view gcc/print-rtl.c @ 138:fc828634a951

merge
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 08 Nov 2018 14:17:14 +0900
parents 84e7813d76e9
children 1830386684a0
line wrap: on
line source

/* Print RTL for GCC.
   Copyright (C) 1987-2018 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* This file is compiled twice: once for the generator programs,
   once for the compiler.  */
#ifdef GENERATOR_FILE
#include "bconfig.h"
#else
#include "config.h"
#endif

#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"

/* These headers all define things which are not available in
   generator programs.  */
#ifndef GENERATOR_FILE
#include "alias.h"
#include "tree.h"
#include "basic-block.h"
#include "print-tree.h"
#include "flags.h"
#include "predict.h"
#include "function.h"
#include "cfg.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-pretty-print.h"
#include "alloc-pool.h"
#include "cselib.h"
#include "dumpfile.h"	/* for dump_flags */
#include "dwarf2out.h"
#include "pretty-print.h"
#endif

#include "print-rtl.h"
#include "rtl-iter.h"

/* String printed at beginning of each RTL when it is dumped.
   This string is set to ASM_COMMENT_START when the RTL is dumped in
   the assembly output file.  */
const char *print_rtx_head = "";

#ifdef GENERATOR_FILE
/* These are defined from the .opt file when not used in generator
   programs.  */

/* Nonzero means suppress output of instruction numbers
   in debugging dumps.
   This must be defined here so that programs like gencodes can be linked.  */
int flag_dump_unnumbered = 0;

/* Nonzero means suppress output of instruction numbers for previous
   and next insns in debugging dumps.
   This must be defined here so that programs like gencodes can be linked.  */
int flag_dump_unnumbered_links = 0;
#endif

/* Constructor for rtx_writer.  */

rtx_writer::rtx_writer (FILE *outf, int ind, bool simple, bool compact,
			rtx_reuse_manager *reuse_manager)
: m_outfile (outf), m_sawclose (0), m_indent (ind),
  m_in_call_function_usage (false), m_simple (simple), m_compact (compact),
  m_rtx_reuse_manager (reuse_manager)
{
}

#ifndef GENERATOR_FILE

/* rtx_reuse_manager's ctor.  */

rtx_reuse_manager::rtx_reuse_manager ()
: m_next_id (0)
{
}

/* Determine if X is of a kind suitable for dumping via reuse_rtx.  */

static bool
uses_rtx_reuse_p (const_rtx x)
{
  if (x == NULL)
    return false;

  switch (GET_CODE (x))
    {
    case DEBUG_EXPR:
    case VALUE:
    case SCRATCH:
      return true;

    /* We don't use reuse_rtx for consts.  */
    CASE_CONST_UNIQUE:
    default:
      return false;
    }
}

/* Traverse X and its descendents, determining if we see any rtx more than
   once.  Any rtx suitable for "reuse_rtx" that is seen more than once is
   assigned an ID.  */

void
rtx_reuse_manager::preprocess (const_rtx x)
{
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, x, NONCONST)
    if (uses_rtx_reuse_p (*iter))
      {
	if (int *count = m_rtx_occurrence_count.get (*iter))
	  {
	    if (*(count++) == 1)
	      m_rtx_reuse_ids.put (*iter, m_next_id++);
	  }
	else
	  m_rtx_occurrence_count.put (*iter, 1);
      }
}

/* Return true iff X has been assigned a reuse ID.  If it has,
   and OUT is non-NULL, then write the reuse ID to *OUT.  */

bool
rtx_reuse_manager::has_reuse_id (const_rtx x, int *out)
{
  int *id = m_rtx_reuse_ids.get (x);
  if (id)
    {
      if (out)
	*out = *id;
      return true;
    }
  else
    return false;
}

/* Determine if set_seen_def has been called for the given reuse ID.  */

bool
rtx_reuse_manager::seen_def_p (int reuse_id)
{
  return bitmap_bit_p (m_defs_seen, reuse_id);
}

/* Record that the definition of the given reuse ID has been seen.  */

void
rtx_reuse_manager::set_seen_def (int reuse_id)
{
  bitmap_set_bit (m_defs_seen, reuse_id);
}

#endif /* #ifndef GENERATOR_FILE */

#ifndef GENERATOR_FILE
void
print_mem_expr (FILE *outfile, const_tree expr)
{
  fputc (' ', outfile);
  print_generic_expr (outfile, CONST_CAST_TREE (expr), dump_flags);
}
#endif

/* Print X to FILE.  */

static void
print_poly_int (FILE *file, poly_int64 x)
{
  HOST_WIDE_INT const_x;
  if (x.is_constant (&const_x))
    fprintf (file, HOST_WIDE_INT_PRINT_DEC, const_x);
  else
    {
      fprintf (file, "[" HOST_WIDE_INT_PRINT_DEC, x.coeffs[0]);
      for (int i = 1; i < NUM_POLY_INT_COEFFS; ++i)
	fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC, x.coeffs[i]);
      fprintf (file, "]");
    }
}

/* Subroutine of print_rtx_operand for handling code '0'.
   0 indicates a field for internal use that should not be printed.
   However there are various special cases, such as the third field
   of a NOTE, where it indicates that the field has several different
   valid contents.  */

void
rtx_writer::print_rtx_operand_code_0 (const_rtx in_rtx ATTRIBUTE_UNUSED,
				      int idx ATTRIBUTE_UNUSED)
{
#ifndef GENERATOR_FILE
  if (idx == 1 && GET_CODE (in_rtx) == SYMBOL_REF)
    {
      int flags = SYMBOL_REF_FLAGS (in_rtx);
      if (flags)
	fprintf (m_outfile, " [flags %#x]", flags);
      tree decl = SYMBOL_REF_DECL (in_rtx);
      if (decl)
	print_node_brief (m_outfile, "", decl, dump_flags);
    }
  else if (idx == 3 && NOTE_P (in_rtx))
    {
      switch (NOTE_KIND (in_rtx))
	{
	case NOTE_INSN_EH_REGION_BEG:
	case NOTE_INSN_EH_REGION_END:
	  if (flag_dump_unnumbered)
	    fprintf (m_outfile, " #");
	  else
	    fprintf (m_outfile, " %d", NOTE_EH_HANDLER (in_rtx));
	  m_sawclose = 1;
	  break;

	case NOTE_INSN_BLOCK_BEG:
	case NOTE_INSN_BLOCK_END:
	  dump_addr (m_outfile, " ", NOTE_BLOCK (in_rtx));
	  m_sawclose = 1;
	  break;

	case NOTE_INSN_BASIC_BLOCK:
	  {
	    basic_block bb = NOTE_BASIC_BLOCK (in_rtx);
	    if (bb != 0)
	      fprintf (m_outfile, " [bb %d]", bb->index);
	    break;
	  }

	case NOTE_INSN_DELETED_LABEL:
	case NOTE_INSN_DELETED_DEBUG_LABEL:
	  {
	    const char *label = NOTE_DELETED_LABEL_NAME (in_rtx);
	    if (label)
	      fprintf (m_outfile, " (\"%s\")", label);
	    else
	      fprintf (m_outfile, " \"\"");
	  }
	  break;

	case NOTE_INSN_SWITCH_TEXT_SECTIONS:
	  {
	    basic_block bb = NOTE_BASIC_BLOCK (in_rtx);
	    if (bb != 0)
	      fprintf (m_outfile, " [bb %d]", bb->index);
	    break;
	  }

	case NOTE_INSN_VAR_LOCATION:
	  fputc (' ', m_outfile);
	  print_rtx (NOTE_VAR_LOCATION (in_rtx));
	  break;

	case NOTE_INSN_CFI:
	  fputc ('\n', m_outfile);
	  output_cfi_directive (m_outfile, NOTE_CFI (in_rtx));
	  fputc ('\t', m_outfile);
	  break;

	case NOTE_INSN_BEGIN_STMT:
	case NOTE_INSN_INLINE_ENTRY:
#ifndef GENERATOR_FILE
	  {
	    expanded_location xloc
	      = expand_location (NOTE_MARKER_LOCATION (in_rtx));
	    fprintf (m_outfile, " %s:%i", xloc.file, xloc.line);
	  }
#endif
	  break;

