// -*- C++ -*- // Copyright (C) 2016-2020 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file variant * This is the C++ Library header. */ #ifndef _GLIBCXX_VARIANT #define _GLIBCXX_VARIANT 1 #pragma GCC system_header #if __cplusplus >= 201703L #include #include #include #include #include #include #include #include #include #include #include #include namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION namespace __detail { namespace __variant { template struct _Nth_type; template struct _Nth_type<_Np, _First, _Rest...> : _Nth_type<_Np-1, _Rest...> { }; template struct _Nth_type<0, _First, _Rest...> { using type = _First; }; } // namespace __variant } // namespace __detail #define __cpp_lib_variant 201606L template class tuple; template class variant; template struct hash; template struct variant_size; template struct variant_size : variant_size<_Variant> {}; template struct variant_size : variant_size<_Variant> {}; template struct variant_size : variant_size<_Variant> {}; template struct variant_size> : std::integral_constant {}; template inline constexpr size_t variant_size_v = variant_size<_Variant>::value; template struct variant_alternative; template struct variant_alternative<_Np, variant<_First, _Rest...>> : variant_alternative<_Np-1, variant<_Rest...>> {}; template struct variant_alternative<0, variant<_First, _Rest...>> { using type = _First; }; template using variant_alternative_t = typename variant_alternative<_Np, _Variant>::type; template struct variant_alternative<_Np, const _Variant> { using type = add_const_t>; }; template struct variant_alternative<_Np, volatile _Variant> { using type = add_volatile_t>; }; template struct variant_alternative<_Np, const volatile _Variant> { using type = add_cv_t>; }; inline constexpr size_t variant_npos = -1; template constexpr variant_alternative_t<_Np, variant<_Types...>>& get(variant<_Types...>&); template constexpr variant_alternative_t<_Np, variant<_Types...>>&& get(variant<_Types...>&&); template constexpr variant_alternative_t<_Np, variant<_Types...>> const& get(const variant<_Types...>&); template constexpr variant_alternative_t<_Np, variant<_Types...>> const&& get(const variant<_Types...>&&); template constexpr decltype(auto) __do_visit(_Visitor&& __visitor, _Variants&&... __variants); template decltype(auto) __variant_cast(_Tp&& __rhs) { if constexpr (is_lvalue_reference_v<_Tp>) { if constexpr (is_const_v>) return static_cast&>(__rhs); else return static_cast&>(__rhs); } else return static_cast&&>(__rhs); } namespace __detail { namespace __variant { // Returns the first appearence of _Tp in _Types. // Returns sizeof...(_Types) if _Tp is not in _Types. template struct __index_of : std::integral_constant {}; template inline constexpr size_t __index_of_v = __index_of<_Tp, _Types...>::value; template struct __index_of<_Tp, _First, _Rest...> : std::integral_constant ? 0 : __index_of_v<_Tp, _Rest...> + 1> {}; // used for raw visitation struct __variant_cookie {}; // used for raw visitation with indices passed in struct __variant_idx_cookie { using type = __variant_idx_cookie; }; // Used to enable deduction (and same-type checking) for std::visit: template struct __deduce_visit_result { }; // Visit variants that might be valueless. template constexpr void __raw_visit(_Visitor&& __visitor, _Variants&&... __variants) { std::__do_visit<__variant_cookie>(std::forward<_Visitor>(__visitor), std::forward<_Variants>(__variants)...); } // Visit variants that might be valueless, passing indices to the visitor. template constexpr void __raw_idx_visit(_Visitor&& __visitor, _Variants&&... __variants) { std::__do_visit<__variant_idx_cookie>(std::forward<_Visitor>(__visitor), std::forward<_Variants>(__variants)...); } // _Uninitialized is guaranteed to be a literal type, even if T is not. // We have to do this, because [basic.types]p10.5.3 (n4606) is not implemented // yet. When it's implemented, _Uninitialized can be changed to the alias // to T, therefore equivalent to being removed entirely. // // Another reason we may not want to remove _Uninitialzied may be that, we // want _Uninitialized to be trivially destructible, no matter whether T // is; but we will see. template> struct _Uninitialized; template struct _Uninitialized<_Type, true> { template constexpr _Uninitialized(in_place_index_t<0>, _Args&&... __args) : _M_storage(std::forward<_Args>(__args)...) { } constexpr const _Type& _M_get() const & noexcept { return _M_storage; } constexpr _Type& _M_get() & noexcept { return _M_storage; } constexpr const _Type&& _M_get() const && noexcept { return std::move(_M_storage); } constexpr _Type&& _M_get() && noexcept { return std::move(_M_storage); } _Type _M_storage; }; template struct _Uninitialized<_Type, false> { template constexpr _Uninitialized(in_place_index_t<0>, _Args&&... __args) { ::new ((void*)std::addressof(_M_storage)) _Type(std::forward<_Args>(__args)...); } const _Type& _M_get() const & noexcept { return *_M_storage._M_ptr(); } _Type& _M_get() & noexcept { return *_M_storage._M_ptr(); } const _Type&& _M_get() const && noexcept { return std::move(*_M_storage._M_ptr()); } _Type&& _M_get() && noexcept { return std::move(*_M_storage._M_ptr()); } __gnu_cxx::__aligned_membuf<_Type> _M_storage; }; template constexpr decltype(auto) __get(in_place_index_t<0>, _Union&& __u) noexcept { return std::forward<_Union>(__u)._M_first._M_get(); } template constexpr decltype(auto) __get(in_place_index_t<_Np>, _Union&& __u) noexcept { return __variant::__get(in_place_index<_Np-1>, std::forward<_Union>(__u)._M_rest); } // Returns the typed storage for __v. template constexpr decltype(auto) __get(_Variant&& __v) noexcept { return __variant::__get(std::in_place_index<_Np>, std::forward<_Variant>(__v)._M_u); } template struct _Traits { static constexpr bool _S_default_ctor = is_default_constructible_v::type>; static constexpr bool _S_copy_ctor = (is_copy_constructible_v<_Types> && ...); static constexpr bool _S_move_ctor = (is_move_constructible_v<_Types> && ...); static constexpr bool _S_copy_assign = _S_copy_ctor && (is_copy_assignable_v<_Types> && ...); static constexpr bool _S_move_assign = _S_move_ctor && (is_move_assignable_v<_Types> && ...); static constexpr bool _S_trivial_dtor = (is_trivially_destructible_v<_Types> && ...); static constexpr bool _S_trivial_copy_ctor = (is_trivially_copy_constructible_v<_Types> && ...); static constexpr bool _S_trivial_move_ctor = (is_trivially_move_constructible_v<_Types> && ...); static constexpr bool _S_trivial_copy_assign = _S_trivial_dtor && _S_trivial_copy_ctor && (is_trivially_copy_assignable_v<_Types> && ...); static constexpr bool _S_trivial_move_assign = _S_trivial_dtor && _S_trivial_move_ctor && (is_trivially_move_assignable_v<_Types> && ...); // The following nothrow traits are for non-trivial SMFs. Trivial SMFs // are always nothrow. static constexpr bool _S_nothrow_default_ctor = is_nothrow_default_constructible_v< typename _Nth_type<0, _Types...>::type>; static constexpr bool _S_nothrow_copy_ctor = false; static constexpr bool _S_nothrow_move_ctor = (is_nothrow_move_constructible_v<_Types> && ...); static constexpr bool _S_nothrow_copy_assign = false; static constexpr bool _S_nothrow_move_assign = _S_nothrow_move_ctor && (is_nothrow_move_assignable_v<_Types> && ...); }; // Defines members and ctors. template union _Variadic_union { }; template union _Variadic_union<_First, _Rest...> { constexpr _Variadic_union() : _M_rest() { } template constexpr _Variadic_union(in_place_index_t<0>, _Args&&... __args) : _M_first(in_place_index<0>, std::forward<_Args>(__args)...) { } template constexpr _Variadic_union(in_place_index_t<_Np>, _Args&&... __args) : _M_rest(in_place_index<_Np-1>, std::forward<_Args>(__args)...) { } _Uninitialized<_First> _M_first; _Variadic_union<_Rest...> _M_rest; }; // _Never_valueless_alt is true for variant alternatives that can // always be placed in a variant without it becoming valueless. // For suitably-small, trivially copyable types we can create temporaries // on the stack and then memcpy them into place. template struct _Never_valueless_alt : __and_, is_trivially_copyable<_Tp>> { }; // Specialize _Never_valueless_alt for other types which have a // non-throwing and cheap move construction and move assignment operator, // so that emplacing the type will provide the strong exception-safety // guarantee, by creating and moving a temporary. // Whether _Never_valueless_alt is true or not affects the ABI of a // variant using that alternative, so we can't change the value later! // True if every alternative in _Types... can be emplaced in a variant // without it becoming valueless. If this is true, variant<_Types...> // can never be valueless, which enables some minor optimizations. template constexpr bool __never_valueless() { return _Traits<_Types...>::_S_move_assign && (_Never_valueless_alt<_Types>::value && ...); } // Defines index and the dtor, possibly trivial. template struct _Variant_storage; template using __select_index = typename __select_int::_Select_int_base::type::value_type; template struct _Variant_storage { constexpr _Variant_storage() : _M_index(variant_npos) { } template constexpr _Variant_storage(in_place_index_t<_Np>, _Args&&... __args) : _M_u(in_place_index<_Np>, std::forward<_Args>(__args)...), _M_index(_Np) { } void _M_reset() { if (!_M_valid()) [[unlikely]] return; std::__do_visit([](auto&& __this_mem) mutable { std::_Destroy(std::__addressof(__this_mem)); }, __variant_cast<_Types...>(*this)); _M_index = variant_npos; } ~_Variant_storage() { _M_reset(); } void* _M_storage() const noexcept { return const_cast(static_cast( std::addressof(_M_u))); } constexpr bool _M_valid() const noexcept { if constexpr (__variant::__never_valueless<_Types...>()) return true; return this->_M_index != __index_type(variant_npos); } _Variadic_union<_Types...> _M_u; using __index_type = __select_index<_Types...>; __index_type _M_index; }; template struct _Variant_storage { constexpr _Variant_storage() : _M_index(variant_npos) { } template constexpr _Variant_storage(in_place_index_t<_Np>, _Args&&... __args) : _M_u(in_place_index<_Np>, std::forward<_Args>(__args)...), _M_index(_Np) { } void _M_reset() noexcept { _M_index = variant_npos; } void* _M_storage() const noexcept { return const_cast(static_cast( std::addressof(_M_u))); } constexpr bool _M_valid() const noexcept { if constexpr (__variant::__never_valueless<_Types...>()) return true; return this->_M_index != __index_type(variant_npos); } _Variadic_union<_Types...> _M_u; using __index_type = __select_index<_Types...>; __index_type _M_index; }; template using _Variant_storage_alias = _Variant_storage<_Traits<_Types...>::_S_trivial_dtor, _Types...>; template void __variant_construct_single(_Tp&& __lhs, _Up&& __rhs_mem) { void* __storage = std::addressof(__lhs._M_u); using _Type = remove_reference_t; if constexpr (!is_same_v<_Type, __variant_cookie>) ::new (__storage) _Type(std::forward(__rhs_mem)); } template void __variant_construct(_Tp&& __lhs, _Up&& __rhs) { __lhs._M_index = __rhs._M_index; __variant::__raw_visit([&__lhs](auto&& __rhs_mem) mutable { __variant_construct_single(std::forward<_Tp>(__lhs), std::forward(__rhs_mem)); }, __variant_cast<_Types...