view gcc/doc/invoke.texi @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 855418dad1a3
line wrap: on
line source

@c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
@c 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
@c Free Software Foundation, Inc.
@c This is part of the GCC manual.
@c For copying conditions, see the file gcc.texi.

@ignore
@c man begin INCLUDE
@include gcc-vers.texi
@c man end

@c man begin COPYRIGHT
Copyright @copyright{} 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Funding
Free Software'', the Front-Cover texts being (a) (see below), and with
the Back-Cover Texts being (b) (see below).  A copy of the license is
included in the gfdl(7) man page.

(a) The FSF's Front-Cover Text is:

     A GNU Manual

(b) The FSF's Back-Cover Text is:

     You have freedom to copy and modify this GNU Manual, like GNU
     software.  Copies published by the Free Software Foundation raise
     funds for GNU development.
@c man end
@c Set file name and title for the man page.
@setfilename gcc
@settitle GNU project C and C++ compiler
@c man begin SYNOPSIS
gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
    [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
    [@option{-W}@var{warn}@dots{}] [@option{-pedantic}]
    [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
    [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
    [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
    [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}

Only the most useful options are listed here; see below for the
remainder.  @samp{g++} accepts mostly the same options as @samp{gcc}.
@c man end
@c man begin SEEALSO
gpl(7), gfdl(7), fsf-funding(7),
cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
and the Info entries for @file{gcc}, @file{cpp}, @file{as},
@file{ld}, @file{binutils} and @file{gdb}.
@c man end
@c man begin BUGS
For instructions on reporting bugs, see
@w{@value{BUGURL}}.
@c man end
@c man begin AUTHOR
See the Info entry for @command{gcc}, or
@w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
for contributors to GCC@.
@c man end
@end ignore

@node Invoking GCC
@chapter GCC Command Options
@cindex GCC command options
@cindex command options
@cindex options, GCC command

@c man begin DESCRIPTION
When you invoke GCC, it normally does preprocessing, compilation,
assembly and linking.  The ``overall options'' allow you to stop this
process at an intermediate stage.  For example, the @option{-c} option
says not to run the linker.  Then the output consists of object files
output by the assembler.

Other options are passed on to one stage of processing.  Some options
control the preprocessor and others the compiler itself.  Yet other
options control the assembler and linker; most of these are not
documented here, since you rarely need to use any of them.

@cindex C compilation options
Most of the command line options that you can use with GCC are useful
for C programs; when an option is only useful with another language
(usually C++), the explanation says so explicitly.  If the description
for a particular option does not mention a source language, you can use
that option with all supported languages.

@cindex C++ compilation options
@xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
options for compiling C++ programs.

@cindex grouping options
@cindex options, grouping
The @command{gcc} program accepts options and file names as operands.  Many
options have multi-letter names; therefore multiple single-letter options
may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
-v}}.

@cindex order of options
@cindex options, order
You can mix options and other arguments.  For the most part, the order
you use doesn't matter.  Order does matter when you use several
options of the same kind; for example, if you specify @option{-L} more
than once, the directories are searched in the order specified.  Also,
the placement of the @option{-l} option is significant.

Many options have long names starting with @samp{-f} or with
@samp{-W}---for example,
@option{-fmove-loop-invariants}, @option{-Wformat} and so on.  Most of
these have both positive and negative forms; the negative form of
@option{-ffoo} would be @option{-fno-foo}.  This manual documents
only one of these two forms, whichever one is not the default.

@c man end

@xref{Option Index}, for an index to GCC's options.

@menu
* Option Summary::      Brief list of all options, without explanations.
* Overall Options::     Controlling the kind of output:
                        an executable, object files, assembler files,
                        or preprocessed source.
* Invoking G++::        Compiling C++ programs.
* C Dialect Options::   Controlling the variant of C language compiled.
* C++ Dialect Options:: Variations on C++.
* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
                        and Objective-C++.
* Language Independent Options:: Controlling how diagnostics should be
                        formatted.
* Warning Options::     How picky should the compiler be?
* Debugging Options::   Symbol tables, measurements, and debugging dumps.
* Optimize Options::    How much optimization?
* Preprocessor Options:: Controlling header files and macro definitions.
                         Also, getting dependency information for Make.
* Assembler Options::   Passing options to the assembler.
* Link Options::        Specifying libraries and so on.
* Directory Options::   Where to find header files and libraries.
                        Where to find the compiler executable files.
* Spec Files::          How to pass switches to sub-processes.
* Target Options::      Running a cross-compiler, or an old version of GCC.
* Submodel Options::    Specifying minor hardware or convention variations,
                        such as 68010 vs 68020.
* Code Gen Options::    Specifying conventions for function calls, data layout
                        and register usage.
* Environment Variables:: Env vars that affect GCC.
* Precompiled Headers:: Compiling a header once, and using it many times.
* Running Protoize::    Automatically adding or removing function prototypes.
@end menu

@c man begin OPTIONS

@node Option Summary
@section Option Summary

Here is a summary of all the options, grouped by type.  Explanations are
in the following sections.

@table @emph
@item Overall Options
@xref{Overall Options,,Options Controlling the Kind of Output}.
@gccoptlist{-c  -S  -E  -o @var{file}  -combine  -pipe  -pass-exit-codes  @gol
-x @var{language}  -v  -###  --help@r{[}=@var{class}@r{[},@dots{}@r{]]}  --target-help  @gol
--version -wrapper@@@var{file}}

@item C Language Options
@xref{C Dialect Options,,Options Controlling C Dialect}.
@gccoptlist{-ansi  -std=@var{standard}  -fgnu89-inline @gol
-aux-info @var{filename} @gol
-fno-asm  -fno-builtin  -fno-builtin-@var{function} @gol
-fhosted  -ffreestanding -fopenmp -fms-extensions @gol
-trigraphs  -no-integrated-cpp  -traditional  -traditional-cpp @gol
-fallow-single-precision  -fcond-mismatch -flax-vector-conversions @gol
-fsigned-bitfields  -fsigned-char @gol
-funsigned-bitfields  -funsigned-char}

@item C++ Language Options
@xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
@gccoptlist{-fabi-version=@var{n}  -fno-access-control  -fcheck-new @gol
-fconserve-space  -ffriend-injection @gol
-fno-elide-constructors @gol
-fno-enforce-eh-specs @gol
-ffor-scope  -fno-for-scope  -fno-gnu-keywords @gol
-fno-implicit-templates @gol
-fno-implicit-inline-templates @gol
-fno-implement-inlines  -fms-extensions @gol
-fno-nonansi-builtins  -fno-operator-names @gol
-fno-optional-diags  -fpermissive @gol
-frepo  -fno-rtti  -fstats  -ftemplate-depth-@var{n} @gol
-fno-threadsafe-statics -fuse-cxa-atexit  -fno-weak  -nostdinc++ @gol
-fno-default-inline  -fvisibility-inlines-hidden @gol
-fvisibility-ms-compat @gol
-Wabi  -Wctor-dtor-privacy @gol
-Wnon-virtual-dtor  -Wreorder @gol
-Weffc++  -Wstrict-null-sentinel @gol
-Wno-non-template-friend  -Wold-style-cast @gol
-Woverloaded-virtual  -Wno-pmf-conversions @gol
-Wsign-promo}

@item Objective-C and Objective-C++ Language Options
@xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
Objective-C and Objective-C++ Dialects}.
@gccoptlist{-fconstant-string-class=@var{class-name} @gol
-fgnu-runtime  -fnext-runtime @gol
-fno-nil-receivers @gol
-fobjc-call-cxx-cdtors @gol
-fobjc-direct-dispatch @gol
-fobjc-exceptions @gol
-fobjc-gc @gol
-freplace-objc-classes @gol
-fzero-link @gol
-gen-decls @gol
-Wassign-intercept @gol
-Wno-protocol  -Wselector @gol
-Wstrict-selector-match @gol
-Wundeclared-selector}

@item Language Independent Options
@xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
@gccoptlist{-fmessage-length=@var{n}  @gol
-fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}  @gol
-fdiagnostics-show-option}

@item Warning Options
@xref{Warning Options,,Options to Request or Suppress Warnings}.
@gccoptlist{-fsyntax-only  -pedantic  -pedantic-errors @gol
-w  -Wextra  -Wall  -Waddress  -Waggregate-return  -Warray-bounds @gol
-Wno-attributes -Wno-builtin-macro-redefined @gol
-Wc++-compat -Wc++0x-compat -Wcast-align  -Wcast-qual  @gol
-Wchar-subscripts -Wclobbered  -Wcomment @gol
-Wconversion  -Wcoverage-mismatch  -Wno-deprecated  @gol
-Wno-deprecated-declarations -Wdisabled-optimization  @gol
-Wno-div-by-zero -Wempty-body  -Wenum-compare -Wno-endif-labels @gol
-Werror  -Werror=* @gol
-Wfatal-errors  -Wfloat-equal  -Wformat  -Wformat=2 @gol
-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
-Wformat-security  -Wformat-y2k @gol
-Wframe-larger-than=@var{len} -Wignored-qualifiers @gol
-Wimplicit  -Wimplicit-function-declaration  -Wimplicit-int @gol
-Winit-self  -Winline @gol
-Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
-Winvalid-pch -Wlarger-than=@var{len}  -Wunsafe-loop-optimizations @gol
-Wlogical-op -Wlong-long @gol
-Wmain  -Wmissing-braces  -Wmissing-field-initializers @gol
-Wmissing-format-attribute  -Wmissing-include-dirs @gol
-Wmissing-noreturn  -Wno-mudflap @gol
-Wno-multichar  -Wnonnull  -Wno-overflow @gol
-Woverlength-strings  -Wpacked  -Wpacked-bitfield-compat  -Wpadded @gol
-Wparentheses  -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
-Wpointer-arith  -Wno-pointer-to-int-cast @gol
-Wredundant-decls @gol
-Wreturn-type  -Wsequence-point  -Wshadow @gol
-Wsign-compare  -Wsign-conversion  -Wstack-protector @gol
-Wstrict-aliasing -Wstrict-aliasing=n @gol
-Wstrict-overflow -Wstrict-overflow=@var{n} @gol
-Wswitch  -Wswitch-default  -Wswitch-enum -Wsync-nand @gol
-Wsystem-headers  -Wtrigraphs  -Wtype-limits  -Wundef  -Wuninitialized @gol
-Wunknown-pragmas  -Wno-pragmas -Wunreachable-code @gol
-Wunused  -Wunused-function  -Wunused-label  -Wunused-parameter @gol
-Wunused-value  -Wunused-variable @gol
-Wvariadic-macros -Wvla @gol
-Wvolatile-register-var  -Wwrite-strings}

@item C and Objective-C-only Warning Options
@gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
-Wmissing-parameter-type  -Wmissing-prototypes  -Wnested-externs @gol
-Wold-style-declaration  -Wold-style-definition @gol
-Wstrict-prototypes  -Wtraditional  -Wtraditional-conversion @gol
-Wdeclaration-after-statement -Wpointer-sign}

@item Debugging Options
@xref{Debugging Options,,Options for Debugging Your Program or GCC}.
@gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
-fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
-fdump-noaddr -fdump-unnumbered @gol
-fdump-translation-unit@r{[}-@var{n}@r{]} @gol
-fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
-fdump-statistics @gol
-fdump-tree-all @gol
-fdump-tree-original@r{[}-@var{n}@r{]}  @gol
-fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
-fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias @gol
-fdump-tree-ch @gol
-fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
-fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
-fdump-tree-gimple@r{[}-raw@r{]} -fdump-tree-mudflap@r{[}-@var{n}@r{]} @gol
-fdump-tree-dom@r{[}-@var{n}@r{]} @gol
-fdump-tree-dse@r{[}-@var{n}@r{]} @gol
-fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
-fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
-fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
-fdump-tree-nrv -fdump-tree-vect @gol
-fdump-tree-sink @gol
-fdump-tree-sra@r{[}-@var{n}@r{]} @gol
-fdump-tree-fre@r{[}-@var{n}@r{]} @gol
-fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
-ftree-vectorizer-verbose=@var{n} @gol
-fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
-feliminate-dwarf2-dups -feliminate-unused-debug-types @gol
-feliminate-unused-debug-symbols -femit-class-debug-always @gol
-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
-frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
-ftest-coverage  -ftime-report -fvar-tracking @gol
-g  -g@var{level}  -gcoff -gdwarf-2 @gol
-ggdb  -gstabs  -gstabs+  -gvms  -gxcoff  -gxcoff+ @gol
-fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
-fdebug-prefix-map=@var{old}=@var{new} @gol
-femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
-femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
-p  -pg  -print-file-name=@var{library}  -print-libgcc-file-name @gol
-print-multi-directory  -print-multi-lib @gol
-print-prog-name=@var{program}  -print-search-dirs  -Q @gol
-print-sysroot -print-sysroot-headers-suffix @gol
-save-temps  -time}

@item Optimization Options
@xref{Optimize Options,,Options that Control Optimization}.
@gccoptlist{
-falign-functions[=@var{n}] -falign-jumps[=@var{n}] @gol
-falign-labels[=@var{n}] -falign-loops[=@var{n}] -fassociative-math @gol
-fauto-inc-dec -fbranch-probabilities -fbranch-target-load-optimize @gol
-fbranch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves @gol
-fcheck-data-deps -fconserve-stack -fcprop-registers -fcrossjumping @gol
-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules -fcx-limited-range @gol
-fdata-sections -fdce -fdce @gol
-fdelayed-branch -fdelete-null-pointer-checks -fdse -fdse @gol
-fearly-inlining -fexpensive-optimizations -ffast-math @gol
-ffinite-math-only -ffloat-store -fforward-propagate @gol
-ffunction-sections -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm @gol
-fgcse-sm -fif-conversion -fif-conversion2 -findirect-inlining @gol
-finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
-finline-small-functions -fipa-cp -fipa-cp-clone -fipa-matrix-reorg -fipa-pta @gol 
-fipa-pure-const -fipa-reference -fipa-struct-reorg @gol
-fipa-type-escape -fira-algorithm=@var{algorithm} @gol
-fira-region=@var{region} -fira-coalesce -fno-ira-share-save-slots @gol
-fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
-fivopts -fkeep-inline-functions -fkeep-static-consts @gol
-floop-block -floop-interchange -floop-strip-mine @gol
-fmerge-all-constants -fmerge-constants -fmodulo-sched @gol
-fmodulo-sched-allow-regmoves -fmove-loop-invariants -fmudflap @gol
-fmudflapir -fmudflapth -fno-branch-count-reg -fno-default-inline @gol
-fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
-fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
-fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
-fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls @gol
-fpeel-loops -fpredictive-commoning -fprefetch-loop-arrays @gol
-fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
-fprofile-generate=@var{path} @gol
-fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
-freciprocal-math -fregmove -frename-registers -freorder-blocks @gol
-freorder-blocks-and-partition -freorder-functions @gol
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
-frounding-math -frtl-abstract-sequences -fsched2-use-superblocks @gol
-fsched2-use-traces -fsched-spec-load -fsched-spec-load-dangerous @gol
-fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
-fschedule-insns -fschedule-insns2 -fsection-anchors -fsee @gol
-fselective-scheduling -fselective-scheduling2 @gol
-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
-fsignaling-nans -fsingle-precision-constant -fsplit-ivs-in-unroller @gol
-fsplit-wide-types -fstack-protector -fstack-protector-all @gol
-fstrict-aliasing -fstrict-overflow -fthread-jumps -ftracer @gol
-ftree-builtin-call-dce -ftree-ccp -ftree-ch -ftree-copy-prop @gol
-ftree-copyrename -ftree-dce @gol
-ftree-dominator-opts -ftree-dse -ftree-fre -ftree-loop-im @gol
-ftree-loop-distribution @gol
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
-ftree-parallelize-loops=@var{n} -ftree-pre -ftree-reassoc @gol
-ftree-sink -ftree-sra -ftree-switch-conversion @gol
-ftree-ter -ftree-vect-loop-version -ftree-vectorize -ftree-vrp @gol
-funit-at-a-time -funroll-all-loops -funroll-loops @gol
-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
-fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb @gol
-fwhole-program @gol
--param @var{name}=@var{value}
-O  -O0  -O1  -O2  -O3  -Os}

@item Preprocessor Options
@xref{Preprocessor Options,,Options Controlling the Preprocessor}.
@gccoptlist{-A@var{question}=@var{answer} @gol
-A-@var{question}@r{[}=@var{answer}@r{]} @gol
-C  -dD  -dI  -dM  -dN @gol
-D@var{macro}@r{[}=@var{defn}@r{]}  -E  -H @gol
-idirafter @var{dir} @gol
-include @var{file}  -imacros @var{file} @gol
-iprefix @var{file}  -iwithprefix @var{dir} @gol
-iwithprefixbefore @var{dir}  -isystem @var{dir} @gol
-imultilib @var{dir} -isysroot @var{dir} @gol
-M  -MM  -MF  -MG  -MP  -MQ  -MT  -nostdinc  @gol
-P  -fworking-directory  -remap @gol
-trigraphs  -undef  -U@var{macro}  -Wp,@var{option} @gol
-Xpreprocessor @var{option}}

@item Assembler Option
@xref{Assembler Options,,Passing Options to the Assembler}.
@gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}

@item Linker Options
@xref{Link Options,,Options for Linking}.
@gccoptlist{@var{object-file-name}  -l@var{library} @gol
-nostartfiles  -nodefaultlibs  -nostdlib -pie -rdynamic @gol
-s  -static  -static-libgcc  -shared  -shared-libgcc  -symbolic @gol
-T @var{script}  -Wl,@var{option}  -Xlinker @var{option} @gol
-u @var{symbol}}

@item Directory Options
@xref{Directory Options,,Options for Directory Search}.
@gccoptlist{-B@var{prefix}  -I@var{dir}  -iquote@var{dir}  -L@var{dir}
-specs=@var{file}  -I- --sysroot=@var{dir}}

@item Target Options
@c I wrote this xref this way to avoid overfull hbox. -- rms
@xref{Target Options}.
@gccoptlist{-V @var{version}  -b @var{machine}}

@item Machine Dependent Options
@xref{Submodel Options,,Hardware Models and Configurations}.
@c This list is ordered alphanumerically by subsection name.
@c Try and put the significant identifier (CPU or system) first,
@c so users have a clue at guessing where the ones they want will be.

@emph{ARC Options}
@gccoptlist{-EB  -EL @gol
-mmangle-cpu  -mcpu=@var{cpu}  -mtext=@var{text-section} @gol
-mdata=@var{data-section}  -mrodata=@var{readonly-data-section}}

@emph{ARM Options}
@gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
-mabi=@var{name} @gol
-mapcs-stack-check  -mno-apcs-stack-check @gol
-mapcs-float  -mno-apcs-float @gol
-mapcs-reentrant  -mno-apcs-reentrant @gol
-msched-prolog  -mno-sched-prolog @gol
-mlittle-endian  -mbig-endian  -mwords-little-endian @gol
-mfloat-abi=@var{name}  -msoft-float  -mhard-float  -mfpe @gol
-mthumb-interwork  -mno-thumb-interwork @gol
-mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
-mstructure-size-boundary=@var{n} @gol
-mabort-on-noreturn @gol
-mlong-calls  -mno-long-calls @gol
-msingle-pic-base  -mno-single-pic-base @gol
-mpic-register=@var{reg} @gol
-mnop-fun-dllimport @gol
-mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns @gol
-mpoke-function-name @gol
-mthumb  -marm @gol
-mtpcs-frame  -mtpcs-leaf-frame @gol
-mcaller-super-interworking  -mcallee-super-interworking @gol
-mtp=@var{name} @gol
-mword-relocations @gol
-mfix-cortex-m3-ldrd}

@emph{AVR Options}
@gccoptlist{-mmcu=@var{mcu}  -msize  -minit-stack=@var{n}  -mno-interrupts @gol
-mcall-prologues  -mno-tablejump  -mtiny-stack  -mint8}

@emph{Blackfin Options}
@gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
-msim -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
-mspecld-anomaly  -mno-specld-anomaly  -mcsync-anomaly  -mno-csync-anomaly @gol
-mlow-64k -mno-low64k  -mstack-check-l1  -mid-shared-library @gol
-mno-id-shared-library  -mshared-library-id=@var{n} @gol
-mleaf-id-shared-library  -mno-leaf-id-shared-library @gol
-msep-data  -mno-sep-data  -mlong-calls  -mno-long-calls @gol
-mfast-fp -minline-plt -mmulticore  -mcorea  -mcoreb  -msdram @gol
-micplb}

@emph{CRIS Options}
@gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
-mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
-metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
-mstack-align  -mdata-align  -mconst-align @gol
-m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
-melf  -maout  -melinux  -mlinux  -sim  -sim2 @gol
-mmul-bug-workaround  -mno-mul-bug-workaround}

@emph{CRX Options}
@gccoptlist{-mmac -mpush-args}

@emph{Darwin Options}
@gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
-arch_only  -bind_at_load  -bundle  -bundle_loader @gol
-client_name  -compatibility_version  -current_version @gol
-dead_strip @gol
-dependency-file  -dylib_file  -dylinker_install_name @gol
-dynamic  -dynamiclib  -exported_symbols_list @gol
-filelist  -flat_namespace  -force_cpusubtype_ALL @gol
-force_flat_namespace  -headerpad_max_install_names @gol
-iframework @gol
-image_base  -init  -install_name  -keep_private_externs @gol
-multi_module  -multiply_defined  -multiply_defined_unused @gol
-noall_load   -no_dead_strip_inits_and_terms @gol
-nofixprebinding -nomultidefs  -noprebind  -noseglinkedit @gol
-pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
-private_bundle  -read_only_relocs  -sectalign @gol
-sectobjectsymbols  -whyload  -seg1addr @gol
-sectcreate  -sectobjectsymbols  -sectorder @gol
-segaddr -segs_read_only_addr -segs_read_write_addr @gol
-seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
-segprot  -segs_read_only_addr  -segs_read_write_addr @gol
-single_module  -static  -sub_library  -sub_umbrella @gol
-twolevel_namespace  -umbrella  -undefined @gol
-unexported_symbols_list  -weak_reference_mismatches @gol
-whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
-mkernel -mone-byte-bool}

@emph{DEC Alpha Options}
@gccoptlist{-mno-fp-regs  -msoft-float  -malpha-as  -mgas @gol
-mieee  -mieee-with-inexact  -mieee-conformant @gol
-mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
-mtrap-precision=@var{mode}  -mbuild-constants @gol
-mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
-mbwx  -mmax  -mfix  -mcix @gol
-mfloat-vax  -mfloat-ieee @gol
-mexplicit-relocs  -msmall-data  -mlarge-data @gol
-msmall-text  -mlarge-text @gol
-mmemory-latency=@var{time}}

@emph{DEC Alpha/VMS Options}
@gccoptlist{-mvms-return-codes}

@emph{FR30 Options}
@gccoptlist{-msmall-model -mno-lsim}

@emph{FRV Options}
@gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
-mhard-float  -msoft-float @gol
-malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
-mdouble  -mno-double @gol
-mmedia  -mno-media  -mmuladd  -mno-muladd @gol
-mfdpic  -minline-plt -mgprel-ro  -multilib-library-pic @gol
-mlinked-fp  -mlong-calls  -malign-labels @gol
-mlibrary-pic  -macc-4  -macc-8 @gol
-mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
-moptimize-membar -mno-optimize-membar @gol
-mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
-mvliw-branch  -mno-vliw-branch @gol
-mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
-mno-nested-cond-exec  -mtomcat-stats @gol
-mTLS -mtls @gol
-mcpu=@var{cpu}}

@emph{GNU/Linux Options}
@gccoptlist{-muclibc}

@emph{H8/300 Options}
@gccoptlist{-mrelax  -mh  -ms  -mn  -mint32  -malign-300}

@emph{HPPA Options}
@gccoptlist{-march=@var{architecture-type} @gol
-mbig-switch  -mdisable-fpregs  -mdisable-indexing @gol
-mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
-mfixed-range=@var{register-range} @gol
-mjump-in-delay -mlinker-opt -mlong-calls @gol
-mlong-load-store  -mno-big-switch  -mno-disable-fpregs @gol
-mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
-mno-jump-in-delay  -mno-long-load-store @gol
-mno-portable-runtime  -mno-soft-float @gol
-mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
-mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
-mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
-munix=@var{unix-std}  -nolibdld  -static  -threads}

@emph{i386 and x86-64 Options}
@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
-mfpmath=@var{unit} @gol
-masm=@var{dialect}  -mno-fancy-math-387 @gol
-mno-fp-ret-in-387  -msoft-float @gol
-mno-wide-multiply  -mrtd  -malign-double @gol
-mpreferred-stack-boundary=@var{num}
-mincoming-stack-boundary=@var{num}
-mcld -mcx16 -msahf -mrecip @gol
-mmmx  -msse  -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
-maes -mpclmul @gol
-msse4a -m3dnow -mpopcnt -mabm -msse5 @gol
-mthreads  -mno-align-stringops  -minline-all-stringops @gol
-minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
-mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
-m96bit-long-double  -mregparm=@var{num}  -msseregparm @gol
-mveclibabi=@var{type} -mpc32 -mpc64 -mpc80 -mstackrealign @gol
-momit-leaf-frame-pointer  -mno-red-zone -mno-tls-direct-seg-refs @gol
-mcmodel=@var{code-model} @gol
-m32  -m64 -mlarge-data-threshold=@var{num} @gol
-mfused-madd -mno-fused-madd -msse2avx}

@emph{IA-64 Options}
@gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
-mvolatile-asm-stop  -mregister-names  -mno-sdata @gol
-mconstant-gp  -mauto-pic  -minline-float-divide-min-latency @gol
-minline-float-divide-max-throughput @gol
-minline-int-divide-min-latency @gol
-minline-int-divide-max-throughput  @gol
-minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
-mno-dwarf2-asm -mearly-stop-bits @gol
-mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
-mtune=@var{cpu-type} -mt -pthread -milp32 -mlp64 @gol
-mno-sched-br-data-spec -msched-ar-data-spec -mno-sched-control-spec @gol
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
-msched-ldc -mno-sched-control-ldc -mno-sched-spec-verbose @gol
-mno-sched-prefer-non-data-spec-insns @gol
-mno-sched-prefer-non-control-spec-insns @gol
-mno-sched-count-spec-in-critical-path}

@emph{M32R/D Options}
@gccoptlist{-m32r2 -m32rx -m32r @gol
-mdebug @gol
-malign-loops -mno-align-loops @gol
-missue-rate=@var{number} @gol
-mbranch-cost=@var{number} @gol
-mmodel=@var{code-size-model-type} @gol
-msdata=@var{sdata-type} @gol
-mno-flush-func -mflush-func=@var{name} @gol
-mno-flush-trap -mflush-trap=@var{number} @gol
-G @var{num}}

@emph{M32C Options}
@gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}

@emph{M680x0 Options}
@gccoptlist{-march=@var{arch}  -mcpu=@var{cpu}  -mtune=@var{tune}
-m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
-m68060  -mcpu32  -m5200  -m5206e  -m528x  -m5307  -m5407 @gol
-mcfv4e  -mbitfield  -mno-bitfield  -mc68000  -mc68020 @gol
-mnobitfield  -mrtd  -mno-rtd  -mdiv  -mno-div  -mshort @gol
-mno-short  -mhard-float  -m68881  -msoft-float  -mpcrel @gol
-malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
-mshared-library-id=n  -mid-shared-library  -mno-id-shared-library @gol
-mxgot -mno-xgot}

@emph{M68hc1x Options}
@gccoptlist{-m6811  -m6812  -m68hc11  -m68hc12   -m68hcs12 @gol
-mauto-incdec  -minmax  -mlong-calls  -mshort @gol
-msoft-reg-count=@var{count}}

@emph{MCore Options}
@gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
-mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
-m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
-mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
-mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}

@emph{MIPS Options}
@gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
-mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2 @gol
-mips64  -mips64r2 @gol
-mips16  -mno-mips16  -mflip-mips16 @gol
-minterlink-mips16  -mno-interlink-mips16 @gol
-mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
-mshared  -mno-shared  -mplt  -mno-plt  -mxgot  -mno-xgot @gol
-mgp32  -mgp64  -mfp32  -mfp64  -mhard-float  -msoft-float @gol
-msingle-float  -mdouble-float  -mdsp  -mno-dsp  -mdspr2  -mno-dspr2 @gol
-mfpu=@var{fpu-type} @gol
-msmartmips  -mno-smartmips @gol
-mpaired-single  -mno-paired-single  -mdmx  -mno-mdmx @gol
-mips3d  -mno-mips3d  -mmt  -mno-mt  -mllsc  -mno-llsc @gol
-mlong64  -mlong32  -msym32  -mno-sym32 @gol
-G@var{num}  -mlocal-sdata  -mno-local-sdata @gol
-mextern-sdata  -mno-extern-sdata  -mgpopt  -mno-gopt @gol
-membedded-data  -mno-embedded-data @gol
-muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
-mcode-readable=@var{setting} @gol
-msplit-addresses  -mno-split-addresses @gol
-mexplicit-relocs  -mno-explicit-relocs @gol
-mcheck-zero-division  -mno-check-zero-division @gol
-mdivide-traps  -mdivide-breaks @gol
-mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
-mmad  -mno-mad  -mfused-madd  -mno-fused-madd  -nocpp @gol
-mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
-mfix-r10000 -mno-fix-r10000  -mfix-vr4120  -mno-fix-vr4120 @gol
-mfix-vr4130  -mno-fix-vr4130  -mfix-sb1  -mno-fix-sb1 @gol
-mflush-func=@var{func}  -mno-flush-func @gol
-mbranch-cost=@var{num}  -mbranch-likely  -mno-branch-likely @gol
-mfp-exceptions -mno-fp-exceptions @gol
-mvr4130-align -mno-vr4130-align}

@emph{MMIX Options}
@gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
-mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
-melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
-mno-base-addresses  -msingle-exit  -mno-single-exit}

@emph{MN10300 Options}
@gccoptlist{-mmult-bug  -mno-mult-bug @gol
-mam33  -mno-am33 @gol
-mam33-2  -mno-am33-2 @gol
-mreturn-pointer-on-d0 @gol
-mno-crt0  -mrelax}

@emph{PDP-11 Options}
@gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
-mbcopy  -mbcopy-builtin  -mint32  -mno-int16 @gol
-mint16  -mno-int32  -mfloat32  -mno-float64 @gol
-mfloat64  -mno-float32  -mabshi  -mno-abshi @gol
-mbranch-expensive  -mbranch-cheap @gol
-msplit  -mno-split  -munix-asm  -mdec-asm}

@emph{picoChip Options}
@gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N}
-msymbol-as-address -mno-inefficient-warnings}

@emph{PowerPC Options}
See RS/6000 and PowerPC Options.

@emph{RS/6000 and PowerPC Options}
@gccoptlist{-mcpu=@var{cpu-type} @gol
-mtune=@var{cpu-type} @gol
-mpower  -mno-power  -mpower2  -mno-power2 @gol
-mpowerpc  -mpowerpc64  -mno-powerpc @gol
-maltivec  -mno-altivec @gol
-mpowerpc-gpopt  -mno-powerpc-gpopt @gol
-mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
-mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb  -mfprnd  -mno-fprnd @gol
-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
-mnew-mnemonics  -mold-mnemonics @gol
-mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
-m64  -m32  -mxl-compat  -mno-xl-compat  -mpe @gol
-malign-power  -malign-natural @gol
-msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
-msingle-float -mdouble-float -msimple-fpu @gol
-mstring  -mno-string  -mupdate  -mno-update @gol
-mavoid-indexed-addresses  -mno-avoid-indexed-addresses @gol
-mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
-mstrict-align  -mno-strict-align  -mrelocatable @gol
-mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
-mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
-mdynamic-no-pic  -maltivec  -mswdiv @gol
-mprioritize-restricted-insns=@var{priority} @gol
-msched-costly-dep=@var{dependence_type} @gol
-minsert-sched-nops=@var{scheme} @gol
-mcall-sysv  -mcall-netbsd @gol
-maix-struct-return  -msvr4-struct-return @gol
-mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
-misel -mno-isel @gol
-misel=yes  -misel=no @gol
-mspe -mno-spe @gol
-mspe=yes  -mspe=no @gol
-mpaired @gol
-mgen-cell-microcode -mwarn-cell-microcode @gol
-mvrsave -mno-vrsave @gol
-mmulhw -mno-mulhw @gol
-mdlmzb -mno-dlmzb @gol
-mfloat-gprs=yes  -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
-mprototype  -mno-prototype @gol
-msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
-msdata=@var{opt}  -mvxworks  -G @var{num}  -pthread}

@emph{S/390 and zSeries Options}
@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
-mhard-float  -msoft-float  -mhard-dfp -mno-hard-dfp @gol
-mlong-double-64 -mlong-double-128 @gol
-mbackchain  -mno-backchain -mpacked-stack  -mno-packed-stack @gol
-msmall-exec  -mno-small-exec  -mmvcle -mno-mvcle @gol
-m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
-mtpf-trace -mno-tpf-trace  -mfused-madd  -mno-fused-madd @gol
-mwarn-framesize  -mwarn-dynamicstack  -mstack-size -mstack-guard}

@emph{Score Options}
@gccoptlist{-meb -mel @gol
-mnhwloop @gol
-muls @gol
-mmac @gol
-mscore5 -mscore5u -mscore7 -mscore7d}

@emph{SH Options}
@gccoptlist{-m1  -m2  -m2e  -m3  -m3e @gol
-m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
-m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
-m5-64media  -m5-64media-nofpu @gol
-m5-32media  -m5-32media-nofpu @gol
-m5-compact  -m5-compact-nofpu @gol
-mb  -ml  -mdalign  -mrelax @gol
-mbigtable  -mfmovd  -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
-mieee  -mbitops  -misize  -minline-ic_invalidate -mpadstruct  -mspace @gol
-mprefergot  -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
-mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
-madjust-unroll -mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol
-minvalid-symbols}

@emph{SPARC Options}
@gccoptlist{-mcpu=@var{cpu-type} @gol
-mtune=@var{cpu-type} @gol
-mcmodel=@var{code-model} @gol
-m32  -m64  -mapp-regs  -mno-app-regs @gol
-mfaster-structs  -mno-faster-structs @gol
-mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
-mhard-quad-float  -msoft-quad-float @gol
-mimpure-text  -mno-impure-text  -mlittle-endian @gol
-mstack-bias  -mno-stack-bias @gol
-munaligned-doubles  -mno-unaligned-doubles @gol
-mv8plus  -mno-v8plus  -mvis  -mno-vis
-threads -pthreads -pthread}

@emph{SPU Options}
@gccoptlist{-mwarn-reloc -merror-reloc @gol
-msafe-dma -munsafe-dma @gol
-mbranch-hints @gol
-msmall-mem -mlarge-mem -mstdmain @gol
-mfixed-range=@var{register-range}}

@emph{System V Options}
@gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}

@emph{V850 Options}
@gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
-mprolog-function  -mno-prolog-function  -mspace @gol
-mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
-mapp-regs  -mno-app-regs @gol
-mdisable-callt  -mno-disable-callt @gol
-mv850e1 @gol
-mv850e @gol
-mv850  -mbig-switch}

@emph{VAX Options}
@gccoptlist{-mg  -mgnu  -munix}

@emph{VxWorks Options}
@gccoptlist{-mrtp  -non-static  -Bstatic  -Bdynamic @gol
-Xbind-lazy  -Xbind-now}

@emph{x86-64 Options}
See i386 and x86-64 Options.

@emph{i386 and x86-64 Windows Options}
@gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll
-mnop-fun-dllimport -mthread -mwin32 -mwindows}

@emph{Xstormy16 Options}
@gccoptlist{-msim}

@emph{Xtensa Options}
@gccoptlist{-mconst16 -mno-const16 @gol
-mfused-madd  -mno-fused-madd @gol
-mserialize-volatile  -mno-serialize-volatile @gol
-mtext-section-literals  -mno-text-section-literals @gol
-mtarget-align  -mno-target-align @gol
-mlongcalls  -mno-longcalls}

@emph{zSeries Options}
See S/390 and zSeries Options.

@item Code Generation Options
@xref{Code Gen Options,,Options for Code Generation Conventions}.
@gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
-ffixed-@var{reg}  -fexceptions @gol
-fnon-call-exceptions  -funwind-tables @gol
-fasynchronous-unwind-tables @gol
-finhibit-size-directive  -finstrument-functions @gol
-finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
-finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
-fno-common  -fno-ident @gol
-fpcc-struct-return  -fpic  -fPIC -fpie -fPIE @gol
-fno-jump-tables @gol
-frecord-gcc-switches @gol
-freg-struct-return  -fshort-enums @gol
-fshort-double  -fshort-wchar @gol
-fverbose-asm  -fpack-struct[=@var{n}]  -fstack-check @gol
-fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
-fno-stack-limit  -fargument-alias  -fargument-noalias @gol
-fargument-noalias-global  -fargument-noalias-anything @gol
-fleading-underscore  -ftls-model=@var{model} @gol
-ftrapv  -fwrapv  -fbounds-check @gol
-fvisibility}
@end table

@menu
* Overall Options::     Controlling the kind of output:
                        an executable, object files, assembler files,
                        or preprocessed source.
* C Dialect Options::   Controlling the variant of C language compiled.
* C++ Dialect Options:: Variations on C++.
* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
                        and Objective-C++.
* Language Independent Options:: Controlling how diagnostics should be
                        formatted.
* Warning Options::     How picky should the compiler be?
* Debugging Options::   Symbol tables, measurements, and debugging dumps.
* Optimize Options::    How much optimization?
* Preprocessor Options:: Controlling header files and macro definitions.
                         Also, getting dependency information for Make.
* Assembler Options::   Passing options to the assembler.
* Link Options::        Specifying libraries and so on.
* Directory Options::   Where to find header files and libraries.
                        Where to find the compiler executable files.
* Spec Files::          How to pass switches to sub-processes.
* Target Options::      Running a cross-compiler, or an old version of GCC.
@end menu

@node Overall Options
@section Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order.  GCC is capable of
preprocessing and compiling several files either into several
assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all
the object files (those newly compiled, and those specified as input)
into an executable file.

@cindex file name suffix
For any given input file, the file name suffix determines what kind of
compilation is done:

@table @gcctabopt
@item @var{file}.c
C source code which must be preprocessed.

@item @var{file}.i
C source code which should not be preprocessed.

@item @var{file}.ii
C++ source code which should not be preprocessed.

@item @var{file}.m
Objective-C source code.  Note that you must link with the @file{libobjc}
library to make an Objective-C program work.

@item @var{file}.mi
Objective-C source code which should not be preprocessed.

@item @var{file}.mm
@itemx @var{file}.M
Objective-C++ source code.  Note that you must link with the @file{libobjc}
library to make an Objective-C++ program work.  Note that @samp{.M} refers
to a literal capital M@.

@item @var{file}.mii
Objective-C++ source code which should not be preprocessed.

@item @var{file}.h
C, C++, Objective-C or Objective-C++ header file to be turned into a
precompiled header.

@item @var{file}.cc
@itemx @var{file}.cp
@itemx @var{file}.cxx
@itemx @var{file}.cpp
@itemx @var{file}.CPP
@itemx @var{file}.c++
@itemx @var{file}.C
C++ source code which must be preprocessed.  Note that in @samp{.cxx},
the last two letters must both be literally @samp{x}.  Likewise,
@samp{.C} refers to a literal capital C@.

@item @var{file}.mm
@itemx @var{file}.M
Objective-C++ source code which must be preprocessed.

@item @var{file}.mii
Objective-C++ source code which should not be preprocessed.

@item @var{file}.hh
@itemx @var{file}.H
@itemx @var{file}.hp
@itemx @var{file}.hxx
@itemx @var{file}.hpp
@itemx @var{file}.HPP
@itemx @var{file}.h++
@itemx @var{file}.tcc
C++ header file to be turned into a precompiled header.

@item @var{file}.f
@itemx @var{file}.for
@itemx @var{file}.ftn
Fixed form Fortran source code which should not be preprocessed.

@item @var{file}.F
@itemx @var{file}.FOR
@itemx @var{file}.fpp
@itemx @var{file}.FPP
@itemx @var{file}.FTN
Fixed form Fortran source code which must be preprocessed (with the traditional
preprocessor).

@item @var{file}.f90
@itemx @var{file}.f95
@itemx @var{file}.f03
@itemx @var{file}.f08
Free form Fortran source code which should not be preprocessed.

@item @var{file}.F90
@itemx @var{file}.F95
@itemx @var{file}.F03
@itemx @var{file}.F08
Free form Fortran source code which must be preprocessed (with the
traditional preprocessor).

@c FIXME: Descriptions of Java file types.
@c @var{file}.java
@c @var{file}.class
@c @var{file}.zip
@c @var{file}.jar

@item @var{file}.ads
Ada source code file which contains a library unit declaration (a
declaration of a package, subprogram, or generic, or a generic
instantiation), or a library unit renaming declaration (a package,
generic, or subprogram renaming declaration).  Such files are also
called @dfn{specs}.

@item @var{file}.adb
Ada source code file containing a library unit body (a subprogram or
package body).  Such files are also called @dfn{bodies}.

@c GCC also knows about some suffixes for languages not yet included:
@c Pascal:
@c @var{file}.p
@c @var{file}.pas
@c Ratfor:
@c @var{file}.r

@item @var{file}.s
Assembler code.

@item @var{file}.S
@itemx @var{file}.sx
Assembler code which must be preprocessed.

@item @var{other}
An object file to be fed straight into linking.
Any file name with no recognized suffix is treated this way.
@end table

@opindex x
You can specify the input language explicitly with the @option{-x} option:

@table @gcctabopt
@item -x @var{language}
Specify explicitly the @var{language} for the following input files
(rather than letting the compiler choose a default based on the file
name suffix).  This option applies to all following input files until
the next @option{-x} option.  Possible values for @var{language} are:
@smallexample
c  c-header  c-cpp-output
c++  c++-header  c++-cpp-output
objective-c  objective-c-header  objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler  assembler-with-cpp
ada
f77  f77-cpp-input f95  f95-cpp-input
java
@end smallexample

@item -x none
Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes (as they are if @option{-x}
has not been used at all).

@item -pass-exit-codes
@opindex pass-exit-codes
Normally the @command{gcc} program will exit with the code of 1 if any
phase of the compiler returns a non-success return code.  If you specify
@option{-pass-exit-codes}, the @command{gcc} program will instead return with
numerically highest error produced by any phase that returned an error
indication.  The C, C++, and Fortran frontends return 4, if an internal
compiler error is encountered.
@end table

If you only want some of the stages of compilation, you can use
@option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
one of the options @option{-c}, @option{-S}, or @option{-E} to say where
@command{gcc} is to stop.  Note that some combinations (for example,
@samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.

@table @gcctabopt
@item -c
@opindex c
Compile or assemble the source files, but do not link.  The linking
stage simply is not done.  The ultimate output is in the form of an
object file for each source file.

By default, the object file name for a source file is made by replacing
the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.

Unrecognized input files, not requiring compilation or assembly, are
ignored.

@item -S
@opindex S
Stop after the stage of compilation proper; do not assemble.  The output
is in the form of an assembler code file for each non-assembler input
file specified.

By default, the assembler file name for a source file is made by
replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.

Input files that don't require compilation are ignored.

@item -E
@opindex E
Stop after the preprocessing stage; do not run the compiler proper.  The
output is in the form of preprocessed source code, which is sent to the
standard output.

Input files which don't require preprocessing are ignored.

@cindex output file option
@item -o @var{file}
@opindex o
Place output in file @var{file}.  This applies regardless to whatever
sort of output is being produced, whether it be an executable file,
an object file, an assembler file or preprocessed C code.

If @option{-o} is not specified, the default is to put an executable
file in @file{a.out}, the object file for
@file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
assembler file in @file{@var{source}.s}, a precompiled header file in
@file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
standard output.

@item -v
@opindex v
Print (on standard error output) the commands executed to run the stages
of compilation.  Also print the version number of the compiler driver
program and of the preprocessor and the compiler proper.

@item -###
@opindex ###
Like @option{-v} except the commands are not executed and all command
arguments are quoted.  This is useful for shell scripts to capture the
driver-generated command lines.

@item -pipe
@opindex pipe
Use pipes rather than temporary files for communication between the
various stages of compilation.  This fails to work on some systems where
the assembler is unable to read from a pipe; but the GNU assembler has
no trouble.

@item -combine
@opindex combine
If you are compiling multiple source files, this option tells the driver
to pass all the source files to the compiler at once (for those
languages for which the compiler can handle this).  This will allow
intermodule analysis (IMA) to be performed by the compiler.  Currently the only
language for which this is supported is C@.  If you pass source files for
multiple languages to the driver, using this option, the driver will invoke
the compiler(s) that support IMA once each, passing each compiler all the
source files appropriate for it.  For those languages that do not support
IMA this option will be ignored, and the compiler will be invoked once for
each source file in that language.  If you use this option in conjunction
with @option{-save-temps}, the compiler will generate multiple
pre-processed files
(one for each source file), but only one (combined) @file{.o} or
@file{.s} file.

@item --help
@opindex help
Print (on the standard output) a description of the command line options
understood by @command{gcc}.  If the @option{-v} option is also specified
then @option{--help} will also be passed on to the various processes
invoked by @command{gcc}, so that they can display the command line options
they accept.  If the @option{-Wextra} option has also been specified
(prior to the @option{--help} option), then command line options which
have no documentation associated with them will also be displayed.

@item --target-help
@opindex target-help
Print (on the standard output) a description of target-specific command
line options for each tool.  For some targets extra target-specific
information may also be printed.

@item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
Print (on the standard output) a description of the command line
options understood by the compiler that fit into all specified classes
and qualifiers.  These are the supported classes:

@table @asis
@item @samp{optimizers}
This will display all of the optimization options supported by the
compiler.

@item @samp{warnings}
This will display all of the options controlling warning messages
produced by the compiler.

@item @samp{target}
This will display target-specific options.  Unlike the
@option{--target-help} option however, target-specific options of the
linker and assembler will not be displayed.  This is because those
tools do not currently support the extended @option{--help=} syntax.

@item @samp{params}
This will display the values recognized by the @option{--param}
option.

@item @var{language}
This will display the options supported for @var{language}, where 
@var{language} is the name of one of the languages supported in this 
version of GCC.

@item @samp{common}
This will display the options that are common to all languages.
@end table

These are the supported qualifiers:

@table @asis
@item @samp{undocumented}
Display only those options which are undocumented.

@item @samp{joined}
Display options which take an argument that appears after an equal
sign in the same continuous piece of text, such as:
@samp{--help=target}.

@item @samp{separate}
Display options which take an argument that appears as a separate word
following the original option, such as: @samp{-o output-file}.
@end table

Thus for example to display all the undocumented target-specific
switches supported by the compiler the following can be used:

@smallexample
--help=target,undocumented
@end smallexample

The sense of a qualifier can be inverted by prefixing it with the
@samp{^} character, so for example to display all binary warning
options (i.e., ones that are either on or off and that do not take an
argument), which have a description the following can be used:

@smallexample
--help=warnings,^joined,^undocumented
@end smallexample

The argument to @option{--help=} should not consist solely of inverted
qualifiers.

Combining several classes is possible, although this usually
restricts the output by so much that there is nothing to display.  One
case where it does work however is when one of the classes is
@var{target}.  So for example to display all the target-specific
optimization options the following can be used:

@smallexample
--help=target,optimizers
@end smallexample

The @option{--help=} option can be repeated on the command line.  Each
successive use will display its requested class of options, skipping
those that have already been displayed.

If the @option{-Q} option appears on the command line before the
@option{--help=} option, then the descriptive text displayed by
@option{--help=} is changed.  Instead of describing the displayed
options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler
knows this at the point where the @option{--help=} option is used).

Here is a truncated example from the ARM port of @command{gcc}:

@smallexample
  % gcc -Q -mabi=2 --help=target -c
  The following options are target specific:
  -mabi=                                2
  -mabort-on-noreturn                   [disabled]
  -mapcs                                [disabled]
@end smallexample

The output is sensitive to the effects of previous command line
options, so for example it is possible to find out which optimizations
are enabled at @option{-O2} by using:

@smallexample
-Q -O2 --help=optimizers
@end smallexample

Alternatively you can discover which binary optimizations are enabled
by @option{-O3} by using:

@smallexample
gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
diff /tmp/O2-opts /tmp/O3-opts | grep enabled
@end smallexample

@item --version
@opindex version
Display the version number and copyrights of the invoked GCC@.

@item -wrapper
@opindex wrapper
Invoke all subcommands under a wrapper program. It takes a single
comma separated list as an argument, which will be used to invoke
the wrapper:

@smallexample
gcc -c t.c -wrapper gdb,--args
@end smallexample

This will invoke all subprograms of gcc under "gdb --args",
thus cc1 invocation will be "gdb --args cc1 ...".

@include @value{srcdir}/../libiberty/at-file.texi
@end table

@node Invoking G++
@section Compiling C++ Programs

@cindex suffixes for C++ source
@cindex C++ source file suffixes
C++ source files conventionally use one of the suffixes @samp{.C},
@samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
@samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
@samp{.H}, or (for shared template code) @samp{.tcc}; and
preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
files with these names and compiles them as C++ programs even if you
call the compiler the same way as for compiling C programs (usually
with the name @command{gcc}).

@findex g++
@findex c++
However, the use of @command{gcc} does not add the C++ library.
@command{g++} is a program that calls GCC and treats @samp{.c},
@samp{.h} and @samp{.i} files as C++ source files instead of C source
files unless @option{-x} is used, and automatically specifies linking
against the C++ library.  This program is also useful when
precompiling a C header file with a @samp{.h} extension for use in C++
compilations.  On many systems, @command{g++} is also installed with
the name @command{c++}.

@cindex invoking @command{g++}
When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any
language; or command-line options meaningful for C and related
languages; or options that are meaningful only for C++ programs.
@xref{C Dialect Options,,Options Controlling C Dialect}, for
explanations of options for languages related to C@.
@xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
explanations of options that are meaningful only for C++ programs.

@node C Dialect Options
@section Options Controlling C Dialect
@cindex dialect options
@cindex language dialect options
@cindex options, dialect

The following options control the dialect of C (or languages derived
from C, such as C++, Objective-C and Objective-C++) that the compiler
accepts:

@table @gcctabopt
@cindex ANSI support
@cindex ISO support
@item -ansi
@opindex ansi
In C mode, this is equivalent to @samp{-std=c89}. In C++ mode, it is
equivalent to @samp{-std=c++98}.

