// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package reflect implements run-time reflection, allowing a program to // manipulate objects with arbitrary types. The typical use is to take a value // with static type interface{} and extract its dynamic type information by // calling TypeOf, which returns a Type. // // A call to ValueOf returns a Value representing the run-time data. // Zero takes a Type and returns a Value representing a zero value // for that type. // // See "The Laws of Reflection" for an introduction to reflection in Go: // https://golang.org/doc/articles/laws_of_reflection.html package reflect import ( "strconv" "sync" "unicode" "unicode/utf8" "unsafe" ) // Type is the representation of a Go type. // // Not all methods apply to all kinds of types. Restrictions, // if any, are noted in the documentation for each method. // Use the Kind method to find out the kind of type before // calling kind-specific methods. Calling a method // inappropriate to the kind of type causes a run-time panic. // // Type values are comparable, such as with the == operator, // so they can be used as map keys. // Two Type values are equal if they represent identical types. type Type interface { // Methods applicable to all types. // Align returns the alignment in bytes of a value of // this type when allocated in memory. Align() int // FieldAlign returns the alignment in bytes of a value of // this type when used as a field in a struct. FieldAlign() int // Method returns the i'th method in the type's method set. // It panics if i is not in the range [0, NumMethod()). // // For a non-interface type T or *T, the returned Method's Type and Func // fields describe a function whose first argument is the receiver. // // For an interface type, the returned Method's Type field gives the // method signature, without a receiver, and the Func field is nil. Method(int) Method // MethodByName returns the method with that name in the type's // method set and a boolean indicating if the method was found. // // For a non-interface type T or *T, the returned Method's Type and Func // fields describe a function whose first argument is the receiver. // // For an interface type, the returned Method's Type field gives the // method signature, without a receiver, and the Func field is nil. MethodByName(string) (Method, bool) // NumMethod returns the number of exported methods in the type's method set. NumMethod() int // Name returns the type's name within its package for a defined type. // For other (non-defined) types it returns the empty string. Name() string // PkgPath returns a defined type's package path, that is, the import path // that uniquely identifies the package, such as "encoding/base64". // If the type was predeclared (string, error) or not defined (*T, struct{}, // []int, or A where A is an alias for a non-defined type), the package path // will be the empty string. PkgPath() string // Size returns the number of bytes needed to store // a value of the given type; it is analogous to unsafe.Sizeof. Size() uintptr // String returns a string representation of the type. // The string representation may use shortened package names // (e.g., base64 instead of "encoding/base64") and is not // guaranteed to be unique among types. To test for type identity, // compare the Types directly. String() string // Used internally by gccgo--the string retaining quoting. rawString() string // Kind returns the specific kind of this type. Kind() Kind // Implements reports whether the type implements the interface type u. Implements(u Type) bool // AssignableTo reports whether a value of the type is assignable to type u. AssignableTo(u Type) bool // ConvertibleTo reports whether a value of the type is convertible to type u. ConvertibleTo(u Type) bool // Comparable reports whether values of this type are comparable. Comparable() bool // Methods applicable only to some types, depending on Kind. // The methods allowed for each kind are: // // Int*, Uint*, Float*, Complex*: Bits // Array: Elem, Len // Chan: ChanDir, Elem // Func: In, NumIn, Out, NumOut, IsVariadic. // Map: Key, Elem // Ptr: Elem // Slice: Elem // Struct: Field, FieldByIndex, FieldByName, FieldByNameFunc, NumField // Bits returns the size of the type in bits. // It panics if the type's Kind is not one of the // sized or unsized Int, Uint, Float, or Complex kinds. Bits() int // ChanDir returns a channel type's direction. // It panics if the type's Kind is not Chan. ChanDir() ChanDir // IsVariadic reports whether a function type's final input parameter // is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the parameter's // implicit actual type []T. // // For concreteness, if t represents func(x int, y ... float64), then // // t.NumIn() == 2 // t.In(0) is the reflect.Type for "int" // t.In(1) is the reflect.Type for "[]float64" // t.IsVariadic() == true // // IsVariadic panics if the type's Kind is not Func. IsVariadic() bool // Elem returns a type's element type. // It panics if the type's Kind is not Array, Chan, Map, Ptr, or Slice. Elem() Type // Field returns a struct type's i'th field. // It panics if the type's Kind is not Struct. // It panics if i is not in the range [0, NumField()). Field(i int) StructField // FieldByIndex returns the nested field corresponding // to the index sequence. It is equivalent to calling Field // successively for each index i. // It panics if the type's Kind is not Struct. FieldByIndex(index []int) StructField // FieldByName returns the struct field with the given name // and a boolean indicating if the field was found. FieldByName(name string) (StructField, bool) // FieldByNameFunc returns the struct field with a name // that satisfies the match function and a boolean indicating if // the field was found. // // FieldByNameFunc considers the fields in the struct itself // and then the fields in any embedded structs, in breadth first order, // stopping at the shallowest nesting depth containing one or more // fields satisfying the match function. If multiple fields at that depth // satisfy the match function, they cancel each other // and FieldByNameFunc returns no match. // This behavior mirrors Go's handling of name lookup in // structs containing embedded fields. FieldByNameFunc(match func(string) bool) (StructField, bool) // In returns the type of a function type's i'th input parameter. // It panics if the type's Kind is not Func. // It panics if i is not in the range [0, NumIn()). In(i int) Type // Key returns a map type's key type. // It panics if the type's Kind is not Map. Key() Type // Len returns an array type's length. // It panics if the type's Kind is not Array. Len() int // NumField returns a struct type's field count. // It panics if the type's Kind is not Struct. NumField() int // NumIn returns a function type's input parameter count. // It panics if the type's Kind is not Func. NumIn() int // NumOut returns a function type's output parameter count. // It panics if the type's Kind is not Func. NumOut() int // Out returns the type of a function type's i'th output parameter. // It panics if the type's Kind is not Func. // It panics if i is not in the range [0, NumOut()). Out(i int) Type common() *rtype uncommon() *uncommonType } // BUG(rsc): FieldByName and related functions consider struct field names to be equal // if the names are equal, even if they are unexported names originating // in different packages. The practical effect of this is that the result of // t.FieldByName("x") is not well defined if the struct type t contains // multiple fields named x (embedded from different packages). // FieldByName may return one of the fields named x or may report that there are none. // See https://golang.org/issue/4876 for more details. /* * These data structures are known to the compiler (../../cmd/internal/gc/reflect.go). * A few are known to ../runtime/type.go to convey to debuggers. * They are also known to ../runtime/type.go. */ // A Kind represents the specific kind of type that a Type