>(std::forward<_Up>(__rhs))); } // The following are (Copy|Move) (ctor|assign) layers for forwarding // triviality and handling non-trivial SMF behaviors. template struct _Copy_ctor_base : _Variant_storage_alias<_Types...> { using _Base = _Variant_storage_alias<_Types...>; using _Base::_Base; _Copy_ctor_base(const _Copy_ctor_base& __rhs) noexcept(_Traits<_Types...>::_S_nothrow_copy_ctor) { __variant_construct<_Types...>(*this, __rhs); } _Copy_ctor_base(_Copy_ctor_base&&) = default; _Copy_ctor_base& operator=(const _Copy_ctor_base&) = default; _Copy_ctor_base& operator=(_Copy_ctor_base&&) = default; }; template struct _Copy_ctor_base : _Variant_storage_alias<_Types...> { using _Base = _Variant_storage_alias<_Types...>; using _Base::_Base; }; template using _Copy_ctor_alias = _Copy_ctor_base<_Traits<_Types...>::_S_trivial_copy_ctor, _Types...>; template struct _Move_ctor_base : _Copy_ctor_alias<_Types...> { using _Base = _Copy_ctor_alias<_Types...>; using _Base::_Base; _Move_ctor_base(_Move_ctor_base&& __rhs) noexcept(_Traits<_Types...>::_S_nothrow_move_ctor) { __variant_construct<_Types...>(*this, std::move(__rhs)); } template void _M_destructive_move(unsigned short __rhs_index, _Up&& __rhs) { this->_M_reset(); __variant_construct_single(*this, std::forward<_Up>(__rhs)); this->_M_index = __rhs_index; } template void _M_destructive_copy(unsigned short __rhs_index, const _Up& __rhs) { this->_M_reset(); __variant_construct_single(*this, __rhs); this->_M_index = __rhs_index; } _Move_ctor_base(const _Move_ctor_base&) = default; _Move_ctor_base& operator=(const _Move_ctor_base&) = default; _Move_ctor_base& operator=(_Move_ctor_base&&) = default; }; template struct _Move_ctor_base : _Copy_ctor_alias<_Types...> { using _Base = _Copy_ctor_alias<_Types...>; using _Base::_Base; template void _M_destructive_move(unsigned short __rhs_index, _Up&& __rhs) { this->_M_reset(); __variant_construct_single(*this, std::forward<_Up>(__rhs)); this->_M_index = __rhs_index; } template void _M_destructive_copy(unsigned short __rhs_index, const _Up& __rhs) { this->_M_reset(); __variant_construct_single(*this, __rhs); this->_M_index = __rhs_index; } }; template using _Move_ctor_alias = _Move_ctor_base<_Traits<_Types...>::_S_trivial_move_ctor, _Types...>; template struct _Copy_assign_base : _Move_ctor_alias<_Types...> { using _Base = _Move_ctor_alias<_Types...>; using _Base::_Base; _Copy_assign_base& operator=(const _Copy_assign_base& __rhs) noexcept(_Traits<_Types...>::_S_nothrow_copy_assign) { __variant::__raw_idx_visit( [this](auto&& __rhs_mem, auto __rhs_index) mutable { if constexpr (__rhs_index != variant_npos) { if (this->_M_index == __rhs_index) __variant::__get<__rhs_index>(*this) = __rhs_mem; else { using __rhs_type = __remove_cvref_t; if constexpr (is_nothrow_copy_constructible_v<__rhs_type> || !is_nothrow_move_constructible_v<__rhs_type>) // The standard says this->emplace<__rhs_type>(__rhs_mem) // should be used here, but _M_destructive_copy is // equivalent in this case. Either copy construction // doesn't throw, so _M_destructive_copy gives strong // exception safety guarantee, or both copy construction // and move construction can throw, so emplace only gives // basic exception safety anyway. this->_M_destructive_copy(__rhs_index, __rhs_mem); else __variant_cast<_Types...>(*this) = variant<_Types...>(__rhs_mem); } } else this->_M_reset(); }, __variant_cast<_Types...>(__rhs)); return *this; } _Copy_assign_base(const _Copy_assign_base&) = default; _Copy_assign_base(_Copy_assign_base&&) = default; _Copy_assign_base& operator=(_Copy_assign_base&&) = default; }; template struct _Copy_assign_base : _Move_ctor_alias<_Types...> { using _Base = _Move_ctor_alias<_Types...>; using _Base::_Base; }; template using _Copy_assign_alias = _Copy_assign_base<_Traits<_Types...>::_S_trivial_copy_assign, _Types...>; template struct _Move_assign_base : _Copy_assign_alias<_Types...> { using _Base = _Copy_assign_alias<_Types...>; using _Base::_Base; _Move_assign_base& operator=(_Move_assign_base&& __rhs) noexcept(_Traits<_Types...>::_S_nothrow_move_assign) { __variant::__raw_idx_visit( [this](auto&& __rhs_mem, auto __rhs_index) mutable { if constexpr (__rhs_index != variant_npos) { if (this->_M_index == __rhs_index) __variant::__get<__rhs_index>(*this) = std::move(__rhs_mem); else __variant_cast<_Types...>(*this) .template emplace<__rhs_index>(std::move(__rhs_mem)); } else this->_M_reset(); }, __variant_cast<_Types...>(__rhs)); return *this; } _Move_assign_base(const _Move_assign_base&) = default; _Move_assign_base(_Move_assign_base&&) = default; _Move_assign_base& operator=(const _Move_assign_base&) = default; }; template struct _Move_assign_base : _Copy_assign_alias<_Types...> { using _Base = _Copy_assign_alias<_Types...>; using _Base::_Base; }; template using _Move_assign_alias = _Move_assign_base<_Traits<_Types...>::_S_trivial_move_assign, _Types...>; template struct _Variant_base : _Move_assign_alias<_Types...> { using _Base = _Move_assign_alias<_Types...>; constexpr _Variant_base() noexcept(_Traits<_Types...