	default:
	  break;
	}
    }
  else if (idx == 7 && JUMP_P (in_rtx) && JUMP_LABEL (in_rtx) != NULL
	   && !m_compact)
    {
      /* Output the JUMP_LABEL reference.  */
      fprintf (m_outfile, "\n%s%*s -> ", print_rtx_head, m_indent * 2, "");
      if (GET_CODE (JUMP_LABEL (in_rtx)) == RETURN)
	fprintf (m_outfile, "return");
      else if (GET_CODE (JUMP_LABEL (in_rtx)) == SIMPLE_RETURN)
	fprintf (m_outfile, "simple_return");
      else
	fprintf (m_outfile, "%d", INSN_UID (JUMP_LABEL (in_rtx)));
    }
  else if (idx == 0 && GET_CODE (in_rtx) == VALUE)
    {
      cselib_val *val = CSELIB_VAL_PTR (in_rtx);

      fprintf (m_outfile, " %u:%u", val->uid, val->hash);
      dump_addr (m_outfile, " @", in_rtx);
      dump_addr (m_outfile, "/", (void*)val);
    }
  else if (idx == 0 && GET_CODE (in_rtx) == DEBUG_EXPR)
    {
      fprintf (m_outfile, " D#%i",
	       DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (in_rtx)));
    }
  else if (idx == 0 && GET_CODE (in_rtx) == ENTRY_VALUE)
    {
      m_indent += 2;
      if (!m_sawclose)
	fprintf (m_outfile, " ");
      print_rtx (ENTRY_VALUE_EXP (in_rtx));
      m_indent -= 2;
    }
#endif
}

/* Subroutine of print_rtx_operand for handling code 'e'.
   Also called by print_rtx_operand_code_u for handling code 'u'
   for LABEL_REFs when they don't reference a CODE_LABEL.  */

void
rtx_writer::print_rtx_operand_code_e (const_rtx in_rtx, int idx)
{
  m_indent += 2;
  if (idx == 6 && INSN_P (in_rtx))
    /* Put REG_NOTES on their own line.  */
    fprintf (m_outfile, "\n%s%*s",
	     print_rtx_head, m_indent * 2, "");
  if (!m_sawclose)
    fprintf (m_outfile, " ");
  if (idx == 7 && CALL_P (in_rtx))
    {
      m_in_call_function_usage = true;
      print_rtx (XEXP (in_rtx, idx));
      m_in_call_function_usage = false;
    }
  else
    print_rtx (XEXP (in_rtx, idx));
  m_indent -= 2;
}

/* Subroutine of print_rtx_operand for handling codes 'E' and 'V'.  */

void
rtx_writer::print_rtx_operand_codes_E_and_V (const_rtx in_rtx, int idx)
{
  m_indent += 2;
  if (m_sawclose)
    {
      fprintf (m_outfile, "\n%s%*s",
      print_rtx_head, m_indent * 2, "");
      m_sawclose = 0;
    }
  fputs (" [", m_outfile);
  if (XVEC (in_rtx, idx) != NULL)
    {
      m_indent += 2;
      if (XVECLEN (in_rtx, idx))
	m_sawclose = 1;

      for (int j = 0; j < XVECLEN (in_rtx, idx); j++)
	{
	  int j1;

	  print_rtx (XVECEXP (in_rtx, idx, j));
	  for (j1 = j + 1; j1 < XVECLEN (in_rtx, idx); j1++)
	    if (XVECEXP (in_rtx, idx, j) != XVECEXP (in_rtx, idx, j1))
	      break;

	  if (j1 != j + 1)
	    {
	      fprintf (m_outfile, " repeated x%i", j1 - j);
	      j = j1 - 1;
	    }
	}

      m_indent -= 2;
    }
  if (m_sawclose)
    fprintf (m_outfile, "\n%s%*s", print_rtx_head, m_indent * 2, "");

  fputs ("]", m_outfile);
  m_sawclose = 1;
  m_indent -= 2;
}

/* Subroutine of print_rtx_operand for handling code 'i'.  */

void
rtx_writer::print_rtx_operand_code_i (const_rtx in_rtx, int idx)
{
  if (idx == 4 && INSN_P (in_rtx))
    {
#ifndef GENERATOR_FILE
      const rtx_insn *in_insn = as_a <const rtx_insn *> (in_rtx);

      /*  Pretty-print insn locations.  Ignore scoping as it is mostly
	  redundant with line number information and do not print anything
	  when there is no location information available.  */
      if (INSN_HAS_LOCATION (in_insn))
	{
	  expanded_location xloc = insn_location (in_insn);
	  fprintf (m_outfile, " \"%s\":%i:%i", xloc.file, xloc.line,
		   xloc.column);
	}
#endif
    }
  else if (idx == 6 && GET_CODE (in_rtx) == ASM_OPERANDS)
    {
#ifndef GENERATOR_FILE
      if (ASM_OPERANDS_SOURCE_LOCATION (in_rtx) != UNKNOWN_LOCATION)
	fprintf (m_outfile, " %s:%i",
		 LOCATION_FILE (ASM_OPERANDS_SOURCE_LOCATION (in_rtx)),
		 LOCATION_LINE (ASM_OPERANDS_SOURCE_LOCATION (in_rtx)));
#endif
    }
  else if (idx == 1 && GET_CODE (in_rtx) == ASM_INPUT)
    {
#ifndef GENERATOR_FILE
      if (ASM_INPUT_SOURCE_LOCATION (in_rtx) != UNKNOWN_LOCATION)
	fprintf (m_outfile, " %s:%i",
		 LOCATION_FILE (ASM_INPUT_SOURCE_LOCATION (in_rtx)),
		 LOCATION_LINE (ASM_INPUT_SOURCE_LOCATION (in_rtx)));
#endif
    }
  else if (idx == 5 && NOTE_P (in_rtx))
    {
      /* This field is only used for NOTE_INSN_DELETED_LABEL, and
	 other times often contains garbage from INSN->NOTE death.  */
      if (NOTE_KIND (in_rtx) == NOTE_INSN_DELETED_LABEL
	  || NOTE_KIND (in_rtx) == NOTE_INSN_DELETED_DEBUG_LABEL)
	fprintf (m_outfile, " %d",  XINT (in_rtx, idx));
    }
#if !defined(GENERATOR_FILE) && NUM_UNSPECV_VALUES > 0
  else if (idx == 1
	   && GET_CODE (in_rtx) == UNSPEC_VOLATILE
	   && XINT (in_rtx, 1) >= 0
	   && XINT (in_rtx, 1) < NUM_UNSPECV_VALUES)
    fprintf (m_outfile, " %s", unspecv_strings[XINT (in_rtx, 1)]);
#endif
#if !defined(GENERATOR_FILE) && NUM_UNSPEC_VALUES > 0
  else if (idx == 1
	   && (GET_CODE (in_rtx) == UNSPEC
	       || GET_CODE (in_rtx) == UNSPEC_VOLATILE)
	   && XINT (in_rtx, 1) >= 0
	   && XINT (in_rtx, 1) < NUM_UNSPEC_VALUES)
    fprintf (m_outfile, " %s", unspec_strings[XINT (in_rtx, 1)]);
#endif
  else
    {
      int value = XINT (in_rtx, idx);
      const char *name;
      int is_insn = INSN_P (in_rtx);

      /* Don't print INSN_CODEs in compact mode.  */
      if (m_compact && is_insn && &INSN_CODE (in_rtx) == &XINT (in_rtx, idx))
	{
	  m_sawclose = 0;
	  return;
	}

      if (flag_dump_unnumbered
	  && (is_insn || NOTE_P (in_rtx)))
	fputc ('#', m_outfile);
      else
	fprintf (m_outfile, " %d", value);

      if (is_insn && &INSN_CODE (in_rtx) == &XINT (in_rtx, idx)
	  && XINT (in_rtx, idx) >= 0
	  && (name = get_insn_name (XINT (in_rtx, idx))) != NULL)
	fprintf (m_outfile, " {%s}", name);
      m_sawclose = 0;
    }
}

/* Subroutine of print_rtx_operand for handling code 'r'.  */

void
rtx_writer::print_rtx_operand_code_r (const_rtx in_rtx)
{
  int is_insn = INSN_P (in_rtx);
  unsigned int regno = REGNO (in_rtx);

