're about to call one
	   we must authenticate.

	2) The RETAA instruction is not available before ARMv8.3-A, so if we are
	   generating code for !TARGET_ARMV8_3 we can't use it and must
	   explicitly authenticate.

	3) On an eh_return path we make extra stack adjustments to update the
	   canonical frame address to be the exception handler's CFA.  We want
	   to authenticate using the CFA of the function which calls eh_return.
    */
  if (aarch64_return_address_signing_enabled ()
      && (for_sibcall || !TARGET_ARMV8_3 || crtl->calls_eh_return))
    {
      insn = emit_insn (gen_autisp ());
      add_reg_note (insn, REG_CFA_TOGGLE_RA_MANGLE, const0_rtx);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* Stack adjustment for exception handler.  */
  if (crtl->calls_eh_return)
    {
      /* We need to unwind the stack by the offset computed by
	 EH_RETURN_STACKADJ_RTX.  We have already reset the CFA
	 to be SP; letting the CFA move during this adjustment
	 is just as correct as retaining the CFA from the body
	 of the function.  Therefore, do nothing special.  */
      emit_insn (gen_add2_insn (stack_pointer_rtx, EH_RETURN_STACKADJ_RTX));
    }

  emit_use (gen_rtx_REG (DImode, LR_REGNUM));
  if (!for_sibcall)
    emit_jump_insn (ret_rtx);
}

/* Implement EH_RETURN_HANDLER_RTX.  EH returns need to either return
   normally or return to a previous frame after unwinding.

   An EH return uses a single shared return sequence.  The epilogue is
   exactly like a normal epilogue except that it has an extra input
   register (EH_RETURN_STACKADJ_RTX) which contains the stack adjustment
   that must be applied after the frame has been destroyed.  An extra label
   is inserted before the epilogue which initializes this register to zero,
   and this is the entry point for a normal return.

   An actual EH return updates the return address, initializes the stack
   adjustment and jumps directly into the epilogue (bypassing the zeroing
   of the adjustment).  Since the return address is typically saved on the
   stack when a function makes a call, the saved LR must be updated outside
   the epilogue.

   This poses problems as the store is generated well before the epilogue,
   so the offset of LR is not known yet.  Also optimizations will remove the
   store as it appears dead, even after the epilogue is generated (as the
   base or offset for loading LR is different in many cases).

   To avoid these problems this implementation forces the frame pointer
   in eh_return functions so that the location of LR is fixed and known early.
   It also marks the store volatile, so no optimization is permitted to
   remove the store.  */
rtx
aarch64_eh_return_handler_rtx (void)
{
  rtx tmp = gen_frame_mem (Pmode,
    plus_constant (Pmode, hard_frame_pointer_rtx, UNITS_PER_WORD));

  /* Mark the store volatile, so no optimization is permitted to remove it.  */
  MEM_VOLATILE_P (tmp) = true;
  return tmp;
}

/* Output code to add DELTA to the first argument, and then jump
   to FUNCTION.  Used for C++ multiple inheritance.  */
static void
aarch64_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
			 HOST_WIDE_INT delta,
			 HOST_WIDE_INT vcall_offset,
			 tree function)
{
  /* The this pointer is always in x0.  Note that this differs from
     Arm where the this pointer maybe bumped to r1 if r0 is required
     to return a pointer to an aggregate.  On AArch64 a result value
     pointer will be in x8.  */
  int this_regno = R0_REGNUM;
  rtx this_rtx, temp0, temp1, addr, funexp;
  rtx_insn *insn;

  reload_completed = 1;
  emit_note (NOTE_INSN_PROLOGUE_END);

  if (vcall_offset == 0)
    aarch64_add_constant (Pmode, this_regno, IP1_REGNUM, delta);
  else
    {
      gcc_assert ((vcall_offset & (POINTER_BYTES - 1)) == 0);

      this_rtx = gen_rtx_REG (Pmode, this_regno);
      temp0 = gen_rtx_REG (Pmode, IP0_REGNUM);
      temp1 = gen_rtx_REG (Pmode, IP1_REGNUM);

      addr = this_rtx;
      if (delta != 0)
	{
	  if (delta >= -256 && delta < 256)
	    addr = gen_rtx_PRE_MODIFY (Pmode, this_rtx,
				       plus_constant (Pmode, this_rtx, delta));
	  else
	    aarch64_add_constant (Pmode, this_regno, IP1_REGNUM, delta);
	}

      if (Pmode == ptr_mode)
	aarch64_emit_move (temp0, gen_rtx_MEM (ptr_mode, addr));
      else
	aarch64_emit_move (temp0,
			   gen_rtx_ZERO_EXTEND (Pmode,
						gen_rtx_MEM (ptr_mode, addr)));

      if (vcall_offset >= -256 && vcall_offset < 4096 * POINTER_BYTES)
	  addr = plus_constant (Pmode, temp0, vcall_offset);
      else
	{
	  aarch64_internal_mov_immediate (temp1, GEN_INT (vcall_offset), true,
					  Pmode);
	  addr = gen_rtx_PLUS (Pmode, temp0, temp1);
	}

      if (Pmode == ptr_mode)
	aarch64_emit_move (temp1, gen_rtx_MEM (ptr_mode,addr));
      else
	aarch64_emit_move (temp1,
			   gen_rtx_SIGN_EXTEND (Pmode,
						gen_rtx_MEM (ptr_mode, addr)));

      emit_insn (gen_add2_insn (this_rtx, temp1));
    }

  /* Generate a tail call to the target function.  */
  if (!TREE_USED (function))
    {
      assemble_external (function);
      TREE_USED (function) = 1;
    }
  funexp = XEXP (DECL_RTL (function), 0);
  funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
  insn = emit_call_insn (gen_sibcall (funexp, const0_rtx, NULL_RTX));
  SIBLING_CALL_P (insn) = 1;

  insn = get_insns ();
  shorten_branches (insn);
  final_start_function (insn, file, 1);
  final (insn, file, 1);
  final_end_function ();

  /* Stop pretending to be a post-reload pass.  */
  reload_completed = 0;
}

static bool
aarch64_tls_referenced_p (rtx x)
{
  if (!TARGET_HAVE_TLS)
    return false;
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, x, ALL)
    {
      const_rtx x = *iter;
      if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0)
	return true;
      /* Don't recurse into UNSPEC_TLS looking for TLS symbols; these are
	 TLS offsets, not real symbol references.  */
      if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
	iter.skip_subrtxes ();
    }
  return false;
}


/* Return true if val can be encoded as a 12-bit unsigned immediate with
   a left shift of 0 or 12 bits.  */
bool
aarch64_uimm12_shift (HOST_WIDE_INT val)
{
  return ((val & (((HOST_WIDE_INT) 0xfff) << 0)) == val
	  || (val & (((HOST_WIDE_INT) 0xfff) << 12)) == val
	  );
}


/* Return true if val is an immediate that can be loaded into a
   register by a MOVZ instruction.  */
static bool
aarch64_movw_imm (HOST_WIDE_INT val, scalar_int_mode mode)
{
  if (GET_MODE_SIZE (mode) > 4)
    {
      if ((val & (((HOST_WIDE_INT) 0xffff) << 32)) == val
	  || (val & (((HOST_WIDE_INT) 0xffff) << 48)) == val)
	return 1;
    }
  else
    {
      /* Ignore sign extension.  */
      val &= (HOST_WIDE_INT) 0xffffffff;
    }
  return ((val & (((HOST_WIDE_INT) 0xffff) << 0)) == val
	  || (val & (((HOST_WIDE_INT) 0xffff) << 16)) == val);
}

/* Multipliers for repeating bitmasks of width 32, 16, 8, 4, and 2.  */

static const unsigned HOST_WIDE_INT bitmask_imm_mul[] =
  {
    0x0000000100000001ull,
    0x0001000100010001ull,
    0x0101010101010101ull,
    0x1111111111111111ull,
    0x5555555555555555ull,
  };


/* Return true if val is a valid bitmask immediate.  */

bool
aarch64_bitmask_imm (HOST_WIDE_INT val_in, machine_mode mode)
{
  unsigned HOST_WIDE_INT val, tmp, mask, first_one, next_one;
  int bits;

  /* Check for a single sequence of one bits and return quickly if so.
     The special cases of all ones and all zeroes returns false.  */
  val = (unsigned HOST_WIDE_INT) val_in;
  tmp = val + (val & -val);

  if (tmp == (tmp & -tmp))
    return (val + 1) > 1;

  /* Replicate 32-bit immediates so we can treat them as 64-bit.  */
  if (mode == SImode)
    val = (val << 32) | (val & 0xffffffff);

  /* Invert if the immediate doesn't start with a zero bit - this means we
     only need to search for sequences of one bits.  */
  if (val & 1)
    val = ~val;

  /* Find the first set bit and set tmp to val with the first sequence of one
     bits removed.  Return success if there is a single sequence of ones.  */
  first_one = val & -val;
  tmp = val & (val + first_one);

  if (tmp == 0)
    return true;

  /* Find the next set bit and compute the difference in bit position.  */
  next_one = tmp & -tmp;
  bits = clz_hwi (first_one) - clz_hwi (next_one);
  mask = val ^ tmp;

  /* Check the bit position difference is a power of 2, and that the first
     sequence of one bits fits within 'bits' bits.  */
  if ((mask >> bits) != 0 || bits != (bits & -bits))
    return false;

  /* Check the sequence of one bits is repeated 64/bits times.  */
  return val == mask * bitmask_imm_mul[__builtin_clz (bits) - 26];
}

/* Create mask of ones, covering the lowest to highest bits set in VAL_IN.  
   Assumed precondition: VAL_IN Is not zero.  */

unsigned HOST_WIDE_INT
aarch64_and_split_imm1 (HOST_WIDE_INT val_in)
{
  int lowest_bit_set = ctz_hwi (val_in);
  int highest_bit_set = floor_log2 (val_in);
  gcc_assert (val_in != 0);

  return ((HOST_WIDE_INT_UC (2) << highest_bit_set) -
	  (HOST_WIDE_INT_1U << lowest_bit_set));
}

/* Create constant where bits outside of lowest bit set to highest bit set
   are set to 1.  */

unsigned HOST_WIDE_INT
aarch64_and_split_imm2 (HOST_WIDE_INT val_in)
{
  return val_in | ~aarch64_and_split_imm1 (val_in);
}

/* Return true if VAL_IN is a valid 'and' bitmask immediate.  */

bool
aarch64_and_bitmask_imm (unsigned HOST_WIDE_INT val_in, machine_mode mode)
{
  scalar_int_mode int_mode;
  if (!is_a <scalar_int_mode> (mode, &int_mode))
    return false;

  if (aarch64_bitmask_imm (val_in, int_mode))
    return false;

  if (aarch64_move_imm (val_in, int_mode))
    return false;

  unsigned HOST_WIDE_INT imm2 = aarch64_and_split_imm2 (val_in);

  return aarch64_bitmask_imm (imm2, int_mode);
}

/* Return true if val is an immediate that can be loaded into a
   register in a single instruction.  */
bool
aarch64_move_imm (HOST_WIDE_INT val, machine_mode mode)
{
  scalar_int_mode int_mode;
  if (!is_a <scalar_int_mode> (mode, &int_mode))
    return false;

  if (aarch64_movw_imm (val, int_mode) || aarch64_movw_imm (~val, int_mode))
    return 1;
  return aarch64_bitmask_imm (val, int_mode);
}

static bool
aarch64_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  rtx base, offset;

  if (GET_CODE (x) == HIGH)
    return true;

  split_const (x, &base, &offset);
  if (GET_CODE (base) == SYMBOL_REF || GET_CODE (base) == LABEL_REF)
    {
      if (aarch64_classify_symbol (base, offset)
	  != SYMBOL_FORCE_TO_MEM)
	return true;
      else
	/* Avoid generating a 64-bit relocation in ILP32; leave
	   to aarch64_expand_mov_immediate to handle it properly.  */
	return mode != ptr_mode;
    }

  return aarch64_tls_referenced_p (x);
}

/* Implement TARGET_CASE_VALUES_THRESHOLD.
   The expansion for a table switch is quite expensive due to the number
   of instructions, the table lookup and hard to predict indirect jump.
   When optimizing for speed, and -O3 enabled, use the per-core tuning if 
   set, otherwise use tables for > 16 cases as a tradeoff between size and
   performance.  When optimizing for size, use the default setting.  */

static unsigned int
aarch64_case_values_threshold (void)
{
  /* Use the specified limit for the number of cases before using jump
     tables at higher optimization levels.  */
  if (optimize > 2
      && selected_cpu->tune->max_case_values != 0)
    return selected_cpu->tune->max_case_values;
  else
    return optimize_size ? default_case_values_threshold () : 17;
}

/* Return true if register REGNO is a valid index register.
   STRICT_P is true if REG_OK_STRICT is in effect.  */

bool
aarch64_regno_ok_for_index_p (int regno, bool strict_p)
{
  if (!HARD_REGISTER_NUM_P (regno))
    {
      if (!strict_p)
	return true;

      if (!reg_renumber)
	return false;

      regno = reg_renumber[regno];
    }
  return GP_REGNUM_P (regno);
}

/* Return true if register REGNO is a valid base register for mode MODE.
   STRICT_P is true if REG_OK_STRICT is in effect.  */

bool
aarch64_regno_ok_for_base_p (int regno, bool strict_p)
{
  if (!HARD_REGISTER_NUM_P (regno))
    {
      if (!strict_p)
	return true;

      if (!reg_renumber)
	return false;

      regno = reg_renumber[regno];
    }

  /* The fake registers will be eliminated to either the stack or
     hard frame pointer, both of which are usually valid base registers.
     Reload deals with the cases where the eliminated form isn't valid.  */
  return (GP_REGNUM_P (regno)
	  || regno == SP_REGNUM
	  || regno == FRAME_POINTER_REGNUM
	  || regno == ARG_POINTER_REGNUM);
}

/* Return true if X is a valid base register for mode MODE.
   STRICT_P is true if REG_OK_STRICT is in effect.  */

static bool
aarch64_base_register_rtx_p (rtx x, bool strict_p)
{
  if (!strict_p
      && GET_CODE (x) == SUBREG
      && contains_reg_of_mode[GENERAL_REGS][GET_MODE (SUBREG_REG (x))])
    x = SUBREG_REG (x);

  return (REG_P (x) && aarch64_regno_ok_for_base_p (REGNO (x), strict_p));
}

/* Return true if address offset is a valid index.  If it is, fill in INFO
   appropriately.  STRICT_P is true if REG_OK_STRICT is in effect.  */

static bool
aarch64_classify_index (struct aarch64_address_info *info, rtx x,
			machine_mode mode, bool strict_p)
{
  enum aarch64_address_type type;
  rtx index;
  int shift;

  /* (reg:P) */
  if ((REG_P (x) || GET_CODE (x) == SUBREG)
      && GET_MODE (x) == Pmode)
    {
      type = ADDRESS_REG_REG;
      index = x;
      shift = 0;
    }
  /* (sign_extend:DI (reg:SI)) */
  else if ((GET_CODE (x) == SIGN_EXTEND
	    || GET_CODE (x) == ZERO_EXTEND)
	   && GET_MODE (x) == DImode
	   && GET_MODE (XEXP (x, 0)) == SImode)
    {
      type = (GET_CODE (x) == SIGN_EXTEND)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (x, 0);
      shift = 0;
    }
  /* (mult:DI (sign_extend:DI (reg:SI)) (const_int scale)) */
  else if (GET_CODE (x) == MULT
	   && (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
	       || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
	   && GET_MODE (XEXP (x, 0)) == DImode
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = exact_log2 (INTVAL (XEXP (x, 1)));
    }
  /* (ashift:DI (sign_extend:DI (reg:SI)) (const_int shift)) */
  else if (GET_CODE (x) == ASHIFT
	   && (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
	       || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
	   && GET_MODE (XEXP (x, 0)) == DImode
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = INTVAL (XEXP (x, 1));
    }
  /* (sign_extract:DI (mult:DI (reg:DI) (const_int scale)) 32+shift 0) */
  else if ((GET_CODE (x) == SIGN_EXTRACT
	    || GET_CODE (x) == ZERO_EXTRACT)
	   && GET_MODE (x) == DImode
	   && GET_CODE (XEXP (x, 0)) == MULT
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode
	   && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
    {
      type = (GET_CODE (x) == SIGN_EXTRACT)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)));
      if (INTVAL (XEXP (x, 1)) != 32 + shift
	  || INTVAL (XEXP (x, 2)) != 0)
	shift = -1;
    }
  /* (and:DI (mult:DI (reg:DI) (const_int scale))
     (const_int 0xffffffff<<shift)) */
  else if (GET_CODE (x) == AND
	   && GET_MODE (x) == DImode
	   && GET_CODE (XEXP (x, 0)) == MULT
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode
	   && CONST_INT_P (XEXP (XEXP (x, 0), 1))
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)));
      if (INTVAL (XEXP (x, 1)) != (HOST_WIDE_INT)0xffffffff << shift)
	shift = -1;
    }
  /* (sign_extract:DI (ashift:DI (reg:DI) (const_int shift)) 32+shift 0) */
  else if ((GET_CODE (x) == SIGN_EXTRACT
	    || GET_CODE (x) == ZERO_EXTRACT)
	   && GET_MODE (x) == DImode
	   && GET_CODE (XEXP (x, 0)) == ASHIFT
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode
	   && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
    {
      type = (GET_CODE (x) == SIGN_EXTRACT)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = INTVAL (XEXP (XEXP (x, 0), 1));
      if (INTVAL (XEXP (x, 1)) != 32 + shift
	  || INTVAL (XEXP (x, 2)) != 0)
	shift = -1;
    }
  /* (and:DI (ashift:DI (reg:DI) (const_int shift))
     (const_int 0xffffffff<<shift)) */
  else if (GET_CODE (x) == AND
	   && GET_MODE (x) == DImode
	   && GET_CODE (XEXP (x, 0)) == ASHIFT
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode
	   && CONST_INT_P (XEXP (XEXP (x, 0), 1))
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = INTVAL (XEXP (XEXP (x, 0), 1));
      if (INTVAL (XEXP (x, 1)) != (HOST_WIDE_INT)0xffffffff << shift)
	shift = -1;
    }
  /* (mult:P (reg:P) (const_int scale)) */
  else if (GET_CODE (x) == MULT
	   && GET_MODE (x) == Pmode
	   && GET_MODE (XEXP (x, 0)) == Pmode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_REG;
      index = XEXP (x, 0);
      shift = exact_log2 (INTVAL (XEXP (x, 1)));
    }
  /* (ashift:P (reg:P) (const_int shift)) */
  else if (GET_CODE (x) == ASHIFT
	   && GET_MODE (x) == Pmode
	   && GET_MODE (XEXP (x, 0)) == Pmode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_REG;
      index = XEXP (x, 0);
      shift = INTVAL (XEXP (x, 1));
    }
  else
    return false;

  if (!strict_p
      && GET_CODE (index) == SUBREG
      && contains_reg_of_mode[GENERAL_REGS][GET_MODE (SUBREG_REG (index))])
    index = SUBREG_REG (index);

  if ((shift == 0 ||
       (shift > 0 && shift <= 3
	&& (1 << shift) == GET_MODE_SIZE (mode)))
      && REG_P (index)
      && aarch64_regno_ok_for_index_p (REGNO (index), strict_p))
    {
      info->type = type;
      info->offset = index;
      info->shift = shift;
      return true;
    }

  return false;
}

/* Return true if MODE is one of the modes for which we
   support LDP/STP operations.  */

static bool
aarch64_mode_valid_for_sched_fusion_p (machine_mode mode)
{
  return mode == SImode || mode == DImode
	 || mode == SFmode || mode == DFmode
	 || (aarch64_vector_mode_supported_p (mode)
	     && GET_MODE_SIZE (mode) == 8);
}

/* Return true if REGNO is a virtual pointer register, or an eliminable
   "soft" frame register.  Like REGNO_PTR_FRAME_P except that we don't
   include stack_pointer or hard_frame_pointer.  */
static bool
virt_or_elim_regno_p (unsigned regno)
{
  return ((regno >= FIRST_VIRTUAL_REGISTER
	   && regno <= LAST_VIRTUAL_POINTER_REGISTER)
	  || regno == FRAME_POINTER_REGNUM
	  || regno == ARG_POINTER_REGNUM);
}

/* Return true if X is a valid address for machine mode MODE.  If it is,
   fill in INFO appropriately.  STRICT_P is true if REG_OK_STRICT is in
   effect.  OUTER_CODE is PARALLEL for a load/store pair.  */

static bool
aarch64_classify_address (struct aarch64_address_info *info,
			  rtx x, machine_mode mode,
			  RTX_CODE outer_code, bool strict_p)
{
  enum rtx_code code = GET_CODE (x);
  rtx op0, op1;

  /* On BE, we use load/store pair for all large int mode load/stores.
     TI/TFmode may also use a load/store pair.  */
  bool load_store_pair_p = (outer_code == PARALLEL
			    || mode == TImode
			    || mode == TFmode
			    || (BYTES_BIG_ENDIAN
				&& aarch64_vect_struct_mode_p (mode)));

  bool allow_reg_index_p =
    !load_store_pair_p
    && (GET_MODE_SIZE (mode) != 16 || aarch64_vector_mode_supported_p (mode))
    && !aarch64_vect_struct_mode_p (mode);

  /* On LE, for AdvSIMD, don't support anything other than POST_INC or
     REG addressing.  */
  if (aarch64_vect_struct_mode_p (mode) && !BYTES_BIG_ENDIAN
      && (code != POST_INC && code != REG))
    return false;

  switch (code)
    {
    case REG:
    case SUBREG:
      info->type = ADDRESS_REG_IMM;
      info->base = x;
      info->offset = const0_rtx;
      return aarch64_base_register_rtx_p (x, strict_p);

    case PLUS:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (! strict_p
	  && REG_P (op0)
	  && virt_or_elim_regno_p (REGNO (op0))
	  && CONST_INT_P (op1))
	{
	  info->type = ADDRESS_REG_IMM;
	  info->base = op0;
	  info->offset = op1;

	  return true;
	}

      if (GET_MODE_SIZE (mode) != 0
	  && CONST_INT_P (op1)
	  && aarch64_base_register_rtx_p (op0, strict_p))
	{
	  HOST_WIDE_INT offset = INTVAL (op1);

	  info->type = ADDRESS_REG_IMM;
	  info->base = op0;
	  info->offset = op1;

	  /* TImode and TFmode values are allowed in both pairs of X
	     registers and individual Q registers.  The available
	     address modes are:
	     X,X: 7-bit signed scaled offset
	     Q:   9-bit signed offset
	     We conservatively require an offset representable in either mode.
	     When performing the check for pairs of X registers i.e.  LDP/STP
	     pass down DImode since that is the natural size of the LDP/STP
	     instruction memory accesses.  */
	  if (mode == TImode || mode == TFmode)
	    return (aarch64_offset_7bit_signed_scaled_p (DImode, offset)
		    && (offset_9bit_signed_unscaled_p (mode, offset)
			|| offset_12bit_unsigned_scaled_p (mode, offset)));

	  /* A 7bit offset check because OImode will emit a ldp/stp
	     instruction (only big endian will get here).
	     For ldp/stp instructions, the offset is scaled for the size of a
	     single element of the pair.  */
	  if (mode == OImode)
	    return aarch64_offset_7bit_signed_scaled_p (TImode, offset);

	  /* Three 9/12 bit offsets checks because CImode will emit three
	     ldr/str instructions (only big endian will get here).  */
	  if (mode == CImode)
	    return (aarch64_offset_7bit_signed_scaled_p (TImode, offset)
		    && (offset_9bit_signed_unscaled_p (V16QImode, offset + 32)
			|| offset_12bit_unsigned_scaled_p (V16QImode,
							   offset + 32)));

	  /* Two 7bit offsets checks because XImode will emit two ldp/stp
	     instructions (only big endian will get here).  */
	  if (mode == XImode)
	    return (aarch64_offset_7bit_signed_scaled_p (TImode, offset)
		    && aarch64_offset_7bit_signed_scaled_p (TImode,
							    offset + 32));

	  if (load_store_pair_p)
	    return ((GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8)
		    && aarch64_offset_7bit_signed_scaled_p (mode, offset));
	  else
	    return (offset_9bit_signed_unscaled_p (mode, offset)
		    || offset_12bit_unsigned_scaled_p (mode, offset));
	}

      if (allow_reg_index_p)
	{
	  /* Look for base + (scaled/extended) index register.  */
	  if (aarch64_base_register_rtx_p (op0, strict_p)
	      && aarch64_classify_index (info, op1, mode, strict_p))
	    {
	      info->base = op0;
	      return true;
	    }
	  if (aarch64_base_register_rtx_p (op1, strict_p)
	      && aarch64_classify_index (info, op0, mode, strict_p))
	    {
	      info->base = op1;
	      return true;
	    }
	}

      return false;

    case POST_INC:
    case POST_DEC:
    case PRE_INC:
    case PRE_DEC:
      info->type = ADDRESS_REG_WB;
      info->base = XEXP (x, 0);
      info->offset = NULL_RTX;
      return aarch64_base_register_rtx_p (info->base, strict_p);

    case POST_MODIFY:
    case PRE_MODIFY:
      info->type = ADDRESS_REG_WB;
      info->base = XEXP (x, 0);
      if (GET_CODE (XEXP (x, 1)) == PLUS
	  && CONST_INT_P (XEXP (XEXP (x, 1), 1))
	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), info->base)
	  && aarch64_base_register_rtx_p (info->base, strict_p))
	{
	  HOST_WIDE_INT offset;
	  info->offset = XEXP (XEXP (x, 1), 1);
	  offset = INTVAL (info->offset);

	  /* TImode and TFmode values are allowed in both pairs of X
	     registers and individual Q registers.  The available
	     address modes are:
	     X,X: 7-bit signed scaled offset
	     Q:   9-bit signed offset
	     We conservatively require an offset representable in either mode.
	   */
	  if (mode == TImode || mode == TFmode)
	    return (aarch64_offset_7bit_signed_scaled_p (mode, offset)
		    && offset_9bit_signed_unscaled_p (mode, offset));

	  if (load_store_pair_p)
	    return ((GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8)
		    && aarch64_offset_7bit_signed_scaled_p (mode, offset));
	  else
	    return offset_9bit_signed_unscaled_p (mode, offset);
	}
      return false;

    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      /* load literal: pc-relative constant pool entry.  Only supported
         for SI mode or larger.  */
      info->type = ADDRESS_SYMBOLIC;

      if (!load_store_pair_p && GET_MODE_SIZE (mode) >= 4)
	{
	  rtx sym, addend;

	  split_const (x, &sym, &addend);
	  return ((GET_CODE (sym) == LABEL_REF
		   || (GET_CODE (sym) == SYMBOL_REF
		       && CONSTANT_POOL_ADDRESS_P (sym)
		       && aarch64_pcrelative_literal_loads)));
	}
      return false;

    case LO_SUM:
      info->type = ADDRESS_LO_SUM;
      info->base = XEXP (x, 0);
      info->offset = XEXP (x, 1);
      if (allow_reg_index_p
	  && aarch64_base_register_rtx_p (info->base, strict_p))
	{
	  rtx sym, offs;
	  split_const (info->offset, &sym, &offs);
	  if (GET_CODE (sym) == SYMBOL_REF
	      && (aarch64_classify_symbol (sym, offs) == SYMBOL_SMALL_ABSOLUTE))
	    {
	      /* The symbol and offset must be aligned to the access size.  */
	      unsigned int align;
	      unsigned int ref_size;

	      if (CONSTANT_POOL_ADDRESS_P (sym))
		align = GET_MODE_ALIGNMENT (get_pool_mode (sym));
	      else if (TREE_CONSTANT_POOL_ADDRESS_P (sym))
		{
		  tree exp = SYMBOL_REF_DECL (sym);
		  align = TYPE_ALIGN (TREE_TYPE (exp));
		  align = aarch64_constant_alignment (exp, align);
		}
	      else if (SYMBOL_REF_DECL (sym))
		align = DECL_ALIGN (SYMBOL_REF_DECL (sym));
	      else if (SYMBOL_REF_HAS_BLOCK_INFO_P (sym)
		       && SYMBOL_REF_BLOCK (sym) != NULL)
		align = SYMBOL_REF_BLOCK (sym)->alignment;
	      else
		align = BITS_PER_UNIT;

	      ref_size = GET_MODE_SIZE (mode);
	      if (ref_size == 0)
		ref_size = GET_MODE_SIZE (DImode);

	      return ((INTVAL (offs) & (ref_size - 1)) == 0
		      && ((align / BITS_PER_UNIT) & (ref_size - 1)) == 0);
	    }
	}
      return false;

    default:
      return false;
    }
}

/* Return true if the address X is valid for a PRFM instruction.
   STRICT_P is true if we should do strict checking with
   aarch64_classify_address.  */

bool
aarch64_address_valid_for_prefetch_p (rtx x, bool strict_p)
{
  struct aarch64_address_info addr;

  /* PRFM accepts the same addresses as DImode...  */
  bool res = aarch64_classify_address (&addr, x, DImode, MEM, strict_p);
  if (!res)
    return false;

  /* ... except writeback forms.  */
  return addr.type != ADDRESS_REG_WB;
}

bool
aarch64_symbolic_address_p (rtx x)
{
  rtx offset;

  split_const (x, &x, &offset);
  return GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF;
}

/* Classify the base of symbolic expression X.  */

enum aarch64_symbol_type
aarch64_classify_symbolic_expression (rtx x)
{
  rtx offset;

  split_const (x, &x, &offset);
  return aarch64_classify_symbol (x, offset);
}


/* Return TRUE if X is a legitimate address for accessing memory in
   mode MODE.  */
static bool
aarch64_legitimate_address_hook_p (machine_mode mode, rtx x, bool strict_p)
{
  struct aarch64_address_info addr;

  return aarch64_classify_address (&addr, x, mode, MEM, strict_p);
}

/* Return TRUE if X is a legitimate address for accessing memory in
   mode MODE.  OUTER_CODE will be PARALLEL if this is a load/store
   pair operation.  */
bool
aarch64_legitimate_address_p (machine_mode mode, rtx x,
			      RTX_CODE outer_code, bool strict_p)
{
  struct aarch64_address_info addr;

  return aarch64_classify_address (&addr, x, mode, outer_code, strict_p);
}

/* Split an out-of-range address displacement into a base and offset.
   Use 4KB range for 1- and 2-byte accesses and a 16KB range otherwise
   to increase opportunities for sharing the base address of different sizes.
   Unaligned accesses use the signed 9-bit range, TImode/TFmode use
   the intersection of signed scaled 7-bit and signed 9-bit offset.  */
static bool
aarch64_legitimize_address_displacement (rtx *disp, rtx *off, machine_mode mode)
{
  HOST_WIDE_INT offset = INTVAL (*disp);
  HOST_WIDE_INT base;

  if (mode == TImode || mode == TFmode)
    base = (offset + 0x100) & ~0x1f8;
  else if ((offset & (GET_MODE_SIZE (mode) - 1)) != 0)
    base = (offset + 0x100) & ~0x1ff;
  else
    base = offset & ~(GET_MODE_SIZE (mode) < 4 ? 0xfff : 0x3ffc);

  *off = GEN_INT (base);
  *disp = GEN_INT (offset - base);
  return true;
}

/* Return the binary representation of floating point constant VALUE in INTVAL.
   If the value cannot be converted, return false without setting INTVAL.
   The conversion is done in the given MODE.  */
bool
aarch64_reinterpret_float_as_int (rtx value, unsigned HOST_WIDE_INT *intval)
{

  /* We make a general exception for 0.  */
  if (aarch64_float_const_zero_rtx_p (value))
    {
      *intval = 0;
      return true;
    }

  machine_mode mode = GET_MODE (value);
  if (GET_CODE (value) != CONST_DOUBLE
      || !SCALAR_FLOAT_MODE_P (mode)
      || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
      /* Only support up to DF mode.  */
      || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (DFmode))
    return false;

  unsigned HOST_WIDE_INT ival = 0;

  long res[2];
  real_to_target (res,
		  CONST_DOUBLE_REAL_VALUE (value),
		  REAL_MODE_FORMAT (mode));

  if (mode == DFmode)
    {
      int order = BYTES_BIG_ENDIAN ? 1 : 0;
      ival = zext_hwi (res[order], 32);
      ival |= (zext_hwi (res[1 - order], 32) << 32);
    }
  else
      ival = zext_hwi (res[0], 32);

  *intval = ival;
  return true;
}

/* Return TRUE if rtx X is an immediate constant that can be moved using a
   single MOV(+MOVK) followed by an FMOV.  */
bool
aarch64_float_const_rtx_p (rtx x)
{
  machine_mode mode = GET_MODE (x);
  if (mode == VOIDmode)
    return false;

  /* Determine whether it's cheaper to write float constants as
     mov/movk pairs over ldr/adrp pairs.  */
  unsigned HOST_WIDE_INT ival;

  if (GET_CODE (x) == CONST_DOUBLE
      && SCALAR_FLOAT_MODE_P (mode)
      && aarch64_reinterpret_float_as_int (x, &ival))
    {
      scalar_int_mode imode = (mode == HFmode
			       ? SImode
			       : int_mode_for_mode (mode).require ());
      int num_instr = aarch64_internal_mov_immediate
			(NULL_RTX, gen_int_mode (ival, imode), false, imode);
      return num_instr < 3;
    }

  return false;
}

/* Return TRUE if rtx X is immediate constant 0.0 */
bool
aarch64_float_const_zero_rtx_p (rtx x)
{
  if (GET_MODE (x) == VOIDmode)
    return false;

  if (REAL_VALUE_MINUS_ZERO (*CONST_DOUBLE_REAL_VALUE (x)))
    return !HONOR_SIGNED_ZEROS (GET_MODE (x));
  return real_equal (CONST_DOUBLE_REAL_VALUE (x), &dconst0);
}

/* Return TRUE if rtx X is immediate constant that fits in a single
   MOVI immediate operation.  */
bool
aarch64_can_const_movi_rtx_p (rtx x, machine_mode mode)
{
  if (!TARGET_SIMD)
     return false;

  machine_mode vmode;
  scalar_int_mode imode;
  unsigned HOST_WIDE_INT ival;

  if (GET_CODE (x) == CONST_DOUBLE
      && SCALAR_FLOAT_MODE_P (mode))
    {
      if (!aarch64_reinterpret_float_as_int (x, &ival))
	return false;

      /* We make a general exception for 0.  */
      if (aarch64_float_const_zero_rtx_p (x))
	return true;

      imode = int_mode_for_mode (mode).require ();
    }
  else if (GET_CODE (x) == CONST_INT
	   && is_a <scalar_int_mode> (mode, &imode))
    ival = INTVAL (x);
  else
    return false;

   /* use a 64 bit mode for everything except for DI/DF mode, where we use
     a 128 bit vector mode.  */
  int width = GET_MODE_BITSIZE (imode) == 64 ? 128 : 64;

  vmode = aarch64_simd_container_mode (imode, width);
  rtx v_op = aarch64_simd_gen_const_vector_dup (vmode, ival);

  return aarch64_simd_valid_immediate (v_op, vmode, false, NULL);
}


/* Return the fixed registers used for condition codes.  */

static bool
aarch64_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
{
  *p1 = CC_REGNUM;
  *p2 = INVALID_REGNUM;
  return true;
}

/* This function is used by the call expanders of the machine description.
   RESULT is the register in which the result is returned.  It's NULL for
   "call" and "sibcall".
   MEM is the location of the function call.
   SIBCALL indicates whether this function call is normal call or sibling call.
   It will generate different pattern accordingly.  */

void
aarch64_expand_call (rtx result, rtx mem, bool sibcall)
{
  rtx call, callee, tmp;
  rtvec vec;
  machine_mode mode;

  gcc_assert (MEM_P (mem));
  callee = XEXP (mem, 0);
  mode = GET_MODE (callee);
  gcc_assert (mode == Pmode);

  /* Decide if we should generate indirect calls by loading the
     address of the callee into a register before performing
     the branch-and-link.  */
  if (SYMBOL_REF_P (callee)
      ? (aarch64_is_long_call_p (callee)
	 || aarch64_is_noplt_call_p (callee))
      : !REG_P (callee))
    XEXP (mem, 0) = force_reg (mode, callee);

  call = gen_rtx_CALL (VOIDmode, mem, const0_rtx);

  if (result != NULL_RTX)
    call = gen_rtx_SET (result, call);

  if (sibcall)
    tmp = ret_rtx;
  else
    tmp = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNUM));

  vec = gen_rtvec (2, call, tmp);
  call = gen_rtx_PARALLEL (VOIDmode, vec);

  aarch64_emit_call_insn (call);
}

/* Emit call insn with PAT and do aarch64-specific handling.  */

void
aarch64_emit_call_insn (rtx pat)
{
  rtx insn = emit_call_insn (pat);

  rtx *fusage = &CALL_INSN_FUNCTION_USAGE (insn);
  clobber_reg (fusage, gen_rtx_REG (word_mode, IP0_REGNUM));
  clobber_reg (fusage, gen_rtx_REG (word_mode, IP1_REGNUM));
}

machine_mode
aarch64_select_cc_mode (RTX_CODE code, rtx x, rtx y)
{
  /* All floating point compares return CCFP if it is an equality
     comparison, and CCFPE otherwise.  */
  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
    {
      switch (code)
	{
	case EQ:
	case NE:
	case UNORDERED:
	case ORDERED:
	case UNLT:
	case UNLE:
	case UNGT:
	case UNGE:
	case UNEQ:
	case LTGT:
	  return CCFPmode;

	case LT:
	case LE:
	case GT:
	case GE:
	  return CCFPEmode;

	default:
	  gcc_unreachable ();
	}
    }

  /* Equality comparisons of short modes against zero can be performed
     using the TST instruction with the appropriate bitmask.  */
  if (y == const0_rtx && REG_P (x)
      && (code == EQ || code == NE)
      && (GET_MODE (x) == HImode || GET_MODE (x) == QImode))
    return CC_NZmode;

  /* Similarly, comparisons of zero_extends from shorter modes can
     be performed using an ANDS with an immediate mask.  */
  if (y == const0_rtx && GET_CODE (x) == ZERO_EXTEND
      && (GET_MODE (x) == SImode || GET_MODE (x) == DImode)
      && (GET_MODE (XEXP (x, 0)) == HImode || GET_MODE (XEXP (x, 0)) == QImode)
      && (code == EQ || code == NE))
    return CC_NZmode;

  if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode)
      && y == const0_rtx
      && (code == EQ || code == NE || code == LT || code == GE)
      && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS || GET_CODE (x) == AND
	  || GET_CODE (x) == NEG
	  || (GET_CODE (x) == ZERO_EXTRACT && CONST_INT_P (XEXP (x, 1))
	      && CONST_INT_P (XEXP (x, 2)))))
    return CC_NZmode;

  /* A compare with a shifted operand.  Because of canonicalization,
     the comparison will have to be swapped when we emit the assembly
     code.  */
  if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode)
      && (REG_P (y) || GET_CODE (y) == SUBREG || y == const0_rtx)
      && (GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
	  || GET_CODE (x) == LSHIFTRT
	  || GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND))
    return CC_SWPmode;

  /* Similarly for a negated operand, but we can only do this for
     equalities.  */
  if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode)
      && (REG_P (y) || GET_CODE (y) == SUBREG)
      && (code == EQ || code == NE)
      && GET_CODE (x) == NEG)
    return CC_Zmode;

  /* A test for unsigned overflow.  */
  if ((GET_MODE (x) == DImode || GET_MODE (x) == TImode)
      && code == NE
      && GET_CODE (x) == PLUS
      && GET_CODE (y) == ZERO_EXTEND)
    return CC_Cmode;

  /* For everything else, return CCmode.  */
  return CCmode;
}

static int
aarch64_get_condition_code_1 (machine_mode, enum rtx_code);

int
aarch64_get_condition_code (rtx x)
{
  machine_mode mode = GET_MODE (XEXP (x, 0));
  enum rtx_code comp_code = GET_CODE (x);

  if (GET_MODE_CLASS (mode) != MODE_CC)
    mode = SELECT_CC_MODE (comp_code, XEXP (x, 0), XEXP (x, 1));
  return aarch64_get_condition_code_1 (mode, comp_code);
}

static int
aarch64_get_condition_code_1 (machine_mode mode, enum rtx_code comp_code)
{
  switch (mode)
    {
    case E_CCFPmode:
    case E_CCFPEmode:
      switch (comp_code)
	{
	case GE: return AARCH64_GE;
	case GT: return AARCH64_GT;
	case LE: return AARCH64_LS;
	case LT: return AARCH64_MI;
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case ORDERED: return AARCH64_VC;
	case UNORDERED: return AARCH64_VS;
	case UNLT: return AARCH64_LT;
	case UNLE: return AARCH64_LE;
	case UNGT: return AARCH64_HI;
	case UNGE: return AARCH64_PL;
	default: return -1;
	}
      break;

    case E_CCmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case GE: return AARCH64_GE;
	case GT: return AARCH64_GT;
	case LE: return AARCH64_LE;
	case LT: return AARCH64_LT;
	case GEU: return AARCH64_CS;
	case GTU: return AARCH64_HI;
	case LEU: return AARCH64_LS;
	case LTU: return AARCH64_CC;
	default: return -1;
	}
      break;

    case E_CC_SWPmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case GE: return AARCH64_LE;
	case GT: return AARCH64_LT;
	case LE: return AARCH64_GE;
	case LT: return AARCH64_GT;
	case GEU: return AARCH64_LS;
	case GTU: return AARCH64_CC;
	case LEU: return AARCH64_CS;
	case LTU: return AARCH64_HI;
	default: return -1;
	}
      break;

    case E_CC_NZmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case GE: return AARCH64_PL;
	case LT: return AARCH64_MI;
	default: return -1;
	}
      break;

    case E_CC_Zmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	default: return -1;
	}
      break;

    case E_CC_Cmode:
      switch (comp_code)
	{
	case NE: return AARCH64_CS;
	case EQ: return AARCH64_CC;
	default: return -1;
	}
      break;

    default:
      return -1;
    }

  return -1;
}

bool
aarch64_const_vec_all_same_in_range_p (rtx x,
				  HOST_WIDE_INT minval,
				  HOST_WIDE_INT maxval)
{
  HOST_WIDE_INT firstval;
  int count, i;

  if (GET_CODE (x) != CONST_VECTOR
      || GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
    return false;

  firstval = INTVAL (CONST_VECTOR_ELT (x, 0));
  if (firstval < minval || firstval > maxval)
    return false;

  count = CONST_VECTOR_NUNITS (x);
  for (i = 1; i < count; i++)
    if (INTVAL (CONST_VECTOR_ELT (x, i)) != firstval)
      return false;

  return true;
}

bool
aarch64_const_vec_all_same_int_p (rtx x, HOST_WIDE_INT val)
{
  return aarch64_const_vec_all_same_in_range_p (x, val, val);
}


/* N Z C V.  */
#define AARCH64_CC_V 1
#define AARCH64_CC_C (1 << 1)
#define AARCH64_CC_Z (1 << 2)
#define AARCH64_CC_N (1 << 3)

/* N Z C V flags for ccmp.  Indexed by AARCH64_COND_CODE.  */
static const int aarch64_nzcv_codes[] =
{
  0,		/* EQ, Z == 1.  */
  AARCH64_CC_Z,	/* NE, Z == 0.  */
  0,		/* CS, C == 1.  */
  AARCH64_CC_C,	/* CC, C == 0.  */
  0,		/* MI, N == 1.  */
  AARCH64_CC_N, /* PL, N == 0.  */
  0,		/* VS, V == 1.  */
  AARCH64_CC_V, /* VC, V == 0.  */
  0,		/* HI, C ==1 && Z == 0.  */
  AARCH64_CC_C,	/* LS, !(C == 1 && Z == 0).  */
  AARCH64_CC_V,	/* GE, N == V.  */
  0,		/* LT, N != V.  */
  AARCH64_CC_Z, /* GT, Z == 0 && N == V.  */
  0,		/* LE, !(Z == 0 && N == V).  */
  0,		/* AL, Any.  */
  0		/* NV, Any.  */
};