This turns off certain features of GCC that are incompatible with ISO
C90 (when compiling C code), or of standard C++ (when compiling C++ code),
such as the @code{asm} and @code{typeof} keywords, and
predefined macros such as @code{unix} and @code{vax} that identify the
type of system you are using.  It also enables the undesirable and
rarely used ISO trigraph feature.  For the C compiler,
it disables recognition of C++ style @samp{//} comments as well as
the @code{inline} keyword.

The alternate keywords @code{__asm__}, @code{__extension__},
@code{__inline__} and @code{__typeof__} continue to work despite
@option{-ansi}.  You would not want to use them in an ISO C program, of
course, but it is useful to put them in header files that might be included
in compilations done with @option{-ansi}.  Alternate predefined macros
such as @code{__unix__} and @code{__vax__} are also available, with or
without @option{-ansi}.

The @option{-ansi} option does not cause non-ISO programs to be
rejected gratuitously.  For that, @option{-pedantic} is required in
addition to @option{-ansi}.  @xref{Warning Options}.

The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
option is used.  Some header files may notice this macro and refrain
from declaring certain functions or defining certain macros that the
ISO standard doesn't call for; this is to avoid interfering with any
programs that might use these names for other things.

Functions that would normally be built in but do not have semantics
defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
functions when @option{-ansi} is used.  @xref{Other Builtins,,Other
built-in functions provided by GCC}, for details of the functions
affected.

@item -std=
@opindex std
Determine the language standard. @xref{Standards,,Language Standards
Supported by GCC}, for details of these standard versions.  This option
is currently only supported when compiling C or C++. 

The compiler can accept several base standards, such as @samp{c89} or
@samp{c++98}, and GNU dialects of those standards, such as
@samp{gnu89} or @samp{gnu++98}.  By specifying a base standard, the
compiler will accept all programs following that standard and those
using GNU extensions that do not contradict it.  For example,
@samp{-std=c89} turns off certain features of GCC that are
incompatible with ISO C90, such as the @code{asm} and @code{typeof}
keywords, but not other GNU extensions that do not have a meaning in
ISO C90, such as omitting the middle term of a @code{?:}
expression. On the other hand, by specifying a GNU dialect of a
standard, all features the compiler support are enabled, even when
those features change the meaning of the base standard and some
strict-conforming programs may be rejected.  The particular standard
is used by @option{-pedantic} to identify which features are GNU
extensions given that version of the standard. For example
@samp{-std=gnu89 -pedantic} would warn about C++ style @samp{//}
comments, while @samp{-std=gnu99 -pedantic} would not.

A value for this option must be provided; possible values are

@table @samp
@item c89
@itemx iso9899:1990
Support all ISO C90 programs (certain GNU extensions that conflict
with ISO C90 are disabled). Same as @option{-ansi} for C code.

@item iso9899:199409
ISO C90 as modified in amendment 1.

@item c99
@itemx c9x
@itemx iso9899:1999
@itemx iso9899:199x
ISO C99.  Note that this standard is not yet fully supported; see
@w{@uref{http://gcc.gnu.org/gcc-4.4/c99status.html}} for more information.  The
names @samp{c9x} and @samp{iso9899:199x} are deprecated.

@item gnu89
GNU dialect of ISO C90 (including some C99 features). This
is the default for C code.

@item gnu99
@itemx gnu9x
GNU dialect of ISO C99.  When ISO C99 is fully implemented in GCC,
this will become the default.  The name @samp{gnu9x} is deprecated.

@item c++98
The 1998 ISO C++ standard plus amendments. Same as @option{-ansi} for
C++ code.

@item gnu++98
GNU dialect of @option{-std=c++98}.  This is the default for
C++ code.

@item c++0x
The working draft of the upcoming ISO C++0x standard. This option
enables experimental features that are likely to be included in
C++0x. The working draft is constantly changing, and any feature that is
enabled by this flag may be removed from future versions of GCC if it is
not part of the C++0x standard.

@item gnu++0x
GNU dialect of @option{-std=c++0x}. This option enables
experimental features that may be removed in future versions of GCC.
@end table

@item -fgnu89-inline
@opindex fgnu89-inline
The option @option{-fgnu89-inline} tells GCC to use the traditional
GNU semantics for @code{inline} functions when in C99 mode.
@xref{Inline,,An Inline Function is As Fast As a Macro}.  This option
is accepted and ignored by GCC versions 4.1.3 up to but not including
4.3.  In GCC versions 4.3 and later it changes the behavior of GCC in
C99 mode.  Using this option is roughly equivalent to adding the
@code{gnu_inline} function attribute to all inline functions
(@pxref{Function Attributes}).

The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
specifies the default behavior).  This option was first supported in
GCC 4.3.  This option is not supported in C89 or gnu89 mode.

The preprocessor macros @code{__GNUC_GNU_INLINE__} and
@code{__GNUC_STDC_INLINE__} may be used to check which semantics are
in effect for @code{inline} functions.  @xref{Common Predefined
Macros,,,cpp,The C Preprocessor}.

@item -aux-info @var{filename}
@opindex aux-info
Output to the given filename prototyped declarations for all functions
declared and/or defined in a translation unit, including those in header
files.  This option is silently ignored in any language other than C@.

Besides declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the declaration was
implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
@samp{O} for old, respectively, in the first character after the line
number and the colon), and whether it came from a declaration or a
definition (@samp{C} or @samp{F}, respectively, in the following
character).  In the case of function definitions, a K&R-style list of
arguments followed by their declarations is also provided, inside
comments, after the declaration.

@item -fno-asm
@opindex fno-asm
Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
keyword, so that code can use these words as identifiers.  You can use
the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
instead.  @option{-ansi} implies @option{-fno-asm}.

In C++, this switch only affects the @code{typeof} keyword, since
@code{asm} and @code{inline} are standard keywords.  You may want to
use the @option{-fno-gnu-keywords} flag instead, which has the same
effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
switch only affects the @code{asm} and @code{typeof} keywords, since
@code{inline} is a standard keyword in ISO C99.

@item -fno-builtin
@itemx -fno-builtin-@var{function}
@opindex fno-builtin
@cindex built-in functions
Don't recognize built-in functions that do not begin with
@samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
functions provided by GCC}, for details of the functions affected,
including those which are not built-in functions when @option{-ansi} or
@option{-std} options for strict ISO C conformance are used because they
do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions
more efficiently; for instance, calls to @code{alloca} may become single
instructions that adjust the stack directly, and calls to @code{memcpy}
may become inline copy loops.  The resulting code is often both smaller
and faster, but since the function calls no longer appear as such, you
cannot set a breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library.  In addition,
when a function is recognized as a built-in function, GCC may use
information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the
resulting code still contains calls to that function.  For example,
warnings are given with @option{-Wformat} for bad calls to
@code{printf}, when @code{printf} is built in, and @code{strlen} is
known not to modify global memory.

With the @option{-fno-builtin-@var{function}} option
only the built-in function @var{function} is
disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
function is named that is not built-in in this version of GCC, this
option is ignored.  There is no corresponding
@option{-fbuiltin-@var{function}} option; if you wish to enable
built-in functions selectively when using @option{-fno-builtin} or
@option{-ffreestanding}, you may define macros such as:

@smallexample
#define abs(n)          __builtin_abs ((n))
#define strcpy(d, s)    __builtin_strcpy ((d), (s))
@end smallexample

@item -fhosted
@opindex fhosted
@cindex hosted environment

Assert that compilation takes place in a hosted environment.  This implies
@option{-fbuiltin}.  A hosted environment is one in which the
entire standard library is available, and in which @code{main} has a return
type of @code{int}.  Examples are nearly everything except a kernel.
This is equivalent to @option{-fno-freestanding}.

@item -ffreestanding
@opindex ffreestanding
@cindex hosted environment

Assert that compilation takes place in a freestanding environment.  This
implies @option{-fno-builtin}.  A freestanding environment
is one in which the standard library may not exist, and program startup may
not necessarily be at @code{main}.  The most obvious example is an OS kernel.
This is equivalent to @option{-fno-hosted}.

@xref{Standards,,Language Standards Supported by GCC}, for details of
freestanding and hosted environments.

@item -fopenmp
@opindex fopenmp
@cindex openmp parallel
Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
@code{!$omp} in Fortran.  When @option{-fopenmp} is specified, the
compiler generates parallel code according to the OpenMP Application
Program Interface v2.5 @w{@uref{http://www.openmp.org/}}.  This option
implies @option{-pthread}, and thus is only supported on targets that
have support for @option{-pthread}.

@item -fms-extensions
@opindex fms-extensions
Accept some non-standard constructs used in Microsoft header files.

Some cases of unnamed fields in structures and unions are only
accepted with this option.  @xref{Unnamed Fields,,Unnamed struct/union
fields within structs/unions}, for details.

@item -trigraphs
@opindex trigraphs
Support ISO C trigraphs.  The @option{-ansi} option (and @option{-std}
options for strict ISO C conformance) implies @option{-trigraphs}.

@item -no-integrated-cpp
@opindex no-integrated-cpp
Performs a compilation in two passes: preprocessing and compiling.  This
option allows a user supplied "cc1", "cc1plus", or "cc1obj" via the
@option{-B} option.  The user supplied compilation step can then add in
an additional preprocessing step after normal preprocessing but before
compiling.  The default is to use the integrated cpp (internal cpp)

The semantics of this option will change if "cc1", "cc1plus", and
"cc1obj" are merged.

@cindex traditional C language
@cindex C language, traditional
@item -traditional
@itemx -traditional-cpp
@opindex traditional-cpp
@opindex traditional
Formerly, these options caused GCC to attempt to emulate a pre-standard
C compiler.  They are now only supported with the @option{-E} switch.
The preprocessor continues to support a pre-standard mode.  See the GNU
CPP manual for details.

@item -fcond-mismatch
@opindex fcond-mismatch
Allow conditional expressions with mismatched types in the second and
third arguments.  The value of such an expression is void.  This option
is not supported for C++.

@item -flax-vector-conversions
@opindex flax-vector-conversions
Allow implicit conversions between vectors with differing numbers of
elements and/or incompatible element types.  This option should not be
used for new code.

@item -funsigned-char
@opindex funsigned-char
Let the type @code{char} be unsigned, like @code{unsigned char}.

Each kind of machine has a default for what @code{char} should
be.  It is either like @code{unsigned char} by default or like
@code{signed char} by default.

Ideally, a portable program should always use @code{signed char} or
@code{unsigned char} when it depends on the signedness of an object.
But many programs have been written to use plain @code{char} and
expect it to be signed, or expect it to be unsigned, depending on the
machines they were written for.  This option, and its inverse, let you
make such a program work with the opposite default.

The type @code{char} is always a distinct type from each of
@code{signed char} or @code{unsigned char}, even though its behavior
is always just like one of those two.

@item -fsigned-char
@opindex fsigned-char
Let the type @code{char} be signed, like @code{signed char}.

Note that this is equivalent to @option{-fno-unsigned-char}, which is
the negative form of @option{-funsigned-char}.  Likewise, the option
@option{-fno-signed-char} is equivalent to @option{-funsigned-char}.

@item -fsigned-bitfields
@itemx -funsigned-bitfields
@itemx -fno-signed-bitfields
@itemx -fno-unsigned-bitfields
@opindex fsigned-bitfields
@opindex funsigned-bitfields
@opindex fno-signed-bitfields
@opindex fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the
declaration does not use either @code{signed} or @code{unsigned}.  By
default, such a bit-field is signed, because this is consistent: the
basic integer types such as @code{int} are signed types.
@end table

@node C++ Dialect Options
@section Options Controlling C++ Dialect

@cindex compiler options, C++
@cindex C++ options, command line
@cindex options, C++
This section describes the command-line options that are only meaningful
for C++ programs; but you can also use most of the GNU compiler options
regardless of what language your program is in.  For example, you
might compile a file @code{firstClass.C} like this:

@smallexample
g++ -g -frepo -O -c firstClass.C
@end smallexample

@noindent
In this example, only @option{-frepo} is an option meant
only for C++ programs; you can use the other options with any
language supported by GCC@.

Here is a list of options that are @emph{only} for compiling C++ programs:

@table @gcctabopt

@item -fabi-version=@var{n}
@opindex fabi-version
Use version @var{n} of the C++ ABI@.  Version 2 is the version of the
C++ ABI that first appeared in G++ 3.4.  Version 1 is the version of
the C++ ABI that first appeared in G++ 3.2.  Version 0 will always be
the version that conforms most closely to the C++ ABI specification.
Therefore, the ABI obtained using version 0 will change as ABI bugs
are fixed.

The default is version 2.

@item -fno-access-control
@opindex fno-access-control
Turn off all access checking.  This switch is mainly useful for working
around bugs in the access control code.

@item -fcheck-new
@opindex fcheck-new
Check that the pointer returned by @code{operator new} is non-null
before attempting to modify the storage allocated.  This check is
normally unnecessary because the C++ standard specifies that
@code{operator new} will only return @code{0} if it is declared
@samp{throw()}, in which case the compiler will always check the
return value even without this option.  In all other cases, when
@code{operator new} has a non-empty exception specification, memory
exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
@samp{new (nothrow)}.

@item -fconserve-space
@opindex fconserve-space
Put uninitialized or runtime-initialized global variables into the
common segment, as C does.  This saves space in the executable at the
cost of not diagnosing duplicate definitions.  If you compile with this
flag and your program mysteriously crashes after @code{main()} has
completed, you may have an object that is being destroyed twice because
two definitions were merged.

This option is no longer useful on most targets, now that support has
been added for putting variables into BSS without making them common.

@item -ffriend-injection
@opindex ffriend-injection
Inject friend functions into the enclosing namespace, so that they are
visible outside the scope of the class in which they are declared.
Friend functions were documented to work this way in the old Annotated
C++ Reference Manual, and versions of G++ before 4.1 always worked
that way.  However, in ISO C++ a friend function which is not declared
in an enclosing scope can only be found using argument dependent
lookup.  This option causes friends to be injected as they were in
earlier releases.

This option is for compatibility, and may be removed in a future
release of G++.

@item -fno-elide-constructors
@opindex fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary
which is only used to initialize another object of the same type.
Specifying this option disables that optimization, and forces G++ to
call the copy constructor in all cases.

@item -fno-enforce-eh-specs
@opindex fno-enforce-eh-specs
Don't generate code to check for violation of exception specifications
at runtime.  This option violates the C++ standard, but may be useful
for reducing code size in production builds, much like defining
@samp{NDEBUG}.  This does not give user code permission to throw
exceptions in violation of the exception specifications; the compiler
will still optimize based on the specifications, so throwing an
unexpected exception will result in undefined behavior.

@item -ffor-scope
@itemx -fno-for-scope
@opindex ffor-scope
@opindex fno-for-scope
If @option{-ffor-scope} is specified, the scope of variables declared in
a @i{for-init-statement} is limited to the @samp{for} loop itself,
as specified by the C++ standard.
If @option{-fno-for-scope} is specified, the scope of variables declared in
a @i{for-init-statement} extends to the end of the enclosing scope,
as was the case in old versions of G++, and other (traditional)
implementations of C++.

The default if neither flag is given to follow the standard,
but to allow and give a warning for old-style code that would
otherwise be invalid, or have different behavior.

@item -fno-gnu-keywords
@opindex fno-gnu-keywords
Do not recognize @code{typeof} as a keyword, so that code can use this
word as an identifier.  You can use the keyword @code{__typeof__} instead.
@option{-ansi} implies @option{-fno-gnu-keywords}.

@item -fno-implicit-templates
@opindex fno-implicit-templates
Never emit code for non-inline templates which are instantiated
implicitly (i.e.@: by use); only emit code for explicit instantiations.
@xref{Template Instantiation}, for more information.

@item -fno-implicit-inline-templates
@opindex fno-implicit-inline-templates
Don't emit code for implicit instantiations of inline templates, either.
The default is to handle inlines differently so that compiles with and
without optimization will need the same set of explicit instantiations.

@item -fno-implement-inlines
@opindex fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions
controlled by @samp{#pragma implementation}.  This will cause linker
errors if these functions are not inlined everywhere they are called.

@item -fms-extensions
@opindex fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.

@item -fno-nonansi-builtins
@opindex fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by
ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
@code{index}, @code{bzero}, @code{conjf}, and other related functions.

@item -fno-operator-names
@opindex fno-operator-names
Do not treat the operator name keywords @code{and}, @code{bitand},
@code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
synonyms as keywords.

@item -fno-optional-diags
@opindex fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to
issue.  Currently, the only such diagnostic issued by G++ is the one for
a name having multiple meanings within a class.

@item -fpermissive
@opindex fpermissive
Downgrade some diagnostics about nonconformant code from errors to
warnings.  Thus, using @option{-fpermissive} will allow some
nonconforming code to compile.

@item -frepo
@opindex frepo
Enable automatic template instantiation at link time.  This option also
implies @option{-fno-implicit-templates}.  @xref{Template
Instantiation}, for more information.

@item -fno-rtti
@opindex fno-rtti
Disable generation of information about every class with virtual
functions for use by the C++ runtime type identification features
(@samp{dynamic_cast} and @samp{typeid}).  If you don't use those parts
of the language, you can save some space by using this flag.  Note that
exception handling uses the same information, but it will generate it as
needed. The @samp{dynamic_cast} operator can still be used for casts that
do not require runtime type information, i.e.@: casts to @code{void *} or to
unambiguous base classes.

@item -fstats
@opindex fstats
Emit statistics about front-end processing at the end of the compilation.
This information is generally only useful to the G++ development team.

@item -ftemplate-depth-@var{n}
@opindex ftemplate-depth
Set the maximum instantiation depth for template classes to @var{n}.
A limit on the template instantiation depth is needed to detect
endless recursions during template class instantiation.  ANSI/ISO C++
conforming programs must not rely on a maximum depth greater than 17.

@item -fno-threadsafe-statics
@opindex fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++
ABI for thread-safe initialization of local statics.  You can use this
option to reduce code size slightly in code that doesn't need to be
thread-safe.

@item -fuse-cxa-atexit
@opindex fuse-cxa-atexit
Register destructors for objects with static storage duration with the
@code{__cxa_atexit} function rather than the @code{atexit} function.
This option is required for fully standards-compliant handling of static
destructors, but will only work if your C library supports
@code{__cxa_atexit}.

@item -fno-use-cxa-get-exception-ptr
@opindex fno-use-cxa-get-exception-ptr
Don't use the @code{__cxa_get_exception_ptr} runtime routine.  This
will cause @code{std::uncaught_exception} to be incorrect, but is necessary
if the runtime routine is not available.

@item -fvisibility-inlines-hidden
@opindex fvisibility-inlines-hidden
This switch declares that the user does not attempt to compare
pointers to inline methods where the addresses of the two functions
were taken in different shared objects.

The effect of this is that GCC may, effectively, mark inline methods with
@code{__attribute__ ((visibility ("hidden")))} so that they do not
appear in the export table of a DSO and do not require a PLT indirection
when used within the DSO@.  Enabling this option can have a dramatic effect
on load and link times of a DSO as it massively reduces the size of the
dynamic export table when the library makes heavy use of templates.

The behavior of this switch is not quite the same as marking the
methods as hidden directly, because it does not affect static variables
local to the function or cause the compiler to deduce that
the function is defined in only one shared object.

You may mark a method as having a visibility explicitly to negate the
effect of the switch for that method.  For example, if you do want to
compare pointers to a particular inline method, you might mark it as
having default visibility.  Marking the enclosing class with explicit
visibility will have no effect.

Explicitly instantiated inline methods are unaffected by this option
as their linkage might otherwise cross a shared library boundary.
@xref{Template Instantiation}.

@item -fvisibility-ms-compat
@opindex fvisibility-ms-compat
This flag attempts to use visibility settings to make GCC's C++
linkage model compatible with that of Microsoft Visual Studio.

The flag makes these changes to GCC's linkage model:

@enumerate
@item
It sets the default visibility to @code{hidden}, like
@option{-fvisibility=hidden}.

@item
Types, but not their members, are not hidden by default.

@item
The One Definition Rule is relaxed for types without explicit
visibility specifications which are defined in more than one different
shared object: those declarations are permitted if they would have
been permitted when this option was not used.
@end enumerate

In new code it is better to use @option{-fvisibility=hidden} and
export those classes which are intended to be externally visible.
Unfortunately it is possible for code to rely, perhaps accidentally,
on the Visual Studio behavior.

Among the consequences of these changes are that static data members
of the same type with the same name but defined in different shared
objects will be different, so changing one will not change the other;
and that pointers to function members defined in different shared
objects may not compare equal.  When this flag is given, it is a
violation of the ODR to define types with the same name differently.

@item -fno-weak
@opindex fno-weak
Do not use weak symbol support, even if it is provided by the linker.
By default, G++ will use weak symbols if they are available.  This
option exists only for testing, and should not be used by end-users;
it will result in inferior code and has no benefits.  This option may
be removed in a future release of G++.

@item -nostdinc++
@opindex nostdinc++
Do not search for header files in the standard directories specific to
C++, but do still search the other standard directories.  (This option
is used when building the C++ library.)
@end table

In addition, these optimization, warning, and code generation options
have meanings only for C++ programs:

@table @gcctabopt
@item -fno-default-inline
@opindex fno-default-inline
Do not assume @samp{inline} for functions defined inside a class scope.
@xref{Optimize Options,,Options That Control Optimization}.  Note that these
functions will have linkage like inline functions; they just won't be
inlined by default.

@item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
@opindex Wabi
@opindex Wno-abi
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI@.  Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about,
even though G++ is generating incompatible code.  There may also be
cases where warnings are emitted even though the code that is generated
will be compatible.

You should rewrite your code to avoid these warnings if you are
concerned about the fact that code generated by G++ may not be binary
compatible with code generated by other compilers.

The known incompatibilities at this point include:

@itemize @bullet

@item
Incorrect handling of tail-padding for bit-fields.  G++ may attempt to
pack data into the same byte as a base class.  For example:

@smallexample
struct A @{ virtual void f(); int f1 : 1; @};
struct B : public A @{ int f2 : 1; @};
@end smallexample

@noindent
In this case, G++ will place @code{B::f2} into the same byte
as@code{A::f1}; other compilers will not.  You can avoid this problem
by explicitly padding @code{A} so that its size is a multiple of the
byte size on your platform; that will cause G++ and other compilers to
layout @code{B} identically.

@item
Incorrect handling of tail-padding for virtual bases.  G++ does not use
tail padding when laying out virtual bases.  For example:

@smallexample
struct A @{ virtual void f(); char c1; @};
struct B @{ B(); char c2; @};
struct C : public A, public virtual B @{@};
@end smallexample

@noindent
In this case, G++ will not place @code{B} into the tail-padding for
@code{A}; other compilers will.  You can avoid this problem by
explicitly padding @code{A} so that its size is a multiple of its
alignment (ignoring virtual base classes); that will cause G++ and other
compilers to layout @code{C} identically.

@item
Incorrect handling of bit-fields with declared widths greater than that
of their underlying types, when the bit-fields appear in a union.  For
example:

@smallexample
union U @{ int i : 4096; @};
@end smallexample

@noindent
Assuming that an @code{int} does not have 4096 bits, G++ will make the
union too small by the number of bits in an @code{int}.

@item
Empty classes can be placed at incorrect offsets.  For example:

@smallexample
struct A @{@};

struct B @{
  A a;
  virtual void f ();
@};

struct C : public B, public A @{@};
@end smallexample

@noindent
G++ will place the @code{A} base class of @code{C} at a nonzero offset;
it should be placed at offset zero.  G++ mistakenly believes that the
@code{A} data member of @code{B} is already at offset zero.

@item
Names of template functions whose types involve @code{typename} or
template template parameters can be mangled incorrectly.

@smallexample
template <typename Q>
void f(typename Q::X) @{@}

template <template <typename> class Q>
void f(typename Q<int>::X) @{@}
@end smallexample

@noindent
Instantiations of these templates may be mangled incorrectly.

@end itemize

It also warns psABI related changes.  The known psABI changes at this
point include:

@itemize @bullet

@item
For SYSV/x86-64, when passing union with long double, it is changed to
pass in memory as specified in psABI.  For example:

@smallexample
union U @{
  long double ld;
  int i;
@};
@end smallexample

@noindent
@code{union U} will always be passed in memory.

@end itemize

@item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
@opindex Wctor-dtor-privacy
@opindex Wno-ctor-dtor-privacy
Warn when a class seems unusable because all the constructors or
destructors in that class are private, and it has neither friends nor
public static member functions.

@item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
@opindex Wnon-virtual-dtor
@opindex Wno-non-virtual-dtor
Warn when a class has virtual functions and accessible non-virtual
destructor, in which case it would be possible but unsafe to delete
an instance of a derived class through a pointer to the base class.
This warning is also enabled if -Weffc++ is specified.

@item -Wreorder @r{(C++ and Objective-C++ only)}
@opindex Wreorder
@opindex Wno-reorder
@cindex reordering, warning
@cindex warning for reordering of member initializers
Warn when the order of member initializers given in the code does not
match the order in which they must be executed.  For instance:

@smallexample
struct A @{
  int i;
  int j;
  A(): j (0), i (1) @{ @}
@};
@end smallexample

The compiler will rearrange the member initializers for @samp{i}
and @samp{j} to match the declaration order of the members, emitting
a warning to that effect.  This warning is enabled by @option{-Wall}.
@end table

The following @option{-W@dots{}} options are not affected by @option{-Wall}.

@table @gcctabopt
@item -Weffc++ @r{(C++ and Objective-C++ only)}
@opindex Weffc++
@opindex Wno-effc++
Warn about violations of the following style guidelines from Scott Meyers'
@cite{Effective C++} book:

@itemize @bullet
@item
Item 11:  Define a copy constructor and an assignment operator for classes
with dynamically allocated memory.

@item
Item 12:  Prefer initialization to assignment in constructors.

@item
Item 14:  Make destructors virtual in base classes.

@item
Item 15:  Have @code{operator=} return a reference to @code{*this}.

@item
Item 23:  Don't try to return a reference when you must return an object.

@end itemize

Also warn about violations of the following style guidelines from
Scott Meyers' @cite{More Effective C++} book:

@itemize @bullet
@item
Item 6:  Distinguish between prefix and postfix forms of increment and
decrement operators.

@item
Item 7:  Never overload @code{&&}, @code{||}, or @code{,}.

@end itemize

When selecting this option, be aware that the standard library
headers do not obey all of these guidelines; use @samp{grep -v}
to filter out those warnings.

@item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
@opindex Wstrict-null-sentinel
@opindex Wno-strict-null-sentinel
Warn also about the use of an uncasted @code{NULL} as sentinel.  When
compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
to @code{__null}.  Although it is a null pointer constant not a null pointer,
it is guaranteed to be of the same size as a pointer.  But this use is
not portable across different compilers.

@item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
@opindex Wno-non-template-friend
@opindex Wnon-template-friend
Disable warnings when non-templatized friend functions are declared
within a template.  Since the advent of explicit template specification
support in G++, if the name of the friend is an unqualified-id (i.e.,
@samp{friend foo(int)}), the C++ language specification demands that the
friend declare or define an ordinary, nontemplate function.  (Section
14.5.3).  Before G++ implemented explicit specification, unqualified-ids
could be interpreted as a particular specialization of a templatized
function.  Because this non-conforming behavior is no longer the default
behavior for G++, @option{-Wnon-template-friend} allows the compiler to
check existing code for potential trouble spots and is on by default.
This new compiler behavior can be turned off with
@option{-Wno-non-template-friend} which keeps the conformant compiler code
but disables the helpful warning.

@item -Wold-style-cast @r{(C++ and Objective-C++ only)}
@opindex Wold-style-cast
@opindex Wno-old-style-cast
Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program.  The new-style casts (@samp{dynamic_cast},
@samp{static_cast}, @samp{reinterpret_cast}, and @samp{const_cast}) are
less vulnerable to unintended effects and much easier to search for.

@item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
@opindex Woverloaded-virtual
@opindex Wno-overloaded-virtual
@cindex overloaded virtual fn, warning
@cindex warning for overloaded virtual fn
Warn when a function declaration hides virtual functions from a
base class.  For example, in:

@smallexample
struct A @{
  virtual void f();
@};

struct B: public A @{
  void f(int);
@};
@end smallexample

the @code{A} class version of @code{f} is hidden in @code{B}, and code
like:

@smallexample
B* b;
b->f();
@end smallexample

will fail to compile.

@item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
@opindex Wno-pmf-conversions
@opindex Wpmf-conversions
Disable the diagnostic for converting a bound pointer to member function
to a plain pointer.

@item -Wsign-promo @r{(C++ and Objective-C++ only)}
@opindex Wsign-promo
@opindex Wno-sign-promo
Warn when overload resolution chooses a promotion from unsigned or
enumerated type to a signed type, over a conversion to an unsigned type of
the same size.  Previous versions of G++ would try to preserve
unsignedness, but the standard mandates the current behavior.

@smallexample
struct A @{
  operator int ();
  A& operator = (int);
@};

main ()
@{
  A a,b;
  a = b;
@}
@end smallexample

In this example, G++ will synthesize a default @samp{A& operator =
(const A&);}, while cfront will use the user-defined @samp{operator =}.
@end table

@node Objective-C and Objective-C++ Dialect Options
@section Options Controlling Objective-C and Objective-C++ Dialects

@cindex compiler options, Objective-C and Objective-C++
@cindex Objective-C and Objective-C++ options, command line
@cindex options, Objective-C and Objective-C++
(NOTE: This manual does not describe the Objective-C and Objective-C++
languages themselves.  See @xref{Standards,,Language Standards
Supported by GCC}, for references.)

This section describes the command-line options that are only meaningful
for Objective-C and Objective-C++ programs, but you can also use most of
the language-independent GNU compiler options.
For example, you might compile a file @code{some_class.m} like this:

@smallexample
gcc -g -fgnu-runtime -O -c some_class.m
@end smallexample

@noindent
In this example, @option{-fgnu-runtime} is an option meant only for
Objective-C and Objective-C++ programs; you can use the other options with
any language supported by GCC@.

Note that since Objective-C is an extension of the C language, Objective-C
compilations may also use options specific to the C front-end (e.g.,
@option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
C++-specific options (e.g., @option{-Wabi}).

Here is a list of options that are @emph{only} for compiling Objective-C
and Objective-C++ programs:

@table @gcctabopt
@item -fconstant-string-class=@var{class-name}
@opindex fconstant-string-class
Use @var{class-name} as the name of the class to instantiate for each
literal string specified with the syntax @code{@@"@dots{}"}.  The default
class name is @code{NXConstantString} if the GNU runtime is being used, and
@code{NSConstantString} if the NeXT runtime is being used (see below).  The
@option{-fconstant-cfstrings} option, if also present, will override the
@option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
to be laid out as constant CoreFoundation strings.

@item -fgnu-runtime
@opindex fgnu-runtime
Generate object code compatible with the standard GNU Objective-C
runtime.  This is the default for most types of systems.

@item -fnext-runtime
@opindex fnext-runtime
Generate output compatible with the NeXT runtime.  This is the default
for NeXT-based systems, including Darwin and Mac OS X@.  The macro
@code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
used.

@item -fno-nil-receivers
@opindex fno-nil-receivers
Assume that all Objective-C message dispatches (e.g.,
@code{[receiver message:arg]}) in this translation unit ensure that the receiver
is not @code{nil}.  This allows for more efficient entry points in the runtime
to be used.  Currently, this option is only available in conjunction with
the NeXT runtime on Mac OS X 10.3 and later.

@item -fobjc-call-cxx-cdtors
@opindex fobjc-call-cxx-cdtors
For each Objective-C class, check if any of its instance variables is a
C++ object with a non-trivial default constructor.  If so, synthesize a
special @code{- (id) .cxx_construct} instance method that will run
non-trivial default constructors on any such instance variables, in order,
and then return @code{self}.  Similarly, check if any instance variable
is a C++ object with a non-trivial destructor, and if so, synthesize a
special @code{- (void) .cxx_destruct} method that will run
all such default destructors, in reverse order.

The @code{- (id) .cxx_construct} and/or @code{- (void) .cxx_destruct} methods
thusly generated will only operate on instance variables declared in the
current Objective-C class, and not those inherited from superclasses.  It
is the responsibility of the Objective-C runtime to invoke all such methods
in an object's inheritance hierarchy.  The @code{- (id) .cxx_construct} methods
will be invoked by the runtime immediately after a new object
instance is allocated; the @code{- (void) .cxx_destruct} methods will
be invoked immediately before the runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
support for invoking the @code{- (id) .cxx_construct} and
@code{- (void) .cxx_destruct} methods.

@item -fobjc-direct-dispatch
@opindex fobjc-direct-dispatch
Allow fast jumps to the message dispatcher.  On Darwin this is
accomplished via the comm page.

@item -fobjc-exceptions
@opindex fobjc-exceptions
Enable syntactic support for structured exception handling in Objective-C,
similar to what is offered by C++ and Java.  This option is
unavailable in conjunction with the NeXT runtime on Mac OS X 10.2 and
earlier.

@smallexample
  @@try @{
    @dots{}
       @@throw expr;
    @dots{}
  @}
  @@catch (AnObjCClass *exc) @{
    @dots{}
      @@throw expr;
    @dots{}
      @@throw;
    @dots{}
  @}
  @@catch (AnotherClass *exc) @{
    @dots{}
  @}
  @@catch (id allOthers) @{
    @dots{}
  @}
  @@finally @{
    @dots{}
      @@throw expr;
    @dots{}
  @}
@end smallexample

The @code{@@throw} statement may appear anywhere in an Objective-C or
Objective-C++ program; when used inside of a @code{@@catch} block, the
@code{@@throw} may appear without an argument (as shown above), in which case
the object caught by the @code{@@catch} will be rethrown.

Note that only (pointers to) Objective-C objects may be thrown and
caught using this scheme.  When an object is thrown, it will be caught
by the nearest @code{@@catch} clause capable of handling objects of that type,
analogously to how @code{catch} blocks work in C++ and Java.  A
@code{@@catch(id @dots{})} clause (as shown above) may also be provided to catch
any and all Objective-C exceptions not caught by previous @code{@@catch}
clauses (if any).

The @code{@@finally} clause, if present, will be executed upon exit from the
immediately preceding @code{@@try @dots{} @@catch} section.  This will happen
regardless of whether any exceptions are thrown, caught or rethrown
inside the @code{@@try @dots{} @@catch} section, analogously to the behavior
of the @code{finally} clause in Java.

There are several caveats to using the new exception mechanism:

@itemize @bullet
@item
Although currently designed to be binary compatible with @code{NS_HANDLER}-style
idioms provided by the @code{NSException} class, the new
exceptions can only be used on Mac OS X 10.3 (Panther) and later
systems, due to additional functionality needed in the (NeXT) Objective-C
runtime.

@item
As mentioned above, the new exceptions do not support handling
types other than Objective-C objects.   Furthermore, when used from
Objective-C++, the Objective-C exception model does not interoperate with C++
exceptions at this time.  This means you cannot @code{@@throw} an exception
from Objective-C and @code{catch} it in C++, or vice versa
(i.e., @code{throw @dots{} @@catch}).
@end itemize

The @option{-fobjc-exceptions} switch also enables the use of synchronization
blocks for thread-safe execution:

@smallexample
  @@synchronized (ObjCClass *guard) @{
    @dots{}
  @}
@end smallexample

Upon entering the @code{@@synchronized} block, a thread of execution shall
first check whether a lock has been placed on the corresponding @code{guard}
object by another thread.  If it has, the current thread shall wait until
the other thread relinquishes its lock.  Once @code{guard} becomes available,
the current thread will place its own lock on it, execute the code contained in
the @code{@@synchronized} block, and finally relinquish the lock (thereby
making @code{guard} available to other threads).

Unlike Java, Objective-C does not allow for entire methods to be marked
@code{@@synchronized}.  Note that throwing exceptions out of
@code{@@synchronized} blocks is allowed, and will cause the guarding object
to be unlocked properly.

@item -fobjc-gc
@opindex fobjc-gc
Enable garbage collection (GC) in Objective-C and Objective-C++ programs.

@item -freplace-objc-classes
@opindex freplace-objc-classes
Emit a special marker instructing @command{ld(1)} not to statically link in
the resulting object file, and allow @command{dyld(1)} to load it in at
run time instead.  This is used in conjunction with the Fix-and-Continue
debugging mode, where the object file in question may be recompiled and
dynamically reloaded in the course of program execution, without the need
to restart the program itself.  Currently, Fix-and-Continue functionality
is only available in conjunction with the NeXT runtime on Mac OS X 10.3
and later.

@item -fzero-link
@opindex fzero-link
When compiling for the NeXT runtime, the compiler ordinarily replaces calls
to @code{objc_getClass("@dots{}")} (when the name of the class is known at
compile time) with static class references that get initialized at load time,
which improves run-time performance.  Specifying the @option{-fzero-link} flag
suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
to be retained.  This is useful in Zero-Link debugging mode, since it allows
for individual class implementations to be modified during program execution.

@item -gen-decls
@opindex gen-decls
Dump interface declarations for all classes seen in the source file to a
file named @file{@var{sourcename}.decl}.

@item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
@opindex Wassign-intercept
@opindex Wno-assign-intercept
Warn whenever an Objective-C assignment is being intercepted by the
garbage collector.

@item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
@opindex Wno-protocol
@opindex Wprotocol
If a class is declared to implement a protocol, a warning is issued for
every method in the protocol that is not implemented by the class.  The
default behavior is to issue a warning for every method not explicitly
implemented in the class, even if a method implementation is inherited
from the superclass.  If you use the @option{-Wno-protocol} option, then
methods inherited from the superclass are considered to be implemented,
and no warning is issued for them.

@item -Wselector @r{(Objective-C and Objective-C++ only)}
@opindex Wselector
@opindex Wno-selector
Warn if multiple methods of different types for the same selector are
found during compilation.  The check is performed on the list of methods
in the final stage of compilation.  Additionally, a check is performed
for each selector appearing in a @code{@@selector(@dots{})}
expression, and a corresponding method for that selector has been found
during compilation.  Because these checks scan the method table only at
the end of compilation, these warnings are not produced if the final
stage of compilation is not reached, for example because an error is
found during compilation, or because the @option{-fsyntax-only} option is
being used.

@item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
@opindex Wstrict-selector-match
@opindex Wno-strict-selector-match
Warn if multiple methods with differing argument and/or return types are
found for a given selector when attempting to send a message using this
selector to a receiver of type @code{id} or @code{Class}.  When this flag
is off (which is the default behavior), the compiler will omit such warnings
if any differences found are confined to types which share the same size
and alignment.

@item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
@opindex Wundeclared-selector
@opindex Wno-undeclared-selector
Warn if a @code{@@selector(@dots{})} expression referring to an
undeclared selector is found.  A selector is considered undeclared if no
method with that name has been declared before the
@code{@@selector(@dots{})} expression, either explicitly in an
@code{@@interface} or @code{@@protocol} declaration, or implicitly in
an @code{@@implementation} section.  This option always performs its
checks as soon as a @code{@@selector(@dots{})} expression is found,
while @option{-Wselector} only performs its checks in the final stage of
compilation.  This also enforces the coding style convention
that methods and selectors must be declared before being used.

@item -print-objc-runtime-info
@opindex print-objc-runtime-info
Generate C header describing the largest structure that is passed by
value, if any.

@end table

@node Language Independent Options
@section Options to Control Diagnostic Messages Formatting
@cindex options to control diagnostics formatting
@cindex diagnostic messages
@cindex message formatting

Traditionally, diagnostic messages have been formatted irrespective of
the output device's aspect (e.g.@: its width, @dots{}).  The options described
below can be used to control the diagnostic messages formatting
algorithm, e.g.@: how many characters per line, how often source location
information should be reported.  Right now, only the C++ front end can
honor these options.  However it is expected, in the near future, that
the remaining front ends would be able to digest them correctly.

@table @gcctabopt
@item -fmessage-length=@var{n}
@opindex fmessage-length
Try to format error messages so that they fit on lines of about @var{n}
characters.  The default is 72 characters for @command{g++} and 0 for the rest of
the front ends supported by GCC@.  If @var{n} is zero, then no
line-wrapping will be done; each error message will appear on a single
line.

@opindex fdiagnostics-show-location
@item -fdiagnostics-show-location=once
Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
reporter to emit @emph{once} source location information; that is, in
case the message is too long to fit on a single physical line and has to
be wrapped, the source location won't be emitted (as prefix) again,
over and over, in subsequent continuation lines.  This is the default
behavior.

@item -fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode.  Instructs the diagnostic
messages reporter to emit the same source location information (as
prefix) for physical lines that result from the process of breaking
a message which is too long to fit on a single line.

@item -fdiagnostics-show-option
@opindex fdiagnostics-show-option
This option instructs the diagnostic machinery to add text to each
diagnostic emitted, which indicates which command line option directly
controls that diagnostic, when such an option is known to the
diagnostic machinery.

@item -Wcoverage-mismatch
@opindex Wcoverage-mismatch
Warn if feedback profiles do not match when using the
@option{-fprofile-use} option.
If a source file was changed between @option{-fprofile-gen} and
@option{-fprofile-use}, the files with the profile feedback can fail
to match the source file and GCC can not use the profile feedback
information.  By default, GCC emits an error message in this case.
The option @option{-Wcoverage-mismatch} emits a warning instead of an
error.  GCC does not use appropriate feedback profiles, so using this
option can result in poorly optimized code.  This option is useful
only in the case of very minor changes such as bug fixes to an
existing code-base.

@end table

@node Warning Options
@section Options to Request or Suppress Warnings
@cindex options to control warnings
@cindex warning messages
@cindex messages, warning
@cindex suppressing warnings

Warnings are diagnostic messages that report constructions which
are not inherently erroneous but which are risky or suggest there
may have been an error.

The following language-independent options do not enable specific
warnings but control the kinds of diagnostics produced by GCC.

@table @gcctabopt
@cindex syntax checking
@item -fsyntax-only
@opindex fsyntax-only
Check the code for syntax errors, but don't do anything beyond that.

@item -w
@opindex w
Inhibit all warning messages.

@item -Werror
@opindex Werror
@opindex Wno-error
Make all warnings into errors.

@item -Werror=
@opindex Werror=
@opindex Wno-error=
Make the specified warning into an error.  The specifier for a warning
is appended, for example @option{-Werror=switch} turns the warnings
controlled by @option{-Wswitch} into errors.  This switch takes a
negative form, to be used to negate @option{-Werror} for specific
warnings, for example @option{-Wno-error=switch} makes
@option{-Wswitch} warnings not be errors, even when @option{-Werror}
is in effect.  You can use the @option{-fdiagnostics-show-option}
option to have each controllable warning amended with the option which
controls it, to determine what to use with this option.

Note that specifying @option{-Werror=}@var{foo} automatically implies
@option{-W}@var{foo}.  However, @option{-Wno-error=}@var{foo} does not
imply anything.

@item -Wfatal-errors
@opindex Wfatal-errors
@opindex Wno-fatal-errors
This option causes the compiler to abort compilation on the first error
occurred rather than trying to keep going and printing further error
messages.

@end table

You can request many specific warnings with options beginning
@samp{-W}, for example @option{-Wimplicit} to request warnings on
implicit declarations.  Each of these specific warning options also
has a negative form beginning @samp{-Wno-} to turn off warnings; for
example, @option{-Wno-implicit}.  This manual lists only one of the
two forms, whichever is not the default.  For further,
language-specific options also refer to @ref{C++ Dialect Options} and
@ref{Objective-C and Objective-C++ Dialect Options}.

@table @gcctabopt
@item -pedantic
@opindex pedantic
Issue all the warnings demanded by strict ISO C and ISO C++;
reject all programs that use forbidden extensions, and some other
programs that do not follow ISO C and ISO C++.  For ISO C, follows the
version of the ISO C standard specified by any @option{-std} option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require @option{-ansi} or a
@option{-std} option specifying the required version of ISO C)@.  However,
without this option, certain GNU extensions and traditional C and C++
features are supported as well.  With this option, they are rejected.

@option{-pedantic} does not cause warning messages for use of the
alternate keywords whose names begin and end with @samp{__}.  Pedantic
warnings are also disabled in the expression that follows
@code{__extension__}.  However, only system header files should use
these escape routes; application programs should avoid them.
@xref{Alternate Keywords}.

Some users try to use @option{-pedantic} to check programs for strict ISO
C conformance.  They soon find that it does not do quite what they want:
it finds some non-ISO practices, but not all---only those for which
ISO C @emph{requires} a diagnostic, and some others for which
diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in
some instances, but would require considerable additional work and would
be quite different from @option{-pedantic}.  We don't have plans to
support such a feature in the near future.

Where the standard specified with @option{-std} represents a GNU
extended dialect of C, such as @samp{gnu89} or @samp{gnu99}, there is a
corresponding @dfn{base standard}, the version of ISO C on which the GNU
extended dialect is based.  Warnings from @option{-pedantic} are given
where they are required by the base standard.  (It would not make sense
for such warnings to be given only for features not in the specified GNU
C dialect, since by definition the GNU dialects of C include all
features the compiler supports with the given option, and there would be
nothing to warn about.)

@item -pedantic-errors
@opindex pedantic-errors
Like @option{-pedantic}, except that errors are produced rather than
warnings.

@item -Wall
@opindex Wall
@opindex Wno-all
This enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify to
prevent the warning), even in conjunction with macros.  This also
enables some language-specific warnings described in @ref{C++ Dialect
Options} and @ref{Objective-C and Objective-C++ Dialect Options}.

@option{-Wall} turns on the following warning flags:

@gccoptlist{-Waddress   @gol
-Warray-bounds @r{(only with} @option{-O2}@r{)}  @gol
-Wc++0x-compat  @gol
-Wchar-subscripts  @gol
-Wimplicit-int  @gol
-Wimplicit-function-declaration  @gol
-Wcomment  @gol
-Wformat   @gol
-Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)}  @gol
-Wmissing-braces  @gol
-Wnonnull  @gol
-Wparentheses  @gol
-Wpointer-sign  @gol
-Wreorder   @gol
-Wreturn-type  @gol
-Wsequence-point  @gol
-Wsign-compare @r{(only in C++)}  @gol
-Wstrict-aliasing  @gol
-Wstrict-overflow=1  @gol
-Wswitch  @gol
-Wtrigraphs  @gol
-Wuninitialized  @gol
-Wunknown-pragmas  @gol
-Wunused-function  @gol
-Wunused-label     @gol
-Wunused-value     @gol
-Wunused-variable  @gol
-Wvolatile-register-var @gol
}

Note that some warning flags are not implied by @option{-Wall}.  Some of
them warn about constructions that users generally do not consider
questionable, but which occasionally you might wish to check for;
others warn about constructions that are necessary or hard to avoid in
some cases, and there is no simple way to modify the code to suppress
the warning. Some of them are enabled by @option{-Wextra} but many of
them must be enabled individually.

@item -Wextra
@opindex W
@opindex Wextra
@opindex Wno-extra
This enables some extra warning flags that are not enabled by
@option{-Wall}. (This option used to be called @option{-W}.  The older
name is still supported, but the newer name is more descriptive.)

@gccoptlist{-Wclobbered  @gol
-Wempty-body  @gol
-Wignored-qualifiers @gol
-Wmissing-field-initializers  @gol
-Wmissing-parameter-type @r{(C only)}  @gol
-Wold-style-declaration @r{(C only)}  @gol
-Woverride-init  @gol
-Wsign-compare  @gol
-Wtype-limits  @gol
-Wuninitialized  @gol
-Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}  @gol
}

The option @option{-Wextra} also prints warning messages for the
following cases:

@itemize @bullet

@item
A pointer is compared against integer zero with @samp{<}, @samp{<=},
@samp{>}, or @samp{>=}.

@item 
(C++ only) An enumerator and a non-enumerator both appear in a
conditional expression.

@item 
(C++ only) Ambiguous virtual bases.

@item 
(C++ only) Subscripting an array which has been declared @samp{register}.

@item 
(C++ only) Taking the address of a variable which has been declared
@samp{register}.

@item 
(C++ only) A base class is not initialized in a derived class' copy
constructor.

@end itemize

@item -Wchar-subscripts
@opindex Wchar-subscripts
@opindex Wno-char-subscripts
Warn if an array subscript has type @code{char}.  This is a common cause
of error, as programmers often forget that this type is signed on some
machines.
This warning is enabled by @option{-Wall}.

@item -Wcomment
@opindex Wcomment
@opindex Wno-comment
Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
This warning is enabled by @option{-Wall}.

@item -Wformat
@opindex Wformat
@opindex Wno-format
@opindex ffreestanding
@opindex fno-builtin
Check calls to @code{printf} and @code{scanf}, etc., to make sure that
the arguments supplied have types appropriate to the format string
specified, and that the conversions specified in the format string make
sense.  This includes standard functions, and others specified by format
attributes (@pxref{Function Attributes}), in the @code{printf},
@code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
not in the C standard) families (or other target-specific families).
Which functions are checked without format attributes having been
specified depends on the standard version selected, and such checks of
functions without the attribute specified are disabled by
@option{-ffreestanding} or @option{-fno-builtin}.

The formats are checked against the format features supported by GNU
libc version 2.2.  These include all ISO C90 and C99 features, as well
as features from the Single Unix Specification and some BSD and GNU
extensions.  Other library implementations may not support all these
features; GCC does not support warning about features that go beyond a
particular library's limitations.  However, if @option{-pedantic} is used
with @option{-Wformat}, warnings will be given about format features not
in the selected standard version (but not for @code{strfmon} formats,
since those are not in any version of the C standard).  @xref{C Dialect
Options,,Options Controlling C Dialect}.

Since @option{-Wformat} also checks for null format arguments for
several functions, @option{-Wformat} also implies @option{-Wnonnull}.

@option{-Wformat} is included in @option{-Wall}.  For more control over some
aspects of format checking, the options @option{-Wformat-y2k},
@option{-Wno-format-extra-args}, @option{-Wno-format-zero-length},
@option{-Wformat-nonliteral}, @option{-Wformat-security}, and
@option{-Wformat=2} are available, but are not included in @option{-Wall}.