>::_S_nothrow_default_ctor) : _Variant_base(in_place_index<0>) { } template constexpr explicit _Variant_base(in_place_index_t<_Np> __i, _Args&&... __args) : _Base(__i, std::forward<_Args>(__args)...) { } _Variant_base(const _Variant_base&) = default; _Variant_base(_Variant_base&&) = default; _Variant_base& operator=(const _Variant_base&) = default; _Variant_base& operator=(_Variant_base&&) = default; }; // For how many times does _Tp appear in _Tuple? template struct __tuple_count; template inline constexpr size_t __tuple_count_v = __tuple_count<_Tp, _Tuple>::value; template struct __tuple_count<_Tp, tuple<_Types...>> : integral_constant { }; template struct __tuple_count<_Tp, tuple<_First, _Rest...>> : integral_constant< size_t, __tuple_count_v<_Tp, tuple<_Rest...>> + is_same_v<_Tp, _First>> { }; // TODO: Reuse this in ? template inline constexpr bool __exactly_once = __tuple_count_v<_Tp, tuple<_Types...>> == 1; // Helper used to check for valid conversions that don't involve narrowing. template struct _Arr { _Ti _M_x[1]; }; // Build an imaginary function FUN(Ti) for each alternative type Ti template, bool>, typename = void> struct _Build_FUN { // This function means 'using _Build_FUN::_S_fun;' is valid, // but only static functions will be considered in the call below. void _S_fun(); }; // ... for which Ti x[] = {std::forward(t)}; is well-formed, template struct _Build_FUN<_Ind, _Tp, _Ti, false, void_t{{std::declval<_Tp>()}})>> { // This is the FUN function for type _Ti, with index _Ind static integral_constant _S_fun(_Ti); }; // ... and if Ti is cv bool, remove_cvref_t is bool. template struct _Build_FUN<_Ind, _Tp, _Ti, true, enable_if_t, bool>>> { // This is the FUN function for when _Ti is cv bool, with index _Ind static integral_constant _S_fun(_Ti); }; template>> struct _Build_FUNs; template struct _Build_FUNs<_Tp, variant<_Ti...>, index_sequence<_Ind...>> : _Build_FUN<_Ind, _Tp, _Ti>... { using _Build_FUN<_Ind, _Tp, _Ti>::_S_fun...; }; // The index j of the overload FUN(Tj) selected by overload resolution // for FUN(std::forward<_Tp>(t)) template using _FUN_type = decltype(_Build_FUNs<_Tp, _Variant>::_S_fun(std::declval<_Tp>())); // The index selected for FUN(std::forward(t)), or variant_npos if none. template struct __accepted_index : integral_constant { }; template struct __accepted_index<_Tp, _Variant, void_t<_FUN_type<_Tp, _Variant>>> : _FUN_type<_Tp, _Variant> { }; // Returns the raw storage for __v. template void* __get_storage(_Variant&& __v) noexcept { return __v._M_storage(); } template struct _Extra_visit_slot_needed { template struct _Variant_never_valueless; template struct _Variant_never_valueless> : bool_constant<__variant::__never_valueless<_Types...>()> {}; static constexpr bool value = (is_same_v<_Maybe_variant_cookie, __variant_cookie> || is_same_v<_Maybe_variant_cookie, __variant_idx_cookie>) && !_Variant_never_valueless<__remove_cvref_t<_Variant>>::value; }; // Used for storing a multi-dimensional vtable. template struct _Multi_array; // Partial specialization with rank zero, stores a single _Tp element. template struct _Multi_array<_Tp> { template struct __untag_result : false_type { using element_type = _Tp; }; template struct __untag_result : false_type { using element_type = void(*)(_Args...); }; template struct __untag_result<__variant_cookie(*)(_Args...)> : false_type { using element_type = void(*)(_Args...); }; template struct __untag_result<__variant_idx_cookie(*)(_Args...)> : false_type { using element_type = void(*)(_Args...); }; template struct __untag_result<__deduce_visit_result<_Res>(*)(_Args...)> : true_type { using element_type = _Res(*)(_Args...); }; using __result_is_deduced = __untag_result<_Tp>; constexpr const typename __untag_result<_Tp>::element_type& _M_access() const { return _M_data; } typename __untag_result<_Tp>::element_type _M_data; }; // Partial specialization with rank >= 1. template struct _Multi_array<_Ret(*)(_Visitor, _Variants...), __first, __rest...> { static constexpr size_t __index = sizeof...(_Variants) - sizeof...(__rest) - 1; using _Variant = typename _Nth_type<__index, _Variants...>::type; static constexpr int __do_cookie = _Extra_visit_slot_needed<_Ret, _Variant>::value ? 1 : 0; using _Tp = _Ret(*)(_Visitor, _Variants...); template constexpr decltype(auto) _M_access(size_t __first_index, _Args... __rest_indices) const { return _M_arr[__first_index + __do_cookie] ._M_access(__rest_indices...); } _Multi_array<_Tp, __rest...> _M_arr[__first + __do_cookie]; }; // Creates a multi-dimensional vtable recursively. // // For example, // visit([](auto, auto){}, // variant(), // typedef'ed as V1 // variant()) // typedef'ed as V2 // will trigger instantiations of: // __gen_vtable_impl<_Multi_array, // tuple, std::index_sequence<>> // __gen_vtable_impl<_Multi_array, // tuple, std::index_sequence<0>> // __gen_vtable_impl<_Multi_array, // tuple, std::index_sequence<0, 0>> // __gen_vtable_impl<_Multi_array, // tuple, std::index_sequence<0, 1>> // __gen_vtable_impl<_Multi_array, // tuple, std::index_sequence<0, 2>> // __gen_vtable_impl<_Multi_array, // tuple, std::index_sequence<1>> // __gen_vtable_impl<_Multi_array, // tuple, std::index_sequence<1, 0>> // __gen_vtable_impl<_Multi_array, // tuple, std::index_sequence<1, 1>> // __gen_vtable_impl<_Multi_array, // tuple, std::index_sequence<1, 2>> // The returned multi-dimensional vtable can be fast accessed by the visitor // using index calculation. template struct __gen_vtable_impl; // Defines the _S_apply() member that returns a _Multi_array populated // with function pointers that perform the visitation expressions e(m) // for each valid pack of indexes into the variant types _Variants. // // This partial specialization builds up the index sequences by recursively // calling _S_apply() on the next specialization of __gen_vtable_impl. // The base case of the recursion defines the actual function pointers. template struct __gen_vtable_impl< _Multi_array<_Result_type (*)(_Visitor, _Variants...), __dimensions...