view libgfortran/runtime/in_unpack_generic.c @ 158:494b0b89df80 default tip

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 25 May 2020 18:13:55 +0900
parents 1830386684a0
children
line wrap: on
line source

/* Generic helper function for repacking arrays.
   Copyright (C) 2003-2020 Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>

This file is part of the GNU Fortran runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#include "libgfortran.h"
#include <string.h>

extern void internal_unpack (gfc_array_char *, const void *);
export_proto(internal_unpack);

void
internal_unpack (gfc_array_char * d, const void * s)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type stride[GFC_MAX_DIMENSIONS];
  index_type stride0;
  index_type dim;
  index_type dsize;
  char *dest;
  const char *src;
  index_type size;
  int type_size;

  dest = d->base_addr;
  /* This check may be redundant, but do it anyway.  */
  if (s == dest || !s)
    return;

  type_size = GFC_DTYPE_TYPE_SIZE (d);
  switch (type_size)
    {
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_LOGICAL_1:
      internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s);
      return;

    case GFC_DTYPE_INTEGER_2:
    case GFC_DTYPE_LOGICAL_2:
      internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
      return;

    case GFC_DTYPE_INTEGER_4:
    case GFC_DTYPE_LOGICAL_4:
      internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
      return;

    case GFC_DTYPE_INTEGER_8:
    case GFC_DTYPE_LOGICAL_8:
      internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
      return;

#if defined (HAVE_GFC_INTEGER_16)
    case GFC_DTYPE_INTEGER_16:
    case GFC_DTYPE_LOGICAL_16:
      internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
      return;
#endif

    case GFC_DTYPE_REAL_4:
      internal_unpack_r4 ((gfc_array_r4 *) d, (const GFC_REAL_4 *) s);
      return;

    case GFC_DTYPE_REAL_8:
      internal_unpack_r8 ((gfc_array_r8 *) d, (const GFC_REAL_8 *) s);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# if defined(HAVE_GFC_REAL_10)
    case GFC_DTYPE_REAL_10:
      internal_unpack_r10 ((gfc_array_r10 *) d, (const GFC_REAL_10 *) s);
      return;
# endif

# if defined(HAVE_GFC_REAL_16)
    case GFC_DTYPE_REAL_16:
      internal_unpack_r16 ((gfc_array_r16 *) d, (const GFC_REAL_16 *) s);
      return;
# endif
#endif

    case GFC_DTYPE_COMPLEX_4:
      internal_unpack_c4 ((gfc_array_c4 *)d, (const GFC_COMPLEX_4 *)s);
      return;

    case GFC_DTYPE_COMPLEX_8:
      internal_unpack_c8 ((gfc_array_c8 *)d, (const GFC_COMPLEX_8 *)s);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# if defined(HAVE_GFC_COMPLEX_10)
    case GFC_DTYPE_COMPLEX_10:
      internal_unpack_c10 ((gfc_array_c10 *) d, (const GFC_COMPLEX_10 *) s);
      return;
# endif

# if defined(HAVE_GFC_COMPLEX_16)
    case GFC_DTYPE_COMPLEX_16:
      internal_unpack_c16 ((gfc_array_c16 *) d, (const GFC_COMPLEX_16 *) s);
      return;
# endif
#endif

    default:
      break;
    }

  switch (GFC_DESCRIPTOR_SIZE(d))
    {
    case 1:
      internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s);
      return;

    case 2:
      if (GFC_UNALIGNED_2(d->base_addr) || GFC_UNALIGNED_2(s))
	break;
      else
	{
	  internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
	  return;
	}
      
    case 4:
      if (GFC_UNALIGNED_4(d->base_addr) || GFC_UNALIGNED_4(s))
	break;
      else
	{
	  internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
	  return;
	}

    case 8:
      if (GFC_UNALIGNED_8(d->base_addr) || GFC_UNALIGNED_8(s))
	break;
      else
	{
	  internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
	  return;
	}

#ifdef HAVE_GFC_INTEGER_16
    case 16:
      if (GFC_UNALIGNED_16(d->base_addr) || GFC_UNALIGNED_16(s))
	break;
      else
	{
	  internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
	  return;
	}
#endif
    default:
      break;
    }

  size = GFC_DESCRIPTOR_SIZE (d);

  dim = GFC_DESCRIPTOR_RANK (d);
  dsize = 1;
  for (index_type n = 0; n < dim; n++)
    {
      count[n] = 0;
      stride[n] = GFC_DESCRIPTOR_STRIDE(d,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(d,n);
      if (extent[n] <= 0)
	return;

      if (dsize == stride[n])
	dsize *= extent[n];
      else
	dsize = 0;
    }

  src = s;

  if (dsize != 0)
    {
      memcpy (dest, src, dsize * size);
      return;
    }

  stride0 = stride[0] * size;

  while (dest)
    {
      /* Copy the data.  */
      memcpy (dest, src, size);
      /* Advance to the next element.  */
      src += size;
      dest += stride0;
      count[0]++;
      /* Advance to the next source element.  */
      index_type n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          dest -= stride[n] * extent[n] * size;
          n++;
          if (n == dim)
            {
              dest = NULL;
              break;
            }
          else
            {
              count[n]++;
              dest += stride[n] * size;
            }
        }
    }
}