/* Print operand X to file F in a target specific manner according to CODE.
   The acceptable formatting commands given by CODE are:
     'c':		An integer or symbol address without a preceding #
			sign.
     'e':		Print the sign/zero-extend size as a character 8->b,
			16->h, 32->w.
     'p':		Prints N such that 2^N == X (X must be power of 2 and
			const int).
     'P':		Print the number of non-zero bits in X (a const_int).
     'H':		Print the higher numbered register of a pair (TImode)
			of regs.
     'm':		Print a condition (eq, ne, etc).
     'M':		Same as 'm', but invert condition.
     'b/h/s/d/q':	Print a scalar FP/SIMD register name.
     'S/T/U/V':		Print a FP/SIMD register name for a register list.
			The register printed is the FP/SIMD register name
			of X + 0/1/2/3 for S/T/U/V.
     'R':		Print a scalar FP/SIMD register name + 1.
     'X':		Print bottom 16 bits of integer constant in hex.
     'w/x':		Print a general register name or the zero register
			(32-bit or 64-bit).
     '0':		Print a normal operand, if it's a general register,
			then we assume DImode.
     'k':		Print NZCV for conditional compare instructions.
     'A':		Output address constant representing the first
			argument of X, specifying a relocation offset
			if appropriate.
     'L':		Output constant address specified by X
			with a relocation offset if appropriate.
     'G':		Prints address of X, specifying a PC relative
			relocation mode if appropriate.  */

static void
aarch64_print_operand (FILE *f, rtx x, int code)
{
  switch (code)
    {
    case 'c':
      switch (GET_CODE (x))
	{
	case CONST_INT:
	  fprintf (f, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
	  break;

	case SYMBOL_REF:
	  output_addr_const (f, x);
	  break;

	case CONST:
	  if (GET_CODE (XEXP (x, 0)) == PLUS
	      && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
	    {
	      output_addr_const (f, x);
	      break;
	    }
	  /* Fall through.  */

	default:
	  output_operand_lossage ("Unsupported operand for code '%c'", code);
	}
      break;

    case 'e':
      {
	int n;

	if (!CONST_INT_P (x)
	    || (n = exact_log2 (INTVAL (x) & ~7)) <= 0)
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

	switch (n)
	  {
	  case 3:
	    fputc ('b', f);
	    break;
	  case 4:
	    fputc ('h', f);
	    break;
	  case 5:
	    fputc ('w', f);
	    break;
	  default:
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }
      }
      break;

    case 'p':
      {
	int n;

	if (!CONST_INT_P (x) || (n = exact_log2 (INTVAL (x))) < 0)
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

	asm_fprintf (f, "%d", n);
      }
      break;

    case 'P':
      if (!CONST_INT_P (x))
	{
	  output_operand_lossage ("invalid operand for '%%%c'", code);
	  return;
	}

      asm_fprintf (f, "%u", popcount_hwi (INTVAL (x)));
      break;

    case 'H':
      if (!REG_P (x) || !GP_REGNUM_P (REGNO (x) + 1))
	{
	  output_operand_lossage ("invalid operand for '%%%c'", code);
	  return;
	}

      asm_fprintf (f, "%s", reg_names [REGNO (x) + 1]);
      break;

    case 'M':
    case 'm':
      {
        int cond_code;
	/* CONST_TRUE_RTX means al/nv (al is the default, don't print it).  */
	if (x == const_true_rtx)
	  {
	    if (code == 'M')
	      fputs ("nv", f);
	    return;
	  }

        if (!COMPARISON_P (x))
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

        cond_code = aarch64_get_condition_code (x);
        gcc_assert (cond_code >= 0);
	if (code == 'M')
	  cond_code = AARCH64_INVERSE_CONDITION_CODE (cond_code);
	fputs (aarch64_condition_codes[cond_code], f);
      }
      break;

    case 'b':
    case 'h':
    case 's':
    case 'd':
    case 'q':
      if (!REG_P (x) || !FP_REGNUM_P (REGNO (x)))
	{
	  output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code);
	  return;
	}
      asm_fprintf (f, "%c%d", code, REGNO (x) - V0_REGNUM);
      break;

    case 'S':
    case 'T':
    case 'U':
    case 'V':
      if (!REG_P (x) || !FP_REGNUM_P (REGNO (x)))
	{
	  output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code);
	  return;
	}
      asm_fprintf (f, "v%d", REGNO (x) - V0_REGNUM + (code - 'S'));
      break;

    case 'R':
      if (!REG_P (x) || !FP_REGNUM_P (REGNO (x)))
	{
	  output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code);
	  return;
	}
      asm_fprintf (f, "q%d", REGNO (x) - V0_REGNUM + 1);
      break;

    case 'X':
      if (!CONST_INT_P (x))
	{
	  output_operand_lossage ("invalid operand for '%%%c'", code);
	  return;
	}
      asm_fprintf (f, "0x%wx", UINTVAL (x) & 0xffff);
      break;

    case 'w':
    case 'x':
      if (x == const0_rtx
	  || (CONST_DOUBLE_P (x) && aarch64_float_const_zero_rtx_p (x)))
	{
	  asm_fprintf (f, "%czr", code);
	  break;
	}

      if (REG_P (x) && GP_REGNUM_P (REGNO (x)))
	{
	  asm_fprintf (f, "%c%d", code, REGNO (x) - R0_REGNUM);
	  break;
	}

      if (REG_P (x) && REGNO (x) == SP_REGNUM)
	{
	  asm_fprintf (f, "%ssp", code == 'w' ? "w" : "");
	  break;
	}

      /* Fall through */

    case 0:
      if (x == NULL)
	{
	  output_operand_lossage ("missing operand");
	  return;
	}

      switch (GET_CODE (x))
	{
	case REG:
	  asm_fprintf (f, "%s", reg_names [REGNO (x)]);
	  break;

	case MEM:
	  output_address (GET_MODE (x), XEXP (x, 0));
	  /* Check all memory references are Pmode - even with ILP32.  */
	  gcc_assert (GET_MODE (XEXP (x, 0)) == Pmode);
	  break;

	case CONST:
	case LABEL_REF:
	case SYMBOL_REF:
	  output_addr_const (asm_out_file, x);
	  break;

	case CONST_INT:
	  asm_fprintf (f, "%wd", INTVAL (x));
	  break;

	case CONST_VECTOR:
	  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_INT)
	    {
	      gcc_assert (
		  aarch64_const_vec_all_same_in_range_p (x,
							 HOST_WIDE_INT_MIN,
							 HOST_WIDE_INT_MAX));
	      asm_fprintf (f, "%wd", INTVAL (CONST_VECTOR_ELT (x, 0)));
	    }
	  else if (aarch64_simd_imm_zero_p (x, GET_MODE (x)))
	    {
	      fputc ('0', f);
	    }
	  else
	    gcc_unreachable ();
	  break;

	case CONST_DOUBLE:
	  /* Since we define TARGET_SUPPORTS_WIDE_INT we shouldn't ever
	     be getting CONST_DOUBLEs holding integers.  */
	  gcc_assert (GET_MODE (x) != VOIDmode);
	  if (aarch64_float_const_zero_rtx_p (x))
	    {
	      fputc ('0', f);
	      break;
	    }
	  else if (aarch64_float_const_representable_p (x))
	    {
#define buf_size 20
	      char float_buf[buf_size] = {'\0'};
	      real_to_decimal_for_mode (float_buf,
					CONST_DOUBLE_REAL_VALUE (x),
					buf_size, buf_size,
					1, GET_MODE (x));
	      asm_fprintf (asm_out_file, "%s", float_buf);
	      break;
#undef buf_size
	    }
	  output_operand_lossage ("invalid constant");
	  return;
	default:
	  output_operand_lossage ("invalid operand");
	  return;
	}
      break;

    case 'A':
      if (GET_CODE (x) == HIGH)
	x = XEXP (x, 0);

      switch (aarch64_classify_symbolic_expression (x))
	{
	case SYMBOL_SMALL_GOT_4G:
	  asm_fprintf (asm_out_file, ":got:");
	  break;

	case SYMBOL_SMALL_TLSGD:
	  asm_fprintf (asm_out_file, ":tlsgd:");
	  break;

	case SYMBOL_SMALL_TLSDESC:
	  asm_fprintf (asm_out_file, ":tlsdesc:");
	  break;

	case SYMBOL_SMALL_TLSIE:
	  asm_fprintf (asm_out_file, ":gottprel:");
	  break;

	case SYMBOL_TLSLE24:
	  asm_fprintf (asm_out_file, ":tprel:");
	  break;

	case SYMBOL_TINY_GOT:
	  gcc_unreachable ();
	  break;

	default:
	  break;
	}
      output_addr_const (asm_out_file, x);
      break;

    case 'L':
      switch (aarch64_classify_symbolic_expression (x))
	{
	case SYMBOL_SMALL_GOT_4G:
	  asm_fprintf (asm_out_file, ":lo12:");
	  break;

	case SYMBOL_SMALL_TLSGD:
	  asm_fprintf (asm_out_file, ":tlsgd_lo12:");
	  break;

	case SYMBOL_SMALL_TLSDESC:
	  asm_fprintf (asm_out_file, ":tlsdesc_lo12:");
	  break;

	case SYMBOL_SMALL_TLSIE:
	  asm_fprintf (asm_out_file, ":gottprel_lo12:");
	  break;

	case SYMBOL_TLSLE12:
	  asm_fprintf (asm_out_file, ":tprel_lo12:");
	  break;

	case SYMBOL_TLSLE24:
	  asm_fprintf (asm_out_file, ":tprel_lo12_nc:");
	  break;

	case SYMBOL_TINY_GOT:
	  asm_fprintf (asm_out_file, ":got:");
	  break;

	case SYMBOL_TINY_TLSIE:
	  asm_fprintf (asm_out_file, ":gottprel:");
	  break;

	default:
	  break;
	}
      output_addr_const (asm_out_file, x);
      break;

    case 'G':
      switch (aarch64_classify_symbolic_expression (x))
	{
	case SYMBOL_TLSLE24:
	  asm_fprintf (asm_out_file, ":tprel_hi12:");
	  break;
	default:
	  break;
	}
      output_addr_const (asm_out_file, x);
      break;

    case 'k':
      {
	HOST_WIDE_INT cond_code;

	if (!CONST_INT_P (x))
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

	cond_code = INTVAL (x);
	gcc_assert (cond_code >= 0 && cond_code <= AARCH64_NV);
	asm_fprintf (f, "%d", aarch64_nzcv_codes[cond_code]);
      }
      break;

    default:
      output_operand_lossage ("invalid operand prefix '%%%c'", code);
      return;
    }
}

static void
aarch64_print_operand_address (FILE *f, machine_mode mode, rtx x)
{
  struct aarch64_address_info addr;

  if (aarch64_classify_address (&addr, x, mode, MEM, true))
    switch (addr.type)
      {
      case ADDRESS_REG_IMM:
	if (addr.offset == const0_rtx)
	  asm_fprintf (f, "[%s]", reg_names [REGNO (addr.base)]);
	else
	  asm_fprintf (f, "[%s, %wd]", reg_names [REGNO (addr.base)],
		       INTVAL (addr.offset));
	return;

      case ADDRESS_REG_REG:
	if (addr.shift == 0)
	  asm_fprintf (f, "[%s, %s]", reg_names [REGNO (addr.base)],
		       reg_names [REGNO (addr.offset)]);
	else
	  asm_fprintf (f, "[%s, %s, lsl %u]", reg_names [REGNO (addr.base)],
		       reg_names [REGNO (addr.offset)], addr.shift);
	return;

      case ADDRESS_REG_UXTW:
	if (addr.shift == 0)
	  asm_fprintf (f, "[%s, w%d, uxtw]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM);
	else
	  asm_fprintf (f, "[%s, w%d, uxtw %u]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM, addr.shift);
	return;

      case ADDRESS_REG_SXTW:
	if (addr.shift == 0)
	  asm_fprintf (f, "[%s, w%d, sxtw]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM);
	else
	  asm_fprintf (f, "[%s, w%d, sxtw %u]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM, addr.shift);
	return;

      case ADDRESS_REG_WB:
	switch (GET_CODE (x))
	  {
	  case PRE_INC:
	    asm_fprintf (f, "[%s, %d]!", reg_names [REGNO (addr.base)],
			 GET_MODE_SIZE (mode));
	    return;
	  case POST_INC:
	    asm_fprintf (f, "[%s], %d", reg_names [REGNO (addr.base)],
			 GET_MODE_SIZE (mode));
	    return;
	  case PRE_DEC:
	    asm_fprintf (f, "[%s, -%d]!", reg_names [REGNO (addr.base)],
			 GET_MODE_SIZE (mode));
	    return;
	  case POST_DEC:
	    asm_fprintf (f, "[%s], -%d", reg_names [REGNO (addr.base)],
			 GET_MODE_SIZE (mode));
	    return;
	  case PRE_MODIFY:
	    asm_fprintf (f, "[%s, %wd]!", reg_names [REGNO (addr.base)],
			 INTVAL (addr.offset));
	    return;
	  case POST_MODIFY:
	    asm_fprintf (f, "[%s], %wd", reg_names [REGNO (addr.base)],
			 INTVAL (addr.offset));
	    return;
	  default:
	    break;
	  }
	break;

      case ADDRESS_LO_SUM:
	asm_fprintf (f, "[%s, #:lo12:", reg_names [REGNO (addr.base)]);
	output_addr_const (f, addr.offset);
	asm_fprintf (f, "]");
	return;

      case ADDRESS_SYMBOLIC:
	break;
      }

  output_addr_const (f, x);
}

bool
aarch64_label_mentioned_p (rtx x)
{
  const char *fmt;
  int i;

  if (GET_CODE (x) == LABEL_REF)
    return true;

  /* UNSPEC_TLS entries for a symbol include a LABEL_REF for the
     referencing instruction, but they are constant offsets, not
     symbols.  */
  if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
    return false;

  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  int j;

	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (aarch64_label_mentioned_p (XVECEXP (x, i, j)))
	      return 1;
	}
      else if (fmt[i] == 'e' && aarch64_label_mentioned_p (XEXP (x, i)))
	return 1;
    }

  return 0;
}

/* Implement REGNO_REG_CLASS.  */

enum reg_class
aarch64_regno_regclass (unsigned regno)
{
  if (GP_REGNUM_P (regno))
    return GENERAL_REGS;

  if (regno == SP_REGNUM)
    return STACK_REG;

  if (regno == FRAME_POINTER_REGNUM
      || regno == ARG_POINTER_REGNUM)
    return POINTER_REGS;

  if (FP_REGNUM_P (regno))
    return FP_LO_REGNUM_P (regno) ?  FP_LO_REGS : FP_REGS;

  return NO_REGS;
}

static rtx
aarch64_legitimize_address (rtx x, rtx /* orig_x  */, machine_mode mode)
{
  /* Try to split X+CONST into Y=X+(CONST & ~mask), Y+(CONST&mask),
     where mask is selected by alignment and size of the offset.
     We try to pick as large a range for the offset as possible to
     maximize the chance of a CSE.  However, for aligned addresses
     we limit the range to 4k so that structures with different sized
     elements are likely to use the same base.  We need to be careful
     not to split a CONST for some forms of address expression, otherwise
     it will generate sub-optimal code.  */

  if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
    {
      rtx base = XEXP (x, 0);
      rtx offset_rtx = XEXP (x, 1);
      HOST_WIDE_INT offset = INTVAL (offset_rtx);

      if (GET_CODE (base) == PLUS)
	{
	  rtx op0 = XEXP (base, 0);
	  rtx op1 = XEXP (base, 1);

	  /* Force any scaling into a temp for CSE.  */
	  op0 = force_reg (Pmode, op0);
	  op1 = force_reg (Pmode, op1);

	  /* Let the pointer register be in op0.  */
	  if (REG_POINTER (op1))
	    std::swap (op0, op1);

	  /* If the pointer is virtual or frame related, then we know that
	     virtual register instantiation or register elimination is going
	     to apply a second constant.  We want the two constants folded
	     together easily.  Therefore, emit as (OP0 + CONST) + OP1.  */
	  if (virt_or_elim_regno_p (REGNO (op0)))
	    {
	      base = expand_binop (Pmode, add_optab, op0, offset_rtx,
				   NULL_RTX, true, OPTAB_DIRECT);
	      return gen_rtx_PLUS (Pmode, base, op1);
	    }

	  /* Otherwise, in order to encourage CSE (and thence loop strength
	     reduce) scaled addresses, emit as (OP0 + OP1) + CONST.  */
	  base = expand_binop (Pmode, add_optab, op0, op1,
			       NULL_RTX, true, OPTAB_DIRECT);
	  x = gen_rtx_PLUS (Pmode, base, offset_rtx);
	}

      /* Does it look like we'll need a 16-byte load/store-pair operation?  */
      HOST_WIDE_INT base_offset;
      if (GET_MODE_SIZE (mode) > 16)
	base_offset = (offset + 0x400) & ~0x7f0;
      /* For offsets aren't a multiple of the access size, the limit is
	 -256...255.  */
      else if (offset & (GET_MODE_SIZE (mode) - 1))
	{
	  base_offset = (offset + 0x100) & ~0x1ff;

	  /* BLKmode typically uses LDP of X-registers.  */
	  if (mode == BLKmode)
	    base_offset = (offset + 512) & ~0x3ff;
	}
      /* Small negative offsets are supported.  */
      else if (IN_RANGE (offset, -256, 0))
	base_offset = 0;
      else if (mode == TImode || mode == TFmode)
	base_offset = (offset + 0x100) & ~0x1ff;
      /* Use 12-bit offset by access size.  */
      else
	base_offset = offset & (~0xfff * GET_MODE_SIZE (mode));

      if (base_offset != 0)
	{
	  base = plus_constant (Pmode, base, base_offset);
	  base = force_operand (base, NULL_RTX);
	  return plus_constant (Pmode, base, offset - base_offset);
	}
    }

  return x;
}

/* Return the reload icode required for a constant pool in mode.  */
static enum insn_code
aarch64_constant_pool_reload_icode (machine_mode mode)
{
  switch (mode)
    {
    case E_SFmode:
      return CODE_FOR_aarch64_reload_movcpsfdi;

    case E_DFmode:
      return CODE_FOR_aarch64_reload_movcpdfdi;

    case E_TFmode:
      return CODE_FOR_aarch64_reload_movcptfdi;

    case E_V8QImode:
      return CODE_FOR_aarch64_reload_movcpv8qidi;

    case E_V16QImode:
      return CODE_FOR_aarch64_reload_movcpv16qidi;

    case E_V4HImode:
      return CODE_FOR_aarch64_reload_movcpv4hidi;

    case E_V8HImode:
      return CODE_FOR_aarch64_reload_movcpv8hidi;

    case E_V2SImode:
      return CODE_FOR_aarch64_reload_movcpv2sidi;

    case E_V4SImode:
      return CODE_FOR_aarch64_reload_movcpv4sidi;

    case E_V2DImode:
      return CODE_FOR_aarch64_reload_movcpv2didi;

    case E_V2DFmode:
      return CODE_FOR_aarch64_reload_movcpv2dfdi;

    default:
      gcc_unreachable ();
    }

  gcc_unreachable ();
}
static reg_class_t
aarch64_secondary_reload (bool in_p ATTRIBUTE_UNUSED, rtx x,
			  reg_class_t rclass,
			  machine_mode mode,
			  secondary_reload_info *sri)
{

  /* If we have to disable direct literal pool loads and stores because the
     function is too big, then we need a scratch register.  */
  if (MEM_P (x) && GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x)
      && (SCALAR_FLOAT_MODE_P (GET_MODE (x))
	  || targetm.vector_mode_supported_p (GET_MODE (x)))
      && !aarch64_pcrelative_literal_loads)
    {
      sri->icode = aarch64_constant_pool_reload_icode (mode);
      return NO_REGS;
    }

  /* Without the TARGET_SIMD instructions we cannot move a Q register
     to a Q register directly.  We need a scratch.  */
  if (REG_P (x) && (mode == TFmode || mode == TImode) && mode == GET_MODE (x)
      && FP_REGNUM_P (REGNO (x)) && !TARGET_SIMD
      && reg_class_subset_p (rclass, FP_REGS))
    {
      if (mode == TFmode)
        sri->icode = CODE_FOR_aarch64_reload_movtf;
      else if (mode == TImode)
        sri->icode = CODE_FOR_aarch64_reload_movti;
      return NO_REGS;
    }

  /* A TFmode or TImode memory access should be handled via an FP_REGS
     because AArch64 has richer addressing modes for LDR/STR instructions
     than LDP/STP instructions.  */
  if (TARGET_FLOAT && rclass == GENERAL_REGS
      && GET_MODE_SIZE (mode) == 16 && MEM_P (x))
    return FP_REGS;

  if (rclass == FP_REGS && (mode == TImode || mode == TFmode) && CONSTANT_P(x))
      return GENERAL_REGS;

  return NO_REGS;
}

static bool
aarch64_can_eliminate (const int from, const int to)
{
  /* If we need a frame pointer, we must eliminate FRAME_POINTER_REGNUM into
     HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM.  */

  if (frame_pointer_needed)
    {
      if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
	return true;
      if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
	return false;
      if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM
	  && !cfun->calls_alloca)
	return true;
      if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
	return true;

      return false;
    }
  else
    {
      /* If we decided that we didn't need a leaf frame pointer but then used
	 LR in the function, then we'll want a frame pointer after all, so
	 prevent this elimination to ensure a frame pointer is used.  */
      if (to == STACK_POINTER_REGNUM
	  && flag_omit_frame_pointer == 2
	  && flag_omit_leaf_frame_pointer
	  && df_regs_ever_live_p (LR_REGNUM))
	return false;
    }

  return true;
}

HOST_WIDE_INT
aarch64_initial_elimination_offset (unsigned from, unsigned to)
{
  aarch64_layout_frame ();

  if (to == HARD_FRAME_POINTER_REGNUM)
    {
      if (from == ARG_POINTER_REGNUM)
	return cfun->machine->frame.hard_fp_offset;

      if (from == FRAME_POINTER_REGNUM)
	return cfun->machine->frame.hard_fp_offset
	       - cfun->machine->frame.locals_offset;
    }

  if (to == STACK_POINTER_REGNUM)
    {
      if (from == FRAME_POINTER_REGNUM)
	  return cfun->machine->frame.frame_size
		 - cfun->machine->frame.locals_offset;
    }

  return cfun->machine->frame.frame_size;
}

/* Implement RETURN_ADDR_RTX.  We do not support moving back to a
   previous frame.  */

rtx
aarch64_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
  if (count != 0)
    return const0_rtx;
  return get_hard_reg_initial_val (Pmode, LR_REGNUM);
}


static void
aarch64_asm_trampoline_template (FILE *f)
{
  if (TARGET_ILP32)
    {
      asm_fprintf (f, "\tldr\tw%d, .+16\n", IP1_REGNUM - R0_REGNUM);
      asm_fprintf (f, "\tldr\tw%d, .+16\n", STATIC_CHAIN_REGNUM - R0_REGNUM);
    }
  else
    {
      asm_fprintf (f, "\tldr\t%s, .+16\n", reg_names [IP1_REGNUM]);
      asm_fprintf (f, "\tldr\t%s, .+20\n", reg_names [STATIC_CHAIN_REGNUM]);
    }
  asm_fprintf (f, "\tbr\t%s\n", reg_names [IP1_REGNUM]);
  assemble_aligned_integer (4, const0_rtx);
  assemble_aligned_integer (POINTER_BYTES, const0_rtx);
  assemble_aligned_integer (POINTER_BYTES, const0_rtx);
}

static void
aarch64_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  rtx fnaddr, mem, a_tramp;
  const int tramp_code_sz = 16;

  /* Don't need to copy the trailing D-words, we fill those in below.  */
  emit_block_move (m_tramp, assemble_trampoline_template (),
		   GEN_INT (tramp_code_sz), BLOCK_OP_NORMAL);
  mem = adjust_address (m_tramp, ptr_mode, tramp_code_sz);
  fnaddr = XEXP (DECL_RTL (fndecl), 0);
  if (GET_MODE (fnaddr) != ptr_mode)
    fnaddr = convert_memory_address (ptr_mode, fnaddr);
  emit_move_insn (mem, fnaddr);

  mem = adjust_address (m_tramp, ptr_mode, tramp_code_sz + POINTER_BYTES);
  emit_move_insn (mem, chain_value);

  /* XXX We should really define a "clear_cache" pattern and use
     gen_clear_cache().  */
  a_tramp = XEXP (m_tramp, 0);
  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"),
		     LCT_NORMAL, VOIDmode, a_tramp, ptr_mode,
		     plus_constant (ptr_mode, a_tramp, TRAMPOLINE_SIZE),
		     ptr_mode);
}

static unsigned char
aarch64_class_max_nregs (reg_class_t regclass, machine_mode mode)
{
  switch (regclass)
    {
    case CALLER_SAVE_REGS:
    case POINTER_REGS:
    case GENERAL_REGS:
    case ALL_REGS:
    case POINTER_AND_FP_REGS:
    case FP_REGS:
    case FP_LO_REGS:
      return
	aarch64_vector_mode_p (mode)
	  ? (GET_MODE_SIZE (mode) + UNITS_PER_VREG - 1) / UNITS_PER_VREG
	  : (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
    case STACK_REG:
      return 1;

    case NO_REGS:
      return 0;

    default:
      break;
    }
  gcc_unreachable ();
}

static reg_class_t
aarch64_preferred_reload_class (rtx x, reg_class_t regclass)
{
  if (regclass == POINTER_REGS)
    return GENERAL_REGS;

  if (regclass == STACK_REG)
    {
      if (REG_P(x)
	  && reg_class_subset_p (REGNO_REG_CLASS (REGNO (x)), POINTER_REGS))
	  return regclass;

      return NO_REGS;
    }

  /* Register eliminiation can result in a request for
     SP+constant->FP_REGS.  We cannot support such operations which
     use SP as source and an FP_REG as destination, so reject out
     right now.  */
  if (! reg_class_subset_p (regclass, GENERAL_REGS) && GET_CODE (x) == PLUS)
    {
      rtx lhs = XEXP (x, 0);

      /* Look through a possible SUBREG introduced by ILP32.  */
      if (GET_CODE (lhs) == SUBREG)
	lhs = SUBREG_REG (lhs);

      gcc_assert (REG_P (lhs));
      gcc_assert (reg_class_subset_p (REGNO_REG_CLASS (REGNO (lhs)),
				      POINTER_REGS));
      return NO_REGS;
    }

  return regclass;
}

void
aarch64_asm_output_labelref (FILE* f, const char *name)
{
  asm_fprintf (f, "%U%s", name);
}

static void
aarch64_elf_asm_constructor (rtx symbol, int priority)
{
  if (priority == DEFAULT_INIT_PRIORITY)
    default_ctor_section_asm_out_constructor (symbol, priority);
  else
    {
      section *s;
      /* While priority is known to be in range [0, 65535], so 18 bytes
         would be enough, the compiler might not know that.  To avoid
         -Wformat-truncation false positive, use a larger size.  */
      char buf[23];
      snprintf (buf, sizeof (buf), ".init_array.%.5u", priority);
      s = get_section (buf, SECTION_WRITE | SECTION_NOTYPE, NULL);
      switch_to_section (s);
      assemble_align (POINTER_SIZE);
      assemble_aligned_integer (POINTER_BYTES, symbol);
    }
}

static void
aarch64_elf_asm_destructor (rtx symbol, int priority)
{
  if (priority == DEFAULT_INIT_PRIORITY)
    default_dtor_section_asm_out_destructor (symbol, priority);
  else
    {
      section *s;
      /* While priority is known to be in range [0, 65535], so 18 bytes
         would be enough, the compiler might not know that.  To avoid
         -Wformat-truncation false positive, use a larger size.  */
      char buf[23];
      snprintf (buf, sizeof (buf), ".fini_array.%.5u", priority);
      s = get_section (buf, SECTION_WRITE | SECTION_NOTYPE, NULL);
      switch_to_section (s);
      assemble_align (POINTER_SIZE);
      assemble_aligned_integer (POINTER_BYTES, symbol);
    }
}

const char*
aarch64_output_casesi (rtx *operands)
{
  char buf[100];
  char label[100];
  rtx diff_vec = PATTERN (NEXT_INSN (as_a <rtx_insn *> (operands[2])));
  int index;
  static const char *const patterns[4][2] =
  {
    {
      "ldrb\t%w3, [%0,%w1,uxtw]",
      "add\t%3, %4, %w3, sxtb #2"
    },
    {
      "ldrh\t%w3, [%0,%w1,uxtw #1]",
      "add\t%3, %4, %w3, sxth #2"
    },
    {
      "ldr\t%w3, [%0,%w1,uxtw #2]",
      "add\t%3, %4, %w3, sxtw #2"
    },
    /* We assume that DImode is only generated when not optimizing and
       that we don't really need 64-bit address offsets.  That would
       imply an object file with 8GB of code in a single function!  */
    {
      "ldr\t%w3, [%0,%w1,uxtw #2]",
      "add\t%3, %4, %w3, sxtw #2"
    }
  };

  gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);

  scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (diff_vec));
  index = exact_log2 (GET_MODE_SIZE (mode));

  gcc_assert (index >= 0 && index <= 3);

  /* Need to implement table size reduction, by chaning the code below.  */
  output_asm_insn (patterns[index][0], operands);
  ASM_GENERATE_INTERNAL_LABEL (label, "Lrtx", CODE_LABEL_NUMBER (operands[2]));
  snprintf (buf, sizeof (buf),
	    "adr\t%%4, %s", targetm.strip_name_encoding (label));
  output_asm_insn (buf, operands);
  output_asm_insn (patterns[index][1], operands);
  output_asm_insn ("br\t%3", operands);
  assemble_label (asm_out_file, label);
  return "";
}


/* Return size in bits of an arithmetic operand which is shifted/scaled and
   masked such that it is suitable for a UXTB, UXTH, or UXTW extend
   operator.  */

int
aarch64_uxt_size (int shift, HOST_WIDE_INT mask)
{
  if (shift >= 0 && shift <= 3)
    {
      int size;
      for (size = 8; size <= 32; size *= 2)
	{
	  HOST_WIDE_INT bits = ((HOST_WIDE_INT)1U << size) - 1;
	  if (mask == bits << shift)
	    return size;
	}
    }
  return 0;
}

/* Constant pools are per function only when PC relative
   literal loads are true or we are in the large memory
   model.  */

static inline bool
aarch64_can_use_per_function_literal_pools_p (void)
{
  return (aarch64_pcrelative_literal_loads
	  || aarch64_cmodel == AARCH64_CMODEL_LARGE);
}

static bool
aarch64_use_blocks_for_constant_p (machine_mode, const_rtx)
{
  /* Fixme:: In an ideal world this would work similar
     to the logic in aarch64_select_rtx_section but this
     breaks bootstrap in gcc go.  For now we workaround
     this by returning false here.  */
  return false;
}

/* Select appropriate section for constants depending
   on where we place literal pools.  */

static section *
aarch64_select_rtx_section (machine_mode mode,
			    rtx x,
			    unsigned HOST_WIDE_INT align)
{
  if (aarch64_can_use_per_function_literal_pools_p ())
    return function_section (current_function_decl);

  return default_elf_select_rtx_section (mode, x, align);
}

/* Implement ASM_OUTPUT_POOL_EPILOGUE.  */
void
aarch64_asm_output_pool_epilogue (FILE *f, const char *, tree,
				  HOST_WIDE_INT offset)
{
  /* When using per-function literal pools, we must ensure that any code
     section is aligned to the minimal instruction length, lest we get
     errors from the assembler re "unaligned instructions".  */
  if ((offset & 3) && aarch64_can_use_per_function_literal_pools_p ())
    ASM_OUTPUT_ALIGN (f, 2);
}

/* Costs.  */

/* Helper function for rtx cost calculation.  Strip a shift expression
   from X.  Returns the inner operand if successful, or the original
   expression on failure.  */
static rtx
aarch64_strip_shift (rtx x)
{
  rtx op = x;

  /* We accept both ROTATERT and ROTATE: since the RHS must be a constant
     we can convert both to ROR during final output.  */
  if ((GET_CODE (op) == ASHIFT
       || GET_CODE (op) == ASHIFTRT
       || GET_CODE (op) == LSHIFTRT
       || GET_CODE (op) == ROTATERT
       || GET_CODE (op) == ROTATE)
      && CONST_INT_P (XEXP (op, 1)))
    return XEXP (op, 0);

  if (GET_CODE (op) == MULT
      && CONST_INT_P (XEXP (op, 1))
      && ((unsigned) exact_log2 (INTVAL (XEXP (op, 1)))) < 64)
    return XEXP (op, 0);

  return x;
}

/* Helper function for rtx cost calculation.  Strip an extend
   expression from X.  Returns the inner operand if successful, or the
   original expression on failure.  We deal with a number of possible
   canonicalization variations here. If STRIP_SHIFT is true, then
   we can strip off a shift also.  */
static rtx
aarch64_strip_extend (rtx x, bool strip_shift)
{
  scalar_int_mode mode;
  rtx op = x;

  if (!is_a <scalar_int_mode> (GET_MODE (op), &mode))
    return op;

  /* Zero and sign extraction of a widened value.  */
  if ((GET_CODE (op) == ZERO_EXTRACT || GET_CODE (op) == SIGN_EXTRACT)
      && XEXP (op, 2) == const0_rtx
      && GET_CODE (XEXP (op, 0)) == MULT
      && aarch64_is_extend_from_extract (mode, XEXP (XEXP (op, 0), 1),
					 XEXP (op, 1)))
    return XEXP (XEXP (op, 0), 0);

  /* It can also be represented (for zero-extend) as an AND with an
     immediate.  */
  if (GET_CODE (op) == AND
      && GET_CODE (XEXP (op, 0)) == MULT
      && CONST_INT_P (XEXP (XEXP (op, 0), 1))
      && CONST_INT_P (XEXP (op, 1))
      && aarch64_uxt_size (exact_log2 (INTVAL (XEXP (XEXP (op, 0), 1))),
			   INTVAL (XEXP (op, 1))) != 0)
    return XEXP (XEXP (op, 0), 0);

  /* Now handle extended register, as this may also have an optional
     left shift by 1..4.  */
  if (strip_shift
      && GET_CODE (op) == ASHIFT
      && CONST_INT_P (XEXP (op, 1))
      && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op, 1))) <= 4)
    op = XEXP (op, 0);

  if (GET_CODE (op) == ZERO_EXTEND
      || GET_CODE (op) == SIGN_EXTEND)
    op = XEXP (op, 0);

  if (op != x)
    return op;

  return x;
}

/* Return true iff CODE is a shift supported in combination
   with arithmetic instructions.  */

static bool
aarch64_shift_p (enum rtx_code code)
{
  return code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT;
}


/* Return true iff X is a cheap shift without a sign extend. */

static bool
aarch64_cheap_mult_shift_p (rtx x)
{
  rtx op0, op1;

  op0 = XEXP (x, 0);
  op1 = XEXP (x, 1);

  if (!(aarch64_tune_params.extra_tuning_flags
                      & AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND))
    return false;

  if (GET_CODE (op0) == SIGN_EXTEND)
    return false;

  if (GET_CODE (x) == ASHIFT && CONST_INT_P (op1)
      && UINTVAL (op1) <= 4)
    return true;

  if (GET_CODE (x) != MULT || !CONST_INT_P (op1))
    return false;

  HOST_WIDE_INT l2 = exact_log2 (INTVAL (op1));

  if (l2 > 0 && l2 <= 4)
    return true;

  return false;
}

/* Helper function for rtx cost calculation.  Calculate the cost of
   a MULT or ASHIFT, which may be part of a compound PLUS/MINUS rtx.
   Return the calculated cost of the expression, recursing manually in to
   operands where needed.  */

static int
aarch64_rtx_mult_cost (rtx x, enum rtx_code code, int outer, bool speed)
{
  rtx op0, op1;
  const struct cpu_cost_table *extra_cost
    = aarch64_tune_params.insn_extra_cost;
  int cost = 0;
  bool compound_p = (outer == PLUS || outer == MINUS);
  machine_mode mode = GET_MODE (x);

  gcc_checking_assert (code == MULT);

  op0 = XEXP (x, 0);
  op1 = XEXP (x, 1);

  if (VECTOR_MODE_P (mode))
    mode = GET_MODE_INNER (mode);

  /* Integer multiply/fma.  */
  if (GET_MODE_CLASS (mode) == MODE_INT)
    {
      /* The multiply will be canonicalized as a shift, cost it as such.  */
      if (aarch64_shift_p (GET_CODE (x))
	  || (CONST_INT_P (op1)
	      && exact_log2 (INTVAL (op1)) > 0))
	{
	  bool is_extend = GET_CODE (op0) == ZERO_EXTEND
	                   || GET_CODE (op0) == SIGN_EXTEND;
	  if (speed)
	    {
	      if (compound_p)
	        {
		  /* If the shift is considered cheap,
		     then don't add any cost. */
		  if (aarch64_cheap_mult_shift_p (x))
		    ;
	          else if (REG_P (op1))
		    /* ARITH + shift-by-register.  */
		    cost += extra_cost->alu.arith_shift_reg;
		  else if (is_extend)
		    /* ARITH + extended register.  We don't have a cost field
		       for ARITH+EXTEND+SHIFT, so use extend_arith here.  */
		    cost += extra_cost->alu.extend_arith;
		  else
		    /* ARITH + shift-by-immediate.  */
		    cost += extra_cost->alu.arith_shift;
		}
	      else
		/* LSL (immediate).  */
	        cost += extra_cost->alu.shift;

	    }
	  /* Strip extends as we will have costed them in the case above.  */
	  if (is_extend)
	    op0 = aarch64_strip_extend (op0, true);

	  cost += rtx_cost (op0, VOIDmode, code, 0, speed);

	  return cost;
	}

      /* MNEG or [US]MNEGL.  Extract the NEG operand and indicate that it's a
	 compound and let the below cases handle it.  After all, MNEG is a
	 special-case alias of MSUB.  */
      if (GET_CODE (op0) == NEG)
	{
	  op0 = XEXP (op0, 0);
	  compound_p = true;
	}

      /* Integer multiplies or FMAs have zero/sign extending variants.  */
      if ((GET_CODE (op0) == ZERO_EXTEND
	   && GET_CODE (op1) == ZERO_EXTEND)
	  || (GET_CODE (op0) == SIGN_EXTEND
	      && GET_CODE (op1) == SIGN_EXTEND))
	{
	  cost += rtx_cost (XEXP (op0, 0), VOIDmode, MULT, 0, speed);
	  cost += rtx_cost (XEXP (op1, 0), VOIDmode, MULT, 1, speed);

	  if (speed)
	    {
	      if (compound_p)
		/* SMADDL/UMADDL/UMSUBL/SMSUBL.  */
		cost += extra_cost->mult[0].extend_add;
	      else
		/* MUL/SMULL/UMULL.  */
		cost += extra_cost->mult[0].extend;
	    }

	  return cost;
	}

      /* This is either an integer multiply or a MADD.  In both cases
	 we want to recurse and cost the operands.  */
      cost += rtx_cost (op0, mode, MULT, 0, speed);
      cost += rtx_cost (op1, mode, MULT, 1, speed);

      if (speed)
	{
	  if (compound_p)
	    /* MADD/MSUB.  */
	    cost += extra_cost->mult[mode == DImode].add;
	  else
	    /* MUL.  */
	    cost += extra_cost->mult[mode == DImode].simple;
	}

      return cost;
    }
  else
    {
      if (speed)
	{
	  /* Floating-point FMA/FMUL can also support negations of the
	     operands, unless the rounding mode is upward or downward in
	     which case FNMUL is different than FMUL with operand negation.  */
	  bool neg0 = GET_CODE (op0) == NEG;
	  bool neg1 = GET_CODE (op1) == NEG;
	  if (compound_p || !flag_rounding_math || (neg0 && neg1))
	    {
	      if (neg0)
		op0 = XEXP (op0, 0);
	      if (neg1)
		op1 = XEXP (op1, 0);
	    }

	  if (compound_p)
	    /* FMADD/FNMADD/FNMSUB/FMSUB.  */
	    cost += extra_cost->fp[mode == DFmode].fma;
	  else
	    /* FMUL/FNMUL.  */
	    cost += extra_cost->fp[mode == DFmode].mult;
	}

      cost += rtx_cost (op0, mode, MULT, 0, speed);
      cost += rtx_cost (op1, mode, MULT, 1, speed);
      return cost;
    }
}

static int
aarch64_address_cost (rtx x,
		      machine_mode mode,
		      addr_space_t as ATTRIBUTE_UNUSED,
		      bool speed)
{
  enum rtx_code c = GET_CODE (x);
  const struct cpu_addrcost_table *addr_cost = aarch64_tune_params.addr_cost;
  struct aarch64_address_info info;
  int cost = 0;
  info.shift = 0;

  if (!aarch64_classify_address (&info, x, mode, c, false))
    {
      if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF)
	{
	  /* This is a CONST or SYMBOL ref which will be split
	     in a different way depending on the code model in use.
	     Cost it through the generic infrastructure.  */
	  int cost_symbol_ref = rtx_cost (x, Pmode, MEM, 1, speed);
	  /* Divide through by the cost of one instruction to
	     bring it to the same units as the address costs.  */
	  cost_symbol_ref /= COSTS_N_INSNS (1);
	  /* The cost is then the cost of preparing the address,
	     followed by an immediate (possibly 0) offset.  */
	  return cost_symbol_ref + addr_cost->imm_offset;
	}
      else
	{
	  /* This is most likely a jump table from a case
	     statement.  */
	  return addr_cost->register_offset;
	}
    }

  switch (info.type)
    {
      case ADDRESS_LO_SUM:
      case ADDRESS_SYMBOLIC:
      case ADDRESS_REG_IMM:
	cost += addr_cost->imm_offset;
	break;

      case ADDRESS_REG_WB:
	if (c == PRE_INC || c == PRE_DEC || c == PRE_MODIFY)
	  cost += addr_cost->pre_modify;
	else if (c == POST_INC || c == POST_DEC || c == POST_MODIFY)
	  cost += addr_cost->post_modify;
	else
	  gcc_unreachable ();

	break;

      case ADDRESS_REG_REG:
	cost += addr_cost->register_offset;
	break;

      case ADDRESS_REG_SXTW:
	cost += addr_cost->register_sextend;
	break;

      case ADDRESS_REG_UXTW:
	cost += addr_cost->register_zextend;
	break;

      default:
	gcc_unreachable ();
    }


  if (info.shift > 0)
    {
      /* For the sake of calculating the cost of the shifted register
	 component, we can treat same sized modes in the same way.  */
      switch (GET_MODE_BITSIZE (mode))
	{
	  case 16:
	    cost += addr_cost->addr_scale_costs.hi;
	    break;

	  case 32:
	    cost += addr_cost->addr_scale_costs.si;
	    break;

	  case 64:
	    cost += addr_cost->addr_scale_costs.di;
	    break;

	  /* We can't tell, or this is a 128-bit vector.  */
	  default:
	    cost += addr_cost->addr_scale_costs.ti;
	    break;
	}
    }

  return cost;
}

/* Return the cost of a branch.  If SPEED_P is true then the compiler is
   optimizing for speed.  If PREDICTABLE_P is true then the branch is predicted
   to be taken.  */

int
aarch64_branch_cost (bool speed_p, bool predictable_p)
{
  /* When optimizing for speed, use the cost of unpredictable branches.  */
  const struct cpu_branch_cost *branch_costs =
    aarch64_tune_params.branch_costs;

  if (!speed_p || predictable_p)
    return branch_costs->predictable;
  else
    return branch_costs->unpredictable;
}

/* Return true if the RTX X in mode MODE is a zero or sign extract
   usable in an ADD or SUB (extended register) instruction.  */
static bool
aarch64_rtx_arith_op_extract_p (rtx x, scalar_int_mode mode)
{
  /* Catch add with a sign extract.
     This is add_<optab><mode>_multp2.  */
  if (GET_CODE (x) == SIGN_EXTRACT
      || GET_CODE (x) == ZERO_EXTRACT)
    {
      rtx op0 = XEXP (x, 0);
      rtx op1 = XEXP (x, 1);
      rtx op2 = XEXP (x, 2);

      if (GET_CODE (op0) == MULT
	  && CONST_INT_P (op1)
	  && op2 == const0_rtx
	  && CONST_INT_P (XEXP (op0, 1))
	  && aarch64_is_extend_from_extract (mode,
					     XEXP (op0, 1),
					     op1))
	{
	  return true;
	}
    }
  /* The simple case <ARITH>, XD, XN, XM, [us]xt.
     No shift.  */
  else if (GET_CODE (x) == SIGN_EXTEND
	   || GET_CODE (x) == ZERO_EXTEND)
    return REG_P (XEXP (x, 0));

  return false;
}

static bool
aarch64_frint_unspec_p (unsigned int u)
{
  switch (u)
    {
      case UNSPEC_FRINTZ:
      case UNSPEC_FRINTP:
      case UNSPEC_FRINTM:
      case UNSPEC_FRINTA:
      case UNSPEC_FRINTN:
      case UNSPEC_FRINTX:
      case UNSPEC_FRINTI:
        return true;

      default:
        return false;
    }
}

/* Return true iff X is an rtx that will match an extr instruction
   i.e. as described in the *extr<mode>5_insn family of patterns.
   OP0 and OP1 will be set to the operands of the shifts involved
   on success and will be NULL_RTX otherwise.  */

static bool
aarch64_extr_rtx_p (rtx x, rtx *res_op0, rtx *res_op1)
{
  rtx op0, op1;
  scalar_int_mode mode;
  if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
    return false;

  *res_op0 = NULL_RTX;
  *res_op1 = NULL_RTX;

  if (GET_CODE (x) != IOR)
    return false;

  op0 = XEXP (x, 0);
  op1 = XEXP (x, 1);

  if ((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
      || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
    {
     /* Canonicalise locally to ashift in op0, lshiftrt in op1.  */
      if (GET_CODE (op1) == ASHIFT)
        std::swap (op0, op1);

      if (!CONST_INT_P (XEXP (op0, 1)) || !CONST_INT_P (XEXP (op1, 1)))
        return false;

      unsigned HOST_WIDE_INT shft_amnt_0 = UINTVAL (XEXP (op0, 1));
      unsigned HOST_WIDE_INT shft_amnt_1 = UINTVAL (XEXP (op1, 1));

      if (shft_amnt_0 < GET_MODE_BITSIZE (mode)
          && shft_amnt_0 + shft_amnt_1 == GET_MODE_BITSIZE (mode))
        {
          *res_op0 = XEXP (op0, 0);
          *res_op1 = XEXP (op1, 0);
          return true;
        }
    }

  return false;
}

/* Calculate the cost of calculating (if_then_else (OP0) (OP1) (OP2)),
   storing it in *COST.  Result is true if the total cost of the operation
   has now been calculated.  */
static bool
aarch64_if_then_else_costs (rtx op0, rtx op1, rtx op2, int *cost, bool speed)
{
  rtx inner;
  rtx comparator;
  enum rtx_code cmpcode;

  if (COMPARISON_P (op0))
    {
      inner = XEXP (op0, 0);
      comparator = XEXP (op0, 1);
      cmpcode = GET_CODE (op0);
    }
  else
    {
      inner = op0;
      comparator = const0_rtx;
      cmpcode = NE;
    }

  if (GET_CODE (op1) == PC || GET_CODE (op2) == PC)
    {
      /* Conditional branch.  */
      if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_CC)
	return true;
      else
	{
	  if (cmpcode == NE || cmpcode == EQ)
	    {
	      if (comparator == const0_rtx)
		{
		  /* TBZ/TBNZ/CBZ/CBNZ.  */
		  if (GET_CODE (inner) == ZERO_EXTRACT)
		    /* TBZ/TBNZ.  */
		    *cost += rtx_cost (XEXP (inner, 0), VOIDmode,
				       ZERO_EXTRACT, 0, speed);
		  else
		    /* CBZ/CBNZ.  */
		    *cost += rtx_cost (inner, VOIDmode, cmpcode, 0, speed);

	        return true;
	      }
	    }
	  else if (cmpcode == LT || cmpcode == GE)
	    {
	      /* TBZ/TBNZ.  */
	      if (comparator == const0_rtx)
		return true;
	    }
	}
    }
  else if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_CC)
    {
      /* CCMP.  */
      if (GET_CODE (op1) == COMPARE)
	{
	  /* Increase cost of CCMP reg, 0, imm, CC to prefer CMP reg, 0.  */
	  if (XEXP (op1, 1) == const0_rtx)
	    *cost += 1;
	  if (speed)
	    {
	      machine_mode mode = GET_MODE (XEXP (op1, 0));
	      const struct cpu_cost_table *extra_cost
		= aarch64_tune_params.insn_extra_cost;

	      if (GET_MODE_CLASS (mode) == MODE_INT)
		*cost += extra_cost->alu.arith;
	      else
		*cost += extra_cost->fp[mode == DFmode].compare;
	    }
	  return true;
	}

      /* It's a conditional operation based on the status flags,
	 so it must be some flavor of CSEL.  */