@item -Wformat-y2k
@opindex Wformat-y2k
@opindex Wno-format-y2k
If @option{-Wformat} is specified, also warn about @code{strftime}
formats which may yield only a two-digit year.

@item -Wno-format-contains-nul
@opindex Wno-format-contains-nul
@opindex Wformat-contains-nul
If @option{-Wformat} is specified, do not warn about format strings that
contain NUL bytes.

@item -Wno-format-extra-args
@opindex Wno-format-extra-args
@opindex Wformat-extra-args
If @option{-Wformat} is specified, do not warn about excess arguments to a
@code{printf} or @code{scanf} format function.  The C standard specifies
that such arguments are ignored.

Where the unused arguments lie between used arguments that are
specified with @samp{$} operand number specifications, normally
warnings are still given, since the implementation could not know what
type to pass to @code{va_arg} to skip the unused arguments.  However,
in the case of @code{scanf} formats, this option will suppress the
warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

@item -Wno-format-zero-length @r{(C and Objective-C only)}
@opindex Wno-format-zero-length
@opindex Wformat-zero-length
If @option{-Wformat} is specified, do not warn about zero-length formats.
The C standard specifies that zero-length formats are allowed.

@item -Wformat-nonliteral
@opindex Wformat-nonliteral
@opindex Wno-format-nonliteral
If @option{-Wformat} is specified, also warn if the format string is not a
string literal and so cannot be checked, unless the format function
takes its format arguments as a @code{va_list}.

@item -Wformat-security
@opindex Wformat-security
@opindex Wno-format-security
If @option{-Wformat} is specified, also warn about uses of format
functions that represent possible security problems.  At present, this
warns about calls to @code{printf} and @code{scanf} functions where the
format string is not a string literal and there are no format arguments,
as in @code{printf (foo);}.  This may be a security hole if the format
string came from untrusted input and contains @samp{%n}.  (This is
currently a subset of what @option{-Wformat-nonliteral} warns about, but
in future warnings may be added to @option{-Wformat-security} that are not
included in @option{-Wformat-nonliteral}.)

@item -Wformat=2
@opindex Wformat=2
@opindex Wno-format=2
Enable @option{-Wformat} plus format checks not included in
@option{-Wformat}.  Currently equivalent to @samp{-Wformat
-Wformat-nonliteral -Wformat-security -Wformat-y2k}.

@item -Wnonnull @r{(C and Objective-C only)}
@opindex Wnonnull
@opindex Wno-nonnull
Warn about passing a null pointer for arguments marked as
requiring a non-null value by the @code{nonnull} function attribute.

@option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
can be disabled with the @option{-Wno-nonnull} option.

@item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
@opindex Winit-self
@opindex Wno-init-self
Warn about uninitialized variables which are initialized with themselves.
Note this option can only be used with the @option{-Wuninitialized} option.

For example, GCC will warn about @code{i} being uninitialized in the
following snippet only when @option{-Winit-self} has been specified:
@smallexample
@group
int f()
@{
  int i = i;
  return i;
@}
@end group
@end smallexample

@item -Wimplicit-int @r{(C and Objective-C only)}
@opindex Wimplicit-int
@opindex Wno-implicit-int
Warn when a declaration does not specify a type.
This warning is enabled by @option{-Wall}.

@item -Wimplicit-function-declaration @r{(C and Objective-C only)}
@opindex Wimplicit-function-declaration
@opindex Wno-implicit-function-declaration
Give a warning whenever a function is used before being declared. In
C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
enabled by default and it is made into an error by
@option{-pedantic-errors}. This warning is also enabled by
@option{-Wall}.

@item -Wimplicit
@opindex Wimplicit
@opindex Wno-implicit
Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
This warning is enabled by @option{-Wall}.

@item -Wignored-qualifiers @r{(C and C++ only)}
@opindex Wignored-qualifiers
@opindex Wno-ignored-qualifiers
Warn if the return type of a function has a type qualifier
such as @code{const}.  For ISO C such a type qualifier has no effect,
since the value returned by a function is not an lvalue.
For C++, the warning is only emitted for scalar types or @code{void}.
ISO C prohibits qualified @code{void} return types on function
definitions, so such return types always receive a warning
even without this option.

This warning is also enabled by @option{-Wextra}.

@item -Wmain
@opindex Wmain
@opindex Wno-main
Warn if the type of @samp{main} is suspicious.  @samp{main} should be
a function with external linkage, returning int, taking either zero
arguments, two, or three arguments of appropriate types.  This warning
is enabled by default in C++ and is enabled by either @option{-Wall}
or @option{-pedantic}.

@item -Wmissing-braces
@opindex Wmissing-braces
@opindex Wno-missing-braces
Warn if an aggregate or union initializer is not fully bracketed.  In
the following example, the initializer for @samp{a} is not fully
bracketed, but that for @samp{b} is fully bracketed.

@smallexample
int a[2][2] = @{ 0, 1, 2, 3 @};
int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
@end smallexample

This warning is enabled by @option{-Wall}.

@item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
@opindex Wmissing-include-dirs
@opindex Wno-missing-include-dirs
Warn if a user-supplied include directory does not exist.

@item -Wparentheses
@opindex Wparentheses
@opindex Wno-parentheses
Warn if parentheses are omitted in certain contexts, such
as when there is an assignment in a context where a truth value
is expected, or when operators are nested whose precedence people
often get confused about.

Also warn if a comparison like @samp{x<=y<=z} appears; this is
equivalent to @samp{(x<=y ? 1 : 0) <= z}, which is a different
interpretation from that of ordinary mathematical notation.

Also warn about constructions where there may be confusion to which
@code{if} statement an @code{else} branch belongs.  Here is an example of
such a case:

@smallexample
@group
@{
  if (a)
    if (b)
      foo ();
  else
    bar ();
@}
@end group
@end smallexample

In C/C++, every @code{else} branch belongs to the innermost possible
@code{if} statement, which in this example is @code{if (b)}.  This is
often not what the programmer expected, as illustrated in the above
example by indentation the programmer chose.  When there is the
potential for this confusion, GCC will issue a warning when this flag
is specified.  To eliminate the warning, add explicit braces around
the innermost @code{if} statement so there is no way the @code{else}
could belong to the enclosing @code{if}.  The resulting code would
look like this:

@smallexample
@group
@{
  if (a)
    @{
      if (b)
        foo ();
      else
        bar ();
    @}
@}
@end group
@end smallexample

This warning is enabled by @option{-Wall}.

@item -Wsequence-point
@opindex Wsequence-point
@opindex Wno-sequence-point
Warn about code that may have undefined semantics because of violations
of sequence point rules in the C and C++ standards.

The C and C++ standards defines the order in which expressions in a C/C++
program are evaluated in terms of @dfn{sequence points}, which represent
a partial ordering between the execution of parts of the program: those
executed before the sequence point, and those executed after it.  These
occur after the evaluation of a full expression (one which is not part
of a larger expression), after the evaluation of the first operand of a
@code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
function is called (but after the evaluation of its arguments and the
expression denoting the called function), and in certain other places.
Other than as expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not specified.  All
these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression
with no sequence point between them, the order in which the functions
are called is not specified.  However, the standards committee have
ruled that function calls do not overlap.

It is not specified when between sequence points modifications to the
values of objects take effect.  Programs whose behavior depends on this
have undefined behavior; the C and C++ standards specify that ``Between
the previous and next sequence point an object shall have its stored
value modified at most once by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine the value
to be stored.''.  If a program breaks these rules, the results on any
particular implementation are entirely unpredictable.

Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
= b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
diagnosed by this option, and it may give an occasional false positive
result, but in general it has been found fairly effective at detecting
this sort of problem in programs.

The standard is worded confusingly, therefore there is some debate
over the precise meaning of the sequence point rules in subtle cases.
Links to discussions of the problem, including proposed formal
definitions, may be found on the GCC readings page, at
@w{@uref{http://gcc.gnu.org/readings.html}}.

This warning is enabled by @option{-Wall} for C and C++.

@item -Wreturn-type
@opindex Wreturn-type
@opindex Wno-return-type
Warn whenever a function is defined with a return-type that defaults
to @code{int}.  Also warn about any @code{return} statement with no
return-value in a function whose return-type is not @code{void}
(falling off the end of the function body is considered returning
without a value), and about a @code{return} statement with a
expression in a function whose return-type is @code{void}.

For C++, a function without return type always produces a diagnostic
message, even when @option{-Wno-return-type} is specified.  The only
exceptions are @samp{main} and functions defined in system headers.

This warning is enabled by @option{-Wall}.

@item -Wswitch
@opindex Wswitch
@opindex Wno-switch
Warn whenever a @code{switch} statement has an index of enumerated type
and lacks a @code{case} for one or more of the named codes of that
enumeration.  (The presence of a @code{default} label prevents this
warning.)  @code{case} labels outside the enumeration range also
provoke warnings when this option is used.
This warning is enabled by @option{-Wall}.

@item -Wswitch-default
@opindex Wswitch-default
@opindex Wno-switch-default
Warn whenever a @code{switch} statement does not have a @code{default}
case.

@item -Wswitch-enum
@opindex Wswitch-enum
@opindex Wno-switch-enum
Warn whenever a @code{switch} statement has an index of enumerated type
and lacks a @code{case} for one or more of the named codes of that
enumeration.  @code{case} labels outside the enumeration range also
provoke warnings when this option is used.

@item -Wsync-nand @r{(C and C++ only)}
@opindex Wsync-nand
@opindex Wno-sync-nand
Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
built-in functions are used.  These functions changed semantics in GCC 4.4.

@item -Wtrigraphs
@opindex Wtrigraphs
@opindex Wno-trigraphs
Warn if any trigraphs are encountered that might change the meaning of
the program (trigraphs within comments are not warned about).
This warning is enabled by @option{-Wall}.

@item -Wunused-function
@opindex Wunused-function
@opindex Wno-unused-function
Warn whenever a static function is declared but not defined or a
non-inline static function is unused.
This warning is enabled by @option{-Wall}.

@item -Wunused-label
@opindex Wunused-label
@opindex Wno-unused-label
Warn whenever a label is declared but not used.
This warning is enabled by @option{-Wall}.

To suppress this warning use the @samp{unused} attribute
(@pxref{Variable Attributes}).

@item -Wunused-parameter
@opindex Wunused-parameter
@opindex Wno-unused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the @samp{unused} attribute
(@pxref{Variable Attributes}).

@item -Wunused-variable
@opindex Wunused-variable
@opindex Wno-unused-variable
Warn whenever a local variable or non-constant static variable is unused
aside from its declaration.
This warning is enabled by @option{-Wall}.

To suppress this warning use the @samp{unused} attribute
(@pxref{Variable Attributes}).

@item -Wunused-value
@opindex Wunused-value
@opindex Wno-unused-value
Warn whenever a statement computes a result that is explicitly not
used. To suppress this warning cast the unused expression to
@samp{void}. This includes an expression-statement or the left-hand
side of a comma expression that contains no side effects. For example,
an expression such as @samp{x[i,j]} will cause a warning, while
@samp{x[(void)i,j]} will not.

This warning is enabled by @option{-Wall}.

@item -Wunused
@opindex Wunused
@opindex Wno-unused
All the above @option{-Wunused} options combined.

In order to get a warning about an unused function parameter, you must
either specify @samp{-Wextra -Wunused} (note that @samp{-Wall} implies
@samp{-Wunused}), or separately specify @option{-Wunused-parameter}.

@item -Wuninitialized
@opindex Wuninitialized
@opindex Wno-uninitialized
Warn if an automatic variable is used without first being initialized
or if a variable may be clobbered by a @code{setjmp} call. In C++,
warn if a non-static reference or non-static @samp{const} member
appears in a class without constructors.

If you want to warn about code which uses the uninitialized value of the
variable in its own initializer, use the @option{-Winit-self} option.

These warnings occur for individual uninitialized or clobbered
elements of structure, union or array variables as well as for
variables which are uninitialized or clobbered as a whole.  They do
not occur for variables or elements declared @code{volatile}.  Because
these warnings depend on optimization, the exact variables or elements
for which there are warnings will depend on the precise optimization
options and version of GCC used.

Note that there may be no warning about a variable that is used only
to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the warnings
are printed.

These warnings are made optional because GCC is not smart
enough to see all the reasons why the code might be correct
despite appearing to have an error.  Here is one example of how
this can happen:

@smallexample
@group
@{
  int x;
  switch (y)
    @{
    case 1: x = 1;
      break;
    case 2: x = 4;
      break;
    case 3: x = 5;
    @}
  foo (x);
@}
@end group
@end smallexample

@noindent
If the value of @code{y} is always 1, 2 or 3, then @code{x} is
always initialized, but GCC doesn't know this.  Here is
another common case:

@smallexample
@{
  int save_y;
  if (change_y) save_y = y, y = new_y;
  @dots{}
  if (change_y) y = save_y;
@}
@end smallexample

@noindent
This has no bug because @code{save_y} is used only if it is set.

@cindex @code{longjmp} warnings
This option also warns when a non-volatile automatic variable might be
changed by a call to @code{longjmp}.  These warnings as well are possible
only in optimizing compilation.

The compiler sees only the calls to @code{setjmp}.  It cannot know
where @code{longjmp} will be called; in fact, a signal handler could
call it at any point in the code.  As a result, you may get a warning
even when there is in fact no problem because @code{longjmp} cannot
in fact be called at the place which would cause a problem.

Some spurious warnings can be avoided if you declare all the functions
you use that never return as @code{noreturn}.  @xref{Function
Attributes}.

This warning is enabled by @option{-Wall} or @option{-Wextra}.

@item -Wunknown-pragmas
@opindex Wunknown-pragmas
@opindex Wno-unknown-pragmas
@cindex warning for unknown pragmas
@cindex unknown pragmas, warning
@cindex pragmas, warning of unknown
Warn when a #pragma directive is encountered which is not understood by
GCC@.  If this command line option is used, warnings will even be issued
for unknown pragmas in system header files.  This is not the case if
the warnings were only enabled by the @option{-Wall} command line option.

@item -Wno-pragmas
@opindex Wno-pragmas
@opindex Wpragmas
Do not warn about misuses of pragmas, such as incorrect parameters,
invalid syntax, or conflicts between pragmas.  See also
@samp{-Wunknown-pragmas}.

@item -Wstrict-aliasing
@opindex Wstrict-aliasing
@opindex Wno-strict-aliasing
This option is only active when @option{-fstrict-aliasing} is active.
It warns about code which might break the strict aliasing rules that the
compiler is using for optimization.  The warning does not catch all
cases, but does attempt to catch the more common pitfalls.  It is
included in @option{-Wall}.
It is equivalent to @option{-Wstrict-aliasing=3}

@item -Wstrict-aliasing=n
@opindex Wstrict-aliasing=n
@opindex Wno-strict-aliasing=n
This option is only active when @option{-fstrict-aliasing} is active.
It warns about code which might break the strict aliasing rules that the
compiler is using for optimization.
Higher levels correspond to higher accuracy (fewer false positives).
Higher levels also correspond to more effort, similar to the way -O works.
@option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=n},
with n=3.

Level 1: Most aggressive, quick, least accurate.
Possibly useful when higher levels
do not warn but -fstrict-aliasing still breaks the code, as it has very few 
false negatives.  However, it has many false positives.
Warns for all pointer conversions between possibly incompatible types, 
even if never dereferenced.  Runs in the frontend only.

Level 2: Aggressive, quick, not too precise.
May still have many false positives (not as many as level 1 though),
and few false negatives (but possibly more than level 1).
Unlike level 1, it only warns when an address is taken.  Warns about
incomplete types.  Runs in the frontend only.

Level 3 (default for @option{-Wstrict-aliasing}): 
Should have very few false positives and few false 
negatives.  Slightly slower than levels 1 or 2 when optimization is enabled.
Takes care of the common punn+dereference pattern in the frontend:
@code{*(int*)&some_float}.
If optimization is enabled, it also runs in the backend, where it deals 
with multiple statement cases using flow-sensitive points-to information.
Only warns when the converted pointer is dereferenced.
Does not warn about incomplete types.

@item -Wstrict-overflow
@itemx -Wstrict-overflow=@var{n}
@opindex Wstrict-overflow
@opindex Wno-strict-overflow
This option is only active when @option{-fstrict-overflow} is active.
It warns about cases where the compiler optimizes based on the
assumption that signed overflow does not occur.  Note that it does not
warn about all cases where the code might overflow: it only warns
about cases where the compiler implements some optimization.  Thus
this warning depends on the optimization level.

An optimization which assumes that signed overflow does not occur is
perfectly safe if the values of the variables involved are such that
overflow never does, in fact, occur.  Therefore this warning can
easily give a false positive: a warning about code which is not
actually a problem.  To help focus on important issues, several
warning levels are defined.  No warnings are issued for the use of
undefined signed overflow when estimating how many iterations a loop
will require, in particular when determining whether a loop will be
executed at all.

@table @gcctabopt
@item -Wstrict-overflow=1
Warn about cases which are both questionable and easy to avoid.  For
example: @code{x + 1 > x}; with @option{-fstrict-overflow}, the
compiler will simplify this to @code{1}.  This level of
@option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
are not, and must be explicitly requested.

@item -Wstrict-overflow=2
Also warn about other cases where a comparison is simplified to a
constant.  For example: @code{abs (x) >= 0}.  This can only be
simplified when @option{-fstrict-overflow} is in effect, because
@code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
zero.  @option{-Wstrict-overflow} (with no level) is the same as
@option{-Wstrict-overflow=2}.

@item -Wstrict-overflow=3
Also warn about other cases where a comparison is simplified.  For
example: @code{x + 1 > 1} will be simplified to @code{x > 0}.

@item -Wstrict-overflow=4
Also warn about other simplifications not covered by the above cases.
For example: @code{(x * 10) / 5} will be simplified to @code{x * 2}.

@item -Wstrict-overflow=5
Also warn about cases where the compiler reduces the magnitude of a
constant involved in a comparison.  For example: @code{x + 2 > y} will
be simplified to @code{x + 1 >= y}.  This is reported only at the
highest warning level because this simplification applies to many
comparisons, so this warning level will give a very large number of
false positives.
@end table

@item -Warray-bounds
@opindex Wno-array-bounds
@opindex Warray-bounds
This option is only active when @option{-ftree-vrp} is active
(default for -O2 and above). It warns about subscripts to arrays
that are always out of bounds. This warning is enabled by @option{-Wall}.

@item -Wno-div-by-zero
@opindex Wno-div-by-zero
@opindex Wdiv-by-zero
Do not warn about compile-time integer division by zero.  Floating point
division by zero is not warned about, as it can be a legitimate way of
obtaining infinities and NaNs.

@item -Wsystem-headers
@opindex Wsystem-headers
@opindex Wno-system-headers
@cindex warnings from system headers
@cindex system headers, warnings from
Print warning messages for constructs found in system header files.
Warnings from system headers are normally suppressed, on the assumption
that they usually do not indicate real problems and would only make the
compiler output harder to read.  Using this command line option tells
GCC to emit warnings from system headers as if they occurred in user
code.  However, note that using @option{-Wall} in conjunction with this
option will @emph{not} warn about unknown pragmas in system
headers---for that, @option{-Wunknown-pragmas} must also be used.

@item -Wfloat-equal
@opindex Wfloat-equal
@opindex Wno-float-equal
Warn if floating point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the
programmer) to consider floating-point values as approximations to
infinitely precise real numbers.  If you are doing this, then you need
to compute (by analyzing the code, or in some other way) the maximum or
likely maximum error that the computation introduces, and allow for it
when performing comparisons (and when producing output, but that's a
different problem).  In particular, instead of testing for equality, you
would check to see whether the two values have ranges that overlap; and
this is done with the relational operators, so equality comparisons are
probably mistaken.

@item -Wtraditional @r{(C and Objective-C only)}
@opindex Wtraditional
@opindex Wno-traditional
Warn about certain constructs that behave differently in traditional and
ISO C@.  Also warn about ISO C constructs that have no traditional C
equivalent, and/or problematic constructs which should be avoided.

@itemize @bullet
@item
Macro parameters that appear within string literals in the macro body.
In traditional C macro replacement takes place within string literals,
but does not in ISO C@.

@item
In traditional C, some preprocessor directives did not exist.
Traditional preprocessors would only consider a line to be a directive
if the @samp{#} appeared in column 1 on the line.  Therefore
@option{-Wtraditional} warns about directives that traditional C
understands but would ignore because the @samp{#} does not appear as the
first character on the line.  It also suggests you hide directives like
@samp{#pragma} not understood by traditional C by indenting them.  Some
traditional implementations would not recognize @samp{#elif}, so it
suggests avoiding it altogether.

@item
A function-like macro that appears without arguments.

@item
The unary plus operator.

@item
The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating point
constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
constants.)  Note, these suffixes appear in macros defined in the system
headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
Use of these macros in user code might normally lead to spurious
warnings, however GCC's integrated preprocessor has enough context to
avoid warning in these cases.

@item
A function declared external in one block and then used after the end of
the block.

@item
A @code{switch} statement has an operand of type @code{long}.

@item
A non-@code{static} function declaration follows a @code{static} one.
This construct is not accepted by some traditional C compilers.

@item
The ISO type of an integer constant has a different width or
signedness from its traditional type.  This warning is only issued if
the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
typically represent bit patterns, are not warned about.

@item
Usage of ISO string concatenation is detected.

@item
Initialization of automatic aggregates.

@item
Identifier conflicts with labels.  Traditional C lacks a separate
namespace for labels.

@item
Initialization of unions.  If the initializer is zero, the warning is
omitted.  This is done under the assumption that the zero initializer in
user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
initializer warnings and relies on default initialization to zero in the
traditional C case.

@item
Conversions by prototypes between fixed/floating point values and vice
versa.  The absence of these prototypes when compiling with traditional
C would cause serious problems.  This is a subset of the possible
conversion warnings, for the full set use @option{-Wtraditional-conversion}.

@item
Use of ISO C style function definitions.  This warning intentionally is
@emph{not} issued for prototype declarations or variadic functions
because these ISO C features will appear in your code when using
libiberty's traditional C compatibility macros, @code{PARAMS} and
@code{VPARAMS}.  This warning is also bypassed for nested functions
because that feature is already a GCC extension and thus not relevant to
traditional C compatibility.
@end itemize

@item -Wtraditional-conversion @r{(C and Objective-C only)}
@opindex Wtraditional-conversion
@opindex Wno-traditional-conversion
Warn if a prototype causes a type conversion that is different from what
would happen to the same argument in the absence of a prototype.  This
includes conversions of fixed point to floating and vice versa, and
conversions changing the width or signedness of a fixed point argument
except when the same as the default promotion.

@item -Wdeclaration-after-statement @r{(C and Objective-C only)}
@opindex Wdeclaration-after-statement
@opindex Wno-declaration-after-statement
Warn when a declaration is found after a statement in a block.  This
construct, known from C++, was introduced with ISO C99 and is by default
allowed in GCC@.  It is not supported by ISO C90 and was not supported by
GCC versions before GCC 3.0.  @xref{Mixed Declarations}.

@item -Wundef
@opindex Wundef
@opindex Wno-undef
Warn if an undefined identifier is evaluated in an @samp{#if} directive.

@item -Wno-endif-labels
@opindex Wno-endif-labels
@opindex Wendif-labels
Do not warn whenever an @samp{#else} or an @samp{#endif} are followed by text.

@item -Wshadow
@opindex Wshadow
@opindex Wno-shadow
Warn whenever a local variable shadows another local variable, parameter or
global variable or whenever a built-in function is shadowed.

@item -Wlarger-than=@var{len}
@opindex Wlarger-than=@var{len}
@opindex Wlarger-than-@var{len}
Warn whenever an object of larger than @var{len} bytes is defined.

@item -Wframe-larger-than=@var{len}
@opindex Wframe-larger-than
Warn if the size of a function frame is larger than @var{len} bytes.
The computation done to determine the stack frame size is approximate
and not conservative.
The actual requirements may be somewhat greater than @var{len}
even if you do not get a warning.  In addition, any space allocated
via @code{alloca}, variable-length arrays, or related constructs
is not included by the compiler when determining
whether or not to issue a warning.

@item -Wunsafe-loop-optimizations
@opindex Wunsafe-loop-optimizations
@opindex Wno-unsafe-loop-optimizations
Warn if the loop cannot be optimized because the compiler could not
assume anything on the bounds of the loop indices.  With
@option{-funsafe-loop-optimizations} warn if the compiler made
such assumptions.

@item -Wno-pedantic-ms-format @r{(MinGW targets only)}
@opindex Wno-pedantic-ms-format
@opindex Wpedantic-ms-format
Disables the warnings about non-ISO @code{printf} / @code{scanf} format
width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets
depending on the MS runtime, when you are using the options @option{-Wformat}
and @option{-pedantic} without gnu-extensions.

@item -Wpointer-arith
@opindex Wpointer-arith
@opindex Wno-pointer-arith
Warn about anything that depends on the ``size of'' a function type or
of @code{void}.  GNU C assigns these types a size of 1, for
convenience in calculations with @code{void *} pointers and pointers
to functions.  In C++, warn also when an arithmetic operation involves
@code{NULL}.  This warning is also enabled by @option{-pedantic}.

@item -Wtype-limits
@opindex Wtype-limits
@opindex Wno-type-limits
Warn if a comparison is always true or always false due to the limited
range of the data type, but do not warn for constant expressions.  For
example, warn if an unsigned variable is compared against zero with
@samp{<} or @samp{>=}.  This warning is also enabled by
@option{-Wextra}.

@item -Wbad-function-cast @r{(C and Objective-C only)}
@opindex Wbad-function-cast
@opindex Wno-bad-function-cast
Warn whenever a function call is cast to a non-matching type.
For example, warn if @code{int malloc()} is cast to @code{anything *}.

@item -Wc++-compat @r{(C and Objective-C only)}
Warn about ISO C constructs that are outside of the common subset of
ISO C and ISO C++, e.g.@: request for implicit conversion from
@code{void *} to a pointer to non-@code{void} type.

@item -Wc++0x-compat @r{(C++ and Objective-C++ only)}
Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 200x, e.g., identifiers in ISO C++ 1998 that will become keywords
in ISO C++ 200x.  This warning is enabled by @option{-Wall}.

@item -Wcast-qual
@opindex Wcast-qual
@opindex Wno-cast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from
the target type.  For example, warn if a @code{const char *} is cast
to an ordinary @code{char *}.

@item -Wcast-align
@opindex Wcast-align
@opindex Wno-cast-align
Warn whenever a pointer is cast such that the required alignment of the
target is increased.  For example, warn if a @code{char *} is cast to
an @code{int *} on machines where integers can only be accessed at
two- or four-byte boundaries.

@item -Wwrite-strings
@opindex Wwrite-strings
@opindex Wno-write-strings
When compiling C, give string constants the type @code{const
char[@var{length}]} so that copying the address of one into a
non-@code{const} @code{char *} pointer will get a warning.  These
warnings will help you find at compile time code that can try to write
into a string constant, but only if you have been very careful about
using @code{const} in declarations and prototypes.  Otherwise, it will
just be a nuisance. This is why we did not make @option{-Wall} request
these warnings.

When compiling C++, warn about the deprecated conversion from string
literals to @code{char *}.  This warning is enabled by default for C++
programs.

@item -Wclobbered
@opindex Wclobbered
@opindex Wno-clobbered
Warn for variables that might be changed by @samp{longjmp} or
@samp{vfork}.  This warning is also enabled by @option{-Wextra}.

@item -Wconversion
@opindex Wconversion
@opindex Wno-conversion
Warn for implicit conversions that may alter a value. This includes
conversions between real and integer, like @code{abs (x)} when
@code{x} is @code{double}; conversions between signed and unsigned,
like @code{unsigned ui = -1}; and conversions to smaller types, like
@code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
changed by the conversion like in @code{abs (2.0)}.  Warnings about
conversions between signed and unsigned integers can be disabled by
using @option{-Wno-sign-conversion}.

For C++, also warn for conversions between @code{NULL} and non-pointer
types; confusing overload resolution for user-defined conversions; and
conversions that will never use a type conversion operator:
conversions to @code{void}, the same type, a base class or a reference
to them. Warnings about conversions between signed and unsigned
integers are disabled by default in C++ unless
@option{-Wsign-conversion} is explicitly enabled.

@item -Wempty-body
@opindex Wempty-body
@opindex Wno-empty-body
Warn if an empty body occurs in an @samp{if}, @samp{else} or @samp{do
while} statement.  This warning is also enabled by @option{-Wextra}.

@item -Wenum-compare @r{(C++ and Objective-C++ only)}
@opindex Wenum-compare
@opindex Wno-enum-compare
Warn about a comparison between values of different enum types. This
warning is enabled by default.

@item -Wsign-compare
@opindex Wsign-compare
@opindex Wno-sign-compare
@cindex warning for comparison of signed and unsigned values
@cindex comparison of signed and unsigned values, warning
@cindex signed and unsigned values, comparison warning
Warn when a comparison between signed and unsigned values could produce
an incorrect result when the signed value is converted to unsigned.
This warning is also enabled by @option{-Wextra}; to get the other warnings
of @option{-Wextra} without this warning, use @samp{-Wextra -Wno-sign-compare}.

@item -Wsign-conversion
@opindex Wsign-conversion
@opindex Wno-sign-conversion
Warn for implicit conversions that may change the sign of an integer
value, like assigning a signed integer expression to an unsigned
integer variable. An explicit cast silences the warning. In C, this
option is enabled also by @option{-Wconversion}.

@item -Waddress
@opindex Waddress
@opindex Wno-address
Warn about suspicious uses of memory addresses. These include using
the address of a function in a conditional expression, such as
@code{void func(void); if (func)}, and comparisons against the memory
address of a string literal, such as @code{if (x == "abc")}.  Such
uses typically indicate a programmer error: the address of a function
always evaluates to true, so their use in a conditional usually
indicate that the programmer forgot the parentheses in a function
call; and comparisons against string literals result in unspecified
behavior and are not portable in C, so they usually indicate that the
programmer intended to use @code{strcmp}.  This warning is enabled by
@option{-Wall}.

@item -Wlogical-op
@opindex Wlogical-op
@opindex Wno-logical-op
Warn about suspicious uses of logical operators in expressions.
This includes using logical operators in contexts where a
bit-wise operator is likely to be expected.

@item -Waggregate-return
@opindex Waggregate-return
@opindex Wno-aggregate-return
Warn if any functions that return structures or unions are defined or
called.  (In languages where you can return an array, this also elicits
a warning.)

@item -Wno-attributes
@opindex Wno-attributes
@opindex Wattributes
Do not warn if an unexpected @code{__attribute__} is used, such as
unrecognized attributes, function attributes applied to variables,
etc.  This will not stop errors for incorrect use of supported
attributes.

@item -Wno-builtin-macro-redefined
@opindex Wno-builtin-macro-redefined
@opindex Wbuiltin-macro-redefined
Do not warn if certain built-in macros are redefined.  This suppresses
warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
@code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.

@item -Wstrict-prototypes @r{(C and Objective-C only)}
@opindex Wstrict-prototypes
@opindex Wno-strict-prototypes
Warn if a function is declared or defined without specifying the
argument types.  (An old-style function definition is permitted without
a warning if preceded by a declaration which specifies the argument
types.)

@item -Wold-style-declaration @r{(C and Objective-C only)}
@opindex Wold-style-declaration
@opindex Wno-old-style-declaration
Warn for obsolescent usages, according to the C Standard, in a
declaration. For example, warn if storage-class specifiers like
@code{static} are not the first things in a declaration.  This warning
is also enabled by @option{-Wextra}.

@item -Wold-style-definition @r{(C and Objective-C only)}
@opindex Wold-style-definition
@opindex Wno-old-style-definition
Warn if an old-style function definition is used.  A warning is given
even if there is a previous prototype.

@item -Wmissing-parameter-type @r{(C and Objective-C only)}
@opindex Wmissing-parameter-type
@opindex Wno-missing-parameter-type
A function parameter is declared without a type specifier in K&R-style
functions:

@smallexample
void foo(bar) @{ @}
@end smallexample

This warning is also enabled by @option{-Wextra}.

@item -Wmissing-prototypes @r{(C and Objective-C only)}
@opindex Wmissing-prototypes
@opindex Wno-missing-prototypes
Warn if a global function is defined without a previous prototype
declaration.  This warning is issued even if the definition itself
provides a prototype.  The aim is to detect global functions that fail
to be declared in header files.

@item -Wmissing-declarations
@opindex Wmissing-declarations
@opindex Wno-missing-declarations
Warn if a global function is defined without a previous declaration.
Do so even if the definition itself provides a prototype.
Use this option to detect global functions that are not declared in
header files.  In C++, no warnings are issued for function templates,
or for inline functions, or for functions in anonymous namespaces.

@item -Wmissing-field-initializers
@opindex Wmissing-field-initializers
@opindex Wno-missing-field-initializers
@opindex W
@opindex Wextra
@opindex Wno-extra
Warn if a structure's initializer has some fields missing.  For
example, the following code would cause such a warning, because
@code{x.h} is implicitly zero:

@smallexample
struct s @{ int f, g, h; @};
struct s x = @{ 3, 4 @};
@end smallexample

This option does not warn about designated initializers, so the following
modification would not trigger a warning:

@smallexample
struct s @{ int f, g, h; @};
struct s x = @{ .f = 3, .g = 4 @};
@end smallexample

This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
warnings without this one, use @samp{-Wextra -Wno-missing-field-initializers}.

@item -Wmissing-noreturn
@opindex Wmissing-noreturn
@opindex Wno-missing-noreturn
Warn about functions which might be candidates for attribute @code{noreturn}.
Note these are only possible candidates, not absolute ones.  Care should
be taken to manually verify functions actually do not ever return before
adding the @code{noreturn} attribute, otherwise subtle code generation
bugs could be introduced.  You will not get a warning for @code{main} in
hosted C environments.

@item -Wmissing-format-attribute
@opindex Wmissing-format-attribute
@opindex Wno-missing-format-attribute
@opindex Wformat
@opindex Wno-format
Warn about function pointers which might be candidates for @code{format}
attributes.  Note these are only possible candidates, not absolute ones.
GCC will guess that function pointers with @code{format} attributes that
are used in assignment, initialization, parameter passing or return
statements should have a corresponding @code{format} attribute in the
resulting type.  I.e.@: the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a @code{format}
attribute to avoid the warning.

GCC will also warn about function definitions which might be
candidates for @code{format} attributes.  Again, these are only
possible candidates.  GCC will guess that @code{format} attributes
might be appropriate for any function that calls a function like
@code{vprintf} or @code{vscanf}, but this might not always be the
case, and some functions for which @code{format} attributes are
appropriate may not be detected.

@item -Wno-multichar
@opindex Wno-multichar
@opindex Wmultichar
Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
Usually they indicate a typo in the user's code, as they have
implementation-defined values, and should not be used in portable code.

@item -Wnormalized=<none|id|nfc|nfkc>
@opindex Wnormalized=
@cindex NFC
@cindex NFKC
@cindex character set, input normalization
In ISO C and ISO C++, two identifiers are different if they are
different sequences of characters.  However, sometimes when characters
outside the basic ASCII character set are used, you can have two
different character sequences that look the same.  To avoid confusion,
the ISO 10646 standard sets out some @dfn{normalization rules} which
when applied ensure that two sequences that look the same are turned into
the same sequence.  GCC can warn you if you are using identifiers which
have not been normalized; this option controls that warning.

There are four levels of warning that GCC supports.  The default is
@option{-Wnormalized=nfc}, which warns about any identifier which is
not in the ISO 10646 ``C'' normalized form, @dfn{NFC}.  NFC is the
recommended form for most uses.

Unfortunately, there are some characters which ISO C and ISO C++ allow
in identifiers that when turned into NFC aren't allowable as
identifiers.  That is, there's no way to use these symbols in portable
ISO C or C++ and have all your identifiers in NFC@.
@option{-Wnormalized=id} suppresses the warning for these characters.
It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.

You can switch the warning off for all characters by writing
@option{-Wnormalized=none}.  You would only want to do this if you
were using some other normalization scheme (like ``D''), because
otherwise you can easily create bugs that are literally impossible to see.

Some characters in ISO 10646 have distinct meanings but look identical
in some fonts or display methodologies, especially once formatting has
been applied.  For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
LETTER N'', will display just like a regular @code{n} which has been
placed in a superscript.  ISO 10646 defines the @dfn{NFKC}
normalization scheme to convert all these into a standard form as
well, and GCC will warn if your code is not in NFKC if you use
@option{-Wnormalized=nfkc}.  This warning is comparable to warning
about every identifier that contains the letter O because it might be
confused with the digit 0, and so is not the default, but may be
useful as a local coding convention if the programming environment is
unable to be fixed to display these characters distinctly.

@item -Wno-deprecated
@opindex Wno-deprecated
@opindex Wdeprecated
Do not warn about usage of deprecated features.  @xref{Deprecated Features}.

@item -Wno-deprecated-declarations
@opindex Wno-deprecated-declarations
@opindex Wdeprecated-declarations
Do not warn about uses of functions (@pxref{Function Attributes}),
variables (@pxref{Variable Attributes}), and types (@pxref{Type
Attributes}) marked as deprecated by using the @code{deprecated}
attribute.

@item -Wno-overflow
@opindex Wno-overflow
@opindex Woverflow
Do not warn about compile-time overflow in constant expressions.

@item -Woverride-init @r{(C and Objective-C only)}
@opindex Woverride-init
@opindex Wno-override-init
@opindex W
@opindex Wextra
@opindex Wno-extra
Warn if an initialized field without side effects is overridden when
using designated initializers (@pxref{Designated Inits, , Designated
Initializers}).

This warning is included in @option{-Wextra}.  To get other
@option{-Wextra} warnings without this one, use @samp{-Wextra
-Wno-override-init}.

@item -Wpacked
@opindex Wpacked
@opindex Wno-packed
Warn if a structure is given the packed attribute, but the packed
attribute has no effect on the layout or size of the structure.
Such structures may be mis-aligned for little benefit.  For
instance, in this code, the variable @code{f.x} in @code{struct bar}
will be misaligned even though @code{struct bar} does not itself
have the packed attribute:

@smallexample
@group
struct foo @{
  int x;
  char a, b, c, d;
@} __attribute__((packed));
struct bar @{
  char z;
  struct foo f;
@};
@end group
@end smallexample

@item -Wpacked-bitfield-compat
@opindex Wpacked-bitfield-compat
@opindex Wno-packed-bitfield-compat
The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
on bit-fields of type @code{char}.  This has been fixed in GCC 4.4 but
the change can lead to differences in the structure layout.  GCC
informs you when the offset of such a field has changed in GCC 4.4.
For example there is no longer a 4-bit padding between field @code{a}
and @code{b} in this structure:

@smallexample
struct foo
@{
  char a:4;
  char b:8;
@} __attribute__ ((packed));
@end smallexample

This warning is enabled by default.  Use
@option{-Wno-packed-bitfield-compat} to disable this warning.

@item -Wpadded
@opindex Wpadded
@opindex Wno-padded
Warn if padding is included in a structure, either to align an element
of the structure or to align the whole structure.  Sometimes when this
happens it is possible to rearrange the fields of the structure to
reduce the padding and so make the structure smaller.

@item -Wredundant-decls
@opindex Wredundant-decls
@opindex Wno-redundant-decls
Warn if anything is declared more than once in the same scope, even in
cases where multiple declaration is valid and changes nothing.

@item -Wnested-externs @r{(C and Objective-C only)}
@opindex Wnested-externs
@opindex Wno-nested-externs
Warn if an @code{extern} declaration is encountered within a function.

@item -Wunreachable-code
@opindex Wunreachable-code
@opindex Wno-unreachable-code
Warn if the compiler detects that code will never be executed.

This option is intended to warn when the compiler detects that at
least a whole line of source code will never be executed, because
some condition is never satisfied or because it is after a
procedure that never returns.

It is possible for this option to produce a warning even though there
are circumstances under which part of the affected line can be executed,
so care should be taken when removing apparently-unreachable code.

For instance, when a function is inlined, a warning may mean that the
line is unreachable in only one inlined copy of the function.

This option is not made part of @option{-Wall} because in a debugging
version of a program there is often substantial code which checks
correct functioning of the program and is, hopefully, unreachable
because the program does work.  Another common use of unreachable
code is to provide behavior which is selectable at compile-time.

@item -Winline
@opindex Winline
@opindex Wno-inline
Warn if a function can not be inlined and it was declared as inline.
Even with this option, the compiler will not warn about failures to
inline functions declared in system headers.

The compiler uses a variety of heuristics to determine whether or not
to inline a function.  For example, the compiler takes into account
the size of the function being inlined and the amount of inlining
that has already been done in the current function.  Therefore,
seemingly insignificant changes in the source program can cause the
warnings produced by @option{-Winline} to appear or disappear.

@item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
@opindex Wno-invalid-offsetof
@opindex Winvalid-offsetof
Suppress warnings from applying the @samp{offsetof} macro to a non-POD
type.  According to the 1998 ISO C++ standard, applying @samp{offsetof}
to a non-POD type is undefined.  In existing C++ implementations,
however, @samp{offsetof} typically gives meaningful results even when
applied to certain kinds of non-POD types. (Such as a simple
@samp{struct} that fails to be a POD type only by virtue of having a
constructor.)  This flag is for users who are aware that they are
writing nonportable code and who have deliberately chosen to ignore the
warning about it.

The restrictions on @samp{offsetof} may be relaxed in a future version
of the C++ standard.

@item -Wno-int-to-pointer-cast @r{(C and Objective-C only)}
@opindex Wno-int-to-pointer-cast
@opindex Wint-to-pointer-cast
Suppress warnings from casts to pointer type of an integer of a
different size.

@item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
@opindex Wno-pointer-to-int-cast
@opindex Wpointer-to-int-cast
Suppress warnings from casts from a pointer to an integer type of a
different size.

@item -Winvalid-pch
@opindex Winvalid-pch
@opindex Wno-invalid-pch
Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
the search path but can't be used.

@item -Wlong-long
@opindex Wlong-long
@opindex Wno-long-long
Warn if @samp{long long} type is used.  This is default.  To inhibit
the warning messages, use @option{-Wno-long-long}.  Flags
@option{-Wlong-long} and @option{-Wno-long-long} are taken into account
only when @option{-pedantic} flag is used.

@item -Wvariadic-macros
@opindex Wvariadic-macros
@opindex Wno-variadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode.  This is default.
To inhibit the warning messages, use @option{-Wno-variadic-macros}.

@item -Wvla
@opindex Wvla
@opindex Wno-vla
Warn if variable length array is used in the code.
@option{-Wno-vla} will prevent the @option{-pedantic} warning of
the variable length array.

@item -Wvolatile-register-var
@opindex Wvolatile-register-var
@opindex Wno-volatile-register-var
Warn if a register variable is declared volatile.  The volatile
modifier does not inhibit all optimizations that may eliminate reads
and/or writes to register variables.  This warning is enabled by
@option{-Wall}.

@item -Wdisabled-optimization
@opindex Wdisabled-optimization
@opindex Wno-disabled-optimization
Warn if a requested optimization pass is disabled.  This warning does
not generally indicate that there is anything wrong with your code; it
merely indicates that GCC's optimizers were unable to handle the code
effectively.  Often, the problem is that your code is too big or too
complex; GCC will refuse to optimize programs when the optimization
itself is likely to take inordinate amounts of time.

@item -Wpointer-sign @r{(C and Objective-C only)}
@opindex Wpointer-sign
@opindex Wno-pointer-sign
Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C@.  It is implied by
@option{-Wall} and by @option{-pedantic}, which can be disabled with
@option{-Wno-pointer-sign}.

@item -Wstack-protector
@opindex Wstack-protector
@opindex Wno-stack-protector
This option is only active when @option{-fstack-protector} is active.  It
warns about functions that will not be protected against stack smashing.

@item -Wno-mudflap
@opindex Wno-mudflap
Suppress warnings about constructs that cannot be instrumented by
@option{-fmudflap}.

@item -Woverlength-strings
@opindex Woverlength-strings
@opindex Wno-overlength-strings
Warn about string constants which are longer than the ``minimum
maximum'' length specified in the C standard.  Modern compilers
generally allow string constants which are much longer than the
standard's minimum limit, but very portable programs should avoid
using longer strings.

The limit applies @emph{after} string constant concatenation, and does
not count the trailing NUL@.  In C89, the limit was 509 characters; in
C99, it was raised to 4095.  C++98 does not specify a normative
minimum maximum, so we do not diagnose overlength strings in C++@.

This option is implied by @option{-pedantic}, and can be disabled with
@option{-Wno-overlength-strings}.
@end table

@node Debugging Options
@section Options for Debugging Your Program or GCC
@cindex options, debugging
@cindex debugging information options

GCC has various special options that are used for debugging
either your program or GCC:

@table @gcctabopt
@item -g
@opindex g
Produce debugging information in the operating system's native format
(stabs, COFF, XCOFF, or DWARF 2)@.  GDB can work with this debugging
information.

On most systems that use stabs format, @option{-g} enables use of extra
debugging information that only GDB can use; this extra information
makes debugging work better in GDB but will probably make other debuggers
crash or
refuse to read the program.  If you want to control for certain whether
to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
@option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).

GCC allows you to use @option{-g} with
@option{-O}.  The shortcuts taken by optimized code may occasionally
produce surprising results: some variables you declared may not exist
at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant
results or their values were already at hand; some statements may
execute in different places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output.  This makes
it reasonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the
capability for more than one debugging format.

@item -ggdb
@opindex ggdb
Produce debugging information for use by GDB@.  This means to use the
most expressive format available (DWARF 2, stabs, or the native format
if neither of those are supported), including GDB extensions if at all
possible.

@item -gstabs
@opindex gstabs
Produce debugging information in stabs format (if that is supported),
without GDB extensions.  This is the format used by DBX on most BSD
systems.  On MIPS, Alpha and System V Release 4 systems this option
produces stabs debugging output which is not understood by DBX or SDB@.
On System V Release 4 systems this option requires the GNU assembler.

@item -feliminate-unused-debug-symbols
@opindex feliminate-unused-debug-symbols
Produce debugging information in stabs format (if that is supported),
for only symbols that are actually used.

@item -femit-class-debug-always
Instead of emitting debugging information for a C++ class in only one
object file, emit it in all object files using the class.  This option
should be used only with debuggers that are unable to handle the way GCC
normally emits debugging information for classes because using this
option will increase the size of debugging information by as much as a
factor of two.

@item -gstabs+
@opindex gstabs+
Produce debugging information in stabs format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB)@.  The
use of these extensions is likely to make other debuggers crash or
refuse to read the program.

@item -gcoff
@opindex gcoff
Produce debugging information in COFF format (if that is supported).
This is the format used by SDB on most System V systems prior to
System V Release 4.

@item -gxcoff
@opindex gxcoff
Produce debugging information in XCOFF format (if that is supported).
This is the format used by the DBX debugger on IBM RS/6000 systems.

@item -gxcoff+
@opindex gxcoff+
Produce debugging information in XCOFF format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB)@.  The
use of these extensions is likely to make other debuggers crash or
refuse to read the program, and may cause assemblers other than the GNU
assembler (GAS) to fail with an error.

@item -gdwarf-2
@opindex gdwarf-2
Produce debugging information in DWARF version 2 format (if that is
supported).  This is the format used by DBX on IRIX 6.  With this
option, GCC uses features of DWARF version 3 when they are useful;
version 3 is upward compatible with version 2, but may still cause
problems for older debuggers.

@item -gvms
@opindex gvms
Produce debugging information in VMS debug format (if that is
supported).  This is the format used by DEBUG on VMS systems.

@item -g@var{level}
@itemx -ggdb@var{level}
@itemx -gstabs@var{level}
@itemx -gcoff@var{level}
@itemx -gxcoff@var{level}
@itemx -gvms@var{level}
Request debugging information and also use @var{level} to specify how
much information.  The default level is 2.

Level 0 produces no debug information at all.  Thus, @option{-g0} negates
@option{-g}.

Level 1 produces minimal information, enough for making backtraces in
parts of the program that you don't plan to debug.  This includes
descriptions of functions and external variables, but no information
about local variables and no line numbers.

Level 3 includes extra information, such as all the macro definitions
present in the program.  Some debuggers support macro expansion when
you use @option{-g3}.

@option{-gdwarf-2} does not accept a concatenated debug level, because
GCC used to support an option @option{-gdwarf} that meant to generate
debug information in version 1 of the DWARF format (which is very
different from version 2), and it would have been too confusing.  That
debug format is long obsolete, but the option cannot be changed now.
Instead use an additional @option{-g@var{level}} option to change the
debug level for DWARF2.

@item -feliminate-dwarf2-dups
@opindex feliminate-dwarf2-dups
Compress DWARF2 debugging information by eliminating duplicated
information about each symbol.  This option only makes sense when
generating DWARF2 debugging information with @option{-gdwarf-2}.

@item -femit-struct-debug-baseonly
Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the struct was defined.

This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger.
See @option{-femit-struct-debug-reduced} for a less aggressive option.
See @option{-femit-struct-debug-detailed} for more detailed control.

This option works only with DWARF 2.

@item -femit-struct-debug-reduced
Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the type was defined,
unless the struct is a template or defined in a system header.

This option significantly reduces the size of debugging information,
with some potential loss in type information to the debugger.
See @option{-femit-struct-debug-baseonly} for a more aggressive option.
See @option{-femit-struct-debug-detailed} for more detailed control.

This option works only with DWARF 2.

@item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
Specify the struct-like types
for which the compiler will generate debug information.
The intent is to reduce duplicate struct debug information
between different object files within the same program.

This option is a detailed version of
@option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
which will serve for most needs.

A specification has the syntax
[@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})

The optional first word limits the specification to
structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
A struct type is used directly when it is the type of a variable, member.
Indirect uses arise through pointers to structs.
That is, when use of an incomplete struct would be legal, the use is indirect.
An example is
@samp{struct one direct; struct two * indirect;}.

The optional second word limits the specification to
ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
Generic structs are a bit complicated to explain.
For C++, these are non-explicit specializations of template classes,
or non-template classes within the above.
Other programming languages have generics,
but @samp{-femit-struct-debug-detailed} does not yet implement them.

The third word specifies the source files for those
structs for which the compiler will emit debug information.
The values @samp{none} and @samp{any} have the normal meaning.
The value @samp{base} means that
the base of name of the file in which the type declaration appears
must match the base of the name of the main compilation file.
In practice, this means that
types declared in @file{foo.c} and @file{foo.h} will have debug information,
but types declared in other header will not.
The value @samp{sys} means those types satisfying @samp{base}
or declared in system or compiler headers.

