view gcc/testsuite/gfortran.dg/blas_gemm_routines.f @ 152:2b5abeee2509

update gcc11
author anatofuz
date Mon, 25 May 2020 07:50:57 +0900
parents 84e7813d76e9
children
line wrap: on
line source

! { dg-do compile }
! { dg-options "-std=legacy" }
*> \brief \b CGEMM
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
*       .. Scalar Arguments ..
*       COMPLEX ALPHA,BETA
*       INTEGER K,LDA,LDB,LDC,M,N
*       CHARACTER TRANSA,TRANSB
*       ..
*       .. Array Arguments ..
*       COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGEMM  performs one of the matrix-matrix operations
*>
*>    C := alpha*op( A )*op( B ) + beta*C,
*>
*> where  op( X ) is one of
*>
*>    op( X ) = X   or   op( X ) = X**T   or   op( X ) = X**H,
*>
*> alpha and beta are scalars, and A, B and C are matrices, with op( A )
*> an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANSA
*> \verbatim
*>          TRANSA is CHARACTER*1
*>           On entry, TRANSA specifies the form of op( A ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSA = 'N' or 'n',  op( A ) = A.
*>
*>              TRANSA = 'T' or 't',  op( A ) = A**T.
*>
*>              TRANSA = 'C' or 'c',  op( A ) = A**H.
*> \endverbatim
*>
*> \param[in] TRANSB
*> \verbatim
*>          TRANSB is CHARACTER*1
*>           On entry, TRANSB specifies the form of op( B ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSB = 'N' or 'n',  op( B ) = B.
*>
*>              TRANSB = 'T' or 't',  op( B ) = B**T.
*>
*>              TRANSB = 'C' or 'c',  op( B ) = B**H.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>           On entry,  M  specifies  the number  of rows  of the  matrix
*>           op( A )  and of the  matrix  C.  M  must  be at least  zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry,  N  specifies the number  of columns of the matrix
*>           op( B ) and the number of columns of the matrix C. N must be
*>           at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>           On entry,  K  specifies  the number of columns of the matrix
*>           op( A ) and the number of rows of the matrix op( B ). K must
*>           be at least  zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension ( LDA, ka ), where ka is
*>           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
*>           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
*>           part of the array  A  must contain the matrix  A,  otherwise
*>           the leading  k by m  part of the array  A  must contain  the
*>           matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
*>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*>           least  max( 1, k ).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is COMPLEX array, dimension ( LDB, kb ), where kb is
*>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
*>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
*>           part of the array  B  must contain the matrix  B,  otherwise
*>           the leading  n by k  part of the array  B  must contain  the
*>           matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>           On entry, LDB specifies the first dimension of B as declared
*>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
*>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
*>           least  max( 1, n ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is COMPLEX
*>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*>           supplied as zero then C need not be set on input.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is COMPLEX array, dimension ( LDC, N )
*>           Before entry, the leading  m by n  part of the array  C must
*>           contain the matrix  C,  except when  beta  is zero, in which
*>           case C need not be set on entry.
*>           On exit, the array  C  is overwritten by the  m by n  matrix
*>           ( alpha*op( A )*op( B ) + beta*C ).
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>           On entry, LDC specifies the first dimension of C as declared
*>           in  the  calling  (sub)  program.   LDC  must  be  at  least
*>           max( 1, m ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex_blas_level3
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 3 Blas routine.
*>
*>  -- Written on 8-February-1989.
*>     Jack Dongarra, Argonne National Laboratory.
*>     Iain Duff, AERE Harwell.
*>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*>     Sven Hammarling, Numerical Algorithms Group Ltd.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
*  -- Reference BLAS level3 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      COMPLEX ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,M,N
      CHARACTER TRANSA,TRANSB
*     ..
*     .. Array Arguments ..
      COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
*     ..
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC CONJG,MAX
*     ..
*     .. Local Scalars ..
      COMPLEX TEMP
      INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
      LOGICAL CONJA,CONJB,NOTA,NOTB
*     ..
*     .. Parameters ..
      COMPLEX ONE
      PARAMETER (ONE= (1.0E+0,0.0E+0))
      COMPLEX ZERO
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
*     ..
*
*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
*     conjugated or transposed, set  CONJA and CONJB  as true if  A  and
*     B  respectively are to be  transposed but  not conjugated  and set
*     NROWA, NCOLA and  NROWB  as the number of rows and  columns  of  A
*     and the number of rows of  B  respectively.
