view gcc/tree-ssa-structalias.c @ 12:ab98828ce7a7

refactor cbc_finish_labeled_goto, cbc_finish_nested_function.
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 11 Sep 2009 14:52:24 +0900
parents a06113de4d67
children 3bfb6c00c1e0
line wrap: on
line source

/* Tree based points-to analysis
   Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dberlin@dberlin.org>

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   GCC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "obstack.h"
#include "bitmap.h"
#include "flags.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "tree.h"
#include "c-common.h"
#include "tree-flow.h"
#include "tree-inline.h"
#include "varray.h"
#include "c-tree.h"
#include "diagnostic.h"
#include "toplev.h"
#include "gimple.h"
#include "hashtab.h"
#include "function.h"
#include "cgraph.h"
#include "tree-pass.h"
#include "timevar.h"
#include "alloc-pool.h"
#include "splay-tree.h"
#include "params.h"
#include "tree-ssa-structalias.h"
#include "cgraph.h"
#include "alias.h"
#include "pointer-set.h"

/* The idea behind this analyzer is to generate set constraints from the
   program, then solve the resulting constraints in order to generate the
   points-to sets.

   Set constraints are a way of modeling program analysis problems that
   involve sets.  They consist of an inclusion constraint language,
   describing the variables (each variable is a set) and operations that
   are involved on the variables, and a set of rules that derive facts
   from these operations.  To solve a system of set constraints, you derive
   all possible facts under the rules, which gives you the correct sets
   as a consequence.

   See  "Efficient Field-sensitive pointer analysis for C" by "David
   J. Pearce and Paul H. J. Kelly and Chris Hankin, at
   http://citeseer.ist.psu.edu/pearce04efficient.html

   Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
   of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
   http://citeseer.ist.psu.edu/heintze01ultrafast.html

   There are three types of real constraint expressions, DEREF,
   ADDRESSOF, and SCALAR.  Each constraint expression consists
   of a constraint type, a variable, and an offset.

   SCALAR is a constraint expression type used to represent x, whether
   it appears on the LHS or the RHS of a statement.
   DEREF is a constraint expression type used to represent *x, whether
   it appears on the LHS or the RHS of a statement.
   ADDRESSOF is a constraint expression used to represent &x, whether
   it appears on the LHS or the RHS of a statement.

   Each pointer variable in the program is assigned an integer id, and
   each field of a structure variable is assigned an integer id as well.

   Structure variables are linked to their list of fields through a "next
   field" in each variable that points to the next field in offset
   order.
   Each variable for a structure field has

   1. "size", that tells the size in bits of that field.
   2. "fullsize, that tells the size in bits of the entire structure.
   3. "offset", that tells the offset in bits from the beginning of the
   structure to this field.

   Thus,
   struct f
   {
     int a;
     int b;
   } foo;
   int *bar;

   looks like

   foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
   foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
   bar -> id 3, size 32, offset 0, fullsize 32, next NULL


  In order to solve the system of set constraints, the following is
  done:

  1. Each constraint variable x has a solution set associated with it,
  Sol(x).

  2. Constraints are separated into direct, copy, and complex.
  Direct constraints are ADDRESSOF constraints that require no extra
  processing, such as P = &Q
  Copy constraints are those of the form P = Q.
  Complex constraints are all the constraints involving dereferences
  and offsets (including offsetted copies).

  3. All direct constraints of the form P = &Q are processed, such
  that Q is added to Sol(P)

  4. All complex constraints for a given constraint variable are stored in a
  linked list attached to that variable's node.

  5. A directed graph is built out of the copy constraints. Each
  constraint variable is a node in the graph, and an edge from
  Q to P is added for each copy constraint of the form P = Q

  6. The graph is then walked, and solution sets are
  propagated along the copy edges, such that an edge from Q to P
  causes Sol(P) <- Sol(P) union Sol(Q).

  7.  As we visit each node, all complex constraints associated with
  that node are processed by adding appropriate copy edges to the graph, or the
  appropriate variables to the solution set.

  8. The process of walking the graph is iterated until no solution
  sets change.

  Prior to walking the graph in steps 6 and 7, We perform static
  cycle elimination on the constraint graph, as well
  as off-line variable substitution.

  TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
  on and turned into anything), but isn't.  You can just see what offset
  inside the pointed-to struct it's going to access.

  TODO: Constant bounded arrays can be handled as if they were structs of the
  same number of elements.

  TODO: Modeling heap and incoming pointers becomes much better if we
  add fields to them as we discover them, which we could do.

  TODO: We could handle unions, but to be honest, it's probably not
  worth the pain or slowdown.  */

static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
htab_t heapvar_for_stmt;

static bool use_field_sensitive = true;
static int in_ipa_mode = 0;

/* Used for predecessor bitmaps. */
static bitmap_obstack predbitmap_obstack;

/* Used for points-to sets.  */
static bitmap_obstack pta_obstack;

/* Used for oldsolution members of variables. */
static bitmap_obstack oldpta_obstack;

/* Used for per-solver-iteration bitmaps.  */
static bitmap_obstack iteration_obstack;

static unsigned int create_variable_info_for (tree, const char *);
typedef struct constraint_graph *constraint_graph_t;
static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);

DEF_VEC_P(constraint_t);
DEF_VEC_ALLOC_P(constraint_t,heap);

#define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d)	\
  if (a)						\
    EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)

static struct constraint_stats
{
  unsigned int total_vars;
  unsigned int nonpointer_vars;
  unsigned int unified_vars_static;
  unsigned int unified_vars_dynamic;
  unsigned int iterations;
  unsigned int num_edges;
  unsigned int num_implicit_edges;
  unsigned int points_to_sets_created;
} stats;

struct variable_info
{
  /* ID of this variable  */
  unsigned int id;

  /* True if this is a variable created by the constraint analysis, such as
     heap variables and constraints we had to break up.  */
  unsigned int is_artificial_var:1;

  /* True if this is a special variable whose solution set should not be
     changed.  */
  unsigned int is_special_var:1;

  /* True for variables whose size is not known or variable.  */
  unsigned int is_unknown_size_var:1;

  /* True for (sub-)fields that represent a whole variable.  */
  unsigned int is_full_var : 1;

  /* True if this is a heap variable.  */
  unsigned int is_heap_var:1;

  /* True if we may not use TBAA to prune references to this
     variable.  This is used for C++ placement new.  */
  unsigned int no_tbaa_pruning : 1;

  /* True if this field may contain pointers.  */
  unsigned int may_have_pointers : 1;

  /* Variable id this was collapsed to due to type unsafety.  Zero if
     this variable was not collapsed.  This should be unused completely
     after build_succ_graph, or something is broken.  */
  unsigned int collapsed_to;

  /* A link to the variable for the next field in this structure.  */
  struct variable_info *next;

  /* Offset of this variable, in bits, from the base variable  */
  unsigned HOST_WIDE_INT offset;

  /* Size of the variable, in bits.  */
  unsigned HOST_WIDE_INT size;

  /* Full size of the base variable, in bits.  */
  unsigned HOST_WIDE_INT fullsize;

  /* Name of this variable */
  const char *name;

  /* Tree that this variable is associated with.  */
  tree decl;

  /* Points-to set for this variable.  */
  bitmap solution;

  /* Old points-to set for this variable.  */
  bitmap oldsolution;
};
typedef struct variable_info *varinfo_t;

static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
static varinfo_t lookup_vi_for_tree (tree);

/* Pool of variable info structures.  */
static alloc_pool variable_info_pool;

DEF_VEC_P(varinfo_t);

DEF_VEC_ALLOC_P(varinfo_t, heap);

/* Table of variable info structures for constraint variables.
   Indexed directly by variable info id.  */
static VEC(varinfo_t,heap) *varmap;

/* Return the varmap element N */

static inline varinfo_t
get_varinfo (unsigned int n)
{
  return VEC_index (varinfo_t, varmap, n);
}

/* Return the varmap element N, following the collapsed_to link.  */

static inline varinfo_t
get_varinfo_fc (unsigned int n)
{
  varinfo_t v = VEC_index (varinfo_t, varmap, n);

  if (v->collapsed_to != 0)
    return get_varinfo (v->collapsed_to);
  return v;
}

/* Static IDs for the special variables.  */
enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
       escaped_id = 3, nonlocal_id = 4, callused_id = 5,
       storedanything_id = 6, integer_id = 7 };

/* Variable that represents the unknown pointer.  */
static varinfo_t var_anything;
static tree anything_tree;

/* Variable that represents the NULL pointer.  */
static varinfo_t var_nothing;
static tree nothing_tree;

/* Variable that represents read only memory.  */
static varinfo_t var_readonly;
static tree readonly_tree;

/* Variable that represents escaped memory.  */
static varinfo_t var_escaped;
static tree escaped_tree;

/* Variable that represents nonlocal memory.  */
static varinfo_t var_nonlocal;
static tree nonlocal_tree;

/* Variable that represents call-used memory.  */
static varinfo_t var_callused;
static tree callused_tree;

/* Variable that represents variables that are stored to anything.  */
static varinfo_t var_storedanything;
static tree storedanything_tree;

/* Variable that represents integers.  This is used for when people do things
   like &0->a.b.  */
static varinfo_t var_integer;
static tree integer_tree;

/* Lookup a heap var for FROM, and return it if we find one.  */

static tree
heapvar_lookup (tree from)
{
  struct tree_map *h, in;
  in.base.from = from;

  h = (struct tree_map *) htab_find_with_hash (heapvar_for_stmt, &in,
					       htab_hash_pointer (from));
  if (h)
    return h->to;
  return NULL_TREE;
}

/* Insert a mapping FROM->TO in the heap var for statement
   hashtable.  */

static void
heapvar_insert (tree from, tree to)
{
  struct tree_map *h;
  void **loc;

  h = GGC_NEW (struct tree_map);
  h->hash = htab_hash_pointer (from);
  h->base.from = from;
  h->to = to;
  loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->hash, INSERT);
  *(struct tree_map **) loc = h;
}

/* Return a new variable info structure consisting for a variable
   named NAME, and using constraint graph node NODE.  */

static varinfo_t
new_var_info (tree t, unsigned int id, const char *name)
{
  varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
  tree var;

  ret->id = id;
  ret->name = name;
  ret->decl = t;
  ret->is_artificial_var = false;
  ret->is_heap_var = false;
  ret->is_special_var = false;
  ret->is_unknown_size_var = false;
  ret->is_full_var = false;
  ret->may_have_pointers = true;
  var = t;
  if (TREE_CODE (var) == SSA_NAME)
    var = SSA_NAME_VAR (var);
  ret->no_tbaa_pruning = (DECL_P (var)
			  && POINTER_TYPE_P (TREE_TYPE (var))
			  && DECL_NO_TBAA_P (var));
  ret->solution = BITMAP_ALLOC (&pta_obstack);
  ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
  ret->next = NULL;
  ret->collapsed_to = 0;
  return ret;
}

typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;

/* An expression that appears in a constraint.  */

struct constraint_expr
{
  /* Constraint type.  */
  constraint_expr_type type;

  /* Variable we are referring to in the constraint.  */
  unsigned int var;

  /* Offset, in bits, of this constraint from the beginning of
     variables it ends up referring to.

     IOW, in a deref constraint, we would deref, get the result set,
     then add OFFSET to each member.   */
  unsigned HOST_WIDE_INT offset;
};

typedef struct constraint_expr ce_s;
DEF_VEC_O(ce_s);
DEF_VEC_ALLOC_O(ce_s, heap);
static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool);
static void get_constraint_for (tree, VEC(ce_s, heap) **);
static void do_deref (VEC (ce_s, heap) **);

/* Our set constraints are made up of two constraint expressions, one
   LHS, and one RHS.

   As described in the introduction, our set constraints each represent an
   operation between set valued variables.
*/
struct constraint
{
  struct constraint_expr lhs;
  struct constraint_expr rhs;
};

/* List of constraints that we use to build the constraint graph from.  */

static VEC(constraint_t,heap) *constraints;
static alloc_pool constraint_pool;


DEF_VEC_I(int);
DEF_VEC_ALLOC_I(int, heap);

/* The constraint graph is represented as an array of bitmaps
   containing successor nodes.  */

struct constraint_graph
{
  /* Size of this graph, which may be different than the number of
     nodes in the variable map.  */
  unsigned int size;

  /* Explicit successors of each node. */
  bitmap *succs;

  /* Implicit predecessors of each node (Used for variable
     substitution). */
  bitmap *implicit_preds;

  /* Explicit predecessors of each node (Used for variable substitution).  */
  bitmap *preds;

  /* Indirect cycle representatives, or -1 if the node has no indirect
     cycles.  */
  int *indirect_cycles;

  /* Representative node for a node.  rep[a] == a unless the node has
     been unified. */
  unsigned int *rep;

  /* Equivalence class representative for a label.  This is used for
     variable substitution.  */
  int *eq_rep;

  /* Pointer equivalence label for a node.  All nodes with the same
     pointer equivalence label can be unified together at some point
     (either during constraint optimization or after the constraint
     graph is built).  */
  unsigned int *pe;

  /* Pointer equivalence representative for a label.  This is used to
     handle nodes that are pointer equivalent but not location
     equivalent.  We can unite these once the addressof constraints
     are transformed into initial points-to sets.  */
  int *pe_rep;

  /* Pointer equivalence label for each node, used during variable
     substitution.  */
  unsigned int *pointer_label;

  /* Location equivalence label for each node, used during location
     equivalence finding.  */
  unsigned int *loc_label;

  /* Pointed-by set for each node, used during location equivalence
     finding.  This is pointed-by rather than pointed-to, because it
     is constructed using the predecessor graph.  */
  bitmap *pointed_by;

  /* Points to sets for pointer equivalence.  This is *not* the actual
     points-to sets for nodes.  */
  bitmap *points_to;

  /* Bitmap of nodes where the bit is set if the node is a direct
     node.  Used for variable substitution.  */
  sbitmap direct_nodes;

  /* Bitmap of nodes where the bit is set if the node is address
     taken.  Used for variable substitution.  */
  bitmap address_taken;

  /* Vector of complex constraints for each graph node.  Complex
     constraints are those involving dereferences or offsets that are
     not 0.  */
  VEC(constraint_t,heap) **complex;
};

static constraint_graph_t graph;

/* During variable substitution and the offline version of indirect
   cycle finding, we create nodes to represent dereferences and
   address taken constraints.  These represent where these start and
   end.  */
#define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
#define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))

/* Return the representative node for NODE, if NODE has been unioned
   with another NODE.
   This function performs path compression along the way to finding
   the representative.  */

static unsigned int
find (unsigned int node)
{
  gcc_assert (node < graph->size);
  if (graph->rep[node] != node)
    return graph->rep[node] = find (graph->rep[node]);
  return node;
}

/* Union the TO and FROM nodes to the TO nodes.
   Note that at some point in the future, we may want to do
   union-by-rank, in which case we are going to have to return the
   node we unified to.  */

static bool
unite (unsigned int to, unsigned int from)
{
  gcc_assert (to < graph->size && from < graph->size);
  if (to != from && graph->rep[from] != to)
    {
      graph->rep[from] = to;
      return true;
    }
  return false;
}

/* Create a new constraint consisting of LHS and RHS expressions.  */

static constraint_t
new_constraint (const struct constraint_expr lhs,
		const struct constraint_expr rhs)
{
  constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
  ret->lhs = lhs;
  ret->rhs = rhs;
  return ret;
}

/* Print out constraint C to FILE.  */

void
dump_constraint (FILE *file, constraint_t c)
{
  if (c->lhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->lhs.type == DEREF)
    fprintf (file, "*");
  fprintf (file, "%s", get_varinfo_fc (c->lhs.var)->name);
  if (c->lhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
  fprintf (file, " = ");
  if (c->rhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->rhs.type == DEREF)
    fprintf (file, "*");
  fprintf (file, "%s", get_varinfo_fc (c->rhs.var)->name);
  if (c->rhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
  fprintf (file, "\n");
}

/* Print out constraint C to stderr.  */

void
debug_constraint (constraint_t c)
{
  dump_constraint (stderr, c);
}

/* Print out all constraints to FILE */

void
dump_constraints (FILE *file)
{
  int i;
  constraint_t c;
  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    dump_constraint (file, c);
}

/* Print out all constraints to stderr.  */

void
debug_constraints (void)
{
  dump_constraints (stderr);
}

/* Print out to FILE the edge in the constraint graph that is created by
   constraint c. The edge may have a label, depending on the type of
   constraint that it represents. If complex1, e.g: a = *b, then the label
   is "=*", if complex2, e.g: *a = b, then the label is "*=", if
   complex with an offset, e.g: a = b + 8, then the label is "+".
   Otherwise the edge has no label.  */

void
dump_constraint_edge (FILE *file, constraint_t c)
{
  if (c->rhs.type != ADDRESSOF)
    {
      const char *src = get_varinfo_fc (c->rhs.var)->name;
      const char *dst = get_varinfo_fc (c->lhs.var)->name;
      fprintf (file, "  \"%s\" -> \"%s\" ", src, dst);
      /* Due to preprocessing of constraints, instructions like *a = *b are
         illegal; thus, we do not have to handle such cases.  */
      if (c->lhs.type == DEREF)
        fprintf (file, " [ label=\"*=\" ] ;\n");
      else if (c->rhs.type == DEREF)
        fprintf (file, " [ label=\"=*\" ] ;\n");
      else
        {
          /* We must check the case where the constraint is an offset.
             In this case, it is treated as a complex constraint.  */
          if (c->rhs.offset != c->lhs.offset)
            fprintf (file, " [ label=\"+\" ] ;\n");
          else
            fprintf (file, " ;\n");
        }
    }
}

/* Print the constraint graph in dot format.  */

void
dump_constraint_graph (FILE *file)
{
  unsigned int i=0, size;
  constraint_t c;

  /* Only print the graph if it has already been initialized:  */
  if (!graph)
    return;

  /* Print the constraints used to produce the constraint graph. The
     constraints will be printed as comments in the dot file:  */
  fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
  dump_constraints (file);
  fprintf (file, "*/\n");

  /* Prints the header of the dot file:  */
  fprintf (file, "\n\n// The constraint graph in dot format:\n");
  fprintf (file, "strict digraph {\n");
  fprintf (file, "  node [\n    shape = box\n  ]\n");
  fprintf (file, "  edge [\n    fontsize = \"12\"\n  ]\n");
  fprintf (file, "\n  // List of nodes in the constraint graph:\n");

  /* The next lines print the nodes in the graph. In order to get the
     number of nodes in the graph, we must choose the minimum between the
     vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
     yet been initialized, then graph->size == 0, otherwise we must only
     read nodes that have an entry in VEC (varinfo_t, varmap).  */
  size = VEC_length (varinfo_t, varmap);
  size = size < graph->size ? size : graph->size;
  for (i = 0; i < size; i++)
    {
      const char *name = get_varinfo_fc (graph->rep[i])->name;
      fprintf (file, "  \"%s\" ;\n", name);
    }

  /* Go over the list of constraints printing the edges in the constraint
     graph.  */
  fprintf (file, "\n  // The constraint edges:\n");
  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    if (c)
      dump_constraint_edge (file, c);

  /* Prints the tail of the dot file. By now, only the closing bracket.  */
  fprintf (file, "}\n\n\n");
}

/* Print out the constraint graph to stderr.  */

void
debug_constraint_graph (void)
{
  dump_constraint_graph (stderr);
}

/* SOLVER FUNCTIONS

   The solver is a simple worklist solver, that works on the following
   algorithm:

   sbitmap changed_nodes = all zeroes;
   changed_count = 0;
   For each node that is not already collapsed:
       changed_count++;
       set bit in changed nodes

   while (changed_count > 0)
   {
     compute topological ordering for constraint graph

     find and collapse cycles in the constraint graph (updating
     changed if necessary)

     for each node (n) in the graph in topological order:
       changed_count--;

       Process each complex constraint associated with the node,
       updating changed if necessary.

       For each outgoing edge from n, propagate the solution from n to
       the destination of the edge, updating changed as necessary.