>, std::index_sequence<__indices...>> { using _Next = remove_reference_t::type>; using _Array_type = _Multi_array<_Result_type (*)(_Visitor, _Variants...), __dimensions...>; static constexpr _Array_type _S_apply() { _Array_type __vtable{}; _S_apply_all_alts( __vtable, make_index_sequence>()); return __vtable; } template static constexpr void _S_apply_all_alts(_Array_type& __vtable, std::index_sequence<__var_indices...>) { if constexpr (_Extra_visit_slot_needed<_Result_type, _Next>::value) (_S_apply_single_alt( __vtable._M_arr[__var_indices + 1], &(__vtable._M_arr[0])), ...); else (_S_apply_single_alt( __vtable._M_arr[__var_indices]), ...); } template static constexpr void _S_apply_single_alt(_Tp& __element, _Tp* __cookie_element = nullptr) { if constexpr (__do_cookie) { __element = __gen_vtable_impl< _Tp, std::index_sequence<__indices..., __index>>::_S_apply(); *__cookie_element = __gen_vtable_impl< _Tp, std::index_sequence<__indices..., variant_npos>>::_S_apply(); } else { __element = __gen_vtable_impl< remove_reference_t, std::index_sequence<__indices..., __index>>::_S_apply(); } } }; // This partial specialization is the base case for the recursion. // It populates a _Multi_array element with the address of a function // that invokes the visitor with the alternatives specified by __indices. template struct __gen_vtable_impl< _Multi_array<_Result_type (*)(_Visitor, _Variants...)>, std::index_sequence<__indices...>> { using _Array_type = _Multi_array<_Result_type (*)(_Visitor, _Variants...)>; template static constexpr decltype(auto) __element_by_index_or_cookie(_Variant&& __var) noexcept { if constexpr (__index != variant_npos) return __variant::__get<__index>(std::forward<_Variant>(__var)); else return __variant_cookie{}; } static constexpr decltype(auto) __visit_invoke(_Visitor&& __visitor, _Variants... __vars) { if constexpr (is_same_v<_Result_type, __variant_idx_cookie>) // For raw visitation using indices, pass the indices to the visitor // and discard the return value: std::__invoke(std::forward<_Visitor>(__visitor), __element_by_index_or_cookie<__indices>( std::forward<_Variants>(__vars))..., integral_constant()...); else if constexpr (is_same_v<_Result_type, __variant_cookie>) // For raw visitation without indices, and discard the return value: std::__invoke(std::forward<_Visitor>(__visitor), __element_by_index_or_cookie<__indices>( std::forward<_Variants>(__vars))...); else if constexpr (_Array_type::__result_is_deduced::value) // For the usual std::visit case deduce the return value: return std::__invoke(std::forward<_Visitor>(__visitor), __element_by_index_or_cookie<__indices>( std::forward<_Variants>(__vars))...); else // for std::visit use INVOKE return std::__invoke_r<_Result_type>( std::forward<_Visitor>(__visitor), __variant::__get<__indices>(std::forward<_Variants>(__vars))...); } static constexpr auto _S_apply() { return _Array_type{&__visit_invoke}; } }; template struct __gen_vtable { using _Array_type = _Multi_array<_Result_type (*)(_Visitor, _Variants...), variant_size_v>...>; static constexpr _Array_type _S_vtable = __gen_vtable_impl<_Array_type, std::index_sequence<>>::_S_apply(); }; template struct _Base_dedup : public _Tp { }; template struct _Variant_hash_base; template struct _Variant_hash_base, std::index_sequence<__indices...>> : _Base_dedup<__indices, __poison_hash>>... { }; } // namespace __variant } // namespace __detail template void __variant_construct_by_index(_Variant& __v, _Args&&... __args) { __v._M_index = _Np; auto&& __storage = __detail::__variant::__get<_Np>(__v); ::new ((void*)std::addressof(__storage)) remove_reference_t (std::forward<_Args>(__args)...); } template constexpr bool holds_alternative(const variant<_Types...>& __v) noexcept { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T must occur exactly once in alternatives"); return __v.index() == __detail::__variant::__index_of_v<_Tp, _Types...>; } template constexpr _Tp& get(variant<_Types...>& __v) { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T must occur exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp must not be void"); return std::get<__detail::__variant::__index_of_v<_Tp, _Types...>>(__v); } template constexpr _Tp&& get(variant<_Types...>&& __v) { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T must occur exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp must not be void"); return std::get<__detail::__variant::__index_of_v<_Tp, _Types...>>( std::move(__v)); } template constexpr const _Tp& get(const variant<_Types...>& __v) { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T must occur exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp must not be void"); return std::get<__detail::__variant::__index_of_v<_Tp, _Types...>>(__v); } template constexpr const _Tp&& get(const variant<_Types...>&& __v) { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T must occur exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp must not be void"); return std::get<__detail::__variant::__index_of_v<_Tp, _Types...>>( std::move(__v)); } template constexpr add_pointer_t>> get_if(variant<_Types...>* __ptr) noexcept { using _Alternative_type = variant_alternative_t<_Np, variant<_Types...>>; static_assert(_Np < sizeof...