*
      NOTA = LSAME(TRANSA,'N')
      NOTB = LSAME(TRANSB,'N')
      CONJA = LSAME(TRANSA,'C')
      CONJB = LSAME(TRANSB,'C')
      IF (NOTA) THEN
          NROWA = M
          NCOLA = K
      ELSE
          NROWA = K
          NCOLA = M
      END IF
      IF (NOTB) THEN
          NROWB = K
      ELSE
          NROWB = N
      END IF
*
*     Test the input parameters.
*
      INFO = 0
      IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
     +    (.NOT.LSAME(TRANSA,'T'))) THEN
          INFO = 1
      ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
     +         (.NOT.LSAME(TRANSB,'T'))) THEN
          INFO = 2
      ELSE IF (M.LT.0) THEN
          INFO = 3
      ELSE IF (N.LT.0) THEN
          INFO = 4
      ELSE IF (K.LT.0) THEN
          INFO = 5
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 8
      ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
          INFO = 10
      ELSE IF (LDC.LT.MAX(1,M)) THEN
          INFO = 13
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('CGEMM ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
     +    (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
*     And when  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          IF (BETA.EQ.ZERO) THEN
              DO 20 J = 1,N
                  DO 10 I = 1,M
                      C(I,J) = ZERO
   10             CONTINUE
   20         CONTINUE
          ELSE
              DO 40 J = 1,N
                  DO 30 I = 1,M
                      C(I,J) = BETA*C(I,J)
   30             CONTINUE
   40         CONTINUE
          END IF
          RETURN
      END IF
*
*     Start the operations.
*
      IF (NOTB) THEN
          IF (NOTA) THEN
*
*           Form  C := alpha*A*B + beta*C.
*
              DO 90 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 50 I = 1,M
                          C(I,J) = ZERO
   50                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 60 I = 1,M
                          C(I,J) = BETA*C(I,J)
   60                 CONTINUE
                  END IF
                  DO 80 L = 1,K
                      TEMP = ALPHA*B(L,J)
                      DO 70 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
   70                 CONTINUE
   80             CONTINUE
   90         CONTINUE
          ELSE IF (CONJA) THEN
*
*           Form  C := alpha*A**H*B + beta*C.
*
              DO 120 J = 1,N
                  DO 110 I = 1,M
                      TEMP = ZERO
                      DO 100 L = 1,K
                          TEMP = TEMP + CONJG(A(L,I))*B(L,J)
  100                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  110             CONTINUE
  120         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B + beta*C
*
              DO 150 J = 1,N
                  DO 140 I = 1,M
                      TEMP = ZERO
                      DO 130 L = 1,K
                          TEMP = TEMP + A(L,I)*B(L,J)
  130                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  140             CONTINUE
  150         CONTINUE
          END IF
      ELSE IF (NOTA) THEN
          IF (CONJB) THEN
*
*           Form  C := alpha*A*B**H + beta*C.
*
              DO 200 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 160 I = 1,M
                          C(I,J) = ZERO
  160                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 170 I = 1,M
                          C(I,J) = BETA*C(I,J)
  170                 CONTINUE
                  END IF
                  DO 190 L = 1,K
                      TEMP = ALPHA*CONJG(B(J,L))
                      DO 180 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
  180                 CONTINUE
  190             CONTINUE
  200         CONTINUE
          ELSE
*
*           Form  C := alpha*A*B**T + beta*C
*
              DO 250 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 210 I = 1,M
                          C(I,J) = ZERO
  210                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 220 I = 1,M
                          C(I,J) = BETA*C(I,J)
  220                 CONTINUE
                  END IF
                  DO 240 L = 1,K
                      TEMP = ALPHA*B(J,L)
                      DO 230 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
  230                 CONTINUE
  240             CONTINUE
  250         CONTINUE
          END IF
      ELSE IF (CONJA) THEN
          IF (CONJB) THEN
*
*           Form  C := alpha*A**H*B**H + beta*C.
*
              DO 280 J = 1,N
                  DO 270 I = 1,M
                      TEMP = ZERO
                      DO 260 L = 1,K
                          TEMP = TEMP + CONJG(A(L,I))*CONJG(B(J,L))
  260                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  270             CONTINUE
  280         CONTINUE
          ELSE
*
*           Form  C := alpha*A**H*B**T + beta*C
*
              DO 310 J = 1,N
                  DO 300 I = 1,M
                      TEMP = ZERO
                      DO 290 L = 1,K
                          TEMP = TEMP + CONJG(A(L,I))*B(J,L)
  290                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  300             CONTINUE
  310         CONTINUE
          END IF
      ELSE
          IF (CONJB) THEN
*
*           Form  C := alpha*A**T*B**H + beta*C
*
              DO 340 J = 1,N
                  DO 330 I = 1,M
                      TEMP = ZERO
                      DO 320 L = 1,K
                          TEMP = TEMP + A(L,I)*CONJG(B(J,L))
  320                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  330             CONTINUE
  340         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B**T + beta*C
*
              DO 370 J = 1,N
                  DO 360 I = 1,M
                      TEMP = ZERO
                      DO 350 L = 1,K
                          TEMP = TEMP + A(L,I)*B(J,L)
  350                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  360             CONTINUE
  370         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of CGEMM .