      /* CSNEG, CSINV, and CSINC are handled for free as part of CSEL.  */
      if (GET_CODE (op1) == NEG
          || GET_CODE (op1) == NOT
          || (GET_CODE (op1) == PLUS && XEXP (op1, 1) == const1_rtx))
	op1 = XEXP (op1, 0);
      else if (GET_CODE (op1) == ZERO_EXTEND && GET_CODE (op2) == ZERO_EXTEND)
	{
	  /* CSEL with zero-extension (*cmovdi_insn_uxtw).  */
	  op1 = XEXP (op1, 0);
	  op2 = XEXP (op2, 0);
	}

      *cost += rtx_cost (op1, VOIDmode, IF_THEN_ELSE, 1, speed);
      *cost += rtx_cost (op2, VOIDmode, IF_THEN_ELSE, 2, speed);
      return true;
    }

  /* We don't know what this is, cost all operands.  */
  return false;
}

/* Check whether X is a bitfield operation of the form shift + extend that
   maps down to a UBFIZ/SBFIZ/UBFX/SBFX instruction.  If so, return the
   operand to which the bitfield operation is applied.  Otherwise return
   NULL_RTX.  */

static rtx
aarch64_extend_bitfield_pattern_p (rtx x)
{
  rtx_code outer_code = GET_CODE (x);
  machine_mode outer_mode = GET_MODE (x);

  if (outer_code != ZERO_EXTEND && outer_code != SIGN_EXTEND
      && outer_mode != SImode && outer_mode != DImode)
    return NULL_RTX;

  rtx inner = XEXP (x, 0);
  rtx_code inner_code = GET_CODE (inner);
  machine_mode inner_mode = GET_MODE (inner);
  rtx op = NULL_RTX;

  switch (inner_code)
    {
      case ASHIFT:
	if (CONST_INT_P (XEXP (inner, 1))
	    && (inner_mode == QImode || inner_mode == HImode))
	  op = XEXP (inner, 0);
	break;
      case LSHIFTRT:
	if (outer_code == ZERO_EXTEND && CONST_INT_P (XEXP (inner, 1))
	    && (inner_mode == QImode || inner_mode == HImode))
	  op = XEXP (inner, 0);
	break;
      case ASHIFTRT:
	if (outer_code == SIGN_EXTEND && CONST_INT_P (XEXP (inner, 1))
	    && (inner_mode == QImode || inner_mode == HImode))
	  op = XEXP (inner, 0);
	break;
      default:
	break;
    }

  return op;
}

/* Return true if the mask and a shift amount from an RTX of the form
   (x << SHFT_AMNT) & MASK are valid to combine into a UBFIZ instruction of
   mode MODE.  See the *andim_ashift<mode>_bfiz pattern.  */

bool
aarch64_mask_and_shift_for_ubfiz_p (scalar_int_mode mode, rtx mask,
				    rtx shft_amnt)
{
  return CONST_INT_P (mask) && CONST_INT_P (shft_amnt)
	 && INTVAL (shft_amnt) < GET_MODE_BITSIZE (mode)
	 && exact_log2 ((INTVAL (mask) >> INTVAL (shft_amnt)) + 1) >= 0
	 && (INTVAL (mask) & ((1 << INTVAL (shft_amnt)) - 1)) == 0;
}

/* Calculate the cost of calculating X, storing it in *COST.  Result
   is true if the total cost of the operation has now been calculated.  */
static bool
aarch64_rtx_costs (rtx x, machine_mode mode, int outer ATTRIBUTE_UNUSED,
		   int param ATTRIBUTE_UNUSED, int *cost, bool speed)
{
  rtx op0, op1, op2;
  const struct cpu_cost_table *extra_cost
    = aarch64_tune_params.insn_extra_cost;
  int code = GET_CODE (x);
  scalar_int_mode int_mode;

  /* By default, assume that everything has equivalent cost to the
     cheapest instruction.  Any additional costs are applied as a delta
     above this default.  */
  *cost = COSTS_N_INSNS (1);

  switch (code)
    {
    case SET:
      /* The cost depends entirely on the operands to SET.  */
      *cost = 0;
      op0 = SET_DEST (x);
      op1 = SET_SRC (x);

      switch (GET_CODE (op0))
	{
	case MEM:
	  if (speed)
	    {
	      rtx address = XEXP (op0, 0);
	      if (VECTOR_MODE_P (mode))
		*cost += extra_cost->ldst.storev;
	      else if (GET_MODE_CLASS (mode) == MODE_INT)
		*cost += extra_cost->ldst.store;
	      else if (mode == SFmode)
		*cost += extra_cost->ldst.storef;
	      else if (mode == DFmode)
		*cost += extra_cost->ldst.stored;

	      *cost +=
		COSTS_N_INSNS (aarch64_address_cost (address, mode,
						     0, speed));
	    }

	  *cost += rtx_cost (op1, mode, SET, 1, speed);
	  return true;

	case SUBREG:
	  if (! REG_P (SUBREG_REG (op0)))
	    *cost += rtx_cost (SUBREG_REG (op0), VOIDmode, SET, 0, speed);

	  /* Fall through.  */
	case REG:
	  /* The cost is one per vector-register copied.  */
	  if (VECTOR_MODE_P (GET_MODE (op0)) && REG_P (op1))
	    {
	      int n_minus_1 = (GET_MODE_SIZE (GET_MODE (op0)) - 1)
			      / GET_MODE_SIZE (V4SImode);
	      *cost = COSTS_N_INSNS (n_minus_1 + 1);
	    }
	  /* const0_rtx is in general free, but we will use an
	     instruction to set a register to 0.  */
	  else if (REG_P (op1) || op1 == const0_rtx)
	    {
	      /* The cost is 1 per register copied.  */
	      int n_minus_1 = (GET_MODE_SIZE (GET_MODE (op0)) - 1)
			      / UNITS_PER_WORD;
	      *cost = COSTS_N_INSNS (n_minus_1 + 1);
	    }
          else
	    /* Cost is just the cost of the RHS of the set.  */
	    *cost += rtx_cost (op1, mode, SET, 1, speed);
	  return true;

	case ZERO_EXTRACT:
	case SIGN_EXTRACT:
	  /* Bit-field insertion.  Strip any redundant widening of
	     the RHS to meet the width of the target.  */
	  if (GET_CODE (op1) == SUBREG)
	    op1 = SUBREG_REG (op1);
	  if ((GET_CODE (op1) == ZERO_EXTEND
	       || GET_CODE (op1) == SIGN_EXTEND)
	      && CONST_INT_P (XEXP (op0, 1))
	      && is_a <scalar_int_mode> (GET_MODE (XEXP (op1, 0)), &int_mode)
	      && GET_MODE_BITSIZE (int_mode) >= INTVAL (XEXP (op0, 1)))
	    op1 = XEXP (op1, 0);

          if (CONST_INT_P (op1))
            {
              /* MOV immediate is assumed to always be cheap.  */
              *cost = COSTS_N_INSNS (1);
            }
          else
            {
              /* BFM.  */
	      if (speed)
		*cost += extra_cost->alu.bfi;
	      *cost += rtx_cost (op1, VOIDmode, (enum rtx_code) code, 1, speed);
            }

	  return true;

	default:
	  /* We can't make sense of this, assume default cost.  */
          *cost = COSTS_N_INSNS (1);
	  return false;
	}
      return false;

    case CONST_INT:
      /* If an instruction can incorporate a constant within the
	 instruction, the instruction's expression avoids calling
	 rtx_cost() on the constant.  If rtx_cost() is called on a
	 constant, then it is usually because the constant must be
	 moved into a register by one or more instructions.

	 The exception is constant 0, which can be expressed
	 as XZR/WZR and is therefore free.  The exception to this is
	 if we have (set (reg) (const0_rtx)) in which case we must cost
	 the move.  However, we can catch that when we cost the SET, so
	 we don't need to consider that here.  */
      if (x == const0_rtx)
	*cost = 0;
      else
	{
	  /* To an approximation, building any other constant is
	     proportionally expensive to the number of instructions
	     required to build that constant.  This is true whether we
	     are compiling for SPEED or otherwise.  */
	  if (!is_a <scalar_int_mode> (mode, &int_mode))
	    int_mode = word_mode;
	  *cost = COSTS_N_INSNS (aarch64_internal_mov_immediate
				 (NULL_RTX, x, false, int_mode));
	}
      return true;

    case CONST_DOUBLE:

      /* First determine number of instructions to do the move
	  as an integer constant.  */
      if (!aarch64_float_const_representable_p (x)
	   && !aarch64_can_const_movi_rtx_p (x, mode)
	   && aarch64_float_const_rtx_p (x))
	{
	  unsigned HOST_WIDE_INT ival;
	  bool succeed = aarch64_reinterpret_float_as_int (x, &ival);
	  gcc_assert (succeed);

	  scalar_int_mode imode = (mode == HFmode
				   ? SImode
				   : int_mode_for_mode (mode).require ());
	  int ncost = aarch64_internal_mov_immediate
		(NULL_RTX, gen_int_mode (ival, imode), false, imode);
	  *cost += COSTS_N_INSNS (ncost);
	  return true;
	}

      if (speed)
	{
	  /* mov[df,sf]_aarch64.  */
	  if (aarch64_float_const_representable_p (x))
	    /* FMOV (scalar immediate).  */
	    *cost += extra_cost->fp[mode == DFmode].fpconst;
	  else if (!aarch64_float_const_zero_rtx_p (x))
	    {
	      /* This will be a load from memory.  */
	      if (mode == DFmode)
		*cost += extra_cost->ldst.loadd;
	      else
		*cost += extra_cost->ldst.loadf;
	    }
	  else
	    /* Otherwise this is +0.0.  We get this using MOVI d0, #0
	       or MOV v0.s[0], wzr - neither of which are modeled by the
	       cost tables.  Just use the default cost.  */
	    {
	    }
	}

      return true;

    case MEM:
      if (speed)
	{
	  /* For loads we want the base cost of a load, plus an
	     approximation for the additional cost of the addressing
	     mode.  */
	  rtx address = XEXP (x, 0);
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->ldst.loadv;
	  else if (GET_MODE_CLASS (mode) == MODE_INT)
	    *cost += extra_cost->ldst.load;
	  else if (mode == SFmode)
	    *cost += extra_cost->ldst.loadf;
	  else if (mode == DFmode)
	    *cost += extra_cost->ldst.loadd;

	  *cost +=
		COSTS_N_INSNS (aarch64_address_cost (address, mode,
						     0, speed));
	}

      return true;

    case NEG:
      op0 = XEXP (x, 0);

      if (VECTOR_MODE_P (mode))
	{
	  if (speed)
	    {
	      /* FNEG.  */
	      *cost += extra_cost->vect.alu;
	    }
	  return false;
	}

      if (GET_MODE_CLASS (mode) == MODE_INT)
	{
          if (GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMPARE
              || GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMM_COMPARE)
            {
              /* CSETM.  */
	      *cost += rtx_cost (XEXP (op0, 0), VOIDmode, NEG, 0, speed);
              return true;
            }

	  /* Cost this as SUB wzr, X.  */
          op0 = CONST0_RTX (mode);
          op1 = XEXP (x, 0);
          goto cost_minus;
        }

      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
        {
          /* Support (neg(fma...)) as a single instruction only if
             sign of zeros is unimportant.  This matches the decision
             making in aarch64.md.  */
          if (GET_CODE (op0) == FMA && !HONOR_SIGNED_ZEROS (GET_MODE (op0)))
            {
	      /* FNMADD.  */
	      *cost = rtx_cost (op0, mode, NEG, 0, speed);
              return true;
            }
	  if (GET_CODE (op0) == MULT)
	    {
	      /* FNMUL.  */
	      *cost = rtx_cost (op0, mode, NEG, 0, speed);
	      return true;
	    }
	  if (speed)
	    /* FNEG.  */
	    *cost += extra_cost->fp[mode == DFmode].neg;
          return false;
        }

      return false;

    case CLRSB:
    case CLZ:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.clz;
	}

      return false;

    case COMPARE:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (op1 == const0_rtx
	  && GET_CODE (op0) == AND)
	{
	  x = op0;
	  mode = GET_MODE (op0);
	  goto cost_logic;
	}

      if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
        {
          /* TODO: A write to the CC flags possibly costs extra, this
	     needs encoding in the cost tables.  */

	  mode = GET_MODE (op0);
          /* ANDS.  */
          if (GET_CODE (op0) == AND)
            {
              x = op0;
              goto cost_logic;
            }

          if (GET_CODE (op0) == PLUS)
            {
	      /* ADDS (and CMN alias).  */
              x = op0;
              goto cost_plus;
            }

          if (GET_CODE (op0) == MINUS)
            {
	      /* SUBS.  */
              x = op0;
              goto cost_minus;
            }

	  if (GET_CODE (op0) == ZERO_EXTRACT && op1 == const0_rtx
	      && GET_MODE (x) == CC_NZmode && CONST_INT_P (XEXP (op0, 1))
	      && CONST_INT_P (XEXP (op0, 2)))
	    {
	      /* COMPARE of ZERO_EXTRACT form of TST-immediate.
		 Handle it here directly rather than going to cost_logic
		 since we know the immediate generated for the TST is valid
		 so we can avoid creating an intermediate rtx for it only
		 for costing purposes.  */
	      if (speed)
		*cost += extra_cost->alu.logical;

	      *cost += rtx_cost (XEXP (op0, 0), GET_MODE (op0),
				 ZERO_EXTRACT, 0, speed);
	      return true;
	    }

          if (GET_CODE (op1) == NEG)
            {
	      /* CMN.  */
	      if (speed)
		*cost += extra_cost->alu.arith;

	      *cost += rtx_cost (op0, mode, COMPARE, 0, speed);
	      *cost += rtx_cost (XEXP (op1, 0), mode, NEG, 1, speed);
              return true;
            }

          /* CMP.

	     Compare can freely swap the order of operands, and
             canonicalization puts the more complex operation first.
             But the integer MINUS logic expects the shift/extend
             operation in op1.  */
          if (! (REG_P (op0)
                 || (GET_CODE (op0) == SUBREG && REG_P (SUBREG_REG (op0)))))
          {
            op0 = XEXP (x, 1);
            op1 = XEXP (x, 0);
          }
          goto cost_minus;
        }

      if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
        {
	  /* FCMP.  */
	  if (speed)
	    *cost += extra_cost->fp[mode == DFmode].compare;

          if (CONST_DOUBLE_P (op1) && aarch64_float_const_zero_rtx_p (op1))
            {
	      *cost += rtx_cost (op0, VOIDmode, COMPARE, 0, speed);
              /* FCMP supports constant 0.0 for no extra cost. */
              return true;
            }
          return false;
        }

      if (VECTOR_MODE_P (mode))
	{
	  /* Vector compare.  */
	  if (speed)
	    *cost += extra_cost->vect.alu;

	  if (aarch64_float_const_zero_rtx_p (op1))
	    {
	      /* Vector cm (eq|ge|gt|lt|le) supports constant 0.0 for no extra
		 cost.  */
	      return true;
	    }
	  return false;
	}
      return false;

    case MINUS:
      {
	op0 = XEXP (x, 0);
	op1 = XEXP (x, 1);

cost_minus:
	*cost += rtx_cost (op0, mode, MINUS, 0, speed);

	/* Detect valid immediates.  */
	if ((GET_MODE_CLASS (mode) == MODE_INT
	     || (GET_MODE_CLASS (mode) == MODE_CC
		 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT))
	    && CONST_INT_P (op1)
	    && aarch64_uimm12_shift (INTVAL (op1)))
	  {
	    if (speed)
	      /* SUB(S) (immediate).  */
	      *cost += extra_cost->alu.arith;
	    return true;
	  }

	/* Look for SUB (extended register).  */
	if (is_a <scalar_int_mode> (mode, &int_mode)
	    && aarch64_rtx_arith_op_extract_p (op1, int_mode))
	  {
	    if (speed)
	      *cost += extra_cost->alu.extend_arith;

	    op1 = aarch64_strip_extend (op1, true);
	    *cost += rtx_cost (op1, VOIDmode,
			       (enum rtx_code) GET_CODE (op1), 0, speed);
	    return true;
	  }

	rtx new_op1 = aarch64_strip_extend (op1, false);

	/* Cost this as an FMA-alike operation.  */
	if ((GET_CODE (new_op1) == MULT
	     || aarch64_shift_p (GET_CODE (new_op1)))
	    && code != COMPARE)
	  {
	    *cost += aarch64_rtx_mult_cost (new_op1, MULT,
					    (enum rtx_code) code,
					    speed);
	    return true;
	  }

	*cost += rtx_cost (new_op1, VOIDmode, MINUS, 1, speed);

	if (speed)
	  {
	    if (VECTOR_MODE_P (mode))
	      {
		/* Vector SUB.  */
		*cost += extra_cost->vect.alu;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_INT)
	      {
		/* SUB(S).  */
		*cost += extra_cost->alu.arith;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	      {
		/* FSUB.  */
		*cost += extra_cost->fp[mode == DFmode].addsub;
	      }
	  }
	return true;
      }

    case PLUS:
      {
	rtx new_op0;

	op0 = XEXP (x, 0);
	op1 = XEXP (x, 1);

cost_plus:
	if (GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMPARE
	    || GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMM_COMPARE)
	  {
	    /* CSINC.  */
	    *cost += rtx_cost (XEXP (op0, 0), mode, PLUS, 0, speed);
	    *cost += rtx_cost (op1, mode, PLUS, 1, speed);
	    return true;
	  }

	if (GET_MODE_CLASS (mode) == MODE_INT
	    && CONST_INT_P (op1)
	    && aarch64_uimm12_shift (INTVAL (op1)))
	  {
	    *cost += rtx_cost (op0, mode, PLUS, 0, speed);

	    if (speed)
	      /* ADD (immediate).  */
	      *cost += extra_cost->alu.arith;
	    return true;
	  }

	*cost += rtx_cost (op1, mode, PLUS, 1, speed);

	/* Look for ADD (extended register).  */
	if (is_a <scalar_int_mode> (mode, &int_mode)
	    && aarch64_rtx_arith_op_extract_p (op0, int_mode))
	  {
	    if (speed)
	      *cost += extra_cost->alu.extend_arith;

	    op0 = aarch64_strip_extend (op0, true);
	    *cost += rtx_cost (op0, VOIDmode,
			       (enum rtx_code) GET_CODE (op0), 0, speed);
	    return true;
	  }

	/* Strip any extend, leave shifts behind as we will
	   cost them through mult_cost.  */
	new_op0 = aarch64_strip_extend (op0, false);

	if (GET_CODE (new_op0) == MULT
	    || aarch64_shift_p (GET_CODE (new_op0)))
	  {
	    *cost += aarch64_rtx_mult_cost (new_op0, MULT, PLUS,
					    speed);
	    return true;
	  }

	*cost += rtx_cost (new_op0, VOIDmode, PLUS, 0, speed);

	if (speed)
	  {
	    if (VECTOR_MODE_P (mode))
	      {
		/* Vector ADD.  */
		*cost += extra_cost->vect.alu;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_INT)
	      {
		/* ADD.  */
		*cost += extra_cost->alu.arith;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	      {
		/* FADD.  */
		*cost += extra_cost->fp[mode == DFmode].addsub;
	      }
	  }
	return true;
      }

    case BSWAP:
      *cost = COSTS_N_INSNS (1);

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.rev;
	}
      return false;

    case IOR:
      if (aarch_rev16_p (x))
        {
          *cost = COSTS_N_INSNS (1);

	  if (speed)
	    {
	      if (VECTOR_MODE_P (mode))
		*cost += extra_cost->vect.alu;
	      else
		*cost += extra_cost->alu.rev;
	    }
	  return true;
        }

      if (aarch64_extr_rtx_p (x, &op0, &op1))
        {
	  *cost += rtx_cost (op0, mode, IOR, 0, speed);
	  *cost += rtx_cost (op1, mode, IOR, 1, speed);
          if (speed)
            *cost += extra_cost->alu.shift;

          return true;
        }
    /* Fall through.  */
    case XOR:
    case AND:
    cost_logic:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (VECTOR_MODE_P (mode))
	{
	  if (speed)
	    *cost += extra_cost->vect.alu;
	  return true;
	}

      if (code == AND
          && GET_CODE (op0) == MULT
          && CONST_INT_P (XEXP (op0, 1))
          && CONST_INT_P (op1)
          && aarch64_uxt_size (exact_log2 (INTVAL (XEXP (op0, 1))),
                               INTVAL (op1)) != 0)
        {
          /* This is a UBFM/SBFM.  */
	  *cost += rtx_cost (XEXP (op0, 0), mode, ZERO_EXTRACT, 0, speed);
	  if (speed)
	    *cost += extra_cost->alu.bfx;
          return true;
        }

      if (is_int_mode (mode, &int_mode))
	{
	  if (CONST_INT_P (op1))
	    {
	      /* We have a mask + shift version of a UBFIZ
		 i.e. the *andim_ashift<mode>_bfiz pattern.  */
	      if (GET_CODE (op0) == ASHIFT
		  && aarch64_mask_and_shift_for_ubfiz_p (int_mode, op1,
							 XEXP (op0, 1)))
		{
		  *cost += rtx_cost (XEXP (op0, 0), int_mode,
				     (enum rtx_code) code, 0, speed);
		  if (speed)
		    *cost += extra_cost->alu.bfx;

		  return true;
		}
	      else if (aarch64_bitmask_imm (INTVAL (op1), int_mode))
		{
		/* We possibly get the immediate for free, this is not
		   modelled.  */
		  *cost += rtx_cost (op0, int_mode,
				     (enum rtx_code) code, 0, speed);
		  if (speed)
		    *cost += extra_cost->alu.logical;

		  return true;
		}
	    }
	  else
	    {
	      rtx new_op0 = op0;

	      /* Handle ORN, EON, or BIC.  */
	      if (GET_CODE (op0) == NOT)
		op0 = XEXP (op0, 0);

	      new_op0 = aarch64_strip_shift (op0);

	      /* If we had a shift on op0 then this is a logical-shift-
		 by-register/immediate operation.  Otherwise, this is just
		 a logical operation.  */
	      if (speed)
		{
		  if (new_op0 != op0)
		    {
		      /* Shift by immediate.  */
		      if (CONST_INT_P (XEXP (op0, 1)))
			*cost += extra_cost->alu.log_shift;
		      else
			*cost += extra_cost->alu.log_shift_reg;
		    }
		  else
		    *cost += extra_cost->alu.logical;
		}

	      /* In both cases we want to cost both operands.  */
	      *cost += rtx_cost (new_op0, int_mode, (enum rtx_code) code,
				 0, speed);
	      *cost += rtx_cost (op1, int_mode, (enum rtx_code) code,
				 1, speed);

	      return true;
	    }
	}
      return false;

    case NOT:
      x = XEXP (x, 0);
      op0 = aarch64_strip_shift (x);

      if (VECTOR_MODE_P (mode))
	{
	  /* Vector NOT.  */
	  *cost += extra_cost->vect.alu;
	  return false;
	}

      /* MVN-shifted-reg.  */
      if (op0 != x)
        {
	  *cost += rtx_cost (op0, mode, (enum rtx_code) code, 0, speed);

          if (speed)
            *cost += extra_cost->alu.log_shift;

          return true;
        }
      /* EON can have two forms: (xor (not a) b) but also (not (xor a b)).
         Handle the second form here taking care that 'a' in the above can
         be a shift.  */
      else if (GET_CODE (op0) == XOR)
        {
          rtx newop0 = XEXP (op0, 0);
          rtx newop1 = XEXP (op0, 1);
          rtx op0_stripped = aarch64_strip_shift (newop0);

	  *cost += rtx_cost (newop1, mode, (enum rtx_code) code, 1, speed);
	  *cost += rtx_cost (op0_stripped, mode, XOR, 0, speed);

          if (speed)
            {
              if (op0_stripped != newop0)
                *cost += extra_cost->alu.log_shift;
              else
                *cost += extra_cost->alu.logical;
            }

          return true;
        }
      /* MVN.  */
      if (speed)
	*cost += extra_cost->alu.logical;

      return false;

    case ZERO_EXTEND:

      op0 = XEXP (x, 0);
      /* If a value is written in SI mode, then zero extended to DI
	 mode, the operation will in general be free as a write to
	 a 'w' register implicitly zeroes the upper bits of an 'x'
	 register.  However, if this is

	   (set (reg) (zero_extend (reg)))

	 we must cost the explicit register move.  */
      if (mode == DImode
	  && GET_MODE (op0) == SImode
	  && outer == SET)
	{
	  int op_cost = rtx_cost (op0, VOIDmode, ZERO_EXTEND, 0, speed);

	/* If OP_COST is non-zero, then the cost of the zero extend
	   is effectively the cost of the inner operation.  Otherwise
	   we have a MOV instruction and we take the cost from the MOV
	   itself.  This is true independently of whether we are
	   optimizing for space or time.  */
	  if (op_cost)
	    *cost = op_cost;

	  return true;
	}
      else if (MEM_P (op0))
	{
	  /* All loads can zero extend to any size for free.  */
	  *cost = rtx_cost (op0, VOIDmode, ZERO_EXTEND, param, speed);
	  return true;
	}

      op0 = aarch64_extend_bitfield_pattern_p (x);
      if (op0)
	{
	  *cost += rtx_cost (op0, mode, ZERO_EXTEND, 0, speed);
	  if (speed)
	    *cost += extra_cost->alu.bfx;
	  return true;
	}

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      /* UMOV.  */
	      *cost += extra_cost->vect.alu;
	    }
	  else
	    {
	      /* We generate an AND instead of UXTB/UXTH.  */
	      *cost += extra_cost->alu.logical;
	    }
	}
      return false;

    case SIGN_EXTEND:
      if (MEM_P (XEXP (x, 0)))
	{
	  /* LDRSH.  */
	  if (speed)
	    {
	      rtx address = XEXP (XEXP (x, 0), 0);
	      *cost += extra_cost->ldst.load_sign_extend;

	      *cost +=
		COSTS_N_INSNS (aarch64_address_cost (address, mode,
						     0, speed));
	    }
	  return true;
	}

      op0 = aarch64_extend_bitfield_pattern_p (x);
      if (op0)
	{
	  *cost += rtx_cost (op0, mode, SIGN_EXTEND, 0, speed);
	  if (speed)
	    *cost += extra_cost->alu.bfx;
	  return true;
	}

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.extend;
	}
      return false;

    case ASHIFT:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (CONST_INT_P (op1))
        {
	  if (speed)
	    {
	      if (VECTOR_MODE_P (mode))
		{
		  /* Vector shift (immediate).  */
		  *cost += extra_cost->vect.alu;
		}
	      else
		{
		  /* LSL (immediate), UBMF, UBFIZ and friends.  These are all
		     aliases.  */
		  *cost += extra_cost->alu.shift;
		}
	    }

          /* We can incorporate zero/sign extend for free.  */
          if (GET_CODE (op0) == ZERO_EXTEND
              || GET_CODE (op0) == SIGN_EXTEND)
            op0 = XEXP (op0, 0);

	  *cost += rtx_cost (op0, VOIDmode, ASHIFT, 0, speed);
          return true;
        }
      else
        {
	  if (VECTOR_MODE_P (mode))
	    {
	      if (speed)
		/* Vector shift (register).  */
		*cost += extra_cost->vect.alu;
	    }
	  else
	    {
	      if (speed)
		/* LSLV.  */
		*cost += extra_cost->alu.shift_reg;

	      if (GET_CODE (op1) == AND && REG_P (XEXP (op1, 0))
		  && CONST_INT_P (XEXP (op1, 1))
		  && INTVAL (XEXP (op1, 1)) == GET_MODE_BITSIZE (mode) - 1)
		{
		  *cost += rtx_cost (op0, mode, (rtx_code) code, 0, speed);
		  /* We already demanded XEXP (op1, 0) to be REG_P, so
		     don't recurse into it.  */
		  return true;
		}
	    }
	  return false;  /* All arguments need to be in registers.  */
        }

    case ROTATE:
    case ROTATERT:
    case LSHIFTRT:
    case ASHIFTRT:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (CONST_INT_P (op1))
	{
	  /* ASR (immediate) and friends.  */
	  if (speed)
	    {
	      if (VECTOR_MODE_P (mode))
		*cost += extra_cost->vect.alu;
	      else
		*cost += extra_cost->alu.shift;
	    }

	  *cost += rtx_cost (op0, mode, (enum rtx_code) code, 0, speed);
	  return true;
	}
      else
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      if (speed)
		/* Vector shift (register).  */
		*cost += extra_cost->vect.alu;
	    }
	  else
	    {
	      if (speed)
		/* ASR (register) and friends.  */
		*cost += extra_cost->alu.shift_reg;

	      if (GET_CODE (op1) == AND && REG_P (XEXP (op1, 0))
		  && CONST_INT_P (XEXP (op1, 1))
		  && INTVAL (XEXP (op1, 1)) == GET_MODE_BITSIZE (mode) - 1)
		{
		  *cost += rtx_cost (op0, mode, (rtx_code) code, 0, speed);
		  /* We already demanded XEXP (op1, 0) to be REG_P, so
		     don't recurse into it.  */
		  return true;
		}
	    }
	  return false;  /* All arguments need to be in registers.  */
	}

    case SYMBOL_REF:

      if (aarch64_cmodel == AARCH64_CMODEL_LARGE
	  || aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC)
	{
	  /* LDR.  */
	  if (speed)
	    *cost += extra_cost->ldst.load;
	}
      else if (aarch64_cmodel == AARCH64_CMODEL_SMALL
	       || aarch64_cmodel == AARCH64_CMODEL_SMALL_PIC)
	{
	  /* ADRP, followed by ADD.  */
	  *cost += COSTS_N_INSNS (1);
	  if (speed)
	    *cost += 2 * extra_cost->alu.arith;
	}
      else if (aarch64_cmodel == AARCH64_CMODEL_TINY
	       || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
	{
	  /* ADR.  */
	  if (speed)
	    *cost += extra_cost->alu.arith;
	}

      if (flag_pic)
	{
	  /* One extra load instruction, after accessing the GOT.  */
	  *cost += COSTS_N_INSNS (1);
	  if (speed)
	    *cost += extra_cost->ldst.load;
	}
      return true;

    case HIGH:
    case LO_SUM:
      /* ADRP/ADD (immediate).  */
      if (speed)
	*cost += extra_cost->alu.arith;
      return true;

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      /* UBFX/SBFX.  */
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.bfx;
	}

      /* We can trust that the immediates used will be correct (there
	 are no by-register forms), so we need only cost op0.  */
      *cost += rtx_cost (XEXP (x, 0), VOIDmode, (enum rtx_code) code, 0, speed);
      return true;

    case MULT:
      *cost += aarch64_rtx_mult_cost (x, MULT, 0, speed);
      /* aarch64_rtx_mult_cost always handles recursion to its
	 operands.  */
      return true;

    case MOD:
    /* We can expand signed mod by power of 2 using a NEGS, two parallel
       ANDs and a CSNEG.  Assume here that CSNEG is the same as the cost of
       an unconditional negate.  This case should only ever be reached through
       the set_smod_pow2_cheap check in expmed.c.  */
      if (CONST_INT_P (XEXP (x, 1))
	  && exact_log2 (INTVAL (XEXP (x, 1))) > 0
	  && (mode == SImode || mode == DImode))
	{
	  /* We expand to 4 instructions.  Reset the baseline.  */
	  *cost = COSTS_N_INSNS (4);

	  if (speed)
	    *cost += 2 * extra_cost->alu.logical
		     + 2 * extra_cost->alu.arith;

	  return true;
	}

    /* Fall-through.  */
    case UMOD:
      if (speed)
	{
	  /* Slighly prefer UMOD over SMOD.  */
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else if (GET_MODE_CLASS (mode) == MODE_INT)
	    *cost += (extra_cost->mult[mode == DImode].add
		      + extra_cost->mult[mode == DImode].idiv
		      + (code == MOD ? 1 : 0));
	}
      return false;  /* All arguments need to be in registers.  */

    case DIV:
    case UDIV:
    case SQRT:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else if (GET_MODE_CLASS (mode) == MODE_INT)
	    /* There is no integer SQRT, so only DIV and UDIV can get
	       here.  */
	    *cost += (extra_cost->mult[mode == DImode].idiv
		     /* Slighly prefer UDIV over SDIV.  */
		     + (code == DIV ? 1 : 0));
	  else
	    *cost += extra_cost->fp[mode == DFmode].div;
	}
      return false;  /* All arguments need to be in registers.  */

    case IF_THEN_ELSE:
      return aarch64_if_then_else_costs (XEXP (x, 0), XEXP (x, 1),
					 XEXP (x, 2), cost, speed);

    case EQ:
    case NE:
    case GT:
    case GTU:
    case LT:
    case LTU:
    case GE:
    case GEU:
    case LE:
    case LEU:

      return false; /* All arguments must be in registers.  */

    case FMA:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);
      op2 = XEXP (x, 2);

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->fp[mode == DFmode].fma;
	}

      /* FMSUB, FNMADD, and FNMSUB are free.  */
      if (GET_CODE (op0) == NEG)
        op0 = XEXP (op0, 0);

      if (GET_CODE (op2) == NEG)
        op2 = XEXP (op2, 0);

      /* aarch64_fnma4_elt_to_64v2df has the NEG as operand 1,
	 and the by-element operand as operand 0.  */
      if (GET_CODE (op1) == NEG)
        op1 = XEXP (op1, 0);

      /* Catch vector-by-element operations.  The by-element operand can
	 either be (vec_duplicate (vec_select (x))) or just
	 (vec_select (x)), depending on whether we are multiplying by
	 a vector or a scalar.

	 Canonicalization is not very good in these cases, FMA4 will put the
	 by-element operand as operand 0, FNMA4 will have it as operand 1.  */
      if (GET_CODE (op0) == VEC_DUPLICATE)
	op0 = XEXP (op0, 0);
      else if (GET_CODE (op1) == VEC_DUPLICATE)
	op1 = XEXP (op1, 0);

      if (GET_CODE (op0) == VEC_SELECT)
	op0 = XEXP (op0, 0);
      else if (GET_CODE (op1) == VEC_SELECT)
	op1 = XEXP (op1, 0);

      /* If the remaining parameters are not registers,
         get the cost to put them into registers.  */
      *cost += rtx_cost (op0, mode, FMA, 0, speed);
      *cost += rtx_cost (op1, mode, FMA, 1, speed);
      *cost += rtx_cost (op2, mode, FMA, 2, speed);
      return true;

    case FLOAT:
    case UNSIGNED_FLOAT:
      if (speed)
	*cost += extra_cost->fp[mode == DFmode].fromint;
      return false;

    case FLOAT_EXTEND:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      /*Vector truncate.  */
	      *cost += extra_cost->vect.alu;
	    }
	  else
	    *cost += extra_cost->fp[mode == DFmode].widen;
	}
      return false;

    case FLOAT_TRUNCATE:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      /*Vector conversion.  */
	      *cost += extra_cost->vect.alu;
	    }
	  else
	    *cost += extra_cost->fp[mode == DFmode].narrow;
	}
      return false;

    case FIX:
    case UNSIGNED_FIX:
      x = XEXP (x, 0);
      /* Strip the rounding part.  They will all be implemented
         by the fcvt* family of instructions anyway.  */
      if (GET_CODE (x) == UNSPEC)
        {
          unsigned int uns_code = XINT (x, 1);

          if (uns_code == UNSPEC_FRINTA
              || uns_code == UNSPEC_FRINTM
              || uns_code == UNSPEC_FRINTN
              || uns_code == UNSPEC_FRINTP
              || uns_code == UNSPEC_FRINTZ)
            x = XVECEXP (x, 0, 0);
        }

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->fp[GET_MODE (x) == DFmode].toint;
	}

      /* We can combine fmul by a power of 2 followed by a fcvt into a single
	 fixed-point fcvt.  */
      if (GET_CODE (x) == MULT
	  && ((VECTOR_MODE_P (mode)
	       && aarch64_vec_fpconst_pow_of_2 (XEXP (x, 1)) > 0)
	      || aarch64_fpconst_pow_of_2 (XEXP (x, 1)) > 0))
	{
	  *cost += rtx_cost (XEXP (x, 0), VOIDmode, (rtx_code) code,
			     0, speed);
	  return true;
	}

      *cost += rtx_cost (x, VOIDmode, (enum rtx_code) code, 0, speed);
      return true;

    case ABS:
      if (VECTOR_MODE_P (mode))
	{
	  /* ABS (vector).  */
	  if (speed)
	    *cost += extra_cost->vect.alu;
	}
      else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  op0 = XEXP (x, 0);

	  /* FABD, which is analogous to FADD.  */
	  if (GET_CODE (op0) == MINUS)
	    {
	      *cost += rtx_cost (XEXP (op0, 0), mode, MINUS, 0, speed);
	      *cost += rtx_cost (XEXP (op0, 1), mode, MINUS, 1, speed);
	      if (speed)
		*cost += extra_cost->fp[mode == DFmode].addsub;

	      return true;
	    }
	  /* Simple FABS is analogous to FNEG.  */
	  if (speed)
	    *cost += extra_cost->fp[mode == DFmode].neg;
	}
      else
	{
	  /* Integer ABS will either be split to
	     two arithmetic instructions, or will be an ABS
	     (scalar), which we don't model.  */
	  *cost = COSTS_N_INSNS (2);
	  if (speed)
	    *cost += 2 * extra_cost->alu.arith;
	}
      return false;

    case SMAX:
    case SMIN:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    {
	      /* FMAXNM/FMINNM/FMAX/FMIN.
	         TODO: This may not be accurate for all implementations, but
	         we do not model this in the cost tables.  */
	      *cost += extra_cost->fp[mode == DFmode].addsub;
	    }
	}
      return false;

    case UNSPEC:
      /* The floating point round to integer frint* instructions.  */
      if (aarch64_frint_unspec_p (XINT (x, 1)))
        {
          if (speed)
            *cost += extra_cost->fp[mode == DFmode].roundint;

          return false;
        }

      if (XINT (x, 1) == UNSPEC_RBIT)
        {
          if (speed)
            *cost += extra_cost->alu.rev;

          return false;
        }
      break;

    case TRUNCATE:

      /* Decompose <su>muldi3_highpart.  */
      if (/* (truncate:DI  */
	  mode == DImode
	  /*   (lshiftrt:TI  */
          && GET_MODE (XEXP (x, 0)) == TImode
          && GET_CODE (XEXP (x, 0)) == LSHIFTRT
	  /*      (mult:TI  */
          && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
	  /*        (ANY_EXTEND:TI (reg:DI))
	            (ANY_EXTEND:TI (reg:DI)))  */
          && ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
               && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == ZERO_EXTEND)
              || (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND
                  && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SIGN_EXTEND))
          && GET_MODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0)) == DImode
          && GET_MODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 1), 0)) == DImode
	  /*     (const_int 64)  */
          && CONST_INT_P (XEXP (XEXP (x, 0), 1))
          && UINTVAL (XEXP (XEXP (x, 0), 1)) == 64)
        {
          /* UMULH/SMULH.  */
	  if (speed)
	    *cost += extra_cost->mult[mode == DImode].extend;
	  *cost += rtx_cost (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
			     mode, MULT, 0, speed);
	  *cost += rtx_cost (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 1), 0),
			     mode, MULT, 1, speed);
          return true;
        }

      /* Fall through.  */
    default:
      break;
    }

  if (dump_file
      && flag_aarch64_verbose_cost)
    fprintf (dump_file,
      "\nFailed to cost RTX.  Assuming default cost.\n");

  return true;
}

/* Wrapper around aarch64_rtx_costs, dumps the partial, or total cost
   calculated for X.  This cost is stored in *COST.  Returns true
   if the total cost of X was calculated.  */
static bool
aarch64_rtx_costs_wrapper (rtx x, machine_mode mode, int outer,
		   int param, int *cost, bool speed)
{
  bool result = aarch64_rtx_costs (x, mode, outer, param, cost, speed);

  if (dump_file
      && flag_aarch64_verbose_cost)
    {
      print_rtl_single (dump_file, x);
      fprintf (dump_file, "\n%s cost: %d (%s)\n",
	       speed ? "Hot" : "Cold",
	       *cost, result ? "final" : "partial");
    }

  return result;
}

static int
aarch64_register_move_cost (machine_mode mode,
			    reg_class_t from_i, reg_class_t to_i)
{
  enum reg_class from = (enum reg_class) from_i;
  enum reg_class to = (enum reg_class) to_i;
  const struct cpu_regmove_cost *regmove_cost
    = aarch64_tune_params.regmove_cost;

  /* Caller save and pointer regs are equivalent to GENERAL_REGS.  */
  if (to == CALLER_SAVE_REGS || to == POINTER_REGS)
    to = GENERAL_REGS;

  if (from == CALLER_SAVE_REGS || from == POINTER_REGS)
    from = GENERAL_REGS;

  /* Moving between GPR and stack cost is the same as GP2GP.  */
  if ((from == GENERAL_REGS && to == STACK_REG)
      || (to == GENERAL_REGS && from == STACK_REG))
    return regmove_cost->GP2GP;

  /* To/From the stack register, we move via the gprs.  */
  if (to == STACK_REG || from == STACK_REG)
    return aarch64_register_move_cost (mode, from, GENERAL_REGS)
            + aarch64_register_move_cost (mode, GENERAL_REGS, to);

  if (GET_MODE_SIZE (mode) == 16)
    {
      /* 128-bit operations on general registers require 2 instructions.  */
      if (from == GENERAL_REGS && to == GENERAL_REGS)
	return regmove_cost->GP2GP * 2;
      else if (from == GENERAL_REGS)
	return regmove_cost->GP2FP * 2;
      else if (to == GENERAL_REGS)
	return regmove_cost->FP2GP * 2;

      /* When AdvSIMD instructions are disabled it is not possible to move
	 a 128-bit value directly between Q registers.  This is handled in
	 secondary reload.  A general register is used as a scratch to move
	 the upper DI value and the lower DI value is moved directly,
	 hence the cost is the sum of three moves. */
      if (! TARGET_SIMD)
	return regmove_cost->GP2FP + regmove_cost->FP2GP + regmove_cost->FP2FP;

      return regmove_cost->FP2FP;
    }

  if (from == GENERAL_REGS && to == GENERAL_REGS)
    return regmove_cost->GP2GP;
  else if (from == GENERAL_REGS)
    return regmove_cost->GP2FP;
  else if (to == GENERAL_REGS)
    return regmove_cost->FP2GP;

  return regmove_cost->FP2FP;
}

static int
aarch64_memory_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
			  reg_class_t rclass ATTRIBUTE_UNUSED,
			  bool in ATTRIBUTE_UNUSED)
{
  return aarch64_tune_params.memmov_cost;
}

/* Return true if it is safe and beneficial to use the approximate rsqrt optabs
   to optimize 1.0/sqrt.  */

static bool
use_rsqrt_p (machine_mode mode)
{
  return (!flag_trapping_math
	  && flag_unsafe_math_optimizations
	  && ((aarch64_tune_params.approx_modes->recip_sqrt
	       & AARCH64_APPROX_MODE (mode))
	      || flag_mrecip_low_precision_sqrt));
}

/* Function to decide when to use the approximate reciprocal square root
   builtin.  */

static tree
aarch64_builtin_reciprocal (tree fndecl)
{
  machine_mode mode = TYPE_MODE (TREE_TYPE (fndecl));

  if (!use_rsqrt_p (mode))
    return NULL_TREE;
  return aarch64_builtin_rsqrt (DECL_FUNCTION_CODE (fndecl));
}

typedef rtx (*rsqrte_type) (rtx, rtx);

/* Select reciprocal square root initial estimate insn depending on machine
   mode.  */

static rsqrte_type
get_rsqrte_type (machine_mode mode)
{
  switch (mode)
  {
    case E_DFmode:   return gen_aarch64_rsqrtedf;
    case E_SFmode:   return gen_aarch64_rsqrtesf;
    case E_V2DFmode: return gen_aarch64_rsqrtev2df;
    case E_V2SFmode: return gen_aarch64_rsqrtev2sf;
    case E_V4SFmode: return gen_aarch64_rsqrtev4sf;
    default: gcc_unreachable ();
  }
}

typedef rtx (*rsqrts_type) (rtx, rtx, rtx);

/* Select reciprocal square root series step insn depending on machine mode.  */

static rsqrts_type
get_rsqrts_type (machine_mode mode)
{
  switch (mode)
  {
    case E_DFmode:   return gen_aarch64_rsqrtsdf;
    case E_SFmode:   return gen_aarch64_rsqrtssf;
    case E_V2DFmode: return gen_aarch64_rsqrtsv2df;
    case E_V2SFmode: return gen_aarch64_rsqrtsv2sf;
    case E_V4SFmode: return gen_aarch64_rsqrtsv4sf;
    default: gcc_unreachable ();
  }
}

/* Emit instruction sequence to compute either the approximate square root
   or its approximate reciprocal, depending on the flag RECP, and return
   whether the sequence was emitted or not.  */

bool
aarch64_emit_approx_sqrt (rtx dst, rtx src, bool recp)
{
  machine_mode mode = GET_MODE (dst);

  if (GET_MODE_INNER (mode) == HFmode)
    {
      gcc_assert (!recp);
      return false;
    }

  if (!recp)
    {
      if (!(flag_mlow_precision_sqrt
	    || (aarch64_tune_params.approx_modes->sqrt
		& AARCH64_APPROX_MODE (mode))))
	return false;

      if (flag_finite_math_only
	  || flag_trapping_math
	  || !flag_unsafe_math_optimizations
	  || optimize_function_for_size_p (cfun))
	return false;
    }
  else
    /* Caller assumes we cannot fail.  */
    gcc_assert (use_rsqrt_p (mode));

  machine_mode mmsk = mode_for_int_vector (mode).require ();
  rtx xmsk = gen_reg_rtx (mmsk);
  if (!recp)
    /* When calculating the approximate square root, compare the
       argument with 0.0 and create a mask.  */
    emit_insn (gen_rtx_SET (xmsk,
			    gen_rtx_NEG (mmsk,
					 gen_rtx_EQ (mmsk, src,
						     CONST0_RTX (mode)))));

  /* Estimate the approximate reciprocal square root.  */
  rtx xdst = gen_reg_rtx (mode);
  emit_insn ((*get_rsqrte_type (mode)) (xdst, src));

  /* Iterate over the series twice for SF and thrice for DF.  */
  int iterations = (GET_MODE_INNER (mode) == DFmode) ? 3 : 2;

  /* Optionally iterate over the series once less for faster performance
     while sacrificing the accuracy.  */
  if ((recp && flag_mrecip_low_precision_sqrt)
      || (!recp && flag_mlow_precision_sqrt))
    iterations--;