   }  */

/* Return true if two constraint expressions A and B are equal.  */

static bool
constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
{
  return a.type == b.type && a.var == b.var && a.offset == b.offset;
}

/* Return true if constraint expression A is less than constraint expression
   B.  This is just arbitrary, but consistent, in order to give them an
   ordering.  */

static bool
constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
{
  if (a.type == b.type)
    {
      if (a.var == b.var)
	return a.offset < b.offset;
      else
	return a.var < b.var;
    }
  else
    return a.type < b.type;
}

/* Return true if constraint A is less than constraint B.  This is just
   arbitrary, but consistent, in order to give them an ordering.  */

static bool
constraint_less (const constraint_t a, const constraint_t b)
{
  if (constraint_expr_less (a->lhs, b->lhs))
    return true;
  else if (constraint_expr_less (b->lhs, a->lhs))
    return false;
  else
    return constraint_expr_less (a->rhs, b->rhs);
}

/* Return true if two constraints A and B are equal.  */

static bool
constraint_equal (struct constraint a, struct constraint b)
{
  return constraint_expr_equal (a.lhs, b.lhs)
    && constraint_expr_equal (a.rhs, b.rhs);
}


/* Find a constraint LOOKFOR in the sorted constraint vector VEC */

static constraint_t
constraint_vec_find (VEC(constraint_t,heap) *vec,
		     struct constraint lookfor)
{
  unsigned int place;
  constraint_t found;

  if (vec == NULL)
    return NULL;

  place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
  if (place >= VEC_length (constraint_t, vec))
    return NULL;
  found = VEC_index (constraint_t, vec, place);
  if (!constraint_equal (*found, lookfor))
    return NULL;
  return found;
}

/* Union two constraint vectors, TO and FROM.  Put the result in TO.  */

static void
constraint_set_union (VEC(constraint_t,heap) **to,
		      VEC(constraint_t,heap) **from)
{
  int i;
  constraint_t c;

  for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
    {
      if (constraint_vec_find (*to, *c) == NULL)
	{
	  unsigned int place = VEC_lower_bound (constraint_t, *to, c,
						constraint_less);
	  VEC_safe_insert (constraint_t, heap, *to, place, c);
	}
    }
}

/* Take a solution set SET, add OFFSET to each member of the set, and
   overwrite SET with the result when done.  */

static void
solution_set_add (bitmap set, unsigned HOST_WIDE_INT offset)
{
  bitmap result = BITMAP_ALLOC (&iteration_obstack);
  unsigned int i;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      /* If this is a variable with just one field just set its bit
         in the result.  */
      if (vi->is_artificial_var
	  || vi->is_unknown_size_var
	  || vi->is_full_var)
	bitmap_set_bit (result, i);
      else
	{
	  unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
	  varinfo_t v = first_vi_for_offset (vi, fieldoffset);
	  /* If the result is outside of the variable use the last field.  */
	  if (!v)
	    {
	      v = vi;
	      while (v->next != NULL)
		v = v->next;
	    }
	  bitmap_set_bit (result, v->id);
	  /* If the result is not exactly at fieldoffset include the next
	     field as well.  See get_constraint_for_ptr_offset for more
	     rationale.  */
	  if (v->offset != fieldoffset
	      && v->next != NULL)
	    bitmap_set_bit (result, v->next->id);
	}
    }

  bitmap_copy (set, result);
  BITMAP_FREE (result);
}

/* Union solution sets TO and FROM, and add INC to each member of FROM in the
   process.  */

static bool
set_union_with_increment  (bitmap to, bitmap from, unsigned HOST_WIDE_INT inc)
{
  if (inc == 0)
    return bitmap_ior_into (to, from);
  else
    {
      bitmap tmp;
      bool res;

      tmp = BITMAP_ALLOC (&iteration_obstack);
      bitmap_copy (tmp, from);
      solution_set_add (tmp, inc);
      res = bitmap_ior_into (to, tmp);
      BITMAP_FREE (tmp);
      return res;
    }
}

/* Insert constraint C into the list of complex constraints for graph
   node VAR.  */

static void
insert_into_complex (constraint_graph_t graph,
		     unsigned int var, constraint_t c)
{
  VEC (constraint_t, heap) *complex = graph->complex[var];
  unsigned int place = VEC_lower_bound (constraint_t, complex, c,
					constraint_less);

  /* Only insert constraints that do not already exist.  */
  if (place >= VEC_length (constraint_t, complex)
      || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
    VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
}


/* Condense two variable nodes into a single variable node, by moving
   all associated info from SRC to TO.  */

static void
merge_node_constraints (constraint_graph_t graph, unsigned int to,
			unsigned int from)
{
  unsigned int i;
  constraint_t c;

  gcc_assert (find (from) == to);

  /* Move all complex constraints from src node into to node  */
  for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
    {
      /* In complex constraints for node src, we may have either
	 a = *src, and *src = a, or an offseted constraint which are
	 always added to the rhs node's constraints.  */

      if (c->rhs.type == DEREF)
	c->rhs.var = to;
      else if (c->lhs.type == DEREF)
	c->lhs.var = to;
      else
	c->rhs.var = to;
    }
  constraint_set_union (&graph->complex[to], &graph->complex[from]);
  VEC_free (constraint_t, heap, graph->complex[from]);
  graph->complex[from] = NULL;
}


/* Remove edges involving NODE from GRAPH.  */

static void
clear_edges_for_node (constraint_graph_t graph, unsigned int node)
{
  if (graph->succs[node])
    BITMAP_FREE (graph->succs[node]);
}

/* Merge GRAPH nodes FROM and TO into node TO.  */

static void
merge_graph_nodes (constraint_graph_t graph, unsigned int to,
		   unsigned int from)
{
  if (graph->indirect_cycles[from] != -1)
    {
      /* If we have indirect cycles with the from node, and we have
	 none on the to node, the to node has indirect cycles from the
	 from node now that they are unified.
	 If indirect cycles exist on both, unify the nodes that they
	 are in a cycle with, since we know they are in a cycle with
	 each other.  */
      if (graph->indirect_cycles[to] == -1)
	graph->indirect_cycles[to] = graph->indirect_cycles[from];
    }

  /* Merge all the successor edges.  */
  if (graph->succs[from])
    {
      if (!graph->succs[to])
	graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
      bitmap_ior_into (graph->succs[to],
		       graph->succs[from]);
    }

  clear_edges_for_node (graph, from);
}


/* Add an indirect graph edge to GRAPH, going from TO to FROM if
   it doesn't exist in the graph already.  */

static void
add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
			 unsigned int from)
{
  if (to == from)
    return;

  if (!graph->implicit_preds[to])
    graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);

  if (bitmap_set_bit (graph->implicit_preds[to], from))
    stats.num_implicit_edges++;
}

/* Add a predecessor graph edge to GRAPH, going from TO to FROM if
   it doesn't exist in the graph already.
   Return false if the edge already existed, true otherwise.  */

static void
add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
		     unsigned int from)
{
  if (!graph->preds[to])
    graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
  bitmap_set_bit (graph->preds[to], from);
}

/* Add a graph edge to GRAPH, going from FROM to TO if
   it doesn't exist in the graph already.
   Return false if the edge already existed, true otherwise.  */

static bool
add_graph_edge (constraint_graph_t graph, unsigned int to,
		unsigned int from)
{
  if (to == from)
    {
      return false;
    }
  else
    {
      bool r = false;

      if (!graph->succs[from])
	graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
      if (bitmap_set_bit (graph->succs[from], to))
	{
	  r = true;
	  if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
	    stats.num_edges++;
	}
      return r;
    }
}


/* Return true if {DEST.SRC} is an existing graph edge in GRAPH.  */

static bool
valid_graph_edge (constraint_graph_t graph, unsigned int src,
		  unsigned int dest)
{
  return (graph->succs[dest]
	  && bitmap_bit_p (graph->succs[dest], src));
}

/* Initialize the constraint graph structure to contain SIZE nodes.  */

static void
init_graph (unsigned int size)
{
  unsigned int j;

  graph = XCNEW (struct constraint_graph);
  graph->size = size;
  graph->succs = XCNEWVEC (bitmap, graph->size);
  graph->indirect_cycles = XNEWVEC (int, graph->size);
  graph->rep = XNEWVEC (unsigned int, graph->size);
  graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
  graph->pe = XCNEWVEC (unsigned int, graph->size);
  graph->pe_rep = XNEWVEC (int, graph->size);

  for (j = 0; j < graph->size; j++)
    {
      graph->rep[j] = j;
      graph->pe_rep[j] = -1;
      graph->indirect_cycles[j] = -1;
    }
}

/* Build the constraint graph, adding only predecessor edges right now.  */

static void
build_pred_graph (void)
{
  int i;
  constraint_t c;
  unsigned int j;

  graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
  graph->preds = XCNEWVEC (bitmap, graph->size);
  graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
  graph->loc_label = XCNEWVEC (unsigned int, graph->size);
  graph->pointed_by = XCNEWVEC (bitmap, graph->size);
  graph->points_to = XCNEWVEC (bitmap, graph->size);
  graph->eq_rep = XNEWVEC (int, graph->size);
  graph->direct_nodes = sbitmap_alloc (graph->size);
  graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
  sbitmap_zero (graph->direct_nodes);

  for (j = 0; j < FIRST_REF_NODE; j++)
    {
      if (!get_varinfo (j)->is_special_var)
	SET_BIT (graph->direct_nodes, j);
    }

  for (j = 0; j < graph->size; j++)
    graph->eq_rep[j] = -1;

  for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
    graph->indirect_cycles[j] = -1;

  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    {
      struct constraint_expr lhs = c->lhs;
      struct constraint_expr rhs = c->rhs;
      unsigned int lhsvar = get_varinfo_fc (lhs.var)->id;
      unsigned int rhsvar = get_varinfo_fc (rhs.var)->id;

      if (lhs.type == DEREF)
	{
	  /* *x = y.  */
	  if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
	    add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
	}
      else if (rhs.type == DEREF)
	{
	  /* x = *y */
	  if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
	    add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
	  else
	    RESET_BIT (graph->direct_nodes, lhsvar);
	}
      else if (rhs.type == ADDRESSOF)
	{
	  varinfo_t v;

	  /* x = &y */
	  if (graph->points_to[lhsvar] == NULL)
	    graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
	  bitmap_set_bit (graph->points_to[lhsvar], rhsvar);

	  if (graph->pointed_by[rhsvar] == NULL)
	    graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
	  bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);

	  /* Implicitly, *x = y */
	  add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);

	  /* All related variables are no longer direct nodes.  */
	  RESET_BIT (graph->direct_nodes, rhsvar);
	  v = get_varinfo (rhsvar);
	  if (!v->is_full_var)
	    {
	      v = lookup_vi_for_tree (v->decl);
	      do
		{
		  RESET_BIT (graph->direct_nodes, v->id);
		  v = v->next;
		}
	      while (v != NULL);
	    }
	  bitmap_set_bit (graph->address_taken, rhsvar);
	}
      else if (lhsvar > anything_id
	       && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
	{
	  /* x = y */
	  add_pred_graph_edge (graph, lhsvar, rhsvar);
	  /* Implicitly, *x = *y */
	  add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
				   FIRST_REF_NODE + rhsvar);
	}
      else if (lhs.offset != 0 || rhs.offset != 0)
	{
	  if (rhs.offset != 0)
	    RESET_BIT (graph->direct_nodes, lhs.var);
	  else if (lhs.offset != 0)
	    RESET_BIT (graph->direct_nodes, rhs.var);
	}
    }
}

/* Build the constraint graph, adding successor edges.  */

static void
build_succ_graph (void)
{
  unsigned i, t;
  constraint_t c;

  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    {
      struct constraint_expr lhs;
      struct constraint_expr rhs;
      unsigned int lhsvar;
      unsigned int rhsvar;

      if (!c)
	continue;

      lhs = c->lhs;
      rhs = c->rhs;
      lhsvar = find (get_varinfo_fc (lhs.var)->id);
      rhsvar = find (get_varinfo_fc (rhs.var)->id);

      if (lhs.type == DEREF)
	{
	  if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
	    add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
	}
      else if (rhs.type == DEREF)
	{
	  if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
	    add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
	}
      else if (rhs.type == ADDRESSOF)
	{
	  /* x = &y */
	  gcc_assert (find (get_varinfo_fc (rhs.var)->id)
		      == get_varinfo_fc (rhs.var)->id);
	  bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
	}
      else if (lhsvar > anything_id
	       && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
	{
	  add_graph_edge (graph, lhsvar, rhsvar);
	}
    }

  /* Add edges from STOREDANYTHING to all non-direct nodes.  */
  t = find (storedanything_id);
  for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
    {
      if (!TEST_BIT (graph->direct_nodes, i))
	add_graph_edge (graph, find (i), t);
    }
}


/* Changed variables on the last iteration.  */
static unsigned int changed_count;
static sbitmap changed;

DEF_VEC_I(unsigned);
DEF_VEC_ALLOC_I(unsigned,heap);


/* Strongly Connected Component visitation info.  */

struct scc_info
{
  sbitmap visited;
  sbitmap deleted;
  unsigned int *dfs;
  unsigned int *node_mapping;
  int current_index;
  VEC(unsigned,heap) *scc_stack;
};


/* Recursive routine to find strongly connected components in GRAPH.
   SI is the SCC info to store the information in, and N is the id of current
   graph node we are processing.

   This is Tarjan's strongly connected component finding algorithm, as
   modified by Nuutila to keep only non-root nodes on the stack.
   The algorithm can be found in "On finding the strongly connected
   connected components in a directed graph" by Esko Nuutila and Eljas
   Soisalon-Soininen, in Information Processing Letters volume 49,
   number 1, pages 9-14.  */

static void
scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
{
  unsigned int i;
  bitmap_iterator bi;
  unsigned int my_dfs;

  SET_BIT (si->visited, n);
  si->dfs[n] = si->current_index ++;
  my_dfs = si->dfs[n];

  /* Visit all the successors.  */
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
    {
      unsigned int w;

      if (i > LAST_REF_NODE)
	break;

      w = find (i);
      if (TEST_BIT (si->deleted, w))
	continue;

      if (!TEST_BIT (si->visited, w))
	scc_visit (graph, si, w);
      {
	unsigned int t = find (w);
	unsigned int nnode = find (n);
	gcc_assert (nnode == n);

	if (si->dfs[t] < si->dfs[nnode])
	  si->dfs[n] = si->dfs[t];
      }
    }

  /* See if any components have been identified.  */
  if (si->dfs[n] == my_dfs)
    {
      if (VEC_length (unsigned, si->scc_stack) > 0
	  && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
	{
	  bitmap scc = BITMAP_ALLOC (NULL);
	  bool have_ref_node = n >= FIRST_REF_NODE;
	  unsigned int lowest_node;
	  bitmap_iterator bi;

	  bitmap_set_bit (scc, n);

	  while (VEC_length (unsigned, si->scc_stack) != 0
		 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
	    {
	      unsigned int w = VEC_pop (unsigned, si->scc_stack);

	      bitmap_set_bit (scc, w);
	      if (w >= FIRST_REF_NODE)
		have_ref_node = true;
	    }

	  lowest_node = bitmap_first_set_bit (scc);
	  gcc_assert (lowest_node < FIRST_REF_NODE);

	  /* Collapse the SCC nodes into a single node, and mark the
	     indirect cycles.  */
	  EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
	    {
	      if (i < FIRST_REF_NODE)
		{
		  if (unite (lowest_node, i))
		    unify_nodes (graph, lowest_node, i, false);
		}
	      else
		{
		  unite (lowest_node, i);
		  graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
		}
	    }
	}
      SET_BIT (si->deleted, n);
    }
  else
    VEC_safe_push (unsigned, heap, si->scc_stack, n);
}

/* Unify node FROM into node TO, updating the changed count if
   necessary when UPDATE_CHANGED is true.  */

static void
unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
	     bool update_changed)
{

  gcc_assert (to != from && find (to) == to);
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Unifying %s to %s\n",
	     get_varinfo (from)->name,
	     get_varinfo (to)->name);

  if (update_changed)
    stats.unified_vars_dynamic++;
  else
    stats.unified_vars_static++;

  merge_graph_nodes (graph, to, from);
  merge_node_constraints (graph, to, from);

  if (get_varinfo (from)->no_tbaa_pruning)
    get_varinfo (to)->no_tbaa_pruning = true;

  /* Mark TO as changed if FROM was changed. If TO was already marked
     as changed, decrease the changed count.  */

  if (update_changed && TEST_BIT (changed, from))
    {
      RESET_BIT (changed, from);
      if (!TEST_BIT (changed, to))
	SET_BIT (changed, to);
      else
	{
	  gcc_assert (changed_count > 0);
	  changed_count--;
	}
    }
  if (get_varinfo (from)->solution)
    {
      /* If the solution changes because of the merging, we need to mark
	 the variable as changed.  */
      if (bitmap_ior_into (get_varinfo (to)->solution,
			   get_varinfo (from)->solution))
	{
	  if (update_changed && !TEST_BIT (changed, to))
	    {
	      SET_BIT (changed, to);
	      changed_count++;
	    }
	}
      
      BITMAP_FREE (get_varinfo (from)->solution);
      BITMAP_FREE (get_varinfo (from)->oldsolution);
      
      if (stats.iterations > 0)
	{
	  BITMAP_FREE (get_varinfo (to)->oldsolution);
	  get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
	}
    }
  if (valid_graph_edge (graph, to, to))
    {
      if (graph->succs[to])
	bitmap_clear_bit (graph->succs[to], to);
    }
}

/* Information needed to compute the topological ordering of a graph.  */

struct topo_info
{
  /* sbitmap of visited nodes.  */
  sbitmap visited;
  /* Array that stores the topological order of the graph, *in
     reverse*.  */
  VEC(unsigned,heap) *topo_order;
};


/* Initialize and return a topological info structure.  */

static struct topo_info *
init_topo_info (void)
{
  size_t size = graph->size;
  struct topo_info *ti = XNEW (struct topo_info);
  ti->visited = sbitmap_alloc (size);
  sbitmap_zero (ti->visited);
  ti->topo_order = VEC_alloc (unsigned, heap, 1);
  return ti;
}


/* Free the topological sort info pointed to by TI.  */

static void
free_topo_info (struct topo_info *ti)
{
  sbitmap_free (ti->visited);
  VEC_free (unsigned, heap, ti->topo_order);
  free (ti);
}

/* Visit the graph in topological order, and store the order in the
   topo_info structure.  */

static void
topo_visit (constraint_graph_t graph, struct topo_info *ti,
	    unsigned int n)
{
  bitmap_iterator bi;
  unsigned int j;

  SET_BIT (ti->visited, n);

  if (graph->succs[n])
    EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
      {
	if (!TEST_BIT (ti->visited, j))
	  topo_visit (graph, ti, j);
      }

  VEC_safe_push (unsigned, heap, ti->topo_order, n);
}

/* Return true if variable N + OFFSET is a legal field of N.  */

static bool
type_safe (unsigned int n, unsigned HOST_WIDE_INT *offset)
{
  varinfo_t ninfo = get_varinfo (n);

  /* For things we've globbed to single variables, any offset into the
     variable acts like the entire variable, so that it becomes offset
     0.  */
  if (ninfo->is_special_var
      || ninfo->is_artificial_var
      || ninfo->is_unknown_size_var
      || ninfo->is_full_var)
    {
      *offset = 0;
      return true;
    }
  return (get_varinfo (n)->offset + *offset) < get_varinfo (n)->fullsize;
}

/* Process a constraint C that represents x = *y, using DELTA as the
   starting solution.  */

static void
do_sd_constraint (constraint_graph_t graph, constraint_t c,
		  bitmap delta)
{
  unsigned int lhs = c->lhs.var;
  bool flag = false;
  bitmap sol = get_varinfo (lhs)->solution;
  unsigned int j;
  bitmap_iterator bi;