*
      END

*> \brief \b LSAME
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       LOGICAL FUNCTION LSAME(CA,CB)
*
*       .. Scalar Arguments ..
*       CHARACTER CA,CB
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> LSAME returns .TRUE. if CA is the same letter as CB regardless of
*> case.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] CA
*> \verbatim
*>          CA is CHARACTER*1
*> \endverbatim
*>
*> \param[in] CB
*> \verbatim
*>          CB is CHARACTER*1
*>          CA and CB specify the single characters to be compared.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup aux_blas
*
*  =====================================================================
      LOGICAL FUNCTION LSAME(CA,CB)
*
*  -- Reference BLAS level1 routine (version 3.1) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER CA,CB
*     ..
*
* =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC ICHAR
*     ..
*     .. Local Scalars ..
      INTEGER INTA,INTB,ZCODE
*     ..
*
*     Test if the characters are equal
*
      LSAME = CA .EQ. CB
      IF (LSAME) RETURN
*
*     Now test for equivalence if both characters are alphabetic.
*
      ZCODE = ICHAR('Z')
*
*     Use 'Z' rather than 'A' so that ASCII can be detected on Prime
*     machines, on which ICHAR returns a value with bit 8 set.
*     ICHAR('A') on Prime machines returns 193 which is the same as
*     ICHAR('A') on an EBCDIC machine.
*
      INTA = ICHAR(CA)
      INTB = ICHAR(CB)
*
      IF (ZCODE.EQ.90 .OR. ZCODE.EQ.122) THEN
*
*        ASCII is assumed - ZCODE is the ASCII code of either lower or
*        upper case 'Z'.
*
          IF (INTA.GE.97 .AND. INTA.LE.122) INTA = INTA - 32
          IF (INTB.GE.97 .AND. INTB.LE.122) INTB = INTB - 32
*
      ELSE IF (ZCODE.EQ.233 .OR. ZCODE.EQ.169) THEN
*
*        EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
*        upper case 'Z'.
*
          IF (INTA.GE.129 .AND. INTA.LE.137 .OR.
     +        INTA.GE.145 .AND. INTA.LE.153 .OR.
     +        INTA.GE.162 .AND. INTA.LE.169) INTA = INTA + 64
          IF (INTB.GE.129 .AND. INTB.LE.137 .OR.
     +        INTB.GE.145 .AND. INTB.LE.153 .OR.
     +        INTB.GE.162 .AND. INTB.LE.169) INTB = INTB + 64
*
      ELSE IF (ZCODE.EQ.218 .OR. ZCODE.EQ.250) THEN
*
*        ASCII is assumed, on Prime machines - ZCODE is the ASCII code
*        plus 128 of either lower or upper case 'Z'.
*
          IF (INTA.GE.225 .AND. INTA.LE.250) INTA = INTA - 32
          IF (INTB.GE.225 .AND. INTB.LE.250) INTB = INTB - 32
      END IF
      LSAME = INTA .EQ. INTB
*
*     RETURN
*
*     End of LSAME
*
      END

*> \brief \b XERBLA
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE XERBLA( SRNAME, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER*(*)      SRNAME
*       INTEGER            INFO
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> XERBLA  is an error handler for the LAPACK routines.
*> It is called by an LAPACK routine if an input parameter has an
*> invalid value.  A message is printed and execution stops.
*>
*> Installers may consider modifying the STOP statement in order to
*> call system-specific exception-handling facilities.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SRNAME
*> \verbatim
*>          SRNAME is CHARACTER*(*)
*>          The name of the routine which called XERBLA.
*> \endverbatim
*>
*> \param[in] INFO
*> \verbatim
*>          INFO is INTEGER
*>          The position of the invalid parameter in the parameter list
*>          of the calling routine.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup aux_blas
*
*  =====================================================================
      SUBROUTINE XERBLA( SRNAME, INFO )
*
*  -- Reference BLAS level1 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER*(*)      SRNAME
      INTEGER            INFO
*     ..
*
* =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC          LEN_TRIM
*     ..
*     .. Executable Statements ..