#ifndef GENERATOR_FILE
  /* For hard registers and virtuals, always print the
     regno, except in compact mode.  */
  if (regno <= LAST_VIRTUAL_REGISTER && !m_compact)
    fprintf (m_outfile, " %d", regno);
  if (regno < FIRST_PSEUDO_REGISTER)
    fprintf (m_outfile, " %s", reg_names[regno]);
  else if (regno <= LAST_VIRTUAL_REGISTER)
    {
      if (regno == VIRTUAL_INCOMING_ARGS_REGNUM)
	fprintf (m_outfile, " virtual-incoming-args");
      else if (regno == VIRTUAL_STACK_VARS_REGNUM)
	fprintf (m_outfile, " virtual-stack-vars");
      else if (regno == VIRTUAL_STACK_DYNAMIC_REGNUM)
	fprintf (m_outfile, " virtual-stack-dynamic");
      else if (regno == VIRTUAL_OUTGOING_ARGS_REGNUM)
	fprintf (m_outfile, " virtual-outgoing-args");
      else if (regno == VIRTUAL_CFA_REGNUM)
	fprintf (m_outfile, " virtual-cfa");
      else if (regno == VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM)
	fprintf (m_outfile, " virtual-preferred-stack-boundary");
      else
	fprintf (m_outfile, " virtual-reg-%d", regno-FIRST_VIRTUAL_REGISTER);
    }
  else
#endif
    if (flag_dump_unnumbered && is_insn)
      fputc ('#', m_outfile);
    else if (m_compact)
      {
	/* In compact mode, print pseudos with '< and '>' wrapping the regno,
	   offseting it by (LAST_VIRTUAL_REGISTER + 1), so that the
	   first non-virtual pseudo is dumped as "<0>".  */
	gcc_assert (regno > LAST_VIRTUAL_REGISTER);
	fprintf (m_outfile, " <%d>", regno - (LAST_VIRTUAL_REGISTER + 1));
      }
    else
      fprintf (m_outfile, " %d", regno);

#ifndef GENERATOR_FILE
  if (REG_ATTRS (in_rtx))
    {
      fputs (" [", m_outfile);
      if (regno != ORIGINAL_REGNO (in_rtx))
	fprintf (m_outfile, "orig:%i", ORIGINAL_REGNO (in_rtx));
      if (REG_EXPR (in_rtx))
	print_mem_expr (m_outfile, REG_EXPR (in_rtx));

      if (maybe_ne (REG_OFFSET (in_rtx), 0))
	{
	  fprintf (m_outfile, "+");
	  print_poly_int (m_outfile, REG_OFFSET (in_rtx));
	}
      fputs (" ]", m_outfile);
    }
  if (regno != ORIGINAL_REGNO (in_rtx))
    fprintf (m_outfile, " [%d]", ORIGINAL_REGNO (in_rtx));
#endif
}

/* Subroutine of print_rtx_operand for handling code 'u'.  */

void
rtx_writer::print_rtx_operand_code_u (const_rtx in_rtx, int idx)
{
  /* Don't print insn UIDs for PREV/NEXT_INSN in compact mode.  */
  if (m_compact && INSN_CHAIN_CODE_P (GET_CODE (in_rtx)) && idx < 2)
    return;

  if (XEXP (in_rtx, idx) != NULL)
    {
      rtx sub = XEXP (in_rtx, idx);
      enum rtx_code subc = GET_CODE (sub);

      if (GET_CODE (in_rtx) == LABEL_REF)
	{
	  if (subc == NOTE
	      && NOTE_KIND (sub) == NOTE_INSN_DELETED_LABEL)
	    {
	      if (flag_dump_unnumbered)
		fprintf (m_outfile, " [# deleted]");
	      else
		fprintf (m_outfile, " [%d deleted]", INSN_UID (sub));
	      m_sawclose = 0;
	      return;
	    }

	  if (subc != CODE_LABEL)
	    {
	      print_rtx_operand_code_e (in_rtx, idx);
	      return;
	    }
	}

      if (flag_dump_unnumbered
	  || (flag_dump_unnumbered_links && idx <= 1
	      && (INSN_P (in_rtx) || NOTE_P (in_rtx)
		  || LABEL_P (in_rtx) || BARRIER_P (in_rtx))))
	fputs (" #", m_outfile);
      else
	fprintf (m_outfile, " %d", INSN_UID (sub));
    }
  else
    fputs (" 0", m_outfile);
  m_sawclose = 0;
}

/* Subroutine of print_rtx.   Print operand IDX of IN_RTX.  */

void
rtx_writer::print_rtx_operand (const_rtx in_rtx, int idx)
{
  const char *format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));

  switch (format_ptr[idx])
    {
      const char *str;

    case 'T':
      str = XTMPL (in_rtx, idx);
      goto string;

    case 'S':
    case 's':
      str = XSTR (in_rtx, idx);
    string:

      if (str == 0)
	fputs (" (nil)", m_outfile);
      else
	fprintf (m_outfile, " (\"%s\")", str);
      m_sawclose = 1;
      break;

    case '0':
      print_rtx_operand_code_0 (in_rtx, idx);
      break;

    case 'e':
      print_rtx_operand_code_e (in_rtx, idx);
      break;

    case 'E':
    case 'V':
      print_rtx_operand_codes_E_and_V (in_rtx, idx);
      break;

    case 'w':
      if (! m_simple)
	fprintf (m_outfile, " ");
      fprintf (m_outfile, HOST_WIDE_INT_PRINT_DEC, XWINT (in_rtx, idx));
      if (! m_simple && !m_compact)
	fprintf (m_outfile, " [" HOST_WIDE_INT_PRINT_HEX "]",
		 (unsigned HOST_WIDE_INT) XWINT (in_rtx, idx));
      break;

    case 'i':
      print_rtx_operand_code_i (in_rtx, idx);
      break;

    case 'p':
      fprintf (m_outfile, " ");
      print_poly_int (m_outfile, SUBREG_BYTE (in_rtx));
      break;

    case 'r':
      print_rtx_operand_code_r (in_rtx);
      break;

    /* Print NOTE_INSN names rather than integer codes.  */

    case 'n':
      fprintf (m_outfile, " %s", GET_NOTE_INSN_NAME (XINT (in_rtx, idx)));
      m_sawclose = 0;
      break;

    case 'u':
      print_rtx_operand_code_u (in_rtx, idx);
      break;

    case 't':
#ifndef GENERATOR_FILE
      if (idx == 0 && GET_CODE (in_rtx) == DEBUG_IMPLICIT_PTR)
	print_mem_expr (m_outfile, DEBUG_IMPLICIT_PTR_DECL (in_rtx));
      else if (idx == 0 && GET_CODE (in_rtx) == DEBUG_PARAMETER_REF)
	print_mem_expr (m_outfile, DEBUG_PARAMETER_REF_DECL (in_rtx));
      else
	dump_addr (m_outfile, " ", XTREE (in_rtx, idx));
#endif
      break;

    case '*':
      fputs (" Unknown", m_outfile);
      m_sawclose = 0;
      break;

    case 'B':
      /* Don't print basic block ids in compact mode.  */
      if (m_compact)
	break;
#ifndef GENERATOR_FILE
      if (XBBDEF (in_rtx, idx))
	fprintf (m_outfile, " %i", XBBDEF (in_rtx, idx)->index);
#endif
      break;

    default:
      gcc_unreachable ();
    }
}

/* Subroutine of rtx_writer::print_rtx.
   In compact mode, determine if operand IDX of IN_RTX is interesting
   to dump, or (if in a trailing position) it can be omitted.  */

bool
rtx_writer::operand_has_default_value_p (const_rtx in_rtx, int idx)
{
  const char *format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));

  switch (format_ptr[idx])
    {
    case 'e':
    case 'u':
      return XEXP (in_rtx, idx) == NULL_RTX;

    case 's':
      return XSTR (in_rtx, idx) == NULL;

    case '0':
      switch (GET_CODE (in_rtx))
	{
	case JUMP_INSN:
	  /* JUMP_LABELs are always omitted in compact mode, so treat
	     any value here as omittable, so that earlier operands can
	     potentially be omitted also.  */
	  return m_compact;

	default:
	  return false;

	}

    default:
      return false;
    }
}

/* Print IN_RTX onto m_outfile.  This is the recursive part of printing.  */

void
rtx_writer::print_rtx (const_rtx in_rtx)
{
  int idx = 0;

  if (m_sawclose)
    {
      if (m_simple)
	fputc (' ', m_outfile);
      else
	fprintf (m_outfile, "\n%s%*s", print_rtx_head, m_indent * 2, "");
      m_sawclose = 0;
    }

  if (in_rtx == 0)
    {
      fputs ("(nil)", m_outfile);
      m_sawclose = 1;
      return;
    }
  else if (GET_CODE (in_rtx) > NUM_RTX_CODE)
    {
       fprintf (m_outfile, "(??? bad code %d\n%s%*s)", GET_CODE (in_rtx),
		print_rtx_head, m_indent * 2, "");
       m_sawclose = 1;
       return;
    }

  fputc ('(', m_outfile);