  /* For x = *ESCAPED and x = *CALLUSED we want to compute the
     reachability set of the rhs var.  As a pointer to a sub-field
     of a variable can also reach all other fields of the variable
     we simply have to expand the solution to contain all sub-fields
     if one sub-field is contained.  */
  if (c->rhs.var == find (escaped_id)
      || c->rhs.var == find (callused_id))
    {
      bitmap vars = NULL;
      /* In a first pass record all variables we need to add all
         sub-fields off.  This avoids quadratic behavior.  */
      EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
	{
	  varinfo_t v = get_varinfo (j);
	  if (v->is_full_var)
	    continue;

	  v = lookup_vi_for_tree (v->decl);
	  if (v->next != NULL)
	    {
	      if (vars == NULL)
		vars = BITMAP_ALLOC (NULL);
	      bitmap_set_bit (vars, v->id);
	    }
	}
      /* In the second pass now do the addition to the solution and
         to speed up solving add it to the delta as well.  */
      if (vars != NULL)
	{
	  EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
	    {
	      varinfo_t v = get_varinfo (j);
	      for (; v != NULL; v = v->next)
		{
		  if (bitmap_set_bit (sol, v->id))
		    {
		      flag = true;
		      bitmap_set_bit (delta, v->id);
		    }
		}
	    }
	  BITMAP_FREE (vars);
	}
    }

  if (bitmap_bit_p (delta, anything_id))
    {
      flag |= bitmap_set_bit (sol, anything_id);
      goto done;
    }

  /* For each variable j in delta (Sol(y)), add
     an edge in the graph from j to x, and union Sol(j) into Sol(x).  */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      unsigned HOST_WIDE_INT roffset = c->rhs.offset;
      if (type_safe (j, &roffset))
	{
	  varinfo_t v;
	  unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + roffset;
	  unsigned int t;

	  v = first_vi_for_offset (get_varinfo (j), fieldoffset);
	  /* If the access is outside of the variable we can ignore it.  */
	  if (!v)
	    continue;
	  t = find (v->id);

	  /* Adding edges from the special vars is pointless.
	     They don't have sets that can change.  */
	  if (get_varinfo (t)->is_special_var)
	    flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
	  /* Merging the solution from ESCAPED needlessly increases
	     the set.  Use ESCAPED as representative instead.
	     Same for CALLUSED.  */
	  else if (get_varinfo (t)->id == find (escaped_id))
	    flag |= bitmap_set_bit (sol, escaped_id);
	  else if (get_varinfo (t)->id == find (callused_id))
	    flag |= bitmap_set_bit (sol, callused_id);
	  else if (add_graph_edge (graph, lhs, t))
	    flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
	}
    }

done:
  /* If the LHS solution changed, mark the var as changed.  */
  if (flag)
    {
      get_varinfo (lhs)->solution = sol;
      if (!TEST_BIT (changed, lhs))
	{
	  SET_BIT (changed, lhs);
	  changed_count++;
	}
    }
}

/* Process a constraint C that represents *x = y.  */

static void
do_ds_constraint (constraint_t c, bitmap delta)
{
  unsigned int rhs = c->rhs.var;
  bitmap sol = get_varinfo (rhs)->solution;
  unsigned int j;
  bitmap_iterator bi;

  /* Our IL does not allow this.  */
  gcc_assert (c->rhs.offset == 0);

  /* If the solution of y contains ANYTHING simply use the ANYTHING
     solution.  This avoids needlessly increasing the points-to sets.  */
  if (bitmap_bit_p (sol, anything_id))
    sol = get_varinfo (find (anything_id))->solution;

  /* If the solution for x contains ANYTHING we have to merge the
     solution of y into all pointer variables which we do via
     STOREDANYTHING.  */
  if (bitmap_bit_p (delta, anything_id))
    {
      unsigned t = find (storedanything_id);
      if (add_graph_edge (graph, t, rhs))
	{
	  if (bitmap_ior_into (get_varinfo (t)->solution, sol))
	    {
	      if (!TEST_BIT (changed, t))
		{
		  SET_BIT (changed, t);
		  changed_count++;
		}
	    }
	}
      return;
    }

  /* For each member j of delta (Sol(x)), add an edge from y to j and
     union Sol(y) into Sol(j) */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      unsigned HOST_WIDE_INT loff = c->lhs.offset;
      if (type_safe (j, &loff) && !(get_varinfo (j)->is_special_var))
	{
	  varinfo_t v;
	  unsigned int t;
	  unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + loff;

	  v = first_vi_for_offset (get_varinfo (j), fieldoffset);
	  /* If the access is outside of the variable we can ignore it.  */
	  if (!v)
	    continue;

	  if (v->may_have_pointers)
	    {
	      t = find (v->id);
	      if (add_graph_edge (graph, t, rhs))
		{
		  if (bitmap_ior_into (get_varinfo (t)->solution, sol))
		    {
		      if (t == rhs)
			sol = get_varinfo (rhs)->solution;
		      if (!TEST_BIT (changed, t))
			{
			  SET_BIT (changed, t);
			  changed_count++;
			}
		    }
		}
	    }
	}
    }
}

/* Handle a non-simple (simple meaning requires no iteration),
   constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved).  */

static void
do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
{
  if (c->lhs.type == DEREF)
    {
      if (c->rhs.type == ADDRESSOF)
	{
	  gcc_unreachable();
	}
      else
	{
	  /* *x = y */
	  do_ds_constraint (c, delta);
	}
    }
  else if (c->rhs.type == DEREF)
    {
      /* x = *y */
      if (!(get_varinfo (c->lhs.var)->is_special_var))
	do_sd_constraint (graph, c, delta);
    }
  else
    {
      bitmap tmp;
      bitmap solution;
      bool flag = false;

      gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
      solution = get_varinfo (c->rhs.var)->solution;
      tmp = get_varinfo (c->lhs.var)->solution;

      flag = set_union_with_increment (tmp, solution, c->rhs.offset);

      if (flag)
	{
	  get_varinfo (c->lhs.var)->solution = tmp;
	  if (!TEST_BIT (changed, c->lhs.var))
	    {
	      SET_BIT (changed, c->lhs.var);
	      changed_count++;
	    }
	}
    }
}

/* Initialize and return a new SCC info structure.  */

static struct scc_info *
init_scc_info (size_t size)
{
  struct scc_info *si = XNEW (struct scc_info);
  size_t i;

  si->current_index = 0;
  si->visited = sbitmap_alloc (size);
  sbitmap_zero (si->visited);
  si->deleted = sbitmap_alloc (size);
  sbitmap_zero (si->deleted);
  si->node_mapping = XNEWVEC (unsigned int, size);
  si->dfs = XCNEWVEC (unsigned int, size);

  for (i = 0; i < size; i++)
    si->node_mapping[i] = i;

  si->scc_stack = VEC_alloc (unsigned, heap, 1);
  return si;
}

/* Free an SCC info structure pointed to by SI */

static void
free_scc_info (struct scc_info *si)
{
  sbitmap_free (si->visited);
  sbitmap_free (si->deleted);
  free (si->node_mapping);
  free (si->dfs);
  VEC_free (unsigned, heap, si->scc_stack);
  free (si);
}


/* Find indirect cycles in GRAPH that occur, using strongly connected
   components, and note them in the indirect cycles map.

   This technique comes from Ben Hardekopf and Calvin Lin,
   "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
   Lines of Code", submitted to PLDI 2007.  */

static void
find_indirect_cycles (constraint_graph_t graph)
{
  unsigned int i;
  unsigned int size = graph->size;
  struct scc_info *si = init_scc_info (size);

  for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
    if (!TEST_BIT (si->visited, i) && find (i) == i)
      scc_visit (graph, si, i);

  free_scc_info (si);
}

/* Compute a topological ordering for GRAPH, and store the result in the
   topo_info structure TI.  */

static void
compute_topo_order (constraint_graph_t graph,
		    struct topo_info *ti)
{
  unsigned int i;
  unsigned int size = graph->size;

  for (i = 0; i != size; ++i)
    if (!TEST_BIT (ti->visited, i) && find (i) == i)
      topo_visit (graph, ti, i);
}

/* Structure used to for hash value numbering of pointer equivalence
   classes.  */

typedef struct equiv_class_label
{
  hashval_t hashcode;
  unsigned int equivalence_class;
  bitmap labels;
} *equiv_class_label_t;
typedef const struct equiv_class_label *const_equiv_class_label_t;

/* A hashtable for mapping a bitmap of labels->pointer equivalence
   classes.  */
static htab_t pointer_equiv_class_table;

/* A hashtable for mapping a bitmap of labels->location equivalence
   classes.  */
static htab_t location_equiv_class_table;

/* Hash function for a equiv_class_label_t */

static hashval_t
equiv_class_label_hash (const void *p)
{
  const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
  return ecl->hashcode;
}

/* Equality function for two equiv_class_label_t's.  */

static int
equiv_class_label_eq (const void *p1, const void *p2)
{
  const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
  const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
  return bitmap_equal_p (eql1->labels, eql2->labels);
}

/* Lookup a equivalence class in TABLE by the bitmap of LABELS it
   contains.  */

static unsigned int
equiv_class_lookup (htab_t table, bitmap labels)
{
  void **slot;
  struct equiv_class_label ecl;

  ecl.labels = labels;
  ecl.hashcode = bitmap_hash (labels);

  slot = htab_find_slot_with_hash (table, &ecl,
				   ecl.hashcode, NO_INSERT);
  if (!slot)
    return 0;
  else
    return ((equiv_class_label_t) *slot)->equivalence_class;
}


/* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
   to TABLE.  */

static void
equiv_class_add (htab_t table, unsigned int equivalence_class,
		 bitmap labels)
{
  void **slot;
  equiv_class_label_t ecl = XNEW (struct equiv_class_label);

  ecl->labels = labels;
  ecl->equivalence_class = equivalence_class;
  ecl->hashcode = bitmap_hash (labels);

  slot = htab_find_slot_with_hash (table, ecl,
				   ecl->hashcode, INSERT);
  gcc_assert (!*slot);
  *slot = (void *) ecl;
}

/* Perform offline variable substitution.

   This is a worst case quadratic time way of identifying variables
   that must have equivalent points-to sets, including those caused by
   static cycles, and single entry subgraphs, in the constraint graph.

   The technique is described in "Exploiting Pointer and Location
   Equivalence to Optimize Pointer Analysis. In the 14th International
   Static Analysis Symposium (SAS), August 2007."  It is known as the
   "HU" algorithm, and is equivalent to value numbering the collapsed
   constraint graph including evaluating unions.

   The general method of finding equivalence classes is as follows:
   Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
   Initialize all non-REF nodes to be direct nodes.
   For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
   variable}
   For each constraint containing the dereference, we also do the same
   thing.

   We then compute SCC's in the graph and unify nodes in the same SCC,
   including pts sets.

   For each non-collapsed node x:
    Visit all unvisited explicit incoming edges.
    Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
    where y->x.
    Lookup the equivalence class for pts(x).
     If we found one, equivalence_class(x) = found class.
     Otherwise, equivalence_class(x) = new class, and new_class is
    added to the lookup table.

   All direct nodes with the same equivalence class can be replaced
   with a single representative node.
   All unlabeled nodes (label == 0) are not pointers and all edges
   involving them can be eliminated.
   We perform these optimizations during rewrite_constraints

   In addition to pointer equivalence class finding, we also perform
   location equivalence class finding.  This is the set of variables
   that always appear together in points-to sets.  We use this to
   compress the size of the points-to sets.  */

/* Current maximum pointer equivalence class id.  */
static int pointer_equiv_class;

/* Current maximum location equivalence class id.  */
static int location_equiv_class;

/* Recursive routine to find strongly connected components in GRAPH,
   and label it's nodes with DFS numbers.  */

static void
condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
{
  unsigned int i;
  bitmap_iterator bi;
  unsigned int my_dfs;

  gcc_assert (si->node_mapping[n] == n);
  SET_BIT (si->visited, n);
  si->dfs[n] = si->current_index ++;
  my_dfs = si->dfs[n];

  /* Visit all the successors.  */
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
    {
      unsigned int w = si->node_mapping[i];

      if (TEST_BIT (si->deleted, w))
	continue;

      if (!TEST_BIT (si->visited, w))
	condense_visit (graph, si, w);
      {
	unsigned int t = si->node_mapping[w];
	unsigned int nnode = si->node_mapping[n];
	gcc_assert (nnode == n);

	if (si->dfs[t] < si->dfs[nnode])
	  si->dfs[n] = si->dfs[t];
      }
    }

  /* Visit all the implicit predecessors.  */
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
    {
      unsigned int w = si->node_mapping[i];

      if (TEST_BIT (si->deleted, w))
	continue;

      if (!TEST_BIT (si->visited, w))
	condense_visit (graph, si, w);
      {
	unsigned int t = si->node_mapping[w];
	unsigned int nnode = si->node_mapping[n];
	gcc_assert (nnode == n);

	if (si->dfs[t] < si->dfs[nnode])
	  si->dfs[n] = si->dfs[t];
      }
    }

  /* See if any components have been identified.  */
  if (si->dfs[n] == my_dfs)
    {
      while (VEC_length (unsigned, si->scc_stack) != 0
	     && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
	{
	  unsigned int w = VEC_pop (unsigned, si->scc_stack);
	  si->node_mapping[w] = n;

	  if (!TEST_BIT (graph->direct_nodes, w))
	    RESET_BIT (graph->direct_nodes, n);

	  /* Unify our nodes.  */
	  if (graph->preds[w])
	    {
	      if (!graph->preds[n])
		graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
	      bitmap_ior_into (graph->preds[n], graph->preds[w]);
	    }
	  if (graph->implicit_preds[w])
	    {
	      if (!graph->implicit_preds[n])
		graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
	      bitmap_ior_into (graph->implicit_preds[n],
			       graph->implicit_preds[w]);
	    }
	  if (graph->points_to[w])
	    {
	      if (!graph->points_to[n])
		graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
	      bitmap_ior_into (graph->points_to[n],
			       graph->points_to[w]);
	    }
	}
      SET_BIT (si->deleted, n);
    }
  else
    VEC_safe_push (unsigned, heap, si->scc_stack, n);
}

/* Label pointer equivalences.  */

static void
label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
{
  unsigned int i;
  bitmap_iterator bi;
  SET_BIT (si->visited, n);

  if (!graph->points_to[n])
    graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);

  /* Label and union our incoming edges's points to sets.  */
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
    {
      unsigned int w = si->node_mapping[i];
      if (!TEST_BIT (si->visited, w))
	label_visit (graph, si, w);

      /* Skip unused edges  */
      if (w == n || graph->pointer_label[w] == 0)
	continue;

      if (graph->points_to[w])
	bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
    }
  /* Indirect nodes get fresh variables.  */
  if (!TEST_BIT (graph->direct_nodes, n))
    bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);

  if (!bitmap_empty_p (graph->points_to[n]))
    {
      unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
					       graph->points_to[n]);
      if (!label)
	{
	  label = pointer_equiv_class++;
	  equiv_class_add (pointer_equiv_class_table,
			   label, graph->points_to[n]);
	}
      graph->pointer_label[n] = label;
    }
}

/* Perform offline variable substitution, discovering equivalence
   classes, and eliminating non-pointer variables.  */

static struct scc_info *
perform_var_substitution (constraint_graph_t graph)
{
  unsigned int i;
  unsigned int size = graph->size;
  struct scc_info *si = init_scc_info (size);

  bitmap_obstack_initialize (&iteration_obstack);
  pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
					   equiv_class_label_eq, free);
  location_equiv_class_table = htab_create (511, equiv_class_label_hash,
					    equiv_class_label_eq, free);
  pointer_equiv_class = 1;
  location_equiv_class = 1;

  /* Condense the nodes, which means to find SCC's, count incoming
     predecessors, and unite nodes in SCC's.  */
  for (i = 0; i < FIRST_REF_NODE; i++)
    if (!TEST_BIT (si->visited, si->node_mapping[i]))
      condense_visit (graph, si, si->node_mapping[i]);

  sbitmap_zero (si->visited);
  /* Actually the label the nodes for pointer equivalences  */
  for (i = 0; i < FIRST_REF_NODE; i++)
    if (!TEST_BIT (si->visited, si->node_mapping[i]))
      label_visit (graph, si, si->node_mapping[i]);

  /* Calculate location equivalence labels.  */
  for (i = 0; i < FIRST_REF_NODE; i++)
    {
      bitmap pointed_by;
      bitmap_iterator bi;
      unsigned int j;
      unsigned int label;

      if (!graph->pointed_by[i])
	continue;
      pointed_by = BITMAP_ALLOC (&iteration_obstack);

      /* Translate the pointed-by mapping for pointer equivalence
	 labels.  */
      EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
	{
	  bitmap_set_bit (pointed_by,
			  graph->pointer_label[si->node_mapping[j]]);
	}
      /* The original pointed_by is now dead.  */
      BITMAP_FREE (graph->pointed_by[i]);

      /* Look up the location equivalence label if one exists, or make
	 one otherwise.  */
      label = equiv_class_lookup (location_equiv_class_table,
				  pointed_by);
      if (label == 0)
	{
	  label = location_equiv_class++;
	  equiv_class_add (location_equiv_class_table,
			   label, pointed_by);
	}
      else
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Found location equivalence for node %s\n",
		     get_varinfo (i)->name);
	  BITMAP_FREE (pointed_by);
	}
      graph->loc_label[i] = label;

    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    for (i = 0; i < FIRST_REF_NODE; i++)
      {
	bool direct_node = TEST_BIT (graph->direct_nodes, i);
	fprintf (dump_file,
		 "Equivalence classes for %s node id %d:%s are pointer: %d"
		 ", location:%d\n",
		 direct_node ? "Direct node" : "Indirect node", i,
		 get_varinfo (i)->name,
		 graph->pointer_label[si->node_mapping[i]],
		 graph->loc_label[si->node_mapping[i]]);
      }

  /* Quickly eliminate our non-pointer variables.  */

  for (i = 0; i < FIRST_REF_NODE; i++)
    {
      unsigned int node = si->node_mapping[i];

      if (graph->pointer_label[node] == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file,
		     "%s is a non-pointer variable, eliminating edges.\n",
		     get_varinfo (node)->name);
	  stats.nonpointer_vars++;
	  clear_edges_for_node (graph, node);
	}
    }

  return si;
}

/* Free information that was only necessary for variable
   substitution.  */

static void
free_var_substitution_info (struct scc_info *si)
{
  free_scc_info (si);
  free (graph->pointer_label);
  free (graph->loc_label);
  free (graph->pointed_by);
  free (graph->points_to);
  free (graph->eq_rep);
  sbitmap_free (graph->direct_nodes);
  htab_delete (pointer_equiv_class_table);
  htab_delete (location_equiv_class_table);
  bitmap_obstack_release (&iteration_obstack);
}

/* Return an existing node that is equivalent to NODE, which has
   equivalence class LABEL, if one exists.  Return NODE otherwise.  */

static unsigned int
find_equivalent_node (constraint_graph_t graph,
		      unsigned int node, unsigned int label)
{
  /* If the address version of this variable is unused, we can
     substitute it for anything else with the same label.
     Otherwise, we know the pointers are equivalent, but not the
     locations, and we can unite them later.  */

  if (!bitmap_bit_p (graph->address_taken, node))
    {
      gcc_assert (label < graph->size);

      if (graph->eq_rep[label] != -1)
	{
	  /* Unify the two variables since we know they are equivalent.  */
	  if (unite (graph->eq_rep[label], node))
	    unify_nodes (graph, graph->eq_rep[label], node, false);
	  return graph->eq_rep[label];
	}
      else
	{
	  graph->eq_rep[label] = node;
	  graph->pe_rep[label] = node;
	}
    }
  else
    {
      gcc_assert (label < graph->size);
      graph->pe[node] = label;
      if (graph->pe_rep[label] == -1)
	graph->pe_rep[label] = node;
    }

  return node;
}

/* Unite pointer equivalent but not location equivalent nodes in
   GRAPH.  This may only be performed once variable substitution is
   finished.  */

static void
unite_pointer_equivalences (constraint_graph_t graph)
{
  unsigned int i;

  /* Go through the pointer equivalences and unite them to their
     representative, if they aren't already.  */
  for (i = 0; i < FIRST_REF_NODE; i++)
    {
      unsigned int label = graph->pe[i];
      if (label)
	{
	  int label_rep = graph->pe_rep[label];
	  
	  if (label_rep == -1)
	    continue;
	  
	  label_rep = find (label_rep);
	  if (label_rep >= 0 && unite (label_rep, find (i)))
	    unify_nodes (graph, label_rep, i, false);
	}
    }
}

/* Move complex constraints to the GRAPH nodes they belong to.  */

static void
move_complex_constraints (constraint_graph_t graph)
{
  int i;
  constraint_t c;