*
      WRITE( *, FMT = 9999 )SRNAME( 1:LEN_TRIM( SRNAME ) ), INFO
*
      STOP
*
 9999 FORMAT( ' ** On entry to ', A, ' parameter number ', I2, ' had ',
     $      'an illegal value' )
*
*     End of XERBLA
*
      END

*> \brief \b SGEMM
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
*       .. Scalar Arguments ..
*       REAL ALPHA,BETA
*       INTEGER K,LDA,LDB,LDC,M,N
*       CHARACTER TRANSA,TRANSB
*       ..
*       .. Array Arguments ..
*       REAL A(LDA,*),B(LDB,*),C(LDC,*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGEMM  performs one of the matrix-matrix operations
*>
*>    C := alpha*op( A )*op( B ) + beta*C,
*>
*> where  op( X ) is one of
*>
*>    op( X ) = X   or   op( X ) = X**T,
*>
*> alpha and beta are scalars, and A, B and C are matrices, with op( A )
*> an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANSA
*> \verbatim
*>          TRANSA is CHARACTER*1
*>           On entry, TRANSA specifies the form of op( A ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSA = 'N' or 'n',  op( A ) = A.
*>
*>              TRANSA = 'T' or 't',  op( A ) = A**T.
*>
*>              TRANSA = 'C' or 'c',  op( A ) = A**T.
*> \endverbatim
*>
*> \param[in] TRANSB
*> \verbatim
*>          TRANSB is CHARACTER*1
*>           On entry, TRANSB specifies the form of op( B ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSB = 'N' or 'n',  op( B ) = B.
*>
*>              TRANSB = 'T' or 't',  op( B ) = B**T.
*>
*>              TRANSB = 'C' or 'c',  op( B ) = B**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>           On entry,  M  specifies  the number  of rows  of the  matrix
*>           op( A )  and of the  matrix  C.  M  must  be at least  zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry,  N  specifies the number  of columns of the matrix
*>           op( B ) and the number of columns of the matrix C. N must be
*>           at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>           On entry,  K  specifies  the number of columns of the matrix
*>           op( A ) and the number of rows of the matrix op( B ). K must
*>           be at least  zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is REAL
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension ( LDA, ka ), where ka is
*>           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
*>           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
*>           part of the array  A  must contain the matrix  A,  otherwise
*>           the leading  k by m  part of the array  A  must contain  the
*>           matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
*>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*>           least  max( 1, k ).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is REAL array, dimension ( LDB, kb ), where kb is
*>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
*>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
*>           part of the array  B  must contain the matrix  B,  otherwise
*>           the leading  n by k  part of the array  B  must contain  the
*>           matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>           On entry, LDB specifies the first dimension of B as declared
*>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
*>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
*>           least  max( 1, n ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is REAL
*>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*>           supplied as zero then C need not be set on input.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is REAL array, dimension ( LDC, N )
*>           Before entry, the leading  m by n  part of the array  C must
*>           contain the matrix  C,  except when  beta  is zero, in which
*>           case C need not be set on entry.
*>           On exit, the array  C  is overwritten by the  m by n  matrix
*>           ( alpha*op( A )*op( B ) + beta*C ).
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>           On entry, LDC specifies the first dimension of C as declared
*>           in  the  calling  (sub)  program.   LDC  must  be  at  least
*>           max( 1, m ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup single_blas_level3
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 3 Blas routine.
*>
*>  -- Written on 8-February-1989.
*>     Jack Dongarra, Argonne National Laboratory.
*>     Iain Duff, AERE Harwell.
*>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*>     Sven Hammarling, Numerical Algorithms Group Ltd.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
*  -- Reference BLAS level3 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      REAL ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,M,N
      CHARACTER TRANSA,TRANSB
*     ..
*     .. Array Arguments ..
      REAL A(LDA,*),B(LDB,*),C(LDC,*)
*     ..
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MAX
*     ..
*     .. Local Scalars ..
      REAL TEMP
      INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
      LOGICAL NOTA,NOTB
*     ..
*     .. Parameters ..
      REAL ONE,ZERO
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
*     ..
*
*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows
*     and  columns of  A  and the  number of  rows  of  B  respectively.
*
      NOTA = LSAME(TRANSA,'N')
      NOTB = LSAME(TRANSB,'N')
      IF (NOTA) THEN
          NROWA = M
          NCOLA = K
      ELSE
          NROWA = K
          NCOLA = M
      END IF
      IF (NOTB) THEN
          NROWB = K
      ELSE
          NROWB = N
      END IF
*
*     Test the input parameters.
*
      INFO = 0
      IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND.
     +    (.NOT.LSAME(TRANSA,'T'))) THEN
          INFO = 1
      ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND.