(_Types), "The index must be in [0, number of alternatives)"); static_assert(!is_void_v<_Alternative_type>, "_Tp must not be void"); if (__ptr && __ptr->index() == _Np) return std::addressof(__detail::__variant::__get<_Np>(*__ptr)); return nullptr; } template constexpr add_pointer_t>> get_if(const variant<_Types...>* __ptr) noexcept { using _Alternative_type = variant_alternative_t<_Np, variant<_Types...>>; static_assert(_Np < sizeof...(_Types), "The index must be in [0, number of alternatives)"); static_assert(!is_void_v<_Alternative_type>, "_Tp must not be void"); if (__ptr && __ptr->index() == _Np) return std::addressof(__detail::__variant::__get<_Np>(*__ptr)); return nullptr; } template constexpr add_pointer_t<_Tp> get_if(variant<_Types...>* __ptr) noexcept { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T must occur exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp must not be void"); return std::get_if<__detail::__variant::__index_of_v<_Tp, _Types...>>( __ptr); } template constexpr add_pointer_t get_if(const variant<_Types...>* __ptr) noexcept { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T must occur exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp must not be void"); return std::get_if<__detail::__variant::__index_of_v<_Tp, _Types...>>( __ptr); } struct monostate { }; #define _VARIANT_RELATION_FUNCTION_TEMPLATE(__OP, __NAME) \ template \ constexpr bool operator __OP(const variant<_Types...>& __lhs, \ const variant<_Types...>& __rhs) \ { \ bool __ret = true; \ __detail::__variant::__raw_idx_visit( \ [&__ret, &__lhs] (auto&& __rhs_mem, auto __rhs_index) mutable \ { \ if constexpr (__rhs_index != variant_npos) \ { \ if (__lhs.index() == __rhs_index) \ { \ auto& __this_mem = std::get<__rhs_index>(__lhs); \ __ret = __this_mem __OP __rhs_mem; \ } \ else \ __ret = (__lhs.index() + 1) __OP (__rhs_index + 1); \ } \ else \ __ret = (__lhs.index() + 1) __OP (__rhs_index + 1); \ }, __rhs); \ return __ret; \ } \ \ constexpr bool operator __OP(monostate, monostate) noexcept \ { return 0 __OP 0; } _VARIANT_RELATION_FUNCTION_TEMPLATE(<, less) _VARIANT_RELATION_FUNCTION_TEMPLATE(<=, less_equal) _VARIANT_RELATION_FUNCTION_TEMPLATE(==, equal) _VARIANT_RELATION_FUNCTION_TEMPLATE(!=, not_equal) _VARIANT_RELATION_FUNCTION_TEMPLATE(>=, greater_equal) _VARIANT_RELATION_FUNCTION_TEMPLATE(>, greater) #undef _VARIANT_RELATION_FUNCTION_TEMPLATE template constexpr decltype(auto) visit(_Visitor&&, _Variants&&...); template inline enable_if_t<(is_move_constructible_v<_Types> && ...) && (is_swappable_v<_Types> && ...)> swap(variant<_Types...>& __lhs, variant<_Types...>& __rhs) noexcept(noexcept(__lhs.swap(__rhs))) { __lhs.swap(__rhs); } template enable_if_t && ...) && (is_swappable_v<_Types> && ...))> swap(variant<_Types...>&, variant<_Types...>&) = delete; class bad_variant_access : public exception { public: bad_variant_access() noexcept { } const char* what() const noexcept override { return _M_reason; } private: bad_variant_access(const char* __reason) noexcept : _M_reason(__reason) { } // Must point to a string with static storage duration: const char* _M_reason = "bad variant access"; friend void __throw_bad_variant_access(const char* __what); }; // Must only be called with a string literal inline void __throw_bad_variant_access(const char* __what) { _GLIBCXX_THROW_OR_ABORT(bad_variant_access(__what)); } inline void __throw_bad_variant_access(bool __valueless) { if (__valueless) [[__unlikely__]] __throw_bad_variant_access("std::get: variant is valueless"); else __throw_bad_variant_access("std::get: wrong index for variant"); } template class variant : private __detail::__variant::_Variant_base<_Types...>, private _Enable_default_constructor< __detail::__variant::_Traits<_Types...>::_S_default_ctor, variant<_Types...>>, private _Enable_copy_move< __detail::__variant::_Traits<_Types...>::_S_copy_ctor, __detail::__variant::_Traits<_Types...>::_S_copy_assign, __detail::__variant::_Traits<_Types...>::_S_move_ctor, __detail::__variant::_Traits<_Types...>::_S_move_assign, variant<_Types...>> { private: template friend decltype(auto) __variant_cast(_Tp&&); template friend void __variant_construct_by_index(_Variant& __v, _Args&&... __args); static_assert(sizeof...(_Types) > 0, "variant must have at least one alternative"); static_assert(!(std::is_reference_v<_Types> || ...), "variant must have no reference alternative"); static_assert(!(std::is_void_v<_Types> || ...), "variant must have no void alternative"); using _Base = __detail::__variant::_Variant_base<_Types...>; using _Default_ctor_enabler = _Enable_default_constructor< __detail::__variant::_Traits<_Types...>::_S_default_ctor, variant<_Types...>>; template static constexpr bool __not_self = !is_same_v<__remove_cvref_t<_Tp>, variant>; template static constexpr bool __exactly_once = __detail::__variant::__exactly_once<_Tp, _Types...>; template static constexpr size_t __accepted_index = __detail::__variant::__accepted_index<_Tp, variant>::value; template> using __to_type = variant_alternative_t<_Np, variant>; template>> using __accepted_type = __to_type<__accepted_index<_Tp>>; template static constexpr size_t __index_of = __detail::__variant::__index_of_v<_Tp, _Types...>; using _Traits = __detail::__variant::_Traits<_Types...>; template struct __is_in_place_tag : false_type { }; template struct __is_in_place_tag> : true_type { }; template struct __is_in_place_tag> : true_type { }; template static constexpr bool __not_in_place_tag = !