  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    {
      if (c)
	{
	  struct constraint_expr lhs = c->lhs;
	  struct constraint_expr rhs = c->rhs;

	  if (lhs.type == DEREF)
	    {
	      insert_into_complex (graph, lhs.var, c);
	    }
	  else if (rhs.type == DEREF)
	    {
	      if (!(get_varinfo (lhs.var)->is_special_var))
		insert_into_complex (graph, rhs.var, c);
	    }
	  else if (rhs.type != ADDRESSOF && lhs.var > anything_id
		   && (lhs.offset != 0 || rhs.offset != 0))
	    {
	      insert_into_complex (graph, rhs.var, c);
	    }
	}
    }
}


/* Optimize and rewrite complex constraints while performing
   collapsing of equivalent nodes.  SI is the SCC_INFO that is the
   result of perform_variable_substitution.  */

static void
rewrite_constraints (constraint_graph_t graph,
		     struct scc_info *si)
{
  int i;
  unsigned int j;
  constraint_t c;

  for (j = 0; j < graph->size; j++)
    gcc_assert (find (j) == j);

  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    {
      struct constraint_expr lhs = c->lhs;
      struct constraint_expr rhs = c->rhs;
      unsigned int lhsvar = find (get_varinfo_fc (lhs.var)->id);
      unsigned int rhsvar = find (get_varinfo_fc (rhs.var)->id);
      unsigned int lhsnode, rhsnode;
      unsigned int lhslabel, rhslabel;

      lhsnode = si->node_mapping[lhsvar];
      rhsnode = si->node_mapping[rhsvar];
      lhslabel = graph->pointer_label[lhsnode];
      rhslabel = graph->pointer_label[rhsnode];

      /* See if it is really a non-pointer variable, and if so, ignore
	 the constraint.  */
      if (lhslabel == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      
	      fprintf (dump_file, "%s is a non-pointer variable,"
		       "ignoring constraint:",
		       get_varinfo (lhs.var)->name);
	      dump_constraint (dump_file, c);
	    }
	  VEC_replace (constraint_t, constraints, i, NULL);
	  continue;
	}

      if (rhslabel == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      
	      fprintf (dump_file, "%s is a non-pointer variable,"
		       "ignoring constraint:",
		       get_varinfo (rhs.var)->name);
	      dump_constraint (dump_file, c);
	    }
	  VEC_replace (constraint_t, constraints, i, NULL);
	  continue;
	}

      lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
      rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
      c->lhs.var = lhsvar;
      c->rhs.var = rhsvar;

    }
}

/* Eliminate indirect cycles involving NODE.  Return true if NODE was
   part of an SCC, false otherwise.  */

static bool
eliminate_indirect_cycles (unsigned int node)
{
  if (graph->indirect_cycles[node] != -1
      && !bitmap_empty_p (get_varinfo (node)->solution))
    {
      unsigned int i;
      VEC(unsigned,heap) *queue = NULL;
      int queuepos;
      unsigned int to = find (graph->indirect_cycles[node]);
      bitmap_iterator bi;

      /* We can't touch the solution set and call unify_nodes
	 at the same time, because unify_nodes is going to do
	 bitmap unions into it. */

      EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
	{
	  if (find (i) == i && i != to)
	    {
	      if (unite (to, i))
		VEC_safe_push (unsigned, heap, queue, i);
	    }
	}

      for (queuepos = 0;
	   VEC_iterate (unsigned, queue, queuepos, i);
	   queuepos++)
	{
	  unify_nodes (graph, to, i, true);
	}
      VEC_free (unsigned, heap, queue);
      return true;
    }
  return false;
}

/* Solve the constraint graph GRAPH using our worklist solver.
   This is based on the PW* family of solvers from the "Efficient Field
   Sensitive Pointer Analysis for C" paper.
   It works by iterating over all the graph nodes, processing the complex
   constraints and propagating the copy constraints, until everything stops
   changed.  This corresponds to steps 6-8 in the solving list given above.  */

static void
solve_graph (constraint_graph_t graph)
{
  unsigned int size = graph->size;
  unsigned int i;
  bitmap pts;

  changed_count = 0;
  changed = sbitmap_alloc (size);
  sbitmap_zero (changed);

  /* Mark all initial non-collapsed nodes as changed.  */
  for (i = 0; i < size; i++)
    {
      varinfo_t ivi = get_varinfo (i);
      if (find (i) == i && !bitmap_empty_p (ivi->solution)
	  && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
	      || VEC_length (constraint_t, graph->complex[i]) > 0))
	{
	  SET_BIT (changed, i);
	  changed_count++;
	}
    }

  /* Allocate a bitmap to be used to store the changed bits.  */
  pts = BITMAP_ALLOC (&pta_obstack);

  while (changed_count > 0)
    {
      unsigned int i;
      struct topo_info *ti = init_topo_info ();
      stats.iterations++;

      bitmap_obstack_initialize (&iteration_obstack);

      compute_topo_order (graph, ti);

      while (VEC_length (unsigned, ti->topo_order) != 0)
	{

	  i = VEC_pop (unsigned, ti->topo_order);

	  /* If this variable is not a representative, skip it.  */
	  if (find (i) != i)
	    continue;

	  /* In certain indirect cycle cases, we may merge this
	     variable to another.  */
	  if (eliminate_indirect_cycles (i) && find (i) != i)
	    continue;

	  /* If the node has changed, we need to process the
	     complex constraints and outgoing edges again.  */
	  if (TEST_BIT (changed, i))
	    {
	      unsigned int j;
	      constraint_t c;
	      bitmap solution;
	      VEC(constraint_t,heap) *complex = graph->complex[i];
	      bool solution_empty;

	      RESET_BIT (changed, i);
	      changed_count--;

	      /* Compute the changed set of solution bits.  */
	      bitmap_and_compl (pts, get_varinfo (i)->solution,
				get_varinfo (i)->oldsolution);

	      if (bitmap_empty_p (pts))
		continue;

	      bitmap_ior_into (get_varinfo (i)->oldsolution, pts);

	      solution = get_varinfo (i)->solution;
	      solution_empty = bitmap_empty_p (solution);

	      /* Process the complex constraints */
	      for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
		{
		  /* XXX: This is going to unsort the constraints in
		     some cases, which will occasionally add duplicate
		     constraints during unification.  This does not
		     affect correctness.  */
		  c->lhs.var = find (c->lhs.var);
		  c->rhs.var = find (c->rhs.var);

		  /* The only complex constraint that can change our
		     solution to non-empty, given an empty solution,
		     is a constraint where the lhs side is receiving
		     some set from elsewhere.  */
		  if (!solution_empty || c->lhs.type != DEREF)
		    do_complex_constraint (graph, c, pts);
		}

	      solution_empty = bitmap_empty_p (solution);

	      if (!solution_empty
		  /* Do not propagate the ESCAPED/CALLUSED solutions.  */
		  && i != find (escaped_id)
		  && i != find (callused_id))
		{
		  bitmap_iterator bi;

		  /* Propagate solution to all successors.  */
		  EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
						0, j, bi)
		    {
		      bitmap tmp;
		      bool flag;

		      unsigned int to = find (j);
		      tmp = get_varinfo (to)->solution;
		      flag = false;

		      /* Don't try to propagate to ourselves.  */
		      if (to == i)
			continue;

		      flag = set_union_with_increment (tmp, pts, 0);

		      if (flag)
			{
			  get_varinfo (to)->solution = tmp;
			  if (!TEST_BIT (changed, to))
			    {
			      SET_BIT (changed, to);
			      changed_count++;
			    }
			}
		    }
		}
	    }
	}
      free_topo_info (ti);
      bitmap_obstack_release (&iteration_obstack);
    }

  BITMAP_FREE (pts);
  sbitmap_free (changed);
  bitmap_obstack_release (&oldpta_obstack);
}

/* Map from trees to variable infos.  */
static struct pointer_map_t *vi_for_tree;


/* Insert ID as the variable id for tree T in the vi_for_tree map.  */

static void
insert_vi_for_tree (tree t, varinfo_t vi)
{
  void **slot = pointer_map_insert (vi_for_tree, t);
  gcc_assert (vi);
  gcc_assert (*slot == NULL);
  *slot = vi;
}

/* Find the variable info for tree T in VI_FOR_TREE.  If T does not
   exist in the map, return NULL, otherwise, return the varinfo we found.  */

static varinfo_t
lookup_vi_for_tree (tree t)
{
  void **slot = pointer_map_contains (vi_for_tree, t);
  if (slot == NULL)
    return NULL;

  return (varinfo_t) *slot;
}

/* Return a printable name for DECL  */

static const char *
alias_get_name (tree decl)
{
  const char *res = get_name (decl);
  char *temp;
  int num_printed = 0;

  if (res != NULL)
    return res;

  res = "NULL";
  if (!dump_file)
    return res;

  if (TREE_CODE (decl) == SSA_NAME)
    {
      num_printed = asprintf (&temp, "%s_%u",
			      alias_get_name (SSA_NAME_VAR (decl)),
			      SSA_NAME_VERSION (decl));
    }
  else if (DECL_P (decl))
    {
      num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
    }
  if (num_printed > 0)
    {
      res = ggc_strdup (temp);
      free (temp);
    }
  return res;
}

/* Find the variable id for tree T in the map.
   If T doesn't exist in the map, create an entry for it and return it.  */

static varinfo_t
get_vi_for_tree (tree t)
{
  void **slot = pointer_map_contains (vi_for_tree, t);
  if (slot == NULL)
    return get_varinfo (create_variable_info_for (t, alias_get_name (t)));

  return (varinfo_t) *slot;
}

/* Get a constraint expression for a new temporary variable.  */

static struct constraint_expr
get_constraint_exp_for_temp (tree t)
{
  struct constraint_expr cexpr;

  gcc_assert (SSA_VAR_P (t));

  cexpr.type = SCALAR;
  cexpr.var = get_vi_for_tree (t)->id;
  cexpr.offset = 0;

  return cexpr;
}

/* Get a constraint expression vector from an SSA_VAR_P node.
   If address_p is true, the result will be taken its address of.  */

static void
get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
{
  struct constraint_expr cexpr;
  varinfo_t vi;

  /* We allow FUNCTION_DECLs here even though it doesn't make much sense.  */
  gcc_assert (SSA_VAR_P (t) || DECL_P (t));

  /* For parameters, get at the points-to set for the actual parm
     decl.  */
  if (TREE_CODE (t) == SSA_NAME
      && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
      && SSA_NAME_IS_DEFAULT_DEF (t))
    {
      get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
      return;
    }

  vi = get_vi_for_tree (t);
  cexpr.var = vi->id;
  cexpr.type = SCALAR;
  cexpr.offset = 0;
  /* If we determine the result is "anything", and we know this is readonly,
     say it points to readonly memory instead.  */
  if (cexpr.var == anything_id && TREE_READONLY (t))
    {
      gcc_unreachable ();
      cexpr.type = ADDRESSOF;
      cexpr.var = readonly_id;
    }

  /* If we are not taking the address of the constraint expr, add all
     sub-fiels of the variable as well.  */
  if (!address_p)
    {
      for (; vi; vi = vi->next)
	{
	  cexpr.var = vi->id;
	  VEC_safe_push (ce_s, heap, *results, &cexpr);
	}
      return;
    }

  VEC_safe_push (ce_s, heap, *results, &cexpr);
}

/* Process constraint T, performing various simplifications and then
   adding it to our list of overall constraints.  */

static void
process_constraint (constraint_t t)
{
  struct constraint_expr rhs = t->rhs;
  struct constraint_expr lhs = t->lhs;

  gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
  gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));

  /* ANYTHING == ANYTHING is pointless.  */
  if (lhs.var == anything_id && rhs.var == anything_id)
    return;

  /* If we have &ANYTHING = something, convert to SOMETHING = &ANYTHING) */
  else if (lhs.var == anything_id && lhs.type == ADDRESSOF)
    {
      rhs = t->lhs;
      t->lhs = t->rhs;
      t->rhs = rhs;
      process_constraint (t);
    }
  /* This can happen in our IR with things like n->a = *p */
  else if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
    {
      /* Split into tmp = *rhs, *lhs = tmp */
      tree rhsdecl = get_varinfo (rhs.var)->decl;
      tree pointertype = TREE_TYPE (rhsdecl);
      tree pointedtotype = TREE_TYPE (pointertype);
      tree tmpvar = create_tmp_var_raw (pointedtotype, "doubledereftmp");
      struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);

      process_constraint (new_constraint (tmplhs, rhs));
      process_constraint (new_constraint (lhs, tmplhs));
    }
  else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
    {
      /* Split into tmp = &rhs, *lhs = tmp */
      tree rhsdecl = get_varinfo (rhs.var)->decl;
      tree pointertype = TREE_TYPE (rhsdecl);
      tree tmpvar = create_tmp_var_raw (pointertype, "derefaddrtmp");
      struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);

      process_constraint (new_constraint (tmplhs, rhs));
      process_constraint (new_constraint (lhs, tmplhs));
    }
  else
    {
      gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
      VEC_safe_push (constraint_t, heap, constraints, t);
    }
}

/* Return true if T is a type that could contain pointers.  */

static bool
type_could_have_pointers (tree type)
{
  if (POINTER_TYPE_P (type))
    return true;

  if (TREE_CODE (type) == ARRAY_TYPE)
    return type_could_have_pointers (TREE_TYPE (type));

  return AGGREGATE_TYPE_P (type);
}

/* Return true if T is a variable of a type that could contain
   pointers.  */

static bool
could_have_pointers (tree t)
{
  return type_could_have_pointers (TREE_TYPE (t));
}

/* Return the position, in bits, of FIELD_DECL from the beginning of its
   structure.  */

static HOST_WIDE_INT
bitpos_of_field (const tree fdecl)
{

  if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
      || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
    return -1;

  return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
	  + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
}


/* Get constraint expressions for offsetting PTR by OFFSET.  Stores the
   resulting constraint expressions in *RESULTS.  */

static void
get_constraint_for_ptr_offset (tree ptr, tree offset,
			       VEC (ce_s, heap) **results)
{
  struct constraint_expr *c;
  unsigned int j, n;
  unsigned HOST_WIDE_INT rhsunitoffset, rhsoffset;

  /* If we do not do field-sensitive PTA adding offsets to pointers
     does not change the points-to solution.  */
  if (!use_field_sensitive)
    {
      get_constraint_for (ptr, results);
      return;
    }

  /* If the offset is not a non-negative integer constant that fits
     in a HOST_WIDE_INT, we have to fall back to a conservative
     solution which includes all sub-fields of all pointed-to
     variables of ptr.
     ???  As we do not have the ability to express this, fall back
     to anything.  */
  if (!host_integerp (offset, 1))
    {
      struct constraint_expr temp;
      temp.var = anything_id;
      temp.type = SCALAR;
      temp.offset = 0;
      VEC_safe_push (ce_s, heap, *results, &temp);
      return;
    }

  /* Make sure the bit-offset also fits.  */
  rhsunitoffset = TREE_INT_CST_LOW (offset);
  rhsoffset = rhsunitoffset * BITS_PER_UNIT;
  if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
    {
      struct constraint_expr temp;
      temp.var = anything_id;
      temp.type = SCALAR;
      temp.offset = 0;
      VEC_safe_push (ce_s, heap, *results, &temp);
      return;
    }

  get_constraint_for (ptr, results);
  if (rhsoffset == 0)
    return;

  /* As we are eventually appending to the solution do not use
     VEC_iterate here.  */
  n = VEC_length (ce_s, *results);
  for (j = 0; j < n; j++)
    {
      varinfo_t curr;
      c = VEC_index (ce_s, *results, j);
      curr = get_varinfo (c->var);

      if (c->type == ADDRESSOF
	  && !curr->is_full_var)
	{
	  varinfo_t temp, curr = get_varinfo (c->var);

	  /* Search the sub-field which overlaps with the
	     pointed-to offset.  As we deal with positive offsets
	     only, we can start the search from the current variable.  */
	  temp = first_vi_for_offset (curr, curr->offset + rhsoffset);

	  /* If the result is outside of the variable we have to provide
	     a conservative result, as the variable is still reachable
	     from the resulting pointer (even though it technically
	     cannot point to anything).  The last sub-field is such
	     a conservative result.
	     ???  If we always had a sub-field for &object + 1 then
	     we could represent this in a more precise way.  */
	  if (temp == NULL)
	    {
	      temp = curr;
	      while (temp->next != NULL)
		temp = temp->next;
	      continue;
	    }

	  /* If the found variable is not exactly at the pointed to
	     result, we have to include the next variable in the
	     solution as well.  Otherwise two increments by offset / 2
	     do not result in the same or a conservative superset
	     solution.  */
	  if (temp->offset != curr->offset + rhsoffset
	      && temp->next != NULL)
	    {
	      struct constraint_expr c2;
	      c2.var = temp->next->id;
	      c2.type = ADDRESSOF;
	      c2.offset = 0;
	      VEC_safe_push (ce_s, heap, *results, &c2);
	    }
	  c->var = temp->id;
	  c->offset = 0;
	}
      else if (c->type == ADDRESSOF
	       /* If this varinfo represents a full variable just use it.  */
	       && curr->is_full_var)
	c->offset = 0;
      else
	c->offset = rhsoffset;
    }
}


/* Given a COMPONENT_REF T, return the constraint_expr vector for it.
   If address_p is true the result will be taken its address of.  */

static void
get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
				  bool address_p)
{
  tree orig_t = t;
  HOST_WIDE_INT bitsize = -1;
  HOST_WIDE_INT bitmaxsize = -1;
  HOST_WIDE_INT bitpos;
  tree forzero;
  struct constraint_expr *result;

  /* Some people like to do cute things like take the address of
     &0->a.b */
  forzero = t;
  while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
    forzero = TREE_OPERAND (forzero, 0);

  if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
    {
      struct constraint_expr temp;

      temp.offset = 0;
      temp.var = integer_id;
      temp.type = SCALAR;
      VEC_safe_push (ce_s, heap, *results, &temp);
      return;
    }

  t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);

  /* Pretend to take the address of the base, we'll take care of
     adding the required subset of sub-fields below.  */
  get_constraint_for_1 (t, results, true);
  gcc_assert (VEC_length (ce_s, *results) == 1);
  result = VEC_last (ce_s, *results);

  /* This can also happen due to weird offsetof type macros.  */
  if (TREE_CODE (t) != ADDR_EXPR && result->type == ADDRESSOF)
    result->type = SCALAR;

  if (result->type == SCALAR
      && get_varinfo (result->var)->is_full_var)
    /* For single-field vars do not bother about the offset.  */
    result->offset = 0;
  else if (result->type == SCALAR)
    {
      /* In languages like C, you can access one past the end of an
	 array.  You aren't allowed to dereference it, so we can
	 ignore this constraint. When we handle pointer subtraction,
	 we may have to do something cute here.  */

      if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
	  && bitmaxsize != 0)
	{
	  /* It's also not true that the constraint will actually start at the
	     right offset, it may start in some padding.  We only care about
	     setting the constraint to the first actual field it touches, so
	     walk to find it.  */
	  struct constraint_expr cexpr = *result;
	  varinfo_t curr;
	  VEC_pop (ce_s, *results);
	  cexpr.offset = 0;
	  for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
	    {
	      if (ranges_overlap_p (curr->offset, curr->size,
				    bitpos, bitmaxsize))
		{
		  cexpr.var = curr->id;
		  VEC_safe_push (ce_s, heap, *results, &cexpr);
		  if (address_p)
		    break;
		}
	    }
	  /* If we are going to take the address of this field then
	     to be able to compute reachability correctly add at least
	     the last field of the variable.  */
	  if (address_p
	      && VEC_length (ce_s, *results) == 0)
	    {
	      curr = get_varinfo (cexpr.var);
	      while (curr->next != NULL)
		curr = curr->next;
	      cexpr.var = curr->id;
	      VEC_safe_push (ce_s, heap, *results, &cexpr);
	    }
	  else
	    /* Assert that we found *some* field there. The user couldn't be
	       accessing *only* padding.  */
	    /* Still the user could access one past the end of an array
	       embedded in a struct resulting in accessing *only* padding.  */
	    gcc_assert (VEC_length (ce_s, *results) >= 1
			|| ref_contains_array_ref (orig_t));
	}
      else if (bitmaxsize == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Access to zero-sized part of variable,"
		     "ignoring\n");
	}
      else
	if (dump_file && (dump_flags & TDF_DETAILS))
	  fprintf (dump_file, "Access to past the end of variable, ignoring\n");
    }
  else if (bitmaxsize == -1)
    {
      /* We can't handle DEREF constraints with unknown size, we'll
	 get the wrong answer.  Punt and return anything.  */
      result->var = anything_id;
      result->offset = 0;
    }
  else
    result->offset = bitpos;
}


/* Dereference the constraint expression CONS, and return the result.
   DEREF (ADDRESSOF) = SCALAR
   DEREF (SCALAR) = DEREF
   DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
   This is needed so that we can handle dereferencing DEREF constraints.  */

static void
do_deref (VEC (ce_s, heap) **constraints)
{
  struct constraint_expr *c;
  unsigned int i = 0;

  for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
    {
      if (c->type == SCALAR)
	c->type = DEREF;
      else if (c->type == ADDRESSOF)
	c->type = SCALAR;
      else if (c->type == DEREF)
	{
	  tree tmpvar = create_tmp_var_raw (ptr_type_node, "dereftmp");
	  struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);
	  process_constraint (new_constraint (tmplhs, *c));
	  c->var = tmplhs.var;
	}
      else
	gcc_unreachable ();
    }
}

/* Given a tree T, return the constraint expression for it.  */

static void
get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p)
{
  struct constraint_expr temp;

  /* x = integer is all glommed to a single variable, which doesn't
     point to anything by itself.  That is, of course, unless it is an
     integer constant being treated as a pointer, in which case, we
     will return that this is really the addressof anything.  This
     happens below, since it will fall into the default case. The only
     case we know something about an integer treated like a pointer is
     when it is the NULL pointer, and then we just say it points to
     NULL.