You may need to experiment to determine the best settings for your application.

The default is @samp{-femit-struct-debug-detailed=all}.

This option works only with DWARF 2.

@item -fno-merge-debug-strings
@opindex fmerge-debug-strings
@opindex fno-merge-debug-strings
Direct the linker to not merge together strings in the debugging
information which are identical in different object files.  Merging is
not supported by all assemblers or linkers.  Merging decreases the size
of the debug information in the output file at the cost of increasing
link processing time.  Merging is enabled by default.

@item -fdebug-prefix-map=@var{old}=@var{new}
@opindex fdebug-prefix-map
When compiling files in directory @file{@var{old}}, record debugging
information describing them as in @file{@var{new}} instead.

@item -fno-dwarf2-cfi-asm
@opindex fdwarf2-cfi-asm
@opindex fno-dwarf2-cfi-asm
Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
instead of using GAS @code{.cfi_*} directives.

@cindex @command{prof}
@item -p
@opindex p
Generate extra code to write profile information suitable for the
analysis program @command{prof}.  You must use this option when compiling
the source files you want data about, and you must also use it when
linking.

@cindex @command{gprof}
@item -pg
@opindex pg
Generate extra code to write profile information suitable for the
analysis program @command{gprof}.  You must use this option when compiling
the source files you want data about, and you must also use it when
linking.

@item -Q
@opindex Q
Makes the compiler print out each function name as it is compiled, and
print some statistics about each pass when it finishes.

@item -ftime-report
@opindex ftime-report
Makes the compiler print some statistics about the time consumed by each
pass when it finishes.

@item -fmem-report
@opindex fmem-report
Makes the compiler print some statistics about permanent memory
allocation when it finishes.

@item -fpre-ipa-mem-report
@opindex fpre-ipa-mem-report
@item -fpost-ipa-mem-report
@opindex fpost-ipa-mem-report
Makes the compiler print some statistics about permanent memory
allocation before or after interprocedural optimization.

@item -fprofile-arcs
@opindex fprofile-arcs
Add code so that program flow @dfn{arcs} are instrumented.  During
execution the program records how many times each branch and call is
executed and how many times it is taken or returns.  When the compiled
program exits it saves this data to a file called
@file{@var{auxname}.gcda} for each source file.  The data may be used for
profile-directed optimizations (@option{-fbranch-probabilities}), or for
test coverage analysis (@option{-ftest-coverage}).  Each object file's
@var{auxname} is generated from the name of the output file, if
explicitly specified and it is not the final executable, otherwise it is
the basename of the source file.  In both cases any suffix is removed
(e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
@file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
@xref{Cross-profiling}.

@cindex @command{gcov}
@item --coverage
@opindex coverage

This option is used to compile and link code instrumented for coverage
analysis.  The option is a synonym for @option{-fprofile-arcs}
@option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
linking).  See the documentation for those options for more details.

@itemize

@item
Compile the source files with @option{-fprofile-arcs} plus optimization
and code generation options.  For test coverage analysis, use the
additional @option{-ftest-coverage} option.  You do not need to profile
every source file in a program.

@item
Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
(the latter implies the former).

@item
Run the program on a representative workload to generate the arc profile
information.  This may be repeated any number of times.  You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated.  Also
@code{fork} calls are detected and correctly handled (double counting
will not happen).

@item
For profile-directed optimizations, compile the source files again with
the same optimization and code generation options plus
@option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
Control Optimization}).

@item
For test coverage analysis, use @command{gcov} to produce human readable
information from the @file{.gcno} and @file{.gcda} files.  Refer to the
@command{gcov} documentation for further information.

@end itemize

With @option{-fprofile-arcs}, for each function of your program GCC
creates a program flow graph, then finds a spanning tree for the graph.
Only arcs that are not on the spanning tree have to be instrumented: the
compiler adds code to count the number of times that these arcs are
executed.  When an arc is the only exit or only entrance to a block, the
instrumentation code can be added to the block; otherwise, a new basic
block must be created to hold the instrumentation code.

@need 2000
@item -ftest-coverage
@opindex ftest-coverage
Produce a notes file that the @command{gcov} code-coverage utility
(@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
show program coverage.  Each source file's note file is called
@file{@var{auxname}.gcno}.  Refer to the @option{-fprofile-arcs} option
above for a description of @var{auxname} and instructions on how to
generate test coverage data.  Coverage data will match the source files
more closely, if you do not optimize.

@item -fdbg-cnt-list
@opindex fdbg-cnt-list
Print the name and the counter upperbound for all debug counters.

@item -fdbg-cnt=@var{counter-value-list}
@opindex fdbg-cnt
Set the internal debug counter upperbound. @var{counter-value-list} 
is a comma-separated list of @var{name}:@var{value} pairs
which sets the upperbound of each debug counter @var{name} to @var{value}.
All debug counters have the initial upperbound of @var{UINT_MAX},
thus dbg_cnt() returns true always unless the upperbound is set by this option.
e.g. With -fdbg-cnt=dce:10,tail_call:0
dbg_cnt(dce) will return true only for first 10 invocations
and dbg_cnt(tail_call) will return false always.

@item -d@var{letters}
@itemx -fdump-rtl-@var{pass}
@opindex d
Says to make debugging dumps during compilation at times specified by
@var{letters}.    This is used for debugging the RTL-based passes of the
compiler.  The file names for most of the dumps are made by appending a
pass number and a word to the @var{dumpname}.  @var{dumpname} is generated
from the name of the output file, if explicitly specified and it is not
an executable, otherwise it is the basename of the source file. These
switches may have different effects when @option{-E} is used for
preprocessing.

Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
@option{-d} option @var{letters}.  Here are the possible
letters for use in @var{pass} and @var{letters}, and their meanings:

@table @gcctabopt

@item -fdump-rtl-alignments
@opindex fdump-rtl-alignments
Dump after branch alignments have been computed.

@item -fdump-rtl-asmcons
@opindex fdump-rtl-asmcons
Dump after fixing rtl statements that have unsatisfied in/out constraints.

@item -fdump-rtl-auto_inc_dec
@opindex fdump-rtl-auto_inc_dec
Dump after auto-inc-dec discovery.  This pass is only run on
architectures that have auto inc or auto dec instructions.

@item -fdump-rtl-barriers
@opindex fdump-rtl-barriers
Dump after cleaning up the barrier instructions.

@item -fdump-rtl-bbpart
@opindex fdump-rtl-bbpart
Dump after partitioning hot and cold basic blocks.

@item -fdump-rtl-bbro
@opindex fdump-rtl-bbro
Dump after block reordering.

@item -fdump-rtl-btl1
@itemx -fdump-rtl-btl2
@opindex fdump-rtl-btl2
@opindex fdump-rtl-btl2
@option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
after the two branch
target load optimization passes.

@item -fdump-rtl-bypass
@opindex fdump-rtl-bypass
Dump after jump bypassing and control flow optimizations.

@item -fdump-rtl-combine
@opindex fdump-rtl-combine
Dump after the RTL instruction combination pass.

@item -fdump-rtl-compgotos
@opindex fdump-rtl-compgotos
Dump after duplicating the computed gotos.

@item -fdump-rtl-ce1
@itemx -fdump-rtl-ce2
@itemx -fdump-rtl-ce3
@opindex fdump-rtl-ce1
@opindex fdump-rtl-ce2
@opindex fdump-rtl-ce3
@option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
@option{-fdump-rtl-ce3} enable dumping after the three
if conversion passes. 

@itemx -fdump-rtl-cprop_hardreg
@opindex fdump-rtl-cprop_hardreg
Dump after hard register copy propagation.

@itemx -fdump-rtl-csa
@opindex fdump-rtl-csa
Dump after combining stack adjustments.

@item -fdump-rtl-cse1
@itemx -fdump-rtl-cse2
@opindex fdump-rtl-cse1
@opindex fdump-rtl-cse2
@option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
the two common sub-expression elimination passes.

@itemx -fdump-rtl-dce
@opindex fdump-rtl-dce
Dump after the standalone dead code elimination passes.

@itemx -fdump-rtl-dbr
@opindex fdump-rtl-dbr
Dump after delayed branch scheduling.

@item -fdump-rtl-dce1
@itemx -fdump-rtl-dce2
@opindex fdump-rtl-dce1
@opindex fdump-rtl-dce2
@option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
the two dead store elimination passes.

@item -fdump-rtl-eh
@opindex fdump-rtl-eh
Dump after finalization of EH handling code.

@item -fdump-rtl-eh_ranges
@opindex fdump-rtl-eh_ranges
Dump after conversion of EH handling range regions.

@item -fdump-rtl-expand
@opindex fdump-rtl-expand
Dump after RTL generation.

@item -fdump-rtl-fwprop1
@itemx -fdump-rtl-fwprop2
@opindex fdump-rtl-fwprop1
@opindex fdump-rtl-fwprop2
@option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
dumping after the two forward propagation passes.

@item -fdump-rtl-gcse1
@itemx -fdump-rtl-gcse2
@opindex fdump-rtl-gcse1
@opindex fdump-rtl-gcse2
@option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
after global common subexpression elimination.

@item -fdump-rtl-init-regs
@opindex fdump-rtl-init-regs
Dump after the initialization of the registers.

@item -fdump-rtl-initvals
@opindex fdump-rtl-initvals
Dump after the computation of the initial value sets.

@itemx -fdump-rtl-into_cfglayout
@opindex fdump-rtl-into_cfglayout
Dump after converting to cfglayout mode.

@item -fdump-rtl-ira
@opindex fdump-rtl-ira
Dump after iterated register allocation.

@item -fdump-rtl-jump
@opindex fdump-rtl-jump
Dump after the second jump optimization.

@item -fdump-rtl-loop2
@opindex fdump-rtl-loop2
@option{-fdump-rtl-loop2} enables dumping after the rtl
loop optimization passes.

@item -fdump-rtl-mach
@opindex fdump-rtl-mach
Dump after performing the machine dependent reorganization pass, if that
pass exists.

@item -fdump-rtl-mode_sw
@opindex fdump-rtl-mode_sw
Dump after removing redundant mode switches.

@item -fdump-rtl-rnreg
@opindex fdump-rtl-rnreg
Dump after register renumbering.

@itemx -fdump-rtl-outof_cfglayout
@opindex fdump-rtl-outof_cfglayout
Dump after converting from cfglayout mode.

@item -fdump-rtl-peephole2
@opindex fdump-rtl-peephole2
Dump after the peephole pass.

@item -fdump-rtl-postreload
@opindex fdump-rtl-postreload
Dump after post-reload optimizations.

@itemx -fdump-rtl-pro_and_epilogue
@opindex fdump-rtl-pro_and_epilogue
Dump after generating the function pro and epilogues.

@item -fdump-rtl-regmove
@opindex fdump-rtl-regmove
Dump after the register move pass.

@item -fdump-rtl-sched1
@itemx -fdump-rtl-sched2
@opindex fdump-rtl-sched1
@opindex fdump-rtl-sched2
@option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
after the basic block scheduling passes.

@item -fdump-rtl-see
@opindex fdump-rtl-see
Dump after sign extension elimination.

@item -fdump-rtl-seqabstr
@opindex fdump-rtl-seqabstr
Dump after common sequence discovery. 

@item -fdump-rtl-shorten
@opindex fdump-rtl-shorten
Dump after shortening branches.

@item -fdump-rtl-sibling
@opindex fdump-rtl-sibling
Dump after sibling call optimizations.

@item -fdump-rtl-split1
@itemx -fdump-rtl-split2
@itemx -fdump-rtl-split3
@itemx -fdump-rtl-split4
@itemx -fdump-rtl-split5
@opindex fdump-rtl-split1
@opindex fdump-rtl-split2
@opindex fdump-rtl-split3
@opindex fdump-rtl-split4
@opindex fdump-rtl-split5
@option{-fdump-rtl-split1}, @option{-fdump-rtl-split2},
@option{-fdump-rtl-split3}, @option{-fdump-rtl-split4} and
@option{-fdump-rtl-split5} enable dumping after five rounds of
instruction splitting.

@item -fdump-rtl-sms
@opindex fdump-rtl-sms
Dump after modulo scheduling.  This pass is only run on some
architectures.

@item -fdump-rtl-stack
@opindex fdump-rtl-stack
Dump after conversion from GCC's "flat register file" registers to the
x87's stack-like registers.  This pass is only run on x86 variants.

@item -fdump-rtl-subreg1
@itemx -fdump-rtl-subreg2
@opindex fdump-rtl-subreg1
@opindex fdump-rtl-subreg2
@option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
the two subreg expansion passes.

@item -fdump-rtl-unshare
@opindex fdump-rtl-unshare
Dump after all rtl has been unshared.

@item -fdump-rtl-vartrack
@opindex fdump-rtl-vartrack
Dump after variable tracking.

@item -fdump-rtl-vregs
@opindex fdump-rtl-vregs
Dump after converting virtual registers to hard registers.

@item -fdump-rtl-web
@opindex fdump-rtl-web
Dump after live range splitting.

@item -fdump-rtl-regclass
@itemx -fdump-rtl-subregs_of_mode_init
@itemx -fdump-rtl-subregs_of_mode_finish
@itemx -fdump-rtl-dfinit
@itemx -fdump-rtl-dfinish
@opindex fdump-rtl-regclass
@opindex fdump-rtl-subregs_of_mode_init
@opindex fdump-rtl-subregs_of_mode_finish
@opindex fdump-rtl-dfinit
@opindex fdump-rtl-dfinish
These dumps are defined but always produce empty files.

@item -fdump-rtl-all
@opindex fdump-rtl-all
Produce all the dumps listed above.

@item -dA
@opindex dA
Annotate the assembler output with miscellaneous debugging information.

@item -dD
@opindex dD
Dump all macro definitions, at the end of preprocessing, in addition to
normal output.

@item -dH
@opindex dH
Produce a core dump whenever an error occurs.

@item -dm
@opindex dm
Print statistics on memory usage, at the end of the run, to
standard error.

@item -dp
@opindex dp
Annotate the assembler output with a comment indicating which
pattern and alternative was used.  The length of each instruction is
also printed.

@item -dP
@opindex dP
Dump the RTL in the assembler output as a comment before each instruction.
Also turns on @option{-dp} annotation.

@item -dv
@opindex dv
For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
dump a representation of the control flow graph suitable for viewing with VCG
to @file{@var{file}.@var{pass}.vcg}.

@item -dx
@opindex dx
Just generate RTL for a function instead of compiling it.  Usually used
with @option{-fdump-rtl-expand}.

@item -dy
@opindex dy
Dump debugging information during parsing, to standard error.
@end table

@item -fdump-noaddr
@opindex fdump-noaddr
When doing debugging dumps, suppress address output.  This makes it more
feasible to use diff on debugging dumps for compiler invocations with
different compiler binaries and/or different
text / bss / data / heap / stack / dso start locations.

@item -fdump-unnumbered
@opindex fdump-unnumbered
When doing debugging dumps, suppress instruction numbers and address output.
This makes it more feasible to use diff on debugging dumps for compiler
invocations with different options, in particular with and without
@option{-g}.

@item -fdump-translation-unit @r{(C++ only)}
@itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
@opindex fdump-translation-unit
Dump a representation of the tree structure for the entire translation
unit to a file.  The file name is made by appending @file{.tu} to the
source file name.  If the @samp{-@var{options}} form is used, @var{options}
controls the details of the dump as described for the
@option{-fdump-tree} options.

@item -fdump-class-hierarchy @r{(C++ only)}
@itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
@opindex fdump-class-hierarchy
Dump a representation of each class's hierarchy and virtual function
table layout to a file.  The file name is made by appending @file{.class}
to the source file name.  If the @samp{-@var{options}} form is used,
@var{options} controls the details of the dump as described for the
@option{-fdump-tree} options.

@item -fdump-ipa-@var{switch}
@opindex fdump-ipa
Control the dumping at various stages of inter-procedural analysis
language tree to a file.  The file name is generated by appending a switch
specific suffix to the source file name.  The following dumps are possible:

@table @samp
@item all
Enables all inter-procedural analysis dumps.

@item cgraph
Dumps information about call-graph optimization, unused function removal,
and inlining decisions.

@item inline
Dump after function inlining.

@end table

@item -fdump-statistics-@var{option}
@opindex -fdump-statistics
Enable and control dumping of pass statistics in a separate file.  The
file name is generated by appending a suffix ending in @samp{.statistics}
to the source file name.  If the @samp{-@var{option}} form is used,
@samp{-stats} will cause counters to be summed over the whole compilation unit
while @samp{-details} will dump every event as the passes generate them.
The default with no option is to sum counters for each function compiled.

@item -fdump-tree-@var{switch}
@itemx -fdump-tree-@var{switch}-@var{options}
@opindex fdump-tree
Control the dumping at various stages of processing the intermediate
language tree to a file.  The file name is generated by appending a switch
specific suffix to the source file name.  If the @samp{-@var{options}}
form is used, @var{options} is a list of @samp{-} separated options that
control the details of the dump.  Not all options are applicable to all
dumps, those which are not meaningful will be ignored.  The following
options are available

@table @samp
@item address
Print the address of each node.  Usually this is not meaningful as it
changes according to the environment and source file.  Its primary use
is for tying up a dump file with a debug environment.
@item slim
Inhibit dumping of members of a scope or body of a function merely
because that scope has been reached.  Only dump such items when they
are directly reachable by some other path.  When dumping pretty-printed
trees, this option inhibits dumping the bodies of control structures.
@item raw
Print a raw representation of the tree.  By default, trees are
pretty-printed into a C-like representation.
@item details
Enable more detailed dumps (not honored by every dump option).
@item stats
Enable dumping various statistics about the pass (not honored by every dump
option).
@item blocks
Enable showing basic block boundaries (disabled in raw dumps).
@item vops
Enable showing virtual operands for every statement.
@item lineno
Enable showing line numbers for statements.
@item uid
Enable showing the unique ID (@code{DECL_UID}) for each variable.
@item verbose
Enable showing the tree dump for each statement.
@item all
Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
and @option{lineno}.
@end table

The following tree dumps are possible:
@table @samp

@item original
Dump before any tree based optimization, to @file{@var{file}.original}.

@item optimized
Dump after all tree based optimization, to @file{@var{file}.optimized}.

@item gimple
@opindex fdump-tree-gimple
Dump each function before and after the gimplification pass to a file.  The
file name is made by appending @file{.gimple} to the source file name.

@item cfg
@opindex fdump-tree-cfg
Dump the control flow graph of each function to a file.  The file name is
made by appending @file{.cfg} to the source file name.

@item vcg
@opindex fdump-tree-vcg
Dump the control flow graph of each function to a file in VCG format.  The
file name is made by appending @file{.vcg} to the source file name.  Note
that if the file contains more than one function, the generated file cannot
be used directly by VCG@.  You will need to cut and paste each function's
graph into its own separate file first.

@item ch
@opindex fdump-tree-ch
Dump each function after copying loop headers.  The file name is made by
appending @file{.ch} to the source file name.

@item ssa
@opindex fdump-tree-ssa
Dump SSA related information to a file.  The file name is made by appending
@file{.ssa} to the source file name.

@item alias
@opindex fdump-tree-alias
Dump aliasing information for each function.  The file name is made by
appending @file{.alias} to the source file name.

@item ccp
@opindex fdump-tree-ccp
Dump each function after CCP@.  The file name is made by appending
@file{.ccp} to the source file name.

@item storeccp
@opindex fdump-tree-storeccp
Dump each function after STORE-CCP@.  The file name is made by appending
@file{.storeccp} to the source file name.

@item pre
@opindex fdump-tree-pre
Dump trees after partial redundancy elimination.  The file name is made
by appending @file{.pre} to the source file name.

@item fre
@opindex fdump-tree-fre
Dump trees after full redundancy elimination.  The file name is made
by appending @file{.fre} to the source file name.

@item copyprop
@opindex fdump-tree-copyprop
Dump trees after copy propagation.  The file name is made
by appending @file{.copyprop} to the source file name.

@item store_copyprop
@opindex fdump-tree-store_copyprop
Dump trees after store copy-propagation.  The file name is made
by appending @file{.store_copyprop} to the source file name.

@item dce
@opindex fdump-tree-dce
Dump each function after dead code elimination.  The file name is made by
appending @file{.dce} to the source file name.

@item mudflap
@opindex fdump-tree-mudflap
Dump each function after adding mudflap instrumentation.  The file name is
made by appending @file{.mudflap} to the source file name.

@item sra
@opindex fdump-tree-sra
Dump each function after performing scalar replacement of aggregates.  The
file name is made by appending @file{.sra} to the source file name.

@item sink
@opindex fdump-tree-sink
Dump each function after performing code sinking.  The file name is made
by appending @file{.sink} to the source file name.

@item dom
@opindex fdump-tree-dom
Dump each function after applying dominator tree optimizations.  The file
name is made by appending @file{.dom} to the source file name.

@item dse
@opindex fdump-tree-dse
Dump each function after applying dead store elimination.  The file
name is made by appending @file{.dse} to the source file name.

@item phiopt
@opindex fdump-tree-phiopt
Dump each function after optimizing PHI nodes into straightline code.  The file
name is made by appending @file{.phiopt} to the source file name.

@item forwprop
@opindex fdump-tree-forwprop
Dump each function after forward propagating single use variables.  The file
name is made by appending @file{.forwprop} to the source file name.

@item copyrename
@opindex fdump-tree-copyrename
Dump each function after applying the copy rename optimization.  The file
name is made by appending @file{.copyrename} to the source file name.

@item nrv
@opindex fdump-tree-nrv
Dump each function after applying the named return value optimization on
generic trees.  The file name is made by appending @file{.nrv} to the source
file name.

@item vect
@opindex fdump-tree-vect
Dump each function after applying vectorization of loops.  The file name is
made by appending @file{.vect} to the source file name.

@item vrp
@opindex fdump-tree-vrp
Dump each function after Value Range Propagation (VRP).  The file name
is made by appending @file{.vrp} to the source file name.

@item all
@opindex fdump-tree-all
Enable all the available tree dumps with the flags provided in this option.
@end table

@item -ftree-vectorizer-verbose=@var{n}
@opindex ftree-vectorizer-verbose
This option controls the amount of debugging output the vectorizer prints.
This information is written to standard error, unless
@option{-fdump-tree-all} or @option{-fdump-tree-vect} is specified,
in which case it is output to the usual dump listing file, @file{.vect}.
For @var{n}=0 no diagnostic information is reported.
If @var{n}=1 the vectorizer reports each loop that got vectorized,
and the total number of loops that got vectorized.
If @var{n}=2 the vectorizer also reports non-vectorized loops that passed
the first analysis phase (vect_analyze_loop_form) - i.e.@: countable,
inner-most, single-bb, single-entry/exit loops.  This is the same verbosity
level that @option{-fdump-tree-vect-stats} uses.
Higher verbosity levels mean either more information dumped for each
reported loop, or same amount of information reported for more loops:
If @var{n}=3, alignment related information is added to the reports.
If @var{n}=4, data-references related information (e.g.@: memory dependences,
memory access-patterns) is added to the reports.
If @var{n}=5, the vectorizer reports also non-vectorized inner-most loops
that did not pass the first analysis phase (i.e., may not be countable, or
may have complicated control-flow).
If @var{n}=6, the vectorizer reports also non-vectorized nested loops.
For @var{n}=7, all the information the vectorizer generates during its
analysis and transformation is reported.  This is the same verbosity level
that @option{-fdump-tree-vect-details} uses.

@item -frandom-seed=@var{string}
@opindex frandom-string
This option provides a seed that GCC uses when it would otherwise use
random numbers.  It is used to generate certain symbol names
that have to be different in every compiled file.  It is also used to
place unique stamps in coverage data files and the object files that
produce them.  You can use the @option{-frandom-seed} option to produce
reproducibly identical object files.

The @var{string} should be different for every file you compile.

@item -fsched-verbose=@var{n}
@opindex fsched-verbose
On targets that use instruction scheduling, this option controls the
amount of debugging output the scheduler prints.  This information is
written to standard error, unless @option{-fdump-rtl-sched1} or
@option{-fdump-rtl-sched2} is specified, in which case it is output
to the usual dump listing file, @file{.sched} or @file{.sched2}
respectively.  However for @var{n} greater than nine, the output is
always printed to standard error.

For @var{n} greater than zero, @option{-fsched-verbose} outputs the
same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
For @var{n} greater than one, it also output basic block probabilities,
detailed ready list information and unit/insn info.  For @var{n} greater
than two, it includes RTL at abort point, control-flow and regions info.
And for @var{n} over four, @option{-fsched-verbose} also includes
dependence info.

@item -save-temps
@opindex save-temps
Store the usual ``temporary'' intermediate files permanently; place them
in the current directory and name them based on the source file.  Thus,
compiling @file{foo.c} with @samp{-c -save-temps} would produce files
@file{foo.i} and @file{foo.s}, as well as @file{foo.o}.  This creates a
preprocessed @file{foo.i} output file even though the compiler now
normally uses an integrated preprocessor.

When used in combination with the @option{-x} command line option,
@option{-save-temps} is sensible enough to avoid over writing an
input source file with the same extension as an intermediate file.
The corresponding intermediate file may be obtained by renaming the
source file before using @option{-save-temps}.

@item -time
@opindex time
Report the CPU time taken by each subprocess in the compilation
sequence.  For C source files, this is the compiler proper and assembler
(plus the linker if linking is done).  The output looks like this:

@smallexample
# cc1 0.12 0.01
# as 0.00 0.01
@end smallexample

The first number on each line is the ``user time'', that is time spent
executing the program itself.  The second number is ``system time'',
time spent executing operating system routines on behalf of the program.
Both numbers are in seconds.

@item -fvar-tracking
@opindex fvar-tracking
Run variable tracking pass.  It computes where variables are stored at each
position in code.  Better debugging information is then generated
(if the debugging information format supports this information).

It is enabled by default when compiling with optimization (@option{-Os},
@option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
the debug info format supports it.

@item -print-file-name=@var{library}
@opindex print-file-name
Print the full absolute name of the library file @var{library} that
would be used when linking---and don't do anything else.  With this
option, GCC does not compile or link anything; it just prints the
file name.

@item -print-multi-directory
@opindex print-multi-directory
Print the directory name corresponding to the multilib selected by any
other switches present in the command line.  This directory is supposed
to exist in @env{GCC_EXEC_PREFIX}.

@item -print-multi-lib
@opindex print-multi-lib
Print the mapping from multilib directory names to compiler switches
that enable them.  The directory name is separated from the switches by
@samp{;}, and each switch starts with an @samp{@@} instead of the
@samp{-}, without spaces between multiple switches.  This is supposed to
ease shell-processing.

@item -print-prog-name=@var{program}
@opindex print-prog-name
Like @option{-print-file-name}, but searches for a program such as @samp{cpp}.

@item -print-libgcc-file-name
@opindex print-libgcc-file-name
Same as @option{-print-file-name=libgcc.a}.

This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
but you do want to link with @file{libgcc.a}.  You can do

@smallexample
gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
@end smallexample

@item -print-search-dirs
@opindex print-search-dirs
Print the name of the configured installation directory and a list of
program and library directories @command{gcc} will search---and don't do anything else.

This is useful when @command{gcc} prints the error message
@samp{installation problem, cannot exec cpp0: No such file or directory}.
To resolve this you either need to put @file{cpp0} and the other compiler
components where @command{gcc} expects to find them, or you can set the environment
variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
Don't forget the trailing @samp{/}.
@xref{Environment Variables}.

@item -print-sysroot
@opindex print-sysroot
Print the target sysroot directory that will be used during
compilation.  This is the target sysroot specified either at configure
time or using the @option{--sysroot} option, possibly with an extra
suffix that depends on compilation options.  If no target sysroot is
specified, the option prints nothing.

@item -print-sysroot-headers-suffix
@opindex print-sysroot-headers-suffix
Print the suffix added to the target sysroot when searching for
headers, or give an error if the compiler is not configured with such
a suffix---and don't do anything else.

@item -dumpmachine
@opindex dumpmachine
Print the compiler's target machine (for example,
@samp{i686-pc-linux-gnu})---and don't do anything else.

@item -dumpversion
@opindex dumpversion
Print the compiler version (for example, @samp{3.0})---and don't do
anything else.

@item -dumpspecs
@opindex dumpspecs
Print the compiler's built-in specs---and don't do anything else.  (This
is used when GCC itself is being built.)  @xref{Spec Files}.

@item -feliminate-unused-debug-types
@opindex feliminate-unused-debug-types
Normally, when producing DWARF2 output, GCC will emit debugging
information for all types declared in a compilation
unit, regardless of whether or not they are actually used
in that compilation unit.  Sometimes this is useful, such as
if, in the debugger, you want to cast a value to a type that is
not actually used in your program (but is declared).  More often,
however, this results in a significant amount of wasted space.
With this option, GCC will avoid producing debug symbol output
for types that are nowhere used in the source file being compiled.
@end table

@node Optimize Options
@section Options That Control Optimization
@cindex optimize options
@cindex options, optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler's goal is to reduce the
cost of compilation and to make debugging produce the expected
results.  Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any
variable or change the program counter to any other statement in the
function and get exactly the results you would expect from the source
code.

Turning on optimization flags makes the compiler attempt to improve
the performance and/or code size at the expense of compilation time
and possibly the ability to debug the program.

The compiler performs optimization based on the knowledge it has of the
program.  Compiling multiple files at once to a single output file mode allows
the compiler to use information gained from all of the files when compiling
each of them.

Not all optimizations are controlled directly by a flag.  Only
optimizations that have a flag are listed.

@table @gcctabopt
@item -O
@itemx -O1
@opindex O
@opindex O1
Optimize.  Optimizing compilation takes somewhat more time, and a lot
more memory for a large function.

With @option{-O}, the compiler tries to reduce code size and execution
time, without performing any optimizations that take a great deal of
compilation time.

@option{-O} turns on the following optimization flags:
@gccoptlist{
-fauto-inc-dec @gol
-fcprop-registers @gol
-fdce @gol
-fdefer-pop @gol
-fdelayed-branch @gol
-fdse @gol
-fguess-branch-probability @gol
-fif-conversion2 @gol
-fif-conversion @gol
-finline-small-functions @gol
-fipa-pure-const @gol
-fipa-reference @gol
-fmerge-constants
-fsplit-wide-types @gol
-ftree-builtin-call-dce @gol
-ftree-ccp @gol
-ftree-ch @gol
-ftree-copyrename @gol
-ftree-dce @gol
-ftree-dominator-opts @gol
-ftree-dse @gol
-ftree-fre @gol
-ftree-sra @gol
-ftree-ter @gol
-funit-at-a-time}

@option{-O} also turns on @option{-fomit-frame-pointer} on machines
where doing so does not interfere with debugging.

@item -O2
@opindex O2
Optimize even more.  GCC performs nearly all supported optimizations
that do not involve a space-speed tradeoff.
As compared to @option{-O}, this option increases both compilation time
and the performance of the generated code.

@option{-O2} turns on all optimization flags specified by @option{-O}.  It
also turns on the following optimization flags:
@gccoptlist{-fthread-jumps @gol
-falign-functions  -falign-jumps @gol
-falign-loops  -falign-labels @gol
-fcaller-saves @gol
-fcrossjumping @gol
-fcse-follow-jumps  -fcse-skip-blocks @gol
-fdelete-null-pointer-checks @gol
-fexpensive-optimizations @gol
-fgcse  -fgcse-lm  @gol
-findirect-inlining @gol
-foptimize-sibling-calls @gol
-fpeephole2 @gol
-fregmove @gol
-freorder-blocks  -freorder-functions @gol
-frerun-cse-after-loop  @gol
-fsched-interblock  -fsched-spec @gol
-fschedule-insns  -fschedule-insns2 @gol
-fstrict-aliasing -fstrict-overflow @gol
-ftree-switch-conversion @gol
-ftree-pre @gol
-ftree-vrp}

Please note the warning under @option{-fgcse} about
invoking @option{-O2} on programs that use computed gotos.

@item -O3
@opindex O3
Optimize yet more.  @option{-O3} turns on all optimizations specified
by @option{-O2} and also turns on the @option{-finline-functions},
@option{-funswitch-loops}, @option{-fpredictive-commoning},
@option{-fgcse-after-reload} and @option{-ftree-vectorize} options.

@item -O0
@opindex O0
Reduce compilation time and make debugging produce the expected
results.  This is the default.

@item -Os
@opindex Os
Optimize for size.  @option{-Os} enables all @option{-O2} optimizations that
do not typically increase code size.  It also performs further
optimizations designed to reduce code size.

@option{-Os} disables the following optimization flags:
@gccoptlist{-falign-functions  -falign-jumps  -falign-loops @gol
-falign-labels  -freorder-blocks  -freorder-blocks-and-partition @gol
-fprefetch-loop-arrays  -ftree-vect-loop-version}

If you use multiple @option{-O} options, with or without level numbers,
the last such option is the one that is effective.
@end table

Options of the form @option{-f@var{flag}} specify machine-independent
flags.  Most flags have both positive and negative forms; the negative
form of @option{-ffoo} would be @option{-fno-foo}.  In the table
below, only one of the forms is listed---the one you typically will
use.  You can figure out the other form by either removing @samp{no-}
or adding it.

The following options control specific optimizations.  They are either
activated by @option{-O} options or are related to ones that are.  You
can use the following flags in the rare cases when ``fine-tuning'' of
optimizations to be performed is desired.

@table @gcctabopt
@item -fno-default-inline
@opindex fno-default-inline
Do not make member functions inline by default merely because they are
defined inside the class scope (C++ only).  Otherwise, when you specify
@w{@option{-O}}, member functions defined inside class scope are compiled
inline by default; i.e., you don't need to add @samp{inline} in front of
the member function name.

@item -fno-defer-pop
@opindex fno-defer-pop
Always pop the arguments to each function call as soon as that function
returns.  For machines which must pop arguments after a function call,
the compiler normally lets arguments accumulate on the stack for several
function calls and pops them all at once.

Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

@item -fforward-propagate
@opindex fforward-propagate
Perform a forward propagation pass on RTL@.  The pass tries to combine two
instructions and checks if the result can be simplified.  If loop unrolling
is active, two passes are performed and the second is scheduled after
loop unrolling.

This option is enabled by default at optimization levels @option{-O2},
@option{-O3}, @option{-Os}.

@item -fomit-frame-pointer
@opindex fomit-frame-pointer
Don't keep the frame pointer in a register for functions that
don't need one.  This avoids the instructions to save, set up and
restore frame pointers; it also makes an extra register available
in many functions.  @strong{It also makes debugging impossible on
some machines.}

On some machines, such as the VAX, this flag has no effect, because
the standard calling sequence automatically handles the frame pointer
and nothing is saved by pretending it doesn't exist.  The
machine-description macro @code{FRAME_POINTER_REQUIRED} controls
whether a target machine supports this flag.  @xref{Registers,,Register
Usage, gccint, GNU Compiler Collection (GCC) Internals}.

Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

@item -foptimize-sibling-calls
@opindex foptimize-sibling-calls
Optimize sibling and tail recursive calls.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fno-inline
@opindex fno-inline
Don't pay attention to the @code{inline} keyword.  Normally this option
is used to keep the compiler from expanding any functions inline.
Note that if you are not optimizing, no functions can be expanded inline.

@item -finline-small-functions
@opindex finline-small-functions
Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller).  The compiler
heuristically decides which functions are simple enough to be worth integrating
in this way.

Enabled at level @option{-O2}.

@item -findirect-inlining
@opindex findirect-inlining
Inline also indirect calls that are discovered to be known at compile
time thanks to previous inlining.  This option has any effect only
when inlining itself is turned on by the @option{-finline-functions}
or @option{-finline-small-functions} options.

Enabled at level @option{-O2}.

@item -finline-functions
@opindex finline-functions
Integrate all simple functions into their callers.  The compiler
heuristically decides which functions are simple enough to be worth
integrating in this way.

If all calls to a given function are integrated, and the function is
declared @code{static}, then the function is normally not output as
assembler code in its own right.

Enabled at level @option{-O3}.

@item -finline-functions-called-once
@opindex finline-functions-called-once
Consider all @code{static} functions called once for inlining into their
caller even if they are not marked @code{inline}.  If a call to a given
function is integrated, then the function is not output as assembler code
in its own right.

Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.

@item -fearly-inlining
@opindex fearly-inlining
Inline functions marked by @code{always_inline} and functions whose body seems
smaller than the function call overhead early before doing
@option{-fprofile-generate} instrumentation and real inlining pass.  Doing so
makes profiling significantly cheaper and usually inlining faster on programs
having large chains of nested wrapper functions.

Enabled by default.

@item -finline-limit=@var{n}
@opindex finline-limit
By default, GCC limits the size of functions that can be inlined.  This flag
allows coarse control of this limit.  @var{n} is the size of functions that
can be inlined in number of pseudo instructions.

Inlining is actually controlled by a number of parameters, which may be
specified individually by using @option{--param @var{name}=@var{value}}.
The @option{-finline-limit=@var{n}} option sets some of these parameters
as follows:

@table @gcctabopt
@item max-inline-insns-single
is set to @var{n}/2.
@item max-inline-insns-auto
is set to @var{n}/2.
@end table

See below for a documentation of the individual
parameters controlling inlining and for the defaults of these parameters.

@emph{Note:} there may be no value to @option{-finline-limit} that results
in default behavior.

@emph{Note:} pseudo instruction represents, in this particular context, an
abstract measurement of function's size.  In no way does it represent a count
of assembly instructions and as such its exact meaning might change from one
release to an another.

@item -fkeep-inline-functions
@opindex fkeep-inline-functions
In C, emit @code{static} functions that are declared @code{inline}
into the object file, even if the function has been inlined into all
of its callers.  This switch does not affect functions using the
@code{extern inline} extension in GNU C89@.  In C++, emit any and all
inline functions into the object file.

@item -fkeep-static-consts
@opindex fkeep-static-consts
Emit variables declared @code{static const} when optimization isn't turned
on, even if the variables aren't referenced.

GCC enables this option by default.  If you want to force the compiler to
check if the variable was referenced, regardless of whether or not
optimization is turned on, use the @option{-fno-keep-static-consts} option.

@item -fmerge-constants
@opindex fmerge-constants
Attempt to merge identical constants (string constants and floating point
constants) across compilation units.

This option is the default for optimized compilation if the assembler and
linker support it.  Use @option{-fno-merge-constants} to inhibit this
behavior.

Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

@item -fmerge-all-constants
@opindex fmerge-all-constants
Attempt to merge identical constants and identical variables.

This option implies @option{-fmerge-constants}.  In addition to
@option{-fmerge-constants} this considers e.g.@: even constant initialized
arrays or initialized constant variables with integral or floating point
types.  Languages like C or C++ require each variable, including multiple
instances of the same variable in recursive calls, to have distinct locations,
so using this option will result in non-conforming
behavior.

@item -fmodulo-sched
@opindex fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling
pass.  This pass looks at innermost loops and reorders their
instructions by overlapping different iterations.

@item -fmodulo-sched-allow-regmoves
@opindex fmodulo-sched-allow-regmoves
Perform more aggressive SMS based modulo scheduling with register moves
allowed.  By setting this flag certain anti-dependences edges will be
deleted which will trigger the generation of reg-moves based on the
life-range analysis.  This option is effective only with
@option{-fmodulo-sched} enabled.

@item -fno-branch-count-reg
@opindex fno-branch-count-reg
Do not use ``decrement and branch'' instructions on a count register,
but instead generate a sequence of instructions that decrement a
register, compare it against zero, then branch based upon the result.
This option is only meaningful on architectures that support such
instructions, which include x86, PowerPC, IA-64 and S/390.

The default is @option{-fbranch-count-reg}.

@item -fno-function-cse
@opindex fno-function-cse
Do not put function addresses in registers; make each instruction that
calls a constant function contain the function's address explicitly.

This option results in less efficient code, but some strange hacks
that alter the assembler output may be confused by the optimizations
performed when this option is not used.

The default is @option{-ffunction-cse}

@item -fno-zero-initialized-in-bss
@opindex fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that
are initialized to zero into BSS@.  This can save space in the resulting
code.

This option turns off this behavior because some programs explicitly
rely on variables going to the data section.  E.g., so that the
resulting executable can find the beginning of that section and/or make
assumptions based on that.

The default is @option{-fzero-initialized-in-bss}.

@item -fmudflap -fmudflapth -fmudflapir
@opindex fmudflap
@opindex fmudflapth
@opindex fmudflapir
@cindex bounds checking
@cindex mudflap
For front-ends that support it (C and C++), instrument all risky
pointer/array dereferencing operations, some standard library
string/heap functions, and some other associated constructs with
range/validity tests.  Modules so instrumented should be immune to
buffer overflows, invalid heap use, and some other classes of C/C++
programming errors.  The instrumentation relies on a separate runtime
library (@file{libmudflap}), which will be linked into a program if
@option{-fmudflap} is given at link time.  Run-time behavior of the
instrumented program is controlled by the @env{MUDFLAP_OPTIONS}
environment variable.  See @code{env MUDFLAP_OPTIONS=-help a.out}
for its options.

Use @option{-fmudflapth} instead of @option{-fmudflap} to compile and to
link if your program is multi-threaded.  Use @option{-fmudflapir}, in
addition to @option{-fmudflap} or @option{-fmudflapth}, if
instrumentation should ignore pointer reads.  This produces less
instrumentation (and therefore faster execution) and still provides
some protection against outright memory corrupting writes, but allows
erroneously read data to propagate within a program.

@item -fthread-jumps
@opindex fthread-jumps
Perform optimizations where we check to see if a jump branches to a
location where another comparison subsumed by the first is found.  If
so, the first branch is redirected to either the destination of the
second branch or a point immediately following it, depending on whether
the condition is known to be true or false.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fsplit-wide-types
@opindex fsplit-wide-types
When using a type that occupies multiple registers, such as @code{long
long} on a 32-bit system, split the registers apart and allocate them
independently.  This normally generates better code for those types,
but may make debugging more difficult.

Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
@option{-Os}.

@item -fcse-follow-jumps
@opindex fcse-follow-jumps
In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path.  For
example, when CSE encounters an @code{if} statement with an
@code{else} clause, CSE will follow the jump when the condition
tested is false.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fcse-skip-blocks
@opindex fcse-skip-blocks
This is similar to @option{-fcse-follow-jumps}, but causes CSE to
follow jumps which conditionally skip over blocks.  When CSE
encounters a simple @code{if} statement with no else clause,
@option{-fcse-skip-blocks} causes CSE to follow the jump around the
body of the @code{if}.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -frerun-cse-after-loop
@opindex frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations has been
performed.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fgcse
@opindex fgcse
Perform a global common subexpression elimination pass.
This pass also performs global constant and copy propagation.

@emph{Note:} When compiling a program using computed gotos, a GCC
extension, you may get better runtime performance if you disable
the global common subexpression elimination pass by adding
@option{-fno-gcse} to the command line.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fgcse-lm
@opindex fgcse-lm
When @option{-fgcse-lm} is enabled, global common subexpression elimination will
attempt to move loads which are only killed by stores into themselves.  This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

Enabled by default when gcse is enabled.

@item -fgcse-sm
@opindex fgcse-sm
When @option{-fgcse-sm} is enabled, a store motion pass is run after
global common subexpression elimination.  This pass will attempt to move
stores out of loops.  When used in conjunction with @option{-fgcse-lm},
loops containing a load/store sequence can be changed to a load before
the loop and a store after the loop.

Not enabled at any optimization level.

@item -fgcse-las
@opindex fgcse-las
When @option{-fgcse-las} is enabled, the global common subexpression
elimination pass eliminates redundant loads that come after stores to the
same memory location (both partial and full redundancies).

Not enabled at any optimization level.

@item -fgcse-after-reload
@opindex fgcse-after-reload
When @option{-fgcse-after-reload} is enabled, a redundant load elimination
pass is performed after reload.  The purpose of this pass is to cleanup
redundant spilling.

@item -funsafe-loop-optimizations
@opindex funsafe-loop-optimizations
If given, the loop optimizer will assume that loop indices do not
overflow, and that the loops with nontrivial exit condition are not
infinite.  This enables a wider range of loop optimizations even if
the loop optimizer itself cannot prove that these assumptions are valid.
Using @option{-Wunsafe-loop-optimizations}, the compiler will warn you
if it finds this kind of loop.

@item -fcrossjumping
@opindex fcrossjumping
Perform cross-jumping transformation.  This transformation unifies equivalent code and save code size.  The
resulting code may or may not perform better than without cross-jumping.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fauto-inc-dec
@opindex fauto-inc-dec
Combine increments or decrements of addresses with memory accesses.
This pass is always skipped on architectures that do not have
instructions to support this.  Enabled by default at @option{-O} and
higher on architectures that support this.

@item -fdce
@opindex fdce
Perform dead code elimination (DCE) on RTL@.
Enabled by default at @option{-O} and higher.

@item -fdse
@opindex fdse
Perform dead store elimination (DSE) on RTL@.
Enabled by default at @option{-O} and higher.

@item -fif-conversion
@opindex fif-conversion
Attempt to transform conditional jumps into branch-less equivalents.  This
include use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics.  The use of conditional execution
on chips where it is available is controlled by @code{if-conversion2}.

Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

@item -fif-conversion2
@opindex fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

@item -fdelete-null-pointer-checks
@opindex fdelete-null-pointer-checks
Use global dataflow analysis to identify and eliminate useless checks
for null pointers.  The compiler assumes that dereferencing a null
pointer would have halted the program.  If a pointer is checked after
it has already been dereferenced, it cannot be null.

In some environments, this assumption is not true, and programs can
safely dereference null pointers.  Use
@option{-fno-delete-null-pointer-checks} to disable this optimization
for programs which depend on that behavior.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fexpensive-optimizations
@opindex fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -foptimize-register-move
@itemx -fregmove
@opindex foptimize-register-move
@opindex fregmove
Attempt to reassign register numbers in move instructions and as
operands of other simple instructions in order to maximize the amount of
register tying.  This is especially helpful on machines with two-operand
instructions.

Note @option{-fregmove} and @option{-foptimize-register-move} are the same
optimization.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fira-algorithm=@var{algorithm}
Use specified coloring algorithm for the integrated register
allocator.  The @var{algorithm} argument should be @code{priority} or
@code{CB}.  The first algorithm specifies Chow's priority coloring,
the second one specifies Chaitin-Briggs coloring.  The second
algorithm can be unimplemented for some architectures.  If it is
implemented, it is the default because Chaitin-Briggs coloring as a
rule generates a better code.

@item -fira-region=@var{region}
Use specified regions for the integrated register allocator.  The
@var{region} argument should be one of @code{all}, @code{mixed}, or
@code{one}.  The first value means using all loops as register
allocation regions, the second value which is the default means using
all loops except for loops with small register pressure as the
regions, and third one means using all function as a single region.
The first value can give best result for machines with small size and
irregular register set, the third one results in faster and generates
decent code and the smallest size code, and the default value usually
give the best results in most cases and for most architectures.

@item -fira-coalesce
@opindex fira-coalesce
Do optimistic register coalescing.  This option might be profitable for
architectures with big regular register files.

@item -fno-ira-share-save-slots
@opindex fno-ira-share-save-slots
Switch off sharing stack slots used for saving call used hard
registers living through a call.  Each hard register will get a
separate stack slot and as a result function stack frame will be
bigger.

@item -fno-ira-share-spill-slots
@opindex fno-ira-share-spill-slots
Switch off sharing stack slots allocated for pseudo-registers.  Each
pseudo-register which did not get a hard register will get a separate
stack slot and as a result function stack frame will be bigger.

@item -fira-verbose=@var{n}
@opindex fira-verbose
Set up how verbose dump file for the integrated register allocator
will be.  Default value is 5.  If the value is greater or equal to 10,
the dump file will be stderr as if the value were @var{n} minus 10.

@item -fdelayed-branch
@opindex fdelayed-branch
If supported for the target machine, attempt to reorder instructions
to exploit instruction slots available after delayed branch
instructions.

Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

@item -fschedule-insns
@opindex fschedule-insns
If supported for the target machine, attempt to reorder instructions to
eliminate execution stalls due to required data being unavailable.  This
helps machines that have slow floating point or memory load instructions
by allowing other instructions to be issued until the result of the load
or floating point instruction is required.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fschedule-insns2
@opindex fschedule-insns2
Similar to @option{-fschedule-insns}, but requests an additional pass of
instruction scheduling after register allocation has been done.  This is
especially useful on machines with a relatively small number of
registers and where memory load instructions take more than one cycle.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fno-sched-interblock
@opindex fno-sched-interblock
Don't schedule instructions across basic blocks.  This is normally
enabled by default when scheduling before register allocation, i.e.@:
with @option{-fschedule-insns} or at @option{-O2} or higher.

@item -fno-sched-spec
@opindex fno-sched-spec
Don't allow speculative motion of non-load instructions.  This is normally
enabled by default when scheduling before register allocation, i.e.@:
with @option{-fschedule-insns} or at @option{-O2} or higher.

@item -fsched-spec-load
@opindex fsched-spec-load
Allow speculative motion of some load instructions.  This only makes
sense when scheduling before register allocation, i.e.@: with
@option{-fschedule-insns} or at @option{-O2} or higher.

@item -fsched-spec-load-dangerous
@opindex fsched-spec-load-dangerous
Allow speculative motion of more load instructions.  This only makes
sense when scheduling before register allocation, i.e.@: with
@option{-fschedule-insns} or at @option{-O2} or higher.

@item -fsched-stalled-insns
@itemx -fsched-stalled-insns=@var{n}
@opindex fsched-stalled-insns
Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list, during the second scheduling pass.
@option{-fno-sched-stalled-insns} means that no insns will be moved
prematurely, @option{-fsched-stalled-insns=0} means there is no limit
on how many queued insns can be moved prematurely.
@option{-fsched-stalled-insns} without a value is equivalent to
@option{-fsched-stalled-insns=1}.

@item -fsched-stalled-insns-dep
@itemx -fsched-stalled-insns-dep=@var{n}
@opindex fsched-stalled-insns-dep
Define how many insn groups (cycles) will be examined for a dependency
on a stalled insn that is candidate for premature removal from the queue
of stalled insns.  This has an effect only during the second scheduling pass,
and only if @option{-fsched-stalled-insns} is used.
@option{-fno-sched-stalled-insns-dep} is equivalent to
@option{-fsched-stalled-insns-dep=0}.
@option{-fsched-stalled-insns-dep} without a value is equivalent to
@option{-fsched-stalled-insns-dep=1}.