     +         (.NOT.LSAME(TRANSB,'T'))) THEN
          INFO = 2
      ELSE IF (M.LT.0) THEN
          INFO = 3
      ELSE IF (N.LT.0) THEN
          INFO = 4
      ELSE IF (K.LT.0) THEN
          INFO = 5
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 8
      ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
          INFO = 10
      ELSE IF (LDC.LT.MAX(1,M)) THEN
          INFO = 13
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('SGEMM ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
     +    (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
*     And if  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          IF (BETA.EQ.ZERO) THEN
              DO 20 J = 1,N
                  DO 10 I = 1,M
                      C(I,J) = ZERO
   10             CONTINUE
   20         CONTINUE
          ELSE
              DO 40 J = 1,N
                  DO 30 I = 1,M
                      C(I,J) = BETA*C(I,J)
   30             CONTINUE
   40         CONTINUE
          END IF
          RETURN
      END IF
*
*     Start the operations.
*
      IF (NOTB) THEN
          IF (NOTA) THEN
*
*           Form  C := alpha*A*B + beta*C.
*
              DO 90 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 50 I = 1,M
                          C(I,J) = ZERO
   50                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 60 I = 1,M
                          C(I,J) = BETA*C(I,J)
   60                 CONTINUE
                  END IF
                  DO 80 L = 1,K
                      TEMP = ALPHA*B(L,J)
                      DO 70 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
   70                 CONTINUE
   80             CONTINUE
   90         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B + beta*C
*
              DO 120 J = 1,N
                  DO 110 I = 1,M
                      TEMP = ZERO
                      DO 100 L = 1,K
                          TEMP = TEMP + A(L,I)*B(L,J)
  100                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  110             CONTINUE
  120         CONTINUE
          END IF
      ELSE
          IF (NOTA) THEN
*
*           Form  C := alpha*A*B**T + beta*C
*
              DO 170 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 130 I = 1,M
                          C(I,J) = ZERO
  130                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 140 I = 1,M
                          C(I,J) = BETA*C(I,J)
  140                 CONTINUE
                  END IF
                  DO 160 L = 1,K
                      TEMP = ALPHA*B(J,L)
                      DO 150 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
  150                 CONTINUE
  160             CONTINUE
  170         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B**T + beta*C
*
              DO 200 J = 1,N
                  DO 190 I = 1,M
                      TEMP = ZERO
                      DO 180 L = 1,K
                          TEMP = TEMP + A(L,I)*B(J,L)
  180                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  190             CONTINUE
  200         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of SGEMM .
*
      END

*> \brief \b DGEMM
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
*       .. Scalar Arguments ..
*       DOUBLE PRECISION ALPHA,BETA
*       INTEGER K,LDA,LDB,LDC,M,N
*       CHARACTER TRANSA,TRANSB
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DGEMM  performs one of the matrix-matrix operations
*>
*>    C := alpha*op( A )*op( B ) + beta*C,
*>
*> where  op( X ) is one of
*>
*>    op( X ) = X   or   op( X ) = X**T,
*>
*> alpha and beta are scalars, and A, B and C are matrices, with op( A )
*> an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANSA
*> \verbatim
*>          TRANSA is CHARACTER*1
*>           On entry, TRANSA specifies the form of op( A ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSA = 'N' or 'n',  op( A ) = A.
*>
*>              TRANSA = 'T' or 't',  op( A ) = A**T.
*>
*>              TRANSA = 'C' or 'c',  op( A ) = A**T.
*> \endverbatim
*>
*> \param[in] TRANSB
*> \verbatim
*>          TRANSB is CHARACTER*1
*>           On entry, TRANSB specifies the form of op( B ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSB = 'N' or 'n',  op( B ) = B.
*>
*>              TRANSB = 'T' or 't',  op( B ) = B**T.
*>
*>              TRANSB = 'C' or 'c',  op( B ) = B**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>           On entry,  M  specifies  the number  of rows  of the  matrix
*>           op( A )  and of the  matrix  C.  M  must  be at least  zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry,  N  specifies the number  of columns of the matrix
*>           op( B ) and the number of columns of the matrix C. N must be
*>           at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>           On entry,  K  specifies  the number of columns of the matrix
*>           op( A ) and the number of rows of the matrix op( B ). K must
*>           be at least  zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is DOUBLE PRECISION.
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is
*>           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
*>           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
*>           part of the array  A  must contain the matrix  A,  otherwise
*>           the leading  k by m  part of the array  A  must contain  the
*>           matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
*>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*>           least  max( 1, k ).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension ( LDB, kb ), where kb is
*>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
*>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
*>           part of the array  B  must contain the matrix  B,  otherwise
*>           the leading  n by k  part of the array  B  must contain  the
*>           matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>           On entry, LDB specifies the first dimension of B as declared
*>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
*>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
*>           least  max( 1, n ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is DOUBLE PRECISION.