     Do not do that if -fno-delete-null-pointer-checks though, because
     in that case *NULL does not fail, so it _should_ alias *anything.
     It is not worth adding a new option or renaming the existing one,
     since this case is relatively obscure.  */
  if (flag_delete_null_pointer_checks
      && TREE_CODE (t) == INTEGER_CST
      && integer_zerop (t))
    {
      temp.var = nothing_id;
      temp.type = ADDRESSOF;
      temp.offset = 0;
      VEC_safe_push (ce_s, heap, *results, &temp);
      return;
    }

  /* String constants are read-only.  */
  if (TREE_CODE (t) == STRING_CST)
    {
      temp.var = readonly_id;
      temp.type = SCALAR;
      temp.offset = 0;
      VEC_safe_push (ce_s, heap, *results, &temp);
      return;
    }

  switch (TREE_CODE_CLASS (TREE_CODE (t)))
    {
    case tcc_expression:
      {
	switch (TREE_CODE (t))
	  {
	  case ADDR_EXPR:
	    {
	      struct constraint_expr *c;
	      unsigned int i;
	      tree exp = TREE_OPERAND (t, 0);

	      get_constraint_for_1 (exp, results, true);

	      for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
		{
		  if (c->type == DEREF)
		    c->type = SCALAR;
		  else
		    c->type = ADDRESSOF;
		}
	      return;
	    }
	    break;
	  default:;
	  }
	break;
      }
    case tcc_reference:
      {
	switch (TREE_CODE (t))
	  {
	  case INDIRECT_REF:
	    {
	      get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
	      do_deref (results);
	      return;
	    }
	  case ARRAY_REF:
	  case ARRAY_RANGE_REF:
	  case COMPONENT_REF:
	    get_constraint_for_component_ref (t, results, address_p);
	    return;
	  default:;
	  }
	break;
      }
    case tcc_exceptional:
      {
	switch (TREE_CODE (t))
	  {
	  case SSA_NAME:
	    {
	      get_constraint_for_ssa_var (t, results, address_p);
	      return;
	    }
	  default:;
	  }
	break;
      }
    case tcc_declaration:
      {
	get_constraint_for_ssa_var (t, results, address_p);
	return;
      }
    default:;
    }

  /* The default fallback is a constraint from anything.  */
  temp.type = ADDRESSOF;
  temp.var = anything_id;
  temp.offset = 0;
  VEC_safe_push (ce_s, heap, *results, &temp);
}

/* Given a gimple tree T, return the constraint expression vector for it.  */

static void
get_constraint_for (tree t, VEC (ce_s, heap) **results)
{
  gcc_assert (VEC_length (ce_s, *results) == 0);

  get_constraint_for_1 (t, results, false);
}

/* Handle the structure copy case where we have a simple structure copy
   between LHS and RHS that is of SIZE (in bits)

   For each field of the lhs variable (lhsfield)
     For each field of the rhs variable at lhsfield.offset (rhsfield)
       add the constraint lhsfield = rhsfield

   If we fail due to some kind of type unsafety or other thing we
   can't handle, return false.  We expect the caller to collapse the
   variable in that case.  */

static bool
do_simple_structure_copy (const struct constraint_expr lhs,
			  const struct constraint_expr rhs,
			  const unsigned HOST_WIDE_INT size)
{
  varinfo_t p = get_varinfo (lhs.var);
  unsigned HOST_WIDE_INT pstart, last;
  pstart = p->offset;
  last = p->offset + size;
  for (; p && p->offset < last; p = p->next)
    {
      varinfo_t q;
      struct constraint_expr templhs = lhs;
      struct constraint_expr temprhs = rhs;
      unsigned HOST_WIDE_INT fieldoffset;

      templhs.var = p->id;
      q = get_varinfo (temprhs.var);
      fieldoffset = p->offset - pstart;
      q = first_vi_for_offset (q, q->offset + fieldoffset);
      if (!q)
	return false;
      temprhs.var = q->id;
      process_constraint (new_constraint (templhs, temprhs));
    }
  return true;
}


/* Handle the structure copy case where we have a  structure copy between a
   aggregate on the LHS and a dereference of a pointer on the RHS
   that is of SIZE (in bits)

   For each field of the lhs variable (lhsfield)
       rhs.offset = lhsfield->offset
       add the constraint lhsfield = rhs
*/

static void
do_rhs_deref_structure_copy (const struct constraint_expr lhs,
			     const struct constraint_expr rhs,
			     const unsigned HOST_WIDE_INT size)
{
  varinfo_t p = get_varinfo (lhs.var);
  unsigned HOST_WIDE_INT pstart,last;
  pstart = p->offset;
  last = p->offset + size;

  for (; p && p->offset < last; p = p->next)
    {
      varinfo_t q;
      struct constraint_expr templhs = lhs;
      struct constraint_expr temprhs = rhs;
      unsigned HOST_WIDE_INT fieldoffset;


      if (templhs.type == SCALAR)
	templhs.var = p->id;
      else
	templhs.offset = p->offset;

      q = get_varinfo (temprhs.var);
      fieldoffset = p->offset - pstart;
      temprhs.offset += fieldoffset;
      process_constraint (new_constraint (templhs, temprhs));
    }
}

/* Handle the structure copy case where we have a structure copy
   between an aggregate on the RHS and a dereference of a pointer on
   the LHS that is of SIZE (in bits)

   For each field of the rhs variable (rhsfield)
       lhs.offset = rhsfield->offset
       add the constraint lhs = rhsfield
*/

static void
do_lhs_deref_structure_copy (const struct constraint_expr lhs,
			     const struct constraint_expr rhs,
			     const unsigned HOST_WIDE_INT size)
{
  varinfo_t p = get_varinfo (rhs.var);
  unsigned HOST_WIDE_INT pstart,last;
  pstart = p->offset;
  last = p->offset + size;

  for (; p && p->offset < last; p = p->next)
    {
      varinfo_t q;
      struct constraint_expr templhs = lhs;
      struct constraint_expr temprhs = rhs;
      unsigned HOST_WIDE_INT fieldoffset;


      if (temprhs.type == SCALAR)
	temprhs.var = p->id;
      else
	temprhs.offset = p->offset;

      q = get_varinfo (templhs.var);
      fieldoffset = p->offset - pstart;
      templhs.offset += fieldoffset;
      process_constraint (new_constraint (templhs, temprhs));
    }
}

/* Sometimes, frontends like to give us bad type information.  This
   function will collapse all the fields from VAR to the end of VAR,
   into VAR, so that we treat those fields as a single variable.
   We return the variable they were collapsed into.  */

static unsigned int
collapse_rest_of_var (unsigned int var)
{
  varinfo_t currvar = get_varinfo (var);
  varinfo_t field;

  for (field = currvar->next; field; field = field->next)
    {
      if (dump_file)
	fprintf (dump_file, "Type safety: Collapsing var %s into %s\n",
		 field->name, currvar->name);

      gcc_assert (field->collapsed_to == 0);
      field->collapsed_to = currvar->id;
    }

  currvar->next = NULL;
  currvar->size = currvar->fullsize - currvar->offset;

  return currvar->id;
}

/* Handle aggregate copies by expanding into copies of the respective
   fields of the structures.  */

static void
do_structure_copy (tree lhsop, tree rhsop)
{
  struct constraint_expr lhs, rhs, tmp;
  VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
  varinfo_t p;
  unsigned HOST_WIDE_INT lhssize;
  unsigned HOST_WIDE_INT rhssize;

  /* Pretend we are taking the address of the constraint exprs.
     We deal with walking the sub-fields ourselves.  */
  get_constraint_for_1 (lhsop, &lhsc, true);
  get_constraint_for_1 (rhsop, &rhsc, true);
  gcc_assert (VEC_length (ce_s, lhsc) == 1);
  gcc_assert (VEC_length (ce_s, rhsc) == 1);
  lhs = *(VEC_last (ce_s, lhsc));
  rhs = *(VEC_last (ce_s, rhsc));

  VEC_free (ce_s, heap, lhsc);
  VEC_free (ce_s, heap, rhsc);

  /* If we have special var = x, swap it around.  */
  if (lhs.var <= integer_id && !(get_varinfo (rhs.var)->is_special_var))
    {
      tmp = lhs;
      lhs = rhs;
      rhs = tmp;
    }

  /*  This is fairly conservative for the RHS == ADDRESSOF case, in that it's
      possible it's something we could handle.  However, most cases falling
      into this are dealing with transparent unions, which are slightly
      weird. */
  if (rhs.type == ADDRESSOF && !(get_varinfo (rhs.var)->is_special_var))
    {
      rhs.type = ADDRESSOF;
      rhs.var = anything_id;
    }

  /* If the RHS is a special var, or an addressof, set all the LHS fields to
     that special var.  */
  if (rhs.var <= integer_id)
    {
      for (p = get_varinfo (lhs.var); p; p = p->next)
	{
	  struct constraint_expr templhs = lhs;
	  struct constraint_expr temprhs = rhs;

	  if (templhs.type == SCALAR )
	    templhs.var = p->id;
	  else
	    templhs.offset += p->offset;
	  process_constraint (new_constraint (templhs, temprhs));
	}
    }
  else
    {
      tree rhstype = TREE_TYPE (rhsop);
      tree lhstype = TREE_TYPE (lhsop);
      tree rhstypesize;
      tree lhstypesize;

      lhstypesize = DECL_P (lhsop) ? DECL_SIZE (lhsop) : TYPE_SIZE (lhstype);
      rhstypesize = DECL_P (rhsop) ? DECL_SIZE (rhsop) : TYPE_SIZE (rhstype);

      /* If we have a variably sized types on the rhs or lhs, and a deref
	 constraint, add the constraint, lhsconstraint = &ANYTHING.
	 This is conservatively correct because either the lhs is an unknown
	 sized var (if the constraint is SCALAR), or the lhs is a DEREF
	 constraint, and every variable it can point to must be unknown sized
	 anyway, so we don't need to worry about fields at all.  */
      if ((rhs.type == DEREF && TREE_CODE (rhstypesize) != INTEGER_CST)
	  || (lhs.type == DEREF && TREE_CODE (lhstypesize) != INTEGER_CST))
	{
	  rhs.var = anything_id;
	  rhs.type = ADDRESSOF;
	  rhs.offset = 0;
	  process_constraint (new_constraint (lhs, rhs));
	  return;
	}

      /* The size only really matters insofar as we don't set more or less of
	 the variable.  If we hit an unknown size var, the size should be the
	 whole darn thing.  */
      if (get_varinfo (rhs.var)->is_unknown_size_var)
	rhssize = ~0;
      else
	rhssize = TREE_INT_CST_LOW (rhstypesize);

      if (get_varinfo (lhs.var)->is_unknown_size_var)
	lhssize = ~0;
      else
	lhssize = TREE_INT_CST_LOW (lhstypesize);


      if (rhs.type == SCALAR && lhs.type == SCALAR)
	{
	  if (!do_simple_structure_copy (lhs, rhs, MIN (lhssize, rhssize)))
	    {
	      lhs.var = collapse_rest_of_var (get_varinfo_fc (lhs.var)->id);
	      rhs.var = collapse_rest_of_var (get_varinfo_fc (rhs.var)->id);
	      lhs.offset = 0;
	      rhs.offset = 0;
	      lhs.type = SCALAR;
	      rhs.type = SCALAR;
	      process_constraint (new_constraint (lhs, rhs));
	    }
	}
      else if (lhs.type != DEREF && rhs.type == DEREF)
	do_rhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
      else if (lhs.type == DEREF && rhs.type != DEREF)
	do_lhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
      else
	{
	  tree pointedtotype = lhstype;
	  tree tmpvar;

	  gcc_assert (rhs.type == DEREF && lhs.type == DEREF);
	  tmpvar = create_tmp_var_raw (pointedtotype, "structcopydereftmp");
	  do_structure_copy (tmpvar, rhsop);
	  do_structure_copy (lhsop, tmpvar);
	}
    }
}

/* Create a constraint ID = OP.  */

static void
make_constraint_to (unsigned id, tree op)
{
  VEC(ce_s, heap) *rhsc = NULL;
  struct constraint_expr *c;
  struct constraint_expr includes;
  unsigned int j;

  includes.var = id;
  includes.offset = 0;
  includes.type = SCALAR;

  get_constraint_for (op, &rhsc);
  for (j = 0; VEC_iterate (ce_s, rhsc, j, c); j++)
    process_constraint (new_constraint (includes, *c));
  VEC_free (ce_s, heap, rhsc);
}

/* Make constraints necessary to make OP escape.  */

static void
make_escape_constraint (tree op)
{
  make_constraint_to (escaped_id, op);
}

/* For non-IPA mode, generate constraints necessary for a call on the
   RHS.  */

static void
handle_rhs_call (gimple stmt)
{
  unsigned i;

  for (i = 0; i < gimple_call_num_args (stmt); ++i)
    {
      tree arg = gimple_call_arg (stmt, i);

      /* Find those pointers being passed, and make sure they end up
	 pointing to anything.  */
      if (could_have_pointers (arg))
	make_escape_constraint (arg);
    }

  /* The static chain escapes as well.  */
  if (gimple_call_chain (stmt))
    make_escape_constraint (gimple_call_chain (stmt));
}

/* For non-IPA mode, generate constraints necessary for a call
   that returns a pointer and assigns it to LHS.  This simply makes
   the LHS point to global and escaped variables.  */

static void
handle_lhs_call (tree lhs, int flags)
{
  VEC(ce_s, heap) *lhsc = NULL;
  struct constraint_expr rhsc;
  unsigned int j;
  struct constraint_expr *lhsp;

  get_constraint_for (lhs, &lhsc);

  if (flags & ECF_MALLOC)
    {
      tree heapvar = heapvar_lookup (lhs);
      varinfo_t vi;

      if (heapvar == NULL)
	{
	  heapvar = create_tmp_var_raw (ptr_type_node, "HEAP");
	  DECL_EXTERNAL (heapvar) = 1;
	  get_var_ann (heapvar)->is_heapvar = 1;
	  if (gimple_referenced_vars (cfun))
	    add_referenced_var (heapvar);
	  heapvar_insert (lhs, heapvar);
	}

      rhsc.var = create_variable_info_for (heapvar,
					   alias_get_name (heapvar));
      vi = get_varinfo (rhsc.var);
      vi->is_artificial_var = 1;
      vi->is_heap_var = 1;
      vi->is_unknown_size_var = true;
      vi->fullsize = ~0;
      vi->size = ~0;
      rhsc.type = ADDRESSOF;
      rhsc.offset = 0;
    }
  else
    {
      rhsc.var = escaped_id;
      rhsc.offset = 0;
      rhsc.type = ADDRESSOF;
    }
  for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
    process_constraint (new_constraint (*lhsp, rhsc));
  VEC_free (ce_s, heap, lhsc);
}

/* For non-IPA mode, generate constraints necessary for a call of a
   const function that returns a pointer in the statement STMT.  */

static void
handle_const_call (gimple stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  VEC(ce_s, heap) *lhsc = NULL;
  struct constraint_expr rhsc;
  unsigned int j, k;
  struct constraint_expr *lhsp;
  tree tmpvar;
  struct constraint_expr tmpc;

  get_constraint_for (lhs, &lhsc);

  /* If this is a nested function then it can return anything.  */
  if (gimple_call_chain (stmt))
    {
      rhsc.var = anything_id;
      rhsc.offset = 0;
      rhsc.type = ADDRESSOF;
      for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
	process_constraint (new_constraint (*lhsp, rhsc));
      VEC_free (ce_s, heap, lhsc);
      return;
    }

  /* We always use a temporary here, otherwise we end up with a quadratic
     amount of constraints for
       large_struct = const_call (large_struct);
     in field-sensitive PTA.  */
  tmpvar = create_tmp_var_raw (ptr_type_node, "consttmp");
  tmpc = get_constraint_exp_for_temp (tmpvar);

  /* May return addresses of globals.  */
  rhsc.var = nonlocal_id;
  rhsc.offset = 0;
  rhsc.type = ADDRESSOF;
  process_constraint (new_constraint (tmpc, rhsc));

  /* May return arguments.  */
  for (k = 0; k < gimple_call_num_args (stmt); ++k)
    {
      tree arg = gimple_call_arg (stmt, k);

      if (could_have_pointers (arg))
	{
	  VEC(ce_s, heap) *argc = NULL;
	  struct constraint_expr *argp;
	  int i;

	  get_constraint_for (arg, &argc);
	  for (i = 0; VEC_iterate (ce_s, argc, i, argp); i++)
	    process_constraint (new_constraint (tmpc, *argp));
	  VEC_free (ce_s, heap, argc);
	}
    }

  for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
    process_constraint (new_constraint (*lhsp, tmpc));

  VEC_free (ce_s, heap, lhsc);
}

/* For non-IPA mode, generate constraints necessary for a call to a
   pure function in statement STMT.  */

static void
handle_pure_call (gimple stmt)
{
  unsigned i;

  /* Memory reached from pointer arguments is call-used.  */
  for (i = 0; i < gimple_call_num_args (stmt); ++i)
    {
      tree arg = gimple_call_arg (stmt, i);

      if (could_have_pointers (arg))
	make_constraint_to (callused_id, arg);
    }

  /* The static chain is used as well.  */
  if (gimple_call_chain (stmt))
    make_constraint_to (callused_id, gimple_call_chain (stmt));

  /* If the call returns a pointer it may point to reachable memory
     from the arguments.  Not so for malloc functions though.  */
  if (gimple_call_lhs (stmt)
      && could_have_pointers (gimple_call_lhs (stmt))
      && !(gimple_call_flags (stmt) & ECF_MALLOC))
    {
      tree lhs = gimple_call_lhs (stmt);
      VEC(ce_s, heap) *lhsc = NULL;
      struct constraint_expr rhsc;
      struct constraint_expr *lhsp;
      unsigned j;

      get_constraint_for (lhs, &lhsc);

      /* If this is a nested function then it can return anything.  */
      if (gimple_call_chain (stmt))
	{
	  rhsc.var = anything_id;
	  rhsc.offset = 0;
	  rhsc.type = ADDRESSOF;
	  for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
	    process_constraint (new_constraint (*lhsp, rhsc));
	  VEC_free (ce_s, heap, lhsc);
	  return;
	}

      /* Else just add the call-used memory here.  Escaped variables
         and globals will be dealt with in handle_lhs_call.  */
      rhsc.var = callused_id;
      rhsc.offset = 0;
      rhsc.type = ADDRESSOF;
      for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
	process_constraint (new_constraint (*lhsp, rhsc));
      VEC_free (ce_s, heap, lhsc);
    }
}

/* Walk statement T setting up aliasing constraints according to the
   references found in T.  This function is the main part of the
   constraint builder.  AI points to auxiliary alias information used
   when building alias sets and computing alias grouping heuristics.  */

static void
find_func_aliases (gimple origt)
{
  gimple t = origt;
  VEC(ce_s, heap) *lhsc = NULL;
  VEC(ce_s, heap) *rhsc = NULL;
  struct constraint_expr *c;
  enum escape_type stmt_escape_type;

  /* Now build constraints expressions.  */
  if (gimple_code (t) == GIMPLE_PHI)
    {
      gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));

      /* Only care about pointers and structures containing
	 pointers.  */
      if (could_have_pointers (gimple_phi_result (t)))
	{
	  size_t i;
	  unsigned int j;

	  /* For a phi node, assign all the arguments to
	     the result.  */
	  get_constraint_for (gimple_phi_result (t), &lhsc);
	  for (i = 0; i < gimple_phi_num_args (t); i++)
	    {
	      tree rhstype;
	      tree strippedrhs = PHI_ARG_DEF (t, i);

	      STRIP_NOPS (strippedrhs);
	      rhstype = TREE_TYPE (strippedrhs);
	      get_constraint_for (gimple_phi_arg_def (t, i), &rhsc);

	      for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
		{
		  struct constraint_expr *c2;
		  while (VEC_length (ce_s, rhsc) > 0)
		    {
		      c2 = VEC_last (ce_s, rhsc);
		      process_constraint (new_constraint (*c, *c2));
		      VEC_pop (ce_s, rhsc);
		    }
		}
	    }
	}
    }
  /* In IPA mode, we need to generate constraints to pass call
     arguments through their calls.   There are two cases,
     either a GIMPLE_CALL returning a value, or just a plain
     GIMPLE_CALL when we are not.