@item -fsched2-use-superblocks
@opindex fsched2-use-superblocks
When scheduling after register allocation, do use superblock scheduling
algorithm.  Superblock scheduling allows motion across basic block boundaries
resulting on faster schedules.  This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.

This only makes sense when scheduling after register allocation, i.e.@: with
@option{-fschedule-insns2} or at @option{-O2} or higher.

@item -fsched2-use-traces
@opindex fsched2-use-traces
Use @option{-fsched2-use-superblocks} algorithm when scheduling after register
allocation and additionally perform code duplication in order to increase the
size of superblocks using tracer pass.  See @option{-ftracer} for details on
trace formation.

This mode should produce faster but significantly longer programs.  Also
without @option{-fbranch-probabilities} the traces constructed may not
match the reality and hurt the performance.  This only makes
sense when scheduling after register allocation, i.e.@: with
@option{-fschedule-insns2} or at @option{-O2} or higher.

@item -fsee
@opindex fsee
Eliminate redundant sign extension instructions and move the non-redundant
ones to optimal placement using lazy code motion (LCM).

@item -freschedule-modulo-scheduled-loops
@opindex freschedule-modulo-scheduled-loops
The modulo scheduling comes before the traditional scheduling, if a loop
was modulo scheduled we may want to prevent the later scheduling passes
from changing its schedule, we use this option to control that.

@item -fselective-scheduling
@opindex fselective-scheduling
Schedule instructions using selective scheduling algorithm.  Selective
scheduling runs instead of the first scheduler pass.

@item -fselective-scheduling2
@opindex fselective-scheduling2
Schedule instructions using selective scheduling algorithm.  Selective
scheduling runs instead of the second scheduler pass.

@item -fsel-sched-pipelining
@opindex fsel-sched-pipelining
Enable software pipelining of innermost loops during selective scheduling.  
This option has no effect until one of @option{-fselective-scheduling} or 
@option{-fselective-scheduling2} is turned on.

@item -fsel-sched-pipelining-outer-loops
@opindex fsel-sched-pipelining-outer-loops
When pipelining loops during selective scheduling, also pipeline outer loops.
This option has no effect until @option{-fsel-sched-pipelining} is turned on.

@item -fcaller-saves
@opindex fcaller-saves
Enable values to be allocated in registers that will be clobbered by
function calls, by emitting extra instructions to save and restore the
registers around such calls.  Such allocation is done only when it
seems to result in better code than would otherwise be produced.

This option is always enabled by default on certain machines, usually
those which have no call-preserved registers to use instead.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fconserve-stack
@opindex fconserve-stack
Attempt to minimize stack usage.  The compiler will attempt to use less
stack space, even if that makes the program slower.  This option
implies setting the @option{large-stack-frame} parameter to 100
and the @option{large-stack-frame-growth} parameter to 400.

@item -ftree-reassoc
@opindex ftree-reassoc
Perform reassociation on trees.  This flag is enabled by default
at @option{-O} and higher.

@item -ftree-pre
@opindex ftree-pre
Perform partial redundancy elimination (PRE) on trees.  This flag is
enabled by default at @option{-O2} and @option{-O3}.

@item -ftree-fre
@opindex ftree-fre
Perform full redundancy elimination (FRE) on trees.  The difference
between FRE and PRE is that FRE only considers expressions
that are computed on all paths leading to the redundant computation.
This analysis is faster than PRE, though it exposes fewer redundancies.
This flag is enabled by default at @option{-O} and higher.

@item -ftree-copy-prop
@opindex ftree-copy-prop
Perform copy propagation on trees.  This pass eliminates unnecessary
copy operations.  This flag is enabled by default at @option{-O} and
higher.

@item -fipa-pure-const
@opindex fipa-pure-const
Discover which functions are pure or constant.
Enabled by default at @option{-O} and higher.

@item -fipa-reference
@opindex fipa-reference
Discover which static variables do not escape cannot escape the
compilation unit.
Enabled by default at @option{-O} and higher.

@item -fipa-struct-reorg
@opindex fipa-struct-reorg
Perform structure reorganization optimization, that change C-like structures 
layout in order to better utilize spatial locality.  This transformation is 
affective for programs containing arrays of structures.  Available in two 
compilation modes: profile-based (enabled with @option{-fprofile-generate})
or static (which uses built-in heuristics).  Require @option{-fipa-type-escape}
to provide the safety of this transformation.  It works only in whole program
mode, so it requires @option{-fwhole-program} and @option{-combine} to be
enabled.  Structures considered @samp{cold} by this transformation are not
affected (see @option{--param struct-reorg-cold-struct-ratio=@var{value}}).

With this flag, the program debug info reflects a new structure layout.

@item -fipa-pta
@opindex fipa-pta
Perform interprocedural pointer analysis.  This option is experimental
and does not affect generated code.

@item -fipa-cp
@opindex fipa-cp
Perform interprocedural constant propagation.
This optimization analyzes the program to determine when values passed
to functions are constants and then optimizes accordingly.  
This optimization can substantially increase performance
if the application has constants passed to functions.
This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.

@item -fipa-cp-clone
@opindex fipa-cp-clone
Perform function cloning to make interprocedural constant propagation stronger.
When enabled, interprocedural constant propagation will perform function cloning
when externally visible function can be called with constant arguments.
Because this optimization can create multiple copies of functions,
it may significantly increase code size
(see @option{--param ipcp-unit-growth=@var{value}}).
This flag is enabled by default at @option{-O3}.

@item -fipa-matrix-reorg
@opindex fipa-matrix-reorg
Perform matrix flattening and transposing.
Matrix flattening tries to replace a m-dimensional matrix 
with its equivalent n-dimensional matrix, where n < m.
This reduces the level of indirection needed for accessing the elements
of the matrix. The second optimization is matrix transposing that
attempts to change the order of the matrix's dimensions in order to
improve cache locality.
Both optimizations need the @option{-fwhole-program} flag. 
Transposing is enabled only if profiling information is available.


@item -ftree-sink
@opindex ftree-sink
Perform forward store motion  on trees.  This flag is
enabled by default at @option{-O} and higher.

@item -ftree-ccp
@opindex ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees.  This
pass only operates on local scalar variables and is enabled by default
at @option{-O} and higher.

@item -ftree-switch-conversion
Perform conversion of simple initializations in a switch to
initializations from a scalar array.  This flag is enabled by default
at @option{-O2} and higher.

@item -ftree-dce
@opindex ftree-dce
Perform dead code elimination (DCE) on trees.  This flag is enabled by
default at @option{-O} and higher.

@item -ftree-builtin-call-dce
@opindex ftree-builtin-call-dce
Perform conditional dead code elimination (DCE) for calls to builtin functions 
that may set @code{errno} but are otherwise side-effect free.  This flag is 
enabled by default at @option{-O2} and higher if @option{-Os} is not also 
specified.

@item -ftree-dominator-opts
@opindex ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy
propagation, redundancy elimination, range propagation and expression
simplification) based on a dominator tree traversal.  This also
performs jump threading (to reduce jumps to jumps). This flag is
enabled by default at @option{-O} and higher.

@item -ftree-dse
@opindex ftree-dse
Perform dead store elimination (DSE) on trees.  A dead store is a store into
a memory location which will later be overwritten by another store without
any intervening loads.  In this case the earlier store can be deleted.  This
flag is enabled by default at @option{-O} and higher.

@item -ftree-ch
@opindex ftree-ch
Perform loop header copying on trees.  This is beneficial since it increases
effectiveness of code motion optimizations.  It also saves one jump.  This flag
is enabled by default at @option{-O} and higher.  It is not enabled
for @option{-Os}, since it usually increases code size.

@item -ftree-loop-optimize
@opindex ftree-loop-optimize
Perform loop optimizations on trees.  This flag is enabled by default
at @option{-O} and higher.

@item -ftree-loop-linear
@opindex ftree-loop-linear
Perform linear loop transformations on tree.  This flag can improve cache
performance and allow further loop optimizations to take place.

@item -floop-interchange
Perform loop interchange transformations on loops.  Interchanging two
nested loops switches the inner and outer loops.  For example, given a
loop like:
@smallexample
DO J = 1, M
  DO I = 1, N
    A(J, I) = A(J, I) * C
  ENDDO
ENDDO
@end smallexample
loop interchange will transform the loop as if the user had written:
@smallexample
DO I = 1, N
  DO J = 1, M
    A(J, I) = A(J, I) * C
  ENDDO
ENDDO
@end smallexample
which can be beneficial when @code{N} is larger than the caches,
because in Fortran, the elements of an array are stored in memory
contiguously by column, and the original loop iterates over rows,
potentially creating at each access a cache miss.  This optimization
applies to all the languages supported by GCC and is not limited to
Fortran.  To use this code transformation, GCC has to be configured
with @option{--with-ppl} and @option{--with-cloog} to enable the
Graphite loop transformation infrastructure.

@item -floop-strip-mine
Perform loop strip mining transformations on loops.  Strip mining
splits a loop into two nested loops.  The outer loop has strides 
equal to the strip size and the inner loop has strides of the 
original loop within a strip.  For example, given a loop like:
@smallexample
DO I = 1, N
  A(I) = A(I) + C
ENDDO
@end smallexample
loop strip mining will transform the loop as if the user had written:
@smallexample
DO II = 1, N, 4
  DO I = II, min (II + 3, N)
    A(I) = A(I) + C
  ENDDO
ENDDO
@end smallexample
This optimization applies to all the languages supported by GCC and is
not limited to Fortran.  To use this code transformation, GCC has to
be configured with @option{--with-ppl} and @option{--with-cloog} to
enable the Graphite loop transformation infrastructure.

@item -floop-block
Perform loop blocking transformations on loops.  Blocking strip mines
each loop in the loop nest such that the memory accesses of the
element loops fit inside caches.  For example, given a loop like:
@smallexample
DO I = 1, N
  DO J = 1, M
    A(J, I) = B(I) + C(J)
  ENDDO
ENDDO
@end smallexample
loop blocking will transform the loop as if the user had written:
@smallexample
DO II = 1, N, 64
  DO JJ = 1, M, 64
    DO I = II, min (II + 63, N)
      DO J = JJ, min (JJ + 63, M)
        A(J, I) = B(I) + C(J)
      ENDDO
    ENDDO
  ENDDO
ENDDO
@end smallexample
which can be beneficial when @code{M} is larger than the caches,
because the innermost loop will iterate over a smaller amount of data
that can be kept in the caches.  This optimization applies to all the
languages supported by GCC and is not limited to Fortran.  To use this
code transformation, GCC has to be configured with @option{--with-ppl}
and @option{--with-cloog} to enable the Graphite loop transformation
infrastructure.

@item -fcheck-data-deps
@opindex fcheck-data-deps
Compare the results of several data dependence analyzers.  This option
is used for debugging the data dependence analyzers.

@item -ftree-loop-distribution
Perform loop distribution.  This flag can improve cache performance on
big loop bodies and allow further loop optimizations, like
parallelization or vectorization, to take place.  For example, the loop
@smallexample
DO I = 1, N
  A(I) = B(I) + C
  D(I) = E(I) * F
ENDDO
@end smallexample
is transformed to
@smallexample
DO I = 1, N
   A(I) = B(I) + C
ENDDO
DO I = 1, N
   D(I) = E(I) * F
ENDDO
@end smallexample

@item -ftree-loop-im
@opindex ftree-loop-im
Perform loop invariant motion on trees.  This pass moves only invariants that
would be hard to handle at RTL level (function calls, operations that expand to
nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching.  The pass also includes
store motion.

@item -ftree-loop-ivcanon
@opindex ftree-loop-ivcanon
Create a canonical counter for number of iterations in the loop for that
determining number of iterations requires complicated analysis.  Later
optimizations then may determine the number easily.  Useful especially
in connection with unrolling.

@item -fivopts
@opindex fivopts
Perform induction variable optimizations (strength reduction, induction
variable merging and induction variable elimination) on trees.

@item -ftree-parallelize-loops=n
@opindex ftree-parallelize-loops
Parallelize loops, i.e., split their iteration space to run in n threads.
This is only possible for loops whose iterations are independent
and can be arbitrarily reordered.  The optimization is only
profitable on multiprocessor machines, for loops that are CPU-intensive,
rather than constrained e.g.@: by memory bandwidth.  This option
implies @option{-pthread}, and thus is only supported on targets
that have support for @option{-pthread}.

@item -ftree-sra
@opindex ftree-sra
Perform scalar replacement of aggregates.  This pass replaces structure
references with scalars to prevent committing structures to memory too
early.  This flag is enabled by default at @option{-O} and higher.

@item -ftree-copyrename
@opindex ftree-copyrename
Perform copy renaming on trees.  This pass attempts to rename compiler
temporaries to other variables at copy locations, usually resulting in
variable names which more closely resemble the original variables.  This flag
is enabled by default at @option{-O} and higher.

@item -ftree-ter
@opindex ftree-ter
Perform temporary expression replacement during the SSA->normal phase.  Single
use/single def temporaries are replaced at their use location with their
defining expression.  This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation.  This is
enabled by default at @option{-O} and higher.

@item -ftree-vectorize
@opindex ftree-vectorize
Perform loop vectorization on trees. This flag is enabled by default at
@option{-O3}.

@item -ftree-vect-loop-version
@opindex ftree-vect-loop-version
Perform loop versioning when doing loop vectorization on trees.  When a loop
appears to be vectorizable except that data alignment or data dependence cannot
be determined at compile time then vectorized and non-vectorized versions of
the loop are generated along with runtime checks for alignment or dependence
to control which version is executed.  This option is enabled by default
except at level @option{-Os} where it is disabled.

@item -fvect-cost-model
@opindex fvect-cost-model
Enable cost model for vectorization.

@item -ftree-vrp
@opindex ftree-vrp
Perform Value Range Propagation on trees.  This is similar to the
constant propagation pass, but instead of values, ranges of values are
propagated.  This allows the optimizers to remove unnecessary range
checks like array bound checks and null pointer checks.  This is
enabled by default at @option{-O2} and higher.  Null pointer check
elimination is only done if @option{-fdelete-null-pointer-checks} is
enabled.

@item -ftracer
@opindex ftracer
Perform tail duplication to enlarge superblock size.  This transformation
simplifies the control flow of the function allowing other optimizations to do
better job.

@item -funroll-loops
@opindex funroll-loops
Unroll loops whose number of iterations can be determined at compile
time or upon entry to the loop.  @option{-funroll-loops} implies
@option{-frerun-cse-after-loop}.  This option makes code larger,
and may or may not make it run faster.

@item -funroll-all-loops
@opindex funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when
the loop is entered.  This usually makes programs run more slowly.
@option{-funroll-all-loops} implies the same options as
@option{-funroll-loops},

@item -fsplit-ivs-in-unroller
@opindex fsplit-ivs-in-unroller
Enables expressing of values of induction variables in later iterations
of the unrolled loop using the value in the first iteration.  This breaks
long dependency chains, thus improving efficiency of the scheduling passes.

Combination of @option{-fweb} and CSE is often sufficient to obtain the
same effect.  However in cases the loop body is more complicated than
a single basic block, this is not reliable.  It also does not work at all
on some of the architectures due to restrictions in the CSE pass.

This optimization is enabled by default.

@item -fvariable-expansion-in-unroller
@opindex fvariable-expansion-in-unroller
With this option, the compiler will create multiple copies of some
local variables when unrolling a loop which can result in superior code.

@item -fpredictive-commoning
@opindex fpredictive-commoning
Perform predictive commoning optimization, i.e., reusing computations
(especially memory loads and stores) performed in previous
iterations of loops.

This option is enabled at level @option{-O3}.

@item -fprefetch-loop-arrays
@opindex fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch
memory to improve the performance of loops that access large arrays.

This option may generate better or worse code; results are highly
dependent on the structure of loops within the source code.

Disabled at level @option{-Os}.

@item -fno-peephole
@itemx -fno-peephole2
@opindex fno-peephole
@opindex fno-peephole2
Disable any machine-specific peephole optimizations.  The difference
between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
are implemented in the compiler; some targets use one, some use the
other, a few use both.

@option{-fpeephole} is enabled by default.
@option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fno-guess-branch-probability
@opindex fno-guess-branch-probability
Do not guess branch probabilities using heuristics.

GCC will use heuristics to guess branch probabilities if they are
not provided by profiling feedback (@option{-fprofile-arcs}).  These
heuristics are based on the control flow graph.  If some branch probabilities
are specified by @samp{__builtin_expect}, then the heuristics will be
used to guess branch probabilities for the rest of the control flow graph,
taking the @samp{__builtin_expect} info into account.  The interactions
between the heuristics and @samp{__builtin_expect} can be complex, and in
some cases, it may be useful to disable the heuristics so that the effects
of @samp{__builtin_expect} are easier to understand.

The default is @option{-fguess-branch-probability} at levels
@option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

@item -freorder-blocks
@opindex freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.

Enabled at levels @option{-O2}, @option{-O3}.

@item -freorder-blocks-and-partition
@opindex freorder-blocks-and-partition
In addition to reordering basic blocks in the compiled function, in order
to reduce number of taken branches, partitions hot and cold basic blocks
into separate sections of the assembly and .o files, to improve
paging and cache locality performance.

This optimization is automatically turned off in the presence of
exception handling, for linkonce sections, for functions with a user-defined
section attribute and on any architecture that does not support named
sections.

@item -freorder-functions
@opindex freorder-functions
Reorder functions in the object file in order to
improve code locality.  This is implemented by using special
subsections @code{.text.hot} for most frequently executed functions and
@code{.text.unlikely} for unlikely executed functions.  Reordering is done by
the linker so object file format must support named sections and linker must
place them in a reasonable way.

Also profile feedback must be available in to make this option effective.  See
@option{-fprofile-arcs} for details.

Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

@item -fstrict-aliasing
@opindex fstrict-aliasing
Allows the compiler to assume the strictest aliasing rules applicable to
the language being compiled.  For C (and C++), this activates
optimizations based on the type of expressions.  In particular, an
object of one type is assumed never to reside at the same address as an
object of a different type, unless the types are almost the same.  For
example, an @code{unsigned int} can alias an @code{int}, but not a
@code{void*} or a @code{double}.  A character type may alias any other
type.

@anchor{Type-punning}Pay special attention to code like this:
@smallexample
union a_union @{
  int i;
  double d;
@};

int f() @{
  a_union t;
  t.d = 3.0;
  return t.i;
@}
@end smallexample
The practice of reading from a different union member than the one most
recently written to (called ``type-punning'') is common.  Even with
@option{-fstrict-aliasing}, type-punning is allowed, provided the memory
is accessed through the union type.  So, the code above will work as
expected.  @xref{Structures unions enumerations and bit-fields
implementation}.  However, this code might not:
@smallexample
int f() @{
  a_union t;
  int* ip;
  t.d = 3.0;
  ip = &t.i;
  return *ip;
@}
@end smallexample

Similarly, access by taking the address, casting the resulting pointer
and dereferencing the result has undefined behavior, even if the cast
uses a union type, e.g.:
@smallexample
int f() @{
  double d = 3.0;
  return ((union a_union *) &d)->i;
@}
@end smallexample

The @option{-fstrict-aliasing} option is enabled at levels
@option{-O2}, @option{-O3}, @option{-Os}.

@item -fstrict-overflow
@opindex fstrict-overflow
Allow the compiler to assume strict signed overflow rules, depending
on the language being compiled.  For C (and C++) this means that
overflow when doing arithmetic with signed numbers is undefined, which
means that the compiler may assume that it will not happen.  This
permits various optimizations.  For example, the compiler will assume
that an expression like @code{i + 10 > i} will always be true for
signed @code{i}.  This assumption is only valid if signed overflow is
undefined, as the expression is false if @code{i + 10} overflows when
using twos complement arithmetic.  When this option is in effect any
attempt to determine whether an operation on signed numbers will
overflow must be written carefully to not actually involve overflow.

This option also allows the compiler to assume strict pointer
semantics: given a pointer to an object, if adding an offset to that
pointer does not produce a pointer to the same object, the addition is
undefined.  This permits the compiler to conclude that @code{p + u >
p} is always true for a pointer @code{p} and unsigned integer
@code{u}.  This assumption is only valid because pointer wraparound is
undefined, as the expression is false if @code{p + u} overflows using
twos complement arithmetic.

See also the @option{-fwrapv} option.  Using @option{-fwrapv} means
that integer signed overflow is fully defined: it wraps.  When
@option{-fwrapv} is used, there is no difference between
@option{-fstrict-overflow} and @option{-fno-strict-overflow} for
integers.  With @option{-fwrapv} certain types of overflow are
permitted.  For example, if the compiler gets an overflow when doing
arithmetic on constants, the overflowed value can still be used with
@option{-fwrapv}, but not otherwise.

The @option{-fstrict-overflow} option is enabled at levels
@option{-O2}, @option{-O3}, @option{-Os}.

@item -falign-functions
@itemx -falign-functions=@var{n}
@opindex falign-functions
Align the start of functions to the next power-of-two greater than
@var{n}, skipping up to @var{n} bytes.  For instance,
@option{-falign-functions=32} aligns functions to the next 32-byte
boundary, but @option{-falign-functions=24} would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.

@option{-fno-align-functions} and @option{-falign-functions=1} are
equivalent and mean that functions will not be aligned.

Some assemblers only support this flag when @var{n} is a power of two;
in that case, it is rounded up.

If @var{n} is not specified or is zero, use a machine-dependent default.

Enabled at levels @option{-O2}, @option{-O3}.

@item -falign-labels
@itemx -falign-labels=@var{n}
@opindex falign-labels
Align all branch targets to a power-of-two boundary, skipping up to
@var{n} bytes like @option{-falign-functions}.  This option can easily
make code slower, because it must insert dummy operations for when the
branch target is reached in the usual flow of the code.

@option{-fno-align-labels} and @option{-falign-labels=1} are
equivalent and mean that labels will not be aligned.

If @option{-falign-loops} or @option{-falign-jumps} are applicable and
are greater than this value, then their values are used instead.

If @var{n} is not specified or is zero, use a machine-dependent default
which is very likely to be @samp{1}, meaning no alignment.

Enabled at levels @option{-O2}, @option{-O3}.

@item -falign-loops
@itemx -falign-loops=@var{n}
@opindex falign-loops
Align loops to a power-of-two boundary, skipping up to @var{n} bytes
like @option{-falign-functions}.  The hope is that the loop will be
executed many times, which will make up for any execution of the dummy
operations.

@option{-fno-align-loops} and @option{-falign-loops=1} are
equivalent and mean that loops will not be aligned.

If @var{n} is not specified or is zero, use a machine-dependent default.

Enabled at levels @option{-O2}, @option{-O3}.

@item -falign-jumps
@itemx -falign-jumps=@var{n}
@opindex falign-jumps
Align branch targets to a power-of-two boundary, for branch targets
where the targets can only be reached by jumping, skipping up to @var{n}
bytes like @option{-falign-functions}.  In this case, no dummy operations
need be executed.

@option{-fno-align-jumps} and @option{-falign-jumps=1} are
equivalent and mean that loops will not be aligned.

If @var{n} is not specified or is zero, use a machine-dependent default.

Enabled at levels @option{-O2}, @option{-O3}.

@item -funit-at-a-time
@opindex funit-at-a-time
This option is left for compatibility reasons. @option{-funit-at-a-time}
has no effect, while @option{-fno-unit-at-a-time} implies
@option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.

Enabled by default.

@item -fno-toplevel-reorder
@opindex fno-toplevel-reorder
Do not reorder top-level functions, variables, and @code{asm}
statements.  Output them in the same order that they appear in the
input file.  When this option is used, unreferenced static variables
will not be removed.  This option is intended to support existing code
which relies on a particular ordering.  For new code, it is better to
use attributes.

Enabled at level @option{-O0}.  When disabled explicitly, it also imply
@option{-fno-section-anchors} that is otherwise enabled at @option{-O0} on some
targets.

@item -fweb
@opindex fweb
Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register.  This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
however, make debugging impossible, since variables will no longer stay in a
``home register''.

Enabled by default with @option{-funroll-loops}.

@item -fwhole-program
@opindex fwhole-program
Assume that the current compilation unit represents whole program being
compiled.  All public functions and variables with the exception of @code{main}
and those merged by attribute @code{externally_visible} become static functions
and in a affect gets more aggressively optimized by interprocedural optimizers.
While this option is equivalent to proper use of @code{static} keyword for
programs consisting of single file, in combination with option
@option{--combine} this flag can be used to compile most of smaller scale C
programs since the functions and variables become local for the whole combined
compilation unit, not for the single source file itself.

This option is not supported for Fortran programs.

@item -fcprop-registers
@opindex fcprop-registers
After register allocation and post-register allocation instruction splitting,
we perform a copy-propagation pass to try to reduce scheduling dependencies
and occasionally eliminate the copy.

Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

@item -fprofile-correction
@opindex fprofile-correction
Profiles collected using an instrumented binary for multi-threaded programs may
be inconsistent due to missed counter updates. When this option is specified,
GCC will use heuristics to correct or smooth out such inconsistencies. By
default, GCC will emit an error message when an inconsistent profile is detected.

@item -fprofile-dir=@var{path}
@opindex fprofile-dir

Set the directory to search the profile data files in to @var{path}.
This option affects only the profile data generated by
@option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
and used by @option{-fprofile-use} and @option{-fbranch-probabilities} 
and its related options.
By default, GCC will use the current directory as @var{path}
thus the profile data file will appear in the same directory as the object file.

@item -fprofile-generate
@itemx -fprofile-generate=@var{path}
@opindex fprofile-generate

Enable options usually used for instrumenting application to produce
profile useful for later recompilation with profile feedback based
optimization.  You must use @option{-fprofile-generate} both when
compiling and when linking your program.

The following options are enabled: @code{-fprofile-arcs}, @code{-fprofile-values}, @code{-fvpt}.

If @var{path} is specified, GCC will look at the @var{path} to find
the profile feedback data files. See @option{-fprofile-dir}.

@item -fprofile-use
@itemx -fprofile-use=@var{path}
@opindex fprofile-use
Enable profile feedback directed optimizations, and optimizations
generally profitable only with profile feedback available.

The following options are enabled: @code{-fbranch-probabilities}, @code{-fvpt},
@code{-funroll-loops}, @code{-fpeel-loops}, @code{-ftracer}

By default, GCC emits an error message if the feedback profiles do not
match the source code.  This error can be turned into a warning by using
@option{-Wcoverage-mismatch}.  Note this may result in poorly optimized
code.

If @var{path} is specified, GCC will look at the @var{path} to find
the profile feedback data files. See @option{-fprofile-dir}.
@end table

The following options control compiler behavior regarding floating
point arithmetic.  These options trade off between speed and
correctness.  All must be specifically enabled.

@table @gcctabopt
@item -ffloat-store
@opindex ffloat-store
Do not store floating point variables in registers, and inhibit other
options that might change whether a floating point value is taken from a
register or memory.

@cindex floating point precision
This option prevents undesirable excess precision on machines such as
the 68000 where the floating registers (of the 68881) keep more
precision than a @code{double} is supposed to have.  Similarly for the
x86 architecture.  For most programs, the excess precision does only
good, but a few programs rely on the precise definition of IEEE floating
point.  Use @option{-ffloat-store} for such programs, after modifying
them to store all pertinent intermediate computations into variables.

@item -ffast-math
@opindex ffast-math
Sets @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
@option{-ffinite-math-only}, @option{-fno-rounding-math},
@option{-fno-signaling-nans} and @option{-fcx-limited-range}.

This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.

This option is not turned on by any @option{-O} option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.

@item -fno-math-errno
@opindex fno-math-errno
Do not set ERRNO after calling math functions that are executed
with a single instruction, e.g., sqrt.  A program that relies on
IEEE exceptions for math error handling may want to use this flag
for speed while maintaining IEEE arithmetic compatibility.

This option is not turned on by any @option{-O} option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.

The default is @option{-fmath-errno}.

On Darwin systems, the math library never sets @code{errno}.  There is
therefore no reason for the compiler to consider the possibility that
it might, and @option{-fno-math-errno} is the default.

@item -funsafe-math-optimizations
@opindex funsafe-math-optimizations

Allow optimizations for floating-point arithmetic that (a) assume
that arguments and results are valid and (b) may violate IEEE or
ANSI standards.  When used at link-time, it may include libraries
or startup files that change the default FPU control word or other
similar optimizations.

This option is not turned on by any @option{-O} option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
@option{-fassociative-math} and @option{-freciprocal-math}.

The default is @option{-fno-unsafe-math-optimizations}.

@item -fassociative-math
@opindex fassociative-math

Allow re-association of operands in series of floating-point operations.
This violates the ISO C and C++ language standard by possibly changing
computation result.  NOTE: re-ordering may change the sign of zero as
well as ignore NaNs and inhibit or create underflow or overflow (and
thus cannot be used on a code which relies on rounding behavior like
@code{(x + 2**52) - 2**52)}.  May also reorder floating-point comparisons
and thus may not be used when ordered comparisons are required.
This option requires that both @option{-fno-signed-zeros} and
@option{-fno-trapping-math} be in effect.  Moreover, it doesn't make
much sense with @option{-frounding-math}.

The default is @option{-fno-associative-math}.

@item -freciprocal-math
@opindex freciprocal-math

Allow the reciprocal of a value to be used instead of dividing by
the value if this enables optimizations.  For example @code{x / y}
can be replaced with @code{x * (1/y)} which is useful if @code{(1/y)}
is subject to common subexpression elimination.  Note that this loses
precision and increases the number of flops operating on the value.

The default is @option{-fno-reciprocal-math}.

@item -ffinite-math-only
@opindex ffinite-math-only
Allow optimizations for floating-point arithmetic that assume
that arguments and results are not NaNs or +-Infs.

This option is not turned on by any @option{-O} option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.

The default is @option{-fno-finite-math-only}.

@item -fno-signed-zeros
@opindex fno-signed-zeros
Allow optimizations for floating point arithmetic that ignore the
signedness of zero.  IEEE arithmetic specifies the behavior of
distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
This option implies that the sign of a zero result isn't significant.

The default is @option{-fsigned-zeros}.

@item -fno-trapping-math
@opindex fno-trapping-math
Compile code assuming that floating-point operations cannot generate
user-visible traps.  These traps include division by zero, overflow,
underflow, inexact result and invalid operation.  This option requires
that @option{-fno-signaling-nans} be in effect.  Setting this option may
allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.

This option should never be turned on by any @option{-O} option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions.

The default is @option{-ftrapping-math}.

@item -frounding-math
@opindex frounding-math
Disable transformations and optimizations that assume default floating
point rounding behavior.  This is round-to-zero for all floating point
to integer conversions, and round-to-nearest for all other arithmetic
truncations.  This option should be specified for programs that change
the FP rounding mode dynamically, or that may be executed with a
non-default rounding mode.  This option disables constant folding of
floating point expressions at compile-time (which may be affected by
rounding mode) and arithmetic transformations that are unsafe in the
presence of sign-dependent rounding modes.

The default is @option{-fno-rounding-math}.

This option is experimental and does not currently guarantee to
disable all GCC optimizations that are affected by rounding mode.
Future versions of GCC may provide finer control of this setting
using C99's @code{FENV_ACCESS} pragma.  This command line option
will be used to specify the default state for @code{FENV_ACCESS}.

@item -frtl-abstract-sequences
@opindex frtl-abstract-sequences
It is a size optimization method. This option is to find identical
sequences of code, which can be turned into pseudo-procedures  and
then  replace  all  occurrences with  calls to  the  newly created
subroutine. It is kind of an opposite of @option{-finline-functions}.
This optimization runs at RTL level.

@item -fsignaling-nans
@opindex fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations.  Setting this option disables
optimizations that may change the number of exceptions visible with
signaling NaNs.  This option implies @option{-ftrapping-math}.

This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
be defined.

The default is @option{-fno-signaling-nans}.

This option is experimental and does not currently guarantee to
disable all GCC optimizations that affect signaling NaN behavior.

@item -fsingle-precision-constant
@opindex fsingle-precision-constant
Treat floating point constant as single precision constant instead of
implicitly converting it to double precision constant.

@item -fcx-limited-range
@opindex fcx-limited-range
When enabled, this option states that a range reduction step is not
needed when performing complex division.  Also, there is no checking
whether the result of a complex multiplication or division is @code{NaN
+ I*NaN}, with an attempt to rescue the situation in that case.  The
default is @option{-fno-cx-limited-range}, but is enabled by
@option{-ffast-math}.

This option controls the default setting of the ISO C99
@code{CX_LIMITED_RANGE} pragma.  Nevertheless, the option applies to
all languages.

@item -fcx-fortran-rules
@opindex fcx-fortran-rules
Complex multiplication and division follow Fortran rules.  Range
reduction is done as part of complex division, but there is no checking
whether the result of a complex multiplication or division is @code{NaN
+ I*NaN}, with an attempt to rescue the situation in that case.

The default is @option{-fno-cx-fortran-rules}.

@end table

The following options control optimizations that may improve
performance, but are not enabled by any @option{-O} options.  This
section includes experimental options that may produce broken code.

@table @gcctabopt
@item -fbranch-probabilities
@opindex fbranch-probabilities
After running a program compiled with @option{-fprofile-arcs}
(@pxref{Debugging Options,, Options for Debugging Your Program or
@command{gcc}}), you can compile it a second time using
@option{-fbranch-probabilities}, to improve optimizations based on
the number of times each branch was taken.  When the program
compiled with @option{-fprofile-arcs} exits it saves arc execution
counts to a file called @file{@var{sourcename}.gcda} for each source
file.  The information in this data file is very dependent on the
structure of the generated code, so you must use the same source code
and the same optimization options for both compilations.

With @option{-fbranch-probabilities}, GCC puts a
@samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
These can be used to improve optimization.  Currently, they are only
used in one place: in @file{reorg.c}, instead of guessing which path a
branch is mostly to take, the @samp{REG_BR_PROB} values are used to
exactly determine which path is taken more often.

@item -fprofile-values
@opindex fprofile-values
If combined with @option{-fprofile-arcs}, it adds code so that some
data about values of expressions in the program is gathered.

With @option{-fbranch-probabilities}, it reads back the data gathered
from profiling values of expressions and adds @samp{REG_VALUE_PROFILE}
notes to instructions for their later usage in optimizations.

Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.

@item -fvpt
@opindex fvpt
If combined with @option{-fprofile-arcs}, it instructs the compiler to add
a code to gather information about values of expressions.

With @option{-fbranch-probabilities}, it reads back the data gathered
and actually performs the optimizations based on them.
Currently the optimizations include specialization of division operation
using the knowledge about the value of the denominator.

@item -frename-registers
@opindex frename-registers
Attempt to avoid false dependencies in scheduled code by making use
of registers left over after register allocation.  This optimization
will most benefit processors with lots of registers.  Depending on the
debug information format adopted by the target, however, it can
make debugging impossible, since variables will no longer stay in
a ``home register''.

Enabled by default with @option{-funroll-loops}.

@item -ftracer
@opindex ftracer
Perform tail duplication to enlarge superblock size.  This transformation
simplifies the control flow of the function allowing other optimizations to do
better job.

Enabled with @option{-fprofile-use}.

@item -funroll-loops
@opindex funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop.  @option{-funroll-loops} implies
@option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
It also turns on complete loop peeling (i.e.@: complete removal of loops with
small constant number of iterations).  This option makes code larger, and may
or may not make it run faster.

Enabled with @option{-fprofile-use}.

@item -funroll-all-loops
@opindex funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when
the loop is entered.  This usually makes programs run more slowly.
@option{-funroll-all-loops} implies the same options as
@option{-funroll-loops}.

@item -fpeel-loops
@opindex fpeel-loops
Peels the loops for that there is enough information that they do not
roll much (from profile feedback).  It also turns on complete loop peeling
(i.e.@: complete removal of loops with small constant number of iterations).

Enabled with @option{-fprofile-use}.

@item -fmove-loop-invariants
@opindex fmove-loop-invariants
Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
at level @option{-O1}

@item -funswitch-loops
@opindex funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

@item -ffunction-sections
@itemx -fdata-sections
@opindex ffunction-sections
@opindex fdata-sections
Place each function or data item into its own section in the output
file if the target supports arbitrary sections.  The name of the
function or the name of the data item determines the section's name
in the output file.

Use these options on systems where the linker can perform optimizations
to improve locality of reference in the instruction space.  Most systems
using the ELF object format and SPARC processors running Solaris 2 have
linkers with such optimizations.  AIX may have these optimizations in
the future.

Only use these options when there are significant benefits from doing
so.  When you specify these options, the assembler and linker will
create larger object and executable files and will also be slower.
You will not be able to use @code{gprof} on all systems if you
specify this option and you may have problems with debugging if
you specify both this option and @option{-g}.

@item -fbranch-target-load-optimize
@opindex fbranch-target-load-optimize
Perform branch target register load optimization before prologue / epilogue
threading.
The use of target registers can typically be exposed only during reload,
thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.

@item -fbranch-target-load-optimize2
@opindex fbranch-target-load-optimize2
Perform branch target register load optimization after prologue / epilogue
threading.

@item -fbtr-bb-exclusive
@opindex fbtr-bb-exclusive
When performing branch target register load optimization, don't reuse
branch target registers in within any basic block.

@item -fstack-protector
@opindex fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing
attacks.  This is done by adding a guard variable to functions with
vulnerable objects.  This includes functions that call alloca, and
functions with buffers larger than 8 bytes.  The guards are initialized
when a function is entered and then checked when the function exits.
If a guard check fails, an error message is printed and the program exits.

@item -fstack-protector-all
@opindex fstack-protector-all
Like @option{-fstack-protector} except that all functions are protected.

@item -fsection-anchors
@opindex fsection-anchors
Try to reduce the number of symbolic address calculations by using
shared ``anchor'' symbols to address nearby objects.  This transformation
can help to reduce the number of GOT entries and GOT accesses on some
targets.

For example, the implementation of the following function @code{foo}:

@smallexample
static int a, b, c;
int foo (void) @{ return a + b + c; @}
@end smallexample

would usually calculate the addresses of all three variables, but if you
compile it with @option{-fsection-anchors}, it will access the variables
from a common anchor point instead.  The effect is similar to the
following pseudocode (which isn't valid C):

@smallexample
int foo (void)
@{
  register int *xr = &x;
  return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
@}
@end smallexample

Not all targets support this option.

@item --param @var{name}=@var{value}
@opindex param
In some places, GCC uses various constants to control the amount of
optimization that is done.  For example, GCC will not inline functions
that contain more that a certain number of instructions.  You can
control some of these constants on the command-line using the
@option{--param} option.

The names of specific parameters, and the meaning of the values, are
tied to the internals of the compiler, and are subject to change
without notice in future releases.

In each case, the @var{value} is an integer.  The allowable choices for
@var{name} are given in the following table:

@table @gcctabopt
@item sra-max-structure-size
The maximum structure size, in bytes, at which the scalar replacement
of aggregates (SRA) optimization will perform block copies.  The
default value, 0, implies that GCC will select the most appropriate
size itself.

@item sra-field-structure-ratio
The threshold ratio (as a percentage) between instantiated fields and
the complete structure size.  We say that if the ratio of the number
of bytes in instantiated fields to the number of bytes in the complete
structure exceeds this parameter, then block copies are not used.  The
default is 75.

@item struct-reorg-cold-struct-ratio
The threshold ratio (as a percentage) between a structure frequency
and the frequency of the hottest structure in the program.  This parameter
is used by struct-reorg optimization enabled by @option{-fipa-struct-reorg}.
We say that if the ratio of a structure frequency, calculated by profiling, 
to the hottest structure frequency in the program is less than this 
parameter, then structure reorganization is not applied to this structure.
The default is 10.

@item predictable-branch-cost-outcome
When branch is predicted to be taken with probability lower than this threshold
(in percent), then it is considered well predictable. The default is 10.

@item max-crossjump-edges
The maximum number of incoming edges to consider for crossjumping.
The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
the number of edges incoming to each block.  Increasing values mean
more aggressive optimization, making the compile time increase with
probably small improvement in executable size.

@item min-crossjump-insns
The minimum number of instructions which must be matched at the end
of two blocks before crossjumping will be performed on them.  This
value is ignored in the case where all instructions in the block being
crossjumped from are matched.  The default value is 5.

@item max-grow-copy-bb-insns
The maximum code size expansion factor when copying basic blocks
instead of jumping.  The expansion is relative to a jump instruction.
The default value is 8.

@item max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that jumps
to a computed goto.  To avoid @math{O(N^2)} behavior in a number of
passes, GCC factors computed gotos early in the compilation process,
and unfactors them as late as possible.  Only computed jumps at the
end of a basic blocks with no more than max-goto-duplication-insns are
unfactored.  The default value is 8.

@item max-delay-slot-insn-search
The maximum number of instructions to consider when looking for an
instruction to fill a delay slot.  If more than this arbitrary number of
instructions is searched, the time savings from filling the delay slot
will be minimal so stop searching.  Increasing values mean more
aggressive optimization, making the compile time increase with probably
small improvement in executable run time.

@item max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instructions to
consider when searching for a block with valid live register
information.  Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compile time.  This parameter
should be removed when the delay slot code is rewritten to maintain the
control-flow graph.

@item max-gcse-memory
The approximate maximum amount of memory that will be allocated in
order to perform the global common subexpression elimination
optimization.  If more memory than specified is required, the
optimization will not be done.

@item max-gcse-passes
The maximum number of passes of GCSE to run.  The default is 1.

@item max-pending-list-length
The maximum number of pending dependencies scheduling will allow
before flushing the current state and starting over.  Large functions
with few branches or calls can create excessively large lists which
needlessly consume memory and resources.

@item max-inline-insns-single
Several parameters control the tree inliner used in gcc.
This number sets the maximum number of instructions (counted in GCC's
internal representation) in a single function that the tree inliner
will consider for inlining.  This only affects functions declared
inline and methods implemented in a class declaration (C++).
The default value is 450.

@item max-inline-insns-auto
When you use @option{-finline-functions} (included in @option{-O3}),
a lot of functions that would otherwise not be considered for inlining
by the compiler will be investigated.  To those functions, a different
(more restrictive) limit compared to functions declared inline can
be applied.
The default value is 90.

@item large-function-insns
The limit specifying really large functions.  For functions larger than this
limit after inlining, inlining is constrained by
@option{--param large-function-growth}.  This parameter is useful primarily
to avoid extreme compilation time caused by non-linear algorithms used by the
backend.
The default value is 2700.

@item large-function-growth
Specifies maximal growth of large function caused by inlining in percents.
The default value is 100 which limits large function growth to 2.0 times
the original size.

@item large-unit-insns
The limit specifying large translation unit.  Growth caused by inlining of
units larger than this limit is limited by @option{--param inline-unit-growth}.
For small units this might be too tight (consider unit consisting of function A
that is inline and B that just calls A three time.  If B is small relative to
A, the growth of unit is 300\% and yet such inlining is very sane.  For very
large units consisting of small inlineable functions however the overall unit
growth limit is needed to avoid exponential explosion of code size.  Thus for
smaller units, the size is increased to @option{--param large-unit-insns}
before applying @option{--param inline-unit-growth}.  The default is 10000

@item inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by inlining.
The default value is 30 which limits unit growth to 1.3 times the original
size.

@item ipcp-unit-growth
Specifies maximal overall growth of the compilation unit caused by
interprocedural constant propagation.  The default value is 10 which limits
unit growth to 1.1 times the original size.

@item large-stack-frame
The limit specifying large stack frames.  While inlining the algorithm is trying
to not grow past this limit too much.  Default value is 256 bytes.

@item large-stack-frame-growth
Specifies maximal growth of large stack frames caused by inlining in percents.
The default value is 1000 which limits large stack frame growth to 11 times
the original size.

@item max-inline-insns-recursive
@itemx max-inline-insns-recursive-auto
Specifies maximum number of instructions out-of-line copy of self recursive inline
function can grow into by performing recursive inlining.

For functions declared inline @option{--param max-inline-insns-recursive} is
taken into account.  For function not declared inline, recursive inlining
happens only when @option{-finline-functions} (included in @option{-O3}) is
enabled and @option{--param max-inline-insns-recursive-auto} is used.  The
default value is 450.

@item max-inline-recursive-depth
@itemx max-inline-recursive-depth-auto
Specifies maximum recursion depth used by the recursive inlining.

For functions declared inline @option{--param max-inline-recursive-depth} is
taken into account.  For function not declared inline, recursive inlining
happens only when @option{-finline-functions} (included in @option{-O3}) is
enabled and @option{--param max-inline-recursive-depth-auto} is used.  The
default value is 8.

@item min-inline-recursive-probability
Recursive inlining is profitable only for function having deep recursion
in average and can hurt for function having little recursion depth by
increasing the prologue size or complexity of function body to other
optimizers.

When profile feedback is available (see @option{-fprofile-generate}) the actual
recursion depth can be guessed from probability that function will recurse via
given call expression.  This parameter limits inlining only to call expression
whose probability exceeds given threshold (in percents).  The default value is
10.

@item inline-call-cost
Specify cost of call instruction relative to simple arithmetics operations
(having cost of 1).  Increasing this cost disqualifies inlining of non-leaf
functions and at the same time increases size of leaf function that is believed to
reduce function size by being inlined.  In effect it increases amount of
inlining for code having large abstraction penalty (many functions that just
pass the arguments to other functions) and decrease inlining for code with low
abstraction penalty.  The default value is 12.

@item min-vect-loop-bound
The minimum number of iterations under which a loop will not get vectorized
when @option{-ftree-vectorize} is used.  The number of iterations after
vectorization needs to be greater than the value specified by this option
to allow vectorization.  The default value is 0.

@item max-unrolled-insns
The maximum number of instructions that a loop should have if that loop
is unrolled, and if the loop is unrolled, it determines how many times
the loop code is unrolled.

@item max-average-unrolled-insns
The maximum number of instructions biased by probabilities of their execution
that a loop should have if that loop is unrolled, and if the loop is unrolled,
it determines how many times the loop code is unrolled.

@item max-unroll-times
The maximum number of unrollings of a single loop.

@item max-peeled-insns
The maximum number of instructions that a loop should have if that loop
is peeled, and if the loop is peeled, it determines how many times
the loop code is peeled.

@item max-peel-times
The maximum number of peelings of a single loop.

@item max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

@item max-completely-peel-times
The maximum number of iterations of a loop to be suitable for complete peeling.

@item max-unswitch-insns
The maximum number of insns of an unswitched loop.

@item max-unswitch-level
The maximum number of branches unswitched in a single loop.

@item lim-expensive
The minimum cost of an expensive expression in the loop invariant motion.

@item iv-consider-all-candidates-bound
Bound on number of candidates for induction variables below that
all candidates are considered for each use in induction variable
optimizations.  Only the most relevant candidates are considered
if there are more candidates, to avoid quadratic time complexity.

@item iv-max-considered-uses
The induction variable optimizations give up on loops that contain more
induction variable uses.

@item iv-always-prune-cand-set-bound
If number of candidates in the set is smaller than this value,
we always try to remove unnecessary ivs from the set during its
optimization when a new iv is added to the set.

@item scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.

@item omega-max-vars
The maximum number of variables in an Omega constraint system.
The default value is 128.

@item omega-max-geqs
The maximum number of inequalities in an Omega constraint system.
The default value is 256.

@item omega-max-eqs
The maximum number of equalities in an Omega constraint system.
The default value is 128.

@item omega-max-wild-cards
The maximum number of wildcard variables that the Omega solver will
be able to insert.  The default value is 18.

@item omega-hash-table-size
The size of the hash table in the Omega solver.  The default value is
550.

@item omega-max-keys
The maximal number of keys used by the Omega solver.  The default
value is 500.

@item omega-eliminate-redundant-constraints
When set to 1, use expensive methods to eliminate all redundant
constraints.  The default value is 0.

@item vect-max-version-for-alignment-checks
The maximum number of runtime checks that can be performed when
doing loop versioning for alignment in the vectorizer.  See option
ftree-vect-loop-version for more information.

@item vect-max-version-for-alias-checks
The maximum number of runtime checks that can be performed when
doing loop versioning for alias in the vectorizer.  See option
ftree-vect-loop-version for more information.

@item max-iterations-to-track

The maximum number of iterations of a loop the brute force algorithm
for analysis of # of iterations of the loop tries to evaluate.

@item hot-bb-count-fraction
Select fraction of the maximal count of repetitions of basic block in program
given basic block needs to have to be considered hot.

@item hot-bb-frequency-fraction
Select fraction of the maximal frequency of executions of basic block in
function given basic block needs to have to be considered hot

@item max-predicted-iterations
The maximum number of loop iterations we predict statically.  This is useful
in cases where function contain single loop with known bound and other loop
with unknown.  We predict the known number of iterations correctly, while
the unknown number of iterations average to roughly 10.  This means that the
loop without bounds would appear artificially cold relative to the other one.

@item align-threshold

Select fraction of the maximal frequency of executions of basic block in
function given basic block will get aligned.

@item align-loop-iterations

A loop expected to iterate at lest the selected number of iterations will get
aligned.

@item tracer-dynamic-coverage
@itemx tracer-dynamic-coverage-feedback

This value is used to limit superblock formation once the given percentage of
executed instructions is covered.  This limits unnecessary code size
expansion.

The @option{tracer-dynamic-coverage-feedback} is used only when profile
feedback is available.  The real profiles (as opposed to statically estimated
ones) are much less balanced allowing the threshold to be larger value.

@item tracer-max-code-growth
Stop tail duplication once code growth has reached given percentage.  This is
rather hokey argument, as most of the duplicates will be eliminated later in
cross jumping, so it may be set to much higher values than is the desired code
growth.

@item tracer-min-branch-ratio

Stop reverse growth when the reverse probability of best edge is less than this
threshold (in percent).

@item tracer-min-branch-ratio
@itemx tracer-min-branch-ratio-feedback

Stop forward growth if the best edge do have probability lower than this
threshold.

Similarly to @option{tracer-dynamic-coverage} two values are present, one for
compilation for profile feedback and one for compilation without.  The value
for compilation with profile feedback needs to be more conservative (higher) in
order to make tracer effective.

@item max-cse-path-length

Maximum number of basic blocks on path that cse considers.  The default is 10.

@item max-cse-insns
The maximum instructions CSE process before flushing. The default is 1000.