*>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*>           supplied as zero then C need not be set on input.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is DOUBLE PRECISION array, dimension ( LDC, N )
*>           Before entry, the leading  m by n  part of the array  C must
*>           contain the matrix  C,  except when  beta  is zero, in which
*>           case C need not be set on entry.
*>           On exit, the array  C  is overwritten by the  m by n  matrix
*>           ( alpha*op( A )*op( B ) + beta*C ).
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>           On entry, LDC specifies the first dimension of C as declared
*>           in  the  calling  (sub)  program.   LDC  must  be  at  least
*>           max( 1, m ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup double_blas_level3
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 3 Blas routine.
*>
*>  -- Written on 8-February-1989.
*>     Jack Dongarra, Argonne National Laboratory.
*>     Iain Duff, AERE Harwell.
*>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*>     Sven Hammarling, Numerical Algorithms Group Ltd.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
*  -- Reference BLAS level3 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,M,N
      CHARACTER TRANSA,TRANSB
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
*     ..
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MAX
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION TEMP
      INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
      LOGICAL NOTA,NOTB
*     ..
*     .. Parameters ..
      DOUBLE PRECISION ONE,ZERO
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
*     ..
*
*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows
*     and  columns of  A  and the  number of  rows  of  B  respectively.
*
      NOTA = LSAME(TRANSA,'N')
      NOTB = LSAME(TRANSB,'N')
      IF (NOTA) THEN
          NROWA = M
          NCOLA = K
      ELSE
          NROWA = K
          NCOLA = M
      END IF
      IF (NOTB) THEN
          NROWB = K
      ELSE
          NROWB = N
      END IF
*
*     Test the input parameters.
*
      INFO = 0
      IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND.
     +    (.NOT.LSAME(TRANSA,'T'))) THEN
          INFO = 1
      ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND.
     +         (.NOT.LSAME(TRANSB,'T'))) THEN
          INFO = 2
      ELSE IF (M.LT.0) THEN
          INFO = 3
      ELSE IF (N.LT.0) THEN
          INFO = 4
      ELSE IF (K.LT.0) THEN
          INFO = 5
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 8
      ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
          INFO = 10
      ELSE IF (LDC.LT.MAX(1,M)) THEN
          INFO = 13
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('DGEMM ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
     +    (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
*     And if  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          IF (BETA.EQ.ZERO) THEN
              DO 20 J = 1,N
                  DO 10 I = 1,M
                      C(I,J) = ZERO
   10             CONTINUE
   20         CONTINUE
          ELSE
              DO 40 J = 1,N
                  DO 30 I = 1,M
                      C(I,J) = BETA*C(I,J)
   30             CONTINUE
   40         CONTINUE
          END IF
          RETURN
      END IF
*
*     Start the operations.
*
      IF (NOTB) THEN
          IF (NOTA) THEN
*
*           Form  C := alpha*A*B + beta*C.
*
              DO 90 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 50 I = 1,M
                          C(I,J) = ZERO
   50                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 60 I = 1,M
                          C(I,J) = BETA*C(I,J)
   60                 CONTINUE
                  END IF
                  DO 80 L = 1,K
                      TEMP = ALPHA*B(L,J)
                      DO 70 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
   70                 CONTINUE
   80             CONTINUE
   90         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B + beta*C
*
              DO 120 J = 1,N
                  DO 110 I = 1,M
                      TEMP = ZERO
                      DO 100 L = 1,K
                          TEMP = TEMP + A(L,I)*B(L,J)
  100                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  110             CONTINUE
  120         CONTINUE
          END IF
      ELSE
          IF (NOTA) THEN
*
*           Form  C := alpha*A*B**T + beta*C
*
              DO 170 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 130 I = 1,M
                          C(I,J) = ZERO
  130                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 140 I = 1,M
                          C(I,J) = BETA*C(I,J)
  140                 CONTINUE
                  END IF
                  DO 160 L = 1,K
                      TEMP = ALPHA*B(J,L)
                      DO 150 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
  150                 CONTINUE
  160             CONTINUE
  170         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B**T + beta*C
*
              DO 200 J = 1,N
                  DO 190 I = 1,M
                      TEMP = ZERO
                      DO 180 L = 1,K
                          TEMP = TEMP + A(L,I)*B(J,L)
  180                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  190             CONTINUE
  200         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of DGEMM .
*
      END

*> \brief \b ZGEMM
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
*       .. Scalar Arguments ..