represents. // The zero Kind is not a valid kind. type Kind uint const ( Invalid Kind = iota Bool Int Int8 Int16 Int32 Int64 Uint Uint8 Uint16 Uint32 Uint64 Uintptr Float32 Float64 Complex64 Complex128 Array Chan Func Interface Map Ptr Slice String Struct UnsafePointer ) // rtype is the common implementation of most values. // It is embedded in other struct types. // // rtype must be kept in sync with ../runtime/type.go:/^type._type. type rtype struct { size uintptr ptrdata uintptr // size of memory prefix holding all pointers hash uint32 // hash of type; avoids computation in hash tables kind uint8 // enumeration for C align int8 // alignment of variable with this type fieldAlign uint8 // alignment of struct field with this type _ uint8 // unused/padding hashfn func(unsafe.Pointer, uintptr) uintptr // hash function equalfn func(unsafe.Pointer, unsafe.Pointer) bool // equality function gcdata *byte // garbage collection data string *string // string form; unnecessary but undeniably useful *uncommonType // (relatively) uncommon fields ptrToThis *rtype // type for pointer to this type, if used in binary or has methods } // Method on non-interface type type method struct { name *string // name of method pkgPath *string // nil for exported Names; otherwise import path mtyp *rtype // method type (without receiver) typ *rtype // .(*FuncType) underneath (with receiver) tfn unsafe.Pointer // fn used for normal method call } // uncommonType is present only for defined types or types with methods // (if T is a defined type, the uncommonTypes for T and *T have methods). // Using a pointer to this struct reduces the overall size required // to describe a non-defined type with no methods. type uncommonType struct { name *string // name of type pkgPath *string // import path; nil for built-in types like int, string methods []method // methods associated with type } // ChanDir represents a channel type's direction. type ChanDir int const ( RecvDir ChanDir = 1 << iota // <-chan SendDir // chan<- BothDir = RecvDir | SendDir // chan ) // arrayType represents a fixed array type. type arrayType struct { rtype elem *rtype // array element type slice *rtype // slice type len uintptr } // chanType represents a channel type. type chanType struct { rtype elem *rtype // channel element type dir uintptr // channel direction (ChanDir) } // funcType represents a function type. type funcType struct { rtype dotdotdot bool // last input parameter is ... in []*rtype // input parameter types out []*rtype // output parameter types } // imethod represents a method on an interface type type imethod struct { name *string // name of method pkgPath *string // nil for exported Names; otherwise import path typ *rtype // .(*FuncType) underneath } // interfaceType represents an interface type. type interfaceType struct { rtype methods []imethod // sorted by hash } // mapType represents a map type. type mapType struct { rtype key *rtype // map key type elem *rtype // map element (value) type bucket *rtype // internal bucket structure keysize uint8 // size of key slot indirectkey uint8 // store ptr to key instead of key itself valuesize uint8 // size of value slot indirectvalue uint8 // store ptr to value instead of value itself bucketsize uint16 // size of bucket reflexivekey bool // true if k==k for all keys needkeyupdate bool // true if we need to update key on an overwrite } // ptrType represents a pointer type. type ptrType struct { rtype elem *rtype // pointer element (pointed at) type } // sliceType represents a slice type. type sliceType struct { rtype elem *rtype // slice element type } // Struct field type structField struct { name *string // name is always non-empty pkgPath *string // nil for exported Names; otherwise import path typ *rtype // type of field tag *string // nil if no tag offsetEmbed uintptr // byte offset of field<<1 | isAnonymous } func (f *structField) offset() uintptr { return f.offsetEmbed >> 1 } func (f *structField) embedded() bool { return f.offsetEmbed&1 != 0 } // structType represents a struct type. type structType struct { rtype fields []structField // sorted by offset } /* * The compiler knows the exact layout of all the data structures above. * The compiler does not know about the data structures and methods below. */ // Method represents a single method. type Method struct { // Name is the method name. // PkgPath is the package path that qualifies a lower case (unexported) // method name. It is empty for upper case (exported) method names. // The combination of PkgPath and Name uniquely identifies a method // in a method set. // See https://golang.org/ref/spec#Uniqueness_of_identifiers Name string PkgPath string Type Type // method type Func Value // func with receiver as first argument Index int // index for Type.Method } const ( kindDirectIface = 1 << 5 kindGCProg = 1 << 6 // Type.gc points to GC program kindNoPointers = 1 << 7 kindMask = (1 << 5) - 1 ) func (k Kind) String() string { if int(k) < len(kindNames) { return kindNames[k] } return "kind" + strconv.Itoa(int(k)) } var kindNames = []string{ Invalid: "invalid", Bool: "bool", Int: "int", Int8: "int8", Int16: "int16", Int32: "int32", Int64: "int64", Uint: "uint", Uint8: "uint8", Uint16: "uint16", Uint32: "uint32", Uint64: "uint64", Uintptr: "uintptr", Float32: "float32", Float64: "float64", Complex64: "complex64", Complex128: "complex128", Array: "array", Chan: "chan", Func: "func", Interface: "interface", Map: "map", Ptr: "ptr", Slice: "slice", String: "string", Struct: "struct", UnsafePointer: "unsafe.Pointer", } func (t *uncommonType) uncommon() *uncommonType { return t } func (t *uncommonType) PkgPath() string { if t == nil || t.pkgPath == nil { return "" } return *t.pkgPath } func (t *uncommonType) Name() string { if t == nil || t.name == nil { return "" } return *t.name } var methodCache sync.Map // map[*uncommonType][]method func (t *uncommonType) exportedMethods() []method { methodsi, found := methodCache.Load(t) if found { return methodsi.([]method) } allm := t.methods allExported := true for _, m := range allm { if m.pkgPath != nil { allExported = false break } } var methods []method if allExported { methods = allm } else { methods = make([]method, 0, len(allm)) for _, m := range allm { if m.pkgPath == nil { methods = append(methods, m) } } methods = methods[:len(methods):len(methods)] } methodsi, _ = methodCache.LoadOrStore(t, methods) return methodsi.([]method) } func (t *rtype) rawString() string { return *t.string } func (t *rtype) String() string { // For gccgo, strip out quoted strings. s := *t.string var q bool r := make([]byte, len(s)) j := 0 for i := 0; i < len(s); i++ { if s[i] == '\t' { q = !q } else if !q { r[j] = s[i] j++ } } return string(r[:j]) } func (t *rtype) Size() uintptr { return t.size } func (t *rtype) Bits() int { if t == nil { panic("reflect: Bits of nil Type") } k := t.Kind() if k < Int || k > Complex128 { panic("reflect: Bits of non-arithmetic Type " + t.String()) } return int(t.size) * 8 } func (t *rtype) Align() int { return int(t.align) } func (t *rtype) FieldAlign() int { return int(t.fieldAlign) } func (t *rtype) Kind() Kind { return Kind(t.kind & kindMask) } func (t *rtype) pointers() bool { return t.kind&kindNoPointers == 0 } func (t *rtype) common() *rtype { return t } func (t *rtype) exportedMethods() []method { ut := t.uncommon() if ut == nil { return nil } return ut.exportedMethods() } func (t *rtype) NumMethod() int { if t.Kind() == Interface { tt := (*interfaceType)(unsafe.Pointer(t)) return tt.NumMethod() } return len(t.exportedMethods()) } func (t *rtype) Method(i int) (m Method) { if t.Kind() == Interface { tt := (*interfaceType)(unsafe.Pointer(t)) return tt.Method(i) } methods := t.exportedMethods() if i < 0 || i >= len(methods) { panic("reflect: Method index out of range") } p := methods[i] if p.name != nil { m.Name = *p.name } fl := flag(Func) mt := p.typ m.Type = toType(mt) x := new(unsafe.Pointer) *x = unsafe.Pointer(&p.tfn) m.Func = Value{mt, unsafe.Pointer(x), fl | flagIndir | flagMethodFn} m.Index = i return m } func (t *rtype) MethodByName(name string) (m Method, ok bool) { if t.Kind() == Interface { tt := (*interfaceType)(unsafe.Pointer(t)) return tt.MethodByName(name) } ut := t.uncommon() if ut == nil { return Method{}, false } utmethods := ut.methods var eidx int for i := 0; i < len(utmethods); i++ { p := utmethods[i] if p.pkgPath == nil { if p.name != nil && *p.name == name { return t.Method(eidx), true } eidx++ } } return Method{}, false } func (t *rtype) PkgPath() string { return t.uncommonType.PkgPath() } func (t *rtype) Name() string { return t.uncommonType.Name() } func (t *rtype) ChanDir() ChanDir { if t.Kind() != Chan { panic("reflect: ChanDir of non-chan type") } tt := (*chanType)(unsafe.Pointer(t)) return ChanDir(tt.dir) } func (t *rtype) IsVariadic() bool { if t.Kind() != Func { panic("reflect: IsVariadic of non-func type") } tt := (*funcType)(unsafe.Pointer(t)) return tt.dotdotdot } func (t *rtype) Elem() Type { switch t.Kind() { case Array: tt := (*arrayType)(unsafe.Pointer(t)) return toType(tt.elem) case Chan: tt := (*chanType)(unsafe.Pointer(t)) return toType(tt.elem) case Map: tt := (*mapType)(unsafe.Pointer(t)) return toType(tt.elem) case Ptr: tt := (*ptrType)(unsafe.Pointer(t)) return toType(tt.elem) case Slice: tt := (*sliceType)(unsafe.Pointer(t)) return toType(tt.elem) } panic("reflect: Elem of invalid type") } func (t *rtype) Field(i int) StructField { if t.Kind() != Struct { panic("reflect: Field of non-struct type") } tt := (*structType)(unsafe.Pointer(t)) return tt.Field(i) } func (t *rtype) FieldByIndex(index []int) StructField { if t.Kind() != Struct { panic("reflect: FieldByIndex of non-struct type") } tt := (*structType)(unsafe.Pointer(t)) return tt.FieldByIndex(index) } func (t *rtype) FieldByName(name string) (StructField, bool) { if t.Kind() != Struct { panic("reflect: FieldByName of non-struct type") } tt := (*structType)(unsafe.Pointer(t)) return tt.FieldByName(name) } func (t *rtype) FieldByNameFunc(match func(string) bool) (StructField, bool) { if t.Kind() != Struct { panic("reflect: FieldByNameFunc of non-struct type") } tt := (*structType)(unsafe.Pointer(t)) return tt.FieldByNameFunc(match) } func (t *rtype) In(i int) Type { if t.Kind() != Func { panic("reflect: In of non-func type") } tt := (*funcType)(unsafe.Pointer(t)) return toType(tt.in[i]) } func (t *rtype) Key() Type { if t.Kind() != Map { panic("reflect: Key of non-map type") } tt := (*mapType)(unsafe.Pointer(t)) return toType(tt.key) } func (t *rtype) Len() int { if t.Kind() != Array { panic("reflect: Len of non-array type") } tt := (*arrayType)(unsafe.Pointer(t)) return int(tt.len) } func (t *rtype) NumField() int { if t.Kind() != Struct { panic("reflect: NumField of non-struct type") } tt := (*structType)(unsafe.Pointer(t)) return len(tt.fields) } func (t *rtype) NumIn() int { if t.Kind() != Func { panic("reflect: NumIn of non-func type") } tt := (*funcType)(unsafe.Pointer(t)) return len(tt.in) } func (t *rtype) NumOut() int { if t.Kind() != Func { panic("reflect: NumOut of non-func type") } tt := (*funcType)(unsafe.Pointer(t)) return len(tt.out) } func (t *rtype) Out(i int) Type { if t.Kind() != Func { panic("reflect: Out of non-func type") } tt := (*funcType)(unsafe.Pointer(t)) return toType(tt.out[i]) } // add returns p+x. // // The whySafe string is ignored, so that the function still inlines // as efficiently as p+x, but all call sites should use the string to // record why the addition is safe, which is to say why the addition // does not cause x to advance to the very end of p's allocation // and therefore point incorrectly at the next block in memory. func add(p unsafe.Pointer, x uintptr, whySafe string) unsafe.Pointer { return unsafe.Pointer(uintptr(p) + x) } func (d ChanDir) String() string { switch d { case SendDir: return "chan<-" case RecvDir: return "<-chan" case BothDir: return "chan" } return "ChanDir" + strconv.Itoa(int(d)) } // Method returns the i'th method in the type's method set. func (t *interfaceType) Method(i int) (m Method) { if i < 0 || i >= len(t.methods) { return } p := &t.methods[i] m.Name = *p.name if p.pkgPath != nil { m.PkgPath = *p.pkgPath } m.Type = toType(p.typ) m.Index = i return } // NumMethod returns the number of interface methods in the type's method set. func (t *interfaceType) NumMethod() int { return len(t.methods) } // MethodByName method with the given name in the type's method set. func (t *interfaceType) MethodByName(name string) (m Method, ok bool) { if t == nil { return } var p *imethod for i := range t.methods { p = &t.methods[i] if *p.name == name { return t.Method(i), true } } return } // A StructField describes a single field in a struct. type StructField struct { // Name is the field name. Name string // PkgPath is the package path that qualifies a lower case (unexported) // field name. It is empty for upper case (exported) field names. // See https://golang.org/ref/spec#Uniqueness_of_identifiers PkgPath string Type Type // field type Tag StructTag // field tag string Offset uintptr // offset within struct, in bytes Index []int // index sequence for Type.FieldByIndex Anonymous bool // is an embedded field } // A StructTag is the tag string in a struct field. // // By convention, tag strings are a concatenation of // optionally space-separated key:"value" pairs. // Each key is a non-empty string consisting of non-control // characters other than space (U+0020 ' '), quote (U+0022 '"'), // and colon (U+003A ':'). Each value is quoted using U+0022 '"' // characters and Go string literal syntax. type StructTag string // Get returns the value associated with key in the tag string. // If there is no such key in the tag, Get returns the empty string. // If the tag does not have the conventional format, the value // returned by Get is unspecified. To determine whether a tag is // explicitly set to the empty string, use Lookup. func (tag StructTag) Get(key string) string { v, _ := tag.Lookup(key) return v } // Lookup returns the value associated with key in the tag string. // If the key is present in the tag the value (which may be empty) // is returned. Otherwise the returned value will be the empty string. // The ok return value reports whether the value was explicitly set in // the tag string. If the tag does not have the conventional format, // the value returned by Lookup is unspecified. func (tag StructTag) Lookup(key string) (value string, ok bool) { // When modifying this code, also update the validateStructTag code // in cmd/vet/structtag.go. for tag != "" { // Skip leading space. i := 0 for i < len(tag) && tag[i] == ' ' { i++ } tag = tag[i:] if tag == "" { break } // Scan to colon. A space, a quote or a control character is a syntax error. // Strictly speaking, control chars include the range [0x7f, 0x9f], not just // [0x00, 0x1f], but in practice, we ignore the multi-byte control characters // as it is simpler to inspect the tag's bytes than the tag's runes. i = 0 for i < len(tag) && tag[i] > ' ' && tag[i] != ':' && tag[i] != '"' && tag[i] != 0x7f { i++ } if i == 0 || i+1 >= len(tag) || tag[i] != ':' || tag[i+1] != '"' { break } name := string(tag[:i]) tag = tag[i+1:] // Scan quoted string to find value. i = 1 for i < len(tag) && tag[i] != '"' { if tag[i] == '\\' { i++ } i++ } if i >= len(tag) { break } qvalue := string(tag[:i+1]) tag = tag[i+1:] if key == name { value, err := strconv.Unquote(qvalue) if err != nil { break } return value, true } } return "", false } // Field returns the i'th struct field. func (t *structType) Field(i int) (f StructField) { if i < 0 || i >= len(t.fields) { panic("reflect: Field index out of bounds") } p := &t.fields[i] f.Type = toType(p.typ) f.Name = *p.name f.Anonymous = p.embedded() if p.pkgPath != nil { f.PkgPath = *p.pkgPath } if p.tag != nil { f.Tag = StructTag(*p.tag) } f.Offset = p.offset() // NOTE(rsc): This is the only allocation in the interface // presented by a reflect.Type. It would be nice to avoid, // at least in the common cases, but we