  /* Print name of expression code.  */

  /* Handle reuse.  */
#ifndef GENERATOR_FILE
  if (m_rtx_reuse_manager)
    {
      int reuse_id;
      if (m_rtx_reuse_manager->has_reuse_id (in_rtx, &reuse_id))
	{
	  /* Have we already seen the defn of this rtx?  */
	  if (m_rtx_reuse_manager->seen_def_p (reuse_id))
	    {
	      fprintf (m_outfile, "reuse_rtx %i)", reuse_id);
	      m_sawclose = 1;
	      return;
	    }
	  else
	    {
	      /* First time we've seen this reused-rtx.  */
	      fprintf (m_outfile, "%i|", reuse_id);
	      m_rtx_reuse_manager->set_seen_def (reuse_id);
	    }
	}
    }
#endif /* #ifndef GENERATOR_FILE */

  /* In compact mode, prefix the code of insns with "c",
     giving "cinsn", "cnote" etc.  */
  if (m_compact && is_a <const rtx_insn *, const struct rtx_def> (in_rtx))
    {
      /* "ccode_label" is slightly awkward, so special-case it as
	 just "clabel".  */
      rtx_code code = GET_CODE (in_rtx);
      if (code == CODE_LABEL)
	fprintf (m_outfile, "clabel");
      else
	fprintf (m_outfile, "c%s", GET_RTX_NAME (code));
    }
  else if (m_simple && CONST_INT_P (in_rtx))
    ; /* no code.  */
  else
    fprintf (m_outfile, "%s", GET_RTX_NAME (GET_CODE (in_rtx)));

  if (! m_simple)
    {
      if (RTX_FLAG (in_rtx, in_struct))
	fputs ("/s", m_outfile);

      if (RTX_FLAG (in_rtx, volatil))
	fputs ("/v", m_outfile);

      if (RTX_FLAG (in_rtx, unchanging))
	fputs ("/u", m_outfile);

      if (RTX_FLAG (in_rtx, frame_related))
	fputs ("/f", m_outfile);

      if (RTX_FLAG (in_rtx, jump))
	fputs ("/j", m_outfile);

      if (RTX_FLAG (in_rtx, call))
	fputs ("/c", m_outfile);

      if (RTX_FLAG (in_rtx, return_val))
	fputs ("/i", m_outfile);

      /* Print REG_NOTE names for EXPR_LIST and INSN_LIST.  */
      if ((GET_CODE (in_rtx) == EXPR_LIST
	   || GET_CODE (in_rtx) == INSN_LIST
	   || GET_CODE (in_rtx) == INT_LIST)
	  && (int)GET_MODE (in_rtx) < REG_NOTE_MAX
	  && !m_in_call_function_usage)
	fprintf (m_outfile, ":%s",
		 GET_REG_NOTE_NAME (GET_MODE (in_rtx)));

      /* For other rtl, print the mode if it's not VOID.  */
      else if (GET_MODE (in_rtx) != VOIDmode)
	fprintf (m_outfile, ":%s", GET_MODE_NAME (GET_MODE (in_rtx)));

#ifndef GENERATOR_FILE
      if (GET_CODE (in_rtx) == VAR_LOCATION)
	{
	  if (TREE_CODE (PAT_VAR_LOCATION_DECL (in_rtx)) == STRING_CST)
	    fputs (" <debug string placeholder>", m_outfile);
	  else
	    print_mem_expr (m_outfile, PAT_VAR_LOCATION_DECL (in_rtx));
	  fputc (' ', m_outfile);
	  print_rtx (PAT_VAR_LOCATION_LOC (in_rtx));
	  if (PAT_VAR_LOCATION_STATUS (in_rtx)
	      == VAR_INIT_STATUS_UNINITIALIZED)
	    fprintf (m_outfile, " [uninit]");
	  m_sawclose = 1;
	  idx = GET_RTX_LENGTH (VAR_LOCATION);
	}
#endif
    }

#ifndef GENERATOR_FILE
  if (CONST_DOUBLE_AS_FLOAT_P (in_rtx))
    idx = 5;
#endif

  /* For insns, print the INSN_UID.  */
  if (INSN_CHAIN_CODE_P (GET_CODE (in_rtx)))
    {
      if (flag_dump_unnumbered)
	fprintf (m_outfile, " #");
      else
	fprintf (m_outfile, " %d", INSN_UID (in_rtx));
    }

  /* Determine which is the final operand to print.
     In compact mode, skip trailing operands that have the default values
     e.g. trailing "(nil)" values.  */
  int limit = GET_RTX_LENGTH (GET_CODE (in_rtx));
  if (m_compact)
    while (limit > idx && operand_has_default_value_p (in_rtx, limit - 1))
      limit--;

  /* Get the format string and skip the first elements if we have handled
     them already.  */

  for (; idx < limit; idx++)
    print_rtx_operand (in_rtx, idx);

  switch (GET_CODE (in_rtx))
    {
#ifndef GENERATOR_FILE
    case MEM:
      if (__builtin_expect (final_insns_dump_p, false))
	fprintf (m_outfile, " [");
      else
	fprintf (m_outfile, " [" HOST_WIDE_INT_PRINT_DEC,
		 (HOST_WIDE_INT) MEM_ALIAS_SET (in_rtx));

      if (MEM_EXPR (in_rtx))
	print_mem_expr (m_outfile, MEM_EXPR (in_rtx));
      else
	fputc (' ', m_outfile);

      if (MEM_OFFSET_KNOWN_P (in_rtx))
	{
	  fprintf (m_outfile, "+");
	  print_poly_int (m_outfile, MEM_OFFSET (in_rtx));
	}

      if (MEM_SIZE_KNOWN_P (in_rtx))
	{
	  fprintf (m_outfile, " S");
	  print_poly_int (m_outfile, MEM_SIZE (in_rtx));
	}

      if (MEM_ALIGN (in_rtx) != 1)
	fprintf (m_outfile, " A%u", MEM_ALIGN (in_rtx));

      if (!ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (in_rtx)))
	fprintf (m_outfile, " AS%u", MEM_ADDR_SPACE (in_rtx));

      fputc (']', m_outfile);
      break;

    case CONST_DOUBLE:
      if (FLOAT_MODE_P (GET_MODE (in_rtx)))
	{
	  char s[60];

	  real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (in_rtx),
			   sizeof (s), 0, 1);
	  fprintf (m_outfile, " %s", s);

	  real_to_hexadecimal (s, CONST_DOUBLE_REAL_VALUE (in_rtx),
			       sizeof (s), 0, 1);
	  fprintf (m_outfile, " [%s]", s);
	}
      break;

    case CONST_WIDE_INT:
      fprintf (m_outfile, " ");
      cwi_output_hex (m_outfile, in_rtx);
      break;

    case CONST_POLY_INT:
      fprintf (m_outfile, " [");
      print_dec (CONST_POLY_INT_COEFFS (in_rtx)[0], m_outfile, SIGNED);
      for (unsigned int i = 1; i < NUM_POLY_INT_COEFFS; ++i)
	{
	  fprintf (m_outfile, ", ");
	  print_dec (CONST_POLY_INT_COEFFS (in_rtx)[i], m_outfile, SIGNED);
	}
      fprintf (m_outfile, "]");
      break;
#endif

    case CODE_LABEL:
      if (!m_compact)
	fprintf (m_outfile, " [%d uses]", LABEL_NUSES (in_rtx));
      switch (LABEL_KIND (in_rtx))
	{
	  case LABEL_NORMAL: break;
	  case LABEL_STATIC_ENTRY: fputs (" [entry]", m_outfile); break;
	  case LABEL_GLOBAL_ENTRY: fputs (" [global entry]", m_outfile); break;
	  case LABEL_WEAK_ENTRY: fputs (" [weak entry]", m_outfile); break;
	  default: gcc_unreachable ();
	}
      break;

    default:
      break;
    }

  fputc (')', m_outfile);
  m_sawclose = 1;
}

/* Emit a closing parenthesis and newline.  */

void
rtx_writer::finish_directive ()
{
  fprintf (m_outfile, ")\n");
  m_sawclose = 0;
}

/* Print an rtx on the current line of FILE.  Initially indent IND
   characters.  */

void
print_inline_rtx (FILE *outf, const_rtx x, int ind)
{
  rtx_writer w (outf, ind, false, false, NULL);
  w.print_rtx (x);
}

/* Call this function from the debugger to see what X looks like.  */

DEBUG_FUNCTION void
debug_rtx (const_rtx x)
{
  rtx_writer w (stderr, 0, false, false, NULL);
  w.print_rtx (x);
  fprintf (stderr, "\n");
}

/* Dump rtx REF.  */

DEBUG_FUNCTION void
debug (const rtx_def &ref)
{
  debug_rtx (&ref);
}

DEBUG_FUNCTION void
debug (const rtx_def *ptr)
{
  if (ptr)
    debug (*ptr);
  else
    fprintf (stderr, "<nil>\n");
}

/* Like debug_rtx but with no newline, as debug_helper will add one.