  /* Iterate over the series to calculate the approximate reciprocal square
     root.  */
  rtx x1 = gen_reg_rtx (mode);
  while (iterations--)
    {
      rtx x2 = gen_reg_rtx (mode);
      emit_set_insn (x2, gen_rtx_MULT (mode, xdst, xdst));

      emit_insn ((*get_rsqrts_type (mode)) (x1, src, x2));

      if (iterations > 0)
	emit_set_insn (xdst, gen_rtx_MULT (mode, xdst, x1));
    }

  if (!recp)
    {
      /* Qualify the approximate reciprocal square root when the argument is
	 0.0 by squashing the intermediary result to 0.0.  */
      rtx xtmp = gen_reg_rtx (mmsk);
      emit_set_insn (xtmp, gen_rtx_AND (mmsk, gen_rtx_NOT (mmsk, xmsk),
					      gen_rtx_SUBREG (mmsk, xdst, 0)));
      emit_move_insn (xdst, gen_rtx_SUBREG (mode, xtmp, 0));

      /* Calculate the approximate square root.  */
      emit_set_insn (xdst, gen_rtx_MULT (mode, xdst, src));
    }

  /* Finalize the approximation.  */
  emit_set_insn (dst, gen_rtx_MULT (mode, xdst, x1));

  return true;
}

typedef rtx (*recpe_type) (rtx, rtx);

/* Select reciprocal initial estimate insn depending on machine mode.  */

static recpe_type
get_recpe_type (machine_mode mode)
{
  switch (mode)
  {
    case E_SFmode:   return (gen_aarch64_frecpesf);
    case E_V2SFmode: return (gen_aarch64_frecpev2sf);
    case E_V4SFmode: return (gen_aarch64_frecpev4sf);
    case E_DFmode:   return (gen_aarch64_frecpedf);
    case E_V2DFmode: return (gen_aarch64_frecpev2df);
    default:         gcc_unreachable ();
  }
}

typedef rtx (*recps_type) (rtx, rtx, rtx);

/* Select reciprocal series step insn depending on machine mode.  */

static recps_type
get_recps_type (machine_mode mode)
{
  switch (mode)
  {
    case E_SFmode:   return (gen_aarch64_frecpssf);
    case E_V2SFmode: return (gen_aarch64_frecpsv2sf);
    case E_V4SFmode: return (gen_aarch64_frecpsv4sf);
    case E_DFmode:   return (gen_aarch64_frecpsdf);
    case E_V2DFmode: return (gen_aarch64_frecpsv2df);
    default:         gcc_unreachable ();
  }
}

/* Emit the instruction sequence to compute the approximation for the division
   of NUM by DEN in QUO and return whether the sequence was emitted or not.  */

bool
aarch64_emit_approx_div (rtx quo, rtx num, rtx den)
{
  machine_mode mode = GET_MODE (quo);

  if (GET_MODE_INNER (mode) == HFmode)
    return false;

  bool use_approx_division_p = (flag_mlow_precision_div
			        || (aarch64_tune_params.approx_modes->division
				    & AARCH64_APPROX_MODE (mode)));

  if (!flag_finite_math_only
      || flag_trapping_math
      || !flag_unsafe_math_optimizations
      || optimize_function_for_size_p (cfun)
      || !use_approx_division_p)
    return false;

  /* Estimate the approximate reciprocal.  */
  rtx xrcp = gen_reg_rtx (mode);
  emit_insn ((*get_recpe_type (mode)) (xrcp, den));

  /* Iterate over the series twice for SF and thrice for DF.  */
  int iterations = (GET_MODE_INNER (mode) == DFmode) ? 3 : 2;

  /* Optionally iterate over the series once less for faster performance,
     while sacrificing the accuracy.  */
  if (flag_mlow_precision_div)
    iterations--;

  /* Iterate over the series to calculate the approximate reciprocal.  */
  rtx xtmp = gen_reg_rtx (mode);
  while (iterations--)
    {
      emit_insn ((*get_recps_type (mode)) (xtmp, xrcp, den));

      if (iterations > 0)
	emit_set_insn (xrcp, gen_rtx_MULT (mode, xrcp, xtmp));
    }

  if (num != CONST1_RTX (mode))
    {
      /* As the approximate reciprocal of DEN is already calculated, only
	 calculate the approximate division when NUM is not 1.0.  */
      rtx xnum = force_reg (mode, num);
      emit_set_insn (xrcp, gen_rtx_MULT (mode, xrcp, xnum));
    }

  /* Finalize the approximation.  */
  emit_set_insn (quo, gen_rtx_MULT (mode, xrcp, xtmp));
  return true;
}

/* Return the number of instructions that can be issued per cycle.  */
static int
aarch64_sched_issue_rate (void)
{
  return aarch64_tune_params.issue_rate;
}

static int
aarch64_sched_first_cycle_multipass_dfa_lookahead (void)
{
  int issue_rate = aarch64_sched_issue_rate ();

  return issue_rate > 1 && !sched_fusion ? issue_rate : 0;
}


/* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD as
   autopref_multipass_dfa_lookahead_guard from haifa-sched.c.  It only
   has an effect if PARAM_SCHED_AUTOPREF_QUEUE_DEPTH > 0.  */

static int
aarch64_first_cycle_multipass_dfa_lookahead_guard (rtx_insn *insn,
						    int ready_index)
{
  return autopref_multipass_dfa_lookahead_guard (insn, ready_index);
}


/* Vectorizer cost model target hooks.  */

/* Implement targetm.vectorize.builtin_vectorization_cost.  */
static int
aarch64_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
				    tree vectype,
				    int misalign ATTRIBUTE_UNUSED)
{
  unsigned elements;
  const cpu_vector_cost *costs = aarch64_tune_params.vec_costs;
  bool fp = false;

  if (vectype != NULL)
    fp = FLOAT_TYPE_P (vectype);

  switch (type_of_cost)
    {
      case scalar_stmt:
	return fp ? costs->scalar_fp_stmt_cost : costs->scalar_int_stmt_cost;

      case scalar_load:
	return costs->scalar_load_cost;

      case scalar_store:
	return costs->scalar_store_cost;

      case vector_stmt:
	return fp ? costs->vec_fp_stmt_cost : costs->vec_int_stmt_cost;

      case vector_load:
	return costs->vec_align_load_cost;

      case vector_store:
	return costs->vec_store_cost;

      case vec_to_scalar:
	return costs->vec_to_scalar_cost;

      case scalar_to_vec:
	return costs->scalar_to_vec_cost;

      case unaligned_load:
      case vector_gather_load:
	return costs->vec_unalign_load_cost;

      case unaligned_store:
      case vector_scatter_store:
	return costs->vec_unalign_store_cost;

      case cond_branch_taken:
	return costs->cond_taken_branch_cost;

      case cond_branch_not_taken:
	return costs->cond_not_taken_branch_cost;

      case vec_perm:
	return costs->vec_permute_cost;

      case vec_promote_demote:
	return fp ? costs->vec_fp_stmt_cost : costs->vec_int_stmt_cost;

      case vec_construct:
        elements = TYPE_VECTOR_SUBPARTS (vectype);
	return elements / 2 + 1;

      default:
	gcc_unreachable ();
    }
}

/* Implement targetm.vectorize.add_stmt_cost.  */
static unsigned
aarch64_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
		       struct _stmt_vec_info *stmt_info, int misalign,
		       enum vect_cost_model_location where)
{
  unsigned *cost = (unsigned *) data;
  unsigned retval = 0;

  if (flag_vect_cost_model)
    {
      tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
      int stmt_cost =
	    aarch64_builtin_vectorization_cost (kind, vectype, misalign);

      /* Statements in an inner loop relative to the loop being
	 vectorized are weighted more heavily.  The value here is
	 arbitrary and could potentially be improved with analysis.  */
      if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info))
	count *= 50; /*  FIXME  */

      retval = (unsigned) (count * stmt_cost);
      cost[where] += retval;
    }

  return retval;
}

static void initialize_aarch64_code_model (struct gcc_options *);

/* Parse the TO_PARSE string and put the architecture struct that it
   selects into RES and the architectural features into ISA_FLAGS.
   Return an aarch64_parse_opt_result describing the parse result.
   If there is an error parsing, RES and ISA_FLAGS are left unchanged.  */

static enum aarch64_parse_opt_result
aarch64_parse_arch (const char *to_parse, const struct processor **res,
		    unsigned long *isa_flags)
{
  char *ext;
  const struct processor *arch;
  char *str = (char *) alloca (strlen (to_parse) + 1);
  size_t len;

  strcpy (str, to_parse);

  ext = strchr (str, '+');

  if (ext != NULL)
    len = ext - str;
  else
    len = strlen (str);

  if (len == 0)
    return AARCH64_PARSE_MISSING_ARG;


  /* Loop through the list of supported ARCHes to find a match.  */
  for (arch = all_architectures; arch->name != NULL; arch++)
    {
      if (strlen (arch->name) == len && strncmp (arch->name, str, len) == 0)
	{
	  unsigned long isa_temp = arch->flags;

	  if (ext != NULL)
	    {
	      /* TO_PARSE string contains at least one extension.  */
	      enum aarch64_parse_opt_result ext_res
		= aarch64_parse_extension (ext, &isa_temp);

	      if (ext_res != AARCH64_PARSE_OK)
		return ext_res;
	    }
	  /* Extension parsing was successful.  Confirm the result
	     arch and ISA flags.  */
	  *res = arch;
	  *isa_flags = isa_temp;
	  return AARCH64_PARSE_OK;
	}
    }

  /* ARCH name not found in list.  */
  return AARCH64_PARSE_INVALID_ARG;
}

/* Parse the TO_PARSE string and put the result tuning in RES and the
   architecture flags in ISA_FLAGS.  Return an aarch64_parse_opt_result
   describing the parse result.  If there is an error parsing, RES and
   ISA_FLAGS are left unchanged.  */

static enum aarch64_parse_opt_result
aarch64_parse_cpu (const char *to_parse, const struct processor **res,
		   unsigned long *isa_flags)
{
  char *ext;
  const struct processor *cpu;
  char *str = (char *) alloca (strlen (to_parse) + 1);
  size_t len;

  strcpy (str, to_parse);

  ext = strchr (str, '+');

  if (ext != NULL)
    len = ext - str;
  else
    len = strlen (str);

  if (len == 0)
    return AARCH64_PARSE_MISSING_ARG;


  /* Loop through the list of supported CPUs to find a match.  */
  for (cpu = all_cores; cpu->name != NULL; cpu++)
    {
      if (strlen (cpu->name) == len && strncmp (cpu->name, str, len) == 0)
	{
	  unsigned long isa_temp = cpu->flags;


	  if (ext != NULL)
	    {
	      /* TO_PARSE string contains at least one extension.  */
	      enum aarch64_parse_opt_result ext_res
		= aarch64_parse_extension (ext, &isa_temp);

	      if (ext_res != AARCH64_PARSE_OK)
		return ext_res;
	    }
	  /* Extension parsing was successfull.  Confirm the result
	     cpu and ISA flags.  */
	  *res = cpu;
	  *isa_flags = isa_temp;
	  return AARCH64_PARSE_OK;
	}
    }

  /* CPU name not found in list.  */
  return AARCH64_PARSE_INVALID_ARG;
}

/* Parse the TO_PARSE string and put the cpu it selects into RES.
   Return an aarch64_parse_opt_result describing the parse result.
   If the parsing fails the RES does not change.  */

static enum aarch64_parse_opt_result
aarch64_parse_tune (const char *to_parse, const struct processor **res)
{
  const struct processor *cpu;
  char *str = (char *) alloca (strlen (to_parse) + 1);

  strcpy (str, to_parse);

  /* Loop through the list of supported CPUs to find a match.  */
  for (cpu = all_cores; cpu->name != NULL; cpu++)
    {
      if (strcmp (cpu->name, str) == 0)
	{
	  *res = cpu;
	  return AARCH64_PARSE_OK;
	}
    }

  /* CPU name not found in list.  */
  return AARCH64_PARSE_INVALID_ARG;
}

/* Parse TOKEN, which has length LENGTH to see if it is an option
   described in FLAG.  If it is, return the index bit for that fusion type.
   If not, error (printing OPTION_NAME) and return zero.  */

static unsigned int
aarch64_parse_one_option_token (const char *token,
				size_t length,
				const struct aarch64_flag_desc *flag,
				const char *option_name)
{
  for (; flag->name != NULL; flag++)
    {
      if (length == strlen (flag->name)
	  && !strncmp (flag->name, token, length))
	return flag->flag;
    }

  error ("unknown flag passed in -moverride=%s (%s)", option_name, token);
  return 0;
}

/* Parse OPTION which is a comma-separated list of flags to enable.
   FLAGS gives the list of flags we understand, INITIAL_STATE gives any
   default state we inherit from the CPU tuning structures.  OPTION_NAME
   gives the top-level option we are parsing in the -moverride string,
   for use in error messages.  */

static unsigned int
aarch64_parse_boolean_options (const char *option,
			       const struct aarch64_flag_desc *flags,
			       unsigned int initial_state,
			       const char *option_name)
{
  const char separator = '.';
  const char* specs = option;
  const char* ntoken = option;
  unsigned int found_flags = initial_state;

  while ((ntoken = strchr (specs, separator)))
    {
      size_t token_length = ntoken - specs;
      unsigned token_ops = aarch64_parse_one_option_token (specs,
							   token_length,
							   flags,
							   option_name);
      /* If we find "none" (or, for simplicity's sake, an error) anywhere
	 in the token stream, reset the supported operations.  So:

	   adrp+add.cmp+branch.none.adrp+add

	   would have the result of turning on only adrp+add fusion.  */
      if (!token_ops)
	found_flags = 0;

      found_flags |= token_ops;
      specs = ++ntoken;
    }

  /* We ended with a comma, print something.  */
  if (!(*specs))
    {
      error ("%s string ill-formed\n", option_name);
      return 0;
    }

  /* We still have one more token to parse.  */
  size_t token_length = strlen (specs);
  unsigned token_ops = aarch64_parse_one_option_token (specs,
						       token_length,
						       flags,
						       option_name);
   if (!token_ops)
     found_flags = 0;

  found_flags |= token_ops;
  return found_flags;
}

/* Support for overriding instruction fusion.  */

static void
aarch64_parse_fuse_string (const char *fuse_string,
			    struct tune_params *tune)
{
  tune->fusible_ops = aarch64_parse_boolean_options (fuse_string,
						     aarch64_fusible_pairs,
						     tune->fusible_ops,
						     "fuse=");
}

/* Support for overriding other tuning flags.  */

static void
aarch64_parse_tune_string (const char *tune_string,
			    struct tune_params *tune)
{
  tune->extra_tuning_flags
    = aarch64_parse_boolean_options (tune_string,
				     aarch64_tuning_flags,
				     tune->extra_tuning_flags,
				     "tune=");
}

/* Parse TOKEN, which has length LENGTH to see if it is a tuning option
   we understand.  If it is, extract the option string and handoff to
   the appropriate function.  */

void
aarch64_parse_one_override_token (const char* token,
				  size_t length,
				  struct tune_params *tune)
{
  const struct aarch64_tuning_override_function *fn
    = aarch64_tuning_override_functions;

  const char *option_part = strchr (token, '=');
  if (!option_part)
    {
      error ("tuning string missing in option (%s)", token);
      return;
    }

  /* Get the length of the option name.  */
  length = option_part - token;
  /* Skip the '=' to get to the option string.  */
  option_part++;

  for (; fn->name != NULL; fn++)
    {
      if (!strncmp (fn->name, token, length))
	{
	  fn->parse_override (option_part, tune);
	  return;
	}
    }

  error ("unknown tuning option (%s)",token);
  return;
}

/* A checking mechanism for the implementation of the tls size.  */

static void
initialize_aarch64_tls_size (struct gcc_options *opts)
{
  if (aarch64_tls_size == 0)
    aarch64_tls_size = 24;

  switch (opts->x_aarch64_cmodel_var)
    {
    case AARCH64_CMODEL_TINY:
      /* Both the default and maximum TLS size allowed under tiny is 1M which
	 needs two instructions to address, so we clamp the size to 24.  */
      if (aarch64_tls_size > 24)
	aarch64_tls_size = 24;
      break;
    case AARCH64_CMODEL_SMALL:
      /* The maximum TLS size allowed under small is 4G.  */
      if (aarch64_tls_size > 32)
	aarch64_tls_size = 32;
      break;
    case AARCH64_CMODEL_LARGE:
      /* The maximum TLS size allowed under large is 16E.
	 FIXME: 16E should be 64bit, we only support 48bit offset now.  */
      if (aarch64_tls_size > 48)
	aarch64_tls_size = 48;
      break;
    default:
      gcc_unreachable ();
    }

  return;
}

/* Parse STRING looking for options in the format:
     string	:: option:string
     option	:: name=substring
     name	:: {a-z}
     substring	:: defined by option.  */

static void
aarch64_parse_override_string (const char* input_string,
			       struct tune_params* tune)
{
  const char separator = ':';
  size_t string_length = strlen (input_string) + 1;
  char *string_root = (char *) xmalloc (sizeof (*string_root) * string_length);
  char *string = string_root;
  strncpy (string, input_string, string_length);
  string[string_length - 1] = '\0';

  char* ntoken = string;

  while ((ntoken = strchr (string, separator)))
    {
      size_t token_length = ntoken - string;
      /* Make this substring look like a string.  */
      *ntoken = '\0';
      aarch64_parse_one_override_token (string, token_length, tune);
      string = ++ntoken;
    }

  /* One last option to parse.  */
  aarch64_parse_one_override_token (string, strlen (string), tune);
  free (string_root);
}


static void
aarch64_override_options_after_change_1 (struct gcc_options *opts)
{
  /* PR 70044: We have to be careful about being called multiple times for the
     same function.  This means all changes should be repeatable.  */

  /* If the frame pointer is enabled, set it to a special value that behaves
     similar to frame pointer omission.  If we don't do this all leaf functions
     will get a frame pointer even if flag_omit_leaf_frame_pointer is set.
     If flag_omit_frame_pointer has this special value, we must force the
     frame pointer if not in a leaf function.  We also need to force it in a
     leaf function if flag_omit_frame_pointer is not set or if LR is used.  */
  if (opts->x_flag_omit_frame_pointer == 0)
    opts->x_flag_omit_frame_pointer = 2;

  /* If not optimizing for size, set the default
     alignment to what the target wants.  */
  if (!opts->x_optimize_size)
    {
      if (opts->x_align_loops <= 0)
	opts->x_align_loops = aarch64_tune_params.loop_align;
      if (opts->x_align_jumps <= 0)
	opts->x_align_jumps = aarch64_tune_params.jump_align;
      if (opts->x_align_functions <= 0)
	opts->x_align_functions = aarch64_tune_params.function_align;
    }

  /* We default to no pc-relative literal loads.  */

  aarch64_pcrelative_literal_loads = false;

  /* If -mpc-relative-literal-loads is set on the command line, this
     implies that the user asked for PC relative literal loads.  */
  if (opts->x_pcrelative_literal_loads == 1)
    aarch64_pcrelative_literal_loads = true;

  /* In the tiny memory model it makes no sense to disallow PC relative
     literal pool loads.  */
  if (aarch64_cmodel == AARCH64_CMODEL_TINY
      || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
    aarch64_pcrelative_literal_loads = true;

  /* When enabling the lower precision Newton series for the square root, also
     enable it for the reciprocal square root, since the latter is an
     intermediary step for the former.  */
  if (flag_mlow_precision_sqrt)
    flag_mrecip_low_precision_sqrt = true;
}

/* 'Unpack' up the internal tuning structs and update the options
    in OPTS.  The caller must have set up selected_tune and selected_arch
    as all the other target-specific codegen decisions are
    derived from them.  */

void
aarch64_override_options_internal (struct gcc_options *opts)
{
  aarch64_tune_flags = selected_tune->flags;
  aarch64_tune = selected_tune->sched_core;
  /* Make a copy of the tuning parameters attached to the core, which
     we may later overwrite.  */
  aarch64_tune_params = *(selected_tune->tune);
  aarch64_architecture_version = selected_arch->architecture_version;

  if (opts->x_aarch64_override_tune_string)
    aarch64_parse_override_string (opts->x_aarch64_override_tune_string,
				  &aarch64_tune_params);

  /* This target defaults to strict volatile bitfields.  */
  if (opts->x_flag_strict_volatile_bitfields < 0 && abi_version_at_least (2))
    opts->x_flag_strict_volatile_bitfields = 1;

  initialize_aarch64_code_model (opts);
  initialize_aarch64_tls_size (opts);

  int queue_depth = 0;
  switch (aarch64_tune_params.autoprefetcher_model)
    {
      case tune_params::AUTOPREFETCHER_OFF:
	queue_depth = -1;
	break;
      case tune_params::AUTOPREFETCHER_WEAK:
	queue_depth = 0;
	break;
      case tune_params::AUTOPREFETCHER_STRONG:
	queue_depth = max_insn_queue_index + 1;
	break;
      default:
	gcc_unreachable ();
    }

  /* We don't mind passing in global_options_set here as we don't use
     the *options_set structs anyway.  */
  maybe_set_param_value (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH,
			 queue_depth,
			 opts->x_param_values,
			 global_options_set.x_param_values);

  /* Set up parameters to be used in prefetching algorithm.  Do not
     override the defaults unless we are tuning for a core we have
     researched values for.  */
  if (aarch64_tune_params.prefetch->num_slots > 0)
    maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES,
			   aarch64_tune_params.prefetch->num_slots,
			   opts->x_param_values,
			   global_options_set.x_param_values);
  if (aarch64_tune_params.prefetch->l1_cache_size >= 0)
    maybe_set_param_value (PARAM_L1_CACHE_SIZE,
			   aarch64_tune_params.prefetch->l1_cache_size,
			   opts->x_param_values,
			   global_options_set.x_param_values);
  if (aarch64_tune_params.prefetch->l1_cache_line_size >= 0)
    maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE,
			   aarch64_tune_params.prefetch->l1_cache_line_size,
			   opts->x_param_values,
			   global_options_set.x_param_values);
  if (aarch64_tune_params.prefetch->l2_cache_size >= 0)
    maybe_set_param_value (PARAM_L2_CACHE_SIZE,
			   aarch64_tune_params.prefetch->l2_cache_size,
			   opts->x_param_values,
			   global_options_set.x_param_values);

  /* Enable sw prefetching at specified optimization level for
     CPUS that have prefetch.  Lower optimization level threshold by 1
     when profiling is enabled.  */
  if (opts->x_flag_prefetch_loop_arrays < 0
      && !opts->x_optimize_size
      && aarch64_tune_params.prefetch->default_opt_level >= 0
      && opts->x_optimize >= aarch64_tune_params.prefetch->default_opt_level)
    opts->x_flag_prefetch_loop_arrays = 1;

  aarch64_override_options_after_change_1 (opts);
}

/* Print a hint with a suggestion for a core or architecture name that
   most closely resembles what the user passed in STR.  ARCH is true if
   the user is asking for an architecture name.  ARCH is false if the user
   is asking for a core name.  */

static void
aarch64_print_hint_for_core_or_arch (const char *str, bool arch)
{
  auto_vec<const char *> candidates;
  const struct processor *entry = arch ? all_architectures : all_cores;
  for (; entry->name != NULL; entry++)
    candidates.safe_push (entry->name);
  char *s;
  const char *hint = candidates_list_and_hint (str, s, candidates);
  if (hint)
    inform (input_location, "valid arguments are: %s;"
			     " did you mean %qs?", s, hint);
  XDELETEVEC (s);
}

/* Print a hint with a suggestion for a core name that most closely resembles
   what the user passed in STR.  */

inline static void
aarch64_print_hint_for_core (const char *str)
{
  aarch64_print_hint_for_core_or_arch (str, false);
}

/* Print a hint with a suggestion for an architecture name that most closely
   resembles what the user passed in STR.  */

inline static void
aarch64_print_hint_for_arch (const char *str)
{
  aarch64_print_hint_for_core_or_arch (str, true);
}

/* Validate a command-line -mcpu option.  Parse the cpu and extensions (if any)
   specified in STR and throw errors if appropriate.  Put the results if
   they are valid in RES and ISA_FLAGS.  Return whether the option is
   valid.  */

static bool
aarch64_validate_mcpu (const char *str, const struct processor **res,
		       unsigned long *isa_flags)
{
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_cpu (str, res, isa_flags);

  if (parse_res == AARCH64_PARSE_OK)
    return true;

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing cpu name in %<-mcpu=%s%>", str);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for -mcpu", str);
	aarch64_print_hint_for_core (str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier in %<-mcpu=%s%>", str);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Validate a command-line -march option.  Parse the arch and extensions
   (if any) specified in STR and throw errors if appropriate.  Put the
   results, if they are valid, in RES and ISA_FLAGS.  Return whether the
   option is valid.  */

static bool
aarch64_validate_march (const char *str, const struct processor **res,
			 unsigned long *isa_flags)
{
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_arch (str, res, isa_flags);

  if (parse_res == AARCH64_PARSE_OK)
    return true;

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing arch name in %<-march=%s%>", str);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for -march", str);
	aarch64_print_hint_for_arch (str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier in %<-march=%s%>", str);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Validate a command-line -mtune option.  Parse the cpu
   specified in STR and throw errors if appropriate.  Put the
   result, if it is valid, in RES.  Return whether the option is
   valid.  */

static bool
aarch64_validate_mtune (const char *str, const struct processor **res)
{
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_tune (str, res);

  if (parse_res == AARCH64_PARSE_OK)
    return true;

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing cpu name in %<-mtune=%s%>", str);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for -mtune", str);
	aarch64_print_hint_for_core (str);
	break;
      default:
	gcc_unreachable ();
    }
  return false;
}

/* Return the CPU corresponding to the enum CPU.
   If it doesn't specify a cpu, return the default.  */

static const struct processor *
aarch64_get_tune_cpu (enum aarch64_processor cpu)
{
  if (cpu != aarch64_none)
    return &all_cores[cpu];

  /* The & 0x3f is to extract the bottom 6 bits that encode the
     default cpu as selected by the --with-cpu GCC configure option
     in config.gcc.
     ???: The whole TARGET_CPU_DEFAULT and AARCH64_CPU_DEFAULT_FLAGS
     flags mechanism should be reworked to make it more sane.  */
  return &all_cores[TARGET_CPU_DEFAULT & 0x3f];
}

/* Return the architecture corresponding to the enum ARCH.
   If it doesn't specify a valid architecture, return the default.  */

static const struct processor *
aarch64_get_arch (enum aarch64_arch arch)
{
  if (arch != aarch64_no_arch)
    return &all_architectures[arch];

  const struct processor *cpu = &all_cores[TARGET_CPU_DEFAULT & 0x3f];

  return &all_architectures[cpu->arch];
}

/* Implement TARGET_OPTION_OVERRIDE.  This is called once in the beginning
   and is used to parse the -m{cpu,tune,arch} strings and setup the initial
   tuning structs.  In particular it must set selected_tune and
   aarch64_isa_flags that define the available ISA features and tuning
   decisions.  It must also set selected_arch as this will be used to
   output the .arch asm tags for each function.  */

static void
aarch64_override_options (void)
{
  unsigned long cpu_isa = 0;
  unsigned long arch_isa = 0;
  aarch64_isa_flags = 0;

  bool valid_cpu = true;
  bool valid_tune = true;
  bool valid_arch = true;

  selected_cpu = NULL;
  selected_arch = NULL;
  selected_tune = NULL;

  /* -mcpu=CPU is shorthand for -march=ARCH_FOR_CPU, -mtune=CPU.
     If either of -march or -mtune is given, they override their
     respective component of -mcpu.  */
  if (aarch64_cpu_string)
    valid_cpu = aarch64_validate_mcpu (aarch64_cpu_string, &selected_cpu,
					&cpu_isa);

  if (aarch64_arch_string)
    valid_arch = aarch64_validate_march (aarch64_arch_string, &selected_arch,
					  &arch_isa);

  if (aarch64_tune_string)
    valid_tune = aarch64_validate_mtune (aarch64_tune_string, &selected_tune);

  /* If the user did not specify a processor, choose the default
     one for them.  This will be the CPU set during configuration using
     --with-cpu, otherwise it is "generic".  */
  if (!selected_cpu)
    {
      if (selected_arch)
	{
	  selected_cpu = &all_cores[selected_arch->ident];
	  aarch64_isa_flags = arch_isa;
	  explicit_arch = selected_arch->arch;
	}
      else
	{
	  /* Get default configure-time CPU.  */
	  selected_cpu = aarch64_get_tune_cpu (aarch64_none);
	  aarch64_isa_flags = TARGET_CPU_DEFAULT >> 6;
	}

      if (selected_tune)
	explicit_tune_core = selected_tune->ident;
    }
  /* If both -mcpu and -march are specified check that they are architecturally
     compatible, warn if they're not and prefer the -march ISA flags.  */
  else if (selected_arch)
    {
      if (selected_arch->arch != selected_cpu->arch)
	{
	  warning (0, "switch -mcpu=%s conflicts with -march=%s switch",
		       all_architectures[selected_cpu->arch].name,
		       selected_arch->name);
	}
      aarch64_isa_flags = arch_isa;
      explicit_arch = selected_arch->arch;
      explicit_tune_core = selected_tune ? selected_tune->ident
					  : selected_cpu->ident;
    }
  else
    {
      /* -mcpu but no -march.  */
      aarch64_isa_flags = cpu_isa;
      explicit_tune_core = selected_tune ? selected_tune->ident
					  : selected_cpu->ident;
      gcc_assert (selected_cpu);
      selected_arch = &all_architectures[selected_cpu->arch];
      explicit_arch = selected_arch->arch;
    }

  /* Set the arch as well as we will need it when outputing
     the .arch directive in assembly.  */
  if (!selected_arch)
    {
      gcc_assert (selected_cpu);
      selected_arch = &all_architectures[selected_cpu->arch];
    }

  if (!selected_tune)
    selected_tune = selected_cpu;

#ifndef HAVE_AS_MABI_OPTION
  /* The compiler may have been configured with 2.23.* binutils, which does
     not have support for ILP32.  */
  if (TARGET_ILP32)
    error ("Assembler does not support -mabi=ilp32");
#endif

  if (aarch64_ra_sign_scope != AARCH64_FUNCTION_NONE && TARGET_ILP32)
    sorry ("Return address signing is only supported for -mabi=lp64");

  /* Make sure we properly set up the explicit options.  */
  if ((aarch64_cpu_string && valid_cpu)
       || (aarch64_tune_string && valid_tune))
    gcc_assert (explicit_tune_core != aarch64_none);

  if ((aarch64_cpu_string && valid_cpu)
       || (aarch64_arch_string && valid_arch))
    gcc_assert (explicit_arch != aarch64_no_arch);

  aarch64_override_options_internal (&global_options);

  /* Save these options as the default ones in case we push and pop them later
     while processing functions with potential target attributes.  */
  target_option_default_node = target_option_current_node
      = build_target_option_node (&global_options);
}

/* Implement targetm.override_options_after_change.  */

static void
aarch64_override_options_after_change (void)
{
  aarch64_override_options_after_change_1 (&global_options);
}

static struct machine_function *
aarch64_init_machine_status (void)
{
  struct machine_function *machine;
  machine = ggc_cleared_alloc<machine_function> ();
  return machine;
}

void
aarch64_init_expanders (void)
{
  init_machine_status = aarch64_init_machine_status;
}

/* A checking mechanism for the implementation of the various code models.  */
static void
initialize_aarch64_code_model (struct gcc_options *opts)
{
   if (opts->x_flag_pic)
     {
       switch (opts->x_aarch64_cmodel_var)
	 {
	 case AARCH64_CMODEL_TINY:
	   aarch64_cmodel = AARCH64_CMODEL_TINY_PIC;
	   break;
	 case AARCH64_CMODEL_SMALL:
#ifdef HAVE_AS_SMALL_PIC_RELOCS
	   aarch64_cmodel = (flag_pic == 2
			     ? AARCH64_CMODEL_SMALL_PIC
			     : AARCH64_CMODEL_SMALL_SPIC);
#else
	   aarch64_cmodel = AARCH64_CMODEL_SMALL_PIC;
#endif
	   break;
	 case AARCH64_CMODEL_LARGE:
	   sorry ("code model %qs with -f%s", "large",
		  opts->x_flag_pic > 1 ? "PIC" : "pic");
	   break;
	 default:
	   gcc_unreachable ();
	 }
     }
   else
     aarch64_cmodel = opts->x_aarch64_cmodel_var;
}

/* Implement TARGET_OPTION_SAVE.  */

static void
aarch64_option_save (struct cl_target_option *ptr, struct gcc_options *opts)
{
  ptr->x_aarch64_override_tune_string = opts->x_aarch64_override_tune_string;
}

/* Implements TARGET_OPTION_RESTORE.  Restore the backend codegen decisions
   using the information saved in PTR.  */

static void
aarch64_option_restore (struct gcc_options *opts, struct cl_target_option *ptr)
{
  opts->x_explicit_tune_core = ptr->x_explicit_tune_core;
  selected_tune = aarch64_get_tune_cpu (ptr->x_explicit_tune_core);
  opts->x_explicit_arch = ptr->x_explicit_arch;
  selected_arch = aarch64_get_arch (ptr->x_explicit_arch);
  opts->x_aarch64_override_tune_string = ptr->x_aarch64_override_tune_string;

  aarch64_override_options_internal (opts);
}

/* Implement TARGET_OPTION_PRINT.  */

static void
aarch64_option_print (FILE *file, int indent, struct cl_target_option *ptr)
{
  const struct processor *cpu
    = aarch64_get_tune_cpu (ptr->x_explicit_tune_core);
  unsigned long isa_flags = ptr->x_aarch64_isa_flags;
  const struct processor *arch = aarch64_get_arch (ptr->x_explicit_arch);
  std::string extension
    = aarch64_get_extension_string_for_isa_flags (isa_flags, arch->flags);

  fprintf (file, "%*sselected tune = %s\n", indent, "", cpu->name);
  fprintf (file, "%*sselected arch = %s%s\n", indent, "",
	   arch->name, extension.c_str ());
}

static GTY(()) tree aarch64_previous_fndecl;

void
aarch64_reset_previous_fndecl (void)
{
  aarch64_previous_fndecl = NULL;
}

/* Restore or save the TREE_TARGET_GLOBALS from or to NEW_TREE.
   Used by aarch64_set_current_function and aarch64_pragma_target_parse to
   make sure optab availability predicates are recomputed when necessary.  */

void
aarch64_save_restore_target_globals (tree new_tree)
{
  if (TREE_TARGET_GLOBALS (new_tree))
    restore_target_globals (TREE_TARGET_GLOBALS (new_tree));
  else if (new_tree == target_option_default_node)
    restore_target_globals (&default_target_globals);
  else
    TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts ();
}

/* Implement TARGET_SET_CURRENT_FUNCTION.  Unpack the codegen decisions
   like tuning and ISA features from the DECL_FUNCTION_SPECIFIC_TARGET
   of the function, if such exists.  This function may be called multiple
   times on a single function so use aarch64_previous_fndecl to avoid
   setting up identical state.  */

static void
aarch64_set_current_function (tree fndecl)
{
  if (!fndecl || fndecl == aarch64_previous_fndecl)
    return;

  tree old_tree = (aarch64_previous_fndecl
		   ? DECL_FUNCTION_SPECIFIC_TARGET (aarch64_previous_fndecl)
		   : NULL_TREE);

  tree new_tree = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);

  /* If current function has no attributes but the previous one did,
     use the default node.  */
  if (!new_tree && old_tree)
    new_tree = target_option_default_node;

  /* If nothing to do, return.  #pragma GCC reset or #pragma GCC pop to
     the default have been handled by aarch64_save_restore_target_globals from
     aarch64_pragma_target_parse.  */
  if (old_tree == new_tree)
    return;

  aarch64_previous_fndecl = fndecl;

  /* First set the target options.  */
  cl_target_option_restore (&global_options, TREE_TARGET_OPTION (new_tree));

  aarch64_save_restore_target_globals (new_tree);
}

/* Enum describing the various ways we can handle attributes.
   In many cases we can reuse the generic option handling machinery.  */

enum aarch64_attr_opt_type
{
  aarch64_attr_mask,	/* Attribute should set a bit in target_flags.  */
  aarch64_attr_bool,	/* Attribute sets or unsets a boolean variable.  */
  aarch64_attr_enum,	/* Attribute sets an enum variable.  */
  aarch64_attr_custom	/* Attribute requires a custom handling function.  */
};

/* All the information needed to handle a target attribute.
   NAME is the name of the attribute.
   ATTR_TYPE specifies the type of behavior of the attribute as described
   in the definition of enum aarch64_attr_opt_type.
   ALLOW_NEG is true if the attribute supports a "no-" form.
   HANDLER is the function that takes the attribute string and whether
   it is a pragma or attribute and handles the option.  It is needed only
   when the ATTR_TYPE is aarch64_attr_custom.
   OPT_NUM is the enum specifying the option that the attribute modifies.
   This is needed for attributes that mirror the behavior of a command-line
   option, that is it has ATTR_TYPE aarch64_attr_mask, aarch64_attr_bool or
   aarch64_attr_enum.  */

struct aarch64_attribute_info
{
  const char *name;
  enum aarch64_attr_opt_type attr_type;
  bool allow_neg;
  bool (*handler) (const char *, const char *);
  enum opt_code opt_num;
};

/* Handle the ARCH_STR argument to the arch= target attribute.
   PRAGMA_OR_ATTR is used in potential error messages.  */

static bool
aarch64_handle_attr_arch (const char *str, const char *pragma_or_attr)
{
  const struct processor *tmp_arch = NULL;
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_arch (str, &tmp_arch, &aarch64_isa_flags);

  if (parse_res == AARCH64_PARSE_OK)
    {
      gcc_assert (tmp_arch);
      selected_arch = tmp_arch;
      explicit_arch = selected_arch->arch;
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing architecture name in 'arch' target %s", pragma_or_attr);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for 'arch' target %s", str, pragma_or_attr);
	aarch64_print_hint_for_arch (str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier %qs for 'arch' target %s",
	       str, pragma_or_attr);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Handle the argument CPU_STR to the cpu= target attribute.
   PRAGMA_OR_ATTR is used in potential error messages.  */

static bool
aarch64_handle_attr_cpu (const char *str, const char *pragma_or_attr)
{
  const struct processor *tmp_cpu = NULL;
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_cpu (str, &tmp_cpu, &aarch64_isa_flags);

  if (parse_res == AARCH64_PARSE_OK)
    {
      gcc_assert (tmp_cpu);
      selected_tune = tmp_cpu;
      explicit_tune_core = selected_tune->ident;

      selected_arch = &all_architectures[tmp_cpu->arch];
      explicit_arch = selected_arch->arch;
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing cpu name in 'cpu' target %s", pragma_or_attr);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for 'cpu' target %s", str, pragma_or_attr);
	aarch64_print_hint_for_core (str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier %qs for 'cpu' target %s",
	       str, pragma_or_attr);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Handle the argument STR to the tune= target attribute.
   PRAGMA_OR_ATTR is used in potential error messages.  */

static bool
aarch64_handle_attr_tune (const char *str, const char *pragma_or_attr)
{
  const struct processor *tmp_tune = NULL;
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_tune (str, &tmp_tune);

  if (parse_res == AARCH64_PARSE_OK)
    {
      gcc_assert (tmp_tune);
      selected_tune = tmp_tune;
      explicit_tune_core = selected_tune->ident;
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for 'tune' target %s", str, pragma_or_attr);
	aarch64_print_hint_for_core (str);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Parse an architecture extensions target attribute string specified in STR.
   For example "+fp+nosimd".  Show any errors if needed.  Return TRUE
   if successful.  Update aarch64_isa_flags to reflect the ISA features
   modified.
   PRAGMA_OR_ATTR is used in potential error messages.  */

static bool
aarch64_handle_attr_isa_flags (char *str, const char *pragma_or_attr)
{
  enum aarch64_parse_opt_result parse_res;
  unsigned long isa_flags = aarch64_isa_flags;

  /* We allow "+nothing" in the beginning to clear out all architectural
     features if the user wants to handpick specific features.  */
  if (strncmp ("+nothing", str, 8) == 0)
    {
      isa_flags = 0;
      str += 8;
    }

  parse_res = aarch64_parse_extension (str, &isa_flags);

  if (parse_res == AARCH64_PARSE_OK)
    {
      aarch64_isa_flags = isa_flags;
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing feature modifier in target %s %qs",
	       pragma_or_attr, str);
	break;

      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier in target %s %qs",
	       pragma_or_attr, str);
	break;

      default:
	gcc_unreachable ();
    }

 return false;
}

/* The target attributes that we support.  On top of these we also support just
   ISA extensions, like  __attribute__ ((target ("+crc"))), but that case is
   handled explicitly in aarch64_process_one_target_attr.  */

static const struct aarch64_attribute_info aarch64_attributes[] =
{
  { "general-regs-only", aarch64_attr_mask, false, NULL,
     OPT_mgeneral_regs_only },
  { "fix-cortex-a53-835769", aarch64_attr_bool, true, NULL,
     OPT_mfix_cortex_a53_835769 },
  { "fix-cortex-a53-843419", aarch64_attr_bool, true, NULL,
     OPT_mfix_cortex_a53_843419 },
  { "cmodel", aarch64_attr_enum, false, NULL, OPT_mcmodel_ },
  { "strict-align", aarch64_attr_mask, false, NULL, OPT_mstrict_align },
  { "omit-leaf-frame-pointer", aarch64_attr_bool, true, NULL,
     OPT_momit_leaf_frame_pointer },
  { "tls-dialect", aarch64_attr_enum, false, NULL, OPT_mtls_dialect_ },
  { "arch", aarch64_attr_custom, false, aarch64_handle_attr_arch,
     OPT_march_ },
  { "cpu", aarch64_attr_custom, false, aarch64_handle_attr_cpu, OPT_mcpu_ },
  { "tune", aarch64_attr_custom, false, aarch64_handle_attr_tune,
     OPT_mtune_ },
  { "sign-return-address", aarch64_attr_enum, false, NULL,
     OPT_msign_return_address_ },
  { NULL, aarch64_attr_custom, false, NULL, OPT____ }
};

/* Parse ARG_STR which contains the definition of one target attribute.
   Show appropriate errors if any or return true if the attribute is valid.
   PRAGMA_OR_ATTR holds the string to use in error messages about whether
   we're processing a target attribute or pragma.  */

static bool
aarch64_process_one_target_attr (char *arg_str, const char* pragma_or_attr)
{
  bool invert = false;

  size_t len = strlen (arg_str);

  if (len == 0)
    {
      error ("malformed target %s", pragma_or_attr);
      return false;
    }

  char *str_to_check = (char *) alloca (len + 1);
  strcpy (str_to_check, arg_str);

  /* Skip leading whitespace.  */
  while (*str_to_check == ' ' || *str_to_check == '\t')
    str_to_check++;

  /* We have something like __attribute__ ((target ("+fp+nosimd"))).
     It is easier to detect and handle it explicitly here rather than going
     through the machinery for the rest of the target attributes in this
     function.  */
  if (*str_to_check == '+')
    return aarch64_handle_attr_isa_flags (str_to_check, pragma_or_attr);

  if (len > 3 && strncmp (str_to_check, "no-", 3) == 0)
    {
      invert = true;
      str_to_check += 3;
    }
  char *arg = strchr (str_to_check, '=');

  /* If we found opt=foo then terminate STR_TO_CHECK at the '='
     and point ARG to "foo".  */
  if (arg)
    {
      *arg = '\0';
      arg++;
    }
  const struct aarch64_attribute_info *p_attr;
  bool found = false;
  for (p_attr = aarch64_attributes; p_attr->name; p_attr++)
    {
      /* If the names don't match up, or the user has given an argument
	 to an attribute that doesn't accept one, or didn't give an argument
	 to an attribute that expects one, fail to match.  */
      if (strcmp (str_to_check, p_attr->name) != 0)
	continue;

      found = true;
      bool attr_need_arg_p = p_attr->attr_type == aarch64_attr_custom
			      || p_attr->attr_type == aarch64_attr_enum;

      if (attr_need_arg_p ^ (arg != NULL))
	{
	  error ("target %s %qs does not accept an argument",
		  pragma_or_attr, str_to_check);
	  return false;
	}

      /* If the name matches but the attribute does not allow "no-" versions
	 then we can't match.  */
      if (invert && !p_attr->allow_neg)
	{
	  error ("target %s %qs does not allow a negated form",
		  pragma_or_attr, str_to_check);
	  return false;
	}

      switch (p_attr->attr_type)
	{
	/* Has a custom handler registered.
	   For example, cpu=, arch=, tune=.  */
	  case aarch64_attr_custom:
	    gcc_assert (p_attr->handler);
	    if (!p_attr->handler (arg, pragma_or_attr))
	      return false;
	    break;

	  /* Either set or unset a boolean option.  */
	  case aarch64_attr_bool:
	    {
	      struct cl_decoded_option decoded;

	      generate_option (p_attr->opt_num, NULL, !invert,
			       CL_TARGET, &decoded);
	      aarch64_handle_option (&global_options, &global_options_set,
				      &decoded, input_location);
	      break;
	    }
	  /* Set or unset a bit in the target_flags.  aarch64_handle_option
	     should know what mask to apply given the option number.  */
	  case aarch64_attr_mask:
	    {
	      struct cl_decoded_option decoded;
	      /* We only need to specify the option number.
		 aarch64_handle_option will know which mask to apply.  */
	      decoded.opt_index = p_attr->opt_num;
	      decoded.value = !invert;
	      aarch64_handle_option (&global_options, &global_options_set,
				      &decoded, input_location);
	      break;
	    }
	  /* Use the option setting machinery to set an option to an enum.  */
	  case aarch64_attr_enum:
	    {
	      gcc_assert (arg);
	      bool valid;
	      int value;
	      valid = opt_enum_arg_to_value (p_attr->opt_num, arg,
					      &value, CL_TARGET);
	      if (valid)
		{
		  set_option (&global_options, NULL, p_attr->opt_num, value,
			      NULL, DK_UNSPECIFIED, input_location,
			      global_dc);
		}
	      else
		{
		  error ("target %s %s=%s is not valid",
			 pragma_or_attr, str_to_check, arg);
		}
	      break;
	    }
	  default:
	    gcc_unreachable ();
	}
    }

  /* If we reached here we either have found an attribute and validated
     it or didn't match any.  If we matched an attribute but its arguments
     were malformed we will have returned false already.  */
  return found;
}

/* Count how many times the character C appears in
   NULL-terminated string STR.  */

static unsigned int
num_occurences_in_str (char c, char *str)
{
  unsigned int res = 0;
  while (*str != '\0')
    {
      if (*str == c)
	res++;

      str++;
    }

  return res;
}

/* Parse the tree in ARGS that contains the target attribute information
   and update the global target options space.  PRAGMA_OR_ATTR is a string
   to be used in error messages, specifying whether this is processing
   a target attribute or a target pragma.  */

bool
aarch64_process_target_attr (tree args, const char* pragma_or_attr)
{
  if (TREE_CODE (args) == TREE_LIST)
    {
      do
	{
	  tree head = TREE_VALUE (args);
	  if (head)
	    {
	      if (!aarch64_process_target_attr (head, pragma_or_attr))
		return false;
	    }
	  args = TREE_CHAIN (args);
	} while (args);

      return true;
    }

  if (TREE_CODE (args) != STRING_CST)
    {
      error ("attribute %<target%> argument not a string");
      return false;
    }

  size_t len = strlen (TREE_STRING_POINTER (args));
  char *str_to_check = (char *) alloca (len + 1);
  strcpy (str_to_check, TREE_STRING_POINTER (args));

  if (len == 0)
    {
      error ("malformed target %s value", pragma_or_attr);
      return false;
    }

