view libquadmath/math/ctanhq.c @ 138:fc828634a951

merge
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 08 Nov 2018 14:17:14 +0900
parents 04ced10e8804
children 1830386684a0
line wrap: on
line source

/* Complex hyperbole tangent for __float128.
   Copyright (C) 1997-2012 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#include "quadmath-imp.h"

#ifdef HAVE_FENV_H
# include <fenv.h>
#endif


__complex128
ctanhq (__complex128 x)
{
  __complex128 res;

  if (__builtin_expect (!finiteq (__real__ x) || !finiteq (__imag__ x), 0))
    {
      if (__quadmath_isinf_nsq (__real__ x))
	{
	  __real__ res = copysignq (1.0Q, __real__ x);
	  __imag__ res = copysignq (0.0Q, __imag__ x);
	}
      else if (__imag__ x == 0.0Q)
	{
	  res = x;
	}
      else
	{
	  __real__ res = nanq ("");
	  __imag__ res = nanq ("");

#ifdef HAVE_FENV_H
	  if (__quadmath_isinf_nsq (__imag__ x))
	    feraiseexcept (FE_INVALID);
#endif
	}
    }
  else
    {
      __float128 sinix, cosix;
      __float128 den;
      const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q / 2);
      int icls = fpclassifyq (__imag__ x);

      /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y))
	 = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2).  */

      if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
	{
	  sincosq (__imag__ x, &sinix, &cosix);
	}
      else
	{
	  sinix = __imag__ x;
	  cosix = 1.0Q;
	}

      if (fabsq (__real__ x) > t)
	{
	  /* Avoid intermediate overflow when the imaginary part of
	     the result may be subnormal.  Ignoring negligible terms,
	     the real part is +/- 1, the imaginary part is
	     sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x).  */
	  __float128 exp_2t = expq (2 * t);

	  __real__ res = copysignq (1.0, __real__ x);
	  __imag__ res = 4 * sinix * cosix;
	  __real__ x = fabsq (__real__ x);
	  __real__ x -= t;
	  __imag__ res /= exp_2t;
	  if (__real__ x > t)
	    {
	      /* Underflow (original real part of x has absolute value
		 > 2t).  */
	      __imag__ res /= exp_2t;
	    }
	  else
	    __imag__ res /= expq (2 * __real__ x);
	}
      else
	{
	  __float128 sinhrx, coshrx;
	  if (fabsq (__real__ x) > FLT128_MIN)
	    {
	      sinhrx = sinhq (__real__ x);
	      coshrx = coshq (__real__ x);
	    }
	  else
	    {
	      sinhrx = __real__ x;
	      coshrx = 1.0Q;
	    }

	  if (fabsq (sinhrx) > fabsq (cosix) * FLT128_EPSILON)
	    den = sinhrx * sinhrx + cosix * cosix;
	  else
	    den = cosix * cosix;
	  __real__ res = sinhrx * coshrx / den;
	  __imag__ res = sinix * cosix / den;
	}
    }

  return res;
}