     In non-ipa mode, we need to generate constraints for each
     pointer passed by address.  */
  else if (is_gimple_call (t))
    {
      if (!in_ipa_mode)
	{
	  int flags = gimple_call_flags (t);

	  /* Const functions can return their arguments and addresses
	     of global memory but not of escaped memory.  */
	  if (flags & ECF_CONST)
	    {
	      if (gimple_call_lhs (t)
		  && could_have_pointers (gimple_call_lhs (t)))
		handle_const_call (t);
	    }
	  /* Pure functions can return addresses in and of memory
	     reachable from their arguments, but they are not an escape
	     point for reachable memory of their arguments.  */
	  else if (flags & ECF_PURE)
	    {
	      handle_pure_call (t);
	      if (gimple_call_lhs (t)
		  && could_have_pointers (gimple_call_lhs (t)))
		handle_lhs_call (gimple_call_lhs (t), flags);
	    }
	  else
	    {
	      handle_rhs_call (t);
	      if (gimple_call_lhs (t)
		  && could_have_pointers (gimple_call_lhs (t)))
		handle_lhs_call (gimple_call_lhs (t), flags);
	    }
	}
      else
	{
	  tree lhsop;
	  varinfo_t fi;
	  int i = 1;
	  size_t j;
	  tree decl;

	  lhsop = gimple_call_lhs (t);
	  decl = gimple_call_fndecl (t);

	  /* If we can directly resolve the function being called, do so.
	     Otherwise, it must be some sort of indirect expression that
	     we should still be able to handle.  */
	  if (decl)
	    fi = get_vi_for_tree (decl);
	  else
	    {
	      decl = gimple_call_fn (t);
	      fi = get_vi_for_tree (decl);
	    }

	  /* Assign all the passed arguments to the appropriate incoming
	     parameters of the function.  */
	  for (j = 0; j < gimple_call_num_args (t); j++)
	    {
	      struct constraint_expr lhs ;
	      struct constraint_expr *rhsp;
	      tree arg = gimple_call_arg (t, j);

	      get_constraint_for (arg, &rhsc);
	      if (TREE_CODE (decl) != FUNCTION_DECL)
		{
		  lhs.type = DEREF;
		  lhs.var = fi->id;
		  lhs.offset = i;
		}
	      else
		{
		  lhs.type = SCALAR;
		  lhs.var = first_vi_for_offset (fi, i)->id;
		  lhs.offset = 0;
		}
	      while (VEC_length (ce_s, rhsc) != 0)
		{
		  rhsp = VEC_last (ce_s, rhsc);
		  process_constraint (new_constraint (lhs, *rhsp));
		  VEC_pop (ce_s, rhsc);
		}
	      i++;
	    }

	  /* If we are returning a value, assign it to the result.  */
	  if (lhsop)
	    {
	      struct constraint_expr rhs;
	      struct constraint_expr *lhsp;
	      unsigned int j = 0;

	      get_constraint_for (lhsop, &lhsc);
	      if (TREE_CODE (decl) != FUNCTION_DECL)
		{
		  rhs.type = DEREF;
		  rhs.var = fi->id;
		  rhs.offset = i;
		}
	      else
		{
		  rhs.type = SCALAR;
		  rhs.var = first_vi_for_offset (fi, i)->id;
		  rhs.offset = 0;
		}
	      for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
		process_constraint (new_constraint (*lhsp, rhs));
	    }
	}
    }
  /* Otherwise, just a regular assignment statement.  Only care about
     operations with pointer result, others are dealt with as escape
     points if they have pointer operands.  */
  else if (is_gimple_assign (t)
	   && could_have_pointers (gimple_assign_lhs (t)))
    {
      /* Otherwise, just a regular assignment statement.  */
      tree lhsop = gimple_assign_lhs (t);
      tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;

      if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
	do_structure_copy (lhsop, rhsop);
      else
	{
	  unsigned int j;
	  struct constraint_expr temp;
	  get_constraint_for (lhsop, &lhsc);

	  if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
	    get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
					   gimple_assign_rhs2 (t), &rhsc);
	  else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
		    && !(POINTER_TYPE_P (gimple_expr_type (t))
			 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
		   || gimple_assign_single_p (t))
	    get_constraint_for (rhsop, &rhsc);
	  else
	    {
	      temp.type = ADDRESSOF;
	      temp.var = anything_id;
	      temp.offset = 0;
	      VEC_safe_push (ce_s, heap, rhsc, &temp);
	    }
	  for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
	    {
	      struct constraint_expr *c2;
	      unsigned int k;

	      for (k = 0; VEC_iterate (ce_s, rhsc, k, c2); k++)
		process_constraint (new_constraint (*c, *c2));
	    }
	}
    }
  else if (gimple_code (t) == GIMPLE_CHANGE_DYNAMIC_TYPE)
    {
      unsigned int j;

      get_constraint_for (gimple_cdt_location (t), &lhsc);
      for (j = 0; VEC_iterate (ce_s, lhsc, j, c); ++j)
	get_varinfo (c->var)->no_tbaa_pruning = true;
    }

  stmt_escape_type = is_escape_site (t);
  if (stmt_escape_type == ESCAPE_STORED_IN_GLOBAL)
    {
      gcc_assert (is_gimple_assign (t));
      if (gimple_assign_rhs_code (t) == ADDR_EXPR)
	{
	  tree rhs = gimple_assign_rhs1 (t);
	  tree base = get_base_address (TREE_OPERAND (rhs, 0));
	  if (base
	      && (!DECL_P (base)
		  || !is_global_var (base)))
	    make_escape_constraint (rhs);
	}
      else if (get_gimple_rhs_class (gimple_assign_rhs_code (t))
	       == GIMPLE_SINGLE_RHS)
	{
	  if (could_have_pointers (gimple_assign_rhs1 (t)))
	    make_escape_constraint (gimple_assign_rhs1 (t));
	}
      else
	gcc_unreachable ();
    }
  else if (stmt_escape_type == ESCAPE_BAD_CAST)
    {
      gcc_assert (is_gimple_assign (t));
      gcc_assert (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
		  || gimple_assign_rhs_code (t) == VIEW_CONVERT_EXPR);
      make_escape_constraint (gimple_assign_rhs1 (t));
    }
  else if (stmt_escape_type == ESCAPE_TO_ASM)
    {
      unsigned i;
      for (i = 0; i < gimple_asm_noutputs (t); ++i)
	{
	  tree op = TREE_VALUE (gimple_asm_output_op (t, i));
	  if (op && could_have_pointers (op))
	    /* Strictly we'd only need the constraints from ESCAPED and
	       NONLOCAL.  */
	    make_escape_constraint (op);
	}
      for (i = 0; i < gimple_asm_ninputs (t); ++i)
	{
	  tree op = TREE_VALUE (gimple_asm_input_op (t, i));
	  if (op && could_have_pointers (op))
	    /* Strictly we'd only need the constraint to ESCAPED.  */
	    make_escape_constraint (op);
	}
    }

  /* After promoting variables and computing aliasing we will
     need to re-scan most statements.  FIXME: Try to minimize the
     number of statements re-scanned.  It's not really necessary to
     re-scan *all* statements.  */
  if (!in_ipa_mode)
    gimple_set_modified (origt, true);
  VEC_free (ce_s, heap, rhsc);
  VEC_free (ce_s, heap, lhsc);
}


/* Find the first varinfo in the same variable as START that overlaps with
   OFFSET.
   Effectively, walk the chain of fields for the variable START to find the
   first field that overlaps with OFFSET.
   Return NULL if we can't find one.  */

static varinfo_t
first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
{
  varinfo_t curr = start;
  while (curr)
    {
      /* We may not find a variable in the field list with the actual
	 offset when when we have glommed a structure to a variable.
	 In that case, however, offset should still be within the size
	 of the variable. */
      if (offset >= curr->offset && offset < (curr->offset +  curr->size))
	return curr;
      curr = curr->next;
    }
  return NULL;
}


/* Insert the varinfo FIELD into the field list for BASE, at the front
   of the list.  */

static void
insert_into_field_list (varinfo_t base, varinfo_t field)
{
  varinfo_t prev = base;
  varinfo_t curr = base->next;

  field->next = curr;
  prev->next = field;
}

/* Insert the varinfo FIELD into the field list for BASE, ordered by
   offset.  */

static void
insert_into_field_list_sorted (varinfo_t base, varinfo_t field)
{
  varinfo_t prev = base;
  varinfo_t curr = base->next;

  if (curr == NULL)
    {
      prev->next = field;
      field->next = NULL;
    }
  else
    {
      while (curr)
	{
	  if (field->offset <= curr->offset)
	    break;
	  prev = curr;
	  curr = curr->next;
	}
      field->next = prev->next;
      prev->next = field;
    }
}

/* This structure is used during pushing fields onto the fieldstack
   to track the offset of the field, since bitpos_of_field gives it
   relative to its immediate containing type, and we want it relative
   to the ultimate containing object.  */

struct fieldoff
{
  /* Offset from the base of the base containing object to this field.  */
  HOST_WIDE_INT offset;

  /* Size, in bits, of the field.  */
  unsigned HOST_WIDE_INT size;

  unsigned has_unknown_size : 1;

  unsigned may_have_pointers : 1;
};
typedef struct fieldoff fieldoff_s;

DEF_VEC_O(fieldoff_s);
DEF_VEC_ALLOC_O(fieldoff_s,heap);

/* qsort comparison function for two fieldoff's PA and PB */

static int
fieldoff_compare (const void *pa, const void *pb)
{
  const fieldoff_s *foa = (const fieldoff_s *)pa;
  const fieldoff_s *fob = (const fieldoff_s *)pb;
  unsigned HOST_WIDE_INT foasize, fobsize;

  if (foa->offset < fob->offset)
    return -1;
  else if (foa->offset > fob->offset)
    return 1;

  foasize = foa->size;
  fobsize = fob->size;
  if (foasize < fobsize)
    return -1;
  else if (foasize > fobsize)
    return 1;
  return 0;
}

/* Sort a fieldstack according to the field offset and sizes.  */
static void
sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
{
  qsort (VEC_address (fieldoff_s, fieldstack),
	 VEC_length (fieldoff_s, fieldstack),
	 sizeof (fieldoff_s),
	 fieldoff_compare);
}

/* Return true if V is a tree that we can have subvars for.
   Normally, this is any aggregate type.  Also complex
   types which are not gimple registers can have subvars.  */

static inline bool
var_can_have_subvars (const_tree v)
{
  /* Volatile variables should never have subvars.  */
  if (TREE_THIS_VOLATILE (v))
    return false;

  /* Non decls or memory tags can never have subvars.  */
  if (!DECL_P (v) || MTAG_P (v))
    return false;

  /* Aggregates without overlapping fields can have subvars.  */
  if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
    return true;

  return false;
}

/* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
   the fields of TYPE onto fieldstack, recording their offsets along
   the way.

   OFFSET is used to keep track of the offset in this entire
   structure, rather than just the immediately containing structure.
   Returns the number of fields pushed.  */

static int
push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
			     HOST_WIDE_INT offset)
{
  tree field;
  int count = 0;

  if (TREE_CODE (type) != RECORD_TYPE)
    return 0;

  /* If the vector of fields is growing too big, bail out early.
     Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
     sure this fails.  */
  if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
    return 0;

  for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
    if (TREE_CODE (field) == FIELD_DECL)
      {
	bool push = false;
	int pushed = 0;
	HOST_WIDE_INT foff = bitpos_of_field (field);

	if (!var_can_have_subvars (field)
	    || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
	    || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
	  push = true;
	else if (!(pushed = push_fields_onto_fieldstack
		   (TREE_TYPE (field), fieldstack, offset + foff))
		 && (DECL_SIZE (field)
		     && !integer_zerop (DECL_SIZE (field))))
	  /* Empty structures may have actual size, like in C++.  So
	     see if we didn't push any subfields and the size is
	     nonzero, push the field onto the stack.  */
	  push = true;

	if (push)
	  {
	    fieldoff_s *pair = NULL;
	    bool has_unknown_size = false;

	    if (!VEC_empty (fieldoff_s, *fieldstack))
	      pair = VEC_last (fieldoff_s, *fieldstack);

	    if (!DECL_SIZE (field)
		|| !host_integerp (DECL_SIZE (field), 1))
	      has_unknown_size = true;

	    /* If adjacent fields do not contain pointers merge them.  */
	    if (pair
		&& !pair->may_have_pointers
		&& !could_have_pointers (field)
		&& !pair->has_unknown_size
		&& !has_unknown_size
		&& pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
	      {
		pair = VEC_last (fieldoff_s, *fieldstack);
		pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
	      }
	    else
	      {
		pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
		pair->offset = offset + foff;
		pair->has_unknown_size = has_unknown_size;
		if (!has_unknown_size)
		  pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
		else
		  pair->size = -1;
		pair->may_have_pointers = could_have_pointers (field);
		count++;
	      }
	  }
	else
	  count += pushed;
      }

  return count;
}

/* Create a constraint ID = &FROM.  */

static void
make_constraint_from (varinfo_t vi, int from)
{
  struct constraint_expr lhs, rhs;

  lhs.var = vi->id;
  lhs.offset = 0;
  lhs.type = SCALAR;

  rhs.var = from;
  rhs.offset = 0;
  rhs.type = ADDRESSOF;
  process_constraint (new_constraint (lhs, rhs));
}

/* Count the number of arguments DECL has, and set IS_VARARGS to true
   if it is a varargs function.  */

static unsigned int
count_num_arguments (tree decl, bool *is_varargs)
{
  unsigned int i = 0;
  tree t;

  for (t = TYPE_ARG_TYPES (TREE_TYPE (decl));
       t;
       t = TREE_CHAIN (t))
    {
      if (TREE_VALUE (t) == void_type_node)
	break;
      i++;
    }

  if (!t)
    *is_varargs = true;
  return i;
}

/* Creation function node for DECL, using NAME, and return the index
   of the variable we've created for the function.  */

static unsigned int
create_function_info_for (tree decl, const char *name)
{
  unsigned int index = VEC_length (varinfo_t, varmap);
  varinfo_t vi;
  tree arg;
  unsigned int i;
  bool is_varargs = false;

  /* Create the variable info.  */

  vi = new_var_info (decl, index, name);
  vi->decl = decl;
  vi->offset = 0;
  vi->size = 1;
  vi->fullsize = count_num_arguments (decl, &is_varargs) + 1;
  insert_vi_for_tree (vi->decl, vi);
  VEC_safe_push (varinfo_t, heap, varmap, vi);

  stats.total_vars++;

  /* If it's varargs, we don't know how many arguments it has, so we
     can't do much.  */
  if (is_varargs)
    {
      vi->fullsize = ~0;
      vi->size = ~0;
      vi->is_unknown_size_var = true;
      return index;
    }


  arg = DECL_ARGUMENTS (decl);

  /* Set up variables for each argument.  */
  for (i = 1; i < vi->fullsize; i++)
    {
      varinfo_t argvi;
      const char *newname;
      char *tempname;
      unsigned int newindex;
      tree argdecl = decl;

      if (arg)
	argdecl = arg;

      newindex = VEC_length (varinfo_t, varmap);
      asprintf (&tempname, "%s.arg%d", name, i-1);
      newname = ggc_strdup (tempname);
      free (tempname);

      argvi = new_var_info (argdecl, newindex, newname);
      argvi->decl = argdecl;
      VEC_safe_push (varinfo_t, heap, varmap, argvi);
      argvi->offset = i;
      argvi->size = 1;
      argvi->is_full_var = true;
      argvi->fullsize = vi->fullsize;
      insert_into_field_list_sorted (vi, argvi);
      stats.total_vars ++;
      if (arg)
	{
	  insert_vi_for_tree (arg, argvi);
	  arg = TREE_CHAIN (arg);
	}
    }

  /* Create a variable for the return var.  */
  if (DECL_RESULT (decl) != NULL
      || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
    {
      varinfo_t resultvi;
      const char *newname;
      char *tempname;
      unsigned int newindex;
      tree resultdecl = decl;

      vi->fullsize ++;

      if (DECL_RESULT (decl))
	resultdecl = DECL_RESULT (decl);

      newindex = VEC_length (varinfo_t, varmap);
      asprintf (&tempname, "%s.result", name);
      newname = ggc_strdup (tempname);
      free (tempname);

      resultvi = new_var_info (resultdecl, newindex, newname);
      resultvi->decl = resultdecl;
      VEC_safe_push (varinfo_t, heap, varmap, resultvi);
      resultvi->offset = i;
      resultvi->size = 1;
      resultvi->fullsize = vi->fullsize;
      resultvi->is_full_var = true;
      insert_into_field_list_sorted (vi, resultvi);
      stats.total_vars ++;
      if (DECL_RESULT (decl))
	insert_vi_for_tree (DECL_RESULT (decl), resultvi);
    }
  return index;
}


/* Return true if FIELDSTACK contains fields that overlap.
   FIELDSTACK is assumed to be sorted by offset.  */

static bool
check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
{
  fieldoff_s *fo = NULL;
  unsigned int i;
  HOST_WIDE_INT lastoffset = -1;

  for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
    {
      if (fo->offset == lastoffset)
	return true;
      lastoffset = fo->offset;
    }
  return false;
}

/* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
   This will also create any varinfo structures necessary for fields
   of DECL.  */

static unsigned int
create_variable_info_for (tree decl, const char *name)
{
  unsigned int index = VEC_length (varinfo_t, varmap);
  varinfo_t vi;
  tree decl_type = TREE_TYPE (decl);
  tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
  bool is_global = DECL_P (decl) ? is_global_var (decl) : false;
  VEC (fieldoff_s,heap) *fieldstack = NULL;

  if (TREE_CODE (decl) == FUNCTION_DECL && in_ipa_mode)
    return create_function_info_for (decl, name);

  if (var_can_have_subvars (decl) && use_field_sensitive
      && (!var_ann (decl)
	  || var_ann (decl)->noalias_state == 0)
      && (!var_ann (decl)
	  || !var_ann (decl)->is_heapvar))
    push_fields_onto_fieldstack (decl_type, &fieldstack, 0);