  /* Used to catch empty spaces between commas i.e.
     attribute ((target ("attr1,,attr2"))).  */
  unsigned int num_commas = num_occurences_in_str (',', str_to_check);

  /* Handle multiple target attributes separated by ','.  */
  char *token = strtok (str_to_check, ",");

  unsigned int num_attrs = 0;
  while (token)
    {
      num_attrs++;
      if (!aarch64_process_one_target_attr (token, pragma_or_attr))
	{
	  error ("target %s %qs is invalid", pragma_or_attr, token);
	  return false;
	}

      token = strtok (NULL, ",");
    }

  if (num_attrs != num_commas + 1)
    {
      error ("malformed target %s list %qs",
	      pragma_or_attr, TREE_STRING_POINTER (args));
      return false;
    }

  return true;
}

/* Implement TARGET_OPTION_VALID_ATTRIBUTE_P.  This is used to
   process attribute ((target ("..."))).  */

static bool
aarch64_option_valid_attribute_p (tree fndecl, tree, tree args, int)
{
  struct cl_target_option cur_target;
  bool ret;
  tree old_optimize;
  tree new_target, new_optimize;
  tree existing_target = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);

  /* If what we're processing is the current pragma string then the
     target option node is already stored in target_option_current_node
     by aarch64_pragma_target_parse in aarch64-c.c.  Use that to avoid
     having to re-parse the string.  This is especially useful to keep
     arm_neon.h compile times down since that header contains a lot
     of intrinsics enclosed in pragmas.  */
  if (!existing_target && args == current_target_pragma)
    {
      DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = target_option_current_node;
      return true;
    }
  tree func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);

  old_optimize = build_optimization_node (&global_options);
  func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);

  /* If the function changed the optimization levels as well as setting
     target options, start with the optimizations specified.  */
  if (func_optimize && func_optimize != old_optimize)
    cl_optimization_restore (&global_options,
			     TREE_OPTIMIZATION (func_optimize));

  /* Save the current target options to restore at the end.  */
  cl_target_option_save (&cur_target, &global_options);

  /* If fndecl already has some target attributes applied to it, unpack
     them so that we add this attribute on top of them, rather than
     overwriting them.  */
  if (existing_target)
    {
      struct cl_target_option *existing_options
	= TREE_TARGET_OPTION (existing_target);

      if (existing_options)
	cl_target_option_restore (&global_options, existing_options);
    }
  else
    cl_target_option_restore (&global_options,
			TREE_TARGET_OPTION (target_option_current_node));


  ret = aarch64_process_target_attr (args, "attribute");

  /* Set up any additional state.  */
  if (ret)
    {
      aarch64_override_options_internal (&global_options);
      /* Initialize SIMD builtins if we haven't already.
	 Set current_target_pragma to NULL for the duration so that
	 the builtin initialization code doesn't try to tag the functions
	 being built with the attributes specified by any current pragma, thus
	 going into an infinite recursion.  */
      if (TARGET_SIMD)
	{
	  tree saved_current_target_pragma = current_target_pragma;
	  current_target_pragma = NULL;
	  aarch64_init_simd_builtins ();
	  current_target_pragma = saved_current_target_pragma;
	}
      new_target = build_target_option_node (&global_options);
    }
  else
    new_target = NULL;

  new_optimize = build_optimization_node (&global_options);

  if (fndecl && ret)
    {
      DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target;

      if (old_optimize != new_optimize)
	DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize;
    }

  cl_target_option_restore (&global_options, &cur_target);

  if (old_optimize != new_optimize)
    cl_optimization_restore (&global_options,
			     TREE_OPTIMIZATION (old_optimize));
  return ret;
}

/* Helper for aarch64_can_inline_p.  In the case where CALLER and CALLEE are
   tri-bool options (yes, no, don't care) and the default value is
   DEF, determine whether to reject inlining.  */

static bool
aarch64_tribools_ok_for_inlining_p (int caller, int callee,
				     int dont_care, int def)
{
  /* If the callee doesn't care, always allow inlining.  */
  if (callee == dont_care)
    return true;

  /* If the caller doesn't care, always allow inlining.  */
  if (caller == dont_care)
    return true;

  /* Otherwise, allow inlining if either the callee and caller values
     agree, or if the callee is using the default value.  */
  return (callee == caller || callee == def);
}

/* Implement TARGET_CAN_INLINE_P.  Decide whether it is valid
   to inline CALLEE into CALLER based on target-specific info.
   Make sure that the caller and callee have compatible architectural
   features.  Then go through the other possible target attributes
   and see if they can block inlining.  Try not to reject always_inline
   callees unless they are incompatible architecturally.  */

static bool
aarch64_can_inline_p (tree caller, tree callee)
{
  tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
  tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);

  /* If callee has no option attributes, then it is ok to inline.  */
  if (!callee_tree)
    return true;

  struct cl_target_option *caller_opts
	= TREE_TARGET_OPTION (caller_tree ? caller_tree
					   : target_option_default_node);

  struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree);


  /* Callee's ISA flags should be a subset of the caller's.  */
  if ((caller_opts->x_aarch64_isa_flags & callee_opts->x_aarch64_isa_flags)
       != callee_opts->x_aarch64_isa_flags)
    return false;

  /* Allow non-strict aligned functions inlining into strict
     aligned ones.  */
  if ((TARGET_STRICT_ALIGN_P (caller_opts->x_target_flags)
       != TARGET_STRICT_ALIGN_P (callee_opts->x_target_flags))
      && !(!TARGET_STRICT_ALIGN_P (callee_opts->x_target_flags)
	   && TARGET_STRICT_ALIGN_P (caller_opts->x_target_flags)))
    return false;

  bool always_inline = lookup_attribute ("always_inline",
					  DECL_ATTRIBUTES (callee));

  /* If the architectural features match up and the callee is always_inline
     then the other attributes don't matter.  */
  if (always_inline)
    return true;

  if (caller_opts->x_aarch64_cmodel_var
      != callee_opts->x_aarch64_cmodel_var)
    return false;

  if (caller_opts->x_aarch64_tls_dialect
      != callee_opts->x_aarch64_tls_dialect)
    return false;

  /* Honour explicit requests to workaround errata.  */
  if (!aarch64_tribools_ok_for_inlining_p (
	  caller_opts->x_aarch64_fix_a53_err835769,
	  callee_opts->x_aarch64_fix_a53_err835769,
	  2, TARGET_FIX_ERR_A53_835769_DEFAULT))
    return false;

  if (!aarch64_tribools_ok_for_inlining_p (
	  caller_opts->x_aarch64_fix_a53_err843419,
	  callee_opts->x_aarch64_fix_a53_err843419,
	  2, TARGET_FIX_ERR_A53_843419))
    return false;

  /* If the user explicitly specified -momit-leaf-frame-pointer for the
     caller and calle and they don't match up, reject inlining.  */
  if (!aarch64_tribools_ok_for_inlining_p (
	  caller_opts->x_flag_omit_leaf_frame_pointer,
	  callee_opts->x_flag_omit_leaf_frame_pointer,
	  2, 1))
    return false;

  /* If the callee has specific tuning overrides, respect them.  */
  if (callee_opts->x_aarch64_override_tune_string != NULL
      && caller_opts->x_aarch64_override_tune_string == NULL)
    return false;

  /* If the user specified tuning override strings for the
     caller and callee and they don't match up, reject inlining.
     We just do a string compare here, we don't analyze the meaning
     of the string, as it would be too costly for little gain.  */
  if (callee_opts->x_aarch64_override_tune_string
      && caller_opts->x_aarch64_override_tune_string
      && (strcmp (callee_opts->x_aarch64_override_tune_string,
		  caller_opts->x_aarch64_override_tune_string) != 0))
    return false;

  return true;
}

/* Return true if SYMBOL_REF X binds locally.  */

static bool
aarch64_symbol_binds_local_p (const_rtx x)
{
  return (SYMBOL_REF_DECL (x)
	  ? targetm.binds_local_p (SYMBOL_REF_DECL (x))
	  : SYMBOL_REF_LOCAL_P (x));
}

/* Return true if SYMBOL_REF X is thread local */
static bool
aarch64_tls_symbol_p (rtx x)
{
  if (! TARGET_HAVE_TLS)
    return false;

  if (GET_CODE (x) != SYMBOL_REF)
    return false;

  return SYMBOL_REF_TLS_MODEL (x) != 0;
}

/* Classify a TLS symbol into one of the TLS kinds.  */
enum aarch64_symbol_type
aarch64_classify_tls_symbol (rtx x)
{
  enum tls_model tls_kind = tls_symbolic_operand_type (x);

  switch (tls_kind)
    {
    case TLS_MODEL_GLOBAL_DYNAMIC:
    case TLS_MODEL_LOCAL_DYNAMIC:
      return TARGET_TLS_DESC ? SYMBOL_SMALL_TLSDESC : SYMBOL_SMALL_TLSGD;

    case TLS_MODEL_INITIAL_EXEC:
      switch (aarch64_cmodel)
	{
	case AARCH64_CMODEL_TINY:
	case AARCH64_CMODEL_TINY_PIC:
	  return SYMBOL_TINY_TLSIE;
	default:
	  return SYMBOL_SMALL_TLSIE;
	}

    case TLS_MODEL_LOCAL_EXEC:
      if (aarch64_tls_size == 12)
	return SYMBOL_TLSLE12;
      else if (aarch64_tls_size == 24)
	return SYMBOL_TLSLE24;
      else if (aarch64_tls_size == 32)
	return SYMBOL_TLSLE32;
      else if (aarch64_tls_size == 48)
	return SYMBOL_TLSLE48;
      else
	gcc_unreachable ();

    case TLS_MODEL_EMULATED:
    case TLS_MODEL_NONE:
      return SYMBOL_FORCE_TO_MEM;

    default:
      gcc_unreachable ();
    }
}

/* Return the method that should be used to access SYMBOL_REF or
   LABEL_REF X.  */

enum aarch64_symbol_type
aarch64_classify_symbol (rtx x, rtx offset)
{
  if (GET_CODE (x) == LABEL_REF)
    {
      switch (aarch64_cmodel)
	{
	case AARCH64_CMODEL_LARGE:
	  return SYMBOL_FORCE_TO_MEM;

	case AARCH64_CMODEL_TINY_PIC:
	case AARCH64_CMODEL_TINY:
	  return SYMBOL_TINY_ABSOLUTE;

	case AARCH64_CMODEL_SMALL_SPIC:
	case AARCH64_CMODEL_SMALL_PIC:
	case AARCH64_CMODEL_SMALL:
	  return SYMBOL_SMALL_ABSOLUTE;

	default:
	  gcc_unreachable ();
	}
    }

  if (GET_CODE (x) == SYMBOL_REF)
    {
      if (aarch64_tls_symbol_p (x))
	return aarch64_classify_tls_symbol (x);

      switch (aarch64_cmodel)
	{
	case AARCH64_CMODEL_TINY:
	  /* When we retrieve symbol + offset address, we have to make sure
	     the offset does not cause overflow of the final address.  But
	     we have no way of knowing the address of symbol at compile time
	     so we can't accurately say if the distance between the PC and
	     symbol + offset is outside the addressible range of +/-1M in the
	     TINY code model.  So we rely on images not being greater than
	     1M and cap the offset at 1M and anything beyond 1M will have to
	     be loaded using an alternative mechanism.  Furthermore if the
	     symbol is a weak reference to something that isn't known to
	     resolve to a symbol in this module, then force to memory.  */
	  if ((SYMBOL_REF_WEAK (x)
	       && !aarch64_symbol_binds_local_p (x))
	      || INTVAL (offset) < -1048575 || INTVAL (offset) > 1048575)
	    return SYMBOL_FORCE_TO_MEM;
	  return SYMBOL_TINY_ABSOLUTE;

	case AARCH64_CMODEL_SMALL:
	  /* Same reasoning as the tiny code model, but the offset cap here is
	     4G.  */
	  if ((SYMBOL_REF_WEAK (x)
	       && !aarch64_symbol_binds_local_p (x))
	      || !IN_RANGE (INTVAL (offset), HOST_WIDE_INT_C (-4294967263),
			    HOST_WIDE_INT_C (4294967264)))
	    return SYMBOL_FORCE_TO_MEM;
	  return SYMBOL_SMALL_ABSOLUTE;

	case AARCH64_CMODEL_TINY_PIC:
	  if (!aarch64_symbol_binds_local_p (x))
	    return SYMBOL_TINY_GOT;
	  return SYMBOL_TINY_ABSOLUTE;

	case AARCH64_CMODEL_SMALL_SPIC:
	case AARCH64_CMODEL_SMALL_PIC:
	  if (!aarch64_symbol_binds_local_p (x))
	    return (aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC
		    ?  SYMBOL_SMALL_GOT_28K : SYMBOL_SMALL_GOT_4G);
	  return SYMBOL_SMALL_ABSOLUTE;

	case AARCH64_CMODEL_LARGE:
	  /* This is alright even in PIC code as the constant
	     pool reference is always PC relative and within
	     the same translation unit.  */
	  if (!aarch64_pcrelative_literal_loads && CONSTANT_POOL_ADDRESS_P (x))
	    return SYMBOL_SMALL_ABSOLUTE;
	  else
	    return SYMBOL_FORCE_TO_MEM;

	default:
	  gcc_unreachable ();
	}
    }

  /* By default push everything into the constant pool.  */
  return SYMBOL_FORCE_TO_MEM;
}

bool
aarch64_constant_address_p (rtx x)
{
  return (CONSTANT_P (x) && memory_address_p (DImode, x));
}

bool
aarch64_legitimate_pic_operand_p (rtx x)
{
  if (GET_CODE (x) == SYMBOL_REF
      || (GET_CODE (x) == CONST
	  && GET_CODE (XEXP (x, 0)) == PLUS
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF))
     return false;

  return true;
}

/* Return true if X holds either a quarter-precision or
     floating-point +0.0 constant.  */
static bool
aarch64_valid_floating_const (rtx x)
{
  if (!CONST_DOUBLE_P (x))
    return false;

  /* This call determines which constants can be used in mov<mode>
     as integer moves instead of constant loads.  */
  if (aarch64_float_const_rtx_p (x))
    return true;

  return aarch64_float_const_representable_p (x);
}

static bool
aarch64_legitimate_constant_p (machine_mode mode, rtx x)
{
  /* Do not allow vector struct mode constants.  We could support
     0 and -1 easily, but they need support in aarch64-simd.md.  */
  if (TARGET_SIMD && aarch64_vect_struct_mode_p (mode))
    return false;

  /* For these cases we never want to use a literal load.
     As such we have to prevent the compiler from forcing these
     to memory.  */
  if ((GET_CODE (x) == CONST_VECTOR
       && aarch64_simd_valid_immediate (x, mode, false, NULL))
      || CONST_INT_P (x)
      || aarch64_valid_floating_const (x)
      || aarch64_can_const_movi_rtx_p (x, mode)
      || aarch64_float_const_rtx_p (x))
	return !targetm.cannot_force_const_mem (mode, x);

  if (GET_CODE (x) == HIGH
      && aarch64_valid_symref (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
    return true;

  /* Treat symbols as constants.  Avoid TLS symbols as they are complex,
     so spilling them is better than rematerialization.  */
  if (SYMBOL_REF_P (x) && !SYMBOL_REF_TLS_MODEL (x))
    return true;

  return aarch64_constant_address_p (x);
}

rtx
aarch64_load_tp (rtx target)
{
  if (!target
      || GET_MODE (target) != Pmode
      || !register_operand (target, Pmode))
    target = gen_reg_rtx (Pmode);

  /* Can return in any reg.  */
  emit_insn (gen_aarch64_load_tp_hard (target));
  return target;
}

/* On AAPCS systems, this is the "struct __va_list".  */
static GTY(()) tree va_list_type;

/* Implement TARGET_BUILD_BUILTIN_VA_LIST.
   Return the type to use as __builtin_va_list.

   AAPCS64 \S 7.1.4 requires that va_list be a typedef for a type defined as:

   struct __va_list
   {
     void *__stack;
     void *__gr_top;
     void *__vr_top;
     int   __gr_offs;
     int   __vr_offs;
   };  */

static tree
aarch64_build_builtin_va_list (void)
{
  tree va_list_name;
  tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff;

  /* Create the type.  */
  va_list_type = lang_hooks.types.make_type (RECORD_TYPE);
  /* Give it the required name.  */
  va_list_name = build_decl (BUILTINS_LOCATION,
			     TYPE_DECL,
			     get_identifier ("__va_list"),
			     va_list_type);
  DECL_ARTIFICIAL (va_list_name) = 1;
  TYPE_NAME (va_list_type) = va_list_name;
  TYPE_STUB_DECL (va_list_type) = va_list_name;

  /* Create the fields.  */
  f_stack = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__stack"),
			ptr_type_node);
  f_grtop = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__gr_top"),
			ptr_type_node);
  f_vrtop = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__vr_top"),
			ptr_type_node);
  f_groff = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__gr_offs"),
			integer_type_node);
  f_vroff = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__vr_offs"),
			integer_type_node);

  /* Tell tree-stdarg pass about our internal offset fields.
     NOTE: va_list_gpr/fpr_counter_field are only used for tree comparision
     purpose to identify whether the code is updating va_list internal
     offset fields through irregular way.  */
  va_list_gpr_counter_field = f_groff;
  va_list_fpr_counter_field = f_vroff;

  DECL_ARTIFICIAL (f_stack) = 1;
  DECL_ARTIFICIAL (f_grtop) = 1;
  DECL_ARTIFICIAL (f_vrtop) = 1;
  DECL_ARTIFICIAL (f_groff) = 1;
  DECL_ARTIFICIAL (f_vroff) = 1;

  DECL_FIELD_CONTEXT (f_stack) = va_list_type;
  DECL_FIELD_CONTEXT (f_grtop) = va_list_type;
  DECL_FIELD_CONTEXT (f_vrtop) = va_list_type;
  DECL_FIELD_CONTEXT (f_groff) = va_list_type;
  DECL_FIELD_CONTEXT (f_vroff) = va_list_type;

  TYPE_FIELDS (va_list_type) = f_stack;
  DECL_CHAIN (f_stack) = f_grtop;
  DECL_CHAIN (f_grtop) = f_vrtop;
  DECL_CHAIN (f_vrtop) = f_groff;
  DECL_CHAIN (f_groff) = f_vroff;

  /* Compute its layout.  */
  layout_type (va_list_type);

  return va_list_type;
}

/* Implement TARGET_EXPAND_BUILTIN_VA_START.  */
static void
aarch64_expand_builtin_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
{
  const CUMULATIVE_ARGS *cum;
  tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff;
  tree stack, grtop, vrtop, groff, vroff;
  tree t;
  int gr_save_area_size = cfun->va_list_gpr_size;
  int vr_save_area_size = cfun->va_list_fpr_size;
  int vr_offset;

  cum = &crtl->args.info;
  if (cfun->va_list_gpr_size)
    gr_save_area_size = MIN ((NUM_ARG_REGS - cum->aapcs_ncrn) * UNITS_PER_WORD,
			     cfun->va_list_gpr_size);
  if (cfun->va_list_fpr_size)
    vr_save_area_size = MIN ((NUM_FP_ARG_REGS - cum->aapcs_nvrn)
			     * UNITS_PER_VREG, cfun->va_list_fpr_size);

  if (!TARGET_FLOAT)
    {
      gcc_assert (cum->aapcs_nvrn == 0);
      vr_save_area_size = 0;
    }

  f_stack = TYPE_FIELDS (va_list_type_node);
  f_grtop = DECL_CHAIN (f_stack);
  f_vrtop = DECL_CHAIN (f_grtop);
  f_groff = DECL_CHAIN (f_vrtop);
  f_vroff = DECL_CHAIN (f_groff);

  stack = build3 (COMPONENT_REF, TREE_TYPE (f_stack), valist, f_stack,
		  NULL_TREE);
  grtop = build3 (COMPONENT_REF, TREE_TYPE (f_grtop), valist, f_grtop,
		  NULL_TREE);
  vrtop = build3 (COMPONENT_REF, TREE_TYPE (f_vrtop), valist, f_vrtop,
		  NULL_TREE);
  groff = build3 (COMPONENT_REF, TREE_TYPE (f_groff), valist, f_groff,
		  NULL_TREE);
  vroff = build3 (COMPONENT_REF, TREE_TYPE (f_vroff), valist, f_vroff,
		  NULL_TREE);

  /* Emit code to initialize STACK, which points to the next varargs stack
     argument.  CUM->AAPCS_STACK_SIZE gives the number of stack words used
     by named arguments.  STACK is 8-byte aligned.  */
  t = make_tree (TREE_TYPE (stack), virtual_incoming_args_rtx);
  if (cum->aapcs_stack_size > 0)
    t = fold_build_pointer_plus_hwi (t, cum->aapcs_stack_size * UNITS_PER_WORD);
  t = build2 (MODIFY_EXPR, TREE_TYPE (stack), stack, t);
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Emit code to initialize GRTOP, the top of the GR save area.
     virtual_incoming_args_rtx should have been 16 byte aligned.  */
  t = make_tree (TREE_TYPE (grtop), virtual_incoming_args_rtx);
  t = build2 (MODIFY_EXPR, TREE_TYPE (grtop), grtop, t);
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Emit code to initialize VRTOP, the top of the VR save area.
     This address is gr_save_area_bytes below GRTOP, rounded
     down to the next 16-byte boundary.  */
  t = make_tree (TREE_TYPE (vrtop), virtual_incoming_args_rtx);
  vr_offset = ROUND_UP (gr_save_area_size,
			STACK_BOUNDARY / BITS_PER_UNIT);

  if (vr_offset)
    t = fold_build_pointer_plus_hwi (t, -vr_offset);
  t = build2 (MODIFY_EXPR, TREE_TYPE (vrtop), vrtop, t);
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Emit code to initialize GROFF, the offset from GRTOP of the
     next GPR argument.  */
  t = build2 (MODIFY_EXPR, TREE_TYPE (groff), groff,
	      build_int_cst (TREE_TYPE (groff), -gr_save_area_size));
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Likewise emit code to initialize VROFF, the offset from FTOP
     of the next VR argument.  */
  t = build2 (MODIFY_EXPR, TREE_TYPE (vroff), vroff,
	      build_int_cst (TREE_TYPE (vroff), -vr_save_area_size));
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}

/* Implement TARGET_GIMPLIFY_VA_ARG_EXPR.  */

static tree
aarch64_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
			      gimple_seq *post_p ATTRIBUTE_UNUSED)
{
  tree addr;
  bool indirect_p;
  bool is_ha;		/* is HFA or HVA.  */
  bool dw_align;	/* double-word align.  */
  machine_mode ag_mode = VOIDmode;
  int nregs;
  machine_mode mode;

  tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff;
  tree stack, f_top, f_off, off, arg, roundup, on_stack;
  HOST_WIDE_INT size, rsize, adjust, align;
  tree t, u, cond1, cond2;

  indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, false);
  if (indirect_p)
    type = build_pointer_type (type);

  mode = TYPE_MODE (type);

  f_stack = TYPE_FIELDS (va_list_type_node);
  f_grtop = DECL_CHAIN (f_stack);
  f_vrtop = DECL_CHAIN (f_grtop);
  f_groff = DECL_CHAIN (f_vrtop);
  f_vroff = DECL_CHAIN (f_groff);

  stack = build3 (COMPONENT_REF, TREE_TYPE (f_stack), unshare_expr (valist),
		  f_stack, NULL_TREE);
  size = int_size_in_bytes (type);
  align = aarch64_function_arg_alignment (mode, type) / BITS_PER_UNIT;

  dw_align = false;
  adjust = 0;
  if (aarch64_vfp_is_call_or_return_candidate (mode,
					       type,
					       &ag_mode,
					       &nregs,
					       &is_ha))
    {
      /* TYPE passed in fp/simd registers.  */
      if (!TARGET_FLOAT)
	aarch64_err_no_fpadvsimd (mode, "varargs");

      f_top = build3 (COMPONENT_REF, TREE_TYPE (f_vrtop),
		      unshare_expr (valist), f_vrtop, NULL_TREE);
      f_off = build3 (COMPONENT_REF, TREE_TYPE (f_vroff),
		      unshare_expr (valist), f_vroff, NULL_TREE);

      rsize = nregs * UNITS_PER_VREG;

      if (is_ha)
	{
	  if (BYTES_BIG_ENDIAN && GET_MODE_SIZE (ag_mode) < UNITS_PER_VREG)
	    adjust = UNITS_PER_VREG - GET_MODE_SIZE (ag_mode);
	}
      else if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD
	       && size < UNITS_PER_VREG)
	{
	  adjust = UNITS_PER_VREG - size;
	}
    }
  else
    {
      /* TYPE passed in general registers.  */
      f_top = build3 (COMPONENT_REF, TREE_TYPE (f_grtop),
		      unshare_expr (valist), f_grtop, NULL_TREE);
      f_off = build3 (COMPONENT_REF, TREE_TYPE (f_groff),
		      unshare_expr (valist), f_groff, NULL_TREE);
      rsize = ROUND_UP (size, UNITS_PER_WORD);
      nregs = rsize / UNITS_PER_WORD;

      if (align > 8)
	dw_align = true;

      if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD
	  && size < UNITS_PER_WORD)
	{
	  adjust = UNITS_PER_WORD  - size;
	}
    }

  /* Get a local temporary for the field value.  */
  off = get_initialized_tmp_var (f_off, pre_p, NULL);

  /* Emit code to branch if off >= 0.  */
  t = build2 (GE_EXPR, boolean_type_node, off,
	      build_int_cst (TREE_TYPE (off), 0));
  cond1 = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);

  if (dw_align)
    {
      /* Emit: offs = (offs + 15) & -16.  */
      t = build2 (PLUS_EXPR, TREE_TYPE (off), off,
		  build_int_cst (TREE_TYPE (off), 15));
      t = build2 (BIT_AND_EXPR, TREE_TYPE (off), t,
		  build_int_cst (TREE_TYPE (off), -16));
      roundup = build2 (MODIFY_EXPR, TREE_TYPE (off), off, t);
    }
  else
    roundup = NULL;

  /* Update ap.__[g|v]r_offs  */
  t = build2 (PLUS_EXPR, TREE_TYPE (off), off,
	      build_int_cst (TREE_TYPE (off), rsize));
  t = build2 (MODIFY_EXPR, TREE_TYPE (f_off), unshare_expr (f_off), t);

  /* String up.  */
  if (roundup)
    t = build2 (COMPOUND_EXPR, TREE_TYPE (t), roundup, t);

  /* [cond2] if (ap.__[g|v]r_offs > 0)  */
  u = build2 (GT_EXPR, boolean_type_node, unshare_expr (f_off),
	      build_int_cst (TREE_TYPE (f_off), 0));
  cond2 = build3 (COND_EXPR, ptr_type_node, u, NULL_TREE, NULL_TREE);

  /* String up: make sure the assignment happens before the use.  */
  t = build2 (COMPOUND_EXPR, TREE_TYPE (cond2), t, cond2);
  COND_EXPR_ELSE (cond1) = t;

  /* Prepare the trees handling the argument that is passed on the stack;
     the top level node will store in ON_STACK.  */
  arg = get_initialized_tmp_var (stack, pre_p, NULL);
  if (align > 8)
    {
      /* if (alignof(type) > 8) (arg = arg + 15) & -16;  */
      t = fold_convert (intDI_type_node, arg);
      t = build2 (PLUS_EXPR, TREE_TYPE (t), t,
		  build_int_cst (TREE_TYPE (t), 15));
      t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
		  build_int_cst (TREE_TYPE (t), -16));
      t = fold_convert (TREE_TYPE (arg), t);
      roundup = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, t);
    }
  else
    roundup = NULL;
  /* Advance ap.__stack  */
  t = fold_convert (intDI_type_node, arg);
  t = build2 (PLUS_EXPR, TREE_TYPE (t), t,
	      build_int_cst (TREE_TYPE (t), size + 7));
  t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
	      build_int_cst (TREE_TYPE (t), -8));
  t = fold_convert (TREE_TYPE (arg), t);
  t = build2 (MODIFY_EXPR, TREE_TYPE (stack), unshare_expr (stack), t);
  /* String up roundup and advance.  */
  if (roundup)
    t = build2 (COMPOUND_EXPR, TREE_TYPE (t), roundup, t);
  /* String up with arg */
  on_stack = build2 (COMPOUND_EXPR, TREE_TYPE (arg), t, arg);
  /* Big-endianness related address adjustment.  */
  if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD
      && size < UNITS_PER_WORD)
  {
    t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (arg), arg,
		size_int (UNITS_PER_WORD - size));
    on_stack = build2 (COMPOUND_EXPR, TREE_TYPE (arg), on_stack, t);
  }

  COND_EXPR_THEN (cond1) = unshare_expr (on_stack);
  COND_EXPR_THEN (cond2) = unshare_expr (on_stack);

  /* Adjustment to OFFSET in the case of BIG_ENDIAN.  */
  t = off;
  if (adjust)
    t = build2 (PREINCREMENT_EXPR, TREE_TYPE (off), off,
		build_int_cst (TREE_TYPE (off), adjust));

  t = fold_convert (sizetype, t);
  t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (f_top), f_top, t);

  if (is_ha)
    {
      /* type ha; // treat as "struct {ftype field[n];}"
         ... [computing offs]
         for (i = 0; i <nregs; ++i, offs += 16)
	   ha.field[i] = *((ftype *)(ap.__vr_top + offs));
	 return ha;  */
      int i;
      tree tmp_ha, field_t, field_ptr_t;

      /* Declare a local variable.  */
      tmp_ha = create_tmp_var_raw (type, "ha");
      gimple_add_tmp_var (tmp_ha);

      /* Establish the base type.  */
      switch (ag_mode)
	{
	case E_SFmode:
	  field_t = float_type_node;
	  field_ptr_t = float_ptr_type_node;
	  break;
	case E_DFmode:
	  field_t = double_type_node;
	  field_ptr_t = double_ptr_type_node;
	  break;
	case E_TFmode:
	  field_t = long_double_type_node;
	  field_ptr_t = long_double_ptr_type_node;
	  break;
	case E_HFmode:
	  field_t = aarch64_fp16_type_node;
	  field_ptr_t = aarch64_fp16_ptr_type_node;
	  break;
	case E_V2SImode:
	case E_V4SImode:
	    {
	      tree innertype = make_signed_type (GET_MODE_PRECISION (SImode));
	      field_t = build_vector_type_for_mode (innertype, ag_mode);
	      field_ptr_t = build_pointer_type (field_t);
	    }
	  break;
	default:
	  gcc_assert (0);
	}

      /* *(field_ptr_t)&ha = *((field_ptr_t)vr_saved_area  */
      tmp_ha = build1 (ADDR_EXPR, field_ptr_t, tmp_ha);
      addr = t;
      t = fold_convert (field_ptr_t, addr);
      t = build2 (MODIFY_EXPR, field_t,
		  build1 (INDIRECT_REF, field_t, tmp_ha),
		  build1 (INDIRECT_REF, field_t, t));

      /* ha.field[i] = *((field_ptr_t)vr_saved_area + i)  */
      for (i = 1; i < nregs; ++i)
	{
	  addr = fold_build_pointer_plus_hwi (addr, UNITS_PER_VREG);
	  u = fold_convert (field_ptr_t, addr);
	  u = build2 (MODIFY_EXPR, field_t,
		      build2 (MEM_REF, field_t, tmp_ha,
			      build_int_cst (field_ptr_t,
					     (i *
					      int_size_in_bytes (field_t)))),
		      build1 (INDIRECT_REF, field_t, u));
	  t = build2 (COMPOUND_EXPR, TREE_TYPE (t), t, u);
	}

      u = fold_convert (TREE_TYPE (f_top), tmp_ha);
      t = build2 (COMPOUND_EXPR, TREE_TYPE (f_top), t, u);
    }

  COND_EXPR_ELSE (cond2) = t;
  addr = fold_convert (build_pointer_type (type), cond1);
  addr = build_va_arg_indirect_ref (addr);

  if (indirect_p)
    addr = build_va_arg_indirect_ref (addr);

  return addr;
}

/* Implement TARGET_SETUP_INCOMING_VARARGS.  */

static void
aarch64_setup_incoming_varargs (cumulative_args_t cum_v, machine_mode mode,
				tree type, int *pretend_size ATTRIBUTE_UNUSED,
				int no_rtl)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  CUMULATIVE_ARGS local_cum;
  int gr_saved = cfun->va_list_gpr_size;
  int vr_saved = cfun->va_list_fpr_size;

  /* The caller has advanced CUM up to, but not beyond, the last named
     argument.  Advance a local copy of CUM past the last "real" named
     argument, to find out how many registers are left over.  */
  local_cum = *cum;
  aarch64_function_arg_advance (pack_cumulative_args(&local_cum), mode, type, true);

  /* Found out how many registers we need to save.
     Honor tree-stdvar analysis results.  */
  if (cfun->va_list_gpr_size)
    gr_saved = MIN (NUM_ARG_REGS - local_cum.aapcs_ncrn,
		    cfun->va_list_gpr_size / UNITS_PER_WORD);
  if (cfun->va_list_fpr_size)
    vr_saved = MIN (NUM_FP_ARG_REGS - local_cum.aapcs_nvrn,
		    cfun->va_list_fpr_size / UNITS_PER_VREG);

  if (!TARGET_FLOAT)
    {
      gcc_assert (local_cum.aapcs_nvrn == 0);
      vr_saved = 0;
    }

  if (!no_rtl)
    {
      if (gr_saved > 0)
	{
	  rtx ptr, mem;

	  /* virtual_incoming_args_rtx should have been 16-byte aligned.  */
	  ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
			       - gr_saved * UNITS_PER_WORD);
	  mem = gen_frame_mem (BLKmode, ptr);
	  set_mem_alias_set (mem, get_varargs_alias_set ());

	  move_block_from_reg (local_cum.aapcs_ncrn + R0_REGNUM,
			       mem, gr_saved);
	}
      if (vr_saved > 0)
	{
	  /* We can't use move_block_from_reg, because it will use
	     the wrong mode, storing D regs only.  */
	  machine_mode mode = TImode;
	  int off, i, vr_start;

	  /* Set OFF to the offset from virtual_incoming_args_rtx of
	     the first vector register.  The VR save area lies below
	     the GR one, and is aligned to 16 bytes.  */
	  off = -ROUND_UP (gr_saved * UNITS_PER_WORD,
			   STACK_BOUNDARY / BITS_PER_UNIT);
	  off -= vr_saved * UNITS_PER_VREG;

	  vr_start = V0_REGNUM + local_cum.aapcs_nvrn;
	  for (i = 0; i < vr_saved; ++i)
	    {
	      rtx ptr, mem;

	      ptr = plus_constant (Pmode, virtual_incoming_args_rtx, off);
	      mem = gen_frame_mem (mode, ptr);
	      set_mem_alias_set (mem, get_varargs_alias_set ());
	      aarch64_emit_move (mem, gen_rtx_REG (mode, vr_start + i));
	      off += UNITS_PER_VREG;
	    }
	}
    }

  /* We don't save the size into *PRETEND_SIZE because we want to avoid
     any complication of having crtl->args.pretend_args_size changed.  */
  cfun->machine->frame.saved_varargs_size
    = (ROUND_UP (gr_saved * UNITS_PER_WORD,
		 STACK_BOUNDARY / BITS_PER_UNIT)
       + vr_saved * UNITS_PER_VREG);
}

static void
aarch64_conditional_register_usage (void)
{
  int i;
  if (!TARGET_FLOAT)
    {
      for (i = V0_REGNUM; i <= V31_REGNUM; i++)
	{
	  fixed_regs[i] = 1;
	  call_used_regs[i] = 1;
	}
    }
}

/* Walk down the type tree of TYPE counting consecutive base elements.
   If *MODEP is VOIDmode, then set it to the first valid floating point
   type.  If a non-floating point type is found, or if a floating point
   type that doesn't match a non-VOIDmode *MODEP is found, then return -1,
   otherwise return the count in the sub-tree.  */
static int
aapcs_vfp_sub_candidate (const_tree type, machine_mode *modep)
{
  machine_mode mode;
  HOST_WIDE_INT size;

  switch (TREE_CODE (type))
    {
    case REAL_TYPE:
      mode = TYPE_MODE (type);
      if (mode != DFmode && mode != SFmode
	  && mode != TFmode && mode != HFmode)
	return -1;

      if (*modep == VOIDmode)
	*modep = mode;

      if (*modep == mode)
	return 1;

      break;

    case COMPLEX_TYPE:
      mode = TYPE_MODE (TREE_TYPE (type));
      if (mode != DFmode && mode != SFmode
	  && mode != TFmode && mode != HFmode)
	return -1;

      if (*modep == VOIDmode)
	*modep = mode;

      if (*modep == mode)
	return 2;

      break;

    case VECTOR_TYPE:
      /* Use V2SImode and V4SImode as representatives of all 64-bit
	 and 128-bit vector types.  */
      size = int_size_in_bytes (type);
      switch (size)
	{
	case 8:
	  mode = V2SImode;
	  break;
	case 16:
	  mode = V4SImode;
	  break;
	default:
	  return -1;
	}

      if (*modep == VOIDmode)
	*modep = mode;

      /* Vector modes are considered to be opaque: two vectors are
	 equivalent for the purposes of being homogeneous aggregates
	 if they are the same size.  */
      if (*modep == mode)
	return 1;

      break;

    case ARRAY_TYPE:
      {
	int count;
	tree index = TYPE_DOMAIN (type);

	/* Can't handle incomplete types nor sizes that are not
	   fixed.  */
	if (!COMPLETE_TYPE_P (type)
	    || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
	  return -1;

	count = aapcs_vfp_sub_candidate (TREE_TYPE (type), modep);
	if (count == -1
	    || !index
	    || !TYPE_MAX_VALUE (index)
	    || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index))
	    || !TYPE_MIN_VALUE (index)
	    || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index))
	    || count < 0)
	  return -1;

	count *= (1 + tree_to_uhwi (TYPE_MAX_VALUE (index))
		      - tree_to_uhwi (TYPE_MIN_VALUE (index)));

	/* There must be no padding.  */
	if (wi::to_wide (TYPE_SIZE (type))
	    != count * GET_MODE_BITSIZE (*modep))
	  return -1;

	return count;
      }

    case RECORD_TYPE:
      {
	int count = 0;
	int sub_count;
	tree field;

	/* Can't handle incomplete types nor sizes that are not
	   fixed.  */
	if (!COMPLETE_TYPE_P (type)
	    || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
	  return -1;

	for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	  {
	    if (TREE_CODE (field) != FIELD_DECL)
	      continue;

	    sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep);
	    if (sub_count < 0)
	      return -1;
	    count += sub_count;
	  }

	/* There must be no padding.  */
	if (wi::to_wide (TYPE_SIZE (type))
	    != count * GET_MODE_BITSIZE (*modep))
	  return -1;

	return count;
      }

    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	/* These aren't very interesting except in a degenerate case.  */
	int count = 0;
	int sub_count;
	tree field;

	/* Can't handle incomplete types nor sizes that are not
	   fixed.  */
	if (!COMPLETE_TYPE_P (type)
	    || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
	  return -1;

	for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	  {
	    if (TREE_CODE (field) != FIELD_DECL)
	      continue;

	    sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep);
	    if (sub_count < 0)
	      return -1;
	    count = count > sub_count ? count : sub_count;
	  }

	/* There must be no padding.  */
	if (wi::to_wide (TYPE_SIZE (type))
	    != count * GET_MODE_BITSIZE (*modep))
	  return -1;

	return count;
      }

    default:
      break;
    }

  return -1;
}

/* Return TRUE if the type, as described by TYPE and MODE, is a short vector
   type as described in AAPCS64 \S 4.1.2.

   See the comment above aarch64_composite_type_p for the notes on MODE.  */

static bool
aarch64_short_vector_p (const_tree type,
			machine_mode mode)
{
  HOST_WIDE_INT size = -1;

  if (type && TREE_CODE (type) == VECTOR_TYPE)
    size = int_size_in_bytes (type);
  else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
    size = GET_MODE_SIZE (mode);

  return (size == 8 || size == 16);
}

/* Return TRUE if the type, as described by TYPE and MODE, is a composite
   type as described in AAPCS64 \S 4.3.  This includes aggregate, union and
   array types.  The C99 floating-point complex types are also considered
   as composite types, according to AAPCS64 \S 7.1.1.  The complex integer
   types, which are GCC extensions and out of the scope of AAPCS64, are
   treated as composite types here as well.

   Note that MODE itself is not sufficient in determining whether a type
   is such a composite type or not.  This is because
   stor-layout.c:compute_record_mode may have already changed the MODE
   (BLKmode) of a RECORD_TYPE TYPE to some other mode.  For example, a
   structure with only one field may have its MODE set to the mode of the
   field.  Also an integer mode whose size matches the size of the
   RECORD_TYPE type may be used to substitute the original mode
   (i.e. BLKmode) in certain circumstances.  In other words, MODE cannot be
   solely relied on.  */

static bool
aarch64_composite_type_p (const_tree type,
			  machine_mode mode)
{
  if (aarch64_short_vector_p (type, mode))
    return false;

  if (type && (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE))
    return true;

  if (mode == BLKmode
      || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
      || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
    return true;

  return false;
}

/* Return TRUE if an argument, whose type is described by TYPE and MODE,
   shall be passed or returned in simd/fp register(s) (providing these
   parameter passing registers are available).