   Note: No debug_slim(rtx_insn *) variant implemented, as this
   function can serve for both rtx and rtx_insn.  */

static void
debug_slim (const_rtx x)
{
  rtx_writer w (stderr, 0, false, false, NULL);
  w.print_rtx (x);
}

DEFINE_DEBUG_VEC (rtx_def *)
DEFINE_DEBUG_VEC (rtx_insn *)
DEFINE_DEBUG_HASH_SET (rtx_def *)
DEFINE_DEBUG_HASH_SET (rtx_insn *)

/* Count of rtx's to print with debug_rtx_list.
   This global exists because gdb user defined commands have no arguments.  */

DEBUG_VARIABLE int debug_rtx_count = 0;	/* 0 is treated as equivalent to 1 */

/* Call this function to print list from X on.

   N is a count of the rtx's to print. Positive values print from the specified
   rtx_insn on.  Negative values print a window around the rtx_insn.
   EG: -5 prints 2 rtx_insn's on either side (in addition to the specified
   rtx_insn).  */

DEBUG_FUNCTION void
debug_rtx_list (const rtx_insn *x, int n)
{
  int i,count;
  const rtx_insn *insn;

  count = n == 0 ? 1 : n < 0 ? -n : n;

  /* If we are printing a window, back up to the start.  */

  if (n < 0)
    for (i = count / 2; i > 0; i--)
      {
	if (PREV_INSN (x) == 0)
	  break;
	x = PREV_INSN (x);
      }

  for (i = count, insn = x; i > 0 && insn != 0; i--, insn = NEXT_INSN (insn))
    {
      debug_rtx (insn);
      fprintf (stderr, "\n");
    }
}

/* Call this function to print an rtx_insn list from START to END
   inclusive.  */

DEBUG_FUNCTION void
debug_rtx_range (const rtx_insn *start, const rtx_insn *end)
{
  while (1)
    {
      debug_rtx (start);
      fprintf (stderr, "\n");
      if (!start || start == end)
	break;
      start = NEXT_INSN (start);
    }
}

/* Call this function to search an rtx_insn list to find one with insn uid UID,
   and then call debug_rtx_list to print it, using DEBUG_RTX_COUNT.
   The found insn is returned to enable further debugging analysis.  */

DEBUG_FUNCTION const rtx_insn *
debug_rtx_find (const rtx_insn *x, int uid)
{
  while (x != 0 && INSN_UID (x) != uid)
    x = NEXT_INSN (x);
  if (x != 0)
    {
      debug_rtx_list (x, debug_rtx_count);
      return x;
    }
  else
    {
      fprintf (stderr, "insn uid %d not found\n", uid);
      return 0;
    }
}

/* External entry point for printing a chain of insns
   starting with RTX_FIRST.
   A blank line separates insns.

   If RTX_FIRST is not an insn, then it alone is printed, with no newline.  */

void
rtx_writer::print_rtl (const_rtx rtx_first)
{
  const rtx_insn *tmp_rtx;

  if (rtx_first == 0)
    {
      fputs (print_rtx_head, m_outfile);
      fputs ("(nil)\n", m_outfile);
    }
  else
    switch (GET_CODE (rtx_first))
      {
      case INSN:
      case JUMP_INSN:
      case CALL_INSN:
      case NOTE:
      case CODE_LABEL:
      case JUMP_TABLE_DATA:
      case BARRIER:
	for (tmp_rtx = as_a <const rtx_insn *> (rtx_first);
	     tmp_rtx != 0;
	     tmp_rtx = NEXT_INSN (tmp_rtx))
	  {
	    fputs (print_rtx_head, m_outfile);
	    print_rtx (tmp_rtx);
	    fprintf (m_outfile, "\n");
	  }
	break;

      default:
	fputs (print_rtx_head, m_outfile);
	print_rtx (rtx_first);
      }
}

/* External entry point for printing a chain of insns
   starting with RTX_FIRST onto file OUTF.
   A blank line separates insns.

   If RTX_FIRST is not an insn, then it alone is printed, with no newline.  */

void
print_rtl (FILE *outf, const_rtx rtx_first)
{
  rtx_writer w (outf, 0, false, false, NULL);
  w.print_rtl (rtx_first);
}

/* Like print_rtx, except specify a file.  */
/* Return nonzero if we actually printed anything.  */

int
print_rtl_single (FILE *outf, const_rtx x)
{
  rtx_writer w (outf, 0, false, false, NULL);
  return w.print_rtl_single_with_indent (x, 0);
}

/* Like print_rtl_single, except specify an indentation.  */

int
rtx_writer::print_rtl_single_with_indent (const_rtx x, int ind)
{
  char *s_indent = (char *) alloca ((size_t) ind + 1);
  memset ((void *) s_indent, ' ', (size_t) ind);
  s_indent[ind] = '\0';
  fputs (s_indent, m_outfile);
  fputs (print_rtx_head, m_outfile);

  int old_indent = m_indent;
  m_indent = ind;
  m_sawclose = 0;
  print_rtx (x);
  putc ('\n', m_outfile);
  m_indent = old_indent;
  return 1;
}


/* Like print_rtl except without all the detail; for example,
   if RTX is a CONST_INT then print in decimal format.  */

void
print_simple_rtl (FILE *outf, const_rtx x)
{
  rtx_writer w (outf, 0, true, false, NULL);
  w.print_rtl (x);
}

/* Print the elements of VEC to FILE.  */

void
print_rtx_insn_vec (FILE *file, const vec<rtx_insn *> &vec)
{
  fputc('{', file);

  unsigned int len = vec.length ();
  for (unsigned int i = 0; i < len; i++)
    {
      print_rtl (file, vec[i]);
      if (i < len - 1)
	fputs (", ", file);
    }

  fputc ('}', file);
}

#ifndef GENERATOR_FILE
/* The functions below  try to print RTL in a form resembling assembler
   mnemonics.  Because this form is more concise than the "traditional" form
   of RTL printing in Lisp-style, the form printed by this file is called
   "slim".  RTL dumps in slim format can be obtained by appending the "-slim"
   option to -fdump-rtl-<pass>.  Control flow graph output as a DOT file is
   always printed in slim form.

   The normal interface to the functionality provided in this pretty-printer
   is through the dump_*_slim functions to print to a stream, or via the
   print_*_slim functions to print into a user's pretty-printer.

   It is also possible to obtain a string for a single pattern as a string
   pointer, via str_pattern_slim, but this usage is discouraged.  */

/* For insns we print patterns, and for some patterns we print insns...  */
static void print_insn_with_notes (pretty_printer *, const rtx_insn *);

/* This recognizes rtx'en classified as expressions.  These are always
   represent some action on values or results of other expression, that
   may be stored in objects representing values.  */

static void
print_exp (pretty_printer *pp, const_rtx x, int verbose)
{
  const char *st[4];
  const char *fun;
  rtx op[4];
  int i;

  fun = (char *) 0;
  for (i = 0; i < 4; i++)
    {
      st[i] = (char *) 0;
      op[i] = NULL_RTX;
    }