__is_in_place_tag<__remove_cvref_t<_Tp>>::value; public: variant() = default; variant(const variant& __rhs) = default; variant(variant&&) = default; variant& operator=(const variant&) = default; variant& operator=(variant&&) = default; ~variant() = default; template, typename = enable_if_t<__not_in_place_tag<_Tp>>, typename _Tj = __accepted_type<_Tp&&>, typename = enable_if_t<__exactly_once<_Tj> && is_constructible_v<_Tj, _Tp>>> constexpr variant(_Tp&& __t) noexcept(is_nothrow_constructible_v<_Tj, _Tp>) : variant(in_place_index<__accepted_index<_Tp>>, std::forward<_Tp>(__t)) { } template && is_constructible_v<_Tp, _Args...>>> constexpr explicit variant(in_place_type_t<_Tp>, _Args&&... __args) : variant(in_place_index<__index_of<_Tp>>, std::forward<_Args>(__args)...) { } template && is_constructible_v<_Tp, initializer_list<_Up>&, _Args...>>> constexpr explicit variant(in_place_type_t<_Tp>, initializer_list<_Up> __il, _Args&&... __args) : variant(in_place_index<__index_of<_Tp>>, __il, std::forward<_Args>(__args)...) { } template, typename = enable_if_t>> constexpr explicit variant(in_place_index_t<_Np>, _Args&&... __args) : _Base(in_place_index<_Np>, std::forward<_Args>(__args)...), _Default_ctor_enabler(_Enable_default_constructor_tag{}) { } template, typename = enable_if_t&, _Args...>>> constexpr explicit variant(in_place_index_t<_Np>, initializer_list<_Up> __il, _Args&&... __args) : _Base(in_place_index<_Np>, __il, std::forward<_Args>(__args)...), _Default_ctor_enabler(_Enable_default_constructor_tag{}) { } template enable_if_t<__exactly_once<__accepted_type<_Tp&&>> && is_constructible_v<__accepted_type<_Tp&&>, _Tp> && is_assignable_v<__accepted_type<_Tp&&>&, _Tp>, variant&> operator=(_Tp&& __rhs) noexcept(is_nothrow_assignable_v<__accepted_type<_Tp&&>&, _Tp> && is_nothrow_constructible_v<__accepted_type<_Tp&&>, _Tp>) { constexpr auto __index = __accepted_index<_Tp>; if (index() == __index) std::get<__index>(*this) = std::forward<_Tp>(__rhs); else { using _Tj = __accepted_type<_Tp&&>; if constexpr (is_nothrow_constructible_v<_Tj, _Tp> || !is_nothrow_move_constructible_v<_Tj>) this->emplace<__index>(std::forward<_Tp>(__rhs)); else operator=(variant(std::forward<_Tp>(__rhs))); } return *this; } template enable_if_t && __exactly_once<_Tp>, _Tp&> emplace(_Args&&... __args) { constexpr size_t __index = __index_of<_Tp>; return this->emplace<__index>(std::forward<_Args>(__args)...); } template enable_if_t&, _Args...> && __exactly_once<_Tp>, _Tp&> emplace(initializer_list<_Up> __il, _Args&&... __args) { constexpr size_t __index = __index_of<_Tp>; return this->emplace<__index>(__il, std::forward<_Args>(__args)...); } template enable_if_t, _Args...>, variant_alternative_t<_Np, variant>&> emplace(_Args&&... __args) { static_assert(_Np < sizeof...(_Types), "The index must be in [0, number of alternatives)"); using type = variant_alternative_t<_Np, variant>; // Provide the strong exception-safety guarantee when possible, // to avoid becoming valueless. if constexpr (is_nothrow_constructible_v) { this->_M_reset(); __variant_construct_by_index<_Np>(*this, std::forward<_Args>(__args)...); } else if constexpr (is_scalar_v) { // This might invoke a potentially-throwing conversion operator: const type __tmp(std::forward<_Args>(__args)...); // But these steps won't throw: this->_M_reset(); __variant_construct_by_index<_Np>(*this, __tmp); } else if constexpr (__detail::__variant::_Never_valueless_alt() && _Traits::_S_move_assign) { // This construction might throw: variant __tmp(in_place_index<_Np>, std::forward<_Args>(__args)...); // But _Never_valueless_alt means this won't: *this = std::move(__tmp); } else { // This case only provides the basic exception-safety guarantee, // i.e. the variant can become valueless. this->_M_reset(); __try { __variant_construct_by_index<_Np>(*this, std::forward<_Args>(__args)...); } __catch (...) { this->_M_index = variant_npos; __throw_exception_again; } } return std::get<_Np>(*this); } template enable_if_t, initializer_list<_Up>&, _Args...>, variant_alternative_t<_Np, variant>&> emplace(initializer_list<_Up> __il, _Args&&... __args) { static_assert(_Np < sizeof...(_Types), "The index must be in [0, number of alternatives)"); using type = variant_alternative_t<_Np, variant>; // Provide the strong exception-safety guarantee when possible, // to avoid becoming valueless. if constexpr (is_nothrow_constructible_v&, _Args...>) { this->_M_reset(); __variant_construct_by_index<_Np>(*this, __il, std::forward<_Args>(__args)...); } else if constexpr (__detail::__variant::_Never_valueless_alt() && _Traits::_S_move_assign) { // This construction might throw: variant __tmp(in_place_index<_Np>, __il, std::forward<_Args>(__args)...); // But _Never_valueless_alt means this won't: *this = std::move(__tmp); } else { // This case only provides the basic exception-safety guarantee, // i.e. the variant can become valueless. this->_M_reset(); __try { __variant_construct_by_index<_Np>(*this, __il, std::forward<_Args>(__args)...); } __catch (...) { this->_M_index = variant_npos; __throw_exception_again; } } return std::get<_Np>(*this); } constexpr bool valueless_by_exception() const noexcept { return !this->_M_valid(); } constexpr size_t index() const noexcept { using __index_type = typename _Base::__index_type; if constexpr (__detail::__variant::__never_valueless<_Types...>()) return this->_M_index; else if constexpr (sizeof...