need to make sure // that misbehaving clients of reflect cannot affect other // uses of reflect. One possibility is CL 5371098, but we // postponed that ugliness until there is a demonstrated // need for the performance. This is issue 2320. f.Index = []int{i} return } // TODO(gri): Should there be an error/bool indicator if the index // is wrong for FieldByIndex? // FieldByIndex returns the nested field corresponding to index. func (t *structType) FieldByIndex(index []int) (f StructField) { f.Type = toType(&t.rtype) for i, x := range index { if i > 0 { ft := f.Type if ft.Kind() == Ptr && ft.Elem().Kind() == Struct { ft = ft.Elem() } f.Type = ft } f = f.Type.Field(x) } return } // A fieldScan represents an item on the fieldByNameFunc scan work list. type fieldScan struct { typ *structType index []int } // FieldByNameFunc returns the struct field with a name that satisfies the // match function and a boolean to indicate if the field was found. func (t *structType) FieldByNameFunc(match func(string) bool) (result StructField, ok bool) { // This uses the same condition that the Go language does: there must be a unique instance // of the match at a given depth level. If there are multiple instances of a match at the // same depth, they annihilate each other and inhibit any possible match at a lower level. // The algorithm is breadth first search, one depth level at a time. // The current and next slices are work queues: // current lists the fields to visit on this depth level, // and next lists the fields on the next lower level. current := []fieldScan{} next := []fieldScan{{typ: t}} // nextCount records the number of times an embedded type has been // encountered and considered for queueing in the 'next' slice. // We only queue the first one, but we increment the count on each. // If a struct type T can be reached more than once at a given depth level, // then it annihilates itself and need not be considered at all when we // process that next depth level. var nextCount map[*structType]int // visited records the structs that have been considered already. // Embedded pointer fields can create cycles in the graph of // reachable embedded types; visited avoids following those cycles. // It also avoids duplicated effort: if we didn't find the field in an // embedded type T at level 2, we won't find it in one at level 4 either. visited := map[*structType]bool{} for len(next) > 0 { current, next = next, current[:0] count := nextCount nextCount = nil // Process all the fields at this depth, now listed in 'current'. // The loop queues embedded fields found in 'next', for processing during the next // iteration. The multiplicity of the 'current' field counts is recorded // in 'count'; the multiplicity of the 'next' field counts is recorded in 'nextCount'. for _, scan := range current { t := scan.typ if visited[t] { // We've looked through this type before, at a higher level. // That higher level would shadow the lower level we're now at, // so this one can't be useful to us. Ignore it. continue } visited[t] = true for i := range t.fields { f := &t.fields[i] // Find name and (for embedded field) type for field f. fname := *f.name var ntyp *rtype if f.embedded() { // Embedded field of type T or *T. ntyp = f.typ if ntyp.Kind() == Ptr { ntyp = ntyp.Elem().common() } } // Does it match? if match(fname) { // Potential match if count[t] > 1 || ok { // Name appeared multiple times at this level: annihilate. return StructField{}, false } result = t.Field(i) result.Index = nil result.Index = append(result.Index, scan.index...) result.Index = append(result.Index, i) ok = true continue } // Queue embedded struct fields for processing with next level, // but only if we haven't seen a match yet at this level and only // if the embedded types haven't already been queued. if ok || ntyp == nil || ntyp.Kind() != Struct { continue } ntyp = toType(ntyp).common() styp := (*structType)(unsafe.Pointer(ntyp)) if nextCount[styp] > 0 { nextCount[styp] = 2 // exact multiple doesn't matter continue } if nextCount == nil { nextCount = map[*structType]int{} } nextCount[styp] = 1 if count[t] > 1 { nextCount[styp] = 2 // exact multiple doesn't matter } var index []int index = append(index, scan.index...) index = append(index, i) next = append(next, fieldScan{styp, index}) } } if ok { break } } return } // FieldByName returns the struct field with the given name // and a boolean to indicate if the field was found. func (t *structType) FieldByName(name string) (f StructField, present bool) { // Quick check for top-level name, or struct without embedded fields. hasEmbeds := false if name != "" { for i := range t.fields { tf := &t.fields[i] if *tf.name == name { return t.Field(i), true } if tf.embedded() { hasEmbeds = true } } } if !hasEmbeds { return } return t.FieldByNameFunc(func(s string) bool { return s == name }) } // TypeOf returns the reflection Type that represents the dynamic type of i. // If i is a nil interface value, TypeOf returns nil. func TypeOf(i interface{}) Type { eface := *(*emptyInterface)(unsafe.Pointer(&i)) return toType(eface.typ) } // ptrMap is the cache for PtrTo. var ptrMap sync.Map // map[*rtype]*ptrType // PtrTo returns the pointer type with element t. // For example, if t represents type Foo, PtrTo(t) represents *Foo. func PtrTo(t Type) Type { return t.(*rtype).ptrTo() } func (t *rtype) ptrTo() *rtype { if p := t.ptrToThis; p != nil { return p } // Check the cache. if pi, ok := ptrMap.Load(t); ok { return &pi.(*ptrType).rtype } s := "*" + *t.string canonicalTypeLock.RLock() r, ok := canonicalType[s] canonicalTypeLock.RUnlock() if ok { p := (*ptrType)(unsafe.Pointer(r.(*rtype))) pi, _ := ptrMap.LoadOrStore(t, p) return &pi.(*ptrType).rtype } // Create a new ptrType starting with the description // of an *unsafe.Pointer. var iptr interface{} = (*unsafe.Pointer)(nil) prototype := *(**ptrType)(unsafe.Pointer(&iptr)) pp := *prototype pp.string = &s pp.ptrToThis = nil // For the type structures linked into the binary, the // compiler provides a good hash of the string. // Create a good hash for the new string by using // the FNV-1 hash's mixing function to combine the // old hash and the new "*". // p.hash = fnv1(t.hash, '*') // This is the gccgo version. pp.hash = (t.hash << 4) + 9 pp.uncommonType = nil pp.ptrToThis = nil pp.elem = t q := canonicalize(&pp.rtype) p := (*ptrType)(unsafe.Pointer(q.(*rtype))) pi, _ := ptrMap.LoadOrStore(t, p) return &pi.(*ptrType).rtype } // fnv1 incorporates the list of bytes into the hash x using the FNV-1 hash function. func fnv1(x uint32, list ...byte) uint32 { for _, b := range list { x = x*16777619 ^ uint32(b) } return x } func (t *rtype) Implements(u Type) bool { if u == nil { panic("reflect: nil type passed to Type.Implements") } if u.Kind() != Interface { panic("reflect: non-interface type passed to Type.Implements") } return implements(u.(*rtype), t) } func (t *rtype) AssignableTo(u Type) bool { if u == nil { panic("reflect: nil type passed to Type.AssignableTo") } uu := u.(*rtype) return directlyAssignable(uu, t) || implements(uu, t) } func (t *rtype) ConvertibleTo(u Type) bool { if u == nil { panic("reflect: nil type passed to Type.ConvertibleTo") } uu := u.