  switch (GET_CODE (x))
    {
    case PLUS:
      op[0] = XEXP (x, 0);
      if (CONST_INT_P (XEXP (x, 1))
	  && INTVAL (XEXP (x, 1)) < 0)
	{
	  st[1] = "-";
	  op[1] = GEN_INT (-INTVAL (XEXP (x, 1)));
	}
      else
	{
	  st[1] = "+";
	  op[1] = XEXP (x, 1);
	}
      break;
    case LO_SUM:
      op[0] = XEXP (x, 0);
      st[1] = "+low(";
      op[1] = XEXP (x, 1);
      st[2] = ")";
      break;
    case MINUS:
      op[0] = XEXP (x, 0);
      st[1] = "-";
      op[1] = XEXP (x, 1);
      break;
    case COMPARE:
      fun = "cmp";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case NEG:
      st[0] = "-";
      op[0] = XEXP (x, 0);
      break;
    case FMA:
      st[0] = "{";
      op[0] = XEXP (x, 0);
      st[1] = "*";
      op[1] = XEXP (x, 1);
      st[2] = "+";
      op[2] = XEXP (x, 2);
      st[3] = "}";
      break;
    case MULT:
      op[0] = XEXP (x, 0);
      st[1] = "*";
      op[1] = XEXP (x, 1);
      break;
    case DIV:
      op[0] = XEXP (x, 0);
      st[1] = "/";
      op[1] = XEXP (x, 1);
      break;
    case UDIV:
      fun = "udiv";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case MOD:
      op[0] = XEXP (x, 0);
      st[1] = "%";
      op[1] = XEXP (x, 1);
      break;
    case UMOD:
      fun = "umod";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case SMIN:
      fun = "smin";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case SMAX:
      fun = "smax";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case UMIN:
      fun = "umin";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case UMAX:
      fun = "umax";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case NOT:
      st[0] = "~";
      op[0] = XEXP (x, 0);
      break;
    case AND:
      op[0] = XEXP (x, 0);
      st[1] = "&";
      op[1] = XEXP (x, 1);
      break;
    case IOR:
      op[0] = XEXP (x, 0);
      st[1] = "|";
      op[1] = XEXP (x, 1);
      break;
    case XOR:
      op[0] = XEXP (x, 0);
      st[1] = "^";
      op[1] = XEXP (x, 1);
      break;
    case ASHIFT:
      op[0] = XEXP (x, 0);
      st[1] = "<<";
      op[1] = XEXP (x, 1);
      break;
    case LSHIFTRT:
      op[0] = XEXP (x, 0);
      st[1] = " 0>>";
      op[1] = XEXP (x, 1);
      break;
    case ASHIFTRT:
      op[0] = XEXP (x, 0);
      st[1] = ">>";
      op[1] = XEXP (x, 1);
      break;
    case ROTATE:
      op[0] = XEXP (x, 0);
      st[1] = "<-<";
      op[1] = XEXP (x, 1);
      break;
    case ROTATERT:
      op[0] = XEXP (x, 0);
      st[1] = ">->";
      op[1] = XEXP (x, 1);
      break;
    case NE:
      op[0] = XEXP (x, 0);
      st[1] = "!=";
      op[1] = XEXP (x, 1);
      break;
    case EQ:
      op[0] = XEXP (x, 0);
      st[1] = "==";
      op[1] = XEXP (x, 1);
      break;
    case GE:
      op[0] = XEXP (x, 0);
      st[1] = ">=";
      op[1] = XEXP (x, 1);
      break;
    case GT:
      op[0] = XEXP (x, 0);
      st[1] = ">";
      op[1] = XEXP (x, 1);
      break;
    case LE:
      op[0] = XEXP (x, 0);
      st[1] = "<=";
      op[1] = XEXP (x, 1);
      break;
    case LT:
      op[0] = XEXP (x, 0);
      st[1] = "<";
      op[1] = XEXP (x, 1);
      break;
    case SIGN_EXTRACT:
      fun = (verbose) ? "sign_extract" : "sxt";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      op[2] = XEXP (x, 2);
      break;
    case ZERO_EXTRACT:
      fun = (verbose) ? "zero_extract" : "zxt";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      op[2] = XEXP (x, 2);
      break;
    case SIGN_EXTEND:
      fun = (verbose) ? "sign_extend" : "sxn";
      op[0] = XEXP (x, 0);
      break;
    case ZERO_EXTEND:
      fun = (verbose) ? "zero_extend" : "zxn";
      op[0] = XEXP (x, 0);
      break;
    case FLOAT_EXTEND:
      fun = (verbose) ? "float_extend" : "fxn";
      op[0] = XEXP (x, 0);
      break;
    case TRUNCATE:
      fun = (verbose) ? "trunc" : "trn";
      op[0] = XEXP (x, 0);
      break;
    case FLOAT_TRUNCATE:
      fun = (verbose) ? "float_trunc" : "ftr";
      op[0] = XEXP (x, 0);
      break;
    case FLOAT:
      fun = (verbose) ? "float" : "flt";
      op[0] = XEXP (x, 0);
      break;
    case UNSIGNED_FLOAT:
      fun = (verbose) ? "uns_float" : "ufl";
      op[0] = XEXP (x, 0);
      break;
    case FIX:
      fun = "fix";
      op[0] = XEXP (x, 0);
      break;
    case UNSIGNED_FIX:
      fun = (verbose) ? "uns_fix" : "ufx";
      op[0] = XEXP (x, 0);
      break;
    case PRE_DEC:
      st[0] = "--";
      op[0] = XEXP (x, 0);
      break;
    case PRE_INC:
      st[0] = "++";
      op[0] = XEXP (x, 0);
      break;
    case POST_DEC:
      op[0] = XEXP (x, 0);
      st[1] = "--";
      break;
    case POST_INC:
      op[0] = XEXP (x, 0);
      st[1] = "++";
      break;
    case PRE_MODIFY:
      st[0] = "pre ";
      op[0] = XEXP (XEXP (x, 1), 0);
      st[1] = "+=";
      op[1] = XEXP (XEXP (x, 1), 1);
      break;
    case POST_MODIFY:
      st[0] = "post ";
      op[0] = XEXP (XEXP (x, 1), 0);
      st[1] = "+=";
      op[1] = XEXP (XEXP (x, 1), 1);
      break;
    case CALL:
      st[0] = "call ";
      op[0] = XEXP (x, 0);
      if (verbose)
	{
	  st[1] = " argc:";
	  op[1] = XEXP (x, 1);
	}
      break;
    case IF_THEN_ELSE:
      st[0] = "{(";
      op[0] = XEXP (x, 0);
      st[1] = ")?";
      op[1] = XEXP (x, 1);
      st[2] = ":";
      op[2] = XEXP (x, 2);
      st[3] = "}";
      break;
    case TRAP_IF:
      fun = "trap_if";
      op[0] = TRAP_CONDITION (x);
      break;
    case PREFETCH:
      fun = "prefetch";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      op[2] = XEXP (x, 2);
      break;
    case UNSPEC:
    case UNSPEC_VOLATILE:
      {
	pp_string (pp, "unspec");
	if (GET_CODE (x) == UNSPEC_VOLATILE)
	  pp_string (pp, "/v");
	pp_left_bracket (pp);
	for (i = 0; i < XVECLEN (x, 0); i++)
	  {
	    if (i != 0)
	      pp_comma (pp);
	    print_pattern (pp, XVECEXP (x, 0, i), verbose);
	  }
	pp_string (pp, "] ");
	pp_decimal_int (pp, XINT (x, 1));
      }
      break;
    default:
      {
	/* Most unhandled codes can be printed as pseudo-functions.  */
        if (GET_RTX_CLASS (GET_CODE (x)) == RTX_UNARY)
	  {
	    fun = GET_RTX_NAME (GET_CODE (x));
	    op[0] = XEXP (x, 0);
	  }
        else if (GET_RTX_CLASS (GET_CODE (x)) == RTX_COMPARE
		 || GET_RTX_CLASS (GET_CODE (x)) == RTX_COMM_COMPARE
		 || GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
		 || GET_RTX_CLASS (GET_CODE (x)) == RTX_COMM_ARITH)
	  {
	    fun = GET_RTX_NAME (GET_CODE (x));
	    op[0] = XEXP (x, 0);
	    op[1] = XEXP (x, 1);
	  }
        else if (GET_RTX_CLASS (GET_CODE (x)) == RTX_TERNARY)
	  {
	    fun = GET_RTX_NAME (GET_CODE (x));
	    op[0] = XEXP (x, 0);
	    op[1] = XEXP (x, 1);
	    op[2] = XEXP (x, 2);
	  }
	else
	  /* Give up, just print the RTX name.  */
	  st[0] = GET_RTX_NAME (GET_CODE (x));
      }
      break;
    }