  /* If the variable doesn't have subvars, we may end up needing to
     sort the field list and create fake variables for all the
     fields.  */
  vi = new_var_info (decl, index, name);
  vi->decl = decl;
  vi->offset = 0;
  vi->may_have_pointers = could_have_pointers (decl);
  if (!declsize
      || !host_integerp (declsize, 1))
    {
      vi->is_unknown_size_var = true;
      vi->fullsize = ~0;
      vi->size = ~0;
    }
  else
    {
      vi->fullsize = TREE_INT_CST_LOW (declsize);
      vi->size = vi->fullsize;
    }

  insert_vi_for_tree (vi->decl, vi);
  VEC_safe_push (varinfo_t, heap, varmap, vi);
  if (is_global && (!flag_whole_program || !in_ipa_mode)
      && vi->may_have_pointers)
    {
      if (var_ann (decl)
	  && var_ann (decl)->noalias_state == NO_ALIAS_ANYTHING)
	make_constraint_from (vi, vi->id);
      else
	make_constraint_from (vi, escaped_id);
    }

  stats.total_vars++;
  if (use_field_sensitive
      && !vi->is_unknown_size_var
      && var_can_have_subvars (decl)
      && VEC_length (fieldoff_s, fieldstack) > 1
      && VEC_length (fieldoff_s, fieldstack) <= MAX_FIELDS_FOR_FIELD_SENSITIVE)
    {
      unsigned int newindex = VEC_length (varinfo_t, varmap);
      fieldoff_s *fo = NULL;
      bool notokay = false;
      unsigned int i;

      for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
	{
	  if (fo->has_unknown_size
	      || fo->offset < 0)
	    {
	      notokay = true;
	      break;
	    }
	}

      /* We can't sort them if we have a field with a variable sized type,
	 which will make notokay = true.  In that case, we are going to return
	 without creating varinfos for the fields anyway, so sorting them is a
	 waste to boot.  */
      if (!notokay)
	{
	  sort_fieldstack (fieldstack);
	  /* Due to some C++ FE issues, like PR 22488, we might end up
	     what appear to be overlapping fields even though they,
	     in reality, do not overlap.  Until the C++ FE is fixed,
	     we will simply disable field-sensitivity for these cases.  */
	  notokay = check_for_overlaps (fieldstack);
	}


      if (VEC_length (fieldoff_s, fieldstack) != 0)
	fo = VEC_index (fieldoff_s, fieldstack, 0);

      if (fo == NULL || notokay)
	{
	  vi->is_unknown_size_var = 1;
	  vi->fullsize = ~0;
	  vi->size = ~0;
	  vi->is_full_var = true;
	  VEC_free (fieldoff_s, heap, fieldstack);
	  return index;
	}

      vi->size = fo->size;
      vi->offset = fo->offset;
      vi->may_have_pointers = fo->may_have_pointers;
      for (i = VEC_length (fieldoff_s, fieldstack) - 1;
	   i >= 1 && VEC_iterate (fieldoff_s, fieldstack, i, fo);
	   i--)
	{
	  varinfo_t newvi;
	  const char *newname = "NULL";
	  char *tempname;

	  newindex = VEC_length (varinfo_t, varmap);
	  if (dump_file)
	    {
	      asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
			"+" HOST_WIDE_INT_PRINT_DEC,
			vi->name, fo->offset, fo->size);
	      newname = ggc_strdup (tempname);
	      free (tempname);
	    }
	  newvi = new_var_info (decl, newindex, newname);
	  newvi->offset = fo->offset;
	  newvi->size = fo->size;
	  newvi->fullsize = vi->fullsize;
	  newvi->may_have_pointers = fo->may_have_pointers;
	  insert_into_field_list (vi, newvi);
	  VEC_safe_push (varinfo_t, heap, varmap, newvi);
	  if (is_global && (!flag_whole_program || !in_ipa_mode)
	      && newvi->may_have_pointers)
	    make_constraint_from (newvi, escaped_id);

	  stats.total_vars++;
	}
    }
  else
    vi->is_full_var = true;

  VEC_free (fieldoff_s, heap, fieldstack);

  return index;
}

/* Print out the points-to solution for VAR to FILE.  */

void
dump_solution_for_var (FILE *file, unsigned int var)
{
  varinfo_t vi = get_varinfo (var);
  unsigned int i;
  bitmap_iterator bi;

  if (find (var) != var)
    {
      varinfo_t vipt = get_varinfo (find (var));
      fprintf (file, "%s = same as %s\n", vi->name, vipt->name);
    }
  else
    {
      fprintf (file, "%s = { ", vi->name);
      EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
	{
	  fprintf (file, "%s ", get_varinfo (i)->name);
	}
      fprintf (file, "}");
      if (vi->no_tbaa_pruning)
	fprintf (file, " no-tbaa-pruning");
      fprintf (file, "\n");
    }
}

/* Print the points-to solution for VAR to stdout.  */

void
debug_solution_for_var (unsigned int var)
{
  dump_solution_for_var (stdout, var);
}

/* Create varinfo structures for all of the variables in the
   function for intraprocedural mode.  */

static void
intra_create_variable_infos (void)
{
  tree t;
  struct constraint_expr lhs, rhs;

  /* For each incoming pointer argument arg, create the constraint ARG
     = NONLOCAL or a dummy variable if flag_argument_noalias is set.  */
  for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
    {
      varinfo_t p;

      if (!could_have_pointers (t))
	continue;

      /* If flag_argument_noalias is set, then function pointer
	 arguments are guaranteed not to point to each other.  In that
	 case, create an artificial variable PARM_NOALIAS and the
	 constraint ARG = &PARM_NOALIAS.  */
      if (POINTER_TYPE_P (TREE_TYPE (t)) && flag_argument_noalias > 0)
	{
	  varinfo_t vi;
	  tree heapvar = heapvar_lookup (t);

	  lhs.offset = 0;
	  lhs.type = SCALAR;
	  lhs.var  = get_vi_for_tree (t)->id;

	  if (heapvar == NULL_TREE)
	    {
	      var_ann_t ann;
	      heapvar = create_tmp_var_raw (ptr_type_node,
					    "PARM_NOALIAS");
	      DECL_EXTERNAL (heapvar) = 1;
	      if (gimple_referenced_vars (cfun))
		add_referenced_var (heapvar);

	      heapvar_insert (t, heapvar);

	      ann = get_var_ann (heapvar);
	      ann->is_heapvar = 1;
	      if (flag_argument_noalias == 1)
		ann->noalias_state = NO_ALIAS;
	      else if (flag_argument_noalias == 2)
		ann->noalias_state = NO_ALIAS_GLOBAL;
	      else if (flag_argument_noalias == 3)
		ann->noalias_state = NO_ALIAS_ANYTHING;
	      else
		gcc_unreachable ();
	    }

	  vi = get_vi_for_tree (heapvar);
	  vi->is_artificial_var = 1;
	  vi->is_heap_var = 1;
	  vi->is_unknown_size_var = true;
	  vi->fullsize = ~0;
	  vi->size = ~0;
	  rhs.var = vi->id;
	  rhs.type = ADDRESSOF;
	  rhs.offset = 0;
	  for (p = get_varinfo (lhs.var); p; p = p->next)
	    {
	      struct constraint_expr temp = lhs;
	      temp.var = p->id;
	      process_constraint (new_constraint (temp, rhs));
	    }
	}
      else
	{
	  varinfo_t arg_vi = get_vi_for_tree (t);

	  for (p = arg_vi; p; p = p->next)
	    make_constraint_from (p, nonlocal_id);
	}
    }

  /* Add a constraint for a result decl that is passed by reference.  */
  if (DECL_RESULT (cfun->decl)
      && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
    {
      varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));

      for (p = result_vi; p; p = p->next)
        make_constraint_from (p, nonlocal_id);
    }

  /* Add a constraint for the incoming static chain parameter.  */
  if (cfun->static_chain_decl != NULL_TREE)
    {
      varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);

      for (p = chain_vi; p; p = p->next)
	make_constraint_from (p, nonlocal_id);
    }
}

/* Structure used to put solution bitmaps in a hashtable so they can
   be shared among variables with the same points-to set.  */

typedef struct shared_bitmap_info
{
  bitmap pt_vars;
  hashval_t hashcode;
} *shared_bitmap_info_t;
typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;

static htab_t shared_bitmap_table;

/* Hash function for a shared_bitmap_info_t */

static hashval_t
shared_bitmap_hash (const void *p)
{
  const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
  return bi->hashcode;
}

/* Equality function for two shared_bitmap_info_t's. */

static int
shared_bitmap_eq (const void *p1, const void *p2)
{
  const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
  const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
  return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
}

/* Lookup a bitmap in the shared bitmap hashtable, and return an already
   existing instance if there is one, NULL otherwise.  */

static bitmap
shared_bitmap_lookup (bitmap pt_vars)
{
  void **slot;
  struct shared_bitmap_info sbi;

  sbi.pt_vars = pt_vars;
  sbi.hashcode = bitmap_hash (pt_vars);

  slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
				   sbi.hashcode, NO_INSERT);
  if (!slot)
    return NULL;
  else
    return ((shared_bitmap_info_t) *slot)->pt_vars;
}


/* Add a bitmap to the shared bitmap hashtable.  */

static void
shared_bitmap_add (bitmap pt_vars)
{
  void **slot;
  shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);

  sbi->pt_vars = pt_vars;
  sbi->hashcode = bitmap_hash (pt_vars);

  slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
				   sbi->hashcode, INSERT);
  gcc_assert (!*slot);
  *slot = (void *) sbi;
}


/* Set bits in INTO corresponding to the variable uids in solution set
   FROM, which came from variable PTR.
   For variables that are actually dereferenced, we also use type
   based alias analysis to prune the points-to sets.
   IS_DEREFED is true if PTR was directly dereferenced, which we use to
   help determine whether we are we are allowed to prune using TBAA.
   If NO_TBAA_PRUNING is true, we do not perform any TBAA pruning of
   the from set.  Returns the number of pruned variables.  */

static unsigned
set_uids_in_ptset (tree ptr, bitmap into, bitmap from, bool is_derefed,
		   bool no_tbaa_pruning)
{
  unsigned int i;
  bitmap_iterator bi;
  unsigned pruned = 0;

  gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));

  EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      /* The only artificial variables that are allowed in a may-alias
	 set are heap variables.  */
      if (vi->is_artificial_var && !vi->is_heap_var)
	continue;

      if (TREE_CODE (vi->decl) == VAR_DECL
	  || TREE_CODE (vi->decl) == PARM_DECL
	  || TREE_CODE (vi->decl) == RESULT_DECL)
	{
	  /* Just add VI->DECL to the alias set.
	     Don't type prune artificial vars or points-to sets
	     for pointers that have not been dereferenced or with
	     type-based pruning disabled.  */
	  if (vi->is_artificial_var
	      || !is_derefed
	      || no_tbaa_pruning
	      || vi->no_tbaa_pruning)
	    bitmap_set_bit (into, DECL_UID (vi->decl));
	  else
	    {
	      alias_set_type var_alias_set, mem_alias_set;
	      var_alias_set = get_alias_set (vi->decl);
	      mem_alias_set = get_alias_set (TREE_TYPE (TREE_TYPE (ptr)));
	      if (may_alias_p (SSA_NAME_VAR (ptr), mem_alias_set,
			       vi->decl, var_alias_set, true))
	        bitmap_set_bit (into, DECL_UID (vi->decl));
	      else
		++pruned;
	    }
	}
    }

  return pruned;
}


static bool have_alias_info = false;

/* Emit a note for the pointer initialization point DEF.  */

static void
emit_pointer_definition (tree ptr, bitmap visited)
{
  gimple def = SSA_NAME_DEF_STMT (ptr);
  if (gimple_code (def) == GIMPLE_PHI)
    {
      use_operand_p argp;
      ssa_op_iter oi;

      FOR_EACH_PHI_ARG (argp, def, oi, SSA_OP_USE)
	{
	  tree arg = USE_FROM_PTR (argp);
	  if (TREE_CODE (arg) == SSA_NAME)
	    {
	      if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
		emit_pointer_definition (arg, visited);
	    }
	  else
	    inform (0, "initialized from %qE", arg);
	}
    }
  else if (!gimple_nop_p (def))
    inform (gimple_location (def), "initialized from here");
}

/* Emit a strict aliasing warning for dereferencing the pointer PTR.  */

static void
emit_alias_warning (tree ptr)
{
  gimple use;
  imm_use_iterator ui;
  bool warned = false;

  FOR_EACH_IMM_USE_STMT (use, ui, ptr)
    {
      tree deref = NULL_TREE;

      if (gimple_has_lhs (use))
	{
	  tree lhs = get_base_address (gimple_get_lhs (use));
	  if (lhs
	      && INDIRECT_REF_P (lhs)
	      && TREE_OPERAND (lhs, 0) == ptr)
	    deref = lhs;
	}
      if (gimple_assign_single_p (use))
	{
	  tree rhs = get_base_address (gimple_assign_rhs1 (use));
	  if (rhs
	      && INDIRECT_REF_P (rhs)
	      && TREE_OPERAND (rhs, 0) == ptr)
	    deref = rhs;
	}
      else if (is_gimple_call (use))
	{
	  unsigned i;
	  for (i = 0; i < gimple_call_num_args (use); ++i)
	    {
	      tree op = get_base_address (gimple_call_arg (use, i));
	      if (op
		  && INDIRECT_REF_P (op)
		  && TREE_OPERAND (op, 0) == ptr)
		deref = op;
	    }
	}
      if (deref
	  && !TREE_NO_WARNING (deref))
	{
	  TREE_NO_WARNING (deref) = 1;
	  warned |= warning_at (gimple_location (use), OPT_Wstrict_aliasing,
				"dereferencing pointer %qD does break "
				"strict-aliasing rules", SSA_NAME_VAR (ptr));
	}
    }
  if (warned)
    {
      bitmap visited = BITMAP_ALLOC (NULL);
      emit_pointer_definition (ptr, visited);
      BITMAP_FREE (visited);
    }
}

/* Given a pointer variable P, fill in its points-to set, or return
   false if we can't.
   Rather than return false for variables that point-to anything, we
   instead find the corresponding SMT, and merge in its aliases.  In
   addition to these aliases, we also set the bits for the SMT's
   themselves and their subsets, as SMT's are still in use by
   non-SSA_NAME's, and pruning may eliminate every one of their
   aliases.  In such a case, if we did not include the right set of
   SMT's in the points-to set of the variable, we'd end up with
   statements that do not conflict but should.  */

bool
find_what_p_points_to (tree p)
{
  tree lookup_p = p;
  varinfo_t vi;

  if (!have_alias_info)
    return false;

  /* For parameters, get at the points-to set for the actual parm
     decl.  */
  if (TREE_CODE (p) == SSA_NAME
      && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
      && SSA_NAME_IS_DEFAULT_DEF (p))
    lookup_p = SSA_NAME_VAR (p);

  vi = lookup_vi_for_tree (lookup_p);
  if (vi)
    {
      if (vi->is_artificial_var)
	return false;

      /* See if this is a field or a structure.  */
      if (vi->size != vi->fullsize)
	{
	  /* Nothing currently asks about structure fields directly,
	     but when they do, we need code here to hand back the
	     points-to set.  */
	  return false;
	}
      else
	{
	  struct ptr_info_def *pi = get_ptr_info (p);
	  unsigned int i, pruned;
	  bitmap_iterator bi;
	  bool was_pt_anything = false;
	  bitmap finished_solution;
	  bitmap result;

	  if (!pi->memory_tag_needed)
	    return false;

	  /* This variable may have been collapsed, let's get the real
	     variable.  */
	  vi = get_varinfo (find (vi->id));

	  /* Translate artificial variables into SSA_NAME_PTR_INFO
	     attributes.  */
	  EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
	    {
	      varinfo_t vi = get_varinfo (i);

	      if (vi->is_artificial_var)
		{
		  /* FIXME.  READONLY should be handled better so that
		     flow insensitive aliasing can disregard writable
		     aliases.  */
		  if (vi->id == nothing_id)
		    pi->pt_null = 1;
		  else if (vi->id == anything_id
			   || vi->id == nonlocal_id
			   || vi->id == escaped_id
			   || vi->id == callused_id)
		    was_pt_anything = 1;
		  else if (vi->id == readonly_id)
		    was_pt_anything = 1;
		  else if (vi->id == integer_id)
		    was_pt_anything = 1;
		  else if (vi->is_heap_var)
		    pi->pt_global_mem = 1;
		}
	    }

	  /* Instead of doing extra work, simply do not create
	     points-to information for pt_anything pointers.  This
	     will cause the operand scanner to fall back to the
	     type-based SMT and its aliases.  Which is the best
	     we could do here for the points-to set as well.  */
	  if (was_pt_anything)
	    return false;

	  /* Share the final set of variables when possible.  */
	  finished_solution = BITMAP_GGC_ALLOC ();
	  stats.points_to_sets_created++;

	  pruned = set_uids_in_ptset (p, finished_solution, vi->solution,
				      pi->is_dereferenced,
				      vi->no_tbaa_pruning);
	  result = shared_bitmap_lookup (finished_solution);

	  if (!result)
	    {
	      shared_bitmap_add (finished_solution);
	      pi->pt_vars = finished_solution;
	    }
	  else
	    {
	      pi->pt_vars = result;
	      bitmap_clear (finished_solution);
	    }

	  if (bitmap_empty_p (pi->pt_vars))
	    {
	      pi->pt_vars = NULL;
	      if (pruned > 0
		  && !pi->pt_null
		  && pi->is_dereferenced
		  && warn_strict_aliasing > 0
		  && !SSA_NAME_IS_DEFAULT_DEF (p))
		{
		  if (dump_file && dump_flags & TDF_DETAILS)
		    {
		      fprintf (dump_file, "alias warning for ");
		      print_generic_expr (dump_file, p, 0);
		      fprintf (dump_file, "\n");
		    }
		  emit_alias_warning (p);
		}
	    }

	  return true;
	}
    }

  return false;
}

/* Mark the ESCAPED solution as call clobbered.  Returns false if
   pt_anything escaped which needs all locals that have their address
   taken marked call clobbered as well.  */

bool
clobber_what_escaped (void)
{
  varinfo_t vi;
  unsigned int i;
  bitmap_iterator bi;

  if (!have_alias_info)
    return false;

  /* This variable may have been collapsed, let's get the real
     variable for escaped_id.  */
  vi = get_varinfo (find (escaped_id));

  /* If call-used memory escapes we need to include it in the
     set of escaped variables.  This can happen if a pure
     function returns a pointer and this pointer escapes.  */
  if (bitmap_bit_p (vi->solution, callused_id))
    {
      varinfo_t cu_vi = get_varinfo (find (callused_id));
      bitmap_ior_into (vi->solution, cu_vi->solution);
    }

  /* Mark variables in the solution call-clobbered.  */
  EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      if (vi->is_artificial_var)
	{
	  /* nothing_id and readonly_id do not cause any
	     call clobber ops.  For anything_id and integer_id
	     we need to clobber all addressable vars.  */
	  if (vi->id == anything_id
	      || vi->id == integer_id)
	    return false;
	}

      /* Only artificial heap-vars are further interesting.  */
      if (vi->is_artificial_var && !vi->is_heap_var)
	continue;

      if ((TREE_CODE (vi->decl) == VAR_DECL
	   || TREE_CODE (vi->decl) == PARM_DECL
	   || TREE_CODE (vi->decl) == RESULT_DECL)
	  && !unmodifiable_var_p (vi->decl))
	mark_call_clobbered (vi->decl, ESCAPE_TO_CALL);
    }

  return true;
}

/* Compute the call-used variables.  */

void
compute_call_used_vars (void)
{
  varinfo_t vi;
  unsigned int i;
  bitmap_iterator bi;
  bool has_anything_id = false;

  if (!have_alias_info)
    return;

  /* This variable may have been collapsed, let's get the real
     variable for escaped_id.  */
  vi = get_varinfo (find (callused_id));

  /* Mark variables in the solution call-clobbered.  */
  EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      if (vi->is_artificial_var)
	{
	  /* For anything_id and integer_id we need to make
	     all local addressable vars call-used.  */
	  if (vi->id == anything_id
	      || vi->id == integer_id)
	    has_anything_id = true;
	}

      /* Only artificial heap-vars are further interesting.  */
      if (vi->is_artificial_var && !vi->is_heap_var)
	continue;

      if ((TREE_CODE (vi->decl) == VAR_DECL
	   || TREE_CODE (vi->decl) == PARM_DECL
	   || TREE_CODE (vi->decl) == RESULT_DECL)
	  && !unmodifiable_var_p (vi->decl))
	bitmap_set_bit (gimple_call_used_vars (cfun), DECL_UID (vi->decl));
    }