   Upon successful return, *COUNT returns the number of needed registers,
   *BASE_MODE returns the mode of the individual register and when IS_HAF
   is not NULL, *IS_HA indicates whether or not the argument is a homogeneous
   floating-point aggregate or a homogeneous short-vector aggregate.  */

static bool
aarch64_vfp_is_call_or_return_candidate (machine_mode mode,
					 const_tree type,
					 machine_mode *base_mode,
					 int *count,
					 bool *is_ha)
{
  machine_mode new_mode = VOIDmode;
  bool composite_p = aarch64_composite_type_p (type, mode);

  if (is_ha != NULL) *is_ha = false;

  if ((!composite_p && GET_MODE_CLASS (mode) == MODE_FLOAT)
      || aarch64_short_vector_p (type, mode))
    {
      *count = 1;
      new_mode = mode;
    }
  else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
    {
      if (is_ha != NULL) *is_ha = true;
      *count = 2;
      new_mode = GET_MODE_INNER (mode);
    }
  else if (type && composite_p)
    {
      int ag_count = aapcs_vfp_sub_candidate (type, &new_mode);

      if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS)
	{
	  if (is_ha != NULL) *is_ha = true;
	  *count = ag_count;
	}
      else
	return false;
    }
  else
    return false;

  *base_mode = new_mode;
  return true;
}

/* Implement TARGET_STRUCT_VALUE_RTX.  */

static rtx
aarch64_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED,
			  int incoming ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (Pmode, AARCH64_STRUCT_VALUE_REGNUM);
}

/* Implements target hook vector_mode_supported_p.  */
static bool
aarch64_vector_mode_supported_p (machine_mode mode)
{
  if (TARGET_SIMD
      && (mode == V4SImode  || mode == V8HImode
	  || mode == V16QImode || mode == V2DImode
	  || mode == V2SImode  || mode == V4HImode
	  || mode == V8QImode || mode == V2SFmode
	  || mode == V4SFmode || mode == V2DFmode
	  || mode == V4HFmode || mode == V8HFmode
	  || mode == V1DFmode))
    return true;

  return false;
}

/* Return appropriate SIMD container
   for MODE within a vector of WIDTH bits.  */
static machine_mode
aarch64_simd_container_mode (scalar_mode mode, unsigned width)
{
  gcc_assert (width == 64 || width == 128);
  if (TARGET_SIMD)
    {
      if (width == 128)
	switch (mode)
	  {
	  case E_DFmode:
	    return V2DFmode;
	  case E_SFmode:
	    return V4SFmode;
	  case E_HFmode:
	    return V8HFmode;
	  case E_SImode:
	    return V4SImode;
	  case E_HImode:
	    return V8HImode;
	  case E_QImode:
	    return V16QImode;
	  case E_DImode:
	    return V2DImode;
	  default:
	    break;
	  }
      else
	switch (mode)
	  {
	  case E_SFmode:
	    return V2SFmode;
	  case E_HFmode:
	    return V4HFmode;
	  case E_SImode:
	    return V2SImode;
	  case E_HImode:
	    return V4HImode;
	  case E_QImode:
	    return V8QImode;
	  default:
	    break;
	  }
    }
  return word_mode;
}

/* Return 128-bit container as the preferred SIMD mode for MODE.  */
static machine_mode
aarch64_preferred_simd_mode (scalar_mode mode)
{
  return aarch64_simd_container_mode (mode, 128);
}

/* Return the bitmask of possible vector sizes for the vectorizer
   to iterate over.  */
static unsigned int
aarch64_autovectorize_vector_sizes (void)
{
  return (16 | 8);
}

/* Implement TARGET_MANGLE_TYPE.  */

static const char *
aarch64_mangle_type (const_tree type)
{
  /* The AArch64 ABI documents say that "__va_list" has to be
     managled as if it is in the "std" namespace.  */
  if (lang_hooks.types_compatible_p (CONST_CAST_TREE (type), va_list_type))
    return "St9__va_list";

  /* Half-precision float.  */
  if (TREE_CODE (type) == REAL_TYPE && TYPE_PRECISION (type) == 16)
    return "Dh";

  /* Mangle AArch64-specific internal types.  TYPE_NAME is non-NULL_TREE for
     builtin types.  */
  if (TYPE_NAME (type) != NULL)
    return aarch64_mangle_builtin_type (type);

  /* Use the default mangling.  */
  return NULL;
}

/* Find the first rtx_insn before insn that will generate an assembly
   instruction.  */

static rtx_insn *
aarch64_prev_real_insn (rtx_insn *insn)
{
  if (!insn)
    return NULL;

  do
    {
      insn = prev_real_insn (insn);
    }
  while (insn && recog_memoized (insn) < 0);

  return insn;
}

static bool
is_madd_op (enum attr_type t1)
{
  unsigned int i;
  /* A number of these may be AArch32 only.  */
  enum attr_type mlatypes[] = {
    TYPE_MLA, TYPE_MLAS, TYPE_SMLAD, TYPE_SMLADX, TYPE_SMLAL, TYPE_SMLALD,
    TYPE_SMLALS, TYPE_SMLALXY, TYPE_SMLAWX, TYPE_SMLAWY, TYPE_SMLAXY,
    TYPE_SMMLA, TYPE_UMLAL, TYPE_UMLALS,TYPE_SMLSD, TYPE_SMLSDX, TYPE_SMLSLD
  };

  for (i = 0; i < sizeof (mlatypes) / sizeof (enum attr_type); i++)
    {
      if (t1 == mlatypes[i])
	return true;
    }

  return false;
}

/* Check if there is a register dependency between a load and the insn
   for which we hold recog_data.  */

static bool
dep_between_memop_and_curr (rtx memop)
{
  rtx load_reg;
  int opno;

  gcc_assert (GET_CODE (memop) == SET);

  if (!REG_P (SET_DEST (memop)))
    return false;

  load_reg = SET_DEST (memop);
  for (opno = 1; opno < recog_data.n_operands; opno++)
    {
      rtx operand = recog_data.operand[opno];
      if (REG_P (operand)
          && reg_overlap_mentioned_p (load_reg, operand))
        return true;

    }
  return false;
}


/* When working around the Cortex-A53 erratum 835769,
   given rtx_insn INSN, return true if it is a 64-bit multiply-accumulate
   instruction and has a preceding memory instruction such that a NOP
   should be inserted between them.  */

bool
aarch64_madd_needs_nop (rtx_insn* insn)
{
  enum attr_type attr_type;
  rtx_insn *prev;
  rtx body;

  if (!TARGET_FIX_ERR_A53_835769)
    return false;

  if (!INSN_P (insn) || recog_memoized (insn) < 0)
    return false;

  attr_type = get_attr_type (insn);
  if (!is_madd_op (attr_type))
    return false;

  prev = aarch64_prev_real_insn (insn);
  /* aarch64_prev_real_insn can call recog_memoized on insns other than INSN.
     Restore recog state to INSN to avoid state corruption.  */
  extract_constrain_insn_cached (insn);

  if (!prev || !contains_mem_rtx_p (PATTERN (prev)))
    return false;

  body = single_set (prev);

  /* If the previous insn is a memory op and there is no dependency between
     it and the DImode madd, emit a NOP between them.  If body is NULL then we
     have a complex memory operation, probably a load/store pair.
     Be conservative for now and emit a NOP.  */
  if (GET_MODE (recog_data.operand[0]) == DImode
      && (!body || !dep_between_memop_and_curr (body)))
    return true;

  return false;

}


/* Implement FINAL_PRESCAN_INSN.  */

void
aarch64_final_prescan_insn (rtx_insn *insn)
{
  if (aarch64_madd_needs_nop (insn))
    fprintf (asm_out_file, "\tnop // between mem op and mult-accumulate\n");
}


/* Return the equivalent letter for size.  */
static char
sizetochar (int size)
{
  switch (size)
    {
    case 64: return 'd';
    case 32: return 's';
    case 16: return 'h';
    case 8 : return 'b';
    default: gcc_unreachable ();
    }
}

/* Return true iff x is a uniform vector of floating-point
   constants, and the constant can be represented in
   quarter-precision form.  Note, as aarch64_float_const_representable
   rejects both +0.0 and -0.0, we will also reject +0.0 and -0.0.  */
static bool
aarch64_vect_float_const_representable_p (rtx x)
{
  rtx elt;
  return (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_FLOAT
	  && const_vec_duplicate_p (x, &elt)
	  && aarch64_float_const_representable_p (elt));
}

/* Return true for valid and false for invalid.  */
bool
aarch64_simd_valid_immediate (rtx op, machine_mode mode, bool inverse,
			      struct simd_immediate_info *info,
			      enum simd_immediate_check which)
{
#define CHECK(STRIDE, ELSIZE, CLASS, TEST, SHIFT, NEG)	\
  matches = 1;						\
  for (i = 0; i < idx; i += (STRIDE))			\
    if (!(TEST))					\
      matches = 0;					\
  if (matches)						\
    {							\
      immtype = (CLASS);				\
      elsize = (ELSIZE);				\
      eshift = (SHIFT);					\
      emvn = (NEG);					\
      break;						\
    }

  unsigned int i, elsize = 0, idx = 0, n_elts = CONST_VECTOR_NUNITS (op);
  unsigned int innersize = GET_MODE_UNIT_SIZE (mode);
  unsigned char bytes[16];
  int immtype = -1, matches;
  unsigned int invmask = inverse ? 0xff : 0;
  int eshift, emvn;

  if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
    {
      if (! (aarch64_simd_imm_zero_p (op, mode)
	     || aarch64_vect_float_const_representable_p (op)))
	return false;

      if (info)
	{
	  rtx elt = CONST_VECTOR_ELT (op, 0);
	  scalar_float_mode elt_mode
	    = as_a <scalar_float_mode> (GET_MODE (elt));

	  info->value = elt;
	  info->element_width = GET_MODE_BITSIZE (elt_mode);
	  info->mvn = false;
	  info->shift = 0;
	}

      return true;
    }

  /* Splat vector constant out into a byte vector.  */
  for (i = 0; i < n_elts; i++)
    {
      /* The vector is provided in gcc endian-neutral fashion.  For aarch64_be,
         it must be laid out in the vector register in reverse order.  */
      rtx el = CONST_VECTOR_ELT (op, BYTES_BIG_ENDIAN ? (n_elts - 1 - i) : i);
      unsigned HOST_WIDE_INT elpart;

      gcc_assert (CONST_INT_P (el));
      elpart = INTVAL (el);

      for (unsigned int byte = 0; byte < innersize; byte++)
	{
	  bytes[idx++] = (elpart & 0xff) ^ invmask;
	  elpart >>= BITS_PER_UNIT;
	}

    }

  /* Sanity check.  */
  gcc_assert (idx == GET_MODE_SIZE (mode));

  do
    {
      if (which & AARCH64_CHECK_ORR)
	{
	  CHECK (4, 32, 0, bytes[i] == bytes[0] && bytes[i + 1] == 0
		 && bytes[i + 2] == 0 && bytes[i + 3] == 0, 0, 0);

	  CHECK (4, 32, 1, bytes[i] == 0 && bytes[i + 1] == bytes[1]
		 && bytes[i + 2] == 0 && bytes[i + 3] == 0, 8, 0);

	  CHECK (4, 32, 2, bytes[i] == 0 && bytes[i + 1] == 0
		 && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0, 16, 0);

	  CHECK (4, 32, 3, bytes[i] == 0 && bytes[i + 1] == 0
		 && bytes[i + 2] == 0 && bytes[i + 3] == bytes[3], 24, 0);

	  CHECK (2, 16, 4, bytes[i] == bytes[0] && bytes[i + 1] == 0, 0, 0);

	  CHECK (2, 16, 5, bytes[i] == 0 && bytes[i + 1] == bytes[1], 8, 0);
	}

      if (which & AARCH64_CHECK_BIC)
	{
	  CHECK (4, 32, 6, bytes[i] == bytes[0] && bytes[i + 1] == 0xff
		 && bytes[i + 2] == 0xff && bytes[i + 3] == 0xff, 0, 1);

	  CHECK (4, 32, 7, bytes[i] == 0xff && bytes[i + 1] == bytes[1]
		 && bytes[i + 2] == 0xff && bytes[i + 3] == 0xff, 8, 1);

	  CHECK (4, 32, 8, bytes[i] == 0xff && bytes[i + 1] == 0xff
		 && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0xff, 16, 1);

	  CHECK (4, 32, 9, bytes[i] == 0xff && bytes[i + 1] == 0xff
		 && bytes[i + 2] == 0xff && bytes[i + 3] == bytes[3], 24, 1);

	  CHECK (2, 16, 10, bytes[i] == bytes[0] && bytes[i + 1] == 0xff, 0, 1);

	  CHECK (2, 16, 11, bytes[i] == 0xff && bytes[i + 1] == bytes[1], 8, 1);
	}

      /* Shifting ones / 8-bit / 64-bit variants only checked
	 for 'ALL' (MOVI/MVNI).  */
      if (which == AARCH64_CHECK_MOV)
	{
	  CHECK (4, 32, 12, bytes[i] == 0xff && bytes[i + 1] == bytes[1]
		 && bytes[i + 2] == 0 && bytes[i + 3] == 0, 8, 0);

	  CHECK (4, 32, 13, bytes[i] == 0 && bytes[i + 1] == bytes[1]
		 && bytes[i + 2] == 0xff && bytes[i + 3] == 0xff, 8, 1);

	  CHECK (4, 32, 14, bytes[i] == 0xff && bytes[i + 1] == 0xff
		 && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0, 16, 0);

	  CHECK (4, 32, 15, bytes[i] == 0 && bytes[i + 1] == 0
		 && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0xff, 16, 1);

	  CHECK (1, 8, 16, bytes[i] == bytes[0], 0, 0);

	  CHECK (1, 64, 17, (bytes[i] == 0 || bytes[i] == 0xff)
		 && bytes[i] == bytes[(i + 8) % idx], 0, 0);
	}
    }
  while (0);

  if (immtype == -1)
    return false;

  if (info)
    {
      info->element_width = elsize;
      info->mvn = emvn != 0;
      info->shift = eshift;

      unsigned HOST_WIDE_INT imm = 0;

      if (immtype >= 12 && immtype <= 15)
	info->msl = true;

      /* Un-invert bytes of recognized vector, if necessary.  */
      if (invmask != 0)
        for (i = 0; i < idx; i++)
          bytes[i] ^= invmask;

      if (immtype == 17)
        {
          /* FIXME: Broken on 32-bit H_W_I hosts.  */
          gcc_assert (sizeof (HOST_WIDE_INT) == 8);

          for (i = 0; i < 8; i++)
            imm |= (unsigned HOST_WIDE_INT) (bytes[i] ? 0xff : 0)
	      << (i * BITS_PER_UNIT);


	  info->value = GEN_INT (imm);
	}
      else
	{
	  for (i = 0; i < elsize / BITS_PER_UNIT; i++)
	    imm |= (unsigned HOST_WIDE_INT) bytes[i] << (i * BITS_PER_UNIT);

	  /* Construct 'abcdefgh' because the assembler cannot handle
	     generic constants.	 */
	  if (info->mvn)
	    imm = ~imm;
	  imm = (imm >> info->shift) & 0xff;
	  info->value = GEN_INT (imm);
	}
    }

  return true;
#undef CHECK
}

/* Check of immediate shift constants are within range.  */
bool
aarch64_simd_shift_imm_p (rtx x, machine_mode mode, bool left)
{
  int bit_width = GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT;
  if (left)
    return aarch64_const_vec_all_same_in_range_p (x, 0, bit_width - 1);
  else
    return aarch64_const_vec_all_same_in_range_p (x, 1, bit_width);
}

/* Return true if X is a uniform vector where all elements
   are either the floating-point constant 0.0 or the
   integer constant 0.  */
bool
aarch64_simd_imm_zero_p (rtx x, machine_mode mode)
{
  return x == CONST0_RTX (mode);
}


/* Return the bitmask CONST_INT to select the bits required by a zero extract
   operation of width WIDTH at bit position POS.  */

rtx
aarch64_mask_from_zextract_ops (rtx width, rtx pos)
{
  gcc_assert (CONST_INT_P (width));
  gcc_assert (CONST_INT_P (pos));

  unsigned HOST_WIDE_INT mask
    = ((unsigned HOST_WIDE_INT) 1 << UINTVAL (width)) - 1;
  return GEN_INT (mask << UINTVAL (pos));
}

bool
aarch64_mov_operand_p (rtx x, machine_mode mode)
{
  if (GET_CODE (x) == HIGH
      && aarch64_valid_symref (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
    return true;

  if (CONST_INT_P (x))
    return true;

  if (GET_CODE (x) == SYMBOL_REF && mode == DImode && CONSTANT_ADDRESS_P (x))
    return true;

  return aarch64_classify_symbolic_expression (x)
    == SYMBOL_TINY_ABSOLUTE;
}

/* Return a const_int vector of VAL.  */
rtx
aarch64_simd_gen_const_vector_dup (machine_mode mode, HOST_WIDE_INT val)
{
  int nunits = GET_MODE_NUNITS (mode);
  rtvec v = rtvec_alloc (nunits);
  int i;

  rtx cache = GEN_INT (val);

  for (i=0; i < nunits; i++)
    RTVEC_ELT (v, i) = cache;

  return gen_rtx_CONST_VECTOR (mode, v);
}

/* Check OP is a legal scalar immediate for the MOVI instruction.  */

bool
aarch64_simd_scalar_immediate_valid_for_move (rtx op, scalar_int_mode mode)
{
  machine_mode vmode;

  vmode = aarch64_preferred_simd_mode (mode);
  rtx op_v = aarch64_simd_gen_const_vector_dup (vmode, INTVAL (op));
  return aarch64_simd_valid_immediate (op_v, vmode, false, NULL);
}

/* Construct and return a PARALLEL RTX vector with elements numbering the
   lanes of either the high (HIGH == TRUE) or low (HIGH == FALSE) half of
   the vector - from the perspective of the architecture.  This does not
   line up with GCC's perspective on lane numbers, so we end up with
   different masks depending on our target endian-ness.  The diagram
   below may help.  We must draw the distinction when building masks
   which select one half of the vector.  An instruction selecting
   architectural low-lanes for a big-endian target, must be described using
   a mask selecting GCC high-lanes.

                 Big-Endian             Little-Endian

GCC             0   1   2   3           3   2   1   0
              | x | x | x | x |       | x | x | x | x |
Architecture    3   2   1   0           3   2   1   0

Low Mask:         { 2, 3 }                { 0, 1 }
High Mask:        { 0, 1 }                { 2, 3 }
*/

rtx
aarch64_simd_vect_par_cnst_half (machine_mode mode, bool high)
{
  int nunits = GET_MODE_NUNITS (mode);
  rtvec v = rtvec_alloc (nunits / 2);
  int high_base = nunits / 2;
  int low_base = 0;
  int base;
  rtx t1;
  int i;

  if (BYTES_BIG_ENDIAN)
    base = high ? low_base : high_base;
  else
    base = high ? high_base : low_base;

  for (i = 0; i < nunits / 2; i++)
    RTVEC_ELT (v, i) = GEN_INT (base + i);

  t1 = gen_rtx_PARALLEL (mode, v);
  return t1;
}

/* Check OP for validity as a PARALLEL RTX vector with elements
   numbering the lanes of either the high (HIGH == TRUE) or low lanes,
   from the perspective of the architecture.  See the diagram above
   aarch64_simd_vect_par_cnst_half for more details.  */

bool
aarch64_simd_check_vect_par_cnst_half (rtx op, machine_mode mode,
				       bool high)
{
  rtx ideal = aarch64_simd_vect_par_cnst_half (mode, high);
  HOST_WIDE_INT count_op = XVECLEN (op, 0);
  HOST_WIDE_INT count_ideal = XVECLEN (ideal, 0);
  int i = 0;

  if (!VECTOR_MODE_P (mode))
    return false;

  if (count_op != count_ideal)
    return false;

  for (i = 0; i < count_ideal; i++)
    {
      rtx elt_op = XVECEXP (op, 0, i);
      rtx elt_ideal = XVECEXP (ideal, 0, i);

      if (!CONST_INT_P (elt_op)
	  || INTVAL (elt_ideal) != INTVAL (elt_op))
	return false;
    }
  return true;
}

/* Bounds-check lanes.  Ensure OPERAND lies between LOW (inclusive) and
   HIGH (exclusive).  */
void
aarch64_simd_lane_bounds (rtx operand, HOST_WIDE_INT low, HOST_WIDE_INT high,
			  const_tree exp)
{
  HOST_WIDE_INT lane;
  gcc_assert (CONST_INT_P (operand));
  lane = INTVAL (operand);

  if (lane < low || lane >= high)
  {
    if (exp)
      error ("%Klane %wd out of range %wd - %wd", exp, lane, low, high - 1);
    else
      error ("lane %wd out of range %wd - %wd", lane, low, high - 1);
  }
}

/* Return TRUE if OP is a valid vector addressing mode.  */
bool
aarch64_simd_mem_operand_p (rtx op)
{
  return MEM_P (op) && (GET_CODE (XEXP (op, 0)) == POST_INC
			|| REG_P (XEXP (op, 0)));
}

/* Emit a register copy from operand to operand, taking care not to
   early-clobber source registers in the process.

   COUNT is the number of components into which the copy needs to be
   decomposed.  */
void
aarch64_simd_emit_reg_reg_move (rtx *operands, machine_mode mode,
				unsigned int count)
{
  unsigned int i;
  int rdest = REGNO (operands[0]);
  int rsrc = REGNO (operands[1]);

  if (!reg_overlap_mentioned_p (operands[0], operands[1])
      || rdest < rsrc)
    for (i = 0; i < count; i++)
      emit_move_insn (gen_rtx_REG (mode, rdest + i),
		      gen_rtx_REG (mode, rsrc + i));
  else
    for (i = 0; i < count; i++)
      emit_move_insn (gen_rtx_REG (mode, rdest + count - i - 1),
		      gen_rtx_REG (mode, rsrc + count - i - 1));
}

/* Compute and return the length of aarch64_simd_reglist<mode>, where <mode> is
   one of VSTRUCT modes: OI, CI, or XI.  */
int
aarch64_simd_attr_length_rglist (machine_mode mode)
{
  return (GET_MODE_SIZE (mode) / UNITS_PER_VREG) * 4;
}

/* Implement target hook TARGET_VECTOR_ALIGNMENT.  The AAPCS64 sets the maximum
   alignment of a vector to 128 bits.  */
static HOST_WIDE_INT
aarch64_simd_vector_alignment (const_tree type)
{
  HOST_WIDE_INT align = tree_to_shwi (TYPE_SIZE (type));
  return MIN (align, 128);
}

/* Implement target hook TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE.  */
static bool
aarch64_simd_vector_alignment_reachable (const_tree type, bool is_packed)
{
  if (is_packed)
    return false;

  /* We guarantee alignment for vectors up to 128-bits.  */
  if (tree_int_cst_compare (TYPE_SIZE (type),
			    bitsize_int (BIGGEST_ALIGNMENT)) > 0)
    return false;

  /* Vectors whose size is <= BIGGEST_ALIGNMENT are naturally aligned.  */
  return true;
}

/* Return true if the vector misalignment factor is supported by the
   target.  */
static bool
aarch64_builtin_support_vector_misalignment (machine_mode mode,
					     const_tree type, int misalignment,
					     bool is_packed)
{
  if (TARGET_SIMD && STRICT_ALIGNMENT)
    {
      /* Return if movmisalign pattern is not supported for this mode.  */
      if (optab_handler (movmisalign_optab, mode) == CODE_FOR_nothing)
        return false;

      /* Misalignment factor is unknown at compile time.  */
      if (misalignment == -1)
	return false;
    }
  return default_builtin_support_vector_misalignment (mode, type, misalignment,
						      is_packed);
}

/* If VALS is a vector constant that can be loaded into a register
   using DUP, generate instructions to do so and return an RTX to
   assign to the register.  Otherwise return NULL_RTX.  */
static rtx
aarch64_simd_dup_constant (rtx vals)
{
  machine_mode mode = GET_MODE (vals);
  machine_mode inner_mode = GET_MODE_INNER (mode);
  rtx x;

  if (!const_vec_duplicate_p (vals, &x))
    return NULL_RTX;

  /* We can load this constant by using DUP and a constant in a
     single ARM register.  This will be cheaper than a vector
     load.  */
  x = copy_to_mode_reg (inner_mode, x);
  return gen_rtx_VEC_DUPLICATE (mode, x);
}


/* Generate code to load VALS, which is a PARALLEL containing only
   constants (for vec_init) or CONST_VECTOR, efficiently into a
   register.  Returns an RTX to copy into the register, or NULL_RTX
   for a PARALLEL that can not be converted into a CONST_VECTOR.  */
static rtx
aarch64_simd_make_constant (rtx vals)
{
  machine_mode mode = GET_MODE (vals);
  rtx const_dup;
  rtx const_vec = NULL_RTX;
  int n_elts = GET_MODE_NUNITS (mode);
  int n_const = 0;
  int i;

  if (GET_CODE (vals) == CONST_VECTOR)
    const_vec = vals;
  else if (GET_CODE (vals) == PARALLEL)
    {
      /* A CONST_VECTOR must contain only CONST_INTs and
	 CONST_DOUBLEs, but CONSTANT_P allows more (e.g. SYMBOL_REF).
	 Only store valid constants in a CONST_VECTOR.  */
      for (i = 0; i < n_elts; ++i)
	{
	  rtx x = XVECEXP (vals, 0, i);
	  if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	    n_const++;
	}
      if (n_const == n_elts)
	const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
    }
  else
    gcc_unreachable ();

  if (const_vec != NULL_RTX
      && aarch64_simd_valid_immediate (const_vec, mode, false, NULL))
    /* Load using MOVI/MVNI.  */
    return const_vec;
  else if ((const_dup = aarch64_simd_dup_constant (vals)) != NULL_RTX)
    /* Loaded using DUP.  */
    return const_dup;
  else if (const_vec != NULL_RTX)
    /* Load from constant pool. We can not take advantage of single-cycle
       LD1 because we need a PC-relative addressing mode.  */
    return const_vec;
  else
    /* A PARALLEL containing something not valid inside CONST_VECTOR.
       We can not construct an initializer.  */
    return NULL_RTX;
}

/* Expand a vector initialisation sequence, such that TARGET is
   initialised to contain VALS.  */

void
aarch64_expand_vector_init (rtx target, rtx vals)
{
  machine_mode mode = GET_MODE (target);
  scalar_mode inner_mode = GET_MODE_INNER (mode);
  /* The number of vector elements.  */
  int n_elts = GET_MODE_NUNITS (mode);
  /* The number of vector elements which are not constant.  */
  int n_var = 0;
  rtx any_const = NULL_RTX;
  /* The first element of vals.  */
  rtx v0 = XVECEXP (vals, 0, 0);
  bool all_same = true;

  /* Count the number of variable elements to initialise.  */
  for (int i = 0; i < n_elts; ++i)
    {
      rtx x = XVECEXP (vals, 0, i);
      if (!(CONST_INT_P (x) || CONST_DOUBLE_P (x)))
	++n_var;
      else
	any_const = x;

      all_same &= rtx_equal_p (x, v0);
    }

  /* No variable elements, hand off to aarch64_simd_make_constant which knows
     how best to handle this.  */
  if (n_var == 0)
    {
      rtx constant = aarch64_simd_make_constant (vals);
      if (constant != NULL_RTX)
	{
	  emit_move_insn (target, constant);
	  return;
	}
    }

  /* Splat a single non-constant element if we can.  */
  if (all_same)
    {
      rtx x = copy_to_mode_reg (inner_mode, v0);
      aarch64_emit_move (target, gen_rtx_VEC_DUPLICATE (mode, x));
      return;
    }

  enum insn_code icode = optab_handler (vec_set_optab, mode);
  gcc_assert (icode != CODE_FOR_nothing);

  /* If there are only variable elements, try to optimize
     the insertion using dup for the most common element
     followed by insertions.  */

  /* The algorithm will fill matches[*][0] with the earliest matching element,
     and matches[X][1] with the count of duplicate elements (if X is the
     earliest element which has duplicates).  */

  if (n_var == n_elts && n_elts <= 16)
    {
      int matches[16][2] = {0};
      for (int i = 0; i < n_elts; i++)
	{
	  for (int j = 0; j <= i; j++)
	    {
	      if (rtx_equal_p (XVECEXP (vals, 0, i), XVECEXP (vals, 0, j)))
		{
		  matches[i][0] = j;
		  matches[j][1]++;
		  break;
		}
	    }
	}
      int maxelement = 0;
      int maxv = 0;
      for (int i = 0; i < n_elts; i++)
	if (matches[i][1] > maxv)
	  {
	    maxelement = i;
	    maxv = matches[i][1];
	  }

      /* Create a duplicate of the most common element.  */
      rtx x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, maxelement));
      aarch64_emit_move (target, gen_rtx_VEC_DUPLICATE (mode, x));

      /* Insert the rest.  */
      for (int i = 0; i < n_elts; i++)
	{
	  rtx x = XVECEXP (vals, 0, i);
	  if (matches[i][0] == maxelement)
	    continue;
	  x = copy_to_mode_reg (inner_mode, x);
	  emit_insn (GEN_FCN (icode) (target, x, GEN_INT (i)));
	}
      return;
    }

  /* Initialise a vector which is part-variable.  We want to first try
     to build those lanes which are constant in the most efficient way we
     can.  */
  if (n_var != n_elts)
    {
      rtx copy = copy_rtx (vals);

      /* Load constant part of vector.  We really don't care what goes into the
	 parts we will overwrite, but we're more likely to be able to load the
	 constant efficiently if it has fewer, larger, repeating parts
	 (see aarch64_simd_valid_immediate).  */
      for (int i = 0; i < n_elts; i++)
	{
	  rtx x = XVECEXP (vals, 0, i);
	  if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	    continue;
	  rtx subst = any_const;
	  for (int bit = n_elts / 2; bit > 0; bit /= 2)
	    {
	      /* Look in the copied vector, as more elements are const.  */
	      rtx test = XVECEXP (copy, 0, i ^ bit);
	      if (CONST_INT_P (test) || CONST_DOUBLE_P (test))
		{
		  subst = test;
		  break;
		}
	    }
	  XVECEXP (copy, 0, i) = subst;
	}
      aarch64_expand_vector_init (target, copy);
    }

  /* Insert the variable lanes directly.  */
  for (int i = 0; i < n_elts; i++)
    {
      rtx x = XVECEXP (vals, 0, i);
      if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	continue;
      x = copy_to_mode_reg (inner_mode, x);
      emit_insn (GEN_FCN (icode) (target, x, GEN_INT (i)));
    }
}

static unsigned HOST_WIDE_INT
aarch64_shift_truncation_mask (machine_mode mode)
{
  return
    (!SHIFT_COUNT_TRUNCATED
     || aarch64_vector_mode_supported_p (mode)
     || aarch64_vect_struct_mode_p (mode)) ? 0 : (GET_MODE_BITSIZE (mode) - 1);
}

/* Select a format to encode pointers in exception handling data.  */
int
aarch64_asm_preferred_eh_data_format (int code ATTRIBUTE_UNUSED, int global)
{
   int type;
   switch (aarch64_cmodel)
     {
     case AARCH64_CMODEL_TINY:
     case AARCH64_CMODEL_TINY_PIC:
     case AARCH64_CMODEL_SMALL:
     case AARCH64_CMODEL_SMALL_PIC:
     case AARCH64_CMODEL_SMALL_SPIC:
       /* text+got+data < 4Gb.  4-byte signed relocs are sufficient
	  for everything.  */
       type = DW_EH_PE_sdata4;
       break;
     default:
       /* No assumptions here.  8-byte relocs required.  */
       type = DW_EH_PE_sdata8;
       break;
     }
   return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type;
}

/* The last .arch and .tune assembly strings that we printed.  */
static std::string aarch64_last_printed_arch_string;
static std::string aarch64_last_printed_tune_string;

/* Implement ASM_DECLARE_FUNCTION_NAME.  Output the ISA features used
   by the function fndecl.  */

void
aarch64_declare_function_name (FILE *stream, const char* name,
				tree fndecl)
{
  tree target_parts = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);

  struct cl_target_option *targ_options;
  if (target_parts)
    targ_options = TREE_TARGET_OPTION (target_parts);
  else
    targ_options = TREE_TARGET_OPTION (target_option_current_node);
  gcc_assert (targ_options);

  const struct processor *this_arch
    = aarch64_get_arch (targ_options->x_explicit_arch);

  unsigned long isa_flags = targ_options->x_aarch64_isa_flags;
  std::string extension
    = aarch64_get_extension_string_for_isa_flags (isa_flags,
						  this_arch->flags);
  /* Only update the assembler .arch string if it is distinct from the last
     such string we printed.  */
  std::string to_print = this_arch->name + extension;
  if (to_print != aarch64_last_printed_arch_string)
    {
      asm_fprintf (asm_out_file, "\t.arch %s\n", to_print.c_str ());
      aarch64_last_printed_arch_string = to_print;
    }

  /* Print the cpu name we're tuning for in the comments, might be
     useful to readers of the generated asm.  Do it only when it changes
     from function to function and verbose assembly is requested.  */
  const struct processor *this_tune
    = aarch64_get_tune_cpu (targ_options->x_explicit_tune_core);

  if (flag_debug_asm && aarch64_last_printed_tune_string != this_tune->name)
    {
      asm_fprintf (asm_out_file, "\t" ASM_COMMENT_START ".tune %s\n",
		   this_tune->name);
      aarch64_last_printed_tune_string = this_tune->name;
    }

  /* Don't forget the type directive for ELF.  */
  ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "function");
  ASM_OUTPUT_LABEL (stream, name);
}

/* Implements TARGET_ASM_FILE_START.  Output the assembly header.  */

static void
aarch64_start_file (void)
{
  struct cl_target_option *default_options
    = TREE_TARGET_OPTION (target_option_default_node);

  const struct processor *default_arch
    = aarch64_get_arch (default_options->x_explicit_arch);
  unsigned long default_isa_flags = default_options->x_aarch64_isa_flags;
  std::string extension
    = aarch64_get_extension_string_for_isa_flags (default_isa_flags,
						  default_arch->flags);

   aarch64_last_printed_arch_string = default_arch->name + extension;
   aarch64_last_printed_tune_string = "";
   asm_fprintf (asm_out_file, "\t.arch %s\n",
		aarch64_last_printed_arch_string.c_str ());

   default_file_start ();
}

/* Emit load exclusive.  */

static void
aarch64_emit_load_exclusive (machine_mode mode, rtx rval,
			     rtx mem, rtx model_rtx)
{
  rtx (*gen) (rtx, rtx, rtx);

  switch (mode)
    {
    case E_QImode: gen = gen_aarch64_load_exclusiveqi; break;
    case E_HImode: gen = gen_aarch64_load_exclusivehi; break;
    case E_SImode: gen = gen_aarch64_load_exclusivesi; break;
    case E_DImode: gen = gen_aarch64_load_exclusivedi; break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (rval, mem, model_rtx));
}

/* Emit store exclusive.  */

static void
aarch64_emit_store_exclusive (machine_mode mode, rtx bval,
			      rtx rval, rtx mem, rtx model_rtx)
{
  rtx (*gen) (rtx, rtx, rtx, rtx);

  switch (mode)
    {
    case E_QImode: gen = gen_aarch64_store_exclusiveqi; break;
    case E_HImode: gen = gen_aarch64_store_exclusivehi; break;
    case E_SImode: gen = gen_aarch64_store_exclusivesi; break;
    case E_DImode: gen = gen_aarch64_store_exclusivedi; break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (bval, rval, mem, model_rtx));
}

/* Mark the previous jump instruction as unlikely.  */

static void
aarch64_emit_unlikely_jump (rtx insn)
{
  rtx_insn *jump = emit_jump_insn (insn);
  add_reg_br_prob_note (jump, profile_probability::very_unlikely ());
}

/* Expand a compare and swap pattern.  */

void
aarch64_expand_compare_and_swap (rtx operands[])
{
  rtx bval, rval, mem, oldval, newval, is_weak, mod_s, mod_f, x;
  machine_mode mode, cmp_mode;
  typedef rtx (*gen_cas_fn) (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
  int idx;
  gen_cas_fn gen;
  const gen_cas_fn split_cas[] =
  {
    gen_aarch64_compare_and_swapqi,
    gen_aarch64_compare_and_swaphi,
    gen_aarch64_compare_and_swapsi,
    gen_aarch64_compare_and_swapdi
  };
  const gen_cas_fn atomic_cas[] =
  {
    gen_aarch64_compare_and_swapqi_lse,
    gen_aarch64_compare_and_swaphi_lse,
    gen_aarch64_compare_and_swapsi_lse,
    gen_aarch64_compare_and_swapdi_lse
  };

  bval = operands[0];
  rval = operands[1];
  mem = operands[2];
  oldval = operands[3];
  newval = operands[4];
  is_weak = operands[5];
  mod_s = operands[6];
  mod_f = operands[7];
  mode = GET_MODE (mem);
  cmp_mode = mode;

  /* Normally the succ memory model must be stronger than fail, but in the
     unlikely event of fail being ACQUIRE and succ being RELEASE we need to
     promote succ to ACQ_REL so that we don't lose the acquire semantics.  */

  if (is_mm_acquire (memmodel_from_int (INTVAL (mod_f)))
      && is_mm_release (memmodel_from_int (INTVAL (mod_s))))
    mod_s = GEN_INT (MEMMODEL_ACQ_REL);

  switch (mode)
    {
    case E_QImode:
    case E_HImode:
      /* For short modes, we're going to perform the comparison in SImode,
	 so do the zero-extension now.  */
      cmp_mode = SImode;
      rval = gen_reg_rtx (SImode);
      oldval = convert_modes (SImode, mode, oldval, true);
      /* Fall through.  */

    case E_SImode:
    case E_DImode:
      /* Force the value into a register if needed.  */
      if (!aarch64_plus_operand (oldval, mode))
	oldval = force_reg (cmp_mode, oldval);
      break;

    default:
      gcc_unreachable ();
    }

  switch (mode)
    {
    case E_QImode: idx = 0; break;
    case E_HImode: idx = 1; break;
    case E_SImode: idx = 2; break;
    case E_DImode: idx = 3; break;
    default:
      gcc_unreachable ();
    }
  if (TARGET_LSE)
    gen = atomic_cas[idx];
  else
    gen = split_cas[idx];

  emit_insn (gen (rval, mem, oldval, newval, is_weak, mod_s, mod_f));

  if (mode == QImode || mode == HImode)
    emit_move_insn (operands[1], gen_lowpart (mode, rval));

  x = gen_rtx_REG (CCmode, CC_REGNUM);
  x = gen_rtx_EQ (SImode, x, const0_rtx);
  emit_insn (gen_rtx_SET (bval, x));
}

/* Test whether the target supports using a atomic load-operate instruction.
   CODE is the operation and AFTER is TRUE if the data in memory after the
   operation should be returned and FALSE if the data before the operation
   should be returned.  Returns FALSE if the operation isn't supported by the
   architecture.  */

bool
aarch64_atomic_ldop_supported_p (enum rtx_code code)
{
  if (!TARGET_LSE)
    return false;

  switch (code)
    {
    case SET:
    case AND:
    case IOR:
    case XOR:
    case MINUS:
    case PLUS:
      return true;
    default:
      return false;
    }
}

/* Emit a barrier, that is appropriate for memory model MODEL, at the end of a
   sequence implementing an atomic operation.  */

static void
aarch64_emit_post_barrier (enum memmodel model)
{
  const enum memmodel base_model = memmodel_base (model);

  if (is_mm_sync (model)
      && (base_model == MEMMODEL_ACQUIRE
	  || base_model == MEMMODEL_ACQ_REL
	  || base_model == MEMMODEL_SEQ_CST))
    {
      emit_insn (gen_mem_thread_fence (GEN_INT (MEMMODEL_SEQ_CST)));
    }
}

/* Emit an atomic compare-and-swap operation.  RVAL is the destination register
   for the data in memory.  EXPECTED is the value expected to be in memory.
   DESIRED is the value to store to memory.  MEM is the memory location.  MODEL
   is the memory ordering to use.  */

void
aarch64_gen_atomic_cas (rtx rval, rtx mem,
			rtx expected, rtx desired,
			rtx model)
{
  rtx (*gen) (rtx, rtx, rtx, rtx);
  machine_mode mode;

  mode = GET_MODE (mem);

  switch (mode)
    {
    case E_QImode: gen = gen_aarch64_atomic_casqi; break;
    case E_HImode: gen = gen_aarch64_atomic_cashi; break;
    case E_SImode: gen = gen_aarch64_atomic_cassi; break;
    case E_DImode: gen = gen_aarch64_atomic_casdi; break;
    default:
      gcc_unreachable ();
    }

  /* Move the expected value into the CAS destination register.  */
  emit_insn (gen_rtx_SET (rval, expected));

  /* Emit the CAS.  */
  emit_insn (gen (rval, mem, desired, model));

  /* Compare the expected value with the value loaded by the CAS, to establish
     whether the swap was made.  */
  aarch64_gen_compare_reg (EQ, rval, expected);
}

/* Split a compare and swap pattern.  */

void
aarch64_split_compare_and_swap (rtx operands[])
{
  rtx rval, mem, oldval, newval, scratch;
  machine_mode mode;
  bool is_weak;
  rtx_code_label *label1, *label2;
  rtx x, cond;
  enum memmodel model;
  rtx model_rtx;

  rval = operands[0];
  mem = operands[1];
  oldval = operands[2];
  newval = operands[3];
  is_weak = (operands[4] != const0_rtx);
  model_rtx = operands[5];
  scratch = operands[7];
  mode = GET_MODE (mem);
  model = memmodel_from_int (INTVAL (model_rtx));

  /* When OLDVAL is zero and we want the strong version we can emit a tighter
    loop:
    .label1:
	LD[A]XR	rval, [mem]
	CBNZ	rval, .label2
	ST[L]XR	scratch, newval, [mem]
	CBNZ	scratch, .label1
    .label2:
	CMP	rval, 0.  */
  bool strong_zero_p = !is_weak && oldval == const0_rtx;

  label1 = NULL;
  if (!is_weak)
    {
      label1 = gen_label_rtx ();
      emit_label (label1);
    }
  label2 = gen_label_rtx ();

  /* The initial load can be relaxed for a __sync operation since a final
     barrier will be emitted to stop code hoisting.  */
  if (is_mm_sync (model))
    aarch64_emit_load_exclusive (mode, rval, mem,
				 GEN_INT (MEMMODEL_RELAXED));
  else
    aarch64_emit_load_exclusive (mode, rval, mem, model_rtx);

  if (strong_zero_p)
    {
      x = gen_rtx_NE (VOIDmode, rval, const0_rtx);
      x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
				gen_rtx_LABEL_REF (Pmode, label2), pc_rtx);
      aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
    }
  else
    {
      cond = aarch64_gen_compare_reg (NE, rval, oldval);
      x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
      x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
				 gen_rtx_LABEL_REF (Pmode, label2), pc_rtx);
      aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
    }

  aarch64_emit_store_exclusive (mode, scratch, mem, newval, model_rtx);

  if (!is_weak)
    {
      x = gen_rtx_NE (VOIDmode, scratch, const0_rtx);
      x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
				gen_rtx_LABEL_REF (Pmode, label1), pc_rtx);
      aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
    }
  else
    {
      cond = gen_rtx_REG (CCmode, CC_REGNUM);
      x = gen_rtx_COMPARE (CCmode, scratch, const0_rtx);
      emit_insn (gen_rtx_SET (cond, x));
    }

  emit_label (label2);
  /* If we used a CBNZ in the exchange loop emit an explicit compare with RVAL
     to set the condition flags.  If this is not used it will be removed by
     later passes.  */
  if (strong_zero_p)
    {
      cond = gen_rtx_REG (CCmode, CC_REGNUM);
      x = gen_rtx_COMPARE (CCmode, rval, const0_rtx);
      emit_insn (gen_rtx_SET (cond, x));
    }
  /* Emit any final barrier needed for a __sync operation.  */
  if (is_mm_sync (model))
    aarch64_emit_post_barrier (model);
}

/* Emit a BIC instruction.  */

static void
aarch64_emit_bic (machine_mode mode, rtx dst, rtx s1, rtx s2, int shift)
{
  rtx shift_rtx = GEN_INT (shift);
  rtx (*gen) (rtx, rtx, rtx, rtx);

  switch (mode)
    {
    case E_SImode: gen = gen_and_one_cmpl_lshrsi3; break;
    case E_DImode: gen = gen_and_one_cmpl_lshrdi3; break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (dst, s2, shift_rtx, s1));
}

/* Emit an atomic swap.  */

static void
aarch64_emit_atomic_swap (machine_mode mode, rtx dst, rtx value,
			  rtx mem, rtx model)
{
  rtx (*gen) (rtx, rtx, rtx, rtx);

  switch (mode)
    {
    case E_QImode: gen = gen_aarch64_atomic_swpqi; break;
    case E_HImode: gen = gen_aarch64_atomic_swphi; break;
    case E_SImode: gen = gen_aarch64_atomic_swpsi; break;
    case E_DImode: gen = gen_aarch64_atomic_swpdi; break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (dst, mem, value, model));
}

/* Operations supported by aarch64_emit_atomic_load_op.  */

enum aarch64_atomic_load_op_code
{
  AARCH64_LDOP_PLUS,	/* A + B  */
  AARCH64_LDOP_XOR,	/* A ^ B  */
  AARCH64_LDOP_OR,	/* A | B  */
  AARCH64_LDOP_BIC	/* A & ~B  */
};

/* Emit an atomic load-operate.  */

static void
aarch64_emit_atomic_load_op (enum aarch64_atomic_load_op_code code,
			     machine_mode mode, rtx dst, rtx src,
			     rtx mem, rtx model)
{
  typedef rtx (*aarch64_atomic_load_op_fn) (rtx, rtx, rtx, rtx);
  const aarch64_atomic_load_op_fn plus[] =
  {
    gen_aarch64_atomic_loadaddqi,
    gen_aarch64_atomic_loadaddhi,
    gen_aarch64_atomic_loadaddsi,
    gen_aarch64_atomic_loadadddi
  };
  const aarch64_atomic_load_op_fn eor[] =
  {
    gen_aarch64_atomic_loadeorqi,
    gen_aarch64_atomic_loadeorhi,
    gen_aarch64_atomic_loadeorsi,
    gen_aarch64_atomic_loadeordi
  };
  const aarch64_atomic_load_op_fn ior[] =
  {
    gen_aarch64_atomic_loadsetqi,
    gen_aarch64_atomic_loadsethi,
    gen_aarch64_atomic_loadsetsi,
    gen_aarch64_atomic_loadsetdi
  };
  const aarch64_atomic_load_op_fn bic[] =
  {
    gen_aarch64_atomic_loadclrqi,
    gen_aarch64_atomic_loadclrhi,
    gen_aarch64_atomic_loadclrsi,
    gen_aarch64_atomic_loadclrdi
  };
  aarch64_atomic_load_op_fn gen;
  int idx = 0;

  switch (mode)
    {
    case E_QImode: idx = 0; break;
    case E_HImode: idx = 1; break;
    case E_SImode: idx = 2; break;
    case E_DImode: idx = 3; break;
    default:
      gcc_unreachable ();
    }

  switch (code)
    {
    case AARCH64_LDOP_PLUS: gen = plus[idx]; break;
    case AARCH64_LDOP_XOR: gen = eor[idx]; break;
    case AARCH64_LDOP_OR: gen = ior[idx]; break;
    case AARCH64_LDOP_BIC: gen = bic[idx]; break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (dst, mem, src, model));
}

/* Emit an atomic load+operate.  CODE is the operation.  OUT_DATA is the
   location to store the data read from memory.  OUT_RESULT is the location to
   store the result of the operation.  MEM is the memory location to read and
   modify.  MODEL_RTX is the memory ordering to use.  VALUE is the second
   operand for the operation.  Either OUT_DATA or OUT_RESULT, but not both, can
   be NULL.  */

void
aarch64_gen_atomic_ldop (enum rtx_code code, rtx out_data, rtx out_result,
			 rtx mem, rtx value, rtx model_rtx)
{
  machine_mode mode = GET_MODE (mem);
  machine_mode wmode = (mode == DImode ? DImode : SImode);
  const bool short_mode = (mode < SImode);
  aarch64_atomic_load_op_code ldop_code;
  rtx src;
  rtx x;

  if (out_data)
    out_data = gen_lowpart (mode, out_data);

  if (out_result)
    out_result = gen_lowpart (mode, out_result);

  /* Make sure the value is in a register, putting it into a destination
     register if it needs to be manipulated.  */
  if (!register_operand (value, mode)
      || code == AND || code == MINUS)
    {
      src = out_result ? out_result : out_data;
      emit_move_insn (src, gen_lowpart (mode, value));
    }
  else
    src = value;
  gcc_assert (register_operand (src, mode));

  /* Preprocess the data for the operation as necessary.  If the operation is
     a SET then emit a swap instruction and finish.  */
  switch (code)
    {
    case SET:
      aarch64_emit_atomic_swap (mode, out_data, src, mem, model_rtx);
      return;

    case MINUS:
      /* Negate the value and treat it as a PLUS.  */
      {
	rtx neg_src;

	/* Resize the value if necessary.  */
	if (short_mode)
	  src = gen_lowpart (wmode, src);

	neg_src = gen_rtx_NEG (wmode, src);
	emit_insn (gen_rtx_SET (src, neg_src));

	if (short_mode)
	  src = gen_lowpart (mode, src);
      }
      /* Fall-through.  */
    case PLUS:
      ldop_code = AARCH64_LDOP_PLUS;
      break;

    case IOR:
      ldop_code = AARCH64_LDOP_OR;
      break;

    case XOR:
      ldop_code = AARCH64_LDOP_XOR;
      break;

    case AND:
      {
	rtx not_src;

	/* Resize the value if necessary.  */
	if (short_mode)
	  src = gen_lowpart (wmode, src);

	not_src = gen_rtx_NOT (wmode, src);
	emit_insn (gen_rtx_SET (src, not_src));

	if (short_mode)
	  src = gen_lowpart (mode, src);
      }
      ldop_code = AARCH64_LDOP_BIC;
      break;

    default:
      /* The operation can't be done with atomic instructions.  */
      gcc_unreachable ();
    }

  aarch64_emit_atomic_load_op (ldop_code, mode, out_data, src, mem, model_rtx);

  /* If necessary, calculate the data in memory after the update by redoing the
     operation from values in registers.  */
  if (!out_result)
    return;

  if (short_mode)
    {
      src = gen_lowpart (wmode, src);
      out_data = gen_lowpart (wmode, out_data);
      out_result = gen_lowpart (wmode, out_result);
    }

  x = NULL_RTX;

  switch (code)
    {
    case MINUS:
    case PLUS:
      x = gen_rtx_PLUS (wmode, out_data, src);
      break;
    case IOR:
      x = gen_rtx_IOR (wmode, out_data, src);
      break;
    case XOR:
      x = gen_rtx_XOR (wmode, out_data, src);
      break;
    case AND:
      aarch64_emit_bic (wmode, out_result, out_data, src, 0);
      return;
    default:
      gcc_unreachable ();
    }

  emit_set_insn (out_result, x);

  return;
}

/* Split an atomic operation.  */

void
aarch64_split_atomic_op (enum rtx_code code, rtx old_out, rtx new_out, rtx mem,
			 rtx value, rtx model_rtx, rtx cond)
{
  machine_mode mode = GET_MODE (mem);
  machine_mode wmode = (mode == DImode ? DImode : SImode);
  const enum memmodel model = memmodel_from_int (INTVAL (model_rtx));
  const bool is_sync = is_mm_sync (model);
  rtx_code_label *label;
  rtx x;