(*rtype) return convertOp(uu, t) != nil } func (t *rtype) Comparable() bool { switch t.Kind() { case Bool, Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr, Float32, Float64, Complex64, Complex128, Chan, Interface, Ptr, String, UnsafePointer: return true case Func, Map, Slice: return false case Array: return (*arrayType)(unsafe.Pointer(t)).elem.Comparable() case Struct: tt := (*structType)(unsafe.Pointer(t)) for i := range tt.fields { if !tt.fields[i].typ.Comparable() { return false } } return true default: panic("reflect: impossible") } } // implements reports whether the type V implements the interface type T. func implements(T, V *rtype) bool { if T.Kind() != Interface { return false } t := (*interfaceType)(unsafe.Pointer(T)) if len(t.methods) == 0 { return true } // The same algorithm applies in both cases, but the // method tables for an interface type and a concrete type // are different, so the code is duplicated. // In both cases the algorithm is a linear scan over the two // lists - T's methods and V's methods - simultaneously. // Since method tables are stored in a unique sorted order // (alphabetical, with no duplicate method names), the scan // through V's methods must hit a match for each of T's // methods along the way, or else V does not implement T. // This lets us run the scan in overall linear time instead of // the quadratic time a naive search would require. // See also ../runtime/iface.go. if V.Kind() == Interface { v := (*interfaceType)(unsafe.Pointer(V)) i := 0 for j := 0; j < len(v.methods); j++ { tm := &t.methods[i] vm := &v.methods[j] if *vm.name == *tm.name && (vm.pkgPath == tm.pkgPath || (vm.pkgPath != nil && tm.pkgPath != nil && *vm.pkgPath == *tm.pkgPath)) && toType(vm.typ).common() == toType(tm.typ).common() { if i++; i >= len(t.methods) { return true } } } return false } v := V.uncommon() if v == nil { return false } i := 0 for j := 0; j < len(v.methods); j++ { tm := &t.methods[i] vm := &v.methods[j] if *vm.name == *tm.name && (vm.pkgPath == tm.pkgPath || (vm.pkgPath != nil && tm.pkgPath != nil && *vm.pkgPath == *tm.pkgPath)) && toType(vm.mtyp).common() == toType(tm.typ).common() { if i++; i >= len(t.methods) { return true } } } return false } // directlyAssignable reports whether a value x of type V can be directly // assigned (using memmove) to a value of type T. // https://golang.org/doc/go_spec.html#Assignability // Ignoring the interface rules (implemented elsewhere) // and the ideal constant rules (no ideal constants at run time). func directlyAssignable(T, V *rtype) bool { // x's type V is identical to T? if T == V { return true } // Otherwise at least one of T and V must not be defined // and they must have the same kind. if T.Name() != "" && V.Name() != "" || T.Kind() != V.Kind() { return false } // x's type T and V must have identical underlying types. return haveIdenticalUnderlyingType(T, V, true) } func haveIdenticalType(T, V Type, cmpTags bool) bool { if cmpTags { return T == V } if T.Name() != V.Name() || T.Kind() != V.Kind() { return false } return haveIdenticalUnderlyingType(T.common(), V.common(), false) } func haveIdenticalUnderlyingType(T, V *rtype, cmpTags bool) bool { if T == V { return true } kind := T.Kind() if kind != V.Kind() { return false } // Non-composite types of equal kind have same underlying type // (the predefined instance of the type). if Bool <= kind && kind <= Complex128 || kind == String || kind == UnsafePointer { return true } // Composite types. switch kind { case Array: return T.Len() == V.Len() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case Chan: // Special case: // x is a bidirectional channel value, T is a channel type, // and x's type V and T have identical element types. if V.ChanDir() == BothDir && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) { return true } // Otherwise continue test for identical underlying type. return V.ChanDir() == T.ChanDir() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case Func: t := (*funcType)(unsafe.Pointer(T)) v := (*funcType)(unsafe.Pointer(V)) if t.dotdotdot != v.dotdotdot || len(t.in) != len(v.in) || len(t.out) != len(v.out) { return false } for i, typ := range t.in { if !haveIdenticalType(typ, v.in[i], cmpTags) { return false } } for i, typ := range t.out { if !haveIdenticalType(typ, v.out[i], cmpTags) { return false } } return true case Interface: t := (*interfaceType)(unsafe.Pointer(T)) v := (*interfaceType)(unsafe.Pointer(V)) if len(t.methods) == 0 && len(v.methods) == 0 { return true } // Might have the same methods but still // need a run time conversion. return false case Map: return haveIdenticalType(T.Key(), V.Key(), cmpTags) && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case Ptr, Slice: return haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case Struct: t := (*structType)(unsafe.Pointer(T)) v := (*structType)(unsafe.Pointer(V)) if len(t.fields) != len(v.fields) { return false } for i := range t.fields { tf := &t.fields[i] vf := &v.fields[i] if tf.name != vf.name && (tf.name == nil || vf.name == nil || *tf.name != *vf.name) { return false } if tf.pkgPath != vf.pkgPath && (tf.pkgPath == nil || vf.pkgPath == nil || *tf.pkgPath != *vf.pkgPath) { return false } if !haveIdenticalType(tf.typ, vf.typ, cmpTags) { return false } if cmpTags && tf.tag != vf.tag && (tf.tag == nil || vf.tag == nil || *tf.tag != *vf.tag) { return false } if tf.offsetEmbed != vf.offsetEmbed { return false } } return true } return false } // The lookupCache caches ArrayOf, ChanOf, MapOf and SliceOf lookups. var lookupCache sync.Map // map[cacheKey]*rtype // A cacheKey is the key for use in the lookupCache. // Four values describe any of the types we are looking for: // type kind, one or two subtypes, and an extra integer. type cacheKey struct { kind Kind t1 *rtype t2 *rtype extra uintptr } // The funcLookupCache caches FuncOf lookups. // FuncOf does not share the common lookupCache since cacheKey is not // sufficient to represent functions unambiguously. var funcLookupCache struct { sync.Mutex // Guards stores (but not loads) on m. // m is a map[uint32][]*rtype keyed by the hash calculated in FuncOf. // Elements of m are append-only and thus safe for concurrent reading. m sync.Map } // ChanOf returns the channel type with the given direction and element type. // For example, if t represents int, ChanOf(RecvDir, t) represents <-chan int. // // The gc runtime imposes a limit of 64 kB on channel element types. // If t's size is equal to or exceeds this limit, ChanOf panics. func ChanOf(dir ChanDir, t Type) Type { typ := t.(*rtype) // Look in cache. ckey := cacheKey{Chan, typ, nil, uintptr(dir)} if ch, ok := lookupCache.Load(ckey); ok { return ch.(*rtype) } // This restriction is imposed by the gc compiler and the runtime. if typ.size >= 1<<16 { panic("reflect.ChanOf: element size too large") } // Look in known types. // TODO: Precedence when constructing string. var s string switch dir { default: panic("reflect.ChanOf: invalid dir") case SendDir: s = "chan<- " + *typ.string case RecvDir: s = "<-chan " + *typ.string case BothDir: s = "chan " + *typ.string } // Make a channel type. var ichan interface{} = (chan unsafe.Pointer)(nil) prototype := *(**chanType)(unsafe.Pointer(&ichan)) ch := *prototype ch.dir = uintptr(dir) ch.string = &s // gccgo uses a different hash. // ch.hash = fnv1(typ.hash, 'c', byte(dir)) ch.hash = 0 if dir&SendDir != 0 { ch.hash += 1 } if dir&RecvDir != 0 { ch.hash += 2 } ch.hash += typ.hash << 2 ch.hash <<= 3 ch.hash += 15 ch.elem = typ ch.uncommonType = nil ch.ptrToThis = nil // Canonicalize before storing in lookupCache ti := toType(&ch.rtype) lookupCache.Store(ckey, ti.(*rtype)) return ti } func ismapkey(*rtype) bool // implemented in runtime // MapOf returns the map type with the given key and element types. // For example, if k represents int and e represents string, // MapOf(k, e) represents map[int]string. // // If the key type is not a valid map key type (that is, if it does // not implement Go's == operator), MapOf panics. func MapOf(key, elem Type) Type { ktyp := key.(*rtype) etyp := elem.(*rtype) if !ismapkey(ktyp) { panic("reflect.MapOf: invalid key type " + ktyp.String()) } // Look in cache. ckey := cacheKey{Map, ktyp, etyp, 0} if mt, ok := lookupCache.Load(ckey); ok { return mt.(Type) } // Look in known types. s := "map[" + *ktyp.string + "]" + *etyp.string // Make a map type. var imap interface{} = (map[unsafe.Pointer]unsafe.Pointer)(nil) mt := **(**mapType)(unsafe.Pointer(&imap)) mt.string = &s // gccgo uses a different hash // mt.hash = fnv1(etyp.hash, 'm', byte(ktyp.hash>>24), byte(ktyp.hash>>16), byte(ktyp.hash>>8), byte(ktyp.hash)) mt.hash = ktyp.hash + etyp.hash + 2 + 14 mt.key = ktyp mt.elem = etyp mt.uncommonType = nil mt.ptrToThis = nil mt.bucket = bucketOf(ktyp, etyp) if ktyp.size > maxKeySize { mt.keysize = uint8(ptrSize) mt.indirectkey = 1 } else { mt.keysize = uint8(ktyp.size) mt.indirectkey = 0 } if etyp.size > maxValSize { mt.valuesize = uint8(ptrSize) mt.indirectvalue = 1 } else { mt.valuesize = uint8(etyp.size) mt.indirectvalue = 0 } mt.bucketsize = uint16(mt.bucket.size) mt.reflexivekey = isReflexive(ktyp) mt.needkeyupdate = needKeyUpdate(ktyp) // Canonicalize before storing in lookupCache ti := toType(&mt.rtype) lookupCache.Store(ckey, ti.