@item max-aliased-vops

Maximum number of virtual operands per function allowed to represent
aliases before triggering the alias partitioning heuristic.  Alias
partitioning reduces compile times and memory consumption needed for
aliasing at the expense of precision loss in alias information.  The
default value for this parameter is 100 for -O1, 500 for -O2 and 1000
for -O3.

Notice that if a function contains more memory statements than the
value of this parameter, it is not really possible to achieve this
reduction.  In this case, the compiler will use the number of memory
statements as the value for @option{max-aliased-vops}.

@item avg-aliased-vops

Average number of virtual operands per statement allowed to represent
aliases before triggering the alias partitioning heuristic.  This
works in conjunction with @option{max-aliased-vops}.  If a function
contains more than @option{max-aliased-vops} virtual operators, then
memory symbols will be grouped into memory partitions until either the
total number of virtual operators is below @option{max-aliased-vops}
or the average number of virtual operators per memory statement is
below @option{avg-aliased-vops}.  The default value for this parameter
is 1 for -O1 and -O2, and 3 for -O3.

@item ggc-min-expand

GCC uses a garbage collector to manage its own memory allocation.  This
parameter specifies the minimum percentage by which the garbage
collector's heap should be allowed to expand between collections.
Tuning this may improve compilation speed; it has no effect on code
generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
RAM >= 1GB@.  If @code{getrlimit} is available, the notion of "RAM" is
the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}.  If
GCC is not able to calculate RAM on a particular platform, the lower
bound of 30% is used.  Setting this parameter and
@option{ggc-min-heapsize} to zero causes a full collection to occur at
every opportunity.  This is extremely slow, but can be useful for
debugging.

@item ggc-min-heapsize

Minimum size of the garbage collector's heap before it begins bothering
to collect garbage.  The first collection occurs after the heap expands
by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
tuning this may improve compilation speed, and has no effect on code
generation.

The default is the smaller of RAM/8, RLIMIT_RSS, or a limit which
tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
with a lower bound of 4096 (four megabytes) and an upper bound of
131072 (128 megabytes).  If GCC is not able to calculate RAM on a
particular platform, the lower bound is used.  Setting this parameter
very large effectively disables garbage collection.  Setting this
parameter and @option{ggc-min-expand} to zero causes a full collection
to occur at every opportunity.

@item max-reload-search-insns
The maximum number of instruction reload should look backward for equivalent
register.  Increasing values mean more aggressive optimization, making the
compile time increase with probably slightly better performance.  The default
value is 100.

@item max-cselib-memory-locations
The maximum number of memory locations cselib should take into account.
Increasing values mean more aggressive optimization, making the compile time
increase with probably slightly better performance.  The default value is 500.

@item reorder-blocks-duplicate
@itemx reorder-blocks-duplicate-feedback

Used by basic block reordering pass to decide whether to use unconditional
branch or duplicate the code on its destination.  Code is duplicated when its
estimated size is smaller than this value multiplied by the estimated size of
unconditional jump in the hot spots of the program.

The @option{reorder-block-duplicate-feedback} is used only when profile
feedback is available and may be set to higher values than
@option{reorder-block-duplicate} since information about the hot spots is more
accurate.

@item max-sched-ready-insns
The maximum number of instructions ready to be issued the scheduler should
consider at any given time during the first scheduling pass.  Increasing
values mean more thorough searches, making the compilation time increase
with probably little benefit.  The default value is 100.

@item max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling.  The default value is 10.

@item max-pipeline-region-blocks
The maximum number of blocks in a region to be considered for
pipelining in the selective scheduler.  The default value is 15.

@item max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling.  The default value is 100.

@item max-pipeline-region-insns
The maximum number of insns in a region to be considered for
pipelining in the selective scheduler.  The default value is 200.

@item min-spec-prob
The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling.  The default value is 40.

@item max-sched-extend-regions-iters
The maximum number of iterations through CFG to extend regions.
0 - disable region extension,
N - do at most N iterations.
The default value is 0.

@item max-sched-insn-conflict-delay
The maximum conflict delay for an insn to be considered for speculative motion.
The default value is 3.

@item sched-spec-prob-cutoff
The minimal probability of speculation success (in percents), so that
speculative insn will be scheduled.
The default value is 40.

@item sched-mem-true-dep-cost
Minimal distance (in CPU cycles) between store and load targeting same
memory locations.  The default value is 1.

@item selsched-max-lookahead
The maximum size of the lookahead window of selective scheduling.  It is a
depth of search for available instructions.
The default value is 50.

@item selsched-max-sched-times
The maximum number of times that an instruction will be scheduled during 
selective scheduling.  This is the limit on the number of iterations 
through which the instruction may be pipelined.  The default value is 2.

@item selsched-max-insns-to-rename
The maximum number of best instructions in the ready list that are considered
for renaming in the selective scheduler.  The default value is 2.

@item max-last-value-rtl
The maximum size measured as number of RTLs that can be recorded in an expression
in combiner for a pseudo register as last known value of that register.  The default
is 10000.

@item integer-share-limit
Small integer constants can use a shared data structure, reducing the
compiler's memory usage and increasing its speed.  This sets the maximum
value of a shared integer constant.  The default value is 256.

@item min-virtual-mappings
Specifies the minimum number of virtual mappings in the incremental
SSA updater that should be registered to trigger the virtual mappings
heuristic defined by virtual-mappings-ratio.  The default value is
100.

@item virtual-mappings-ratio
If the number of virtual mappings is virtual-mappings-ratio bigger
than the number of virtual symbols to be updated, then the incremental
SSA updater switches to a full update for those symbols.  The default
ratio is 3.

@item ssp-buffer-size
The minimum size of buffers (i.e.@: arrays) that will receive stack smashing
protection when @option{-fstack-protection} is used.

@item max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to be
duplicated when threading jumps.

@item max-fields-for-field-sensitive
Maximum number of fields in a structure we will treat in
a field sensitive manner during pointer analysis.  The default is zero
for -O0, and -O1 and 100 for -Os, -O2, and -O3.

@item prefetch-latency
Estimate on average number of instructions that are executed before
prefetch finishes.  The distance we prefetch ahead is proportional
to this constant.  Increasing this number may also lead to less
streams being prefetched (see @option{simultaneous-prefetches}).

@item simultaneous-prefetches
Maximum number of prefetches that can run at the same time.

@item l1-cache-line-size
The size of cache line in L1 cache, in bytes.

@item l1-cache-size
The size of L1 cache, in kilobytes.

@item l2-cache-size
The size of L2 cache, in kilobytes.

@item use-canonical-types
Whether the compiler should use the ``canonical'' type system.  By
default, this should always be 1, which uses a more efficient internal
mechanism for comparing types in C++ and Objective-C++.  However, if
bugs in the canonical type system are causing compilation failures,
set this value to 0 to disable canonical types.

@item switch-conversion-max-branch-ratio
Switch initialization conversion will refuse to create arrays that are
bigger than @option{switch-conversion-max-branch-ratio} times the number of
branches in the switch.

@item max-partial-antic-length
Maximum length of the partial antic set computed during the tree
partial redundancy elimination optimization (@option{-ftree-pre}) when
optimizing at @option{-O3} and above.  For some sorts of source code
the enhanced partial redundancy elimination optimization can run away,
consuming all of the memory available on the host machine.  This
parameter sets a limit on the length of the sets that are computed,
which prevents the runaway behavior.  Setting a value of 0 for
this parameter will allow an unlimited set length.

@item sccvn-max-scc-size
Maximum size of a strongly connected component (SCC) during SCCVN
processing.  If this limit is hit, SCCVN processing for the whole
function will not be done and optimizations depending on it will
be disabled.  The default maximum SCC size is 10000.

@item ira-max-loops-num
IRA uses a regional register allocation by default.  If a function
contains loops more than number given by the parameter, only at most
given number of the most frequently executed loops will form regions
for the regional register allocation.  The default value of the
parameter is 100.

@item ira-max-conflict-table-size
Although IRA uses a sophisticated algorithm of compression conflict
table, the table can be still big for huge functions.  If the conflict
table for a function could be more than size in MB given by the
parameter, the conflict table is not built and faster, simpler, and
lower quality register allocation algorithm will be used.  The
algorithm do not use pseudo-register conflicts.  The default value of
the parameter is 2000.

@item loop-invariant-max-bbs-in-loop
Loop invariant motion can be very expensive, both in compile time and
in amount of needed compile time memory, with very large loops.  Loops
with more basic blocks than this parameter won't have loop invariant
motion optimization performed on them.  The default value of the
parameter is 1000 for -O1 and 10000 for -O2 and above.

@end table
@end table

@node Preprocessor Options
@section Options Controlling the Preprocessor
@cindex preprocessor options
@cindex options, preprocessor

These options control the C preprocessor, which is run on each C source
file before actual compilation.

If you use the @option{-E} option, nothing is done except preprocessing.
Some of these options make sense only together with @option{-E} because
they cause the preprocessor output to be unsuitable for actual
compilation.

@table @gcctabopt
@opindex Wp
You can use @option{-Wp,@var{option}} to bypass the compiler driver
and pass @var{option} directly through to the preprocessor.  If
@var{option} contains commas, it is split into multiple options at the
commas.  However, many options are modified, translated or interpreted
by the compiler driver before being passed to the preprocessor, and
@option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
interface is undocumented and subject to change, so whenever possible
you should avoid using @option{-Wp} and let the driver handle the
options instead.

@item -Xpreprocessor @var{option}
@opindex preprocessor
Pass @var{option} as an option to the preprocessor.  You can use this to
supply system-specific preprocessor options which GCC does not know how to
recognize.

If you want to pass an option that takes an argument, you must use
@option{-Xpreprocessor} twice, once for the option and once for the argument.
@end table

@include cppopts.texi

@node Assembler Options
@section Passing Options to the Assembler

@c prevent bad page break with this line
You can pass options to the assembler.

@table @gcctabopt
@item -Wa,@var{option}
@opindex Wa
Pass @var{option} as an option to the assembler.  If @var{option}
contains commas, it is split into multiple options at the commas.

@item -Xassembler @var{option}
@opindex Xassembler
Pass @var{option} as an option to the assembler.  You can use this to
supply system-specific assembler options which GCC does not know how to
recognize.

If you want to pass an option that takes an argument, you must use
@option{-Xassembler} twice, once for the option and once for the argument.

@end table

@node Link Options
@section Options for Linking
@cindex link options
@cindex options, linking

These options come into play when the compiler links object files into
an executable output file.  They are meaningless if the compiler is
not doing a link step.

@table @gcctabopt
@cindex file names
@item @var{object-file-name}
A file name that does not end in a special recognized suffix is
considered to name an object file or library.  (Object files are
distinguished from libraries by the linker according to the file
contents.)  If linking is done, these object files are used as input
to the linker.

@item -c
@itemx -S
@itemx -E
@opindex c
@opindex S
@opindex E
If any of these options is used, then the linker is not run, and
object file names should not be used as arguments.  @xref{Overall
Options}.

@cindex Libraries
@item -l@var{library}
@itemx -l @var{library}
@opindex l
Search the library named @var{library} when linking.  (The second
alternative with the library as a separate argument is only for
POSIX compliance and is not recommended.)

It makes a difference where in the command you write this option; the
linker searches and processes libraries and object files in the order they
are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
to functions in @samp{z}, those functions may not be loaded.

The linker searches a standard list of directories for the library,
which is actually a file named @file{lib@var{library}.a}.  The linker
then uses this file as if it had been specified precisely by name.

The directories searched include several standard system directories
plus any that you specify with @option{-L}.

Normally the files found this way are library files---archive files
whose members are object files.  The linker handles an archive file by
scanning through it for members which define symbols that have so far
been referenced but not defined.  But if the file that is found is an
ordinary object file, it is linked in the usual fashion.  The only
difference between using an @option{-l} option and specifying a file name
is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
and searches several directories.

@item -lobjc
@opindex lobjc
You need this special case of the @option{-l} option in order to
link an Objective-C or Objective-C++ program.

@item -nostartfiles
@opindex nostartfiles
Do not use the standard system startup files when linking.
The standard system libraries are used normally, unless @option{-nostdlib}
or @option{-nodefaultlibs} is used.

@item -nodefaultlibs
@opindex nodefaultlibs
Do not use the standard system libraries when linking.
Only the libraries you specify will be passed to the linker.
The standard startup files are used normally, unless @option{-nostartfiles}
is used.  The compiler may generate calls to @code{memcmp},
@code{memset}, @code{memcpy} and @code{memmove}.
These entries are usually resolved by entries in
libc.  These entry points should be supplied through some other
mechanism when this option is specified.

@item -nostdlib
@opindex nostdlib
Do not use the standard system startup files or libraries when linking.
No startup files and only the libraries you specify will be passed to
the linker.  The compiler may generate calls to @code{memcmp}, @code{memset},
@code{memcpy} and @code{memmove}.
These entries are usually resolved by entries in
libc.  These entry points should be supplied through some other
mechanism when this option is specified.

@cindex @option{-lgcc}, use with @option{-nostdlib}
@cindex @option{-nostdlib} and unresolved references
@cindex unresolved references and @option{-nostdlib}
@cindex @option{-lgcc}, use with @option{-nodefaultlibs}
@cindex @option{-nodefaultlibs} and unresolved references
@cindex unresolved references and @option{-nodefaultlibs}
One of the standard libraries bypassed by @option{-nostdlib} and
@option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
that GCC uses to overcome shortcomings of particular machines, or special
needs for some languages.
(@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
Collection (GCC) Internals},
for more discussion of @file{libgcc.a}.)
In most cases, you need @file{libgcc.a} even when you want to avoid
other standard libraries.  In other words, when you specify @option{-nostdlib}
or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
This ensures that you have no unresolved references to internal GCC
library subroutines.  (For example, @samp{__main}, used to ensure C++
constructors will be called; @pxref{Collect2,,@code{collect2}, gccint,
GNU Compiler Collection (GCC) Internals}.)

@item -pie
@opindex pie
Produce a position independent executable on targets which support it.
For predictable results, you must also specify the same set of options
that were used to generate code (@option{-fpie}, @option{-fPIE},
or model suboptions) when you specify this option.

@item -rdynamic
@opindex rdynamic
Pass the flag @option{-export-dynamic} to the ELF linker, on targets
that support it. This instructs the linker to add all symbols, not
only used ones, to the dynamic symbol table. This option is needed
for some uses of @code{dlopen} or to allow obtaining backtraces
from within a program.

@item -s
@opindex s
Remove all symbol table and relocation information from the executable.

@item -static
@opindex static
On systems that support dynamic linking, this prevents linking with the shared
libraries.  On other systems, this option has no effect.

@item -shared
@opindex shared
Produce a shared object which can then be linked with other objects to
form an executable.  Not all systems support this option.  For predictable
results, you must also specify the same set of options that were used to
generate code (@option{-fpic}, @option{-fPIC}, or model suboptions)
when you specify this option.@footnote{On some systems, @samp{gcc -shared}
needs to build supplementary stub code for constructors to work.  On
multi-libbed systems, @samp{gcc -shared} must select the correct support
libraries to link against.  Failing to supply the correct flags may lead
to subtle defects.  Supplying them in cases where they are not necessary
is innocuous.}

@item -shared-libgcc
@itemx -static-libgcc
@opindex shared-libgcc
@opindex static-libgcc
On systems that provide @file{libgcc} as a shared library, these options
force the use of either the shared or static version respectively.
If no shared version of @file{libgcc} was built when the compiler was
configured, these options have no effect.

There are several situations in which an application should use the
shared @file{libgcc} instead of the static version.  The most common
of these is when the application wishes to throw and catch exceptions
across different shared libraries.  In that case, each of the libraries
as well as the application itself should use the shared @file{libgcc}.

Therefore, the G++ and GCJ drivers automatically add
@option{-shared-libgcc} whenever you build a shared library or a main
executable, because C++ and Java programs typically use exceptions, so
this is the right thing to do.

If, instead, you use the GCC driver to create shared libraries, you may
find that they will not always be linked with the shared @file{libgcc}.
If GCC finds, at its configuration time, that you have a non-GNU linker
or a GNU linker that does not support option @option{--eh-frame-hdr},
it will link the shared version of @file{libgcc} into shared libraries
by default.  Otherwise, it will take advantage of the linker and optimize
away the linking with the shared version of @file{libgcc}, linking with
the static version of libgcc by default.  This allows exceptions to
propagate through such shared libraries, without incurring relocation
costs at library load time.

However, if a library or main executable is supposed to throw or catch
exceptions, you must link it using the G++ or GCJ driver, as appropriate
for the languages used in the program, or using the option
@option{-shared-libgcc}, such that it is linked with the shared
@file{libgcc}.

@item -symbolic
@opindex symbolic
Bind references to global symbols when building a shared object.  Warn
about any unresolved references (unless overridden by the link editor
option @samp{-Xlinker -z -Xlinker defs}).  Only a few systems support
this option.

@item -T @var{script}
@opindex T
@cindex linker script
Use @var{script} as the linker script.  This option is supported by most
systems using the GNU linker.  On some targets, such as bare-board
targets without an operating system, the @option{-T} option may be required 
when linking to avoid references to undefined symbols.

@item -Xlinker @var{option}
@opindex Xlinker
Pass @var{option} as an option to the linker.  You can use this to
supply system-specific linker options which GCC does not know how to
recognize.

If you want to pass an option that takes a separate argument, you must use
@option{-Xlinker} twice, once for the option and once for the argument.
For example, to pass @option{-assert definitions}, you must write
@samp{-Xlinker -assert -Xlinker definitions}.  It does not work to write
@option{-Xlinker "-assert definitions"}, because this passes the entire
string as a single argument, which is not what the linker expects.

When using the GNU linker, it is usually more convenient to pass 
arguments to linker options using the @option{@var{option}=@var{value}}
syntax than as separate arguments.  For example, you can specify
@samp{-Xlinker -Map=output.map} rather than
@samp{-Xlinker -Map -Xlinker output.map}.  Other linkers may not support
this syntax for command-line options.

@item -Wl,@var{option}
@opindex Wl
Pass @var{option} as an option to the linker.  If @var{option} contains
commas, it is split into multiple options at the commas.  You can use this
syntax to pass an argument to the option.  
For example, @samp{-Wl,-Map,output.map} passes @samp{-Map output.map} to the
linker.  When using the GNU linker, you can also get the same effect with
@samp{-Wl,-Map=output.map}.

@item -u @var{symbol}
@opindex u
Pretend the symbol @var{symbol} is undefined, to force linking of
library modules to define it.  You can use @option{-u} multiple times with
different symbols to force loading of additional library modules.
@end table

@node Directory Options
@section Options for Directory Search
@cindex directory options
@cindex options, directory search
@cindex search path

These options specify directories to search for header files, for
libraries and for parts of the compiler:

@table @gcctabopt
@item -I@var{dir}
@opindex I
Add the directory @var{dir} to the head of the list of directories to be
searched for header files.  This can be used to override a system header
file, substituting your own version, since these directories are
searched before the system header file directories.  However, you should
not use this option to add directories that contain vendor-supplied
system header files (use @option{-isystem} for that).  If you use more than
one @option{-I} option, the directories are scanned in left-to-right
order; the standard system directories come after.

If a standard system include directory, or a directory specified with
@option{-isystem}, is also specified with @option{-I}, the @option{-I}
option will be ignored.  The directory will still be searched but as a
system directory at its normal position in the system include chain.
This is to ensure that GCC's procedure to fix buggy system headers and
the ordering for the include_next directive are not inadvertently changed.
If you really need to change the search order for system directories,
use the @option{-nostdinc} and/or @option{-isystem} options.

@item -iquote@var{dir}
@opindex iquote
Add the directory @var{dir} to the head of the list of directories to
be searched for header files only for the case of @samp{#include
"@var{file}"}; they are not searched for @samp{#include <@var{file}>},
otherwise just like @option{-I}.

@item -L@var{dir}
@opindex L
Add directory @var{dir} to the list of directories to be searched
for @option{-l}.

@item -B@var{prefix}
@opindex B
This option specifies where to find the executables, libraries,
include files, and data files of the compiler itself.

The compiler driver program runs one or more of the subprograms
@file{cpp}, @file{cc1}, @file{as} and @file{ld}.  It tries
@var{prefix} as a prefix for each program it tries to run, both with and
without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).

For each subprogram to be run, the compiler driver first tries the
@option{-B} prefix, if any.  If that name is not found, or if @option{-B}
was not specified, the driver tries two standard prefixes, which are
@file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
those results in a file name that is found, the unmodified program
name is searched for using the directories specified in your
@env{PATH} environment variable.

The compiler will check to see if the path provided by the @option{-B}
refers to a directory, and if necessary it will add a directory
separator character at the end of the path.

@option{-B} prefixes that effectively specify directory names also apply
to libraries in the linker, because the compiler translates these
options into @option{-L} options for the linker.  They also apply to
includes files in the preprocessor, because the compiler translates these
options into @option{-isystem} options for the preprocessor.  In this case,
the compiler appends @samp{include} to the prefix.

The run-time support file @file{libgcc.a} can also be searched for using
the @option{-B} prefix, if needed.  If it is not found there, the two
standard prefixes above are tried, and that is all.  The file is left
out of the link if it is not found by those means.

Another way to specify a prefix much like the @option{-B} prefix is to use
the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
Variables}.

As a special kludge, if the path provided by @option{-B} is
@file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
9, then it will be replaced by @file{[dir/]include}.  This is to help
with boot-strapping the compiler.

@item -specs=@var{file}
@opindex specs
Process @var{file} after the compiler reads in the standard @file{specs}
file, in order to override the defaults that the @file{gcc} driver
program uses when determining what switches to pass to @file{cc1},
@file{cc1plus}, @file{as}, @file{ld}, etc.  More than one
@option{-specs=@var{file}} can be specified on the command line, and they
are processed in order, from left to right.

@item --sysroot=@var{dir}
@opindex sysroot
Use @var{dir} as the logical root directory for headers and libraries.
For example, if the compiler would normally search for headers in
@file{/usr/include} and libraries in @file{/usr/lib}, it will instead
search @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.

If you use both this option and the @option{-isysroot} option, then
the @option{--sysroot} option will apply to libraries, but the
@option{-isysroot} option will apply to header files.

The GNU linker (beginning with version 2.16) has the necessary support
for this option.  If your linker does not support this option, the
header file aspect of @option{--sysroot} will still work, but the
library aspect will not.

@item -I-
@opindex I-
This option has been deprecated.  Please use @option{-iquote} instead for
@option{-I} directories before the @option{-I-} and remove the @option{-I-}.
Any directories you specify with @option{-I} options before the @option{-I-}
option are searched only for the case of @samp{#include "@var{file}"};
they are not searched for @samp{#include <@var{file}>}.

If additional directories are specified with @option{-I} options after
the @option{-I-}, these directories are searched for all @samp{#include}
directives.  (Ordinarily @emph{all} @option{-I} directories are used
this way.)

In addition, the @option{-I-} option inhibits the use of the current
directory (where the current input file came from) as the first search
directory for @samp{#include "@var{file}"}.  There is no way to
override this effect of @option{-I-}.  With @option{-I.} you can specify
searching the directory which was current when the compiler was
invoked.  That is not exactly the same as what the preprocessor does
by default, but it is often satisfactory.

@option{-I-} does not inhibit the use of the standard system directories
for header files.  Thus, @option{-I-} and @option{-nostdinc} are
independent.
@end table

@c man end

@node Spec Files
@section Specifying subprocesses and the switches to pass to them
@cindex Spec Files

@command{gcc} is a driver program.  It performs its job by invoking a
sequence of other programs to do the work of compiling, assembling and
linking.  GCC interprets its command-line parameters and uses these to
deduce which programs it should invoke, and which command-line options
it ought to place on their command lines.  This behavior is controlled
by @dfn{spec strings}.  In most cases there is one spec string for each
program that GCC can invoke, but a few programs have multiple spec
strings to control their behavior.  The spec strings built into GCC can
be overridden by using the @option{-specs=} command-line switch to specify
a spec file.

@dfn{Spec files} are plaintext files that are used to construct spec
strings.  They consist of a sequence of directives separated by blank
lines.  The type of directive is determined by the first non-whitespace
character on the line and it can be one of the following:

@table @code
@item %@var{command}
Issues a @var{command} to the spec file processor.  The commands that can
appear here are:

@table @code
@item %include <@var{file}>
@cindex %include
Search for @var{file} and insert its text at the current point in the
specs file.

@item %include_noerr <@var{file}>
@cindex %include_noerr
Just like @samp{%include}, but do not generate an error message if the include
file cannot be found.

@item %rename @var{old_name} @var{new_name}
@cindex %rename
Rename the spec string @var{old_name} to @var{new_name}.

@end table

@item *[@var{spec_name}]:
This tells the compiler to create, override or delete the named spec
string.  All lines after this directive up to the next directive or
blank line are considered to be the text for the spec string.  If this
results in an empty string then the spec will be deleted.  (Or, if the
spec did not exist, then nothing will happened.)  Otherwise, if the spec
does not currently exist a new spec will be created.  If the spec does
exist then its contents will be overridden by the text of this
directive, unless the first character of that text is the @samp{+}
character, in which case the text will be appended to the spec.

@item [@var{suffix}]:
Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
and up to the next directive or blank line are considered to make up the
spec string for the indicated suffix.  When the compiler encounters an
input file with the named suffix, it will processes the spec string in
order to work out how to compile that file.  For example:

@smallexample
.ZZ:
z-compile -input %i
@end smallexample

This says that any input file whose name ends in @samp{.ZZ} should be
passed to the program @samp{z-compile}, which should be invoked with the
command-line switch @option{-input} and with the result of performing the
@samp{%i} substitution.  (See below.)

As an alternative to providing a spec string, the text that follows a
suffix directive can be one of the following:

@table @code
@item @@@var{language}
This says that the suffix is an alias for a known @var{language}.  This is
similar to using the @option{-x} command-line switch to GCC to specify a
language explicitly.  For example:

@smallexample
.ZZ:
@@c++
@end smallexample

Says that .ZZ files are, in fact, C++ source files.

@item #@var{name}
This causes an error messages saying:

@smallexample
@var{name} compiler not installed on this system.
@end smallexample
@end table

GCC already has an extensive list of suffixes built into it.
This directive will add an entry to the end of the list of suffixes, but
since the list is searched from the end backwards, it is effectively
possible to override earlier entries using this technique.

@end table

GCC has the following spec strings built into it.  Spec files can
override these strings or create their own.  Note that individual
targets can also add their own spec strings to this list.

@smallexample
asm          Options to pass to the assembler
asm_final    Options to pass to the assembler post-processor
cpp          Options to pass to the C preprocessor
cc1          Options to pass to the C compiler
cc1plus      Options to pass to the C++ compiler
endfile      Object files to include at the end of the link
link         Options to pass to the linker
lib          Libraries to include on the command line to the linker
libgcc       Decides which GCC support library to pass to the linker
linker       Sets the name of the linker
predefines   Defines to be passed to the C preprocessor
signed_char  Defines to pass to CPP to say whether @code{char} is signed
             by default
startfile    Object files to include at the start of the link
@end smallexample

Here is a small example of a spec file:

@smallexample
%rename lib                 old_lib

*lib:
--start-group -lgcc -lc -leval1 --end-group %(old_lib)
@end smallexample

This example renames the spec called @samp{lib} to @samp{old_lib} and
then overrides the previous definition of @samp{lib} with a new one.
The new definition adds in some extra command-line options before
including the text of the old definition.

@dfn{Spec strings} are a list of command-line options to be passed to their
corresponding program.  In addition, the spec strings can contain
@samp{%}-prefixed sequences to substitute variable text or to
conditionally insert text into the command line.  Using these constructs
it is possible to generate quite complex command lines.

Here is a table of all defined @samp{%}-sequences for spec
strings.  Note that spaces are not generated automatically around the
results of expanding these sequences.  Therefore you can concatenate them
together or combine them with constant text in a single argument.

@table @code
@item %%
Substitute one @samp{%} into the program name or argument.

@item %i
Substitute the name of the input file being processed.

@item %b
Substitute the basename of the input file being processed.
This is the substring up to (and not including) the last period
and not including the directory.

@item %B
This is the same as @samp{%b}, but include the file suffix (text after
the last period).

@item %d
Marks the argument containing or following the @samp{%d} as a
temporary file name, so that that file will be deleted if GCC exits
successfully.  Unlike @samp{%g}, this contributes no text to the
argument.

@item %g@var{suffix}
Substitute a file name that has suffix @var{suffix} and is chosen
once per compilation, and mark the argument in the same way as
@samp{%d}.  To reduce exposure to denial-of-service attacks, the file
name is now chosen in a way that is hard to predict even when previously
chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
was simply substituted with a file name chosen once per compilation,
without regard to any appended suffix (which was therefore treated
just like ordinary text), making such attacks more likely to succeed.

@item %u@var{suffix}
Like @samp{%g}, but generates a new temporary file name even if
@samp{%u@var{suffix}} was already seen.

@item %U@var{suffix}
Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
new one if there is no such last file name.  In the absence of any
@samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
would involve the generation of two distinct file names, one
for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
simply substituted with a file name chosen for the previous @samp{%u},
without regard to any appended suffix.

@item %j@var{suffix}
Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
writable, and if save-temps is off; otherwise, substitute the name
of a temporary file, just like @samp{%u}.  This temporary file is not
meant for communication between processes, but rather as a junk
disposal mechanism.

@item %|@var{suffix}
@itemx %m@var{suffix}
Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
@samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
all.  These are the two most common ways to instruct a program that it
should read from standard input or write to standard output.  If you
need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
construct: see for example @file{f/lang-specs.h}.

@item %.@var{SUFFIX}
Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
terminated by the next space or %.

@item %w
Marks the argument containing or following the @samp{%w} as the
designated output file of this compilation.  This puts the argument
into the sequence of arguments that @samp{%o} will substitute later.

@item %o
Substitutes the names of all the output files, with spaces
automatically placed around them.  You should write spaces
around the @samp{%o} as well or the results are undefined.
@samp{%o} is for use in the specs for running the linker.
Input files whose names have no recognized suffix are not compiled
at all, but they are included among the output files, so they will
be linked.

@item %O
Substitutes the suffix for object files.  Note that this is
handled specially when it immediately follows @samp{%g, %u, or %U},
because of the need for those to form complete file names.  The
handling is such that @samp{%O} is treated exactly as if it had already
been substituted, except that @samp{%g, %u, and %U} do not currently
support additional @var{suffix} characters following @samp{%O} as they would
following, for example, @samp{.o}.

@item %p
Substitutes the standard macro predefinitions for the
current target machine.  Use this when running @code{cpp}.

@item %P
Like @samp{%p}, but puts @samp{__} before and after the name of each
predefined macro, except for macros that start with @samp{__} or with
@samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ISO
C@.

@item %I
Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
@option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
@option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
and @option{-imultilib} as necessary.

@item %s
Current argument is the name of a library or startup file of some sort.
Search for that file in a standard list of directories and substitute
the full name found.

@item %e@var{str}
Print @var{str} as an error message.  @var{str} is terminated by a newline.
Use this when inconsistent options are detected.

@item %(@var{name})
Substitute the contents of spec string @var{name} at this point.

@item %[@var{name}]
Like @samp{%(@dots{})} but put @samp{__} around @option{-D} arguments.

@item %x@{@var{option}@}
Accumulate an option for @samp{%X}.

@item %X
Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
spec string.

@item %Y
Output the accumulated assembler options specified by @option{-Wa}.

@item %Z
Output the accumulated preprocessor options specified by @option{-Wp}.

@item %a
Process the @code{asm} spec.  This is used to compute the
switches to be passed to the assembler.

@item %A
Process the @code{asm_final} spec.  This is a spec string for
passing switches to an assembler post-processor, if such a program is
needed.

@item %l
Process the @code{link} spec.  This is the spec for computing the
command line passed to the linker.  Typically it will make use of the
@samp{%L %G %S %D and %E} sequences.

@item %D
Dump out a @option{-L} option for each directory that GCC believes might
contain startup files.  If the target supports multilibs then the
current multilib directory will be prepended to each of these paths.

@item %L
Process the @code{lib} spec.  This is a spec string for deciding which
libraries should be included on the command line to the linker.

@item %G
Process the @code{libgcc} spec.  This is a spec string for deciding
which GCC support library should be included on the command line to the linker.

@item %S
Process the @code{startfile} spec.  This is a spec for deciding which
object files should be the first ones passed to the linker.  Typically
this might be a file named @file{crt0.o}.

@item %E
Process the @code{endfile} spec.  This is a spec string that specifies
the last object files that will be passed to the linker.

@item %C
Process the @code{cpp} spec.  This is used to construct the arguments
to be passed to the C preprocessor.

@item %1
Process the @code{cc1} spec.  This is used to construct the options to be
passed to the actual C compiler (@samp{cc1}).

@item %2
Process the @code{cc1plus} spec.  This is used to construct the options to be
passed to the actual C++ compiler (@samp{cc1plus}).

@item %*
Substitute the variable part of a matched option.  See below.
Note that each comma in the substituted string is replaced by
a single space.

@item %<@code{S}
Remove all occurrences of @code{-S} from the command line.  Note---this
command is position dependent.  @samp{%} commands in the spec string
before this one will see @code{-S}, @samp{%} commands in the spec string
after this one will not.

@item %:@var{function}(@var{args})
Call the named function @var{function}, passing it @var{args}.
@var{args} is first processed as a nested spec string, then split
into an argument vector in the usual fashion.  The function returns
a string which is processed as if it had appeared literally as part
of the current spec.

The following built-in spec functions are provided:

@table @code
@item @code{getenv}
The @code{getenv} spec function takes two arguments: an environment
variable name and a string.  If the environment variable is not
defined, a fatal error is issued.  Otherwise, the return value is the
value of the environment variable concatenated with the string.  For
example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:

@smallexample
%:getenv(TOPDIR /include)
@end smallexample

expands to @file{/path/to/top/include}.

@item @code{if-exists}
The @code{if-exists} spec function takes one argument, an absolute
pathname to a file.  If the file exists, @code{if-exists} returns the
pathname.  Here is a small example of its usage:

@smallexample
*startfile:
crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
@end smallexample

@item @code{if-exists-else}
The @code{if-exists-else} spec function is similar to the @code{if-exists}
spec function, except that it takes two arguments.  The first argument is
an absolute pathname to a file.  If the file exists, @code{if-exists-else}
returns the pathname.  If it does not exist, it returns the second argument.
This way, @code{if-exists-else} can be used to select one file or another,
based on the existence of the first.  Here is a small example of its usage:

@smallexample
*startfile:
crt0%O%s %:if-exists(crti%O%s) \
%:if-exists-else(crtbeginT%O%s crtbegin%O%s)
@end smallexample

@item @code{replace-outfile}
The @code{replace-outfile} spec function takes two arguments.  It looks for the
first argument in the outfiles array and replaces it with the second argument.  Here
is a small example of its usage:

@smallexample
%@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
@end smallexample

@item @code{print-asm-header}
The @code{print-asm-header} function takes no arguments and simply
prints a banner like:

@smallexample
Assembler options
=================

Use "-Wa,OPTION" to pass "OPTION" to the assembler.
@end smallexample

It is used to separate compiler options from assembler options
in the @option{--target-help} output.
@end table

@item %@{@code{S}@}
Substitutes the @code{-S} switch, if that switch was given to GCC@.
If that switch was not specified, this substitutes nothing.  Note that
the leading dash is omitted when specifying this option, and it is
automatically inserted if the substitution is performed.  Thus the spec
string @samp{%@{foo@}} would match the command-line option @option{-foo}
and would output the command line option @option{-foo}.

@item %W@{@code{S}@}
Like %@{@code{S}@} but mark last argument supplied within as a file to be
deleted on failure.

@item %@{@code{S}*@}
Substitutes all the switches specified to GCC whose names start
with @code{-S}, but which also take an argument.  This is used for
switches like @option{-o}, @option{-D}, @option{-I}, etc.
GCC considers @option{-o foo} as being
one switch whose names starts with @samp{o}.  %@{o*@} would substitute this
text, including the space.  Thus two arguments would be generated.

@item %@{@code{S}*&@code{T}*@}
Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
(the order of @code{S} and @code{T} in the spec is not significant).
There can be any number of ampersand-separated variables; for each the
wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.

@item %@{@code{S}:@code{X}@}
Substitutes @code{X}, if the @samp{-S} switch was given to GCC@.

@item %@{!@code{S}:@code{X}@}
Substitutes @code{X}, if the @samp{-S} switch was @emph{not} given to GCC@.

@item %@{@code{S}*:@code{X}@}
Substitutes @code{X} if one or more switches whose names start with
@code{-S} are specified to GCC@.  Normally @code{X} is substituted only
once, no matter how many such switches appeared.  However, if @code{%*}
appears somewhere in @code{X}, then @code{X} will be substituted once
for each matching switch, with the @code{%*} replaced by the part of
that switch that matched the @code{*}.

@item %@{.@code{S}:@code{X}@}
Substitutes @code{X}, if processing a file with suffix @code{S}.

@item %@{!.@code{S}:@code{X}@}
Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.

@item %@{,@code{S}:@code{X}@}
Substitutes @code{X}, if processing a file for language @code{S}.

@item %@{!,@code{S}:@code{X}@}
Substitutes @code{X}, if not processing a file for language @code{S}.

@item %@{@code{S}|@code{P}:@code{X}@}
Substitutes @code{X} if either @code{-S} or @code{-P} was given to
GCC@.  This may be combined with @samp{!}, @samp{.}, @samp{,}, and
@code{*} sequences as well, although they have a stronger binding than
the @samp{|}.  If @code{%*} appears in @code{X}, all of the
alternatives must be starred, and only the first matching alternative
is substituted.

For example, a spec string like this:

@smallexample
%@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
@end smallexample

will output the following command-line options from the following input
command-line options:

@smallexample
fred.c        -foo -baz
jim.d         -bar -boggle
-d fred.c     -foo -baz -boggle
-d jim.d      -bar -baz -boggle
@end smallexample

@item %@{S:X; T:Y; :D@}

If @code{S} was given to GCC, substitutes @code{X}; else if @code{T} was
given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
be as many clauses as you need.  This may be combined with @code{.},
@code{,}, @code{!}, @code{|}, and @code{*} as needed.


@end table

The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
construct may contain other nested @samp{%} constructs or spaces, or
even newlines.  They are processed as usual, as described above.
Trailing white space in @code{X} is ignored.  White space may also
appear anywhere on the left side of the colon in these constructs,
except between @code{.} or @code{*} and the corresponding word.

The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
handled specifically in these constructs.  If another value of
@option{-O} or the negated form of a @option{-f}, @option{-m}, or
@option{-W} switch is found later in the command line, the earlier
switch value is ignored, except with @{@code{S}*@} where @code{S} is
just one letter, which passes all matching options.

The character @samp{|} at the beginning of the predicate text is used to
indicate that a command should be piped to the following command, but
only if @option{-pipe} is specified.

It is built into GCC which switches take arguments and which do not.
(You might think it would be useful to generalize this to allow each
compiler's spec to say which switches take arguments.  But this cannot
be done in a consistent fashion.  GCC cannot even decide which input
files have been specified without knowing which switches take arguments,
and it must know which input files to compile in order to tell which
compilers to run).

GCC also knows implicitly that arguments starting in @option{-l} are to be
treated as compiler output files, and passed to the linker in their
proper position among the other output files.

@c man begin OPTIONS

@node Target Options
@section Specifying Target Machine and Compiler Version
@cindex target options
@cindex cross compiling
@cindex specifying machine version
@cindex specifying compiler version and target machine
@cindex compiler version, specifying
@cindex target machine, specifying

The usual way to run GCC is to run the executable called @file{gcc}, or
@file{<machine>-gcc} when cross-compiling, or
@file{<machine>-gcc-<version>} to run a version other than the one that
was installed last.  Sometimes this is inconvenient, so GCC provides
options that will switch to another cross-compiler or version.

@table @gcctabopt
@item -b @var{machine}
@opindex b
The argument @var{machine} specifies the target machine for compilation.

The value to use for @var{machine} is the same as was specified as the
machine type when configuring GCC as a cross-compiler.  For
example, if a cross-compiler was configured with @samp{configure
arm-elf}, meaning to compile for an arm processor with elf binaries,
then you would specify @option{-b arm-elf} to run that cross compiler.
Because there are other options beginning with @option{-b}, the
configuration must contain a hyphen, or @option{-b} alone should be one
argument followed by the configuration in the next argument.

@item -V @var{version}
@opindex V
The argument @var{version} specifies which version of GCC to run.
This is useful when multiple versions are installed.  For example,
@var{version} might be @samp{4.0}, meaning to run GCC version 4.0.
@end table

The @option{-V} and @option{-b} options work by running the
@file{<machine>-gcc-<version>} executable, so there's no real reason to
use them if you can just run that directly.

@node Submodel Options
@section Hardware Models and Configurations
@cindex submodel options
@cindex specifying hardware config
@cindex hardware models and configurations, specifying
@cindex machine dependent options

Earlier we discussed the standard option @option{-b} which chooses among
different installed compilers for completely different target
machines, such as VAX vs.@: 68000 vs.@: 80386.

In addition, each of these target machine types can have its own
special options, starting with @samp{-m}, to choose among various
hardware models or configurations---for example, 68010 vs 68020,
floating coprocessor or none.  A single installed version of the
compiler can compile for any model or configuration, according to the
options specified.

Some configurations of the compiler also support additional special
options, usually for compatibility with other compilers on the same
platform.

@c This list is ordered alphanumerically by subsection name.
@c It should be the same order and spelling as these options are listed
@c in Machine Dependent Options

@menu
* ARC Options::
* ARM Options::
* AVR Options::
* Blackfin Options::
* CRIS Options::
* CRX Options::
* Darwin Options::
* DEC Alpha Options::
* DEC Alpha/VMS Options::
* FR30 Options::
* FRV Options::
* GNU/Linux Options::
* H8/300 Options::
* HPPA Options::
* i386 and x86-64 Options::
* i386 and x86-64 Windows Options::
* IA-64 Options::
* M32C Options::
* M32R/D Options::
* M680x0 Options::
* M68hc1x Options::
* MCore Options::
* MIPS Options::
* MMIX Options::
* MN10300 Options::
* PDP-11 Options::
* picoChip Options::
* PowerPC Options::
* RS/6000 and PowerPC Options::
* S/390 and zSeries Options::
* Score Options::
* SH Options::
* SPARC Options::
* SPU Options::
* System V Options::
* V850 Options::
* VAX Options::
* VxWorks Options::
* x86-64 Options::
* Xstormy16 Options::
* Xtensa Options::
* zSeries Options::
@end menu

@node ARC Options
@subsection ARC Options
@cindex ARC Options

These options are defined for ARC implementations:

@table @gcctabopt
@item -EL
@opindex EL
Compile code for little endian mode.  This is the default.

@item -EB
@opindex EB
Compile code for big endian mode.

@item -mmangle-cpu
@opindex mmangle-cpu
Prepend the name of the cpu to all public symbol names.
In multiple-processor systems, there are many ARC variants with different
instruction and register set characteristics.  This flag prevents code
compiled for one cpu to be linked with code compiled for another.
No facility exists for handling variants that are ``almost identical''.
This is an all or nothing option.

@item -mcpu=@var{cpu}
@opindex mcpu
Compile code for ARC variant @var{cpu}.
Which variants are supported depend on the configuration.
All variants support @option{-mcpu=base}, this is the default.

@item -mtext=@var{text-section}
@itemx -mdata=@var{data-section}
@itemx -mrodata=@var{readonly-data-section}
@opindex mtext
@opindex mdata
@opindex mrodata
Put functions, data, and readonly data in @var{text-section},
@var{data-section}, and @var{readonly-data-section} respectively
by default.  This can be overridden with the @code{section} attribute.
@xref{Variable Attributes}.

@item -mfix-cortex-m3-ldrd
@opindex mfix-cortex-m3-ldrd
Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
with overlapping destination and base registers are used.  This option avoids
generating these instructions.  This option is enabled by default when
@option{-mcpu=cortex-m3} is specified.

@end table

@node ARM Options
@subsection ARM Options
@cindex ARM options

These @samp{-m} options are defined for Advanced RISC Machines (ARM)
architectures:

@table @gcctabopt
@item -mabi=@var{name}
@opindex mabi
Generate code for the specified ABI@.  Permissible values are: @samp{apcs-gnu},
@samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.

@item -mapcs-frame
@opindex mapcs-frame
Generate a stack frame that is compliant with the ARM Procedure Call
Standard for all functions, even if this is not strictly necessary for
correct execution of the code.  Specifying @option{-fomit-frame-pointer}
with this option will cause the stack frames not to be generated for
leaf functions.  The default is @option{-mno-apcs-frame}.

@item -mapcs
@opindex mapcs
This is a synonym for @option{-mapcs-frame}.

@ignore
@c not currently implemented
@item -mapcs-stack-check
@opindex mapcs-stack-check
Generate code to check the amount of stack space available upon entry to
every function (that actually uses some stack space).  If there is
insufficient space available then either the function
@samp{__rt_stkovf_split_small} or @samp{__rt_stkovf_split_big} will be
called, depending upon the amount of stack space required.  The run time
system is required to provide these functions.  The default is
@option{-mno-apcs-stack-check}, since this produces smaller code.

@c not currently implemented
@item -mapcs-float
@opindex mapcs-float
Pass floating point arguments using the float point registers.  This is
one of the variants of the APCS@.  This option is recommended if the
target hardware has a floating point unit or if a lot of floating point
arithmetic is going to be performed by the code.  The default is
@option{-mno-apcs-float}, since integer only code is slightly increased in
size if @option{-mapcs-float} is used.

@c not currently implemented
@item -mapcs-reentrant
@opindex mapcs-reentrant
Generate reentrant, position independent code.  The default is
@option{-mno-apcs-reentrant}.
@end ignore

@item -mthumb-interwork
@opindex mthumb-interwork
Generate code which supports calling between the ARM and Thumb
instruction sets.  Without this option the two instruction sets cannot
be reliably used inside one program.  The default is
@option{-mno-thumb-interwork}, since slightly larger code is generated
when @option{-mthumb-interwork} is specified.

@item -mno-sched-prolog
@opindex mno-sched-prolog
Prevent the reordering of instructions in the function prolog, or the
merging of those instruction with the instructions in the function's
body.  This means that all functions will start with a recognizable set
of instructions (or in fact one of a choice from a small set of
different function prologues), and this information can be used to
locate the start if functions inside an executable piece of code.  The
default is @option{-msched-prolog}.

@item -mfloat-abi=@var{name}
@opindex mfloat-abi
Specifies which floating-point ABI to use.  Permissible values
are: @samp{soft}, @samp{softfp} and @samp{hard}.

Specifying @samp{soft} causes GCC to generate output containing 
library calls for floating-point operations.
@samp{softfp} allows the generation of code using hardware floating-point 
instructions, but still uses the soft-float calling conventions.  
@samp{hard} allows generation of floating-point instructions 
and uses FPU-specific calling conventions.

Using @option{-mfloat-abi=hard} with VFP coprocessors is not supported.
Use @option{-mfloat-abi=softfp} with the appropriate @option{-mfpu} option
to allow the compiler to generate code that makes use of the hardware
floating-point capabilities for these CPUs.

The default depends on the specific target configuration.  Note that
the hard-float and soft-float ABIs are not link-compatible; you must
compile your entire program with the same ABI, and link with a
compatible set of libraries.

@item -mhard-float
@opindex mhard-float
Equivalent to @option{-mfloat-abi=hard}.

@item -msoft-float
@opindex msoft-float
Equivalent to @option{-mfloat-abi=soft}.

@item -mlittle-endian
@opindex mlittle-endian
Generate code for a processor running in little-endian mode.  This is
the default for all standard configurations.

@item -mbig-endian
@opindex mbig-endian
Generate code for a processor running in big-endian mode; the default is
to compile code for a little-endian processor.

@item -mwords-little-endian
@opindex mwords-little-endian
This option only applies when generating code for big-endian processors.
Generate code for a little-endian word order but a big-endian byte
order.  That is, a byte order of the form @samp{32107654}.  Note: this
option should only be used if you require compatibility with code for
big-endian ARM processors generated by versions of the compiler prior to
2.8.

@item -mcpu=@var{name}
@opindex mcpu
This specifies the name of the target ARM processor.  GCC uses this name
to determine what kind of instructions it can emit when generating
assembly code.  Permissible names are: @samp{arm2}, @samp{arm250},
@samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
@samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
@samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
@samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
@samp{arm720},
@samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
@samp{arm710t}, @samp{arm720t}, @samp{arm740t},
@samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
@samp{strongarm1110},
@samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
@samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
@samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
@samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
@samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
@samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
@samp{arm1156t2-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
@samp{cortex-a8}, @samp{cortex-a9},
@samp{cortex-r4}, @samp{cortex-r4f}, @samp{cortex-m3},
@samp{cortex-m1},
@samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.

@item -mtune=@var{name}
@opindex mtune
This option is very similar to the @option{-mcpu=} option, except that
instead of specifying the actual target processor type, and hence
restricting which instructions can be used, it specifies that GCC should
tune the performance of the code as if the target were of the type
specified in this option, but still choosing the instructions that it
will generate based on the cpu specified by a @option{-mcpu=} option.
For some ARM implementations better performance can be obtained by using
this option.

@item -march=@var{name}
@opindex march
This specifies the name of the target ARM architecture.  GCC uses this
name to determine what kind of instructions it can emit when generating
assembly code.  This option can be used in conjunction with or instead
of the @option{-mcpu=} option.  Permissible names are: @samp{armv2},
@samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
@samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
@samp{armv6}, @samp{armv6j},
@samp{armv6t2}, @samp{armv6z}, @samp{armv6zk}, @samp{armv6-m},
@samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m},
@samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.

@item -mfpu=@var{name}
@itemx -mfpe=@var{number}
@itemx -mfp=@var{number}
@opindex mfpu
@opindex mfpe
@opindex mfp
This specifies what floating point hardware (or hardware emulation) is
available on the target.  Permissible names are: @samp{fpa}, @samp{fpe2},
@samp{fpe3}, @samp{maverick}, @samp{vfp}, @samp{vfpv3}, @samp{vfpv3-d16} and
@samp{neon}.  @option{-mfp} and @option{-mfpe}
are synonyms for @option{-mfpu}=@samp{fpe}@var{number}, for compatibility
with older versions of GCC@.