  /* Split the atomic operation into a sequence.  */
  label = gen_label_rtx ();
  emit_label (label);

  if (new_out)
    new_out = gen_lowpart (wmode, new_out);
  if (old_out)
    old_out = gen_lowpart (wmode, old_out);
  else
    old_out = new_out;
  value = simplify_gen_subreg (wmode, value, mode, 0);

  /* The initial load can be relaxed for a __sync operation since a final
     barrier will be emitted to stop code hoisting.  */
 if (is_sync)
    aarch64_emit_load_exclusive (mode, old_out, mem,
				 GEN_INT (MEMMODEL_RELAXED));
  else
    aarch64_emit_load_exclusive (mode, old_out, mem, model_rtx);

  switch (code)
    {
    case SET:
      new_out = value;
      break;

    case NOT:
      x = gen_rtx_AND (wmode, old_out, value);
      emit_insn (gen_rtx_SET (new_out, x));
      x = gen_rtx_NOT (wmode, new_out);
      emit_insn (gen_rtx_SET (new_out, x));
      break;

    case MINUS:
      if (CONST_INT_P (value))
	{
	  value = GEN_INT (-INTVAL (value));
	  code = PLUS;
	}
      /* Fall through.  */

    default:
      x = gen_rtx_fmt_ee (code, wmode, old_out, value);
      emit_insn (gen_rtx_SET (new_out, x));
      break;
    }

  aarch64_emit_store_exclusive (mode, cond, mem,
				gen_lowpart (mode, new_out), model_rtx);

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
			    gen_rtx_LABEL_REF (Pmode, label), pc_rtx);
  aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));

  /* Emit any final barrier needed for a __sync operation.  */
  if (is_sync)
    aarch64_emit_post_barrier (model);
}

static void
aarch64_init_libfuncs (void)
{
   /* Half-precision float operations.  The compiler handles all operations
     with NULL libfuncs by converting to SFmode.  */

  /* Conversions.  */
  set_conv_libfunc (trunc_optab, HFmode, SFmode, "__gnu_f2h_ieee");
  set_conv_libfunc (sext_optab, SFmode, HFmode, "__gnu_h2f_ieee");

  /* Arithmetic.  */
  set_optab_libfunc (add_optab, HFmode, NULL);
  set_optab_libfunc (sdiv_optab, HFmode, NULL);
  set_optab_libfunc (smul_optab, HFmode, NULL);
  set_optab_libfunc (neg_optab, HFmode, NULL);
  set_optab_libfunc (sub_optab, HFmode, NULL);

  /* Comparisons.  */
  set_optab_libfunc (eq_optab, HFmode, NULL);
  set_optab_libfunc (ne_optab, HFmode, NULL);
  set_optab_libfunc (lt_optab, HFmode, NULL);
  set_optab_libfunc (le_optab, HFmode, NULL);
  set_optab_libfunc (ge_optab, HFmode, NULL);
  set_optab_libfunc (gt_optab, HFmode, NULL);
  set_optab_libfunc (unord_optab, HFmode, NULL);
}

/* Target hook for c_mode_for_suffix.  */
static machine_mode
aarch64_c_mode_for_suffix (char suffix)
{
  if (suffix == 'q')
    return TFmode;

  return VOIDmode;
}

/* We can only represent floating point constants which will fit in
   "quarter-precision" values.  These values are characterised by
   a sign bit, a 4-bit mantissa and a 3-bit exponent.  And are given
   by:

   (-1)^s * (n/16) * 2^r

   Where:
     's' is the sign bit.
     'n' is an integer in the range 16 <= n <= 31.
     'r' is an integer in the range -3 <= r <= 4.  */

/* Return true iff X can be represented by a quarter-precision
   floating point immediate operand X.  Note, we cannot represent 0.0.  */
bool
aarch64_float_const_representable_p (rtx x)
{
  /* This represents our current view of how many bits
     make up the mantissa.  */
  int point_pos = 2 * HOST_BITS_PER_WIDE_INT - 1;
  int exponent;
  unsigned HOST_WIDE_INT mantissa, mask;
  REAL_VALUE_TYPE r, m;
  bool fail;

  if (!CONST_DOUBLE_P (x))
    return false;

  /* We don't support HFmode constants yet.  */
  if (GET_MODE (x) == VOIDmode || GET_MODE (x) == HFmode)
    return false;

  r = *CONST_DOUBLE_REAL_VALUE (x);

  /* We cannot represent infinities, NaNs or +/-zero.  We won't
     know if we have +zero until we analyse the mantissa, but we
     can reject the other invalid values.  */
  if (REAL_VALUE_ISINF (r) || REAL_VALUE_ISNAN (r)
      || REAL_VALUE_MINUS_ZERO (r))
    return false;

  /* Extract exponent.  */
  r = real_value_abs (&r);
  exponent = REAL_EXP (&r);

  /* For the mantissa, we expand into two HOST_WIDE_INTS, apart from the
     highest (sign) bit, with a fixed binary point at bit point_pos.
     m1 holds the low part of the mantissa, m2 the high part.
     WARNING: If we ever have a representation using more than 2 * H_W_I - 1
     bits for the mantissa, this can fail (low bits will be lost).  */
  real_ldexp (&m, &r, point_pos - exponent);
  wide_int w = real_to_integer (&m, &fail, HOST_BITS_PER_WIDE_INT * 2);

  /* If the low part of the mantissa has bits set we cannot represent
     the value.  */
  if (w.ulow () != 0)
    return false;
  /* We have rejected the lower HOST_WIDE_INT, so update our
     understanding of how many bits lie in the mantissa and
     look only at the high HOST_WIDE_INT.  */
  mantissa = w.elt (1);
  point_pos -= HOST_BITS_PER_WIDE_INT;

  /* We can only represent values with a mantissa of the form 1.xxxx.  */
  mask = ((unsigned HOST_WIDE_INT)1 << (point_pos - 5)) - 1;
  if ((mantissa & mask) != 0)
    return false;

  /* Having filtered unrepresentable values, we may now remove all
     but the highest 5 bits.  */
  mantissa >>= point_pos - 5;

  /* We cannot represent the value 0.0, so reject it.  This is handled
     elsewhere.  */
  if (mantissa == 0)
    return false;

  /* Then, as bit 4 is always set, we can mask it off, leaving
     the mantissa in the range [0, 15].  */
  mantissa &= ~(1 << 4);
  gcc_assert (mantissa <= 15);

  /* GCC internally does not use IEEE754-like encoding (where normalized
     significands are in the range [1, 2).  GCC uses [0.5, 1) (see real.c).
     Our mantissa values are shifted 4 places to the left relative to
     normalized IEEE754 so we must modify the exponent returned by REAL_EXP
     by 5 places to correct for GCC's representation.  */
  exponent = 5 - exponent;

  return (exponent >= 0 && exponent <= 7);
}

/* Returns the string with the instruction for AdvSIMD MOVI, MVNI, ORR or BIC
   immediate with a CONST_VECTOR of MODE and WIDTH.  WHICH selects whether to
   output MOVI/MVNI, ORR or BIC immediate.  */
char*
aarch64_output_simd_mov_immediate (rtx const_vector,
				   machine_mode mode,
				   unsigned width,
				   enum simd_immediate_check which)
{
  bool is_valid;
  static char templ[40];
  const char *mnemonic;
  const char *shift_op;
  unsigned int lane_count = 0;
  char element_char;

  struct simd_immediate_info info = { NULL_RTX, 0, 0, false, false };

  /* This will return true to show const_vector is legal for use as either
     a AdvSIMD MOVI instruction (or, implicitly, MVNI), ORR or BIC immediate.
     It will also update INFO to show how the immediate should be generated.
     WHICH selects whether to check for MOVI/MVNI, ORR or BIC.  */
  is_valid = aarch64_simd_valid_immediate (const_vector, mode, false,
					   &info, which);
  gcc_assert (is_valid);

  element_char = sizetochar (info.element_width);
  lane_count = width / info.element_width;

  mode = GET_MODE_INNER (mode);
  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
    {
      gcc_assert (info.shift == 0 && ! info.mvn);
      /* For FP zero change it to a CONST_INT 0 and use the integer SIMD
	 move immediate path.  */
      if (aarch64_float_const_zero_rtx_p (info.value))
        info.value = GEN_INT (0);
      else
	{
	  const unsigned int buf_size = 20;
	  char float_buf[buf_size] = {'\0'};
	  real_to_decimal_for_mode (float_buf,
				    CONST_DOUBLE_REAL_VALUE (info.value),
				    buf_size, buf_size, 1, mode);

	  if (lane_count == 1)
	    snprintf (templ, sizeof (templ), "fmov\t%%d0, %s", float_buf);
	  else
	    snprintf (templ, sizeof (templ), "fmov\t%%0.%d%c, %s",
		      lane_count, element_char, float_buf);
	  return templ;
	}
    }

  gcc_assert (CONST_INT_P (info.value));

  if (which == AARCH64_CHECK_MOV)
    {
      mnemonic = info.mvn ? "mvni" : "movi";
      shift_op = info.msl ? "msl" : "lsl";
      if (lane_count == 1)
	snprintf (templ, sizeof (templ), "%s\t%%d0, " HOST_WIDE_INT_PRINT_HEX,
		  mnemonic, UINTVAL (info.value));
      else if (info.shift)
	snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, "
		  HOST_WIDE_INT_PRINT_HEX ", %s %d", mnemonic, lane_count,
		  element_char, UINTVAL (info.value), shift_op, info.shift);
      else
	snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, "
		  HOST_WIDE_INT_PRINT_HEX, mnemonic, lane_count,
		  element_char, UINTVAL (info.value));
    }
  else
    {
      /* For AARCH64_CHECK_BIC and AARCH64_CHECK_ORR.  */
      mnemonic = info.mvn ? "bic" : "orr";
      if (info.shift)
	snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, #"
		  HOST_WIDE_INT_PRINT_DEC ", %s #%d", mnemonic, lane_count,
		  element_char, UINTVAL (info.value), "lsl", info.shift);
      else
	snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, #"
		  HOST_WIDE_INT_PRINT_DEC, mnemonic, lane_count,
		  element_char, UINTVAL (info.value));
    }
  return templ;
}

char*
aarch64_output_scalar_simd_mov_immediate (rtx immediate, scalar_int_mode mode)
{

  /* If a floating point number was passed and we desire to use it in an
     integer mode do the conversion to integer.  */
  if (CONST_DOUBLE_P (immediate) && GET_MODE_CLASS (mode) == MODE_INT)
    {
      unsigned HOST_WIDE_INT ival;
      if (!aarch64_reinterpret_float_as_int (immediate, &ival))
	  gcc_unreachable ();
      immediate = gen_int_mode (ival, mode);
    }

  machine_mode vmode;
  /* use a 64 bit mode for everything except for DI/DF mode, where we use
     a 128 bit vector mode.  */
  int width = GET_MODE_BITSIZE (mode) == 64 ? 128 : 64;

  vmode = aarch64_simd_container_mode (mode, width);
  rtx v_op = aarch64_simd_gen_const_vector_dup (vmode, INTVAL (immediate));
  return aarch64_output_simd_mov_immediate (v_op, vmode, width);
}

/* Split operands into moves from op[1] + op[2] into op[0].  */

void
aarch64_split_combinev16qi (rtx operands[3])
{
  unsigned int dest = REGNO (operands[0]);
  unsigned int src1 = REGNO (operands[1]);
  unsigned int src2 = REGNO (operands[2]);
  machine_mode halfmode = GET_MODE (operands[1]);
  unsigned int halfregs = REG_NREGS (operands[1]);
  rtx destlo, desthi;

  gcc_assert (halfmode == V16QImode);

  if (src1 == dest && src2 == dest + halfregs)
    {
      /* No-op move.  Can't split to nothing; emit something.  */
      emit_note (NOTE_INSN_DELETED);
      return;
    }

  /* Preserve register attributes for variable tracking.  */
  destlo = gen_rtx_REG_offset (operands[0], halfmode, dest, 0);
  desthi = gen_rtx_REG_offset (operands[0], halfmode, dest + halfregs,
			       GET_MODE_SIZE (halfmode));

  /* Special case of reversed high/low parts.  */
  if (reg_overlap_mentioned_p (operands[2], destlo)
      && reg_overlap_mentioned_p (operands[1], desthi))
    {
      emit_insn (gen_xorv16qi3 (operands[1], operands[1], operands[2]));
      emit_insn (gen_xorv16qi3 (operands[2], operands[1], operands[2]));
      emit_insn (gen_xorv16qi3 (operands[1], operands[1], operands[2]));
    }
  else if (!reg_overlap_mentioned_p (operands[2], destlo))
    {
      /* Try to avoid unnecessary moves if part of the result
	 is in the right place already.  */
      if (src1 != dest)
	emit_move_insn (destlo, operands[1]);
      if (src2 != dest + halfregs)
	emit_move_insn (desthi, operands[2]);
    }
  else
    {
      if (src2 != dest + halfregs)
	emit_move_insn (desthi, operands[2]);
      if (src1 != dest)
	emit_move_insn (destlo, operands[1]);
    }
}

/* vec_perm support.  */

#define MAX_VECT_LEN 16

struct expand_vec_perm_d
{
  rtx target, op0, op1;
  auto_vec_perm_indices perm;
  machine_mode vmode;
  bool one_vector_p;
  bool testing_p;
};

/* Generate a variable permutation.  */

static void
aarch64_expand_vec_perm_1 (rtx target, rtx op0, rtx op1, rtx sel)
{
  machine_mode vmode = GET_MODE (target);
  bool one_vector_p = rtx_equal_p (op0, op1);

  gcc_checking_assert (vmode == V8QImode || vmode == V16QImode);
  gcc_checking_assert (GET_MODE (op0) == vmode);
  gcc_checking_assert (GET_MODE (op1) == vmode);
  gcc_checking_assert (GET_MODE (sel) == vmode);
  gcc_checking_assert (TARGET_SIMD);

  if (one_vector_p)
    {
      if (vmode == V8QImode)
	{
	  /* Expand the argument to a V16QI mode by duplicating it.  */
	  rtx pair = gen_reg_rtx (V16QImode);
	  emit_insn (gen_aarch64_combinev8qi (pair, op0, op0));
	  emit_insn (gen_aarch64_tbl1v8qi (target, pair, sel));
	}
      else
	{
	  emit_insn (gen_aarch64_tbl1v16qi (target, op0, sel));
	}
    }
  else
    {
      rtx pair;

      if (vmode == V8QImode)
	{
	  pair = gen_reg_rtx (V16QImode);
	  emit_insn (gen_aarch64_combinev8qi (pair, op0, op1));
	  emit_insn (gen_aarch64_tbl1v8qi (target, pair, sel));
	}
      else
	{
	  pair = gen_reg_rtx (OImode);
	  emit_insn (gen_aarch64_combinev16qi (pair, op0, op1));
	  emit_insn (gen_aarch64_tbl2v16qi (target, pair, sel));
	}
    }
}

void
aarch64_expand_vec_perm (rtx target, rtx op0, rtx op1, rtx sel)
{
  machine_mode vmode = GET_MODE (target);
  unsigned int nelt = GET_MODE_NUNITS (vmode);
  bool one_vector_p = rtx_equal_p (op0, op1);
  rtx mask;

  /* The TBL instruction does not use a modulo index, so we must take care
     of that ourselves.  */
  mask = aarch64_simd_gen_const_vector_dup (vmode,
      one_vector_p ? nelt - 1 : 2 * nelt - 1);
  sel = expand_simple_binop (vmode, AND, sel, mask, NULL, 0, OPTAB_LIB_WIDEN);

  /* For big-endian, we also need to reverse the index within the vector
     (but not which vector).  */
  if (BYTES_BIG_ENDIAN)
    {
      /* If one_vector_p, mask is a vector of (nelt - 1)'s already.  */
      if (!one_vector_p)
        mask = aarch64_simd_gen_const_vector_dup (vmode, nelt - 1);
      sel = expand_simple_binop (vmode, XOR, sel, mask,
				 NULL, 0, OPTAB_LIB_WIDEN);
    }
  aarch64_expand_vec_perm_1 (target, op0, op1, sel);
}

/* Recognize patterns suitable for the TRN instructions.  */
static bool
aarch64_evpc_trn (struct expand_vec_perm_d *d)
{
  unsigned int i, odd, mask, nelt = d->perm.length ();
  rtx out, in0, in1, x;
  rtx (*gen) (rtx, rtx, rtx);
  machine_mode vmode = d->vmode;

  if (GET_MODE_UNIT_SIZE (vmode) > 8)
    return false;

  /* Note that these are little-endian tests.
     We correct for big-endian later.  */
  if (d->perm[0] == 0)
    odd = 0;
  else if (d->perm[0] == 1)
    odd = 1;
  else
    return false;
  mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);

  for (i = 0; i < nelt; i += 2)
    {
      if (d->perm[i] != i + odd)
	return false;
      if (d->perm[i + 1] != ((i + nelt + odd) & mask))
	return false;
    }

  /* Success!  */
  if (d->testing_p)
    return true;

  in0 = d->op0;
  in1 = d->op1;
  if (BYTES_BIG_ENDIAN)
    {
      x = in0, in0 = in1, in1 = x;
      odd = !odd;
    }
  out = d->target;

  if (odd)
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_trn2v16qi; break;
	case E_V8QImode: gen = gen_aarch64_trn2v8qi; break;
	case E_V8HImode: gen = gen_aarch64_trn2v8hi; break;
	case E_V4HImode: gen = gen_aarch64_trn2v4hi; break;
	case E_V4SImode: gen = gen_aarch64_trn2v4si; break;
	case E_V2SImode: gen = gen_aarch64_trn2v2si; break;
	case E_V2DImode: gen = gen_aarch64_trn2v2di; break;
	case E_V4HFmode: gen = gen_aarch64_trn2v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_trn2v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_trn2v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_trn2v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_trn2v2df; break;
	default:
	  return false;
	}
    }
  else
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_trn1v16qi; break;
	case E_V8QImode: gen = gen_aarch64_trn1v8qi; break;
	case E_V8HImode: gen = gen_aarch64_trn1v8hi; break;
	case E_V4HImode: gen = gen_aarch64_trn1v4hi; break;
	case E_V4SImode: gen = gen_aarch64_trn1v4si; break;
	case E_V2SImode: gen = gen_aarch64_trn1v2si; break;
	case E_V2DImode: gen = gen_aarch64_trn1v2di; break;
	case E_V4HFmode: gen = gen_aarch64_trn1v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_trn1v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_trn1v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_trn1v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_trn1v2df; break;
	default:
	  return false;
	}
    }

  emit_insn (gen (out, in0, in1));
  return true;
}

/* Recognize patterns suitable for the UZP instructions.  */
static bool
aarch64_evpc_uzp (struct expand_vec_perm_d *d)
{
  unsigned int i, odd, mask, nelt = d->perm.length ();
  rtx out, in0, in1, x;
  rtx (*gen) (rtx, rtx, rtx);
  machine_mode vmode = d->vmode;

  if (GET_MODE_UNIT_SIZE (vmode) > 8)
    return false;

  /* Note that these are little-endian tests.
     We correct for big-endian later.  */
  if (d->perm[0] == 0)
    odd = 0;
  else if (d->perm[0] == 1)
    odd = 1;
  else
    return false;
  mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);

  for (i = 0; i < nelt; i++)
    {
      unsigned elt = (i * 2 + odd) & mask;
      if (d->perm[i] != elt)
	return false;
    }

  /* Success!  */
  if (d->testing_p)
    return true;

  in0 = d->op0;
  in1 = d->op1;
  if (BYTES_BIG_ENDIAN)
    {
      x = in0, in0 = in1, in1 = x;
      odd = !odd;
    }
  out = d->target;

  if (odd)
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_uzp2v16qi; break;
	case E_V8QImode: gen = gen_aarch64_uzp2v8qi; break;
	case E_V8HImode: gen = gen_aarch64_uzp2v8hi; break;
	case E_V4HImode: gen = gen_aarch64_uzp2v4hi; break;
	case E_V4SImode: gen = gen_aarch64_uzp2v4si; break;
	case E_V2SImode: gen = gen_aarch64_uzp2v2si; break;
	case E_V2DImode: gen = gen_aarch64_uzp2v2di; break;
	case E_V4HFmode: gen = gen_aarch64_uzp2v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_uzp2v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_uzp2v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_uzp2v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_uzp2v2df; break;
	default:
	  return false;
	}
    }
  else
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_uzp1v16qi; break;
	case E_V8QImode: gen = gen_aarch64_uzp1v8qi; break;
	case E_V8HImode: gen = gen_aarch64_uzp1v8hi; break;
	case E_V4HImode: gen = gen_aarch64_uzp1v4hi; break;
	case E_V4SImode: gen = gen_aarch64_uzp1v4si; break;
	case E_V2SImode: gen = gen_aarch64_uzp1v2si; break;
	case E_V2DImode: gen = gen_aarch64_uzp1v2di; break;
	case E_V4HFmode: gen = gen_aarch64_uzp1v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_uzp1v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_uzp1v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_uzp1v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_uzp1v2df; break;
	default:
	  return false;
	}
    }

  emit_insn (gen (out, in0, in1));
  return true;
}

/* Recognize patterns suitable for the ZIP instructions.  */
static bool
aarch64_evpc_zip (struct expand_vec_perm_d *d)
{
  unsigned int i, high, mask, nelt = d->perm.length ();
  rtx out, in0, in1, x;
  rtx (*gen) (rtx, rtx, rtx);
  machine_mode vmode = d->vmode;

  if (GET_MODE_UNIT_SIZE (vmode) > 8)
    return false;

  /* Note that these are little-endian tests.
     We correct for big-endian later.  */
  high = nelt / 2;
  if (d->perm[0] == high)
    /* Do Nothing.  */
    ;
  else if (d->perm[0] == 0)
    high = 0;
  else
    return false;
  mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);

  for (i = 0; i < nelt / 2; i++)
    {
      unsigned elt = (i + high) & mask;
      if (d->perm[i * 2] != elt)
	return false;
      elt = (elt + nelt) & mask;
      if (d->perm[i * 2 + 1] != elt)
	return false;
    }

  /* Success!  */
  if (d->testing_p)
    return true;

  in0 = d->op0;
  in1 = d->op1;
  if (BYTES_BIG_ENDIAN)
    {
      x = in0, in0 = in1, in1 = x;
      high = !high;
    }
  out = d->target;

  if (high)
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_zip2v16qi; break;
	case E_V8QImode: gen = gen_aarch64_zip2v8qi; break;
	case E_V8HImode: gen = gen_aarch64_zip2v8hi; break;
	case E_V4HImode: gen = gen_aarch64_zip2v4hi; break;
	case E_V4SImode: gen = gen_aarch64_zip2v4si; break;
	case E_V2SImode: gen = gen_aarch64_zip2v2si; break;
	case E_V2DImode: gen = gen_aarch64_zip2v2di; break;
	case E_V4HFmode: gen = gen_aarch64_zip2v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_zip2v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_zip2v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_zip2v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_zip2v2df; break;
	default:
	  return false;
	}
    }
  else
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_zip1v16qi; break;
	case E_V8QImode: gen = gen_aarch64_zip1v8qi; break;
	case E_V8HImode: gen = gen_aarch64_zip1v8hi; break;
	case E_V4HImode: gen = gen_aarch64_zip1v4hi; break;
	case E_V4SImode: gen = gen_aarch64_zip1v4si; break;
	case E_V2SImode: gen = gen_aarch64_zip1v2si; break;
	case E_V2DImode: gen = gen_aarch64_zip1v2di; break;
	case E_V4HFmode: gen = gen_aarch64_zip1v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_zip1v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_zip1v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_zip1v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_zip1v2df; break;
	default:
	  return false;
	}
    }

  emit_insn (gen (out, in0, in1));
  return true;
}

/* Recognize patterns for the EXT insn.  */

static bool
aarch64_evpc_ext (struct expand_vec_perm_d *d)
{
  unsigned int i, nelt = d->perm.length ();
  rtx (*gen) (rtx, rtx, rtx, rtx);
  rtx offset;

  unsigned int location = d->perm[0]; /* Always < nelt.  */

  /* Check if the extracted indices are increasing by one.  */
  for (i = 1; i < nelt; i++)
    {
      unsigned int required = location + i;
      if (d->one_vector_p)
        {
          /* We'll pass the same vector in twice, so allow indices to wrap.  */
	  required &= (nelt - 1);
	}
      if (d->perm[i] != required)
        return false;
    }

  switch (d->vmode)
    {
    case E_V16QImode: gen = gen_aarch64_extv16qi; break;
    case E_V8QImode: gen = gen_aarch64_extv8qi; break;
    case E_V4HImode: gen = gen_aarch64_extv4hi; break;
    case E_V8HImode: gen = gen_aarch64_extv8hi; break;
    case E_V2SImode: gen = gen_aarch64_extv2si; break;
    case E_V4SImode: gen = gen_aarch64_extv4si; break;
    case E_V4HFmode: gen = gen_aarch64_extv4hf; break;
    case E_V8HFmode: gen = gen_aarch64_extv8hf; break;
    case E_V2SFmode: gen = gen_aarch64_extv2sf; break;
    case E_V4SFmode: gen = gen_aarch64_extv4sf; break;
    case E_V2DImode: gen = gen_aarch64_extv2di; break;
    case E_V2DFmode: gen = gen_aarch64_extv2df; break;
    default:
      return false;
    }

  /* Success! */
  if (d->testing_p)
    return true;

  /* The case where (location == 0) is a no-op for both big- and little-endian,
     and is removed by the mid-end at optimization levels -O1 and higher.  */

  if (BYTES_BIG_ENDIAN && (location != 0))
    {
      /* After setup, we want the high elements of the first vector (stored
         at the LSB end of the register), and the low elements of the second
         vector (stored at the MSB end of the register). So swap.  */
      std::swap (d->op0, d->op1);
      /* location != 0 (above), so safe to assume (nelt - location) < nelt.  */
      location = nelt - location;
    }

  offset = GEN_INT (location);
  emit_insn (gen (d->target, d->op0, d->op1, offset));
  return true;
}

/* Recognize patterns for the REV insns.  */

static bool
aarch64_evpc_rev (struct expand_vec_perm_d *d)
{
  unsigned int i, j, diff, nelt = d->perm.length ();
  rtx (*gen) (rtx, rtx);

  if (!d->one_vector_p)
    return false;

  diff = d->perm[0];
  switch (diff)
    {
    case 7:
      switch (d->vmode)
	{
	case E_V16QImode: gen = gen_aarch64_rev64v16qi; break;
	case E_V8QImode: gen = gen_aarch64_rev64v8qi;  break;
	default:
	  return false;
	}
      break;
    case 3:
      switch (d->vmode)
	{
	case E_V16QImode: gen = gen_aarch64_rev32v16qi; break;
	case E_V8QImode: gen = gen_aarch64_rev32v8qi;  break;
	case E_V8HImode: gen = gen_aarch64_rev64v8hi;  break;
	case E_V4HImode: gen = gen_aarch64_rev64v4hi;  break;
	default:
	  return false;
	}
      break;
    case 1:
      switch (d->vmode)
	{
	case E_V16QImode: gen = gen_aarch64_rev16v16qi; break;
	case E_V8QImode: gen = gen_aarch64_rev16v8qi;  break;
	case E_V8HImode: gen = gen_aarch64_rev32v8hi;  break;
	case E_V4HImode: gen = gen_aarch64_rev32v4hi;  break;
	case E_V4SImode: gen = gen_aarch64_rev64v4si;  break;
	case E_V2SImode: gen = gen_aarch64_rev64v2si;  break;
	case E_V4SFmode: gen = gen_aarch64_rev64v4sf;  break;
	case E_V2SFmode: gen = gen_aarch64_rev64v2sf;  break;
	case E_V8HFmode: gen = gen_aarch64_rev64v8hf;  break;
	case E_V4HFmode: gen = gen_aarch64_rev64v4hf;  break;
	default:
	  return false;
	}
      break;
    default:
      return false;
    }

  for (i = 0; i < nelt ; i += diff + 1)
    for (j = 0; j <= diff; j += 1)
      {
	/* This is guaranteed to be true as the value of diff
	   is 7, 3, 1 and we should have enough elements in the
	   queue to generate this.  Getting a vector mask with a
	   value of diff other than these values implies that
	   something is wrong by the time we get here.  */
	gcc_assert (i + j < nelt);
	if (d->perm[i + j] != i + diff - j)
	  return false;
      }

  /* Success! */
  if (d->testing_p)
    return true;

  emit_insn (gen (d->target, d->op0));
  return true;
}

static bool
aarch64_evpc_dup (struct expand_vec_perm_d *d)
{
  rtx (*gen) (rtx, rtx, rtx);
  rtx out = d->target;
  rtx in0;
  machine_mode vmode = d->vmode;
  unsigned int i, elt, nelt = d->perm.length ();
  rtx lane;

  elt = d->perm[0];
  for (i = 1; i < nelt; i++)
    {
      if (elt != d->perm[i])
	return false;
    }

  /* The generic preparation in aarch64_expand_vec_perm_const_1
     swaps the operand order and the permute indices if it finds
     d->perm[0] to be in the second operand.  Thus, we can always
     use d->op0 and need not do any extra arithmetic to get the
     correct lane number.  */
  in0 = d->op0;
  lane = GEN_INT (elt); /* The pattern corrects for big-endian.  */

  switch (vmode)
    {
    case E_V16QImode: gen = gen_aarch64_dup_lanev16qi; break;
    case E_V8QImode: gen = gen_aarch64_dup_lanev8qi; break;
    case E_V8HImode: gen = gen_aarch64_dup_lanev8hi; break;
    case E_V4HImode: gen = gen_aarch64_dup_lanev4hi; break;
    case E_V4SImode: gen = gen_aarch64_dup_lanev4si; break;
    case E_V2SImode: gen = gen_aarch64_dup_lanev2si; break;
    case E_V2DImode: gen = gen_aarch64_dup_lanev2di; break;
    case E_V8HFmode: gen = gen_aarch64_dup_lanev8hf; break;
    case E_V4HFmode: gen = gen_aarch64_dup_lanev4hf; break;
    case E_V4SFmode: gen = gen_aarch64_dup_lanev4sf; break;
    case E_V2SFmode: gen = gen_aarch64_dup_lanev2sf; break;
    case E_V2DFmode: gen = gen_aarch64_dup_lanev2df; break;
    default:
      return false;
    }

  emit_insn (gen (out, in0, lane));
  return true;
}

static bool
aarch64_evpc_tbl (struct expand_vec_perm_d *d)
{
  rtx rperm[MAX_VECT_LEN], sel;
  machine_mode vmode = d->vmode;
  unsigned int i, nelt = d->perm.length ();

  if (d->testing_p)
    return true;

  /* Generic code will try constant permutation twice.  Once with the
     original mode and again with the elements lowered to QImode.
     So wait and don't do the selector expansion ourselves.  */
  if (vmode != V8QImode && vmode != V16QImode)
    return false;

  for (i = 0; i < nelt; ++i)
    {
      int nunits = GET_MODE_NUNITS (vmode);

      /* If big-endian and two vectors we end up with a weird mixed-endian
	 mode on NEON.  Reverse the index within each word but not the word
	 itself.  */
      rperm[i] = GEN_INT (BYTES_BIG_ENDIAN ? d->perm[i] ^ (nunits - 1)
					   : d->perm[i]);
    }
  sel = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (nelt, rperm));
  sel = force_reg (vmode, sel);

  aarch64_expand_vec_perm_1 (d->target, d->op0, d->op1, sel);
  return true;
}

static bool
aarch64_expand_vec_perm_const_1 (struct expand_vec_perm_d *d)
{
  /* The pattern matching functions above are written to look for a small
     number to begin the sequence (0, 1, N/2).  If we begin with an index
     from the second operand, we can swap the operands.  */
  unsigned int nelt = d->perm.length ();
  if (d->perm[0] >= nelt)
    {
      gcc_assert (nelt == (nelt & -nelt));
      for (unsigned int i = 0; i < nelt; ++i)
	d->perm[i] ^= nelt; /* Keep the same index, but in the other vector.  */

      std::swap (d->op0, d->op1);
    }

  if (TARGET_SIMD)
    {
      if (aarch64_evpc_rev (d))
	return true;
      else if (aarch64_evpc_ext (d))
	return true;
      else if (aarch64_evpc_dup (d))
	return true;
      else if (aarch64_evpc_zip (d))
	return true;
      else if (aarch64_evpc_uzp (d))
	return true;
      else if (aarch64_evpc_trn (d))
	return true;
      return aarch64_evpc_tbl (d);
    }
  return false;
}

/* Expand a vec_perm_const pattern.  */

bool
aarch64_expand_vec_perm_const (rtx target, rtx op0, rtx op1, rtx sel)
{
  struct expand_vec_perm_d d;
  int i, nelt, which;

  d.target = target;
  d.op0 = op0;
  d.op1 = op1;

  d.vmode = GET_MODE (target);
  gcc_assert (VECTOR_MODE_P (d.vmode));
  d.testing_p = false;

  nelt = GET_MODE_NUNITS (d.vmode);
  d.perm.reserve (nelt);
  for (i = which = 0; i < nelt; ++i)
    {
      rtx e = XVECEXP (sel, 0, i);
      int ei = INTVAL (e) & (2 * nelt - 1);
      which |= (ei < nelt ? 1 : 2);
      d.perm.quick_push (ei);
    }

  switch (which)
    {
    default:
      gcc_unreachable ();

    case 3:
      d.one_vector_p = false;
      if (!rtx_equal_p (op0, op1))
	break;

      /* The elements of PERM do not suggest that only the first operand
	 is used, but both operands are identical.  Allow easier matching
	 of the permutation by folding the permutation into the single
	 input vector.  */
      /* Fall Through.  */
    case 2:
      for (i = 0; i < nelt; ++i)
	d.perm[i] &= nelt - 1;
      d.op0 = op1;
      d.one_vector_p = true;
      break;

    case 1:
      d.op1 = op0;
      d.one_vector_p = true;
      break;
    }

  return aarch64_expand_vec_perm_const_1 (&d);
}

static bool
aarch64_vectorize_vec_perm_const_ok (machine_mode vmode, vec_perm_indices sel)
{
  struct expand_vec_perm_d d;
  unsigned int i, nelt, which;
  bool ret;

  d.vmode = vmode;
  d.testing_p = true;
  d.perm.safe_splice (sel);

  /* Calculate whether all elements are in one vector.  */
  nelt = sel.length ();
  for (i = which = 0; i < nelt; ++i)
    {
      unsigned int e = d.perm[i];
      gcc_assert (e < 2 * nelt);
      which |= (e < nelt ? 1 : 2);
    }

  /* If all elements are from the second vector, reindex as if from the
     first vector.  */
  if (which == 2)
    for (i = 0; i < nelt; ++i)
      d.perm[i] -= nelt;

  /* Check whether the mask can be applied to a single vector.  */
  d.one_vector_p = (which != 3);

  d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1);
  d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2);
  if (!d.one_vector_p)
    d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3);

  start_sequence ();
  ret = aarch64_expand_vec_perm_const_1 (&d);
  end_sequence ();

  return ret;
}

rtx
aarch64_reverse_mask (machine_mode mode)
{
  /* We have to reverse each vector because we dont have
     a permuted load that can reverse-load according to ABI rules.  */
  rtx mask;
  rtvec v = rtvec_alloc (16);
  int i, j;
  int nunits = GET_MODE_NUNITS (mode);
  int usize = GET_MODE_UNIT_SIZE (mode);

  gcc_assert (BYTES_BIG_ENDIAN);
  gcc_assert (AARCH64_VALID_SIMD_QREG_MODE (mode));

  for (i = 0; i < nunits; i++)
    for (j = 0; j < usize; j++)
      RTVEC_ELT (v, i * usize + j) = GEN_INT ((i + 1) * usize - 1 - j);
  mask = gen_rtx_CONST_VECTOR (V16QImode, v);
  return force_reg (V16QImode, mask);
}

/* Implement TARGET_MODES_TIEABLE_P.  In principle we should always return
   true.  However due to issues with register allocation it is preferable
   to avoid tieing integer scalar and FP scalar modes.  Executing integer
   operations in general registers is better than treating them as scalar
   vector operations.  This reduces latency and avoids redundant int<->FP
   moves.  So tie modes if they are either the same class, or vector modes
   with other vector modes, vector structs or any scalar mode.  */

static bool
aarch64_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
  if (GET_MODE_CLASS (mode1) == GET_MODE_CLASS (mode2))
    return true;

  /* We specifically want to allow elements of "structure" modes to
     be tieable to the structure.  This more general condition allows
     other rarer situations too.  */
  if (aarch64_vector_mode_p (mode1) && aarch64_vector_mode_p (mode2))
    return true;

  /* Also allow any scalar modes with vectors.  */
  if (aarch64_vector_mode_supported_p (mode1)
      || aarch64_vector_mode_supported_p (mode2))
    return true;

  return false;
}

/* Return a new RTX holding the result of moving POINTER forward by
   AMOUNT bytes.  */

static rtx
aarch64_move_pointer (rtx pointer, int amount)
{
  rtx next = plus_constant (Pmode, XEXP (pointer, 0), amount);

  return adjust_automodify_address (pointer, GET_MODE (pointer),
				    next, amount);
}

/* Return a new RTX holding the result of moving POINTER forward by the
   size of the mode it points to.  */

static rtx
aarch64_progress_pointer (rtx pointer)
{
  HOST_WIDE_INT amount = GET_MODE_SIZE (GET_MODE (pointer));

  return aarch64_move_pointer (pointer, amount);
}

/* Copy one MODE sized block from SRC to DST, then progress SRC and DST by
   MODE bytes.  */

static void
aarch64_copy_one_block_and_progress_pointers (rtx *src, rtx *dst,
					      machine_mode mode)
{
  rtx reg = gen_reg_rtx (mode);

  /* "Cast" the pointers to the correct mode.  */
  *src = adjust_address (*src, mode, 0);
  *dst = adjust_address (*dst, mode, 0);
  /* Emit the memcpy.  */
  emit_move_insn (reg, *src);
  emit_move_insn (*dst, reg);
  /* Move the pointers forward.  */
  *src = aarch64_progress_pointer (*src);
  *dst = aarch64_progress_pointer (*dst);
}

/* Expand movmem, as if from a __builtin_memcpy.  Return true if
   we succeed, otherwise return false.  */

bool
aarch64_expand_movmem (rtx *operands)
{
  unsigned int n;
  rtx dst = operands[0];
  rtx src = operands[1];
  rtx base;
  bool speed_p = !optimize_function_for_size_p (cfun);

  /* When optimizing for size, give a better estimate of the length of a
     memcpy call, but use the default otherwise.  */
  unsigned int max_instructions = (speed_p ? 15 : AARCH64_CALL_RATIO) / 2;

  /* We can't do anything smart if the amount to copy is not constant.  */
  if (!CONST_INT_P (operands[2]))
    return false;

  n = UINTVAL (operands[2]);

  /* Try to keep the number of instructions low.  For cases below 16 bytes we
     need to make at most two moves.  For cases above 16 bytes it will be one
     move for each 16 byte chunk, then at most two additional moves.  */
  if (((n / 16) + (n % 16 ? 2 : 0)) > max_instructions)
    return false;

  base = copy_to_mode_reg (Pmode, XEXP (dst, 0));
  dst = adjust_automodify_address (dst, VOIDmode, base, 0);

  base = copy_to_mode_reg (Pmode, XEXP (src, 0));
  src = adjust_automodify_address (src, VOIDmode, base, 0);

  /* Simple cases.  Copy 0-3 bytes, as (if applicable) a 2-byte, then a
     1-byte chunk.  */
  if (n < 4)
    {
      if (n >= 2)
	{
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, HImode);
	  n -= 2;
	}

      if (n == 1)
	aarch64_copy_one_block_and_progress_pointers (&src, &dst, QImode);

      return true;
    }

  /* Copy 4-8 bytes.  First a 4-byte chunk, then (if applicable) a second
     4-byte chunk, partially overlapping with the previously copied chunk.  */
  if (n < 8)
    {
      aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode);
      n -= 4;
      if (n > 0)
	{
	  int move = n - 4;

	  src = aarch64_move_pointer (src, move);
	  dst = aarch64_move_pointer (dst, move);
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode);
	}
      return true;
    }

  /* Copy more than 8 bytes.  Copy chunks of 16 bytes until we run out of
     them, then (if applicable) an 8-byte chunk.  */
  while (n >= 8)
    {
      if (n / 16)
	{
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, TImode);
	  n -= 16;
	}
      else
	{
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, DImode);
	  n -= 8;
	}
    }

  /* Finish the final bytes of the copy.  We can always do this in one
     instruction.  We either copy the exact amount we need, or partially
     overlap with the previous chunk we copied and copy 8-bytes.  */
  if (n == 0)
    return true;
  else if (n == 1)
    aarch64_copy_one_block_and_progress_pointers (&src, &dst, QImode);
  else if (n == 2)
    aarch64_copy_one_block_and_progress_pointers (&src, &dst, HImode);
  else if (n == 4)
    aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode);
  else
    {
      if (n == 3)
	{
	  src = aarch64_move_pointer (src, -1);
	  dst = aarch64_move_pointer (dst, -1);
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode);
	}
      else
	{
	  int move = n - 8;

	  src = aarch64_move_pointer (src, move);
	  dst = aarch64_move_pointer (dst, move);
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, DImode);
	}
    }

  return true;
}

/* Split a DImode store of a CONST_INT SRC to MEM DST as two
   SImode stores.  Handle the case when the constant has identical
   bottom and top halves.  This is beneficial when the two stores can be
   merged into an STP and we avoid synthesising potentially expensive
   immediates twice.  Return true if such a split is possible.  */

bool
aarch64_split_dimode_const_store (rtx dst, rtx src)
{
  rtx lo = gen_lowpart (SImode, src);
  rtx hi = gen_highpart_mode (SImode, DImode, src);

  bool size_p = optimize_function_for_size_p (cfun);

  if (!rtx_equal_p (lo, hi))
    return false;

  unsigned int orig_cost
    = aarch64_internal_mov_immediate (NULL_RTX, src, false, DImode);
  unsigned int lo_cost
    = aarch64_internal_mov_immediate (NULL_RTX, lo, false, SImode);

  /* We want to transform:
     MOV	x1, 49370
     MOVK	x1, 0x140, lsl 16
     MOVK	x1, 0xc0da, lsl 32
     MOVK	x1, 0x140, lsl 48
     STR	x1, [x0]
   into:
     MOV	w1, 49370
     MOVK	w1, 0x140, lsl 16
     STP	w1, w1, [x0]
   So we want to perform this only when we save two instructions
   or more.  When optimizing for size, however, accept any code size
   savings we can.  */
  if (size_p && orig_cost <= lo_cost)
    return false;

  if (!size_p
      && (orig_cost <= lo_cost + 1))
    return false;

  rtx mem_lo = adjust_address (dst, SImode, 0);
  if (!aarch64_mem_pair_operand (mem_lo, SImode))
    return false;

  rtx tmp_reg = gen_reg_rtx (SImode);
  aarch64_expand_mov_immediate (tmp_reg, lo);
  rtx mem_hi = aarch64_move_pointer (mem_lo, GET_MODE_SIZE (SImode));
  /* Don't emit an explicit store pair as this may not be always profitable.
     Let the sched-fusion logic decide whether to merge them.  */
  emit_move_insn (mem_lo, tmp_reg);
  emit_move_insn (mem_hi, tmp_reg);

  return true;
}

/* Implement the TARGET_ASAN_SHADOW_OFFSET hook.  */

static unsigned HOST_WIDE_INT
aarch64_asan_shadow_offset (void)
{
  return (HOST_WIDE_INT_1 << 36);
}

static bool
aarch64_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size,
					unsigned int align,
					enum by_pieces_operation op,
					bool speed_p)
{
  /* STORE_BY_PIECES can be used when copying a constant string, but
     in that case each 64-bit chunk takes 5 insns instead of 2 (LDR/STR).
     For now we always fail this and let the move_by_pieces code copy
     the string from read-only memory.  */
  if (op == STORE_BY_PIECES)
    return false;

  return default_use_by_pieces_infrastructure_p (size, align, op, speed_p);
}

static rtx
aarch64_gen_ccmp_first (rtx_insn **prep_seq, rtx_insn **gen_seq,
			int code, tree treeop0, tree treeop1)
{
  machine_mode op_mode, cmp_mode, cc_mode = CCmode;
  rtx op0, op1;
  int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0));
  insn_code icode;
  struct expand_operand ops[4];

  start_sequence ();
  expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);

  op_mode = GET_MODE (op0);
  if (op_mode == VOIDmode)
    op_mode = GET_MODE (op1);

  switch (op_mode)
    {
    case E_QImode:
    case E_HImode:
    case E_SImode:
      cmp_mode = SImode;
      icode = CODE_FOR_cmpsi;
      break;

    case E_DImode:
      cmp_mode = DImode;
      icode = CODE_FOR_cmpdi;
      break;

    case E_SFmode:
      cmp_mode = SFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) code, op0, op1);
      icode = cc_mode == CCFPEmode ? CODE_FOR_fcmpesf : CODE_FOR_fcmpsf;
      break;

    case E_DFmode:
      cmp_mode = DFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) code, op0, op1);
      icode = cc_mode == CCFPEmode ? CODE_FOR_fcmpedf : CODE_FOR_fcmpdf;
      break;

    default:
      end_sequence ();
      return NULL_RTX;
    }

  op0 = prepare_operand (icode, op0, 0, op_mode, cmp_mode, unsignedp);
  op1 = prepare_operand (icode, op1, 1, op_mode, cmp_mode, unsignedp);
  if (!op0 || !op1)
    {
      end_sequence ();
      return NULL_RTX;
    }
  *prep_seq = get_insns ();
  end_sequence ();

  create_fixed_operand (&ops[0], op0);
  create_fixed_operand (&ops[1], op1);

  start_sequence ();
  if (!maybe_expand_insn (icode, 2, ops))
    {
      end_sequence ();
      return NULL_RTX;
    }
  *gen_seq = get_insns ();
  end_sequence ();

  return gen_rtx_fmt_ee ((rtx_code) code, cc_mode,
			 gen_rtx_REG (cc_mode, CC_REGNUM), const0_rtx);
}

static rtx
aarch64_gen_ccmp_next (rtx_insn **prep_seq, rtx_insn **gen_seq, rtx prev,
		       int cmp_code, tree treeop0, tree treeop1, int bit_code)
{
  rtx op0, op1, target;
  machine_mode op_mode, cmp_mode, cc_mode = CCmode;
  int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0));
  insn_code icode;
  struct expand_operand ops[6];
  int aarch64_cond;

  push_to_sequence (*prep_seq);
  expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);

  op_mode = GET_MODE (op0);
  if (op_mode == VOIDmode)
    op_mode = GET_MODE (op1);

  switch (op_mode)
    {
    case E_QImode:
    case E_HImode:
    case E_SImode:
      cmp_mode = SImode;
      icode = CODE_FOR_ccmpsi;
      break;

    case E_DImode:
      cmp_mode = DImode;
      icode = CODE_FOR_ccmpdi;
      break;

    case E_SFmode:
      cmp_mode = SFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) cmp_code, op0, op1);
      icode = cc_mode == CCFPEmode ? CODE_FOR_fccmpesf : CODE_FOR_fccmpsf;
      break;

    case E_DFmode:
      cmp_mode = DFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) cmp_code, op0, op1);
      icode = cc_mode == CCFPEmode ? CODE_FOR_fccmpedf : CODE_FOR_fccmpdf;
      break;

    default:
      end_sequence ();
      return NULL_RTX;
    }

  op0 = prepare_operand (icode, op0, 2, op_mode, cmp_mode, unsignedp);
  op1 = prepare_operand (icode, op1, 3, op_mode, cmp_mode, unsignedp);
  if (!op0 || !op1)
    {
      end_sequence ();
      return NULL_RTX;
    }
  *prep_seq = get_insns ();
  end_sequence ();

  target = gen_rtx_REG (cc_mode, CC_REGNUM);
  aarch64_cond = aarch64_get_condition_code_1 (cc_mode, (rtx_code) cmp_code);

  if (bit_code != AND)
    {
      prev = gen_rtx_fmt_ee (REVERSE_CONDITION (GET_CODE (prev),
						GET_MODE (XEXP (prev, 0))),
			     VOIDmode, XEXP (prev, 0), const0_rtx);
      aarch64_cond = AARCH64_INVERSE_CONDITION_CODE (aarch64_cond);
    }

  create_fixed_operand (&ops[0], XEXP (prev, 0));
  create_fixed_operand (&ops[1], target);
  create_fixed_operand (&ops[2], op0);
  create_fixed_operand (&ops[3], op1);
  create_fixed_operand (&ops[4], prev);
  create_fixed_operand (&ops[5], GEN_INT (aarch64_cond));

  push_to_sequence (*gen_seq);
  if (!maybe_expand_insn (icode, 6, ops))
    {
      end_sequence ();
      return NULL_RTX;
    }