*       COMPLEX*16 ALPHA,BETA
*       INTEGER K,LDA,LDB,LDC,M,N
*       CHARACTER TRANSA,TRANSB
*       ..
*       .. Array Arguments ..
*       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGEMM  performs one of the matrix-matrix operations
*>
*>    C := alpha*op( A )*op( B ) + beta*C,
*>
*> where  op( X ) is one of
*>
*>    op( X ) = X   or   op( X ) = X**T   or   op( X ) = X**H,
*>
*> alpha and beta are scalars, and A, B and C are matrices, with op( A )
*> an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANSA
*> \verbatim
*>          TRANSA is CHARACTER*1
*>           On entry, TRANSA specifies the form of op( A ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSA = 'N' or 'n',  op( A ) = A.
*>
*>              TRANSA = 'T' or 't',  op( A ) = A**T.
*>
*>              TRANSA = 'C' or 'c',  op( A ) = A**H.
*> \endverbatim
*>
*> \param[in] TRANSB
*> \verbatim
*>          TRANSB is CHARACTER*1
*>           On entry, TRANSB specifies the form of op( B ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSB = 'N' or 'n',  op( B ) = B.
*>
*>              TRANSB = 'T' or 't',  op( B ) = B**T.
*>
*>              TRANSB = 'C' or 'c',  op( B ) = B**H.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>           On entry,  M  specifies  the number  of rows  of the  matrix
*>           op( A )  and of the  matrix  C.  M  must  be at least  zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry,  N  specifies the number  of columns of the matrix
*>           op( B ) and the number of columns of the matrix C. N must be
*>           at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>           On entry,  K  specifies  the number of columns of the matrix
*>           op( A ) and the number of rows of the matrix op( B ). K must
*>           be at least  zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX*16
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
*>           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
*>           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
*>           part of the array  A  must contain the matrix  A,  otherwise
*>           the leading  k by m  part of the array  A  must contain  the
*>           matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
*>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*>           least  max( 1, k ).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is
*>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
*>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
*>           part of the array  B  must contain the matrix  B,  otherwise
*>           the leading  n by k  part of the array  B  must contain  the
*>           matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>           On entry, LDB specifies the first dimension of B as declared
*>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
*>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
*>           least  max( 1, n ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is COMPLEX*16
*>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*>           supplied as zero then C need not be set on input.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is COMPLEX*16 array, dimension ( LDC, N )
*>           Before entry, the leading  m by n  part of the array  C must
*>           contain the matrix  C,  except when  beta  is zero, in which
*>           case C need not be set on entry.
*>           On exit, the array  C  is overwritten by the  m by n  matrix
*>           ( alpha*op( A )*op( B ) + beta*C ).
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>           On entry, LDC specifies the first dimension of C as declared
*>           in  the  calling  (sub)  program.   LDC  must  be  at  least
*>           max( 1, m ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16_blas_level3
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 3 Blas routine.
*>
*>  -- Written on 8-February-1989.
*>     Jack Dongarra, Argonne National Laboratory.
*>     Iain Duff, AERE Harwell.
*>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*>     Sven Hammarling, Numerical Algorithms Group Ltd.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
*  -- Reference BLAS level3 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      COMPLEX*16 ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,M,N
      CHARACTER TRANSA,TRANSB
*     ..
*     .. Array Arguments ..
      COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
*     ..
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC DCONJG,MAX
*     ..
*     .. Local Scalars ..
      COMPLEX*16 TEMP
      INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
      LOGICAL CONJA,CONJB,NOTA,NOTB
*     ..
*     .. Parameters ..
      COMPLEX*16 ONE
      PARAMETER (ONE= (1.0D+0,0.0D+0))
      COMPLEX*16 ZERO
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
*     ..
*
*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
*     conjugated or transposed, set  CONJA and CONJB  as true if  A  and
*     B  respectively are to be  transposed but  not conjugated  and set
*     NROWA, NCOLA and  NROWB  as the number of rows and  columns  of  A
*     and the number of rows of  B  respectively.
*
      NOTA = LSAME(TRANSA,'N')
      NOTB = LSAME(TRANSB,'N')
      CONJA = LSAME(TRANSA,'C')
      CONJB = LSAME(TRANSB,'C')
      IF (NOTA) THEN
          NROWA = M
          NCOLA = K
      ELSE
          NROWA = K
          NCOLA = M
      END IF
      IF (NOTB) THEN
          NROWB = K
      ELSE
          NROWB = N
      END IF
*
*     Test the input parameters.