If @option{-msoft-float} is specified this specifies the format of
floating point values.

@item -mstructure-size-boundary=@var{n}
@opindex mstructure-size-boundary
The size of all structures and unions will be rounded up to a multiple
of the number of bits set by this option.  Permissible values are 8, 32
and 64.  The default value varies for different toolchains.  For the COFF
targeted toolchain the default value is 8.  A value of 64 is only allowed
if the underlying ABI supports it.

Specifying the larger number can produce faster, more efficient code, but
can also increase the size of the program.  Different values are potentially
incompatible.  Code compiled with one value cannot necessarily expect to
work with code or libraries compiled with another value, if they exchange
information using structures or unions.

@item -mabort-on-noreturn
@opindex mabort-on-noreturn
Generate a call to the function @code{abort} at the end of a
@code{noreturn} function.  It will be executed if the function tries to
return.

@item -mlong-calls
@itemx -mno-long-calls
@opindex mlong-calls
@opindex mno-long-calls
Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register.  This switch is needed if the target function
will lie outside of the 64 megabyte addressing range of the offset based
version of subroutine call instruction.

Even if this switch is enabled, not all function calls will be turned
into long calls.  The heuristic is that static functions, functions
which have the @samp{short-call} attribute, functions that are inside
the scope of a @samp{#pragma no_long_calls} directive and functions whose
definitions have already been compiled within the current compilation
unit, will not be turned into long calls.  The exception to this rule is
that weak function definitions, functions with the @samp{long-call}
attribute or the @samp{section} attribute, and functions that are within
the scope of a @samp{#pragma long_calls} directive, will always be
turned into long calls.

This feature is not enabled by default.  Specifying
@option{-mno-long-calls} will restore the default behavior, as will
placing the function calls within the scope of a @samp{#pragma
long_calls_off} directive.  Note these switches have no effect on how
the compiler generates code to handle function calls via function
pointers.

@item -msingle-pic-base
@opindex msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function.  The run-time system is
responsible for initializing this register with an appropriate value
before execution begins.

@item -mpic-register=@var{reg}
@opindex mpic-register
Specify the register to be used for PIC addressing.  The default is R10
unless stack-checking is enabled, when R9 is used.

@item -mcirrus-fix-invalid-insns
@opindex mcirrus-fix-invalid-insns
@opindex mno-cirrus-fix-invalid-insns
Insert NOPs into the instruction stream to in order to work around
problems with invalid Maverick instruction combinations.  This option
is only valid if the @option{-mcpu=ep9312} option has been used to
enable generation of instructions for the Cirrus Maverick floating
point co-processor.  This option is not enabled by default, since the
problem is only present in older Maverick implementations.  The default
can be re-enabled by use of the @option{-mno-cirrus-fix-invalid-insns}
switch.

@item -mpoke-function-name
@opindex mpoke-function-name
Write the name of each function into the text section, directly
preceding the function prologue.  The generated code is similar to this:

@smallexample
     t0
         .ascii "arm_poke_function_name", 0
         .align
     t1
         .word 0xff000000 + (t1 - t0)
     arm_poke_function_name
         mov     ip, sp
         stmfd   sp!, @{fp, ip, lr, pc@}
         sub     fp, ip, #4
@end smallexample

When performing a stack backtrace, code can inspect the value of
@code{pc} stored at @code{fp + 0}.  If the trace function then looks at
location @code{pc - 12} and the top 8 bits are set, then we know that
there is a function name embedded immediately preceding this location
and has length @code{((pc[-3]) & 0xff000000)}.

@item -mthumb
@opindex mthumb
Generate code for the Thumb instruction set.  The default is to
use the 32-bit ARM instruction set.
This option automatically enables either 16-bit Thumb-1 or
mixed 16/32-bit Thumb-2 instructions based on the @option{-mcpu=@var{name}}
and @option{-march=@var{name}} options.

@item -mtpcs-frame
@opindex mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all non-leaf functions.  (A leaf function is one that does
not call any other functions.)  The default is @option{-mno-tpcs-frame}.

@item -mtpcs-leaf-frame
@opindex mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all leaf functions.  (A leaf function is one that does
not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.

@item -mcallee-super-interworking
@opindex mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM
instruction set header which switches to Thumb mode before executing the
rest of the function.  This allows these functions to be called from
non-interworking code.

@item -mcaller-super-interworking
@opindex mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to
execute correctly regardless of whether the target code has been
compiled for interworking or not.  There is a small overhead in the cost
of executing a function pointer if this option is enabled.

@item -mtp=@var{name}
@opindex mtp
Specify the access model for the thread local storage pointer.  The valid
models are @option{soft}, which generates calls to @code{__aeabi_read_tp},
@option{cp15}, which fetches the thread pointer from @code{cp15} directly
(supported in the arm6k architecture), and @option{auto}, which uses the
best available method for the selected processor.  The default setting is
@option{auto}.

@item -mword-relocations
@opindex mword-relocations
Only generate absolute relocations on word sized values (i.e. R_ARM_ABS32).
This is enabled by default on targets (uClinux, SymbianOS) where the runtime
loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
is specified.

@end table

@node AVR Options
@subsection AVR Options
@cindex AVR Options

These options are defined for AVR implementations:

@table @gcctabopt
@item -mmcu=@var{mcu}
@opindex mmcu
Specify ATMEL AVR instruction set or MCU type.

Instruction set avr1 is for the minimal AVR core, not supported by the C
compiler, only for assembler programs (MCU types: at90s1200, attiny10,
attiny11, attiny12, attiny15, attiny28).

Instruction set avr2 (default) is for the classic AVR core with up to
8K program memory space (MCU types: at90s2313, at90s2323, attiny22,
at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515,
at90c8534, at90s8535).

Instruction set avr3 is for the classic AVR core with up to 128K program
memory space (MCU types: atmega103, atmega603, at43usb320, at76c711).

Instruction set avr4 is for the enhanced AVR core with up to 8K program
memory space (MCU types: atmega8, atmega83, atmega85).

Instruction set avr5 is for the enhanced AVR core with up to 128K program
memory space (MCU types: atmega16, atmega161, atmega163, atmega32, atmega323,
atmega64, atmega128, at43usb355, at94k).

@item -msize
@opindex msize
Output instruction sizes to the asm file.

@item -minit-stack=@var{N}
@opindex minit-stack
Specify the initial stack address, which may be a symbol or numeric value,
@samp{__stack} is the default.

@item -mno-interrupts
@opindex mno-interrupts
Generated code is not compatible with hardware interrupts.
Code size will be smaller.

@item -mcall-prologues
@opindex mcall-prologues
Functions prologues/epilogues expanded as call to appropriate
subroutines.  Code size will be smaller.

@item -mno-tablejump
@opindex mno-tablejump
Do not generate tablejump insns which sometimes increase code size.
The option is now deprecated in favor of the equivalent 
@option{-fno-jump-tables}

@item -mtiny-stack
@opindex mtiny-stack
Change only the low 8 bits of the stack pointer.

@item -mint8
@opindex mint8
Assume int to be 8 bit integer.  This affects the sizes of all types: A
char will be 1 byte, an int will be 1 byte, an long will be 2 bytes
and long long will be 4 bytes.  Please note that this option does not
comply to the C standards, but it will provide you with smaller code
size.
@end table

@node Blackfin Options
@subsection Blackfin Options
@cindex Blackfin Options

@table @gcctabopt
@item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
@opindex mcpu=
Specifies the name of the target Blackfin processor.  Currently, @var{cpu}
can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
@samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
@samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
@samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
@samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
@samp{bf561}.
The optional @var{sirevision} specifies the silicon revision of the target
Blackfin processor.  Any workarounds available for the targeted silicon revision
will be enabled.  If @var{sirevision} is @samp{none}, no workarounds are enabled.
If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
will be enabled.  The @code{__SILICON_REVISION__} macro is defined to two
hexadecimal digits representing the major and minor numbers in the silicon
revision.  If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
is not defined.  If @var{sirevision} is @samp{any}, the
@code{__SILICON_REVISION__} is defined to be @code{0xffff}.
If this optional @var{sirevision} is not used, GCC assumes the latest known
silicon revision of the targeted Blackfin processor.

Support for @samp{bf561} is incomplete.  For @samp{bf561},
Only the processor macro is defined.
Without this option, @samp{bf532} is used as the processor by default.
The corresponding predefined processor macros for @var{cpu} is to
be defined.  And for @samp{bfin-elf} toolchain, this causes the hardware BSP
provided by libgloss to be linked in if @option{-msim} is not given.

@item -msim
@opindex msim
Specifies that the program will be run on the simulator.  This causes
the simulator BSP provided by libgloss to be linked in.  This option
has effect only for @samp{bfin-elf} toolchain.
Certain other options, such as @option{-mid-shared-library} and
@option{-mfdpic}, imply @option{-msim}.

@item -momit-leaf-frame-pointer
@opindex momit-leaf-frame-pointer
Don't keep the frame pointer in a register for leaf functions.  This
avoids the instructions to save, set up and restore frame pointers and
makes an extra register available in leaf functions.  The option
@option{-fomit-frame-pointer} removes the frame pointer for all functions
which might make debugging harder.

@item -mspecld-anomaly
@opindex mspecld-anomaly
When enabled, the compiler will ensure that the generated code does not
contain speculative loads after jump instructions. If this option is used,
@code{__WORKAROUND_SPECULATIVE_LOADS} is defined.

@item -mno-specld-anomaly
@opindex mno-specld-anomaly
Don't generate extra code to prevent speculative loads from occurring.

@item -mcsync-anomaly
@opindex mcsync-anomaly
When enabled, the compiler will ensure that the generated code does not
contain CSYNC or SSYNC instructions too soon after conditional branches.
If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.

@item -mno-csync-anomaly
@opindex mno-csync-anomaly
Don't generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.

@item -mlow-64k
@opindex mlow-64k
When enabled, the compiler is free to take advantage of the knowledge that
the entire program fits into the low 64k of memory.

@item -mno-low-64k
@opindex mno-low-64k
Assume that the program is arbitrarily large.  This is the default.

@item -mstack-check-l1
@opindex mstack-check-l1
Do stack checking using information placed into L1 scratchpad memory by the
uClinux kernel.

@item -mid-shared-library
@opindex mid-shared-library
Generate code that supports shared libraries via the library ID method.
This allows for execute in place and shared libraries in an environment
without virtual memory management.  This option implies @option{-fPIC}.
With a @samp{bfin-elf} target, this option implies @option{-msim}.

@item -mno-id-shared-library
@opindex mno-id-shared-library
Generate code that doesn't assume ID based shared libraries are being used.
This is the default.

@item -mleaf-id-shared-library
@opindex mleaf-id-shared-library
Generate code that supports shared libraries via the library ID method,
but assumes that this library or executable won't link against any other
ID shared libraries.  That allows the compiler to use faster code for jumps
and calls.

@item -mno-leaf-id-shared-library
@opindex mno-leaf-id-shared-library
Do not assume that the code being compiled won't link against any ID shared
libraries.  Slower code will be generated for jump and call insns.

@item -mshared-library-id=n
@opindex mshared-library-id
Specified the identification number of the ID based shared library being
compiled.  Specifying a value of 0 will generate more compact code, specifying
other values will force the allocation of that number to the current
library but is no more space or time efficient than omitting this option.

@item -msep-data
@opindex msep-data
Generate code that allows the data segment to be located in a different
area of memory from the text segment.  This allows for execute in place in
an environment without virtual memory management by eliminating relocations
against the text section.

@item -mno-sep-data
@opindex mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.

@item -mlong-calls
@itemx -mno-long-calls
@opindex mlong-calls
@opindex mno-long-calls
Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register.  This switch is needed if the target function
will lie outside of the 24 bit addressing range of the offset based
version of subroutine call instruction.

This feature is not enabled by default.  Specifying
@option{-mno-long-calls} will restore the default behavior.  Note these
switches have no effect on how the compiler generates code to handle
function calls via function pointers.

@item -mfast-fp
@opindex mfast-fp
Link with the fast floating-point library. This library relaxes some of
the IEEE floating-point standard's rules for checking inputs against
Not-a-Number (NAN), in the interest of performance.

@item -minline-plt
@opindex minline-plt
Enable inlining of PLT entries in function calls to functions that are
not known to bind locally.  It has no effect without @option{-mfdpic}.

@item -mmulticore
@opindex mmulticore
Build standalone application for multicore Blackfin processor. Proper
start files and link scripts will be used to support multicore.
This option defines @code{__BFIN_MULTICORE}. It can only be used with
@option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}. It can be used with
@option{-mcorea} or @option{-mcoreb}. If it's used without
@option{-mcorea} or @option{-mcoreb}, single application/dual core
programming model is used. In this model, the main function of Core B
should be named as coreb_main. If it's used with @option{-mcorea} or
@option{-mcoreb}, one application per core programming model is used.
If this option is not used, single core application programming
model is used.

@item -mcorea
@opindex mcorea
Build standalone application for Core A of BF561 when using
one application per core programming model. Proper start files
and link scripts will be used to support Core A. This option
defines @code{__BFIN_COREA}. It must be used with @option{-mmulticore}.

@item -mcoreb
@opindex mcoreb
Build standalone application for Core B of BF561 when using
one application per core programming model. Proper start files
and link scripts will be used to support Core B. This option
defines @code{__BFIN_COREB}. When this option is used, coreb_main
should be used instead of main. It must be used with
@option{-mmulticore}. 

@item -msdram
@opindex msdram
Build standalone application for SDRAM. Proper start files and
link scripts will be used to put the application into SDRAM.
Loader should initialize SDRAM before loading the application
into SDRAM. This option defines @code{__BFIN_SDRAM}.

@item -micplb
@opindex micplb
Assume that ICPLBs are enabled at runtime.  This has an effect on certain
anomaly workarounds.  For Linux targets, the default is to assume ICPLBs
are enabled; for standalone applications the default is off.
@end table

@node CRIS Options
@subsection CRIS Options
@cindex CRIS Options

These options are defined specifically for the CRIS ports.

@table @gcctabopt
@item -march=@var{architecture-type}
@itemx -mcpu=@var{architecture-type}
@opindex march
@opindex mcpu
Generate code for the specified architecture.  The choices for
@var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
@samp{v10}.

@item -mtune=@var{architecture-type}
@opindex mtune
Tune to @var{architecture-type} everything applicable about the generated
code, except for the ABI and the set of available instructions.  The
choices for @var{architecture-type} are the same as for
@option{-march=@var{architecture-type}}.

@item -mmax-stack-frame=@var{n}
@opindex mmax-stack-frame
Warn when the stack frame of a function exceeds @var{n} bytes.

@item -metrax4
@itemx -metrax100
@opindex metrax4
@opindex metrax100
The options @option{-metrax4} and @option{-metrax100} are synonyms for
@option{-march=v3} and @option{-march=v8} respectively.

@item -mmul-bug-workaround
@itemx -mno-mul-bug-workaround
@opindex mmul-bug-workaround
@opindex mno-mul-bug-workaround
Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
models where it applies.  This option is active by default.

@item -mpdebug
@opindex mpdebug
Enable CRIS-specific verbose debug-related information in the assembly
code.  This option also has the effect to turn off the @samp{#NO_APP}
formatted-code indicator to the assembler at the beginning of the
assembly file.

@item -mcc-init
@opindex mcc-init
Do not use condition-code results from previous instruction; always emit
compare and test instructions before use of condition codes.

@item -mno-side-effects
@opindex mno-side-effects
Do not emit instructions with side-effects in addressing modes other than
post-increment.

@item -mstack-align
@itemx -mno-stack-align
@itemx -mdata-align
@itemx -mno-data-align
@itemx -mconst-align
@itemx -mno-const-align
@opindex mstack-align
@opindex mno-stack-align
@opindex mdata-align
@opindex mno-data-align
@opindex mconst-align
@opindex mno-const-align
These options (no-options) arranges (eliminate arrangements) for the
stack-frame, individual data and constants to be aligned for the maximum
single data access size for the chosen CPU model.  The default is to
arrange for 32-bit alignment.  ABI details such as structure layout are
not affected by these options.

@item -m32-bit
@itemx -m16-bit
@itemx -m8-bit
@opindex m32-bit
@opindex m16-bit
@opindex m8-bit
Similar to the stack- data- and const-align options above, these options
arrange for stack-frame, writable data and constants to all be 32-bit,
16-bit or 8-bit aligned.  The default is 32-bit alignment.

@item -mno-prologue-epilogue
@itemx -mprologue-epilogue
@opindex mno-prologue-epilogue
@opindex mprologue-epilogue
With @option{-mno-prologue-epilogue}, the normal function prologue and
epilogue that sets up the stack-frame are omitted and no return
instructions or return sequences are generated in the code.  Use this
option only together with visual inspection of the compiled code: no
warnings or errors are generated when call-saved registers must be saved,
or storage for local variable needs to be allocated.

@item -mno-gotplt
@itemx -mgotplt
@opindex mno-gotplt
@opindex mgotplt
With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
instruction sequences that load addresses for functions from the PLT part
of the GOT rather than (traditional on other architectures) calls to the
PLT@.  The default is @option{-mgotplt}.

@item -melf
@opindex melf
Legacy no-op option only recognized with the cris-axis-elf and
cris-axis-linux-gnu targets.

@item -mlinux
@opindex mlinux
Legacy no-op option only recognized with the cris-axis-linux-gnu target.

@item -sim
@opindex sim
This option, recognized for the cris-axis-elf arranges
to link with input-output functions from a simulator library.  Code,
initialized data and zero-initialized data are allocated consecutively.

@item -sim2
@opindex sim2
Like @option{-sim}, but pass linker options to locate initialized data at
0x40000000 and zero-initialized data at 0x80000000.
@end table

@node CRX Options
@subsection CRX Options
@cindex CRX Options

These options are defined specifically for the CRX ports.

@table @gcctabopt

@item -mmac
@opindex mmac
Enable the use of multiply-accumulate instructions. Disabled by default.

@item -mpush-args
@opindex mpush-args
Push instructions will be used to pass outgoing arguments when functions
are called. Enabled by default.
@end table

@node Darwin Options
@subsection Darwin Options
@cindex Darwin options

These options are defined for all architectures running the Darwin operating
system.

FSF GCC on Darwin does not create ``fat'' object files; it will create
an object file for the single architecture that it was built to
target.  Apple's GCC on Darwin does create ``fat'' files if multiple
@option{-arch} options are used; it does so by running the compiler or
linker multiple times and joining the results together with
@file{lipo}.

The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
@samp{i686}) is determined by the flags that specify the ISA
that GCC is targetting, like @option{-mcpu} or @option{-march}.  The
@option{-force_cpusubtype_ALL} option can be used to override this.

The Darwin tools vary in their behavior when presented with an ISA
mismatch.  The assembler, @file{as}, will only permit instructions to
be used that are valid for the subtype of the file it is generating,
so you cannot put 64-bit instructions in an @samp{ppc750} object file.
The linker for shared libraries, @file{/usr/bin/libtool}, will fail
and print an error if asked to create a shared library with a less
restrictive subtype than its input files (for instance, trying to put
a @samp{ppc970} object file in a @samp{ppc7400} library).  The linker
for executables, @file{ld}, will quietly give the executable the most
restrictive subtype of any of its input files.

@table @gcctabopt
@item -F@var{dir}
@opindex F
Add the framework directory @var{dir} to the head of the list of
directories to be searched for header files.  These directories are
interleaved with those specified by @option{-I} options and are
scanned in a left-to-right order.

A framework directory is a directory with frameworks in it.  A
framework is a directory with a @samp{"Headers"} and/or
@samp{"PrivateHeaders"} directory contained directly in it that ends
in @samp{".framework"}.  The name of a framework is the name of this
directory excluding the @samp{".framework"}.  Headers associated with
the framework are found in one of those two directories, with
@samp{"Headers"} being searched first.  A subframework is a framework
directory that is in a framework's @samp{"Frameworks"} directory.
Includes of subframework headers can only appear in a header of a
framework that contains the subframework, or in a sibling subframework
header.  Two subframeworks are siblings if they occur in the same
framework.  A subframework should not have the same name as a
framework, a warning will be issued if this is violated.  Currently a
subframework cannot have subframeworks, in the future, the mechanism
may be extended to support this.  The standard frameworks can be found
in @samp{"/System/Library/Frameworks"} and
@samp{"/Library/Frameworks"}.  An example include looks like
@code{#include <Framework/header.h>}, where @samp{Framework} denotes
the name of the framework and header.h is found in the
@samp{"PrivateHeaders"} or @samp{"Headers"} directory.

@item -iframework@var{dir}
@opindex iframework
Like @option{-F} except the directory is a treated as a system
directory.  The main difference between this @option{-iframework} and
@option{-F} is that with @option{-iframework} the compiler does not
warn about constructs contained within header files found via
@var{dir}.  This option is valid only for the C family of languages.

@item -gused
@opindex gused
Emit debugging information for symbols that are used.  For STABS
debugging format, this enables @option{-feliminate-unused-debug-symbols}.
This is by default ON@.

@item -gfull
@opindex gfull
Emit debugging information for all symbols and types.

@item -mmacosx-version-min=@var{version}
The earliest version of MacOS X that this executable will run on
is @var{version}.  Typical values of @var{version} include @code{10.1},
@code{10.2}, and @code{10.3.9}.

If the compiler was built to use the system's headers by default,
then the default for this option is the system version on which the
compiler is running, otherwise the default is to make choices which
are compatible with as many systems and code bases as possible.

@item -mkernel
@opindex mkernel
Enable kernel development mode.  The @option{-mkernel} option sets
@option{-static}, @option{-fno-common}, @option{-fno-cxa-atexit},
@option{-fno-exceptions}, @option{-fno-non-call-exceptions},
@option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
applicable.  This mode also sets @option{-mno-altivec},
@option{-msoft-float}, @option{-fno-builtin} and
@option{-mlong-branch} for PowerPC targets.

@item -mone-byte-bool
@opindex mone-byte-bool
Override the defaults for @samp{bool} so that @samp{sizeof(bool)==1}.
By default @samp{sizeof(bool)} is @samp{4} when compiling for
Darwin/PowerPC and @samp{1} when compiling for Darwin/x86, so this
option has no effect on x86.

@strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
to generate code that is not binary compatible with code generated
without that switch.  Using this switch may require recompiling all
other modules in a program, including system libraries.  Use this
switch to conform to a non-default data model.

@item -mfix-and-continue
@itemx -ffix-and-continue
@itemx -findirect-data
@opindex mfix-and-continue
@opindex ffix-and-continue
@opindex findirect-data
Generate code suitable for fast turn around development.  Needed to
enable gdb to dynamically load @code{.o} files into already running
programs.  @option{-findirect-data} and @option{-ffix-and-continue}
are provided for backwards compatibility.

@item -all_load
@opindex all_load
Loads all members of static archive libraries.
See man ld(1) for more information.

@item -arch_errors_fatal
@opindex arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture
to be fatal.

@item -bind_at_load
@opindex bind_at_load
Causes the output file to be marked such that the dynamic linker will
bind all undefined references when the file is loaded or launched.

@item -bundle
@opindex bundle
Produce a Mach-o bundle format file.
See man ld(1) for more information.

@item -bundle_loader @var{executable}
@opindex bundle_loader
This option specifies the @var{executable} that will be loading the build
output file being linked.  See man ld(1) for more information.

@item -dynamiclib
@opindex dynamiclib
When passed this option, GCC will produce a dynamic library instead of
an executable when linking, using the Darwin @file{libtool} command.

@item -force_cpusubtype_ALL
@opindex force_cpusubtype_ALL
This causes GCC's output file to have the @var{ALL} subtype, instead of
one controlled by the @option{-mcpu} or @option{-march} option.

@item -allowable_client  @var{client_name}
@itemx -client_name
@itemx -compatibility_version
@itemx -current_version
@itemx -dead_strip
@itemx -dependency-file
@itemx -dylib_file
@itemx -dylinker_install_name
@itemx -dynamic
@itemx -exported_symbols_list
@itemx -filelist
@itemx -flat_namespace
@itemx -force_flat_namespace
@itemx -headerpad_max_install_names
@itemx -image_base
@itemx -init
@itemx -install_name
@itemx -keep_private_externs
@itemx -multi_module
@itemx -multiply_defined
@itemx -multiply_defined_unused
@itemx -noall_load
@itemx -no_dead_strip_inits_and_terms
@itemx -nofixprebinding
@itemx -nomultidefs
@itemx -noprebind
@itemx -noseglinkedit
@itemx -pagezero_size
@itemx -prebind
@itemx -prebind_all_twolevel_modules
@itemx -private_bundle
@itemx -read_only_relocs
@itemx -sectalign
@itemx -sectobjectsymbols
@itemx -whyload
@itemx -seg1addr
@itemx -sectcreate
@itemx -sectobjectsymbols
@itemx -sectorder
@itemx -segaddr
@itemx -segs_read_only_addr
@itemx -segs_read_write_addr
@itemx -seg_addr_table
@itemx -seg_addr_table_filename
@itemx -seglinkedit
@itemx -segprot
@itemx -segs_read_only_addr
@itemx -segs_read_write_addr
@itemx -single_module
@itemx -static
@itemx -sub_library
@itemx -sub_umbrella
@itemx -twolevel_namespace
@itemx -umbrella
@itemx -undefined
@itemx -unexported_symbols_list
@itemx -weak_reference_mismatches
@itemx -whatsloaded
@opindex allowable_client
@opindex client_name
@opindex compatibility_version
@opindex current_version
@opindex dead_strip
@opindex dependency-file
@opindex dylib_file
@opindex dylinker_install_name
@opindex dynamic
@opindex exported_symbols_list
@opindex filelist
@opindex flat_namespace
@opindex force_flat_namespace
@opindex headerpad_max_install_names
@opindex image_base
@opindex init
@opindex install_name
@opindex keep_private_externs
@opindex multi_module
@opindex multiply_defined
@opindex multiply_defined_unused
@opindex noall_load
@opindex no_dead_strip_inits_and_terms
@opindex nofixprebinding
@opindex nomultidefs
@opindex noprebind
@opindex noseglinkedit
@opindex pagezero_size
@opindex prebind
@opindex prebind_all_twolevel_modules
@opindex private_bundle
@opindex read_only_relocs
@opindex sectalign
@opindex sectobjectsymbols
@opindex whyload
@opindex seg1addr
@opindex sectcreate
@opindex sectobjectsymbols
@opindex sectorder
@opindex segaddr
@opindex segs_read_only_addr
@opindex segs_read_write_addr
@opindex seg_addr_table
@opindex seg_addr_table_filename
@opindex seglinkedit
@opindex segprot
@opindex segs_read_only_addr
@opindex segs_read_write_addr
@opindex single_module
@opindex static
@opindex sub_library
@opindex sub_umbrella
@opindex twolevel_namespace
@opindex umbrella
@opindex undefined
@opindex unexported_symbols_list
@opindex weak_reference_mismatches
@opindex whatsloaded
These options are passed to the Darwin linker.  The Darwin linker man page
describes them in detail.
@end table

@node DEC Alpha Options
@subsection DEC Alpha Options

These @samp{-m} options are defined for the DEC Alpha implementations:

@table @gcctabopt
@item -mno-soft-float
@itemx -msoft-float
@opindex mno-soft-float
@opindex msoft-float
Use (do not use) the hardware floating-point instructions for
floating-point operations.  When @option{-msoft-float} is specified,
functions in @file{libgcc.a} will be used to perform floating-point
operations.  Unless they are replaced by routines that emulate the
floating-point operations, or compiled in such a way as to call such
emulations routines, these routines will issue floating-point
operations.   If you are compiling for an Alpha without floating-point
operations, you must ensure that the library is built so as not to call
them.

Note that Alpha implementations without floating-point operations are
required to have floating-point registers.

@item -mfp-reg
@itemx -mno-fp-regs
@opindex mfp-reg
@opindex mno-fp-regs
Generate code that uses (does not use) the floating-point register set.
@option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
register set is not used, floating point operands are passed in integer
registers as if they were integers and floating-point results are passed
in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
so any function with a floating-point argument or return value called by code
compiled with @option{-mno-fp-regs} must also be compiled with that
option.

A typical use of this option is building a kernel that does not use,
and hence need not save and restore, any floating-point registers.

@item -mieee
@opindex mieee
The Alpha architecture implements floating-point hardware optimized for
maximum performance.  It is mostly compliant with the IEEE floating
point standard.  However, for full compliance, software assistance is
required.  This option generates code fully IEEE compliant code
@emph{except} that the @var{inexact-flag} is not maintained (see below).
If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
defined during compilation.  The resulting code is less efficient but is
able to correctly support denormalized numbers and exceptional IEEE
values such as not-a-number and plus/minus infinity.  Other Alpha
compilers call this option @option{-ieee_with_no_inexact}.

@item -mieee-with-inexact
@opindex mieee-with-inexact
This is like @option{-mieee} except the generated code also maintains
the IEEE @var{inexact-flag}.  Turning on this option causes the
generated code to implement fully-compliant IEEE math.  In addition to
@code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
macro.  On some Alpha implementations the resulting code may execute
significantly slower than the code generated by default.  Since there is
very little code that depends on the @var{inexact-flag}, you should
normally not specify this option.  Other Alpha compilers call this
option @option{-ieee_with_inexact}.

@item -mfp-trap-mode=@var{trap-mode}
@opindex mfp-trap-mode
This option controls what floating-point related traps are enabled.
Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
The trap mode can be set to one of four values:

@table @samp
@item n
This is the default (normal) setting.  The only traps that are enabled
are the ones that cannot be disabled in software (e.g., division by zero
trap).

@item u
In addition to the traps enabled by @samp{n}, underflow traps are enabled
as well.

@item su
Like @samp{u}, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).

@item sui
Like @samp{su}, but inexact traps are enabled as well.
@end table

@item -mfp-rounding-mode=@var{rounding-mode}
@opindex mfp-rounding-mode
Selects the IEEE rounding mode.  Other Alpha compilers call this option
@option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
of:

@table @samp
@item n
Normal IEEE rounding mode.  Floating point numbers are rounded towards
the nearest machine number or towards the even machine number in case
of a tie.

@item m
Round towards minus infinity.

@item c
Chopped rounding mode.  Floating point numbers are rounded towards zero.

@item d
Dynamic rounding mode.  A field in the floating point control register
(@var{fpcr}, see Alpha architecture reference manual) controls the
rounding mode in effect.  The C library initializes this register for
rounding towards plus infinity.  Thus, unless your program modifies the
@var{fpcr}, @samp{d} corresponds to round towards plus infinity.
@end table

@item -mtrap-precision=@var{trap-precision}
@opindex mtrap-precision
In the Alpha architecture, floating point traps are imprecise.  This
means without software assistance it is impossible to recover from a
floating trap and program execution normally needs to be terminated.
GCC can generate code that can assist operating system trap handlers
in determining the exact location that caused a floating point trap.
Depending on the requirements of an application, different levels of
precisions can be selected:

@table @samp
@item p
Program precision.  This option is the default and means a trap handler
can only identify which program caused a floating point exception.

@item f
Function precision.  The trap handler can determine the function that
caused a floating point exception.

@item i
Instruction precision.  The trap handler can determine the exact
instruction that caused a floating point exception.
@end table

Other Alpha compilers provide the equivalent options called
@option{-scope_safe} and @option{-resumption_safe}.

@item -mieee-conformant
@opindex mieee-conformant
This option marks the generated code as IEEE conformant.  You must not
use this option unless you also specify @option{-mtrap-precision=i} and either
@option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
is to emit the line @samp{.eflag 48} in the function prologue of the
generated assembly file.  Under DEC Unix, this has the effect that
IEEE-conformant math library routines will be linked in.

@item -mbuild-constants
@opindex mbuild-constants
Normally GCC examines a 32- or 64-bit integer constant to
see if it can construct it from smaller constants in two or three
instructions.  If it cannot, it will output the constant as a literal and
generate code to load it from the data segment at runtime.

Use this option to require GCC to construct @emph{all} integer constants
using code, even if it takes more instructions (the maximum is six).

You would typically use this option to build a shared library dynamic
loader.  Itself a shared library, it must relocate itself in memory
before it can find the variables and constants in its own data segment.

@item -malpha-as
@itemx -mgas
@opindex malpha-as
@opindex mgas
Select whether to generate code to be assembled by the vendor-supplied
assembler (@option{-malpha-as}) or by the GNU assembler @option{-mgas}.

@item -mbwx
@itemx -mno-bwx
@itemx -mcix
@itemx -mno-cix
@itemx -mfix
@itemx -mno-fix
@itemx -mmax
@itemx -mno-max
@opindex mbwx
@opindex mno-bwx
@opindex mcix
@opindex mno-cix
@opindex mfix
@opindex mno-fix
@opindex mmax
@opindex mno-max
Indicate whether GCC should generate code to use the optional BWX,
CIX, FIX and MAX instruction sets.  The default is to use the instruction
sets supported by the CPU type specified via @option{-mcpu=} option or that
of the CPU on which GCC was built if none was specified.

@item -mfloat-vax
@itemx -mfloat-ieee
@opindex mfloat-vax
@opindex mfloat-ieee
Generate code that uses (does not use) VAX F and G floating point
arithmetic instead of IEEE single and double precision.

@item -mexplicit-relocs
@itemx -mno-explicit-relocs
@opindex mexplicit-relocs
@opindex mno-explicit-relocs
Older Alpha assemblers provided no way to generate symbol relocations
except via assembler macros.  Use of these macros does not allow
optimal instruction scheduling.  GNU binutils as of version 2.12
supports a new syntax that allows the compiler to explicitly mark
which relocations should apply to which instructions.  This option
is mostly useful for debugging, as GCC detects the capabilities of
the assembler when it is built and sets the default accordingly.

@item -msmall-data
@itemx -mlarge-data
@opindex msmall-data
@opindex mlarge-data
When @option{-mexplicit-relocs} is in effect, static data is
accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
(the @code{.sdata} and @code{.sbss} sections) and are accessed via
16-bit relocations off of the @code{$gp} register.  This limits the
size of the small data area to 64KB, but allows the variables to be
directly accessed via a single instruction.

The default is @option{-mlarge-data}.  With this option the data area
is limited to just below 2GB@.  Programs that require more than 2GB of
data must use @code{malloc} or @code{mmap} to allocate the data in the
heap instead of in the program's data segment.

When generating code for shared libraries, @option{-fpic} implies
@option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.

@item -msmall-text
@itemx -mlarge-text
@opindex msmall-text
@opindex mlarge-text
When @option{-msmall-text} is used, the compiler assumes that the
code of the entire program (or shared library) fits in 4MB, and is
thus reachable with a branch instruction.  When @option{-msmall-data}
is used, the compiler can assume that all local symbols share the
same @code{$gp} value, and thus reduce the number of instructions
required for a function call from 4 to 1.

The default is @option{-mlarge-text}.

@item -mcpu=@var{cpu_type}
@opindex mcpu
Set the instruction set and instruction scheduling parameters for
machine type @var{cpu_type}.  You can specify either the @samp{EV}
style name or the corresponding chip number.  GCC supports scheduling
parameters for the EV4, EV5 and EV6 family of processors and will
choose the default values for the instruction set from the processor
you specify.  If you do not specify a processor type, GCC will default
to the processor on which the compiler was built.

Supported values for @var{cpu_type} are

@table @samp
@item ev4
@itemx ev45
@itemx 21064
Schedules as an EV4 and has no instruction set extensions.

@item ev5
@itemx 21164
Schedules as an EV5 and has no instruction set extensions.

@item ev56
@itemx 21164a
Schedules as an EV5 and supports the BWX extension.

@item pca56
@itemx 21164pc
@itemx 21164PC
Schedules as an EV5 and supports the BWX and MAX extensions.

@item ev6
@itemx 21264
Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.

@item ev67
@itemx 21264a
Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
@end table

Native Linux/GNU toolchains also support the value @samp{native},
which selects the best architecture option for the host processor.
@option{-mcpu=native} has no effect if GCC does not recognize
the processor.

@item -mtune=@var{cpu_type}
@opindex mtune
Set only the instruction scheduling parameters for machine type
@var{cpu_type}.  The instruction set is not changed.

Native Linux/GNU toolchains also support the value @samp{native},
which selects the best architecture option for the host processor.
@option{-mtune=native} has no effect if GCC does not recognize
the processor.

@item -mmemory-latency=@var{time}
@opindex mmemory-latency
Sets the latency the scheduler should assume for typical memory
references as seen by the application.  This number is highly
dependent on the memory access patterns used by the application
and the size of the external cache on the machine.

Valid options for @var{time} are

@table @samp
@item @var{number}
A decimal number representing clock cycles.

@item L1
@itemx L2
@itemx L3
@itemx main
The compiler contains estimates of the number of clock cycles for
``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
(also called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.

@end table
@end table

@node DEC Alpha/VMS Options
@subsection DEC Alpha/VMS Options

These @samp{-m} options are defined for the DEC Alpha/VMS implementations:

@table @gcctabopt
@item -mvms-return-codes
@opindex mvms-return-codes
Return VMS condition codes from main.  The default is to return POSIX
style condition (e.g.@: error) codes.
@end table

@node FR30 Options
@subsection FR30 Options
@cindex FR30 Options

These options are defined specifically for the FR30 port.

@table @gcctabopt

@item -msmall-model
@opindex msmall-model
Use the small address space model.  This can produce smaller code, but
it does assume that all symbolic values and addresses will fit into a
20-bit range.

@item -mno-lsim
@opindex mno-lsim
Assume that run-time support has been provided and so there is no need
to include the simulator library (@file{libsim.a}) on the linker
command line.

@end table

@node FRV Options
@subsection FRV Options
@cindex FRV Options

@table @gcctabopt
@item -mgpr-32
@opindex mgpr-32

Only use the first 32 general purpose registers.

@item -mgpr-64
@opindex mgpr-64

Use all 64 general purpose registers.

@item -mfpr-32
@opindex mfpr-32

Use only the first 32 floating point registers.

@item -mfpr-64
@opindex mfpr-64

Use all 64 floating point registers

@item -mhard-float
@opindex mhard-float

Use hardware instructions for floating point operations.

@item -msoft-float
@opindex msoft-float

Use library routines for floating point operations.

@item -malloc-cc
@opindex malloc-cc

Dynamically allocate condition code registers.

@item -mfixed-cc
@opindex mfixed-cc

Do not try to dynamically allocate condition code registers, only
use @code{icc0} and @code{fcc0}.

@item -mdword
@opindex mdword

Change ABI to use double word insns.

@item -mno-dword
@opindex mno-dword

Do not use double word instructions.

@item -mdouble
@opindex mdouble

Use floating point double instructions.

@item -mno-double
@opindex mno-double

Do not use floating point double instructions.

@item -mmedia
@opindex mmedia

Use media instructions.

@item -mno-media
@opindex mno-media

Do not use media instructions.

@item -mmuladd
@opindex mmuladd

Use multiply and add/subtract instructions.

@item -mno-muladd
@opindex mno-muladd

Do not use multiply and add/subtract instructions.

@item -mfdpic
@opindex mfdpic

Select the FDPIC ABI, that uses function descriptors to represent
pointers to functions.  Without any PIC/PIE-related options, it
implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
assumes GOT entries and small data are within a 12-bit range from the
GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
are computed with 32 bits.
With a @samp{bfin-elf} target, this option implies @option{-msim}.

@item -minline-plt
@opindex minline-plt

Enable inlining of PLT entries in function calls to functions that are
not known to bind locally.  It has no effect without @option{-mfdpic}.
It's enabled by default if optimizing for speed and compiling for
shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
optimization option such as @option{-O3} or above is present in the
command line.

@item -mTLS
@opindex TLS

Assume a large TLS segment when generating thread-local code.

@item -mtls
@opindex tls

Do not assume a large TLS segment when generating thread-local code.

@item -mgprel-ro
@opindex mgprel-ro

Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
that is known to be in read-only sections.  It's enabled by default,
except for @option{-fpic} or @option{-fpie}: even though it may help
make the global offset table smaller, it trades 1 instruction for 4.
With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
one of which may be shared by multiple symbols, and it avoids the need
for a GOT entry for the referenced symbol, so it's more likely to be a
win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.

@item -multilib-library-pic
@opindex multilib-library-pic

Link with the (library, not FD) pic libraries.  It's implied by
@option{-mlibrary-pic}, as well as by @option{-fPIC} and
@option{-fpic} without @option{-mfdpic}.  You should never have to use
it explicitly.

@item -mlinked-fp
@opindex mlinked-fp

Follow the EABI requirement of always creating a frame pointer whenever
a stack frame is allocated.  This option is enabled by default and can
be disabled with @option{-mno-linked-fp}.

@item -mlong-calls
@opindex mlong-calls

Use indirect addressing to call functions outside the current
compilation unit.  This allows the functions to be placed anywhere
within the 32-bit address space.

@item -malign-labels
@opindex malign-labels

Try to align labels to an 8-byte boundary by inserting nops into the
previous packet.  This option only has an effect when VLIW packing
is enabled.  It doesn't create new packets; it merely adds nops to
existing ones.

@item -mlibrary-pic
@opindex mlibrary-pic

Generate position-independent EABI code.

@item -macc-4
@opindex macc-4

Use only the first four media accumulator registers.

@item -macc-8
@opindex macc-8

Use all eight media accumulator registers.

@item -mpack
@opindex mpack

Pack VLIW instructions.

@item -mno-pack
@opindex mno-pack

Do not pack VLIW instructions.

@item -mno-eflags
@opindex mno-eflags

Do not mark ABI switches in e_flags.

@item -mcond-move
@opindex mcond-move

Enable the use of conditional-move instructions (default).

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -mno-cond-move
@opindex mno-cond-move

Disable the use of conditional-move instructions.

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -mscc
@opindex mscc

Enable the use of conditional set instructions (default).

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -mno-scc
@opindex mno-scc

Disable the use of conditional set instructions.

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -mcond-exec
@opindex mcond-exec

Enable the use of conditional execution (default).

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -mno-cond-exec
@opindex mno-cond-exec

Disable the use of conditional execution.

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -mvliw-branch
@opindex mvliw-branch

Run a pass to pack branches into VLIW instructions (default).

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -mno-vliw-branch
@opindex mno-vliw-branch

Do not run a pass to pack branches into VLIW instructions.

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -mmulti-cond-exec
@opindex mmulti-cond-exec

Enable optimization of @code{&&} and @code{||} in conditional execution
(default).

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -mno-multi-cond-exec
@opindex mno-multi-cond-exec

Disable optimization of @code{&&} and @code{||} in conditional execution.

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -mnested-cond-exec
@opindex mnested-cond-exec

Enable nested conditional execution optimizations (default).

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -mno-nested-cond-exec
@opindex mno-nested-cond-exec

Disable nested conditional execution optimizations.

This switch is mainly for debugging the compiler and will likely be removed
in a future version.

@item -moptimize-membar
@opindex moptimize-membar

This switch removes redundant @code{membar} instructions from the
compiler generated code.  It is enabled by default.

@item -mno-optimize-membar
@opindex mno-optimize-membar

This switch disables the automatic removal of redundant @code{membar}
instructions from the generated code.

@item -mtomcat-stats
@opindex mtomcat-stats

Cause gas to print out tomcat statistics.

@item -mcpu=@var{cpu}
@opindex mcpu

Select the processor type for which to generate code.  Possible values are
@samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
@samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.

@end table

@node GNU/Linux Options
@subsection GNU/Linux Options

These @samp{-m} options are defined for GNU/Linux targets:

@table @gcctabopt
@item -mglibc
@opindex mglibc
Use the GNU C library instead of uClibc.  This is the default except
on @samp{*-*-linux-*uclibc*} targets.

@item -muclibc
@opindex muclibc
Use uClibc instead of the GNU C library.  This is the default on
@samp{*-*-linux-*uclibc*} targets.
@end table

@node H8/300 Options
@subsection H8/300 Options

These @samp{-m} options are defined for the H8/300 implementations:

@table @gcctabopt
@item -mrelax
@opindex mrelax
Shorten some address references at link time, when possible; uses the
linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
ld, Using ld}, for a fuller description.

@item -mh
@opindex mh
Generate code for the H8/300H@.

@item -ms
@opindex ms
Generate code for the H8S@.

@item -mn
@opindex mn
Generate code for the H8S and H8/300H in the normal mode.  This switch
must be used either with @option{-mh} or @option{-ms}.

@item -ms2600
@opindex ms2600
Generate code for the H8S/2600.  This switch must be used with @option{-ms}.

@item -mint32
@opindex mint32
Make @code{int} data 32 bits by default.

@item -malign-300
@opindex malign-300
On the H8/300H and H8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and H8S is to align longs and floats on 4
byte boundaries.
@option{-malign-300} causes them to be aligned on 2 byte boundaries.
This option has no effect on the H8/300.
@end table

@node HPPA Options
@subsection HPPA Options
@cindex HPPA Options

These @samp{-m} options are defined for the HPPA family of computers:

@table @gcctabopt
@item -march=@var{architecture-type}
@opindex march
Generate code for the specified architecture.  The choices for
@var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
1.1, and @samp{2.0} for PA 2.0 processors.  Refer to
@file{/usr/lib/sched.models} on an HP-UX system to determine the proper
architecture option for your machine.  Code compiled for lower numbered
architectures will run on higher numbered architectures, but not the
other way around.

@item -mpa-risc-1-0
@itemx -mpa-risc-1-1
@itemx -mpa-risc-2-0
@opindex mpa-risc-1-0
@opindex mpa-risc-1-1
@opindex mpa-risc-2-0
Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.

@item -mbig-switch
@opindex mbig-switch
Generate code suitable for big switch tables.  Use this option only if
the assembler/linker complain about out of range branches within a switch
table.

@item -mjump-in-delay
@opindex mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions
by modifying the return pointer for the function call to be the target
of the conditional jump.

@item -mdisable-fpregs
@opindex mdisable-fpregs
Prevent floating point registers from being used in any manner.  This is
necessary for compiling kernels which perform lazy context switching of
floating point registers.  If you use this option and attempt to perform
floating point operations, the compiler will abort.

@item -mdisable-indexing
@opindex mdisable-indexing
Prevent the compiler from using indexing address modes.  This avoids some
rather obscure problems when compiling MIG generated code under MACH@.

@item -mno-space-regs
@opindex mno-space-regs
Generate code that assumes the target has no space registers.  This allows
GCC to generate faster indirect calls and use unscaled index address modes.

Such code is suitable for level 0 PA systems and kernels.

@item -mfast-indirect-calls
@opindex mfast-indirect-calls
Generate code that assumes calls never cross space boundaries.  This
allows GCC to emit code which performs faster indirect calls.

This option will not work in the presence of shared libraries or nested
functions.

@item -mfixed-range=@var{register-range}
@opindex mfixed-range
Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator can not use.  This is
useful when compiling kernel code.  A register range is specified as
two registers separated by a dash.  Multiple register ranges can be
specified separated by a comma.

@item -mlong-load-store
@opindex mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by
the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
the HP compilers.

@item -mportable-runtime
@opindex mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

@item -mgas
@opindex mgas
Enable the use of assembler directives only GAS understands.

@item -mschedule=@var{cpu-type}
@opindex mschedule
Schedule code according to the constraints for the machine type
@var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
@samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
to @file{/usr/lib/sched.models} on an HP-UX system to determine the
proper scheduling option for your machine.  The default scheduling is
@samp{8000}.

@item -mlinker-opt
@opindex mlinker-opt
Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.

@item -msoft-float
@opindex msoft-float
Generate output containing library calls for floating point.
@strong{Warning:} the requisite libraries are not available for all HPPA
targets.  Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation.  You must make
your own arrangements to provide suitable library functions for
cross-compilation.

@option{-msoft-float} changes the calling convention in the output file;
therefore, it is only useful if you compile @emph{all} of a program with
this option.  In particular, you need to compile @file{libgcc.a}, the
library that comes with GCC, with @option{-msoft-float} in order for
this to work.

@item -msio
@opindex msio
Generate the predefine, @code{_SIO}, for server IO@.  The default is
@option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
@code{__hp9000s700__} and @code{_WSIO}, for workstation IO@.  These
options are available under HP-UX and HI-UX@.

@item -mgnu-ld
@opindex gnu-ld
Use GNU ld specific options.  This passes @option{-shared} to ld when
building a shared library.  It is the default when GCC is configured,
explicitly or implicitly, with the GNU linker.  This option does not
have any affect on which ld is called, it only changes what parameters
are passed to that ld.  The ld that is called is determined by the
@option{--with-ld} configure option, GCC's program search path, and
finally by the user's @env{PATH}.  The linker used by GCC can be printed
using @samp{which `gcc -print-prog-name=ld`}.  This option is only available
on the 64 bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.

@item -mhp-ld
@opindex hp-ld
Use HP ld specific options.  This passes @option{-b} to ld when building
a shared library and passes @option{+Accept TypeMismatch} to ld on all
links.  It is the default when GCC is configured, explicitly or
implicitly, with the HP linker.  This option does not have any affect on
which ld is called, it only changes what parameters are passed to that
ld.  The ld that is called is determined by the @option{--with-ld}
configure option, GCC's program search path, and finally by the user's
@env{PATH}.  The linker used by GCC can be printed using @samp{which
`gcc -print-prog-name=ld`}.  This option is only available on the 64 bit
HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.

@item -mlong-calls
@opindex mno-long-calls
Generate code that uses long call sequences.  This ensures that a call
is always able to reach linker generated stubs.  The default is to generate
long calls only when the distance from the call site to the beginning
of the function or translation unit, as the case may be, exceeds a
predefined limit set by the branch type being used.  The limits for
normal calls are 7,600,000 and 240,000 bytes, respectively for the
PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
240,000 bytes.

Distances are measured from the beginning of functions when using the
@option{-ffunction-sections} option, or when using the @option{-mgas}
and @option{-mno-portable-runtime} options together under HP-UX with
the SOM linker.

It is normally not desirable to use this option as it will degrade
performance.  However, it may be useful in large applications,
particularly when partial linking is used to build the application.

The types of long calls used depends on the capabilities of the
assembler and linker, and the type of code being generated.  The
impact on systems that support long absolute calls, and long pic
symbol-difference or pc-relative calls should be relatively small.
However, an indirect call is used on 32-bit ELF systems in pic code
and it is quite long.