  *gen_seq = get_insns ();
  end_sequence ();

  return gen_rtx_fmt_ee ((rtx_code) cmp_code, VOIDmode, target, const0_rtx);
}

#undef TARGET_GEN_CCMP_FIRST
#define TARGET_GEN_CCMP_FIRST aarch64_gen_ccmp_first

#undef TARGET_GEN_CCMP_NEXT
#define TARGET_GEN_CCMP_NEXT aarch64_gen_ccmp_next

/* Implement TARGET_SCHED_MACRO_FUSION_P.  Return true if target supports
   instruction fusion of some sort.  */

static bool
aarch64_macro_fusion_p (void)
{
  return aarch64_tune_params.fusible_ops != AARCH64_FUSE_NOTHING;
}


/* Implement TARGET_SCHED_MACRO_FUSION_PAIR_P.  Return true if PREV and CURR
   should be kept together during scheduling.  */

static bool
aarch_macro_fusion_pair_p (rtx_insn *prev, rtx_insn *curr)
{
  rtx set_dest;
  rtx prev_set = single_set (prev);
  rtx curr_set = single_set (curr);
  /* prev and curr are simple SET insns i.e. no flag setting or branching.  */
  bool simple_sets_p = prev_set && curr_set && !any_condjump_p (curr);

  if (!aarch64_macro_fusion_p ())
    return false;

  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_MOV_MOVK))
    {
      /* We are trying to match:
         prev (mov)  == (set (reg r0) (const_int imm16))
         curr (movk) == (set (zero_extract (reg r0)
                                           (const_int 16)
                                           (const_int 16))
                             (const_int imm16_1))  */

      set_dest = SET_DEST (curr_set);

      if (GET_CODE (set_dest) == ZERO_EXTRACT
          && CONST_INT_P (SET_SRC (curr_set))
          && CONST_INT_P (SET_SRC (prev_set))
          && CONST_INT_P (XEXP (set_dest, 2))
          && INTVAL (XEXP (set_dest, 2)) == 16
          && REG_P (XEXP (set_dest, 0))
          && REG_P (SET_DEST (prev_set))
          && REGNO (XEXP (set_dest, 0)) == REGNO (SET_DEST (prev_set)))
        {
          return true;
        }
    }

  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_ADRP_ADD))
    {

      /*  We're trying to match:
          prev (adrp) == (set (reg r1)
                              (high (symbol_ref ("SYM"))))
          curr (add) == (set (reg r0)
                             (lo_sum (reg r1)
                                     (symbol_ref ("SYM"))))
          Note that r0 need not necessarily be the same as r1, especially
          during pre-regalloc scheduling.  */

      if (satisfies_constraint_Ush (SET_SRC (prev_set))
          && REG_P (SET_DEST (prev_set)) && REG_P (SET_DEST (curr_set)))
        {
          if (GET_CODE (SET_SRC (curr_set)) == LO_SUM
              && REG_P (XEXP (SET_SRC (curr_set), 0))
              && REGNO (XEXP (SET_SRC (curr_set), 0))
                 == REGNO (SET_DEST (prev_set))
              && rtx_equal_p (XEXP (SET_SRC (prev_set), 0),
                              XEXP (SET_SRC (curr_set), 1)))
            return true;
        }
    }

  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_MOVK_MOVK))
    {

      /* We're trying to match:
         prev (movk) == (set (zero_extract (reg r0)
                                           (const_int 16)
                                           (const_int 32))
                             (const_int imm16_1))
         curr (movk) == (set (zero_extract (reg r0)
                                           (const_int 16)
                                           (const_int 48))
                             (const_int imm16_2))  */

      if (GET_CODE (SET_DEST (prev_set)) == ZERO_EXTRACT
          && GET_CODE (SET_DEST (curr_set)) == ZERO_EXTRACT
          && REG_P (XEXP (SET_DEST (prev_set), 0))
          && REG_P (XEXP (SET_DEST (curr_set), 0))
          && REGNO (XEXP (SET_DEST (prev_set), 0))
             == REGNO (XEXP (SET_DEST (curr_set), 0))
          && CONST_INT_P (XEXP (SET_DEST (prev_set), 2))
          && CONST_INT_P (XEXP (SET_DEST (curr_set), 2))
          && INTVAL (XEXP (SET_DEST (prev_set), 2)) == 32
          && INTVAL (XEXP (SET_DEST (curr_set), 2)) == 48
          && CONST_INT_P (SET_SRC (prev_set))
          && CONST_INT_P (SET_SRC (curr_set)))
        return true;

    }
  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_ADRP_LDR))
    {
      /* We're trying to match:
          prev (adrp) == (set (reg r0)
                              (high (symbol_ref ("SYM"))))
          curr (ldr) == (set (reg r1)
                             (mem (lo_sum (reg r0)
                                             (symbol_ref ("SYM")))))
                 or
          curr (ldr) == (set (reg r1)
                             (zero_extend (mem
                                           (lo_sum (reg r0)
                                                   (symbol_ref ("SYM"))))))  */
      if (satisfies_constraint_Ush (SET_SRC (prev_set))
          && REG_P (SET_DEST (prev_set)) && REG_P (SET_DEST (curr_set)))
        {
          rtx curr_src = SET_SRC (curr_set);

          if (GET_CODE (curr_src) == ZERO_EXTEND)
            curr_src = XEXP (curr_src, 0);

          if (MEM_P (curr_src) && GET_CODE (XEXP (curr_src, 0)) == LO_SUM
              && REG_P (XEXP (XEXP (curr_src, 0), 0))
              && REGNO (XEXP (XEXP (curr_src, 0), 0))
                 == REGNO (SET_DEST (prev_set))
              && rtx_equal_p (XEXP (XEXP (curr_src, 0), 1),
                              XEXP (SET_SRC (prev_set), 0)))
              return true;
        }
    }

  if (aarch64_fusion_enabled_p (AARCH64_FUSE_AES_AESMC)
       && aarch_crypto_can_dual_issue (prev, curr))
    return true;

  if (aarch64_fusion_enabled_p (AARCH64_FUSE_CMP_BRANCH)
      && any_condjump_p (curr))
    {
      enum attr_type prev_type = get_attr_type (prev);

      unsigned int condreg1, condreg2;
      rtx cc_reg_1;
      aarch64_fixed_condition_code_regs (&condreg1, &condreg2);
      cc_reg_1 = gen_rtx_REG (CCmode, condreg1);

      if (reg_referenced_p (cc_reg_1, PATTERN (curr))
	  && prev
	  && modified_in_p (cc_reg_1, prev))
	{
	  /* FIXME: this misses some which is considered simple arthematic
	     instructions for ThunderX.  Simple shifts are missed here.  */
	  if (prev_type == TYPE_ALUS_SREG
	      || prev_type == TYPE_ALUS_IMM
	      || prev_type == TYPE_LOGICS_REG
	      || prev_type == TYPE_LOGICS_IMM)
	    return true;
	}
    }

  if (prev_set
      && curr_set
      && aarch64_fusion_enabled_p (AARCH64_FUSE_ALU_BRANCH)
      && any_condjump_p (curr))
    {
      /* We're trying to match:
	  prev (alu_insn) == (set (r0) plus ((r0) (r1/imm)))
	  curr (cbz) ==  (set (pc) (if_then_else (eq/ne) (r0)
							 (const_int 0))
						 (label_ref ("SYM"))
						 (pc))  */
      if (SET_DEST (curr_set) == (pc_rtx)
	  && GET_CODE (SET_SRC (curr_set)) == IF_THEN_ELSE
	  && REG_P (XEXP (XEXP (SET_SRC (curr_set), 0), 0))
	  && REG_P (SET_DEST (prev_set))
	  && REGNO (SET_DEST (prev_set))
	     == REGNO (XEXP (XEXP (SET_SRC (curr_set), 0), 0)))
	{
	  /* Fuse ALU operations followed by conditional branch instruction.  */
	  switch (get_attr_type (prev))
	    {
	    case TYPE_ALU_IMM:
	    case TYPE_ALU_SREG:
	    case TYPE_ADC_REG:
	    case TYPE_ADC_IMM:
	    case TYPE_ADCS_REG:
	    case TYPE_ADCS_IMM:
	    case TYPE_LOGIC_REG:
	    case TYPE_LOGIC_IMM:
	    case TYPE_CSEL:
	    case TYPE_ADR:
	    case TYPE_MOV_IMM:
	    case TYPE_SHIFT_REG:
	    case TYPE_SHIFT_IMM:
	    case TYPE_BFM:
	    case TYPE_RBIT:
	    case TYPE_REV:
	    case TYPE_EXTEND:
	      return true;

	    default:;
	    }
	}
    }

  return false;
}

/* Return true iff the instruction fusion described by OP is enabled.  */

bool
aarch64_fusion_enabled_p (enum aarch64_fusion_pairs op)
{
  return (aarch64_tune_params.fusible_ops & op) != 0;
}

/* If MEM is in the form of [base+offset], extract the two parts
   of address and set to BASE and OFFSET, otherwise return false
   after clearing BASE and OFFSET.  */

bool
extract_base_offset_in_addr (rtx mem, rtx *base, rtx *offset)
{
  rtx addr;

  gcc_assert (MEM_P (mem));

  addr = XEXP (mem, 0);

  if (REG_P (addr))
    {
      *base = addr;
      *offset = const0_rtx;
      return true;
    }

  if (GET_CODE (addr) == PLUS
      && REG_P (XEXP (addr, 0)) && CONST_INT_P (XEXP (addr, 1)))
    {
      *base = XEXP (addr, 0);
      *offset = XEXP (addr, 1);
      return true;
    }

  *base = NULL_RTX;
  *offset = NULL_RTX;

  return false;
}

/* Types for scheduling fusion.  */
enum sched_fusion_type
{
  SCHED_FUSION_NONE = 0,
  SCHED_FUSION_LD_SIGN_EXTEND,
  SCHED_FUSION_LD_ZERO_EXTEND,
  SCHED_FUSION_LD,
  SCHED_FUSION_ST,
  SCHED_FUSION_NUM
};

/* If INSN is a load or store of address in the form of [base+offset],
   extract the two parts and set to BASE and OFFSET.  Return scheduling
   fusion type this INSN is.  */

static enum sched_fusion_type
fusion_load_store (rtx_insn *insn, rtx *base, rtx *offset)
{
  rtx x, dest, src;
  enum sched_fusion_type fusion = SCHED_FUSION_LD;

  gcc_assert (INSN_P (insn));
  x = PATTERN (insn);
  if (GET_CODE (x) != SET)
    return SCHED_FUSION_NONE;

  src = SET_SRC (x);
  dest = SET_DEST (x);

  machine_mode dest_mode = GET_MODE (dest);

  if (!aarch64_mode_valid_for_sched_fusion_p (dest_mode))
    return SCHED_FUSION_NONE;

  if (GET_CODE (src) == SIGN_EXTEND)
    {
      fusion = SCHED_FUSION_LD_SIGN_EXTEND;
      src = XEXP (src, 0);
      if (GET_CODE (src) != MEM || GET_MODE (src) != SImode)
	return SCHED_FUSION_NONE;
    }
  else if (GET_CODE (src) == ZERO_EXTEND)
    {
      fusion = SCHED_FUSION_LD_ZERO_EXTEND;
      src = XEXP (src, 0);
      if (GET_CODE (src) != MEM || GET_MODE (src) != SImode)
	return SCHED_FUSION_NONE;
    }

  if (GET_CODE (src) == MEM && REG_P (dest))
    extract_base_offset_in_addr (src, base, offset);
  else if (GET_CODE (dest) == MEM && (REG_P (src) || src == const0_rtx))
    {
      fusion = SCHED_FUSION_ST;
      extract_base_offset_in_addr (dest, base, offset);
    }
  else
    return SCHED_FUSION_NONE;

  if (*base == NULL_RTX || *offset == NULL_RTX)
    fusion = SCHED_FUSION_NONE;

  return fusion;
}

/* Implement the TARGET_SCHED_FUSION_PRIORITY hook.

   Currently we only support to fuse ldr or str instructions, so FUSION_PRI
   and PRI are only calculated for these instructions.  For other instruction,
   FUSION_PRI and PRI are simply set to MAX_PRI - 1.  In the future, other
   type instruction fusion can be added by returning different priorities.

   It's important that irrelevant instructions get the largest FUSION_PRI.  */

static void
aarch64_sched_fusion_priority (rtx_insn *insn, int max_pri,
			       int *fusion_pri, int *pri)
{
  int tmp, off_val;
  rtx base, offset;
  enum sched_fusion_type fusion;

  gcc_assert (INSN_P (insn));

  tmp = max_pri - 1;
  fusion = fusion_load_store (insn, &base, &offset);
  if (fusion == SCHED_FUSION_NONE)
    {
      *pri = tmp;
      *fusion_pri = tmp;
      return;
    }

  /* Set FUSION_PRI according to fusion type and base register.  */
  *fusion_pri = tmp - fusion * FIRST_PSEUDO_REGISTER - REGNO (base);

  /* Calculate PRI.  */
  tmp /= 2;

  /* INSN with smaller offset goes first.  */
  off_val = (int)(INTVAL (offset));
  if (off_val >= 0)
    tmp -= (off_val & 0xfffff);
  else
    tmp += ((- off_val) & 0xfffff);

  *pri = tmp;
  return;
}

/* Implement the TARGET_SCHED_ADJUST_PRIORITY hook.
   Adjust priority of sha1h instructions so they are scheduled before
   other SHA1 instructions.  */

static int
aarch64_sched_adjust_priority (rtx_insn *insn, int priority)
{
  rtx x = PATTERN (insn);

  if (GET_CODE (x) == SET)
    {
      x = SET_SRC (x);

      if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_SHA1H)
	return priority + 10;
    }

  return priority;
}

/* Given OPERANDS of consecutive load/store, check if we can merge
   them into ldp/stp.  LOAD is true if they are load instructions.
   MODE is the mode of memory operands.  */

bool
aarch64_operands_ok_for_ldpstp (rtx *operands, bool load,
				machine_mode mode)
{
  HOST_WIDE_INT offval_1, offval_2, msize;
  enum reg_class rclass_1, rclass_2;
  rtx mem_1, mem_2, reg_1, reg_2, base_1, base_2, offset_1, offset_2;

  if (load)
    {
      mem_1 = operands[1];
      mem_2 = operands[3];
      reg_1 = operands[0];
      reg_2 = operands[2];
      gcc_assert (REG_P (reg_1) && REG_P (reg_2));
      if (REGNO (reg_1) == REGNO (reg_2))
	return false;
    }
  else
    {
      mem_1 = operands[0];
      mem_2 = operands[2];
      reg_1 = operands[1];
      reg_2 = operands[3];
    }

  /* The mems cannot be volatile.  */
  if (MEM_VOLATILE_P (mem_1) || MEM_VOLATILE_P (mem_2))
    return false;

  /* If we have SImode and slow unaligned ldp,
     check the alignment to be at least 8 byte. */
  if (mode == SImode
      && (aarch64_tune_params.extra_tuning_flags
          & AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW)
      && !optimize_size
      && MEM_ALIGN (mem_1) < 8 * BITS_PER_UNIT)
    return false;

  /* Check if the addresses are in the form of [base+offset].  */
  extract_base_offset_in_addr (mem_1, &base_1, &offset_1);
  if (base_1 == NULL_RTX || offset_1 == NULL_RTX)
    return false;
  extract_base_offset_in_addr (mem_2, &base_2, &offset_2);
  if (base_2 == NULL_RTX || offset_2 == NULL_RTX)
    return false;

  /* Check if the bases are same.  */
  if (!rtx_equal_p (base_1, base_2))
    return false;

  offval_1 = INTVAL (offset_1);
  offval_2 = INTVAL (offset_2);
  msize = GET_MODE_SIZE (mode);
  /* Check if the offsets are consecutive.  */
  if (offval_1 != (offval_2 + msize) && offval_2 != (offval_1 + msize))
    return false;

  /* Check if the addresses are clobbered by load.  */
  if (load)
    {
      if (reg_mentioned_p (reg_1, mem_1))
	return false;

      /* In increasing order, the last load can clobber the address.  */
      if (offval_1 > offval_2 && reg_mentioned_p (reg_2, mem_2))
      return false;
    }

  if (REG_P (reg_1) && FP_REGNUM_P (REGNO (reg_1)))
    rclass_1 = FP_REGS;
  else
    rclass_1 = GENERAL_REGS;

  if (REG_P (reg_2) && FP_REGNUM_P (REGNO (reg_2)))
    rclass_2 = FP_REGS;
  else
    rclass_2 = GENERAL_REGS;

  /* Check if the registers are of same class.  */
  if (rclass_1 != rclass_2)
    return false;

  return true;
}

/* Given OPERANDS of consecutive load/store, check if we can merge
   them into ldp/stp by adjusting the offset.  LOAD is true if they
   are load instructions.  MODE is the mode of memory operands.

   Given below consecutive stores:

     str  w1, [xb, 0x100]
     str  w1, [xb, 0x104]
     str  w1, [xb, 0x108]
     str  w1, [xb, 0x10c]

   Though the offsets are out of the range supported by stp, we can
   still pair them after adjusting the offset, like:

     add  scratch, xb, 0x100
     stp  w1, w1, [scratch]
     stp  w1, w1, [scratch, 0x8]

   The peephole patterns detecting this opportunity should guarantee
   the scratch register is avaliable.  */

bool
aarch64_operands_adjust_ok_for_ldpstp (rtx *operands, bool load,
				       scalar_mode mode)
{
  enum reg_class rclass_1, rclass_2, rclass_3, rclass_4;
  HOST_WIDE_INT offval_1, offval_2, offval_3, offval_4, msize;
  rtx mem_1, mem_2, mem_3, mem_4, reg_1, reg_2, reg_3, reg_4;
  rtx base_1, base_2, base_3, base_4, offset_1, offset_2, offset_3, offset_4;

  if (load)
    {
      reg_1 = operands[0];
      mem_1 = operands[1];
      reg_2 = operands[2];
      mem_2 = operands[3];
      reg_3 = operands[4];
      mem_3 = operands[5];
      reg_4 = operands[6];
      mem_4 = operands[7];
      gcc_assert (REG_P (reg_1) && REG_P (reg_2)
		  && REG_P (reg_3) && REG_P (reg_4));
      if (REGNO (reg_1) == REGNO (reg_2) || REGNO (reg_3) == REGNO (reg_4))
	return false;
    }
  else
    {
      mem_1 = operands[0];
      reg_1 = operands[1];
      mem_2 = operands[2];
      reg_2 = operands[3];
      mem_3 = operands[4];
      reg_3 = operands[5];
      mem_4 = operands[6];
      reg_4 = operands[7];
    }
  /* Skip if memory operand is by itslef valid for ldp/stp.  */
  if (!MEM_P (mem_1) || aarch64_mem_pair_operand (mem_1, mode))
    return false;

  /* The mems cannot be volatile.  */
  if (MEM_VOLATILE_P (mem_1) || MEM_VOLATILE_P (mem_2)
      || MEM_VOLATILE_P (mem_3) ||MEM_VOLATILE_P (mem_4))
    return false;

  /* Check if the addresses are in the form of [base+offset].  */
  extract_base_offset_in_addr (mem_1, &base_1, &offset_1);
  if (base_1 == NULL_RTX || offset_1 == NULL_RTX)
    return false;
  extract_base_offset_in_addr (mem_2, &base_2, &offset_2);
  if (base_2 == NULL_RTX || offset_2 == NULL_RTX)
    return false;
  extract_base_offset_in_addr (mem_3, &base_3, &offset_3);
  if (base_3 == NULL_RTX || offset_3 == NULL_RTX)
    return false;
  extract_base_offset_in_addr (mem_4, &base_4, &offset_4);
  if (base_4 == NULL_RTX || offset_4 == NULL_RTX)
    return false;

  /* Check if the bases are same.  */
  if (!rtx_equal_p (base_1, base_2)
      || !rtx_equal_p (base_2, base_3)
      || !rtx_equal_p (base_3, base_4))
    return false;

  offval_1 = INTVAL (offset_1);
  offval_2 = INTVAL (offset_2);
  offval_3 = INTVAL (offset_3);
  offval_4 = INTVAL (offset_4);
  msize = GET_MODE_SIZE (mode);
  /* Check if the offsets are consecutive.  */
  if ((offval_1 != (offval_2 + msize)
       || offval_1 != (offval_3 + msize * 2)
       || offval_1 != (offval_4 + msize * 3))
      && (offval_4 != (offval_3 + msize)
	  || offval_4 != (offval_2 + msize * 2)
	  || offval_4 != (offval_1 + msize * 3)))
    return false;

  /* Check if the addresses are clobbered by load.  */
  if (load)
    {
      if (reg_mentioned_p (reg_1, mem_1)
	  || reg_mentioned_p (reg_2, mem_2)
	  || reg_mentioned_p (reg_3, mem_3))
	return false;

      /* In increasing order, the last load can clobber the address.  */
      if (offval_1 > offval_2 && reg_mentioned_p (reg_4, mem_4))
	return false;
    }

  /* If we have SImode and slow unaligned ldp,
     check the alignment to be at least 8 byte. */
  if (mode == SImode
      && (aarch64_tune_params.extra_tuning_flags
          & AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW)
      && !optimize_size
      && MEM_ALIGN (mem_1) < 8 * BITS_PER_UNIT)
    return false;

  if (REG_P (reg_1) && FP_REGNUM_P (REGNO (reg_1)))
    rclass_1 = FP_REGS;
  else
    rclass_1 = GENERAL_REGS;

  if (REG_P (reg_2) && FP_REGNUM_P (REGNO (reg_2)))
    rclass_2 = FP_REGS;
  else
    rclass_2 = GENERAL_REGS;

  if (REG_P (reg_3) && FP_REGNUM_P (REGNO (reg_3)))
    rclass_3 = FP_REGS;
  else
    rclass_3 = GENERAL_REGS;

  if (REG_P (reg_4) && FP_REGNUM_P (REGNO (reg_4)))
    rclass_4 = FP_REGS;
  else
    rclass_4 = GENERAL_REGS;

  /* Check if the registers are of same class.  */
  if (rclass_1 != rclass_2 || rclass_2 != rclass_3 || rclass_3 != rclass_4)
    return false;

  return true;
}

/* Given OPERANDS of consecutive load/store, this function pairs them
   into ldp/stp after adjusting the offset.  It depends on the fact
   that addresses of load/store instructions are in increasing order.
   MODE is the mode of memory operands.  CODE is the rtl operator
   which should be applied to all memory operands, it's SIGN_EXTEND,
   ZERO_EXTEND or UNKNOWN.  */

bool
aarch64_gen_adjusted_ldpstp (rtx *operands, bool load,
			     scalar_mode mode, RTX_CODE code)
{
  rtx base, offset, t1, t2;
  rtx mem_1, mem_2, mem_3, mem_4;
  HOST_WIDE_INT off_val, abs_off, adj_off, new_off, stp_off_limit, msize;

  if (load)
    {
      mem_1 = operands[1];
      mem_2 = operands[3];
      mem_3 = operands[5];
      mem_4 = operands[7];
    }
  else
    {
      mem_1 = operands[0];
      mem_2 = operands[2];
      mem_3 = operands[4];
      mem_4 = operands[6];
      gcc_assert (code == UNKNOWN);
    }

  extract_base_offset_in_addr (mem_1, &base, &offset);
  gcc_assert (base != NULL_RTX && offset != NULL_RTX);

  /* Adjust offset thus it can fit in ldp/stp instruction.  */
  msize = GET_MODE_SIZE (mode);
  stp_off_limit = msize * 0x40;
  off_val = INTVAL (offset);
  abs_off = (off_val < 0) ? -off_val : off_val;
  new_off = abs_off % stp_off_limit;
  adj_off = abs_off - new_off;

  /* Further adjust to make sure all offsets are OK.  */
  if ((new_off + msize * 2) >= stp_off_limit)
    {
      adj_off += stp_off_limit;
      new_off -= stp_off_limit;
    }

  /* Make sure the adjustment can be done with ADD/SUB instructions.  */
  if (adj_off >= 0x1000)
    return false;

  if (off_val < 0)
    {
      adj_off = -adj_off;
      new_off = -new_off;
    }

  /* Create new memory references.  */
  mem_1 = change_address (mem_1, VOIDmode,
			  plus_constant (DImode, operands[8], new_off));

  /* Check if the adjusted address is OK for ldp/stp.  */
  if (!aarch64_mem_pair_operand (mem_1, mode))
    return false;

  msize = GET_MODE_SIZE (mode);
  mem_2 = change_address (mem_2, VOIDmode,
			  plus_constant (DImode,
					 operands[8],
					 new_off + msize));
  mem_3 = change_address (mem_3, VOIDmode,
			  plus_constant (DImode,
					 operands[8],
					 new_off + msize * 2));
  mem_4 = change_address (mem_4, VOIDmode,
			  plus_constant (DImode,
					 operands[8],
					 new_off + msize * 3));

  if (code == ZERO_EXTEND)
    {
      mem_1 = gen_rtx_ZERO_EXTEND (DImode, mem_1);
      mem_2 = gen_rtx_ZERO_EXTEND (DImode, mem_2);
      mem_3 = gen_rtx_ZERO_EXTEND (DImode, mem_3);
      mem_4 = gen_rtx_ZERO_EXTEND (DImode, mem_4);
    }
  else if (code == SIGN_EXTEND)
    {
      mem_1 = gen_rtx_SIGN_EXTEND (DImode, mem_1);
      mem_2 = gen_rtx_SIGN_EXTEND (DImode, mem_2);
      mem_3 = gen_rtx_SIGN_EXTEND (DImode, mem_3);
      mem_4 = gen_rtx_SIGN_EXTEND (DImode, mem_4);
    }

  if (load)
    {
      operands[1] = mem_1;
      operands[3] = mem_2;
      operands[5] = mem_3;
      operands[7] = mem_4;
    }
  else
    {
      operands[0] = mem_1;
      operands[2] = mem_2;
      operands[4] = mem_3;
      operands[6] = mem_4;
    }

  /* Emit adjusting instruction.  */
  emit_insn (gen_rtx_SET (operands[8], plus_constant (DImode, base, adj_off)));
  /* Emit ldp/stp instructions.  */
  t1 = gen_rtx_SET (operands[0], operands[1]);
  t2 = gen_rtx_SET (operands[2], operands[3]);
  emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, t1, t2)));
  t1 = gen_rtx_SET (operands[4], operands[5]);
  t2 = gen_rtx_SET (operands[6], operands[7]);
  emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, t1, t2)));
  return true;
}

/* Return 1 if pseudo register should be created and used to hold
   GOT address for PIC code.  */

bool
aarch64_use_pseudo_pic_reg (void)
{
  return aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC;
}

/* Implement TARGET_UNSPEC_MAY_TRAP_P.  */

static int
aarch64_unspec_may_trap_p (const_rtx x, unsigned flags)
{
  switch (XINT (x, 1))
    {
    case UNSPEC_GOTSMALLPIC:
    case UNSPEC_GOTSMALLPIC28K:
    case UNSPEC_GOTTINYPIC:
      return 0;
    default:
      break;
    }

  return default_unspec_may_trap_p (x, flags);
}


/* If X is a positive CONST_DOUBLE with a value that is a power of 2
   return the log2 of that value.  Otherwise return -1.  */

int
aarch64_fpconst_pow_of_2 (rtx x)
{
  const REAL_VALUE_TYPE *r;

  if (!CONST_DOUBLE_P (x))
    return -1;

  r = CONST_DOUBLE_REAL_VALUE (x);

  if (REAL_VALUE_NEGATIVE (*r)
      || REAL_VALUE_ISNAN (*r)
      || REAL_VALUE_ISINF (*r)
      || !real_isinteger (r, DFmode))
    return -1;

  return exact_log2 (real_to_integer (r));
}

/* If X is a vector of equal CONST_DOUBLE values and that value is
   Y, return the aarch64_fpconst_pow_of_2 of Y.  Otherwise return -1.  */

int
aarch64_vec_fpconst_pow_of_2 (rtx x)
{
  if (GET_CODE (x) != CONST_VECTOR)
    return -1;

  if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_FLOAT)
    return -1;

  int firstval = aarch64_fpconst_pow_of_2 (CONST_VECTOR_ELT (x, 0));
  if (firstval <= 0)
    return -1;

  for (int i = 1; i < CONST_VECTOR_NUNITS (x); i++)
    if (aarch64_fpconst_pow_of_2 (CONST_VECTOR_ELT (x, i)) != firstval)
      return -1;

  return firstval;
}

/* Implement TARGET_PROMOTED_TYPE to promote 16-bit floating point types
   to float.

   __fp16 always promotes through this hook.
   _Float16 may promote if TARGET_FLT_EVAL_METHOD is 16, but we do that
   through the generic excess precision logic rather than here.  */

static tree
aarch64_promoted_type (const_tree t)
{
  if (SCALAR_FLOAT_TYPE_P (t)
      && TYPE_MAIN_VARIANT (t) == aarch64_fp16_type_node)
    return float_type_node;

  return NULL_TREE;
}

/* Implement the TARGET_OPTAB_SUPPORTED_P hook.  */

static bool
aarch64_optab_supported_p (int op, machine_mode mode1, machine_mode,
			   optimization_type opt_type)
{
  switch (op)
    {
    case rsqrt_optab:
      return opt_type == OPTIMIZE_FOR_SPEED && use_rsqrt_p (mode1);

    default:
      return true;
    }
}

/* Implement TARGET_LIBGCC_FLOATING_POINT_MODE_SUPPORTED_P - return TRUE
   if MODE is HFmode, and punt to the generic implementation otherwise.  */

static bool
aarch64_libgcc_floating_mode_supported_p (scalar_float_mode mode)
{
  return (mode == HFmode
	  ? true
	  : default_libgcc_floating_mode_supported_p (mode));
}

/* Implement TARGET_SCALAR_MODE_SUPPORTED_P - return TRUE
   if MODE is HFmode, and punt to the generic implementation otherwise.  */

static bool
aarch64_scalar_mode_supported_p (scalar_mode mode)
{
  return (mode == HFmode
	  ? true
	  : default_scalar_mode_supported_p (mode));
}

/* Set the value of FLT_EVAL_METHOD.
   ISO/IEC TS 18661-3 defines two values that we'd like to make use of:

    0: evaluate all operations and constants, whose semantic type has at
       most the range and precision of type float, to the range and
       precision of float; evaluate all other operations and constants to
       the range and precision of the semantic type;

    N, where _FloatN is a supported interchange floating type
       evaluate all operations and constants, whose semantic type has at
       most the range and precision of _FloatN type, to the range and
       precision of the _FloatN type; evaluate all other operations and
       constants to the range and precision of the semantic type;

   If we have the ARMv8.2-A extensions then we support _Float16 in native
   precision, so we should set this to 16.  Otherwise, we support the type,
   but want to evaluate expressions in float precision, so set this to
   0.  */

static enum flt_eval_method
aarch64_excess_precision (enum excess_precision_type type)
{
  switch (type)
    {
      case EXCESS_PRECISION_TYPE_FAST:
      case EXCESS_PRECISION_TYPE_STANDARD:
	/* We can calculate either in 16-bit range and precision or
	   32-bit range and precision.  Make that decision based on whether
	   we have native support for the ARMv8.2-A 16-bit floating-point
	   instructions or not.  */
	return (TARGET_FP_F16INST
		? FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16
		: FLT_EVAL_METHOD_PROMOTE_TO_FLOAT);
      case EXCESS_PRECISION_TYPE_IMPLICIT:
	return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16;
      default:
	gcc_unreachable ();
    }
  return FLT_EVAL_METHOD_UNPREDICTABLE;
}

/* Implement TARGET_SCHED_CAN_SPECULATE_INSN.  Return true if INSN can be
   scheduled for speculative execution.  Reject the long-running division
   and square-root instructions.  */

static bool
aarch64_sched_can_speculate_insn (rtx_insn *insn)
{
  switch (get_attr_type (insn))
    {
      case TYPE_SDIV:
      case TYPE_UDIV:
      case TYPE_FDIVS:
      case TYPE_FDIVD:
      case TYPE_FSQRTS:
      case TYPE_FSQRTD:
      case TYPE_NEON_FP_SQRT_S:
      case TYPE_NEON_FP_SQRT_D:
      case TYPE_NEON_FP_SQRT_S_Q:
      case TYPE_NEON_FP_SQRT_D_Q:
      case TYPE_NEON_FP_DIV_S:
      case TYPE_NEON_FP_DIV_D:
      case TYPE_NEON_FP_DIV_S_Q:
      case TYPE_NEON_FP_DIV_D_Q:
	return false;
      default:
	return true;
    }
}

/* Target-specific selftests.  */

#if CHECKING_P

namespace selftest {

/* Selftest for the RTL loader.
   Verify that the RTL loader copes with a dump from
   print_rtx_function.  This is essentially just a test that class
   function_reader can handle a real dump, but it also verifies
   that lookup_reg_by_dump_name correctly handles hard regs.
   The presence of hard reg names in the dump means that the test is
   target-specific, hence it is in this file.  */

static void
aarch64_test_loading_full_dump ()
{
  rtl_dump_test t (SELFTEST_LOCATION, locate_file ("aarch64/times-two.rtl"));

  ASSERT_STREQ ("times_two", IDENTIFIER_POINTER (DECL_NAME (cfun->decl)));

  rtx_insn *insn_1 = get_insn_by_uid (1);
  ASSERT_EQ (NOTE, GET_CODE (insn_1));

  rtx_insn *insn_15 = get_insn_by_uid (15);
  ASSERT_EQ (INSN, GET_CODE (insn_15));
  ASSERT_EQ (USE, GET_CODE (PATTERN (insn_15)));

  /* Verify crtl->return_rtx.  */
  ASSERT_EQ (REG, GET_CODE (crtl->return_rtx));
  ASSERT_EQ (0, REGNO (crtl->return_rtx));
  ASSERT_EQ (SImode, GET_MODE (crtl->return_rtx));
}

/* Run all target-specific selftests.  */

static void
aarch64_run_selftests (void)
{
  aarch64_test_loading_full_dump ();
}

} // namespace selftest

#endif /* #if CHECKING_P */

#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST aarch64_address_cost

/* This hook will determines whether unnamed bitfields affect the alignment
   of the containing structure.  The hook returns true if the structure
   should inherit the alignment requirements of an unnamed bitfield's
   type.  */
#undef TARGET_ALIGN_ANON_BITFIELD
#define TARGET_ALIGN_ANON_BITFIELD hook_bool_void_true

#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.xword\t"

#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"

#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"

#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK \
  hook_bool_const_tree_hwi_hwi_const_tree_true

#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START aarch64_start_file

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK aarch64_output_mi_thunk

#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION aarch64_select_rtx_section

#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE aarch64_asm_trampoline_template

#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST aarch64_build_builtin_va_list

#undef TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_false

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE aarch64_can_eliminate

#undef TARGET_CAN_INLINE_P
#define TARGET_CAN_INLINE_P aarch64_can_inline_p

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM aarch64_cannot_force_const_mem

#undef TARGET_CASE_VALUES_THRESHOLD
#define TARGET_CASE_VALUES_THRESHOLD aarch64_case_values_threshold

#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE aarch64_conditional_register_usage

/* Only the least significant bit is used for initialization guard
   variables.  */
#undef TARGET_CXX_GUARD_MASK_BIT
#define TARGET_CXX_GUARD_MASK_BIT hook_bool_void_true

#undef TARGET_C_MODE_FOR_SUFFIX
#define TARGET_C_MODE_FOR_SUFFIX aarch64_c_mode_for_suffix

#ifdef TARGET_BIG_ENDIAN_DEFAULT
#undef  TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS (MASK_BIG_END)
#endif

#undef TARGET_CLASS_MAX_NREGS
#define TARGET_CLASS_MAX_NREGS aarch64_class_max_nregs

#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL aarch64_builtin_decl

#undef TARGET_BUILTIN_RECIPROCAL
#define TARGET_BUILTIN_RECIPROCAL aarch64_builtin_reciprocal

#undef TARGET_C_EXCESS_PRECISION
#define TARGET_C_EXCESS_PRECISION aarch64_excess_precision

#undef  TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN aarch64_expand_builtin

#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START aarch64_expand_builtin_va_start

#undef TARGET_FOLD_BUILTIN
#define TARGET_FOLD_BUILTIN aarch64_fold_builtin

#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG aarch64_function_arg

#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE aarch64_function_arg_advance

#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY aarch64_function_arg_boundary

#undef TARGET_FUNCTION_ARG_PADDING
#define TARGET_FUNCTION_ARG_PADDING aarch64_function_arg_padding

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL aarch64_function_ok_for_sibcall

#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE aarch64_function_value

#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P aarch64_function_value_regno_p

#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED aarch64_frame_pointer_required

#undef TARGET_GIMPLE_FOLD_BUILTIN
#define TARGET_GIMPLE_FOLD_BUILTIN aarch64_gimple_fold_builtin

#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR aarch64_gimplify_va_arg_expr

#undef  TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS  aarch64_init_builtins

#undef TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS
#define TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS \
  aarch64_ira_change_pseudo_allocno_class

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P aarch64_legitimate_address_hook_p

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P aarch64_legitimate_constant_p

#undef TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT
#define TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT \
  aarch64_legitimize_address_displacement

#undef TARGET_LIBGCC_CMP_RETURN_MODE
#define TARGET_LIBGCC_CMP_RETURN_MODE aarch64_libgcc_cmp_return_mode

#undef TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P
#define TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P \
aarch64_libgcc_floating_mode_supported_p

#undef TARGET_MANGLE_TYPE
#define TARGET_MANGLE_TYPE aarch64_mangle_type

#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST aarch64_memory_move_cost

#undef TARGET_MIN_DIVISIONS_FOR_RECIP_MUL
#define TARGET_MIN_DIVISIONS_FOR_RECIP_MUL aarch64_min_divisions_for_recip_mul

#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size

/* This target hook should return true if accesses to volatile bitfields
   should use the narrowest mode possible.  It should return false if these
   accesses should use the bitfield container type.  */
#undef TARGET_NARROW_VOLATILE_BITFIELD
#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false

#undef  TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE aarch64_override_options

#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE \
  aarch64_override_options_after_change

#undef TARGET_OPTION_SAVE
#define TARGET_OPTION_SAVE aarch64_option_save

#undef TARGET_OPTION_RESTORE
#define TARGET_OPTION_RESTORE aarch64_option_restore

#undef TARGET_OPTION_PRINT
#define TARGET_OPTION_PRINT aarch64_option_print

#undef TARGET_OPTION_VALID_ATTRIBUTE_P
#define TARGET_OPTION_VALID_ATTRIBUTE_P aarch64_option_valid_attribute_p

#undef TARGET_SET_CURRENT_FUNCTION
#define TARGET_SET_CURRENT_FUNCTION aarch64_set_current_function

#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE aarch64_pass_by_reference

#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS aarch64_preferred_reload_class

#undef TARGET_SCHED_REASSOCIATION_WIDTH
#define TARGET_SCHED_REASSOCIATION_WIDTH aarch64_reassociation_width

#undef TARGET_PROMOTED_TYPE
#define TARGET_PROMOTED_TYPE aarch64_promoted_type

#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD aarch64_secondary_reload

#undef TARGET_SHIFT_TRUNCATION_MASK
#define TARGET_SHIFT_TRUNCATION_MASK aarch64_shift_truncation_mask

#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS aarch64_setup_incoming_varargs

#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX   aarch64_struct_value_rtx

#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST aarch64_register_move_cost

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY aarch64_return_in_memory

#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB aarch64_return_in_msb

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS aarch64_rtx_costs_wrapper

#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P aarch64_scalar_mode_supported_p

#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE aarch64_sched_issue_rate

#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
  aarch64_sched_first_cycle_multipass_dfa_lookahead

#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD \
  aarch64_first_cycle_multipass_dfa_lookahead_guard

#undef TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS
#define TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS \
  aarch64_get_separate_components

#undef TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB
#define TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB \
  aarch64_components_for_bb

#undef TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS
#define TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS \
  aarch64_disqualify_components

#undef TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS
#define TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS \
  aarch64_emit_prologue_components

#undef TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS
#define TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS \
  aarch64_emit_epilogue_components

#undef TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS
#define TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS \
  aarch64_set_handled_components

#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT aarch64_trampoline_init

#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P aarch64_use_blocks_for_constant_p

#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P aarch64_vector_mode_supported_p

#undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
#define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \
  aarch64_builtin_support_vector_misalignment

#undef TARGET_ARRAY_MODE_SUPPORTED_P
#define TARGET_ARRAY_MODE_SUPPORTED_P aarch64_array_mode_supported_p

#undef TARGET_VECTORIZE_ADD_STMT_COST
#define TARGET_VECTORIZE_ADD_STMT_COST aarch64_add_stmt_cost

#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
  aarch64_builtin_vectorization_cost

#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE aarch64_preferred_simd_mode

#undef TARGET_VECTORIZE_BUILTINS
#define TARGET_VECTORIZE_BUILTINS

#undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
#define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \
  aarch64_builtin_vectorized_function

#undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES
#define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES \
  aarch64_autovectorize_vector_sizes

#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV \
  aarch64_atomic_assign_expand_fenv

/* Section anchor support.  */

#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET -256

/* Limit the maximum anchor offset to 4k-1, since that's the limit for a
   byte offset; we can do much more for larger data types, but have no way
   to determine the size of the access.  We assume accesses are aligned.  */
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 4095

#undef TARGET_VECTOR_ALIGNMENT
#define TARGET_VECTOR_ALIGNMENT aarch64_simd_vector_alignment

#undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
#define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE \
  aarch64_simd_vector_alignment_reachable

/* vec_perm support.  */

#undef TARGET_VECTORIZE_VEC_PERM_CONST_OK
#define TARGET_VECTORIZE_VEC_PERM_CONST_OK \
  aarch64_vectorize_vec_perm_const_ok

#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS aarch64_init_libfuncs

#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS aarch64_fixed_condition_code_regs

#undef TARGET_FLAGS_REGNUM
#define TARGET_FLAGS_REGNUM CC_REGNUM

#undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS
#define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true

#undef TARGET_ASAN_SHADOW_OFFSET
#define TARGET_ASAN_SHADOW_OFFSET aarch64_asan_shadow_offset

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS aarch64_legitimize_address

#undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P
#define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P \
  aarch64_use_by_pieces_infrastructure_p

#undef TARGET_SCHED_CAN_SPECULATE_INSN
#define TARGET_SCHED_CAN_SPECULATE_INSN aarch64_sched_can_speculate_insn

#undef TARGET_CAN_USE_DOLOOP_P
#define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost

#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY aarch64_sched_adjust_priority

#undef TARGET_SCHED_MACRO_FUSION_P
#define TARGET_SCHED_MACRO_FUSION_P aarch64_macro_fusion_p

#undef TARGET_SCHED_MACRO_FUSION_PAIR_P
#define TARGET_SCHED_MACRO_FUSION_PAIR_P aarch_macro_fusion_pair_p

#undef TARGET_SCHED_FUSION_PRIORITY
#define TARGET_SCHED_FUSION_PRIORITY aarch64_sched_fusion_priority

#undef TARGET_UNSPEC_MAY_TRAP_P
#define TARGET_UNSPEC_MAY_TRAP_P aarch64_unspec_may_trap_p

#undef TARGET_USE_PSEUDO_PIC_REG
#define TARGET_USE_PSEUDO_PIC_REG aarch64_use_pseudo_pic_reg

#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND aarch64_print_operand

#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS aarch64_print_operand_address

#undef TARGET_OPTAB_SUPPORTED_P
#define TARGET_OPTAB_SUPPORTED_P aarch64_optab_supported_p

#undef TARGET_OMIT_STRUCT_RETURN_REG
#define TARGET_OMIT_STRUCT_RETURN_REG true

/* The architecture reserves bits 0 and 1 so use bit 2 for descriptors.  */
#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 4

#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS aarch64_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK aarch64_hard_regno_mode_ok

#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P aarch64_modes_tieable_p

#undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED
#define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \
  aarch64_hard_regno_call_part_clobbered

#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT aarch64_constant_alignment

#if CHECKING_P
#undef TARGET_RUN_TARGET_SELFTESTS
#define TARGET_RUN_TARGET_SELFTESTS selftest::aarch64_run_selftests
#endif /* #if CHECKING_P */

struct gcc_target targetm = TARGET_INITIALIZER;

#include "gt-aarch64.h"