  /* Print this as a function?  */
  if (fun)
    {
      pp_string (pp, fun);
      pp_left_paren (pp);
    }

  for (i = 0; i < 4; i++)
    {
      if (st[i])
        pp_string (pp, st[i]);

      if (op[i])
	{
	  if (fun && i != 0)
	    pp_comma (pp);
	  print_value (pp, op[i], verbose);
	}
    }

  if (fun)
    pp_right_paren (pp);
}		/* print_exp */

/* Prints rtxes, I customarily classified as values.  They're constants,
   registers, labels, symbols and memory accesses.  */

void
print_value (pretty_printer *pp, const_rtx x, int verbose)
{
  char tmp[1024];

  if (!x)
    {
      pp_string (pp, "(nil)");
      return;
    }
  switch (GET_CODE (x))
    {
    case CONST_INT:
      pp_scalar (pp, HOST_WIDE_INT_PRINT_HEX,
		 (unsigned HOST_WIDE_INT) INTVAL (x));
      break;

    case CONST_WIDE_INT:
      {
	const char *sep = "<";
	int i;
	for (i = CONST_WIDE_INT_NUNITS (x) - 1; i >= 0; i--)
	  {
	    pp_string (pp, sep);
	    sep = ",";
	    sprintf (tmp, HOST_WIDE_INT_PRINT_HEX,
		     (unsigned HOST_WIDE_INT) CONST_WIDE_INT_ELT (x, i));
	    pp_string (pp, tmp);
	  }
        pp_greater (pp);
      }
      break;

    case CONST_POLY_INT:
      pp_left_bracket (pp);
      pp_wide_int (pp, CONST_POLY_INT_COEFFS (x)[0], SIGNED);
      for (unsigned int i = 1; i < NUM_POLY_INT_COEFFS; ++i)
	{
	  pp_string (pp, ", ");
	  pp_wide_int (pp, CONST_POLY_INT_COEFFS (x)[i], SIGNED);
	}
      pp_right_bracket (pp);
      break;

    case CONST_DOUBLE:
      if (FLOAT_MODE_P (GET_MODE (x)))
	{
	  real_to_decimal (tmp, CONST_DOUBLE_REAL_VALUE (x),
			   sizeof (tmp), 0, 1);
	  pp_string (pp, tmp);
	}
      else
	pp_printf (pp, "<%wx,%wx>",
		   (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x),
		   (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x));
      break;
    case CONST_FIXED:
      fixed_to_decimal (tmp, CONST_FIXED_VALUE (x), sizeof (tmp));
      pp_string (pp, tmp);
      break;
    case CONST_STRING:
      pp_printf (pp, "\"%s\"", XSTR (x, 0));
      break;
    case SYMBOL_REF:
      pp_printf (pp, "`%s'", XSTR (x, 0));
      break;
    case LABEL_REF:
      pp_printf (pp, "L%d", INSN_UID (label_ref_label (x)));
      break;
    case CONST:
    case HIGH:
    case STRICT_LOW_PART:
      pp_printf (pp, "%s(", GET_RTX_NAME (GET_CODE (x)));
      print_value (pp, XEXP (x, 0), verbose);
      pp_right_paren (pp);
      break;
    case REG:
      if (REGNO (x) < FIRST_PSEUDO_REGISTER)
	{
	  if (ISDIGIT (reg_names[REGNO (x)][0]))
	    pp_modulo (pp);
	  pp_string (pp, reg_names[REGNO (x)]);
	}
      else
	pp_printf (pp, "r%d", REGNO (x));
      if (verbose)
	pp_printf (pp, ":%s", GET_MODE_NAME (GET_MODE (x)));
      break;
    case SUBREG:
      print_value (pp, SUBREG_REG (x), verbose);
      pp_printf (pp, "#");
      pp_wide_integer (pp, SUBREG_BYTE (x));
      break;
    case SCRATCH:
    case CC0:
    case PC:
      pp_string (pp, GET_RTX_NAME (GET_CODE (x)));
      break;
    case MEM:
      pp_left_bracket (pp);
      print_value (pp, XEXP (x, 0), verbose);
      pp_right_bracket (pp);
      break;
    case DEBUG_EXPR:
      pp_printf (pp, "D#%i", DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x)));
      break;
    default:
      print_exp (pp, x, verbose);
      break;
    }
}				/* print_value */

/* The next step in insn detalization, its pattern recognition.  */

void
print_pattern (pretty_printer *pp, const_rtx x, int verbose)
{
  if (! x)
    {
      pp_string (pp, "(nil)");
      return;
    }

  switch (GET_CODE (x))
    {
    case SET:
      print_value (pp, SET_DEST (x), verbose);
      pp_equal (pp);
      print_value (pp, SET_SRC (x), verbose);
      break;
    case RETURN:
    case SIMPLE_RETURN:
    case EH_RETURN:
      pp_string (pp, GET_RTX_NAME (GET_CODE (x)));
      break;
    case CALL:
      print_exp (pp, x, verbose);
      break;
    case CLOBBER:
    case CLOBBER_HIGH:
    case USE:
      pp_printf (pp, "%s ", GET_RTX_NAME (GET_CODE (x)));
      print_value (pp, XEXP (x, 0), verbose);
      break;
    case VAR_LOCATION:
      pp_string (pp, "loc ");
      print_value (pp, PAT_VAR_LOCATION_LOC (x), verbose);
      break;
    case COND_EXEC:
      pp_left_paren (pp);
      if (GET_CODE (COND_EXEC_TEST (x)) == NE
	  && XEXP (COND_EXEC_TEST (x), 1) == const0_rtx)
	print_value (pp, XEXP (COND_EXEC_TEST (x), 0), verbose);
      else if (GET_CODE (COND_EXEC_TEST (x)) == EQ
	       && XEXP (COND_EXEC_TEST (x), 1) == const0_rtx)
	{
	  pp_exclamation (pp);
	  print_value (pp, XEXP (COND_EXEC_TEST (x), 0), verbose);
	}
      else
	print_value (pp, COND_EXEC_TEST (x), verbose);
      pp_string (pp, ") ");
      print_pattern (pp, COND_EXEC_CODE (x), verbose);
      break;
    case PARALLEL:
      {
	int i;

	pp_left_brace (pp);
	for (i = 0; i < XVECLEN (x, 0); i++)
	  {
	    print_pattern (pp, XVECEXP (x, 0, i), verbose);
	    pp_semicolon (pp);
	  }
	pp_right_brace (pp);
      }
      break;
    case SEQUENCE:
      {
	const rtx_sequence *seq = as_a <const rtx_sequence *> (x);
	pp_string (pp, "sequence{");
	if (INSN_P (seq->element (0)))
	  {
	    /* Print the sequence insns indented.  */
	    const char * save_print_rtx_head = print_rtx_head;
	    char indented_print_rtx_head[32];

	    pp_newline (pp);
	    gcc_assert (strlen (print_rtx_head) < sizeof (indented_print_rtx_head) - 4);
	    snprintf (indented_print_rtx_head,
		      sizeof (indented_print_rtx_head),
		      "%s     ", print_rtx_head);
	    print_rtx_head = indented_print_rtx_head;
	    for (int i = 0; i < seq->len (); i++)
	      print_insn_with_notes (pp, seq->insn (i));
	    pp_printf (pp, "%s      ", save_print_rtx_head);
	    print_rtx_head = save_print_rtx_head;
	  }
	else
	  {
	    for (int i = 0; i < seq->len (); i++)
	      {
		print_pattern (pp, seq->element (i), verbose);
		pp_semicolon (pp);
	      }
	  }
	pp_right_brace (pp);
      }
      break;
    case ASM_INPUT:
      pp_printf (pp, "asm {%s}", XSTR (x, 0));
      break;
    case ADDR_VEC:
      for (int i = 0; i < XVECLEN (x, 0); i++)
	{
	  print_value (pp, XVECEXP (x, 0, i), verbose);
	  pp_semicolon (pp);
	}
      break;
    case ADDR_DIFF_VEC:
      for (int i = 0; i < XVECLEN (x, 1); i++)
	{
	  print_value (pp, XVECEXP (x, 1, i), verbose);
	  pp_semicolon (pp);
	}
      break;
    case TRAP_IF:
      pp_string (pp, "trap_if ");
      print_value (pp, TRAP_CONDITION (x), verbose);
      break;
    case UNSPEC:
    case UNSPEC_VOLATILE:
      /* Fallthru -- leave UNSPECs to print_exp.  */
    default:
      print_value (pp, x, verbose);
    }
}				/* print_pattern */

/* This is the main function in slim rtl visualization mechanism.

   X is an insn, to be printed into PP.

   This function tries to print it properly in human-readable form,
   resembling assembler mnemonics (instead of the older Lisp-style
   form).