(*rtype)) return ti } // FuncOf returns the function type with the given argument and result types. // For example if k represents int and e represents string, // FuncOf([]Type{k}, []Type{e}, false) represents func(int) string. // // The variadic argument controls whether the function is variadic. FuncOf // panics if the in[len(in)-1] does not represent a slice and variadic is // true. func FuncOf(in, out []Type, variadic bool) Type { if variadic && (len(in) == 0 || in[len(in)-1].Kind() != Slice) { panic("reflect.FuncOf: last arg of variadic func must be slice") } // Make a func type. var ifunc interface{} = (func())(nil) prototype := *(**funcType)(unsafe.Pointer(&ifunc)) ft := new(funcType) *ft = *prototype // Build a hash and minimally populate ft. var hash uint32 var fin, fout []*rtype shift := uint(1) for _, in := range in { t := in.(*rtype) fin = append(fin, t) hash += t.hash << shift shift++ } shift = 2 for _, out := range out { t := out.(*rtype) fout = append(fout, t) hash += t.hash << shift shift++ } if variadic { hash++ } hash <<= 4 hash += 8 ft.hash = hash ft.in = fin ft.out = fout ft.dotdotdot = variadic // Look in cache. if ts, ok := funcLookupCache.m.Load(hash); ok { for _, t := range ts.([]*rtype) { if haveIdenticalUnderlyingType(&ft.rtype, t, true) { return t } } } // Not in cache, lock and retry. funcLookupCache.Lock() defer funcLookupCache.Unlock() if ts, ok := funcLookupCache.m.Load(hash); ok { for _, t := range ts.([]*rtype) { if haveIdenticalUnderlyingType(&ft.rtype, t, true) { return t } } } addToCache := func(tt *rtype) Type { var rts []*rtype if rti, ok := funcLookupCache.m.Load(hash); ok { rts = rti.([]*rtype) } funcLookupCache.m.Store(hash, append(rts, tt)) return tt } str := funcStr(ft) // Populate the remaining fields of ft and store in cache. ft.string = &str ft.uncommonType = nil ft.ptrToThis = nil // Canonicalize before storing in funcLookupCache tc := toType(&ft.rtype) return addToCache(tc.(*rtype)) } // funcStr builds a string representation of a funcType. func funcStr(ft *funcType) string { repr := make([]byte, 0, 64) repr = append(repr, "func("...) for i, t := range ft.in { if i > 0 { repr = append(repr, ", "...) } if ft.dotdotdot && i == len(ft.in)-1 { repr = append(repr, "..."...) repr = append(repr, *(*sliceType)(unsafe.Pointer(t)).elem.string...) } else { repr = append(repr, *t.string...) } } repr = append(repr, ')') if l := len(ft.out); l == 1 { repr = append(repr, ' ') } else if l > 1 { repr = append(repr, " ("...) } for i, t := range ft.out { if i > 0 { repr = append(repr, ", "...) } repr = append(repr, *t.string...) } if len(ft.out) > 1 { repr = append(repr, ')') } return string(repr) } // isReflexive reports whether the == operation on the type is reflexive. // That is, x == x for all values x of type t. func isReflexive(t *rtype) bool { switch t.Kind() { case Bool, Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr, Chan, Ptr, String, UnsafePointer: return true case Float32, Float64, Complex64, Complex128, Interface: return false case Array: tt := (*arrayType)(unsafe.Pointer(t)) return isReflexive(tt.elem) case Struct: tt := (*structType)(unsafe.Pointer(t)) for _, f := range tt.fields { if !isReflexive(f.typ) { return false } } return true default: // Func, Map, Slice, Invalid panic("isReflexive called on non-key type " + t.String()) } } // needKeyUpdate reports whether map overwrites require the key to be copied. func needKeyUpdate(t *rtype) bool { switch t.Kind() { case Bool, Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr, Chan, Ptr, UnsafePointer: return false case Float32, Float64, Complex64, Complex128, Interface, String: // Float keys can be updated from +0 to -0. // String keys can be updated to use a smaller backing store. // Interfaces might have floats of strings in them. return true case Array: tt := (*arrayType)(unsafe.Pointer(t)) return needKeyUpdate(tt.elem) case Struct: tt := (*structType)(unsafe.Pointer(t)) for _, f := range tt.fields { if needKeyUpdate(f.typ) { return true } } return false default: // Func, Map, Slice, Invalid panic("needKeyUpdate called on non-key type " + t.String()) } } // Make sure these routines stay in sync with ../../runtime/map.go! // These types exist only for GC, so we only fill out GC relevant info. // Currently, that's just size and the GC program. We also fill in string // for possible debugging use. const ( bucketSize uintptr = 8 maxKeySize uintptr = 128 maxValSize uintptr = 128 ) func bucketOf(ktyp, etyp *rtype) *rtype { // See comment on hmap.overflow in ../runtime/map.go. var kind uint8 if ktyp.kind&kindNoPointers != 0 && etyp.kind&kindNoPointers != 0 && ktyp.size <= maxKeySize && etyp.size <= maxValSize { kind = kindNoPointers } if ktyp.size > maxKeySize { ktyp = PtrTo(ktyp).(*rtype) } if etyp.size > maxValSize { etyp = PtrTo(etyp).(*rtype) } // Prepare GC data if any. // A bucket is at most bucketSize*(1+maxKeySize+maxValSize)+2*ptrSize bytes, // or 2072 bytes, or 259 pointer-size words, or 33 bytes of pointer bitmap. // Note that since the key and value are known to be <= 128 bytes, // they're guaranteed to have bitmaps instead of GC programs. var gcdata *byte var ptrdata uintptr size := bucketSize size = align(size, uintptr(ktyp.fieldAlign)) size += bucketSize * ktyp.size size = align(size, uintptr(etyp.fieldAlign)) size += bucketSize * etyp.size maxAlign := uintptr(ktyp.fieldAlign) if maxAlign < uintptr(etyp.fieldAlign) { maxAlign = uintptr(etyp.fieldAlign) } if maxAlign > ptrSize { size = align(size, maxAlign) size += align(ptrSize, maxAlign) - ptrSize } else if maxAlign < ptrSize { size = align(size, ptrSize) maxAlign = ptrSize } ovoff := size size += ptrSize if kind != kindNoPointers { nptr := size / ptrSize mask := make([]byte, (nptr+7)/8) psize := bucketSize psize = align(psize, uintptr(ktyp.fieldAlign)) base := psize / ptrSize if ktyp.kind&kindNoPointers == 0 { if ktyp.kind&kindGCProg != 0 { panic("reflect: unexpected GC program in MapOf") } kmask := (*[16]byte)(unsafe.Pointer(ktyp.gcdata)) for i := uintptr(0); i < ktyp.ptrdata/ptrSize; i++ { if (kmask[i/8]>>(i%8))&1 != 0 { for j := uintptr(0); j < bucketSize; j++ { word := base + j*ktyp.size/ptrSize + i mask[word/8] |= 1 << (word % 8) } } } } psize += bucketSize * ktyp.size psize = align(psize, uintptr(etyp.fieldAlign)) base = psize / ptrSize if etyp.kind&kindNoPointers == 0 { if etyp.kind&kindGCProg != 0 { panic("reflect: unexpected GC program in MapOf") } emask := (*[16]byte)(unsafe.Pointer(etyp.gcdata)) for i := uintptr(0); i < etyp.ptrdata/ptrSize; i++ { if (emask[i/8]>>(i%8))&1 != 0 { for j := uintptr(0); j < bucketSize; j++ { word := base + j*etyp.size/ptrSize + i mask[word/8] |= 1 << (word % 8) } } } } word := ovoff / ptrSize mask[word/8] |= 1 << (word % 8) gcdata = &mask[0] ptrdata = (word + 1) * ptrSize // overflow word must be last if ptrdata != size { panic("reflect: bad layout computation in MapOf") } } b := &rtype{ align: int8(maxAlign), fieldAlign: uint8(maxAlign), size: size, kind: kind, ptrdata: ptrdata, gcdata: gcdata, } s := "bucket(" + *ktyp.string + "," + *etyp.string + ")" b.string = &s return b } // SliceOf returns the slice type with element type t. // For example, if t represents int, SliceOf(t) represents []int. func SliceOf(t Type) Type { typ := t.(*rtype) // Look in cache. ckey := cacheKey{Slice, typ, nil, 0} if slice, ok := lookupCache.Load(ckey); ok { return slice.