*
      INFO = 0
      IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
     +    (.NOT.LSAME(TRANSA,'T'))) THEN
          INFO = 1
      ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
     +         (.NOT.LSAME(TRANSB,'T'))) THEN
          INFO = 2
      ELSE IF (M.LT.0) THEN
          INFO = 3
      ELSE IF (N.LT.0) THEN
          INFO = 4
      ELSE IF (K.LT.0) THEN
          INFO = 5
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 8
      ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
          INFO = 10
      ELSE IF (LDC.LT.MAX(1,M)) THEN
          INFO = 13
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('ZGEMM ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
     +    (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
*     And when  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          IF (BETA.EQ.ZERO) THEN
              DO 20 J = 1,N
                  DO 10 I = 1,M
                      C(I,J) = ZERO
   10             CONTINUE
   20         CONTINUE
          ELSE
              DO 40 J = 1,N
                  DO 30 I = 1,M
                      C(I,J) = BETA*C(I,J)
   30             CONTINUE
   40         CONTINUE
          END IF
          RETURN
      END IF
*
*     Start the operations.
*
      IF (NOTB) THEN
          IF (NOTA) THEN
*
*           Form  C := alpha*A*B + beta*C.
*
              DO 90 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 50 I = 1,M
                          C(I,J) = ZERO
   50                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 60 I = 1,M
                          C(I,J) = BETA*C(I,J)
   60                 CONTINUE
                  END IF
                  DO 80 L = 1,K
                      TEMP = ALPHA*B(L,J)
                      DO 70 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
   70                 CONTINUE
   80             CONTINUE
   90         CONTINUE
          ELSE IF (CONJA) THEN
*
*           Form  C := alpha*A**H*B + beta*C.
*
              DO 120 J = 1,N
                  DO 110 I = 1,M
                      TEMP = ZERO
                      DO 100 L = 1,K
                          TEMP = TEMP + DCONJG(A(L,I))*B(L,J)
  100                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  110             CONTINUE
  120         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B + beta*C
*
              DO 150 J = 1,N
                  DO 140 I = 1,M
                      TEMP = ZERO
                      DO 130 L = 1,K
                          TEMP = TEMP + A(L,I)*B(L,J)
  130                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  140             CONTINUE
  150         CONTINUE
          END IF
      ELSE IF (NOTA) THEN
          IF (CONJB) THEN
*
*           Form  C := alpha*A*B**H + beta*C.
*
              DO 200 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 160 I = 1,M
                          C(I,J) = ZERO
  160                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 170 I = 1,M
                          C(I,J) = BETA*C(I,J)
  170                 CONTINUE
                  END IF
                  DO 190 L = 1,K
                      TEMP = ALPHA*DCONJG(B(J,L))
                      DO 180 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
  180                 CONTINUE
  190             CONTINUE
  200         CONTINUE
          ELSE
*
*           Form  C := alpha*A*B**T + beta*C
*
              DO 250 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 210 I = 1,M
                          C(I,J) = ZERO
  210                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 220 I = 1,M
                          C(I,J) = BETA*C(I,J)
  220                 CONTINUE
                  END IF
                  DO 240 L = 1,K
                      TEMP = ALPHA*B(J,L)
                      DO 230 I = 1,M
                          C(I,J) = C(I,J) + TEMP*A(I,L)
  230                 CONTINUE
  240             CONTINUE
  250         CONTINUE
          END IF
      ELSE IF (CONJA) THEN
          IF (CONJB) THEN
*
*           Form  C := alpha*A**H*B**H + beta*C.
*
              DO 280 J = 1,N
                  DO 270 I = 1,M
                      TEMP = ZERO
                      DO 260 L = 1,K
                          TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L))
  260                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  270             CONTINUE
  280         CONTINUE
          ELSE
*
*           Form  C := alpha*A**H*B**T + beta*C
*
              DO 310 J = 1,N
                  DO 300 I = 1,M
                      TEMP = ZERO
                      DO 290 L = 1,K
                          TEMP = TEMP + DCONJG(A(L,I))*B(J,L)
  290                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  300             CONTINUE
  310         CONTINUE
          END IF
      ELSE
          IF (CONJB) THEN
*
*           Form  C := alpha*A**T*B**H + beta*C
*
              DO 340 J = 1,N
                  DO 330 I = 1,M
                      TEMP = ZERO
                      DO 320 L = 1,K
                          TEMP = TEMP + A(L,I)*DCONJG(B(J,L))
  320                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  330             CONTINUE
  340         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B**T + beta*C
*
              DO 370 J = 1,N
                  DO 360 I = 1,M
                      TEMP = ZERO
                      DO 350 L = 1,K
                          TEMP = TEMP + A(L,I)*B(J,L)
  350                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  360             CONTINUE
  370         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of ZGEMM .
*
      END