   If VERBOSE is TRUE, insns are printed with more complete (but
   longer) pattern names and with extra information, and prefixed
   with their INSN_UIDs.  */

void
print_insn (pretty_printer *pp, const rtx_insn *x, int verbose)
{
  if (verbose)
    {
      /* Blech, pretty-print can't print integers with a specified width.  */
      char uid_prefix[32];
      snprintf (uid_prefix, sizeof uid_prefix, " %4d: ", INSN_UID (x));
      pp_string (pp, uid_prefix);
    }

  switch (GET_CODE (x))
    {
    case INSN:
      print_pattern (pp, PATTERN (x), verbose);
      break;

    case DEBUG_INSN:
      {
	if (DEBUG_MARKER_INSN_P (x))
	  {
	    switch (INSN_DEBUG_MARKER_KIND (x))
	      {
	      case NOTE_INSN_BEGIN_STMT:
		pp_string (pp, "debug begin stmt marker");
		break;

	      case NOTE_INSN_INLINE_ENTRY:
		pp_string (pp, "debug inline entry marker");
		break;

	      default:
		gcc_unreachable ();
	      }
	    break;
	  }

	const char *name = "?";
	char idbuf[32];

	if (DECL_P (INSN_VAR_LOCATION_DECL (x)))
	  {
	    tree id = DECL_NAME (INSN_VAR_LOCATION_DECL (x));
	    if (id)
	      name = IDENTIFIER_POINTER (id);
	    else if (TREE_CODE (INSN_VAR_LOCATION_DECL (x))
		     == DEBUG_EXPR_DECL)
	      {
		sprintf (idbuf, "D#%i",
			 DEBUG_TEMP_UID (INSN_VAR_LOCATION_DECL (x)));
		name = idbuf;
	      }
	    else
	      {
		sprintf (idbuf, "D.%i",
			 DECL_UID (INSN_VAR_LOCATION_DECL (x)));
		name = idbuf;
	      }
	  }
	pp_printf (pp, "debug %s => ", name);
	if (VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (x)))
	  pp_string (pp, "optimized away");
	else
	  print_pattern (pp, INSN_VAR_LOCATION_LOC (x), verbose);
      }
      break;

    case JUMP_INSN:
      print_pattern (pp, PATTERN (x), verbose);
      break;
    case CALL_INSN:
      if (GET_CODE (PATTERN (x)) == PARALLEL)
        print_pattern (pp, XVECEXP (PATTERN (x), 0, 0), verbose);
      else
	print_pattern (pp, PATTERN (x), verbose);
      break;
    case CODE_LABEL:
      pp_printf (pp, "L%d:", INSN_UID (x));
      break;
    case JUMP_TABLE_DATA:
      pp_string (pp, "jump_table_data{\n");
      print_pattern (pp, PATTERN (x), verbose);
      pp_right_brace (pp);
      break;
    case BARRIER:
      pp_string (pp, "barrier");
      break;
    case NOTE:
      {
	pp_string (pp, GET_NOTE_INSN_NAME (NOTE_KIND (x)));
	switch (NOTE_KIND (x))
	  {
	  case NOTE_INSN_EH_REGION_BEG:
	  case NOTE_INSN_EH_REGION_END:
	    pp_printf (pp, " %d", NOTE_EH_HANDLER (x));
	    break;

	  case NOTE_INSN_BLOCK_BEG:
	  case NOTE_INSN_BLOCK_END:
	    pp_printf (pp, " %d", BLOCK_NUMBER (NOTE_BLOCK (x)));
	    break;

	  case NOTE_INSN_BASIC_BLOCK:
	    pp_printf (pp, " %d", NOTE_BASIC_BLOCK (x)->index);
	    break;

	  case NOTE_INSN_DELETED_LABEL:
	  case NOTE_INSN_DELETED_DEBUG_LABEL:
	    {
	      const char *label = NOTE_DELETED_LABEL_NAME (x);
	      if (label == NULL)
		label = "";
	      pp_printf (pp, " (\"%s\")", label);
	    }
	    break;

	  case NOTE_INSN_VAR_LOCATION:
	    pp_left_brace (pp);
	    print_pattern (pp, NOTE_VAR_LOCATION (x), verbose);
	    pp_right_brace (pp);
	    break;

	  default:
	    break;
	  }
	break;
      }
    default:
      gcc_unreachable ();
    }
}				/* print_insn */

/* Pretty-print a slim dump of X (an insn) to PP, including any register
   note attached to the instruction.  */

static void
print_insn_with_notes (pretty_printer *pp, const rtx_insn *x)
{
  pp_string (pp, print_rtx_head);
  print_insn (pp, x, 1);
  pp_newline (pp);
  if (INSN_P (x) && REG_NOTES (x))
    for (rtx note = REG_NOTES (x); note; note = XEXP (note, 1))
      {
	pp_printf (pp, "%s      %s ", print_rtx_head,
		   GET_REG_NOTE_NAME (REG_NOTE_KIND (note)));
	if (GET_CODE (note) == INT_LIST)
	  pp_printf (pp, "%d", XINT (note, 0));
	else
	  print_pattern (pp, XEXP (note, 0), 1);
	pp_newline (pp);
      }
}

/* Print X, an RTL value node, to file F in slim format.  Include
   additional information if VERBOSE is nonzero.

   Value nodes are constants, registers, labels, symbols and
   memory.  */

void
dump_value_slim (FILE *f, const_rtx x, int verbose)
{
  pretty_printer rtl_slim_pp;
  rtl_slim_pp.buffer->stream = f;
  print_value (&rtl_slim_pp, x, verbose);
  pp_flush (&rtl_slim_pp);
}

/* Emit a slim dump of X (an insn) to the file F, including any register
   note attached to the instruction.  */
void
dump_insn_slim (FILE *f, const rtx_insn *x)
{
  pretty_printer rtl_slim_pp;
  rtl_slim_pp.buffer->stream = f;
  print_insn_with_notes (&rtl_slim_pp, x);
  pp_flush (&rtl_slim_pp);
}

/* Same as above, but stop at LAST or when COUNT == 0.
   If COUNT < 0 it will stop only at LAST or NULL rtx.  */

void
dump_rtl_slim (FILE *f, const rtx_insn *first, const rtx_insn *last,
	       int count, int flags ATTRIBUTE_UNUSED)
{
  const rtx_insn *insn, *tail;
  pretty_printer rtl_slim_pp;
  rtl_slim_pp.buffer->stream = f;

  tail = last ? NEXT_INSN (last) : NULL;
  for (insn = first;
       (insn != NULL) && (insn != tail) && (count != 0);
       insn = NEXT_INSN (insn))
    {
      print_insn_with_notes (&rtl_slim_pp, insn);
      if (count > 0)
        count--;
    }

  pp_flush (&rtl_slim_pp);
}

/* Dumps basic block BB to pretty-printer PP in slim form and without and
   no indentation, for use as a label of a DOT graph record-node.  */

void
rtl_dump_bb_for_graph (pretty_printer *pp, basic_block bb)
{
  rtx_insn *insn;
  bool first = true;

  /* TODO: inter-bb stuff.  */
  FOR_BB_INSNS (bb, insn)
    {
      if (! first)
	{
	  pp_bar (pp);
	  pp_write_text_to_stream (pp);
	}
      first = false;
      print_insn_with_notes (pp, insn);
      pp_write_text_as_dot_label_to_stream (pp, /*for_record=*/true);
    }
}

/* Pretty-print pattern X of some insn in non-verbose mode.
   Return a string pointer to the pretty-printer buffer.

   This function is only exported exists only to accommodate some older users
   of the slim RTL pretty printers.  Please do not use it for new code.  */

const char *
str_pattern_slim (const_rtx x)
{
  pretty_printer rtl_slim_pp;
  print_pattern (&rtl_slim_pp, x, 0);
  return ggc_strdup (pp_formatted_text (&rtl_slim_pp));
}

/* Emit a slim dump of X (an insn) to stderr.  */
extern void debug_insn_slim (const rtx_insn *);
DEBUG_FUNCTION void
debug_insn_slim (const rtx_insn *x)
{
  dump_insn_slim (stderr, x);
}

/* Same as above, but using dump_rtl_slim.  */
extern void debug_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
			    int, int);
DEBUG_FUNCTION void
debug_rtl_slim (const rtx_insn *first, const rtx_insn *last, int count,
		int flags)
{
  dump_rtl_slim (stderr, first, last, count, flags);
}

extern void debug_bb_slim (basic_block);
DEBUG_FUNCTION void
debug_bb_slim (basic_block bb)
{
  dump_bb (stderr, bb, 0, TDF_SLIM | TDF_BLOCKS);
}

extern void debug_bb_n_slim (int);
DEBUG_FUNCTION void
debug_bb_n_slim (int n)
{
  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, n);
  debug_bb_slim (bb);
}

#endif