(_Types) <= __index_type(-1) / 2) return make_signed_t<__index_type>(this->_M_index); else return size_t(__index_type(this->_M_index + 1)) - 1; } void swap(variant& __rhs) noexcept((__is_nothrow_swappable<_Types>::value && ...) && is_nothrow_move_constructible_v) { __detail::__variant::__raw_idx_visit( [this, &__rhs](auto&& __rhs_mem, auto __rhs_index) mutable { if constexpr (__rhs_index != variant_npos) { if (this->index() == __rhs_index) { auto& __this_mem = std::get<__rhs_index>(*this); using std::swap; swap(__this_mem, __rhs_mem); } else { if (!this->valueless_by_exception()) [[__likely__]] { auto __tmp(std::move(__rhs_mem)); __rhs = std::move(*this); this->_M_destructive_move(__rhs_index, std::move(__tmp)); } else { this->_M_destructive_move(__rhs_index, std::move(__rhs_mem)); __rhs._M_reset(); } } } else { if (!this->valueless_by_exception()) [[__likely__]] { __rhs = std::move(*this); this->_M_reset(); } } }, __rhs); } private: #if defined(__clang__) && __clang_major__ <= 7 public: using _Base::_M_u; // See https://bugs.llvm.org/show_bug.cgi?id=31852 private: #endif template friend constexpr decltype(auto) __detail::__variant::__get(_Vp&& __v) noexcept; template friend void* __detail::__variant::__get_storage(_Vp&& __v) noexcept; #define _VARIANT_RELATION_FUNCTION_TEMPLATE(__OP) \ template \ friend constexpr bool \ operator __OP(const variant<_Tp...>& __lhs, \ const variant<_Tp...>& __rhs); _VARIANT_RELATION_FUNCTION_TEMPLATE(<) _VARIANT_RELATION_FUNCTION_TEMPLATE(<=) _VARIANT_RELATION_FUNCTION_TEMPLATE(==) _VARIANT_RELATION_FUNCTION_TEMPLATE(!=) _VARIANT_RELATION_FUNCTION_TEMPLATE(>=) _VARIANT_RELATION_FUNCTION_TEMPLATE(>) #undef _VARIANT_RELATION_FUNCTION_TEMPLATE }; template constexpr variant_alternative_t<_Np, variant<_Types...>>& get(variant<_Types...>& __v) { static_assert(_Np < sizeof...(_Types), "The index must be in [0, number of alternatives)"); if (__v.index() != _Np) __throw_bad_variant_access(__v.valueless_by_exception()); return __detail::__variant::__get<_Np>(__v); } template constexpr variant_alternative_t<_Np, variant<_Types...>>&& get(variant<_Types...>&& __v) { static_assert(_Np < sizeof...(_Types), "The index must be in [0, number of alternatives)"); if (__v.index() != _Np) __throw_bad_variant_access(__v.valueless_by_exception()); return __detail::__variant::__get<_Np>(std::move(__v)); } template constexpr const variant_alternative_t<_Np, variant<_Types...>>& get(const variant<_Types...>& __v) { static_assert(_Np < sizeof...(_Types), "The index must be in [0, number of alternatives)"); if (__v.index() != _Np) __throw_bad_variant_access(__v.valueless_by_exception()); return __detail::__variant::__get<_Np>(__v); } template constexpr const variant_alternative_t<_Np, variant<_Types...>>&& get(const variant<_Types...>&& __v) { static_assert(_Np < sizeof...(_Types), "The index must be in [0, number of alternatives)"); if (__v.index() != _Np) __throw_bad_variant_access(__v.valueless_by_exception()); return __detail::__variant::__get<_Np>(std::move(__v)); } template constexpr decltype(auto) __do_visit(_Visitor&& __visitor, _Variants&&... __variants) { constexpr auto& __vtable = __detail::__variant::__gen_vtable< _Result_type, _Visitor&&, _Variants&&...>::_S_vtable; auto __func_ptr = __vtable._M_access(__variants.index()...); return (*__func_ptr)(std::forward<_Visitor>(__visitor), std::forward<_Variants>(__variants)...); } template constexpr decltype(auto) visit(_Visitor&& __visitor, _Variants&&... __variants) { if ((__variants.valueless_by_exception() || ...)) __throw_bad_variant_access("std::visit: variant is valueless"); using _Result_type = std::invoke_result_t<_Visitor, decltype(std::get<0>(std::declval<_Variants>()))...>; using _Tag = __detail::__variant::__deduce_visit_result<_Result_type>; return std::__do_visit<_Tag>(std::forward<_Visitor>(__visitor), std::forward<_Variants>(__variants)...); } #if __cplusplus > 201703L template constexpr _Res visit(_Visitor&& __visitor, _Variants&&... __variants) { if ((__variants.valueless_by_exception() || ...)) __throw_bad_variant_access("std::visit: variant is valueless"); return std::__do_visit<_Res>(std::forward<_Visitor>(__visitor), std::forward<_Variants>(__variants)...); } #endif template struct __variant_hash_call_base_impl { size_t operator()(const variant<_Types...>& __t) const noexcept((is_nothrow_invocable_v>, _Types> && ...)) { size_t __ret; __detail::__variant::__raw_visit( [&__t, &__ret](auto&& __t_mem) mutable { using _Type = __remove_cvref_t; if constexpr (!is_same_v<_Type, __detail::__variant::__variant_cookie>) __ret = std::hash{}(__t.index()) + std::hash<_Type>{}(__t_mem); else __ret = std::hash{}(__t.index()); }, __t); return __ret; } }; template struct __variant_hash_call_base_impl {}; template using __variant_hash_call_base = __variant_hash_call_base_impl<(__poison_hash>:: __enable_hash_call &&...), _Types...>; template struct hash> : private __detail::__variant::_Variant_hash_base< variant<_Types...>, std::index_sequence_for<_Types...>>, public __variant_hash_call_base<_Types...> { using result_type [[__deprecated__]] = size_t; using argument_type [[__deprecated__]] = variant<_Types...>; }; template<> struct hash { using result_type [[__deprecated__]] = size_t; using argument_type [[__deprecated__]] = monostate; size_t operator()(const monostate&) const noexcept { constexpr size_t __magic_monostate_hash = -7777; return __magic_monostate_hash; } }; template struct __is_fast_hash>> : bool_constant<(__is_fast_hash<_Types>::value && ...)> { }; _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif // C++17 #endif // _GLIBCXX_VARIANT