(Type) } // Look in known types. s := "[]" + *typ.string // Make a slice type. var islice interface{} = ([]unsafe.Pointer)(nil) prototype := *(**sliceType)(unsafe.Pointer(&islice)) slice := *prototype slice.string = &s // gccgo uses a different hash. // slice.hash = fnv1(typ.hash, '[') slice.hash = typ.hash + 1 + 13 slice.elem = typ slice.uncommonType = nil slice.ptrToThis = nil // Canonicalize before storing in lookupCache ti := toType(&slice.rtype) lookupCache.Store(ckey, ti.(*rtype)) return ti } // The structLookupCache caches StructOf lookups. // StructOf does not share the common lookupCache since we need to pin // the memory associated with *structTypeFixedN. var structLookupCache struct { sync.Mutex // Guards stores (but not loads) on m. // m is a map[uint32][]Type keyed by the hash calculated in StructOf. // Elements in m are append-only and thus safe for concurrent reading. m sync.Map } // isLetter returns true if a given 'rune' is classified as a Letter. func isLetter(ch rune) bool { return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= utf8.RuneSelf && unicode.IsLetter(ch) } // isValidFieldName checks if a string is a valid (struct) field name or not. // // According to the language spec, a field name should be an identifier. // // identifier = letter { letter | unicode_digit } . // letter = unicode_letter | "_" . func isValidFieldName(fieldName string) bool { for i, c := range fieldName { if i == 0 && !isLetter(c) { return false } if !(isLetter(c) || unicode.IsDigit(c)) { return false } } return len(fieldName) > 0 } // StructOf returns the struct type containing fields. // The Offset and Index fields are ignored and computed as they would be // by the compiler. // // StructOf currently does not generate wrapper methods for embedded // fields and panics if passed unexported StructFields. // These limitations may be lifted in a future version. func StructOf(fields []StructField) Type { var ( hash = uint32(12) size uintptr typalign int8 comparable = true hashable = true fs = make([]structField, len(fields)) repr = make([]byte, 0, 64) fset = map[string]struct{}{} // fields' names hasPtr = false // records whether at least one struct-field is a pointer hasGCProg = false // records whether a struct-field type has a GCProg ) lastzero := uintptr(0) repr = append(repr, "struct {"...) for i, field := range fields { if field.Name == "" { panic("reflect.StructOf: field " + strconv.Itoa(i) + " has no name") } if !isValidFieldName(field.Name) { panic("reflect.StructOf: field " + strconv.Itoa(i) + " has invalid name") } if field.Type == nil { panic("reflect.StructOf: field " + strconv.Itoa(i) + " has no type") } f := runtimeStructField(field) ft := f.typ if ft.kind&kindGCProg != 0 { hasGCProg = true } if ft.pointers() { hasPtr = true } // Update string and hash name := *f.name hash = (hash << 1) + ft.hash if !f.embedded() { repr = append(repr, (" " + name)...) } else { // Embedded field repr = append(repr, " ?"...) if f.typ.Kind() == Ptr { // Embedded ** and *interface{} are illegal elem := ft.Elem() if k := elem.Kind(); k == Ptr || k == Interface { panic("reflect.StructOf: illegal embedded field type " + ft.String()) } name = elem.String() } else { name = ft.String() } switch f.typ.Kind() { case Interface: ift := (*interfaceType)(unsafe.Pointer(ft)) if len(ift.methods) > 0 { panic("reflect.StructOf: embedded field with methods not implemented") } case Ptr: ptr := (*ptrType)(unsafe.Pointer(ft)) if unt := ptr.uncommon(); unt != nil { if len(unt.methods) > 0 { panic("reflect.StructOf: embedded field with methods not implemented") } } if unt := ptr.elem.uncommon(); unt != nil { if len(unt.methods) > 0 { panic("reflect.StructOf: embedded field with methods not implemented") } } default: if unt := ft.uncommon(); unt != nil { if len(unt.methods) > 0 { panic("reflect.StructOf: embedded field with methods not implemented") } } } } if _, dup := fset[name]; dup { panic("reflect.StructOf: duplicate field " + name) } fset[name] = struct{}{} repr = append(repr, (" " + *ft.string)...) if f.tag != nil { repr = append(repr, (" " + strconv.Quote(*f.tag))...) } if i < len(fields)-1 { repr = append(repr, ';') } comparable = comparable && (ft.equalfn != nil) hashable = hashable && (ft.hashfn != nil) offset := align(size, uintptr(ft.fieldAlign)) if int8(ft.fieldAlign) > typalign { typalign = int8(ft.fieldAlign) } size = offset + ft.size f.offsetEmbed |= offset << 1 if ft.size == 0 { lastzero = size } fs[i] = f } if size > 0 && lastzero == size { // This is a non-zero sized struct that ends in a // zero-sized field. We add an extra byte of padding, // to ensure that taking the address of the final // zero-sized field can't manufacture a pointer to the // next object in the heap. See issue 9401. size++ } if len(fs) > 0 { repr = append(repr, ' ') } repr = append(repr, '}') hash <<= 2 str := string(repr) // Round the size up to be a multiple of the alignment. size = align(size, uintptr(typalign)) // Make the struct type. var istruct interface{} = struct{}{} prototype := *(**structType)(unsafe.Pointer(&istruct)) typ := new(structType) *typ = *prototype typ.fields = fs // Look in cache. if ts, ok := structLookupCache.m.Load(hash); ok { for _, st := range ts.([]Type) { t := st.common() if haveIdenticalUnderlyingType(&typ.rtype, t, true) { return t } } } // Not in cache, lock and retry. structLookupCache.Lock() defer structLookupCache.Unlock() if ts, ok := structLookupCache.m.Load(hash); ok { for _, st := range ts.([]Type) { t := st.common() if haveIdenticalUnderlyingType(&typ.rtype, t, true) { return t } } } addToCache := func(t Type) Type { var ts []Type if ti, ok := structLookupCache.m.Load(hash); ok { ts = ti.([]Type) } structLookupCache.m.Store(hash, append(ts, t)) return t } typ.string = &str typ.hash = hash typ.size = size typ.align = typalign typ.fieldAlign = uint8(typalign) if !hasPtr { typ.kind |= kindNoPointers } else { typ.kind &^= kindNoPointers } if hasGCProg { lastPtrField := 0 for i, ft := range fs { if ft.typ.pointers() { lastPtrField = i } } prog := []byte{0, 0, 0, 0} // will be length of prog for i, ft := range fs { if i > lastPtrField { // gcprog should not include anything for any field after // the last field that contains pointer data break } // FIXME(sbinet) handle padding, fields smaller than a word elemGC := (*[1 << 30]byte)(unsafe.Pointer(ft.typ.gcdata))[:] elemPtrs := ft.typ.ptrdata / ptrSize switch { case ft.typ.kind&kindGCProg == 0 && ft.typ.ptrdata != 0: // Element is small with pointer mask; use as literal bits. mask := elemGC // Emit 120-bit chunks of full bytes (max is 127 but we avoid using partial bytes). var n uintptr for n := elemPtrs; n > 120; n -= 120 { prog = append(prog, 120) prog = append(prog, mask[:15]...) mask = mask[15:] } prog = append(prog, byte(n)) prog = append(prog, mask[:(n+7)/8]...) case ft.typ.kind&kindGCProg != 0: // Element has GC program; emit one element. elemProg := elemGC[4 : 4+*(*uint32)(unsafe.Pointer(&elemGC[0]))-1] prog = append(prog, elemProg...) } // Pad from ptrdata to size. elemWords := ft.typ.size / ptrSize if elemPtrs < elemWords { // Emit literal 0 bit, then repeat as needed. prog = append(prog, 0x01, 0x00) if elemPtrs+1 < elemWords { prog = append(prog, 0x81) prog = appendVarint(prog, elemWords-elemPtrs-1) } } } *(*uint32)(unsafe.Pointer(&prog[0])) = uint32(len(prog) - 4) typ.kind |= kindGCProg typ.gcdata = &prog[0] } else { typ.kind &^= kindGCProg bv := new(bitVector) addTypeBits(bv, 0, typ.common()) if len(bv.data) > 0 { typ.gcdata = &bv.data[0] } } typ.ptrdata = typeptrdata(typ.common()) if hashable { typ.hashfn = func(p unsafe.Pointer, seed uintptr) uintptr { o := seed for _, ft := range typ.fields { pi := add(p, ft.offset(), "&x.field safe") o = ft.typ.hashfn(pi, o) } return o } } else { typ.hashfn = nil } if comparable { typ.equalfn = func(p, q unsafe.Pointer) bool { for _, ft := range typ.fields { pi := add(p, ft.offset(), "&x.field safe") qi := add(q, ft.offset(), "&x.field safe") if !ft.typ.equalfn(pi, qi) { return false } } return true } } else { typ.equalfn = nil } typ.kind &^= kindDirectIface typ.uncommonType = nil typ.ptrToThis = nil // Canonicalize before storing in structLookupCache ti := toType(&typ.rtype) return addToCache(ti.