  /* If anything is call-used, add all addressable locals to the set.  */
  if (has_anything_id)
    bitmap_ior_into (gimple_call_used_vars (cfun),
		     gimple_addressable_vars (cfun));
}


/* Dump points-to information to OUTFILE.  */

void
dump_sa_points_to_info (FILE *outfile)
{
  unsigned int i;

  fprintf (outfile, "\nPoints-to sets\n\n");

  if (dump_flags & TDF_STATS)
    {
      fprintf (outfile, "Stats:\n");
      fprintf (outfile, "Total vars:               %d\n", stats.total_vars);
      fprintf (outfile, "Non-pointer vars:          %d\n",
	       stats.nonpointer_vars);
      fprintf (outfile, "Statically unified vars:  %d\n",
	       stats.unified_vars_static);
      fprintf (outfile, "Dynamically unified vars: %d\n",
	       stats.unified_vars_dynamic);
      fprintf (outfile, "Iterations:               %d\n", stats.iterations);
      fprintf (outfile, "Number of edges:          %d\n", stats.num_edges);
      fprintf (outfile, "Number of implicit edges: %d\n",
	       stats.num_implicit_edges);
    }

  for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
    dump_solution_for_var (outfile, i);
}


/* Debug points-to information to stderr.  */

void
debug_sa_points_to_info (void)
{
  dump_sa_points_to_info (stderr);
}


/* Initialize the always-existing constraint variables for NULL
   ANYTHING, READONLY, and INTEGER */

static void
init_base_vars (void)
{
  struct constraint_expr lhs, rhs;

  /* Create the NULL variable, used to represent that a variable points
     to NULL.  */
  nothing_tree = create_tmp_var_raw (void_type_node, "NULL");
  var_nothing = new_var_info (nothing_tree, nothing_id, "NULL");
  insert_vi_for_tree (nothing_tree, var_nothing);
  var_nothing->is_artificial_var = 1;
  var_nothing->offset = 0;
  var_nothing->size = ~0;
  var_nothing->fullsize = ~0;
  var_nothing->is_special_var = 1;
  VEC_safe_push (varinfo_t, heap, varmap, var_nothing);

  /* Create the ANYTHING variable, used to represent that a variable
     points to some unknown piece of memory.  */
  anything_tree = create_tmp_var_raw (void_type_node, "ANYTHING");
  var_anything = new_var_info (anything_tree, anything_id, "ANYTHING");
  insert_vi_for_tree (anything_tree, var_anything);
  var_anything->is_artificial_var = 1;
  var_anything->size = ~0;
  var_anything->offset = 0;
  var_anything->next = NULL;
  var_anything->fullsize = ~0;
  var_anything->is_special_var = 1;

  /* Anything points to anything.  This makes deref constraints just
     work in the presence of linked list and other p = *p type loops,
     by saying that *ANYTHING = ANYTHING. */
  VEC_safe_push (varinfo_t, heap, varmap, var_anything);
  lhs.type = SCALAR;
  lhs.var = anything_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = anything_id;
  rhs.offset = 0;

  /* This specifically does not use process_constraint because
     process_constraint ignores all anything = anything constraints, since all
     but this one are redundant.  */
  VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));

  /* Create the READONLY variable, used to represent that a variable
     points to readonly memory.  */
  readonly_tree = create_tmp_var_raw (void_type_node, "READONLY");
  var_readonly = new_var_info (readonly_tree, readonly_id, "READONLY");
  var_readonly->is_artificial_var = 1;
  var_readonly->offset = 0;
  var_readonly->size = ~0;
  var_readonly->fullsize = ~0;
  var_readonly->next = NULL;
  var_readonly->is_special_var = 1;
  insert_vi_for_tree (readonly_tree, var_readonly);
  VEC_safe_push (varinfo_t, heap, varmap, var_readonly);

  /* readonly memory points to anything, in order to make deref
     easier.  In reality, it points to anything the particular
     readonly variable can point to, but we don't track this
     separately. */
  lhs.type = SCALAR;
  lhs.var = readonly_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = readonly_id;  /* FIXME */
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));

  /* Create the ESCAPED variable, used to represent the set of escaped
     memory.  */
  escaped_tree = create_tmp_var_raw (void_type_node, "ESCAPED");
  var_escaped = new_var_info (escaped_tree, escaped_id, "ESCAPED");
  insert_vi_for_tree (escaped_tree, var_escaped);
  var_escaped->is_artificial_var = 1;
  var_escaped->offset = 0;
  var_escaped->size = ~0;
  var_escaped->fullsize = ~0;
  var_escaped->is_special_var = 0;
  VEC_safe_push (varinfo_t, heap, varmap, var_escaped);
  gcc_assert (VEC_index (varinfo_t, varmap, 3) == var_escaped);

  /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc.  */
  lhs.type = SCALAR;
  lhs.var = escaped_id;
  lhs.offset = 0;
  rhs.type = DEREF;
  rhs.var = escaped_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));

  /* Create the NONLOCAL variable, used to represent the set of nonlocal
     memory.  */
  nonlocal_tree = create_tmp_var_raw (void_type_node, "NONLOCAL");
  var_nonlocal = new_var_info (nonlocal_tree, nonlocal_id, "NONLOCAL");
  insert_vi_for_tree (nonlocal_tree, var_nonlocal);
  var_nonlocal->is_artificial_var = 1;
  var_nonlocal->offset = 0;
  var_nonlocal->size = ~0;
  var_nonlocal->fullsize = ~0;
  var_nonlocal->is_special_var = 1;
  VEC_safe_push (varinfo_t, heap, varmap, var_nonlocal);

  /* Nonlocal memory points to escaped (which includes nonlocal),
     in order to make deref easier.  */
  lhs.type = SCALAR;
  lhs.var = nonlocal_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = escaped_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));

  /* Create the CALLUSED variable, used to represent the set of call-used
     memory.  */
  callused_tree = create_tmp_var_raw (void_type_node, "CALLUSED");
  var_callused = new_var_info (callused_tree, callused_id, "CALLUSED");
  insert_vi_for_tree (callused_tree, var_callused);
  var_callused->is_artificial_var = 1;
  var_callused->offset = 0;
  var_callused->size = ~0;
  var_callused->fullsize = ~0;
  var_callused->is_special_var = 0;
  VEC_safe_push (varinfo_t, heap, varmap, var_callused);

  /* CALLUSED = *CALLUSED, because call-used is may-deref'd at calls, etc.  */
  lhs.type = SCALAR;
  lhs.var = callused_id;
  lhs.offset = 0;
  rhs.type = DEREF;
  rhs.var = callused_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));

  /* Create the STOREDANYTHING variable, used to represent the set of
     variables stored to *ANYTHING.  */
  storedanything_tree = create_tmp_var_raw (ptr_type_node, "STOREDANYTHING");
  var_storedanything = new_var_info (storedanything_tree, storedanything_id,
				     "STOREDANYTHING");
  insert_vi_for_tree (storedanything_tree, var_storedanything);
  var_storedanything->is_artificial_var = 1;
  var_storedanything->offset = 0;
  var_storedanything->size = ~0;
  var_storedanything->fullsize = ~0;
  var_storedanything->is_special_var = 0;
  VEC_safe_push (varinfo_t, heap, varmap, var_storedanything);

  /* Create the INTEGER variable, used to represent that a variable points
     to an INTEGER.  */
  integer_tree = create_tmp_var_raw (void_type_node, "INTEGER");
  var_integer = new_var_info (integer_tree, integer_id, "INTEGER");
  insert_vi_for_tree (integer_tree, var_integer);
  var_integer->is_artificial_var = 1;
  var_integer->size = ~0;
  var_integer->fullsize = ~0;
  var_integer->offset = 0;
  var_integer->next = NULL;
  var_integer->is_special_var = 1;
  VEC_safe_push (varinfo_t, heap, varmap, var_integer);

  /* INTEGER = ANYTHING, because we don't know where a dereference of
     a random integer will point to.  */
  lhs.type = SCALAR;
  lhs.var = integer_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = anything_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));

  /* *ESCAPED = &ESCAPED.  This is true because we have to assume
     everything pointed to by escaped can also point to escaped. */
  lhs.type = DEREF;
  lhs.var = escaped_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = escaped_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));

  /* *ESCAPED = &NONLOCAL.  This is true because we have to assume
     everything pointed to by escaped can also point to nonlocal. */
  lhs.type = DEREF;
  lhs.var = escaped_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = nonlocal_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));
}

/* Initialize things necessary to perform PTA */

static void
init_alias_vars (void)
{
  use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);

  bitmap_obstack_initialize (&pta_obstack);
  bitmap_obstack_initialize (&oldpta_obstack);
  bitmap_obstack_initialize (&predbitmap_obstack);

  constraint_pool = create_alloc_pool ("Constraint pool",
				       sizeof (struct constraint), 30);
  variable_info_pool = create_alloc_pool ("Variable info pool",
					  sizeof (struct variable_info), 30);
  constraints = VEC_alloc (constraint_t, heap, 8);
  varmap = VEC_alloc (varinfo_t, heap, 8);
  vi_for_tree = pointer_map_create ();

  memset (&stats, 0, sizeof (stats));
  shared_bitmap_table = htab_create (511, shared_bitmap_hash,
				     shared_bitmap_eq, free);
  init_base_vars ();
}

/* Remove the REF and ADDRESS edges from GRAPH, as well as all the
   predecessor edges.  */

static void
remove_preds_and_fake_succs (constraint_graph_t graph)
{
  unsigned int i;

  /* Clear the implicit ref and address nodes from the successor
     lists.  */
  for (i = 0; i < FIRST_REF_NODE; i++)
    {
      if (graph->succs[i])
	bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
			    FIRST_REF_NODE * 2);
    }

  /* Free the successor list for the non-ref nodes.  */
  for (i = FIRST_REF_NODE; i < graph->size; i++)
    {
      if (graph->succs[i])
	BITMAP_FREE (graph->succs[i]);
    }

  /* Now reallocate the size of the successor list as, and blow away
     the predecessor bitmaps.  */
  graph->size = VEC_length (varinfo_t, varmap);
  graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);

  free (graph->implicit_preds);
  graph->implicit_preds = NULL;
  free (graph->preds);
  graph->preds = NULL;
  bitmap_obstack_release (&predbitmap_obstack);
}

/* Compute the set of variables we can't TBAA prune.  */

static void
compute_tbaa_pruning (void)
{
  unsigned int size = VEC_length (varinfo_t, varmap);
  unsigned int i;
  bool any;

  changed_count = 0;
  changed = sbitmap_alloc (size);
  sbitmap_zero (changed);

  /* Mark all initial no_tbaa_pruning nodes as changed.  */
  any = false;
  for (i = 0; i < size; ++i)
    {
      varinfo_t ivi = get_varinfo (i);

      if (find (i) == i && ivi->no_tbaa_pruning)
	{
	  any = true;
	  if ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
	      || VEC_length (constraint_t, graph->complex[i]) > 0)
	    {
	      SET_BIT (changed, i);
	      ++changed_count;
	    }
	}
    }

  while (changed_count > 0)
    {
      struct topo_info *ti = init_topo_info ();
      ++stats.iterations;

      compute_topo_order (graph, ti);

      while (VEC_length (unsigned, ti->topo_order) != 0)
	{
	  bitmap_iterator bi;

	  i = VEC_pop (unsigned, ti->topo_order);

	  /* If this variable is not a representative, skip it.  */
	  if (find (i) != i)
	    continue;

	  /* If the node has changed, we need to process the complex
	     constraints and outgoing edges again.  */
	  if (TEST_BIT (changed, i))
	    {
	      unsigned int j;
	      constraint_t c;
	      VEC(constraint_t,heap) *complex = graph->complex[i];

	      RESET_BIT (changed, i);
	      --changed_count;

	      /* Process the complex copy constraints.  */
	      for (j = 0; VEC_iterate (constraint_t, complex, j, c); ++j)
		{
		  if (c->lhs.type == SCALAR && c->rhs.type == SCALAR)
		    {
		      varinfo_t lhsvi = get_varinfo (find (c->lhs.var));

		      if (!lhsvi->no_tbaa_pruning)
			{
			  lhsvi->no_tbaa_pruning = true;
			  if (!TEST_BIT (changed, lhsvi->id))
			    {
			      SET_BIT (changed, lhsvi->id);
			      ++changed_count;
			    }
			}
		    }
		}

	      /* Propagate to all successors.  */
	      EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
		{
		  unsigned int to = find (j);
		  varinfo_t tovi = get_varinfo (to);

		  /* Don't propagate to ourselves.  */
		  if (to == i)
		    continue;

		  if (!tovi->no_tbaa_pruning)
		    {
		      tovi->no_tbaa_pruning = true;
		      if (!TEST_BIT (changed, to))
			{
			  SET_BIT (changed, to);
			  ++changed_count;
			}
		    }
		}
	    }
	}

      free_topo_info (ti);
    }

  sbitmap_free (changed);

  if (any)
    {
      for (i = 0; i < size; ++i)
	{
	  varinfo_t ivi = get_varinfo (i);
	  varinfo_t ivip = get_varinfo (find (i));

	  if (ivip->no_tbaa_pruning)
	    {
	      tree var = ivi->decl;

	      if (TREE_CODE (var) == SSA_NAME)
		var = SSA_NAME_VAR (var);

	      if (POINTER_TYPE_P (TREE_TYPE (var)))
		{
		  DECL_NO_TBAA_P (var) = 1;

		  /* Tell the RTL layer that this pointer can alias
		     anything.  */
		  DECL_POINTER_ALIAS_SET (var) = 0;
		}
	    }
	}
    }
}

/* Create points-to sets for the current function.  See the comments
   at the start of the file for an algorithmic overview.  */

void
compute_points_to_sets (void)
{
  struct scc_info *si;
  basic_block bb;

  timevar_push (TV_TREE_PTA);

  init_alias_vars ();
  init_alias_heapvars ();

  intra_create_variable_infos ();

  /* Now walk all statements and derive aliases.  */
  FOR_EACH_BB (bb)
    {
      gimple_stmt_iterator gsi;

      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple phi = gsi_stmt (gsi);

	  if (is_gimple_reg (gimple_phi_result (phi)))
	    find_func_aliases (phi);
	}

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	find_func_aliases (gsi_stmt (gsi));
    }


  if (dump_file)
    {
      fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
      dump_constraints (dump_file);
    }

  if (dump_file)
    fprintf (dump_file,
	     "\nCollapsing static cycles and doing variable "
	     "substitution\n");

  init_graph (VEC_length (varinfo_t, varmap) * 2);
  
  if (dump_file)
    fprintf (dump_file, "Building predecessor graph\n");
  build_pred_graph ();
  
  if (dump_file)
    fprintf (dump_file, "Detecting pointer and location "
	     "equivalences\n");
  si = perform_var_substitution (graph);
  
  if (dump_file)
    fprintf (dump_file, "Rewriting constraints and unifying "
	     "variables\n");
  rewrite_constraints (graph, si);

  build_succ_graph ();
  free_var_substitution_info (si);

  if (dump_file && (dump_flags & TDF_GRAPH))
    dump_constraint_graph (dump_file);

  move_complex_constraints (graph);

  if (dump_file)
    fprintf (dump_file, "Uniting pointer but not location equivalent "
	     "variables\n");
  unite_pointer_equivalences (graph);

  if (dump_file)
    fprintf (dump_file, "Finding indirect cycles\n");
  find_indirect_cycles (graph);

  /* Implicit nodes and predecessors are no longer necessary at this
     point. */
  remove_preds_and_fake_succs (graph);

  if (dump_file)
    fprintf (dump_file, "Solving graph\n");

  solve_graph (graph);

  compute_tbaa_pruning ();

  if (dump_file)
    dump_sa_points_to_info (dump_file);

  have_alias_info = true;

  timevar_pop (TV_TREE_PTA);
}


/* Delete created points-to sets.  */

void
delete_points_to_sets (void)
{
  unsigned int i;

  htab_delete (shared_bitmap_table);
  if (dump_file && (dump_flags & TDF_STATS))
    fprintf (dump_file, "Points to sets created:%d\n",
	     stats.points_to_sets_created);

  pointer_map_destroy (vi_for_tree);
  bitmap_obstack_release (&pta_obstack);
  VEC_free (constraint_t, heap, constraints);

  for (i = 0; i < graph->size; i++)
    VEC_free (constraint_t, heap, graph->complex[i]);
  free (graph->complex);

  free (graph->rep);
  free (graph->succs);
  free (graph->pe);
  free (graph->pe_rep);
  free (graph->indirect_cycles);
  free (graph);

  VEC_free (varinfo_t, heap, varmap);
  free_alloc_pool (variable_info_pool);
  free_alloc_pool (constraint_pool);
  have_alias_info = false;
}

/* Return true if we should execute IPA PTA.  */
static bool
gate_ipa_pta (void)
{
  return (flag_ipa_pta
	  /* Don't bother doing anything if the program has errors.  */
	  && !(errorcount || sorrycount));
}

/* Execute the driver for IPA PTA.  */
static unsigned int
ipa_pta_execute (void)
{
  struct cgraph_node *node;
  struct scc_info *si;

  in_ipa_mode = 1;
  init_alias_heapvars ();
  init_alias_vars ();

  for (node = cgraph_nodes; node; node = node->next)
    {
      if (!node->analyzed || cgraph_is_master_clone (node))
	{
	  unsigned int varid;

	  varid = create_function_info_for (node->decl,
					    cgraph_node_name (node));
	  if (node->local.externally_visible)
	    {
	      varinfo_t fi = get_varinfo (varid);
	      for (; fi; fi = fi->next)
		make_constraint_from (fi, anything_id);
	    }
	}
    }
  for (node = cgraph_nodes; node; node = node->next)
    {
      if (node->analyzed && cgraph_is_master_clone (node))
	{
	  struct function *func = DECL_STRUCT_FUNCTION (node->decl);
	  basic_block bb;
	  tree old_func_decl = current_function_decl;
	  if (dump_file)
	    fprintf (dump_file,
		     "Generating constraints for %s\n",
		     cgraph_node_name (node));
	  push_cfun (func);
	  current_function_decl = node->decl;

	  FOR_EACH_BB_FN (bb, func)
	    {
	      gimple_stmt_iterator gsi;

	      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
		   gsi_next (&gsi))
		{
		  gimple phi = gsi_stmt (gsi);

		  if (is_gimple_reg (gimple_phi_result (phi)))
		    find_func_aliases (phi);
		}

	      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
		find_func_aliases (gsi_stmt (gsi));
	    }
	  current_function_decl = old_func_decl;
	  pop_cfun ();
	}
      else
	{
	  /* Make point to anything.  */
	}
    }

  if (dump_file)
    {
      fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
      dump_constraints (dump_file);
    }

  if (dump_file)
    fprintf (dump_file,
	     "\nCollapsing static cycles and doing variable "
	     "substitution:\n");

  init_graph (VEC_length (varinfo_t, varmap) * 2);
  build_pred_graph ();
  si = perform_var_substitution (graph);
  rewrite_constraints (graph, si);

  build_succ_graph ();
  free_var_substitution_info (si);
  move_complex_constraints (graph);
  unite_pointer_equivalences (graph);
  find_indirect_cycles (graph);

  /* Implicit nodes and predecessors are no longer necessary at this
     point. */
  remove_preds_and_fake_succs (graph);

  if (dump_file)
    fprintf (dump_file, "\nSolving graph\n");

  solve_graph (graph);

  if (dump_file)
    dump_sa_points_to_info (dump_file);

  in_ipa_mode = 0;
  delete_alias_heapvars ();
  delete_points_to_sets ();
  return 0;
}

struct simple_ipa_opt_pass pass_ipa_pta =
{
 {
  SIMPLE_IPA_PASS,
  "pta",		                /* name */
  gate_ipa_pta,			/* gate */
  ipa_pta_execute,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_IPA_PTA,		        /* tv_id */
  0,	                                /* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_update_ssa                       /* todo_flags_finish */
 }
};

/* Initialize the heapvar for statement mapping.  */
void
init_alias_heapvars (void)
{
  if (!heapvar_for_stmt)
    heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, tree_map_eq,
					NULL);
}

void
delete_alias_heapvars (void)
{
  htab_delete (heapvar_for_stmt);
  heapvar_for_stmt = NULL;
}

#include "gt-tree-ssa-structalias.h"