@item -munix=@var{unix-std}
@opindex march
Generate compiler predefines and select a startfile for the specified
UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
11.11 and later.  The default values are @samp{93} for HP-UX 10.00,
@samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
and later.

@option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
@option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
@option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
@code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
@code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.

It is @emph{important} to note that this option changes the interfaces
for various library routines.  It also affects the operational behavior
of the C library.  Thus, @emph{extreme} care is needed in using this
option.

Library code that is intended to operate with more than one UNIX
standard must test, set and restore the variable @var{__xpg4_extended_mask}
as appropriate.  Most GNU software doesn't provide this capability.

@item -nolibdld
@opindex nolibdld
Suppress the generation of link options to search libdld.sl when the
@option{-static} option is specified on HP-UX 10 and later.

@item -static
@opindex static
The HP-UX implementation of setlocale in libc has a dependency on
libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
when the @option{-static} option is specified, special link options
are needed to resolve this dependency.

On HP-UX 10 and later, the GCC driver adds the necessary options to
link with libdld.sl when the @option{-static} option is specified.
This causes the resulting binary to be dynamic.  On the 64-bit port,
the linkers generate dynamic binaries by default in any case.  The
@option{-nolibdld} option can be used to prevent the GCC driver from
adding these link options.

@item -threads
@opindex threads
Add support for multithreading with the @dfn{dce thread} library
under HP-UX@.  This option sets flags for both the preprocessor and
linker.
@end table

@node i386 and x86-64 Options
@subsection Intel 386 and AMD x86-64 Options
@cindex i386 Options
@cindex x86-64 Options
@cindex Intel 386 Options
@cindex AMD x86-64 Options

These @samp{-m} options are defined for the i386 and x86-64 family of
computers:

@table @gcctabopt
@item -mtune=@var{cpu-type}
@opindex mtune
Tune to @var{cpu-type} everything applicable about the generated code, except
for the ABI and the set of available instructions.  The choices for
@var{cpu-type} are:
@table @emph
@item generic
Produce code optimized for the most common IA32/AMD64/EM64T processors.
If you know the CPU on which your code will run, then you should use
the corresponding @option{-mtune} option instead of
@option{-mtune=generic}.  But, if you do not know exactly what CPU users
of your application will have, then you should use this option.

As new processors are deployed in the marketplace, the behavior of this
option will change.  Therefore, if you upgrade to a newer version of
GCC, the code generated option will change to reflect the processors
that were most common when that version of GCC was released.

There is no @option{-march=generic} option because @option{-march}
indicates the instruction set the compiler can use, and there is no
generic instruction set applicable to all processors.  In contrast,
@option{-mtune} indicates the processor (or, in this case, collection of
processors) for which the code is optimized.
@item native
This selects the CPU to tune for at compilation time by determining
the processor type of the compiling machine.  Using @option{-mtune=native}
will produce code optimized for the local machine under the constraints
of the selected instruction set.  Using @option{-march=native} will
enable all instruction subsets supported by the local machine (hence
the result might not run on different machines).
@item i386
Original Intel's i386 CPU@.
@item i486
Intel's i486 CPU@.  (No scheduling is implemented for this chip.)
@item i586, pentium
Intel Pentium CPU with no MMX support.
@item pentium-mmx
Intel PentiumMMX CPU based on Pentium core with MMX instruction set support.
@item pentiumpro
Intel PentiumPro CPU@.
@item i686
Same as @code{generic}, but when used as @code{march} option, PentiumPro
instruction set will be used, so the code will run on all i686 family chips.
@item pentium2
Intel Pentium2 CPU based on PentiumPro core with MMX instruction set support.
@item pentium3, pentium3m
Intel Pentium3 CPU based on PentiumPro core with MMX and SSE instruction set
support.
@item pentium-m
Low power version of Intel Pentium3 CPU with MMX, SSE and SSE2 instruction set
support.  Used by Centrino notebooks.
@item pentium4, pentium4m
Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set support.
@item prescott
Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2 and SSE3 instruction
set support.
@item nocona
Improved version of Intel Pentium4 CPU with 64-bit extensions, MMX, SSE,
SSE2 and SSE3 instruction set support.
@item core2
Intel Core2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
@item k6
AMD K6 CPU with MMX instruction set support.
@item k6-2, k6-3
Improved versions of AMD K6 CPU with MMX and 3dNOW!@: instruction set support.
@item athlon, athlon-tbird
AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW!@: and SSE prefetch instructions
support.
@item athlon-4, athlon-xp, athlon-mp
Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW!@: and full SSE
instruction set support.
@item k8, opteron, athlon64, athlon-fx
AMD K8 core based CPUs with x86-64 instruction set support.  (This supersets
MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW!@: and 64-bit instruction set extensions.)
@item k8-sse3, opteron-sse3, athlon64-sse3
Improved versions of k8, opteron and athlon64 with SSE3 instruction set support.
@item amdfam10, barcelona
AMD Family 10h core based CPUs with x86-64 instruction set support.  (This
supersets MMX, SSE, SSE2, SSE3, SSE4A, 3dNOW!, enhanced 3dNOW!, ABM and 64-bit
instruction set extensions.)
@item winchip-c6
IDT Winchip C6 CPU, dealt in same way as i486 with additional MMX instruction
set support.
@item winchip2
IDT Winchip2 CPU, dealt in same way as i486 with additional MMX and 3dNOW!@:
instruction set support.
@item c3
Via C3 CPU with MMX and 3dNOW!@: instruction set support.  (No scheduling is
implemented for this chip.)
@item c3-2
Via C3-2 CPU with MMX and SSE instruction set support.  (No scheduling is
implemented for this chip.)
@item geode
Embedded AMD CPU with MMX and 3dNOW! instruction set support.
@end table

While picking a specific @var{cpu-type} will schedule things appropriately
for that particular chip, the compiler will not generate any code that
does not run on the i386 without the @option{-march=@var{cpu-type}} option
being used.

@item -march=@var{cpu-type}
@opindex march
Generate instructions for the machine type @var{cpu-type}.  The choices
for @var{cpu-type} are the same as for @option{-mtune}.  Moreover,
specifying @option{-march=@var{cpu-type}} implies @option{-mtune=@var{cpu-type}}.

@item -mcpu=@var{cpu-type}
@opindex mcpu
A deprecated synonym for @option{-mtune}.

@item -mfpmath=@var{unit}
@opindex march
Generate floating point arithmetics for selected unit @var{unit}.  The choices
for @var{unit} are:

@table @samp
@item 387
Use the standard 387 floating point coprocessor present majority of chips and
emulated otherwise.  Code compiled with this option will run almost everywhere.
The temporary results are computed in 80bit precision instead of precision
specified by the type resulting in slightly different results compared to most
of other chips.  See @option{-ffloat-store} for more detailed description.

This is the default choice for i386 compiler.

@item sse
Use scalar floating point instructions present in the SSE instruction set.
This instruction set is supported by Pentium3 and newer chips, in the AMD line
by Athlon-4, Athlon-xp and Athlon-mp chips.  The earlier version of SSE
instruction set supports only single precision arithmetics, thus the double and
extended precision arithmetics is still done using 387.  Later version, present
only in Pentium4 and the future AMD x86-64 chips supports double precision
arithmetics too.

For the i386 compiler, you need to use @option{-march=@var{cpu-type}}, @option{-msse}
or @option{-msse2} switches to enable SSE extensions and make this option
effective.  For the x86-64 compiler, these extensions are enabled by default.

The resulting code should be considerably faster in the majority of cases and avoid
the numerical instability problems of 387 code, but may break some existing
code that expects temporaries to be 80bit.

This is the default choice for the x86-64 compiler.

@item sse,387
@itemx sse+387
@itemx both
Attempt to utilize both instruction sets at once.  This effectively double the
amount of available registers and on chips with separate execution units for
387 and SSE the execution resources too.  Use this option with care, as it is
still experimental, because the GCC register allocator does not model separate
functional units well resulting in instable performance.
@end table

@item -masm=@var{dialect}
@opindex masm=@var{dialect}
Output asm instructions using selected @var{dialect}.  Supported
choices are @samp{intel} or @samp{att} (the default one).  Darwin does
not support @samp{intel}.

@item -mieee-fp
@itemx -mno-ieee-fp
@opindex mieee-fp
@opindex mno-ieee-fp
Control whether or not the compiler uses IEEE floating point
comparisons.  These handle correctly the case where the result of a
comparison is unordered.

@item -msoft-float
@opindex msoft-float
Generate output containing library calls for floating point.
@strong{Warning:} the requisite libraries are not part of GCC@.
Normally the facilities of the machine's usual C compiler are used, but
this can't be done directly in cross-compilation.  You must make your
own arrangements to provide suitable library functions for
cross-compilation.

On machines where a function returns floating point results in the 80387
register stack, some floating point opcodes may be emitted even if
@option{-msoft-float} is used.

@item -mno-fp-ret-in-387
@opindex mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types
@code{float} and @code{double} in an FPU register, even if there
is no FPU@.  The idea is that the operating system should emulate
an FPU@.

The option @option{-mno-fp-ret-in-387} causes such values to be returned
in ordinary CPU registers instead.

@item -mno-fancy-math-387
@opindex mno-fancy-math-387
Some 387 emulators do not support the @code{sin}, @code{cos} and
@code{sqrt} instructions for the 387.  Specify this option to avoid
generating those instructions.  This option is the default on FreeBSD,
OpenBSD and NetBSD@.  This option is overridden when @option{-march}
indicates that the target cpu will always have an FPU and so the
instruction will not need emulation.  As of revision 2.6.1, these
instructions are not generated unless you also use the
@option{-funsafe-math-optimizations} switch.

@item -malign-double
@itemx -mno-align-double
@opindex malign-double
@opindex mno-align-double
Control whether GCC aligns @code{double}, @code{long double}, and
@code{long long} variables on a two word boundary or a one word
boundary.  Aligning @code{double} variables on a two word boundary will
produce code that runs somewhat faster on a @samp{Pentium} at the
expense of more memory.

On x86-64, @option{-malign-double} is enabled by default.

@strong{Warning:} if you use the @option{-malign-double} switch,
structures containing the above types will be aligned differently than
the published application binary interface specifications for the 386
and will not be binary compatible with structures in code compiled
without that switch.

@item -m96bit-long-double
@itemx -m128bit-long-double
@opindex m96bit-long-double
@opindex m128bit-long-double
These switches control the size of @code{long double} type.  The i386
application binary interface specifies the size to be 96 bits,
so @option{-m96bit-long-double} is the default in 32 bit mode.

Modern architectures (Pentium and newer) would prefer @code{long double}
to be aligned to an 8 or 16 byte boundary.  In arrays or structures
conforming to the ABI, this would not be possible.  So specifying a
@option{-m128bit-long-double} will align @code{long double}
to a 16 byte boundary by padding the @code{long double} with an additional
32 bit zero.

In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
its ABI specifies that @code{long double} is to be aligned on 16 byte boundary.

Notice that neither of these options enable any extra precision over the x87
standard of 80 bits for a @code{long double}.

@strong{Warning:} if you override the default value for your target ABI, the
structures and arrays containing @code{long double} variables will change
their size as well as function calling convention for function taking
@code{long double} will be modified.  Hence they will not be binary
compatible with arrays or structures in code compiled without that switch.

@item -mlarge-data-threshold=@var{number}
@opindex mlarge-data-threshold=@var{number}
When @option{-mcmodel=medium} is specified, the data greater than
@var{threshold} are placed in large data section.  This value must be the
same across all object linked into the binary and defaults to 65535.

@item -mrtd
@opindex mrtd
Use a different function-calling convention, in which functions that
take a fixed number of arguments return with the @code{ret} @var{num}
instruction, which pops their arguments while returning.  This saves one
instruction in the caller since there is no need to pop the arguments
there.

You can specify that an individual function is called with this calling
sequence with the function attribute @samp{stdcall}.  You can also
override the @option{-mrtd} option by using the function attribute
@samp{cdecl}.  @xref{Function Attributes}.

@strong{Warning:} this calling convention is incompatible with the one
normally used on Unix, so you cannot use it if you need to call
libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including @code{printf});
otherwise incorrect code will be generated for calls to those
functions.

In addition, seriously incorrect code will result if you call a
function with too many arguments.  (Normally, extra arguments are
harmlessly ignored.)

@item -mregparm=@var{num}
@opindex mregparm
Control how many registers are used to pass integer arguments.  By
default, no registers are used to pass arguments, and at most 3
registers can be used.  You can control this behavior for a specific
function by using the function attribute @samp{regparm}.
@xref{Function Attributes}.

@strong{Warning:} if you use this switch, and
@var{num} is nonzero, then you must build all modules with the same
value, including any libraries.  This includes the system libraries and
startup modules.

@item -msseregparm
@opindex msseregparm
Use SSE register passing conventions for float and double arguments
and return values.  You can control this behavior for a specific
function by using the function attribute @samp{sseregparm}.
@xref{Function Attributes}.

@strong{Warning:} if you use this switch then you must build all
modules with the same value, including any libraries.  This includes
the system libraries and startup modules.

@item -mpc32
@itemx -mpc64
@itemx -mpc80
@opindex mpc32
@opindex mpc64
@opindex mpc80

Set 80387 floating-point precision to 32, 64 or 80 bits.  When @option{-mpc32}
is specified, the significands of results of floating-point operations are
rounded to 24 bits (single precision); @option{-mpc64} rounds the
significands of results of floating-point operations to 53 bits (double
precision) and @option{-mpc80} rounds the significands of results of
floating-point operations to 64 bits (extended double precision), which is
the default.  When this option is used, floating-point operations in higher
precisions are not available to the programmer without setting the FPU
control word explicitly.

Setting the rounding of floating-point operations to less than the default
80 bits can speed some programs by 2% or more.  Note that some mathematical
libraries assume that extended precision (80 bit) floating-point operations
are enabled by default; routines in such libraries could suffer significant
loss of accuracy, typically through so-called "catastrophic cancellation",
when this option is used to set the precision to less than extended precision. 

@item -mstackrealign
@opindex mstackrealign
Realign the stack at entry.  On the Intel x86, the @option{-mstackrealign}
option will generate an alternate prologue and epilogue that realigns the
runtime stack if necessary.  This supports mixing legacy codes that keep
a 4-byte aligned stack with modern codes that keep a 16-byte stack for
SSE compatibility.  See also the attribute @code{force_align_arg_pointer},
applicable to individual functions.

@item -mpreferred-stack-boundary=@var{num}
@opindex mpreferred-stack-boundary
Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
the default is 4 (16 bytes or 128 bits).

@item -mincoming-stack-boundary=@var{num}
@opindex mincoming-stack-boundary
Assume the incoming stack is aligned to a 2 raised to @var{num} byte
boundary.  If @option{-mincoming-stack-boundary} is not specified,
the one specified by @option{-mpreferred-stack-boundary} will be used.

On Pentium and PentiumPro, @code{double} and @code{long double} values
should be aligned to an 8 byte boundary (see @option{-malign-double}) or
suffer significant run time performance penalties.  On Pentium III, the
Streaming SIMD Extension (SSE) data type @code{__m128} may not work
properly if it is not 16 byte aligned.

To ensure proper alignment of this values on the stack, the stack boundary
must be as aligned as that required by any value stored on the stack.
Further, every function must be generated such that it keeps the stack
aligned.  Thus calling a function compiled with a higher preferred
stack boundary from a function compiled with a lower preferred stack
boundary will most likely misalign the stack.  It is recommended that
libraries that use callbacks always use the default setting.

This extra alignment does consume extra stack space, and generally
increases code size.  Code that is sensitive to stack space usage, such
as embedded systems and operating system kernels, may want to reduce the
preferred alignment to @option{-mpreferred-stack-boundary=2}.

@item -mmmx
@itemx -mno-mmx
@itemx -msse
@itemx -mno-sse
@itemx -msse2
@itemx -mno-sse2
@itemx -msse3
@itemx -mno-sse3
@itemx -mssse3
@itemx -mno-ssse3
@itemx -msse4.1
@itemx -mno-sse4.1
@itemx -msse4.2
@itemx -mno-sse4.2
@itemx -msse4
@itemx -mno-sse4
@itemx -mavx
@itemx -mno-avx
@itemx -maes
@itemx -mno-aes
@itemx -mpclmul
@itemx -mno-pclmul
@itemx -msse4a
@itemx -mno-sse4a
@itemx -msse5
@itemx -mno-sse5
@itemx -m3dnow
@itemx -mno-3dnow
@itemx -mpopcnt
@itemx -mno-popcnt
@itemx -mabm
@itemx -mno-abm
@opindex mmmx
@opindex mno-mmx
@opindex msse
@opindex mno-sse
@opindex m3dnow
@opindex mno-3dnow
These switches enable or disable the use of instructions in the MMX,
SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX, AES, PCLMUL, SSE4A, SSE5, ABM or
3DNow!@: extended instruction sets.
These extensions are also available as built-in functions: see
@ref{X86 Built-in Functions}, for details of the functions enabled and
disabled by these switches.

To have SSE/SSE2 instructions generated automatically from floating-point
code (as opposed to 387 instructions), see @option{-mfpmath=sse}.

GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
generates new AVX instructions or AVX equivalence for all SSEx instructions
when needed.

These options will enable GCC to use these extended instructions in
generated code, even without @option{-mfpmath=sse}.  Applications which
perform runtime CPU detection must compile separate files for each
supported architecture, using the appropriate flags.  In particular,
the file containing the CPU detection code should be compiled without
these options.

@item -mcld
@opindex mcld
This option instructs GCC to emit a @code{cld} instruction in the prologue
of functions that use string instructions.  String instructions depend on
the DF flag to select between autoincrement or autodecrement mode.  While the
ABI specifies the DF flag to be cleared on function entry, some operating
systems violate this specification by not clearing the DF flag in their
exception dispatchers.  The exception handler can be invoked with the DF flag
set which leads to wrong direction mode, when string instructions are used.
This option can be enabled by default on 32-bit x86 targets by configuring
GCC with the @option{--enable-cld} configure option.  Generation of @code{cld}
instructions can be suppressed with the @option{-mno-cld} compiler option
in this case.

@item -mcx16
@opindex mcx16
This option will enable GCC to use CMPXCHG16B instruction in generated code.
CMPXCHG16B allows for atomic operations on 128-bit double quadword (or oword)
data types.  This is useful for high resolution counters that could be updated
by multiple processors (or cores).  This instruction is generated as part of
atomic built-in functions: see @ref{Atomic Builtins} for details.

@item -msahf
@opindex msahf
This option will enable GCC to use SAHF instruction in generated 64-bit code.
Early Intel CPUs with Intel 64 lacked LAHF and SAHF instructions supported
by AMD64 until introduction of Pentium 4 G1 step in December 2005.  LAHF and
SAHF are load and store instructions, respectively, for certain status flags.
In 64-bit mode, SAHF instruction is used to optimize @code{fmod}, @code{drem}
or @code{remainder} built-in functions: see @ref{Other Builtins} for details.

@item -mrecip
@opindex mrecip
This option will enable GCC to use RCPSS and RSQRTSS instructions (and their
vectorized variants RCPPS and RSQRTPS) with an additional Newton-Raphson step
to increase precision instead of DIVSS and SQRTSS (and their vectorized
variants) for single precision floating point arguments.  These instructions
are generated only when @option{-funsafe-math-optimizations} is enabled
together with @option{-finite-math-only} and @option{-fno-trapping-math}.
Note that while the throughput of the sequence is higher than the throughput
of the non-reciprocal instruction, the precision of the sequence can be
decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).

@item -mveclibabi=@var{type}
@opindex mveclibabi
Specifies the ABI type to use for vectorizing intrinsics using an
external library.  Supported types are @code{svml} for the Intel short
vector math library and @code{acml} for the AMD math core library style
of interfacing.  GCC will currently emit calls to @code{vmldExp2},
@code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
@code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
@code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
@code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
@code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
@code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
@code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
@code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
@code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
function type when @option{-mveclibabi=svml} is used and @code{__vrd2_sin},
@code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
@code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
@code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
@code{__vrs4_log10f} and @code{__vrs4_powf} for corresponding function type
when @option{-mveclibabi=acml} is used. Both @option{-ftree-vectorize} and
@option{-funsafe-math-optimizations} have to be enabled. A SVML or ACML ABI
compatible library will have to be specified at link time.

@item -mpush-args
@itemx -mno-push-args
@opindex mpush-args
@opindex mno-push-args
Use PUSH operations to store outgoing parameters.  This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default.  In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.

@item -maccumulate-outgoing-args
@opindex maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments will be
computed in the function prologue.  This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage
when preferred stack boundary is not equal to 2.  The drawback is a notable
increase in code size.  This switch implies @option{-mno-push-args}.

@item -mthreads
@opindex mthreads
Support thread-safe exception handling on @samp{Mingw32}.  Code that relies
on thread-safe exception handling must compile and link all code with the
@option{-mthreads} option.  When compiling, @option{-mthreads} defines
@option{-D_MT}; when linking, it links in a special thread helper library
@option{-lmingwthrd} which cleans up per thread exception handling data.

@item -mno-align-stringops
@opindex mno-align-stringops
Do not align destination of inlined string operations.  This switch reduces
code size and improves performance in case the destination is already aligned,
but GCC doesn't know about it.

@item -minline-all-stringops
@opindex minline-all-stringops
By default GCC inlines string operations only when destination is known to be
aligned at least to 4 byte boundary.  This enables more inlining, increase code
size, but may improve performance of code that depends on fast memcpy, strlen
and memset for short lengths.

@item -minline-stringops-dynamically
@opindex minline-stringops-dynamically
For string operation of unknown size, inline runtime checks so for small
blocks inline code is used, while for large blocks library call is used.

@item -mstringop-strategy=@var{alg}
@opindex mstringop-strategy=@var{alg}
Overwrite internal decision heuristic about particular algorithm to inline
string operation with.  The allowed values are @code{rep_byte},
@code{rep_4byte}, @code{rep_8byte} for expanding using i386 @code{rep} prefix
of specified size, @code{byte_loop}, @code{loop}, @code{unrolled_loop} for
expanding inline loop, @code{libcall} for always expanding library call.

@item -momit-leaf-frame-pointer
@opindex momit-leaf-frame-pointer
Don't keep the frame pointer in a register for leaf functions.  This
avoids the instructions to save, set up and restore frame pointers and
makes an extra register available in leaf functions.  The option
@option{-fomit-frame-pointer} removes the frame pointer for all functions
which might make debugging harder.

@item -mtls-direct-seg-refs
@itemx -mno-tls-direct-seg-refs
@opindex mtls-direct-seg-refs
Controls whether TLS variables may be accessed with offsets from the
TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
or whether the thread base pointer must be added.  Whether or not this
is legal depends on the operating system, and whether it maps the
segment to cover the entire TLS area.

For systems that use GNU libc, the default is on.

@item -mfused-madd
@itemx -mno-fused-madd
@opindex mfused-madd
Enable automatic generation of fused floating point multiply-add instructions
if the ISA supports such instructions.  The -mfused-madd option is on by
default.  The fused multiply-add instructions have a different
rounding behavior compared to executing a multiply followed by an add.

@item -msse2avx
@itemx -mno-sse2avx
@opindex msse2avx
Specify that the assembler should encode SSE instructions with VEX
prefix.  The option @option{-mavx} turns this on by default.
@end table

These @samp{-m} switches are supported in addition to the above
on AMD x86-64 processors in 64-bit environments.

@table @gcctabopt
@item -m32
@itemx -m64
@opindex m32
@opindex m64
Generate code for a 32-bit or 64-bit environment.
The 32-bit environment sets int, long and pointer to 32 bits and
generates code that runs on any i386 system.
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits and generates code for AMD's x86-64 architecture. For
darwin only the -m64 option turns off the @option{-fno-pic} and
@option{-mdynamic-no-pic} options.

@item -mno-red-zone
@opindex no-red-zone
Do not use a so called red zone for x86-64 code.  The red zone is mandated
by the x86-64 ABI, it is a 128-byte area beyond the location of the
stack pointer that will not be modified by signal or interrupt handlers
and therefore can be used for temporary data without adjusting the stack
pointer.  The flag @option{-mno-red-zone} disables this red zone.

@item -mcmodel=small
@opindex mcmodel=small
Generate code for the small code model: the program and its symbols must
be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
Programs can be statically or dynamically linked.  This is the default
code model.

@item -mcmodel=kernel
@opindex mcmodel=kernel
Generate code for the kernel code model.  The kernel runs in the
negative 2 GB of the address space.
This model has to be used for Linux kernel code.

@item -mcmodel=medium
@opindex mcmodel=medium
Generate code for the medium model: The program is linked in the lower 2
GB of the address space.  Small symbols are also placed there.  Symbols
with sizes larger than @option{-mlarge-data-threshold} are put into
large data or bss sections and can be located above 2GB.  Programs can
be statically or dynamically linked.

@item -mcmodel=large
@opindex mcmodel=large
Generate code for the large model: This model makes no assumptions
about addresses and sizes of sections.
@end table

@node IA-64 Options
@subsection IA-64 Options
@cindex IA-64 Options

These are the @samp{-m} options defined for the Intel IA-64 architecture.

@table @gcctabopt
@item -mbig-endian
@opindex mbig-endian
Generate code for a big endian target.  This is the default for HP-UX@.

@item -mlittle-endian
@opindex mlittle-endian
Generate code for a little endian target.  This is the default for AIX5
and GNU/Linux.

@item -mgnu-as
@itemx -mno-gnu-as
@opindex mgnu-as
@opindex mno-gnu-as
Generate (or don't) code for the GNU assembler.  This is the default.
@c Also, this is the default if the configure option @option{--with-gnu-as}
@c is used.

@item -mgnu-ld
@itemx -mno-gnu-ld
@opindex mgnu-ld
@opindex mno-gnu-ld
Generate (or don't) code for the GNU linker.  This is the default.
@c Also, this is the default if the configure option @option{--with-gnu-ld}
@c is used.

@item -mno-pic
@opindex mno-pic
Generate code that does not use a global pointer register.  The result
is not position independent code, and violates the IA-64 ABI@.

@item -mvolatile-asm-stop
@itemx -mno-volatile-asm-stop
@opindex mvolatile-asm-stop
@opindex mno-volatile-asm-stop
Generate (or don't) a stop bit immediately before and after volatile asm
statements.

@item -mregister-names
@itemx -mno-register-names
@opindex mregister-names
@opindex mno-register-names
Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
the stacked registers.  This may make assembler output more readable.

@item -mno-sdata
@itemx -msdata
@opindex mno-sdata
@opindex msdata
Disable (or enable) optimizations that use the small data section.  This may
be useful for working around optimizer bugs.

@item -mconstant-gp
@opindex mconstant-gp
Generate code that uses a single constant global pointer value.  This is
useful when compiling kernel code.

@item -mauto-pic
@opindex mauto-pic
Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
This is useful when compiling firmware code.

@item -minline-float-divide-min-latency
@opindex minline-float-divide-min-latency
Generate code for inline divides of floating point values
using the minimum latency algorithm.

@item -minline-float-divide-max-throughput
@opindex minline-float-divide-max-throughput
Generate code for inline divides of floating point values
using the maximum throughput algorithm.

@item -minline-int-divide-min-latency
@opindex minline-int-divide-min-latency
Generate code for inline divides of integer values
using the minimum latency algorithm.

@item -minline-int-divide-max-throughput
@opindex minline-int-divide-max-throughput
Generate code for inline divides of integer values
using the maximum throughput algorithm.

@item -minline-sqrt-min-latency
@opindex minline-sqrt-min-latency
Generate code for inline square roots
using the minimum latency algorithm.

@item -minline-sqrt-max-throughput
@opindex minline-sqrt-max-throughput
Generate code for inline square roots
using the maximum throughput algorithm.

@item -mno-dwarf2-asm
@itemx -mdwarf2-asm
@opindex mno-dwarf2-asm
@opindex mdwarf2-asm
Don't (or do) generate assembler code for the DWARF2 line number debugging
info.  This may be useful when not using the GNU assembler.

@item -mearly-stop-bits
@itemx -mno-early-stop-bits
@opindex mearly-stop-bits
@opindex mno-early-stop-bits
Allow stop bits to be placed earlier than immediately preceding the
instruction that triggered the stop bit.  This can improve instruction
scheduling, but does not always do so.

@item -mfixed-range=@var{register-range}
@opindex mfixed-range
Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator can not use.  This is
useful when compiling kernel code.  A register range is specified as
two registers separated by a dash.  Multiple register ranges can be
specified separated by a comma.

@item -mtls-size=@var{tls-size}
@opindex mtls-size
Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
64.

@item -mtune=@var{cpu-type}
@opindex mtune
Tune the instruction scheduling for a particular CPU, Valid values are
itanium, itanium1, merced, itanium2, and mckinley.

@item -mt
@itemx -pthread
@opindex mt
@opindex pthread
Add support for multithreading using the POSIX threads library.  This
option sets flags for both the preprocessor and linker.  It does
not affect the thread safety of object code produced by the compiler or
that of libraries supplied with it.  These are HP-UX specific flags.

@item -milp32
@itemx -mlp64
@opindex milp32
@opindex mlp64
Generate code for a 32-bit or 64-bit environment.
The 32-bit environment sets int, long and pointer to 32 bits.
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits.  These are HP-UX specific flags.

@item -mno-sched-br-data-spec
@itemx -msched-br-data-spec
@opindex mno-sched-br-data-spec
@opindex msched-br-data-spec
(Dis/En)able data speculative scheduling before reload.
This will result in generation of the ld.a instructions and
the corresponding check instructions (ld.c / chk.a).
The default is 'disable'.

@item -msched-ar-data-spec
@itemx -mno-sched-ar-data-spec
@opindex msched-ar-data-spec
@opindex mno-sched-ar-data-spec
(En/Dis)able data speculative scheduling after reload.
This will result in generation of the ld.a instructions and
the corresponding check instructions (ld.c / chk.a).
The default is 'enable'.

@item -mno-sched-control-spec
@itemx -msched-control-spec
@opindex mno-sched-control-spec
@opindex msched-control-spec
(Dis/En)able control speculative scheduling.  This feature is
available only during region scheduling (i.e.@: before reload).
This will result in generation of the ld.s instructions and
the corresponding check instructions chk.s .
The default is 'disable'.

@item -msched-br-in-data-spec
@itemx -mno-sched-br-in-data-spec
@opindex msched-br-in-data-spec
@opindex mno-sched-br-in-data-spec
(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads before reload.
This is effective only with @option{-msched-br-data-spec} enabled.
The default is 'enable'.

@item -msched-ar-in-data-spec
@itemx -mno-sched-ar-in-data-spec
@opindex msched-ar-in-data-spec
@opindex mno-sched-ar-in-data-spec
(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads after reload.
This is effective only with @option{-msched-ar-data-spec} enabled.
The default is 'enable'.

@item -msched-in-control-spec
@itemx -mno-sched-in-control-spec
@opindex msched-in-control-spec
@opindex mno-sched-in-control-spec
(En/Dis)able speculative scheduling of the instructions that
are dependent on the control speculative loads.
This is effective only with @option{-msched-control-spec} enabled.
The default is 'enable'.

@item -msched-ldc
@itemx -mno-sched-ldc
@opindex msched-ldc
@opindex mno-sched-ldc
(En/Dis)able use of simple data speculation checks ld.c .
If disabled, only chk.a instructions will be emitted to check
data speculative loads.
The default is 'enable'.

@item -mno-sched-control-ldc
@itemx -msched-control-ldc
@opindex mno-sched-control-ldc
@opindex msched-control-ldc
(Dis/En)able use of ld.c instructions to check control speculative loads.
If enabled, in case of control speculative load with no speculatively
scheduled dependent instructions this load will be emitted as ld.sa and
ld.c will be used to check it.
The default is 'disable'.

@item -mno-sched-spec-verbose
@itemx -msched-spec-verbose
@opindex mno-sched-spec-verbose
@opindex msched-spec-verbose
(Dis/En)able printing of the information about speculative motions.

@item -mno-sched-prefer-non-data-spec-insns
@itemx -msched-prefer-non-data-spec-insns
@opindex mno-sched-prefer-non-data-spec-insns
@opindex msched-prefer-non-data-spec-insns
If enabled, data speculative instructions will be chosen for schedule
only if there are no other choices at the moment.  This will make
the use of the data speculation much more conservative.
The default is 'disable'.

@item -mno-sched-prefer-non-control-spec-insns
@itemx -msched-prefer-non-control-spec-insns
@opindex mno-sched-prefer-non-control-spec-insns
@opindex msched-prefer-non-control-spec-insns
If enabled, control speculative instructions will be chosen for schedule
only if there are no other choices at the moment.  This will make
the use of the control speculation much more conservative.
The default is 'disable'.

@item -mno-sched-count-spec-in-critical-path
@itemx -msched-count-spec-in-critical-path
@opindex mno-sched-count-spec-in-critical-path
@opindex msched-count-spec-in-critical-path
If enabled, speculative dependencies will be considered during
computation of the instructions priorities.  This will make the use of the
speculation a bit more conservative.
The default is 'disable'.

@end table

@node M32C Options
@subsection M32C Options
@cindex M32C options

@table @gcctabopt
@item -mcpu=@var{name}
@opindex mcpu=
Select the CPU for which code is generated.  @var{name} may be one of
@samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
/60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
the M32C/80 series.

@item -msim
@opindex msim
Specifies that the program will be run on the simulator.  This causes
an alternate runtime library to be linked in which supports, for
example, file I/O@.  You must not use this option when generating
programs that will run on real hardware; you must provide your own
runtime library for whatever I/O functions are needed.

@item -memregs=@var{number}
@opindex memregs=
Specifies the number of memory-based pseudo-registers GCC will use
during code generation.  These pseudo-registers will be used like real
registers, so there is a tradeoff between GCC's ability to fit the
code into available registers, and the performance penalty of using
memory instead of registers.  Note that all modules in a program must
be compiled with the same value for this option.  Because of that, you
must not use this option with the default runtime libraries gcc
builds.

@end table

@node M32R/D Options
@subsection M32R/D Options
@cindex M32R/D options

These @option{-m} options are defined for Renesas M32R/D architectures:

@table @gcctabopt
@item -m32r2
@opindex m32r2
Generate code for the M32R/2@.

@item -m32rx
@opindex m32rx
Generate code for the M32R/X@.

@item -m32r
@opindex m32r
Generate code for the M32R@.  This is the default.

@item -mmodel=small
@opindex mmodel=small
Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the @code{ld24} instruction), and assume all subroutines
are reachable with the @code{bl} instruction.
This is the default.

The addressability of a particular object can be set with the
@code{model} attribute.

@item -mmodel=medium
@opindex mmodel=medium
Assume objects may be anywhere in the 32-bit address space (the compiler
will generate @code{seth/add3} instructions to load their addresses), and
assume all subroutines are reachable with the @code{bl} instruction.

@item -mmodel=large
@opindex mmodel=large
Assume objects may be anywhere in the 32-bit address space (the compiler
will generate @code{seth/add3} instructions to load their addresses), and
assume subroutines may not be reachable with the @code{bl} instruction
(the compiler will generate the much slower @code{seth/add3/jl}
instruction sequence).

@item -msdata=none
@opindex msdata=none
Disable use of the small data area.  Variables will be put into
one of @samp{.data}, @samp{bss}, or @samp{.rodata} (unless the
@code{section} attribute has been specified).
This is the default.

The small data area consists of sections @samp{.sdata} and @samp{.sbss}.
Objects may be explicitly put in the small data area with the
@code{section} attribute using one of these sections.

@item -msdata=sdata
@opindex msdata=sdata
Put small global and static data in the small data area, but do not
generate special code to reference them.

@item -msdata=use
@opindex msdata=use
Put small global and static data in the small data area, and generate
special instructions to reference them.

@item -G @var{num}
@opindex G
@cindex smaller data references
Put global and static objects less than or equal to @var{num} bytes
into the small data or bss sections instead of the normal data or bss
sections.  The default value of @var{num} is 8.
The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
for this option to have any effect.

All modules should be compiled with the same @option{-G @var{num}} value.
Compiling with different values of @var{num} may or may not work; if it
doesn't the linker will give an error message---incorrect code will not be
generated.

@item -mdebug
@opindex mdebug
Makes the M32R specific code in the compiler display some statistics
that might help in debugging programs.

@item -malign-loops
@opindex malign-loops
Align all loops to a 32-byte boundary.

@item -mno-align-loops
@opindex mno-align-loops
Do not enforce a 32-byte alignment for loops.  This is the default.

@item -missue-rate=@var{number}
@opindex missue-rate=@var{number}
Issue @var{number} instructions per cycle.  @var{number} can only be 1
or 2.

@item -mbranch-cost=@var{number}
@opindex mbranch-cost=@var{number}
@var{number} can only be 1 or 2.  If it is 1 then branches will be
preferred over conditional code, if it is 2, then the opposite will
apply.

@item -mflush-trap=@var{number}
@opindex mflush-trap=@var{number}
Specifies the trap number to use to flush the cache.  The default is
12.  Valid numbers are between 0 and 15 inclusive.

@item -mno-flush-trap
@opindex mno-flush-trap
Specifies that the cache cannot be flushed by using a trap.

@item -mflush-func=@var{name}
@opindex mflush-func=@var{name}
Specifies the name of the operating system function to call to flush
the cache.  The default is @emph{_flush_cache}, but a function call
will only be used if a trap is not available.

@item -mno-flush-func
@opindex mno-flush-func
Indicates that there is no OS function for flushing the cache.

@end table

@node M680x0 Options
@subsection M680x0 Options
@cindex M680x0 options

These are the @samp{-m} options defined for M680x0 and ColdFire processors.
The default settings depend on which architecture was selected when
the compiler was configured; the defaults for the most common choices
are given below.

@table @gcctabopt
@item -march=@var{arch}
@opindex march
Generate code for a specific M680x0 or ColdFire instruction set
architecture.  Permissible values of @var{arch} for M680x0
architectures are: @samp{68000}, @samp{68010}, @samp{68020},
@samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}.  ColdFire
architectures are selected according to Freescale's ISA classification
and the permissible values are: @samp{isaa}, @samp{isaaplus},
@samp{isab} and @samp{isac}.

gcc defines a macro @samp{__mcf@var{arch}__} whenever it is generating
code for a ColdFire target.  The @var{arch} in this macro is one of the
@option{-march} arguments given above.

When used together, @option{-march} and @option{-mtune} select code
that runs on a family of similar processors but that is optimized
for a particular microarchitecture.

@item -mcpu=@var{cpu}
@opindex mcpu
Generate code for a specific M680x0 or ColdFire processor.
The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
@samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
and @samp{cpu32}.  The ColdFire @var{cpu}s are given by the table
below, which also classifies the CPUs into families:

@multitable @columnfractions 0.20 0.80
@item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
@item @samp{51qe} @tab @samp{51qe}
@item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
@item @samp{5206e} @tab @samp{5206e}
@item @samp{5208} @tab @samp{5207} @samp{5208}
@item @samp{5211a} @tab @samp{5210a} @samp{5211a}
@item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
@item @samp{5216} @tab @samp{5214} @samp{5216}
@item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
@item @samp{5225} @tab @samp{5224} @samp{5225}
@item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
@item @samp{5249} @tab @samp{5249}
@item @samp{5250} @tab @samp{5250}
@item @samp{5271} @tab @samp{5270} @samp{5271}
@item @samp{5272} @tab @samp{5272}
@item @samp{5275} @tab @samp{5274} @samp{5275}
@item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
@item @samp{5307} @tab @samp{5307}
@item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
@item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
@item @samp{5407} @tab @samp{5407}
@item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
@end multitable

@option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
@var{arch} is compatible with @var{cpu}.  Other combinations of
@option{-mcpu} and @option{-march} are rejected.

gcc defines the macro @samp{__mcf_cpu_@var{cpu}} when ColdFire target
@var{cpu} is selected.  It also defines @samp{__mcf_family_@var{family}},
where the value of @var{family} is given by the table above.

@item -mtune=@var{tune}
@opindex mtune
Tune the code for a particular microarchitecture, within the
constraints set by @option{-march} and @option{-mcpu}.
The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
@samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
and @samp{cpu32}.  The ColdFire microarchitectures
are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.

You can also use @option{-mtune=68020-40} for code that needs
to run relatively well on 68020, 68030 and 68040 targets.
@option{-mtune=68020-60} is similar but includes 68060 targets
as well.  These two options select the same tuning decisions as
@option{-m68020-40} and @option{-m68020-60} respectively.

gcc defines the macros @samp{__mc@var{arch}} and @samp{__mc@var{arch}__}
when tuning for 680x0 architecture @var{arch}.  It also defines
@samp{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
option is used.  If gcc is tuning for a range of architectures,
as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
it defines the macros for every architecture in the range.

gcc also defines the macro @samp{__m@var{uarch}__} when tuning for
ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
of the arguments given above.

@item -m68000
@itemx -mc68000
@opindex m68000
@opindex mc68000
Generate output for a 68000.  This is the default
when the compiler is configured for 68000-based systems.
It is equivalent to @option{-march=68000}.

Use this option for microcontrollers with a 68000 or EC000 core,
including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.

@item -m68010
@opindex m68010
Generate output for a 68010.  This is the default
when the compiler is configured for 68010-based systems.
It is equivalent to @option{-march=68010}.

@item -m68020
@itemx -mc68020
@opindex m68020
@opindex mc68020
Generate output for a 68020.  This is the default
when the compiler is configured for 68020-based systems.
It is equivalent to @option{-march=68020}.

@item -m68030
@opindex m68030
Generate output for a 68030.  This is the default when the compiler is
configured for 68030-based systems.  It is equivalent to
@option{-march=68030}.

@item -m68040
@opindex m68040
Generate output for a 68040.  This is the default when the compiler is
configured for 68040-based systems.  It is equivalent to
@option{-march=68040}.

This option inhibits the use of 68881/68882 instructions that have to be
emulated by software on the 68040.  Use this option if your 68040 does not
have code to emulate those instructions.

@item -m68060
@opindex m68060
Generate output for a 68060.  This is the default when the compiler is
configured for 68060-based systems.  It is equivalent to
@option{-march=68060}.

This option inhibits the use of 68020 and 68881/68882 instructions that
have to be emulated by software on the 68060.  Use this option if your 68060
does not have code to emulate those instructions.

@item -mcpu32
@opindex mcpu32
Generate output for a CPU32.  This is the default
when the compiler is configured for CPU32-based systems.
It is equivalent to @option{-march=cpu32}.

Use this option for microcontrollers with a
CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
68336, 68340, 68341, 68349 and 68360.

@item -m5200
@opindex m5200
Generate output for a 520X ColdFire CPU@.  This is the default
when the compiler is configured for 520X-based systems.
It is equivalent to @option{-mcpu=5206}, and is now deprecated
in favor of that option.

Use this option for microcontroller with a 5200 core, including
the MCF5202, MCF5203, MCF5204 and MCF5206.

@item -m5206e
@opindex m5206e
Generate output for a 5206e ColdFire CPU@.  The option is now
deprecated in favor of the equivalent @option{-mcpu=5206e}.

@item -m528x
@opindex m528x
Generate output for a member of the ColdFire 528X family.
The option is now deprecated in favor of the equivalent
@option{-mcpu=528x}.

@item -m5307
@opindex m5307
Generate output for a ColdFire 5307 CPU@.  The option is now deprecated
in favor of the equivalent @option{-mcpu=5307}.

@item -m5407
@opindex m5407
Generate output for a ColdFire 5407 CPU@.  The option is now deprecated
in favor of the equivalent @option{-mcpu=5407}.

@item -mcfv4e
@opindex mcfv4e
Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
This includes use of hardware floating point instructions.
The option is equivalent to @option{-mcpu=547x}, and is now
deprecated in favor of that option.

@item -m68020-40
@opindex m68020-40
Generate output for a 68040, without using any of the new instructions.
This results in code which can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040.  The generated code does use the
68881 instructions that are emulated on the 68040.

The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.

@item -m68020-60
@opindex m68020-60
Generate output for a 68060, without using any of the new instructions.
This results in code which can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040.  The generated code does use the
68881 instructions that are emulated on the 68060.

The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.

@item -mhard-float
@itemx -m68881
@opindex mhard-float
@opindex m68881
Generate floating-point instructions.  This is the default for 68020
and above, and for ColdFire devices that have an FPU@.  It defines the
macro @samp{__HAVE_68881__} on M680x0 targets and @samp{__mcffpu__}
on ColdFire targets.

@item -msoft-float
@opindex msoft-float
Do not generate floating-point instructions; use library calls instead.
This is the default for 68000, 68010, and 68832 targets.  It is also
the default for ColdFire devices that have no FPU.

@item -mdiv
@itemx -mno-div
@opindex mdiv
@opindex mno-div
Generate (do not generate) ColdFire hardware divide and remainder
instructions.  If @option{-march} is used without @option{-mcpu},
the default is ``on'' for ColdFire architectures and ``off'' for M680x0
architectures.  Otherwise, the default is taken from the target CPU
(either the default CPU, or the one specified by @option{-mcpu}).  For
example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
@option{-mcpu=5206e}.

gcc defines the macro @samp{__mcfhwdiv__} when this option is enabled.

@item -mshort
@opindex mshort
Consider type @code{int} to be 16 bits wide, like @code{short int}.
Additionally, parameters passed on the stack are also aligned to a
16-bit boundary even on targets whose API mandates promotion to 32-bit.

@item -mno-short
@opindex mno-short
Do not consider type @code{int} to be 16 bits wide.  This is the default.

@item -mnobitfield
@itemx -mno-bitfield
@opindex mnobitfield
@opindex mno-bitfield
Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
and @option{-m5200} options imply @w{@option{-mnobitfield}}.

@item -mbitfield
@opindex mbitfield
Do use the bit-field instructions.  The @option{-m68020} option implies
@option{-mbitfield}.  This is the default if you use a configuration
designed for a 68020.

@item -mrtd
@opindex mrtd
Use a different function-calling convention, in which functions
that take a fixed number of arguments return with the @code{rtd}
instruction, which pops their arguments while returning.  This
saves one instruction in the caller since there is no need to pop
the arguments there.

This calling convention is incompatible with the one normally
used on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including @code{printf});
otherwise incorrect code will be generated for calls to those
functions.

In addition, seriously incorrect code will result if you call a
function with too many arguments.  (Normally, extra arguments are
harmlessly ignored.)

The @code{rtd} instruction is supported by the 68010, 68020, 68030,
68040, 68060 and CPU32 processors, but not by the 68000 or 5200.

@item -mno-rtd
@opindex mno-rtd
Do not use the calling conventions selected by @option{-mrtd}.
This is the default.

@item -malign-int
@itemx -mno-align-int
@opindex malign-int
@opindex mno-align-int
Control whether GCC aligns @code{int}, @code{long}, @code{long long},
@code{float}, @code{double}, and @code{long double} variables on a 32-bit
boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
Aligning variables on 32-bit boundaries produces code that runs somewhat
faster on processors with 32-bit busses at the expense of more memory.

@strong{Warning:} if you use the @option{-malign-int} switch, GCC will
align structures containing the above types  differently than
most published application binary interface specifications for the m68k.

@item -mpcrel
@opindex mpcrel
Use the pc-relative addressing mode of the 68000 directly, instead of
using a global offset table.  At present, this option implies @option{-fpic},
allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
not presently supported with @option{-mpcrel}, though this could be supported for
68020 and higher processors.

@item -mno-strict-align
@itemx -mstrict-align
@opindex mno-strict-align
@opindex mstrict-align
Do not (do) assume that unaligned memory references will be handled by
the system.

@item -msep-data
Generate code that allows the data segment to be located in a different
area of memory from the text segment.  This allows for execute in place in
an environment without virtual memory management.  This option implies
@option{-fPIC}.

@item -mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.

@item -mid-shared-library
Generate code that supports shared libraries via the library ID method.
This allows for execute in place and shared libraries in an environment
without virtual memory management.  This option implies @option{-fPIC}.

@item -mno-id-shared-library
Generate code that doesn't assume ID based shared libraries are being used.
This is the default.

@item -mshared-library-id=n
Specified the identification number of the ID based shared library being
compiled.  Specifying a value of 0 will generate more compact code, specifying
other values will force the allocation of that number to the current
library but is no more space or time efficient than omitting this option.

@item -mxgot
@itemx -mno-xgot
@opindex mxgot
@opindex mno-xgot
When generating position-independent code for ColdFire, generate code
that works if the GOT has more than 8192 entries.  This code is
larger and slower than code generated without this option.  On M680x0
processors, this option is not needed; @option{-fPIC} suffices.

GCC normally uses a single instruction to load values from the GOT@.
While this is relatively efficient, it only works if the GOT
is smaller than about 64k.  Anything larger causes the linker
to report an error such as:

@cindex relocation truncated to fit (ColdFire)
@smallexample
relocation truncated to fit: R_68K_GOT16O foobar
@end smallexample

If this happens, you should recompile your code with @option{-mxgot}.
It should then work with very large GOTs.  However, code generated with
@option{-mxgot} is less efficient, since it takes 4 instructions to fetch
the value of a global symbol.

Note that some linkers, including newer versions of the GNU linker,
can create multiple GOTs and sort GOT entries.  If you have such a linker,
you should only need to use @option{-mxgot} when compiling a single
object file that accesses more than 8192 GOT entries.  Very few do.

These options have no effect unless GCC is generating
position-independent code.

@end table

@node M68hc1x Options
@subsection M68hc1x Options
@cindex M68hc1x options

These are the @samp{-m} options defined for the 68hc11 and 68hc12
microcontrollers.  The default values for these options depends on
which style of microcontroller was selected when the compiler was configured;
the defaults for the most common choices are given below.

@table @gcctabopt
@item -m6811
@itemx -m68hc11
@opindex m6811
@opindex m68hc11
Generate output for a 68HC11.  This is the default
when the compiler is configured for 68HC11-based systems.

@item -m6812
@itemx -m68hc12
@opindex m6812
@opindex m68hc12
Generate output for a 68HC12.  This is the default
when the compiler is configured for 68HC12-based systems.

@item -m68S12
@itemx -m68hcs12
@opindex m68S12
@opindex m68hcs12
Generate output for a 68HCS12.

@item -mauto-incdec
@opindex mauto-incdec
Enable the use of 68HC12 pre and post auto-increment and auto-decrement
addressing modes.

@item -minmax
@itemx -nominmax
@opindex minmax
@opindex mnominmax
Enable the use of 68HC12 min and max instructions.

@item -mlong-calls
@itemx -mno-long-calls