(*rtype)) } func runtimeStructField(field StructField) structField { if field.PkgPath != "" { panic("reflect.StructOf: StructOf does not allow unexported fields") } // Best-effort check for misuse. // Since PkgPath is empty, not much harm done if Unicode lowercase slips through. c := field.Name[0] if 'a' <= c && c <= 'z' || c == '_' { panic("reflect.StructOf: field \"" + field.Name + "\" is unexported but missing PkgPath") } offsetEmbed := uintptr(0) if field.Anonymous { offsetEmbed |= 1 } s := field.Name name := &s var tag *string if field.Tag != "" { st := string(field.Tag) tag = &st } return structField{ name: name, pkgPath: nil, typ: field.Type.common(), tag: tag, offsetEmbed: offsetEmbed, } } // typeptrdata returns the length in bytes of the prefix of t // containing pointer data. Anything after this offset is scalar data. // keep in sync with ../cmd/compile/internal/gc/reflect.go func typeptrdata(t *rtype) uintptr { if !t.pointers() { return 0 } switch t.Kind() { case Struct: st := (*structType)(unsafe.Pointer(t)) // find the last field that has pointers. field := 0 for i := range st.fields { ft := st.fields[i].typ if ft.pointers() { field = i } } f := st.fields[field] return f.offset() + f.typ.ptrdata default: panic("reflect.typeptrdata: unexpected type, " + t.String()) } } // See cmd/compile/internal/gc/reflect.go for derivation of constant. const maxPtrmaskBytes = 2048 // ArrayOf returns the array type with the given count and element type. // For example, if t represents int, ArrayOf(5, t) represents [5]int. // // If the resulting type would be larger than the available address space, // ArrayOf panics. func ArrayOf(count int, elem Type) Type { typ := elem.(*rtype) // Look in cache. ckey := cacheKey{Array, typ, nil, uintptr(count)} if array, ok := lookupCache.Load(ckey); ok { return array.(Type) } // Look in known types. s := "[" + strconv.Itoa(count) + "]" + *typ.string // Make an array type. var iarray interface{} = [1]unsafe.Pointer{} prototype := *(**arrayType)(unsafe.Pointer(&iarray)) array := *prototype array.string = &s // gccgo uses a different hash. // array.hash = fnv1(typ.hash, '[') // for n := uint32(count); n > 0; n >>= 8 { // array.hash = fnv1(array.hash, byte(n)) // } // array.hash = fnv1(array.hash, ']') array.hash = typ.hash + 1 + 13 array.elem = typ array.ptrToThis = nil if typ.size > 0 { max := ^uintptr(0) / typ.size if uintptr(count) > max { panic("reflect.ArrayOf: array size would exceed virtual address space") } } array.size = typ.size * uintptr(count) if count > 0 && typ.ptrdata != 0 { array.ptrdata = typ.size*uintptr(count-1) + typ.ptrdata } array.align = typ.align array.fieldAlign = typ.fieldAlign array.uncommonType = nil array.len = uintptr(count) array.slice = SliceOf(elem).(*rtype) array.kind &^= kindNoPointers switch { case typ.kind&kindNoPointers != 0 || array.size == 0: // No pointers. array.kind |= kindNoPointers array.gcdata = nil array.ptrdata = 0 case count == 1: // In memory, 1-element array looks just like the element. array.kind |= typ.kind & kindGCProg array.gcdata = typ.gcdata array.ptrdata = typ.ptrdata case typ.kind&kindGCProg == 0 && array.size <= maxPtrmaskBytes*8*ptrSize: // Element is small with pointer mask; array is still small. // Create direct pointer mask by turning each 1 bit in elem // into count 1 bits in larger mask. mask := make([]byte, (array.ptrdata/ptrSize+7)/8) elemMask := (*[1 << 30]byte)(unsafe.Pointer(typ.gcdata))[:] elemWords := typ.size / ptrSize for j := uintptr(0); j < typ.ptrdata/ptrSize; j++ { if (elemMask[j/8]>>(j%8))&1 != 0 { for i := uintptr(0); i < array.len; i++ { k := i*elemWords + j mask[k/8] |= 1 << (k % 8) } } } array.gcdata = &mask[0] default: // Create program that emits one element // and then repeats to make the array. prog := []byte{0, 0, 0, 0} // will be length of prog elemGC := (*[1 << 30]byte)(unsafe.Pointer(typ.gcdata))[:] elemPtrs := typ.ptrdata / ptrSize if typ.kind&kindGCProg == 0 { // Element is small with pointer mask; use as literal bits. mask := elemGC // Emit 120-bit chunks of full bytes (max is 127 but we avoid using partial bytes). var n uintptr for n = elemPtrs; n > 120; n -= 120 { prog = append(prog, 120) prog = append(prog, mask[:15]...) mask = mask[15:] } prog = append(prog, byte(n)) prog = append(prog, mask[:(n+7)/8]...) } else { // Element has GC program; emit one element. elemProg := elemGC[4 : 4+*(*uint32)(unsafe.Pointer(&elemGC[0]))-1] prog = append(prog, elemProg...) } // Pad from ptrdata to size. elemWords := typ.size / ptrSize if elemPtrs < elemWords { // Emit literal 0 bit, then repeat as needed. prog = append(prog, 0x01, 0x00) if elemPtrs+1 < elemWords { prog = append(prog, 0x81) prog = appendVarint(prog, elemWords-elemPtrs-1) } } // Repeat count-1 times. if elemWords < 0x80 { prog = append(prog, byte(elemWords|0x80)) } else { prog = append(prog, 0x80) prog = appendVarint(prog, elemWords) } prog = appendVarint(prog, uintptr(count)-1) prog = append(prog, 0) *(*uint32)(unsafe.Pointer(&prog[0])) = uint32(len(prog) - 4) array.kind |= kindGCProg array.gcdata = &prog[0] array.ptrdata = array.size // overestimate but ok; must match program } array.kind &^= kindDirectIface esize := typ.size if typ.equalfn == nil { array.equalfn = nil } else { eequal := typ.equalfn array.equalfn = func(p, q unsafe.Pointer) bool { for i := 0; i < count; i++ { pi := arrayAt(p, i, esize, "i < count") qi := arrayAt(q, i, esize, "i < count") if !eequal(pi, qi) { return false } } return true } } if typ.hashfn == nil { array.hashfn = nil } else { ehash := typ.hashfn array.hashfn = func(ptr unsafe.Pointer, seed uintptr) uintptr { o := seed for i := 0; i < count; i++ { o = ehash(arrayAt(ptr, i, esize, "i < count"), o) } return o } } // Canonicalize before storing in lookupCache ti := toType(&array.rtype) lookupCache.Store(ckey, ti.(*rtype)) return ti } func appendVarint(x []byte, v uintptr) []byte { for ; v >= 0x80; v >>= 7 { x = append(x, byte(v|0x80)) } x = append(x, byte(v)) return x } // toType converts from a *rtype to a Type that can be returned // to the client of package reflect. In gc, the only concern is that // a nil *rtype must be replaced by a nil Type, but in gccgo this // function takes care of ensuring that multiple *rtype for the same // type are coalesced into a single Type. var canonicalType = make(map[string]Type) var canonicalTypeLock sync.RWMutex func canonicalize(t Type) Type { if t == nil { return nil } s := t.rawString() canonicalTypeLock.RLock() if r, ok := canonicalType[s]; ok { canonicalTypeLock.RUnlock() return r } canonicalTypeLock.RUnlock() canonicalTypeLock.Lock() if r, ok := canonicalType[s]; ok { canonicalTypeLock.Unlock() return r } canonicalType[s] = t canonicalTypeLock.Unlock() return t } func toType(p *rtype) Type { if p == nil { return nil } return canonicalize(p) } // ifaceIndir reports whether t is stored indirectly in an interface value. func ifaceIndir(t *rtype) bool { return t.kind&kindDirectIface == 0 } // Layout matches runtime.gobitvector (well enough). type bitVector struct { n uint32 // number of bits data []byte } // append a bit to the bitmap. func (bv *bitVector) append(bit uint8) { if bv.n%8 == 0 { bv.data = append(bv.data, 0) } bv.data[bv.n/8] |= bit << (bv.n % 8) bv.n++ } func addTypeBits(bv *bitVector, offset uintptr, t *rtype) { if t.kind&kindNoPointers != 0 { return } switch Kind(t.kind & kindMask) { case Chan, Func, Map, Ptr, Slice, String, UnsafePointer: // 1 pointer at start of representation for bv.n < uint32(offset/uintptr(ptrSize)) { bv.append(0) } bv.append(1) case Interface: // 2 pointers for bv.n < uint32(offset/uintptr(ptrSize)) { bv.append(0) } bv.append(1) bv.append(1) case Array: // repeat inner type tt := (*arrayType)(unsafe.Pointer(t)) for i := 0; i < int(tt.len); i++ { addTypeBits(bv, offset+uintptr(i)*tt.elem.size, tt.elem) } case Struct: // apply fields tt := (*structType)(unsafe.Pointer(t)) for i := range tt.fields { f := &tt.fields[i] addTypeBits(bv, offset+f.offset(), f.typ) } } }